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ABSTRACT

APPROXIMATE MODELS FOR

STOCHASTIC LOAD COMBINATION

by

CHARLES BENJAMIN WAUGH

Submitted to the Department of Civil Engineering on January 21, 1977,
in partial fulfillment of the requirements for the degree of Master of
Science in Civil Engineering.

This work deals with load combinations both from theoretical and
practical viewpoints.

Starting first with theoretical considerations, load combinations
are treated as mean outcrossing rate problems. A modified square wave
(jump discontinuous) process is considered, and the expression for the
outcrossing rate from a two dimensional region derived. This result is
compared to results relating to multidimensional Gaussian processes.

Next, a series of case studies is carried out. These studies deal
with reinforced concrete columns subjected to both time varying, random
lateral and gravity loads. It is demonstrated that for cases of prac-
tical interest, interaction diagrams may be replaced with linear bound-
aries for purposes of reliability analyses.

It is also shown that by considering such linear boundaries, an
outcrossing rate problem is reduced to an upcrossing rate problem, which
is simpler from both conceptual and computational viewpoints. Further
simplifications relating to upcrossing rate problems are also presented.

Engineering practice is considered in terms of building design codes.
Present codes are discussed, and then theoretical objectives of modern
probabilistic codes are outlined. Finally, some recent draft proposals
are considered. Using the methodology developed earlier, these are checked
for risk consistency. While no improvements on these formats are offered,
it is concluded that such codified approaches appear to meet presently
stated objectives.

Thesis Supervisor: C. Allin Cornell

Professor of Civil EngineeringTitle:
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INTRODUCTION

1.1 Motivation

Civil engineering structures are subjected to an environment comprised

of a host of different loads. Natural phenomena, such as wind, snow, or

temperature, and the actions of men, such as building occupancy loads must

all be considered. In the face of this, the engineer is charged with the

responsibility of designing structures that are both safe and economical.

Since these two aims are contrary, a balance must be struck. Traditional-

ly, this balance depended only upon the judgement of the engineer and those

he serves: architects, owners, and building authorities.

Recently, probabilistic methods have been advanced in a quest to aid

the design process. Engineers now generally accept the notion that both

loads and a structure's resistance to them are random in nature. Further-

more, rational methods to choose load and resistance safety factors have

been proposed. These typically assume knowledge of only the means and

variances of the random variables pertaining to any problem, and so are

known as second-moment methods. Important contributions have been made by

Cornell [13], Ditlevsen [15], Hasofer and Lind [25], Paloheimo and Hannus

[30], and Veneziano [39].

However, while these second-moment methods are capable of considering

multiple loads and resistances, in and of themselves they do not account

for a very significant aspect. All fail to explicitly treat the stochastic

(temporal) variability of loads. That is, loads are considered to be ran-

dom, but the important element of time is left out.
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This shortcoming has not been ignored by engineers involved with re-

search into structural safety. On the contrary, it is widely recognized.

Basic mathematical research is still underway, and furthermore, so are in-

vestigations of how to apply such results to practical needs. Both consti-

tute aspects of stochastic load combination.

1.2 Formal Definitions

Stochastic load combination problems are those for which the safety

or serviceability of structures depends upon multiple loads that vary ran-

domly in time.

In this work, stochastic load combination is to be distinguished from

either probabilistic or statistical load combination. Problems that con-

sider loads modeled simply as random variables (i.e., that do not explicit-

ly consider variation in time) we call probabilistic. Statistical load

combination deals with the application of data, either real or simulated,

to the task. Clearly then, probabilistic load combination is less general

a field of study than stochastic load combination. On the other hand, the

study of statistical load combination involves an entirely different empha-

sis and set of mathematical tools.

1.3 Review of Other Work

There is a paucity of modern work dealing with stochastic load combin-

ation. Therefore, this section will be able to examine the work in moder-

ate detail.

Borges and Castenheta treat load combinations extensively [7 ]. They



-11-

model each load as a random sequence of values that are constant during

elementary intervals of fixed length. This is illustrated in figure 1.1.

Values of load intensity are assumed to be mutually independent, both with-

in a given load process or between processes. Table 1.1 indicates the dur-

ation of the elementary intervals for different types of loads considered,

as well as the total number of repetitions so obtained for a 50 year period.

Given the above assumptions, the probability of a n-dimensional load

vector S falling within the domain ds1, ds2,...dsn at least once during the

structural lifetime was found.

However, the result is difficult to apply, and so a simplified result

is also presented. It assumes the first load to be a dead load (i.e., k =

1 in the illustration, figure 1.1) and that there is only a small probabi-

lity that two other loads will occur in combination with it:

f(S)dslds 2ds3 k2fl(S1 )f 2(s 2 )fk (s 3)dSl dS2ds3 (.1)
3/k2

where the fi(-) and Fi(') are p.d.f.'s and c.d.f.'s relating to individual

load intensities within elementary intervals. The k's are the number of

repetitions, with k3 > k2 > kl, and:

k3/k

fkk (S3 ) = d[F 3 (s3) 23/k2

This is the expression actually used for the rest of the Borges-Castenheta

book.

Careful inspection reveals that the equation 1.1 is not a proper den-

sity function, however. To be such, it must account for the probability
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Figure 1.1: The Borges--Castenheta model.

-12-

.rq
w
U)O

.-I
H

0
ed
0

r.lU)

-I

H
C,
la
0
'.4

4IJ
-H-M

0

.-
H

0
'.4

-



-13-

Table 1.1 (After Borges and Castenheta)
Intervals assumed by Borges and Castenheta

Duration of each
elementary interval

50 years

Number of independent
repetitions in 50 years

1

Live load
on buildings

Wind

10 years*
2 years

1 hour

Earthquakes 30 seconds

*Duration depends on the occupancy type.

S S

s4 S *

s3

7

rrTT

5

L

5

2 2
_ =_ct-.+

Figure 1.2 (After Borges and Castenheta)

Structural Interaction in the work of Borges and Castenheta.

Load Type

Permanent

5

25

50 x 103

50 x 106

I 

4
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that the vector will fall into the region around (sl,' 2' s3) exactly one

time during the lifetime considered, and never in any other region. That

is, a distribution function must account for the probability of any single

(exclusive) outcome. However, it actually accounts for the probability

that the event occurs one or more times among many outcomes. Borges as-

serts that the two probabilities should approach each other if they are suf-

ficiently small. Therefore, equation 1.1 is offered as such an approxima-

tion. The assertion is reasonable, but evidence has not yet been offered

in its support or to bound its range of validity.

The transformation from loads to load effects is also considered. Al-

though non-linear structural behavior is discussed in general terms, most

of the study assumes a linear transformation from loads to effects. Figure

1.2 is an example of such a transformation, which can be expressed concise-

ly in matrix form:

q = [c]

where loads are denoted by s, their effects by q.

While it is shown in general terms how to use an expression such as

equation 1.1 to compute failure probabilities, computations are not carried

out. Instead, four examples combining loads on the structure were worked

out to the point of plotting lines of equal probability density resulting

from equation 1.1. Study of these examples may help to motivate an intui-

tive understanding of the nature of load combination problems. They do

not, however, lead directly and unambiguously to simple methods for the se-

lection of design loads or load factors.

Bosshard [9 ] generalized the elementary interval model of Borges and

Castenheta, and then studied the problem of combining two such processes,
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in the sense of summing scalar values. These two points will be discussed

in turn below.

The generalized model proposed by Bosshard consists of a Poisson

square wave process with a mixed distribution on load intensities. The

latter feature calls for the inclusion of a new parameter, p, which is the

probability that after any given Poisson renewal of the process, a zero

value of intensity is assumed. The effect of the inclusion of this new

parameter is illustrated in figure 1.3. Successive renewals are again as-

sumed to be independent. Poisson square wave models had been used previ-

ously, such as in Peir's study [32], and with mixed distributions, such as

in McGuire [29], but those studies did not appreciate the significantly

greater modeling flexibility the introduction of p permitted. For in-

stance, if we set p = O, then the result is the familiar Poisson square

wave process discussed by Parzen [31]. On the other hand, let p have as

its compliment q = p - 1. Then, if the Poisson renewal rate is v, the ar-

rival rate for nonzero renewals is qv. Holding times between renewals are

exponentially distributed with means of 1/v each. Hypothetical realiza-

tions of such a process are illustrated in figure 1.4.

Previous attempts (at M.I.T. and elsewhere) to represent infrequent

loads with random durations had focused on less convenient "three para-

meter" models, in which the load durations are arbitrarily distributed, in-

dependent random variables. These models were non-Poisson, and hence less

tractable. Examples are provided in the collection by Grigoriu [21].

In order to study the problem of summing the processes, Bosshard

adopted a discrete state Markov approach. Each process is allowed to take

on only a discrete set of values, and the states of the chain correspond to
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Original p.d.f.

1

Original c.d.f.

Modified (renormalized) Modified c.d.f.

p.d.f.

Figure 1.3: Effect of adding a probability mass at
the origin of a distribution function.
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With p = 0

With p close to 1

Figure 1.4: Hypothetical realizations of modified square wave processes.
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all possible combinations of these two sets. Bosshard showed how this

chain could be used to find the (discretized) extreme value distribution

for the sum of two processes over a given reference period. Using simple

two level discretizations on two processes, he studied then the coincidence

problem, or the probability that the two processes will combine, each non-

zero, during a reference period. Although his Fortran program would allow

studies utilizing the full power of his approach, such as extreme value

distributions for cases with more interesting distributions on the indivi-

dual processes, such studies were not carried out. In part, this is be-

cause the approach is computationally expensive (as some limited experience

with his program by researchers at M.I.T. has indicated).

Veneziano, Grigoriu, and Cornell have studied combinations of indepen-

dent smooth Gaussian processes [40]. Results are given for the mean rate

of outcrossing from a "safe" region in n dimensions. Simplifications are

found for spheres and polygonal regions. These results have an important

role in this work, and deserve to be presented in detail not appropriate to

this section. Instead, they are presented in section 2.2.

While the above three references represent recent work specifically

addressed to load combinations problems, there are earlier studies which

have laid the foundations for them. Gumbel wrote a treatise on asymptotic

extreme value distributions which is now considered to be a classic [23].

Rice did fundamental work dealing with mean-crossing rates for Gaussian

processes [34]. Ditlevsen [16], and Crandall and Mark [14] are other ex-

cellent references on extremes of Gaussian processes.

In summary, note the three approaches to problem formulation that have

been pursued in these studies: extreme value distributions, mean rates of
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upcrossing above a threshold level, and mean rates of outcrossing from a

safe region (e.g., in two dimensions). These are all illustrated in figure

1.5. Actually, these approaches are equivalent. First of all, the proba-

bility that the extreme value distribution of the combination is less than

a given level is exactly the same as the probability that there are no up-

crossings of this threshold:

P max (S + S2) = z = pi no upcrossings of the 1
LT 1 2 j L threshold z, before time T J

Further, since the safe region in the last illustration is linear, the

problem is again of the form Sc = S1 + S2, and so is equivalent to an up-

crossing problem. This equivalence is discussed with more precision and

detail in section 2.4.

Other work bearing on load combinations has grown out of other re-

search topics in civil engineering reliability. Two examples are presented

here.

C. J. Turkstra has studied the decisions involved in structural design

[36]. In the course of his work, he considers probabilistic design formats,

including combinations of dead, occupancy, wind, and snow loads. The an-

nual maximum total load, or its scalar load effect, is sought. He proposes

that:

A reasonably simple expression for nominal maximum
annual total loads ST is obtained if it is assumed that

on the day when one q load reaches its annual maximum,
other loads are chosen at random from the populations of
their daily maximum loads....

Then, he proposes that the parameters of the total load on any of the

critical days are of the form:
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E(S E(Sj + E(Si daily max) (1.2a)
m ijai

Var(ST ) - Var(Sj max) + Var(Si daily max) (1.2b)

Or, as Turkstra wrote them:

E(ST) E(Sj max) + aiE(Si max) (1.3a)

Var(STj) Var(Sj max) + biar(i ma (1.3b)T jj max i Vr(S ) l3max)
where Si max and Sj max refer to annual maxima of loads i and j, and ai

and bi are constants depending upon the location and use of the structure,

with a < 1. This is to say, he proposed that the parameters of the loads

related to daily maximum values be related to annual extreme value infor-

mation. In either set of equations, note also that individual loads are

to be "rotated", each in turn assuming the leading position where the an-

nual maximum is considered.

Clearly, the approach tends to be unconservative, in that it does not

account for possible maximum values resulting from combinations where none

of the loads is at an individual maximum. However, consider the effect of

another assumption. Denote by P(ST < z) the probability that the total

maximum effect is less than z, with load j at an annual maximum. Assume

that these probabilities are independent, even though it is generally not

true. Then, we may approximate the result relating to the maximum total

ST, regardless of the relative values of individual loads:

P(ST z) = P(ST ~ z) (1.4a)
all i i
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The assumption of independence tends to be conservative. In situations

where a single load is dominant, the approximation should improve; this was

reported by McGuire [29]. A result complimentary to equation 1.4a simply

sums exceedance probabilities:

P(ST > z) = P(ST > ) (1.4b)
all i i

which as an approximation to 1.4a is conservative.

Turkstra's approach has the advantage that it is easily translated

into design rules for practical structural codes, each critical case being

represented by a deterministic load combination checking condition. In

fact, it is the basis for rules in both U.S. and European proposals, as

will be discussed in Chapter 4.

Hasofer considered the extreme value distribution resulting from the

superposition of a Poisson square wave with a Poisson event process, that

is, a process with no time duration. The research grew out of a study

dealing with floor live loads [24]. It is made more interesting by the

fact that it is an exact result. Further, it demonstrates how mathematic-

ally difficult an exact (versus approximate) result may become, since it

requires the solution of two integral equations; Hasofer did this numeric-

ally.

Of course, there are other studies which dealt with load combinations

or related topics. However, the goal here is not to provide a complete

and detailed review. Instead, the work that has been reviewed in detail

represents that which has had a direct impact on this thesis.
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1.4 Issues of Modeling

Load combinations has been a little explored field until recently. As

a result, basic issues concerning mathematical modeling of load combinations

remain. This section will address some of these issues, and then will se-

lect and define the features of a model to be used in the rest of this

thesis. The implications of the features selected will also be explored,

with particular regard to the limitations they impose.

Three basic model qualities are desirable:

1. The model must be useful for dealing with codified design.

2. The model must not demand any more information than can reasonably be

supplied.

3. The accuracy of any approximations in mathematical methods used must be

subj ect to verification.

To deal with codified design means of tat both the issnput and output of

the model must bear directly upon the desig n p rocesxample, if

loading codes define wind loading in terms of pressures, the model should

also deal in termplications of pressures, not sectral density curves that must be

further translated. On to the limitations the output must contain useful in-

formation for some safety checking scheme. So, for example, it is not

enough to know the probability that earthquake forcesir and snow loads will

act concurrently ust bructure usexactly once deauring its lcodife. Inforgn.a-
tion about intensities is anecessary. The distribumation of than cane lifetime

maximum moment in a par dticular member due to the superposition of the two

load processes would be an al ternative of g reater value.

The quality that the model must not demand too much information is

also deal in terms of pressures, not spectral density curves that must be

further translated. On the other hand, the output must contain useful in-

formation for some safety checking sheme. So, for example, it is not

enough to know the probability that earthquake forces and snow loads will

act concurrently upon a structure exactly once during its life. Informa-

tion about intensities is also necessary. The distribution of the lifetime

maximum moment in a particular member due to the superposition of the two

load processes would be an alternative of greater value.

The quality that the model must not demand too much information is
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dictated by the limitations of practical situations. There is simply very

little data on the processes, natural or man-made, that contribute to struc-

tural loading. Estimates can be made, according to engineering judgement.

Such estimates contain valid information, and the model sets up a formal

framework for using it. However, a deeper discussion of this issue leads

into the realm of decision theory, such as Grigoriu dealt with [22].

Accuracy, in the context of this discussion, can only be defined in a

relative sense. We do not know the true state of nature. So, we cannot

state the true probability that the moment in a beam produced by two loads

in combination exceeds a given level at a given time. Yet, given some as-

sumptions, we may be able to get a closed form result, an "exact" result

for our purposes. Then, if a simpler approach is adopted for the purpose

of codification, it can be judged by the former standard.

Therefore, a premise advanced here is that simplicity is a helpful,

perhaps necessary model quality. Simplicity also has an advantage inasmuch

as it helps to clarify, rather than obscure what is actually occuring.

Long span bridge loading provides an example. Asplund used a very simple

model to study the reduction of lane loads with increasing bridge length

[ 4]. His model neglects consideration of the number or spacing of axles

on trucks, truck size distributions, vehicle headway, and other aspects con-

sidered in more recent research. However, his paper showed clearly why

lane loads should be reduced with increasing span length, and thus verified

an intuitive notion previously held by engineers.

In his work on model selection, Grigoriu also recognized the value of

model simplicity [22]. He studied the question in a more formal manner

than adopted here, attaching a penalty for increasing model complexity.
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Taking all of the above into consideration, the following model fea-

tures are selected:

1. The model will consider the combination of only two load processes.

2. Each load will be modeled as a modified square wave, as proposed by

Bosshard.

3. The reliability information will be expressed in terms of mean crossing

rates.

Let us now detail the implications of these features.

First, combinations of three or more loads cannot be directly con-

sidered. This is because the sum of two processes, with either p O, is

no longer a Poisson renewal process, the only renewal process for which

superpositions are also renewal processes; see Karlin and Taylor [26].

However, combinations of lateral wind and floor live load, of interest for

many buildings, may still be considered.

Second, the use of the model as formulated by Bosshard poses the ques-

tion of how to model individual load processes as a series of distinct

events. This places a burden on researchers who are attempting to model

individual load processes. They must model loads in terms of p, v, and a

single distribution function relating to intensities. For example, imagine

that figure 1.6 represents the measured wind speed before, during, and

after a thunderstorm. The bold lines indicate the way that the storm must

be modeled. Questions to answer include when does the storm begin, when

does it end, and what is its representative wind speed? Let us see how

such questions may be approached.

One might say that the storm begins when an upward trend in wind speed

is first detected, and ends when the downward trend at the tail of the
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storm ends. For figure 1.6 we might judge that the storm begins between

minutes 30 and 40, and ends somewhere after minute 100. However, the wind

speeds are still low at these points, not of interest to structural engi-

neers. Instead, let us focus attention on wind speeds above 35 miles per

hour. Then, say that the event representation of the storm begins when

sustained speeds of greater than 35 m.p.h. begin, and end when such speeds

are no longer sustained. By sustained, we may mean that the velocity must

remain above the reference level for all but short periods of time, say 20

seconds. Then, the representative velocity might well be taken as the

mean velocity during this period of event representation.

The problem then becomes the selection of the reference (threshold)

level of wind velocity. In the example illustrated by figure 1.6, 35 m.p.h.

would seem a good choice, because it is close to the chosen representative

velocity.

However, some problems may be more difficult. Figure 1.7 illustrates

what may happen during a severe thunderstorm, with short gusts of more than

50 or 60 m.p.h. Again, 35 m.p.h. was chosen as a reference level, and

again the representative value is not much greater. Yet, due to gusts

there is a much greater variability about the representative velocity. We

may attribute this variability to a secondary stochastic process; whereas

the primary stochastic process describes the arrival of storms with repre-

sentative velocities, the secondary process describes the gustiness about

this velocity. This secondary process may even be required to account for

the possibility of long waves, of perhaps 20 to 30 minute periods. The to-

tal static structural effect during any event is then due to the random but

constant-in-time primary value, plus that due to the random, time varying
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secondary process. The proposal here implies that only the primary compo-

nent of the process will be properly represented in the analysis of tempor-

al combinations with other loads. The constant-in-time (i.e., the square

wave) assumption greatly facilitates this analysis.

It is important, for the purpose of the accuracy of this model, that

the secondary stochastic process contain relatively little variability com-

pared to the primary process. This condition reduces the probability that

(in the case of our example) the maximum lifetime wind velocity or its

structural effect occurs during an event other than the one with the maxi-

mum representative velocity, a situation illustrated in figure 1.8. It

also reduces the probability that the maximum effects due to the combina-

tion of wind with other loads occurs at a time other than that which the

model would suggest. Criteria for comparing variability in the primary and

secondary processes might take the form of keeping an acceptably low ratio

of the variances of the two processes. Unfortunately, formation of such

criteria goes beyond the scope of this work.

Structural interaction must also be considered. Figure 1.9 illus-

trates a possible realization of the secondary stochastic process for thun-

derstorms, and the resulting bending moment in a particular member of a

structure subjected to the storm. Even if we do not consider the dynamic

characteristics of the building, there may be a filtering effect. Such

filtering may be due to one or more of many reasons.

Again using wind for example, filtering may be due to the fact that it

takes time for a gust to envelope a building; and by the time the gust is

beginning to have an effect, it is dying down. Such interaction requires

dynamic analysis, to be fully accounted for. However, ordinary design pro-
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Figure 1.9: The effect of filtering.
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cedures involve only pseudo-static analysis. Therefore, it is left to code

committess and researchers modeling storms to select a transfer function

typical of the class of buildings being designed, to check and see that the

residual variability of the secondary process, left after filtering, is

acceptable.

There may be too much variability left after filtering. In such a

case, it may be an alternative to model storms as consisting of either sus-

tained winds or peaks. This is similar to the idea of using sustained and

extraordinary load processes in floor live load modeling [32]. Yet, there

would be a significant difference. In the case of wind loading, the two

processes would be mutually exclusive, and so would not create a load com-

bination problem within the modeling of a single load type.

Consideration of structural interaction leads also to the topic of

variable space. When we speak of the space of variables, we are simply re-

ferring to the physical meanings of the quantities represented. Load space

variables deal directly with load phenomena, such as wind pressure, the

weight of furniture on a floor or snow on a roof, etc. On the other hand,

load effect variables refer to the results that loads subject a structure

to, such as bending moment or axial force. It is the behavior of the

structure itself in translating loads to effects that defines a mapping be-

tween the two spaces. We must decide which space we wish to work in.

There are advantages to working with either loads or effects. Usual-

ly, fewer effects are considered than loads. For instance, live floor

loads, wind and earthquake loads, and snow loads may be considered; how-

ever, at the same time, at most only axial and bending effects may be sig-

nificant. Also, safety checking is usually performed in terms of effects,
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such as ultimate moment capacity. However, loading codes deal in terms of

loads, not effects. Furthermore, it is usually assumed that loads act in-

dependently. In terms of modeling, this assumption becomes one of stochas-

tic independence. Yet, effects are usually not independent. For an ele-

mentary example, consider the case of a reinforced concrete column sub-

jected to both gravity and wind loading.

Let us assume linear elastic structural behavior, for simplicity.

Further, assume the fixed spatial loading pattern of uniform loads. Then,

adopting the same approach as Borges and Castenheta, relate the floor and

wind loading to the moment and axial effects, M and P, by a matrix:

M CWM CLM W

:WPCW 1C (1.5)
P CWP c L

An interpretation of the coefficients of this matrix is illustrated in

figure 1.10.

Consider a point in time at which it is known that both wind and live

loads are acting at random levels. Assume knowledge only of means and

variances, and that the loads are not correlated. Then, the covariance be-

tween effects is found by simple linear operations:

2 2
Cov(M,P) = wCwp a + CLMCL (1.6)

which is generally nonzero.

The method adopted here is to invert the matrix [C], and translate the

description of the safe region into load space. Denote the inverse by [D].

Any point on the failure surface in load effect space is mapped back to a
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{ L2 PLI I I (1.7)
Lu dML dpL Pu

Proceeding point by point, we can define a new diagram in terms of the

loads themselves. Using this new diagram, safety analyses can be carried

out, in terms of the load processes only.

No matter what space of variables is selected, the failure surface may

be irregular and difficult to describe analytically. In such cases, it may

be desirable to replace the surface by simple approximations, such as

spherical or circular segments, planes or straight lines. Especially with

the latter approximations, considerable mathematical simplifications may be

achieved, as will be demonstrated in the next two chapters.

Finally, let us examine the usefulness of mean outcrossing rates as

reliability information. Structural failures are rare events. Due to this

fact, and also because we focus on high load and load effect levels, it may

be assumed that these rates pertain to Poisson processes. Then, the proba-

bility of the total load outcrossing the safe region (or exceeding a thres-

hold), denoted pf, is

pf = 1 - P(No outcrossing in [0, T]) = 1 - exp(-v+T) (1.8)

where v+ is the outcrossing rate. By taking the first term in the Taylor

series expansion for the exponential function, we obtain:

Pf < v+T (1.9)

which for small pf, is a good, while conservative approximation when taken

as an equality. Note that v+T is also the expected number of outcrossings.
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1.5 Purpose and Scope of Research

As implied by the title of this thesis, its main goal is not only to

study models of load combinations, but also the effect of approximations

on them. Toward this end, each succeeding chapter will contain more ap-

proximations than the one before. At the same time, progress will be made

toward findings of practical value.

In Chapter 2, load combinations will be studied as mean outcrossing

rate problems. The outcrossing rate problem for the modified square wave

process will first be solved. Then, as an approximation, the continuous

process results of Veneziano, Grigoriu, and Cornell will be presented.

Comparisons made in the form of case studies will show that the continuous

process results often well approximate those of the modified square wave.

Additional insight is also gained by their use.

Also in Chapter 2, it will be shown how two dimensional failure boun-

daries may be linearly approximated. This offers the great advantage of

reducing the two dimensional outcrossing problem to a scalar (one dimen-

sional) uprcrossing rate problem. A method to perform these lineariza-

tions in load space is presented, and the resulting error and limitations

discussed in a series of case studies dealing with reinforced concrete

columns. A more direct method for performing such linearizations, in

terms of load effects, is also suggested.

Advantages gained from adopting a scalar boundary are exploited in

Chapter 3. The mean upcrossing rate for the sum of two modified square

wave processes is found. A Markovian approach similar to but distinct

from that taken by Bosshard helps interpret the results and provide in-
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sight. Even further simplifications, useful in certain special cases, are

also presented.

Code procedures for dealing with load combinations is the subject of

Chapter 4. Past and present development of practice is summarized. More-

over, the theoretical objectives modern code writing authorities hope to

achieve are presented, which links this chapter to the previous ones.

Lastly, it is shown how the stochastic model results of Chapter 3 can be

used to evaluate the degree to which simple codified formats are meeting

these objectives. A brief example of such a study is actually given.

Finally, Chapter 5 will offer general conclusions based upon the en-

tire body of this work. Recommendations for future research will also be

made.
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CHAPTER 2

LOAD COMBINATIONS AS MEAN OUTCROSSING RATE PROBLEMS

2.1 Outcrossing Rate Results for Modified Square Wave Processes

The result for the mean outcrossing rate for the combination of two

modified square wave processes is found by a conceptually straightforward

argument. It is valid, however, only for processes that are independent

both in terms of temporal characteristics and in values of load intensi-

ties associated with renewals.

A hypothetical realization of a two dimensional combination of a

modified square wave process is shown in figure 2.1. This illustration

emphasizes the principle that the probability of simultaneous change is

negligible. Therefore, the problem can be split into two parts, consist-

ing of finding the mean rates of outcrossing associated with changes in

loads 1 and 2 separately. Let us focus on the mean rate of outcrossing

associated with changes in load 1 first. The result relating to load 2

is then similar.

Before proceeding, though, let us introduce some less precise but

shorter language. Though one must be mindful of their nature as expected

values, let us refer to rates of outcrossing, rather than mean rates.

Further, when referring to outcrossings associated with changes in a given

load, we shall simply allude to outcrossings "due" to that load. These

conventions will be used in the sections that follow.

Symbolically, denote the rate of outcrossings due to load 1 by vl+.

The rate vl+ is related to the rate vl by the probability that any parti-

cular renewal of process 1 results in an outcrossing, or:
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There is an There is a change 
v+= v1P joutcrossing in load 1 J

Further, since the two load processes are independent, it is convenient to

condition upon the level of load 2. So, using this fact:

_V i pJ There is anlThere is a change in ds
1+ V 1 J outcrossingiload 1, and S2 = 2 2

To make the above result more explicit, we need to consider the forms

of the distributions relating to the intensities of loads 1 and 2. Let us

denote with a prime the modified and renormalized distributions obtained

from considering Fl(s1), F2(s2 ), P and P2

Fl'(Sl) = P1 + qlFl(sl) (2.1a)

F2 '(s2) = P2 + q2F2(s2) (2.1b)

(Recall that the effect of including a probability mass p was illustrated

in figure 1.3.) It should be emphasized that these primes have no rela-

tion to the operation of differentiation.

Also, we must consider the form of the boundary in order to write an

explicit result. Let us make a slight notational change at this point (to

reduce multiple subscripts). Instead of labeling the load variables for

loads 1 and 2 by sl and s2, simply call them x and y, respectively. There

are then 8 important points on the boundary to consider. These include

the extrema, Xmax' Ymax' Xmin' and Ymin' along with the intercepts xiV

Xir' Yit, and Yib' All of these points are illustrated in figure 2.2.

For the purposes of integrating with respect to y, we now consider
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two paths from Ymin to Ymax' running to the left and right, containing

xiR and xir, respectively. Denote the ordinates relating to a given value

of y as xQ and xr, respectively.

So, using this notation, for a given value y, the probability of

being within the safe region is:

P{Safey} = F'l(r) - F'l(x) = P + ql[Fl(Xr ) - Fl()] (2.2)

Unity minus the right hand side of 2.2 is the probability of being out of

the safe region, given y. Since an outcrossing event involves the transi-

tion from a safe to an unsafe state, and recalling the independence of

successive renewals, l+ is:

V1+ = V 1 max{pl+ql[Fl(r)-Fl(X ()]}{ql-ql[ Fl(xr)-Fl()]}dF'2 (y ) (2.3)

Ymin

Accounting for the probability P2, equation 2.3 becomes:

v1+ 
= Vlql P 2{l + ql[F1(Xr) - F1(X9)]}{1 - [F1(Xr) - F1(X)] + lqlq2

[max p q[ ()I ax {P1 + ql[F 1(Xr) - F1- [Fl((x)]}f 2 (y)dy (2.4)

Ymin

where f2(Y) now relates to the p.d.f. of renewals of load 2. Considering

a symmetric result for load 2, the final (total) result is obtained:

V+ = VlqlP2{pl + ql[F1(xr) - F1(xk)]}{l - [F1(xr) - F(X)]}

+ 2Plq2{P2 + q2[F2(Yt) - F2(Yb)]}{l - [F2(Yt) - F2(Yb)]}
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Ymax

+ vlqlq2 J {Pl+q[Fl(Xr)-Fl (X)]1{1-[FI(xr)Fl (X)]}f2(Y)dy

Ymin

max

+212 I p+q2[F2(t)-F2(b)]}{1-[F2(Yt) -F2(Yb)]}fl (x)dx (2.5)

Xmin

Except for extremely simple cases of little practical interest, equation

2.5 must be evaluated numerically. The form of these two integrations are

indicated in figure 2.3.

2.2 Outcrossing Rate Results for Gaussian Processes

As mentioned previously, the results outlined in this section are

taken from reference [40]. Only slight changes in notation to resolve cer-

tain conflicts with other results have been made.

The general formulation is as follows. Let X(t) be a stationary, con-

tinuously differentiable process with n components, and n be a region in

Rn , defined by:

= {X: g(X) z (2.6)

That is, Q is the safe region defined by the function g.

Analogously with upcrossing events of scalar functions, a sample func-

tion (t) is said to outcross the boundary B at a time to if x(t o ) is on

B and:

xn(to) = (to ) ·-(t o ) > (2.7)

where (to ) is the unit vector normal to B at x(t ), with the positive
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direction towards the exterior of . Intuitively, this means that at t,

the sample function is just on the boundary B, and has an outward velo-

city.

The approach used to find the outcrossing rate is a generalization of

Rice's argument [34]. It is expressed as:

+ I f nfXXn( Xn dXnd = E[Xnx = ]f()d (2.8)

B9 o Bo

where E[-] denotes a partial (or positive tail) expectation.

We will study a particular class of cases. First, assume that we re-

strict ourselves to stationary Gaussian processes, then X(t) and Xi(t)

are independent. Further, if we assume Xi(t) and Xj(t) to be independent,

i j, it also follows that j(it) and Xj(t) are independent, and no co-

variance information is needed at all. Then, the partial expectation in

2.8 becomes a constant independent of x:

E[RnX = x] := n] (2.9)

So, 2.8 becomes simply

+ EO[ ]f(B) (2.10)

where f(B.) is the probability density that X(t) is on the boundary at any

given time t.

Using the above assumptions makes a tractable equation for polyhedral

regions in Rn possible. First, reduce all coordinates by dividing each

component xi through with the appropriate standard deviation aoi. Let the

failure boundary have m (hyperplanar) faces. Denote the ith face as B i,
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with a unit exterior normal i.. The jth component of this normal is de-

noted here as nij. It can be shown that for this case, we may write the

density f(B i) as:

f(Bi) = 4(ri) n-(B i ) (2.11)

where ri is the distance from the mean point E[X] to the face B i and (ri )

is the standard normal density evaluated at this distance. Further, On-l

(Bi) is the integral over Bi of the conditional density of X given that

X is on the (infinite) hyperplane of which B i is a part. This is in the

form of an (n-l)-dimensional standard normal density with its mean at the

orthogonal projection of the mean E[X] on the hyperplane. This reduction

of dimension is particularly useful in the solution of two dimensional

problems, such as illustrated in figure 2.4.

Further consideration of face B yields another useful result. The

partial expectation for this single face becomes:

0E[nni = l (2.12)

where

2 n 2 2

ani j nij ajj
j=l

and where

a2 Var(Xj)

that is, the variance of the jth component of the derivative process.

Application of equations 2.10, 2.11, and 2.12 now leads to the desired

result. Summing the rates of outcrossing through the individual faces:
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v+ i f(B ) nijajj (2.13)

This is simplified further if attention is focused on the two dimen-

sional problem. In this case denote the components of ni as:

cos P 

n i=
sini J

and let 0 i be the point on Bi closest to the mean E[X]. Then, B i may be

split into two segments, from each vertex of Bi to Oi, as illustrated in

figure 2.5 (unless 0i is itself at a vertex). Let the algebraic distances

from the vertices of Bi to 0 i be cli and c2i > Cli. Using these symbols,

equation 2.13 becomes:

1 m 2 2 2 1/2
+ 2 21 - li 22sin*) exp(-r/2) (2.14)+ - 2 i[ c2i) - (Cli)](a lCOS2 i + o2sin2~i) exp

This is the result of this section that is used later in this chapter to

actually calculate outcrossing rates.

We would like to use these results to study the modified square wave

process. However, to apply the result 2.14, we must supply stochastic

process information in the form of a11 and 22. These parameters have no

direct analogues in the square wave process, since the derivative of the

square wave process does not exist. Yet, we may still attempt to achieve

comparable results by selecting all and a2 2 in some reasonable way. We

choose to do this by matching the mean rate of crossings of the mean level

of each load process, acting individually, for both the modified square
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wave and Gaussian process formulations. For process 1 and the modified

square wave formulation:

2 2 2 
: [Pl+qlFl(p)][ql-qlFl(p)]vl = [Plql+(q-Plql)F 1 )- q 1 1() (2.15)

Assume F1(P) to refer to the mean of a normal distribution; then, it is

simply evaluated as 0.50. So, equation 2.14 becomes:

+ = (0.50 plql - 0.25 q )vl (2.16)

Use equation 2.13 with m = 1, i = 0, and (c2i ) - (cl) = 1, to account

for an infinite straight line parallel to the x axis. With r = 0 to place

this line through the mean:,+ ll (2.17)
Equating the right hand sides of 2.15 and 2.16, we get:

all = r(pl ql - 0.50 q)vl (2.18)

A similar result holds for process 2.

All of the mathematics necessary to this chapter are now at hand.

The following sections will deal with their application.

2.3 Case Studies: Reinforced Concrete Columns

Let us consider an example of a reinforced concrete column subject to

wind, live floor, and gravity dead loads. Assume the structural interac-

tion defined by equation 1.9, but with L replaced by D + L. Treat D as a

constant in any particular case, a nominal (mean) value in the same sense

that the interaction diagram defines the nominal resistance of the column.
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Less explicitly, the same end could be sought by raising the mean live

load, ;1 L' by an appropriate amount. However, the chosen approach has the

advantage of limiting the variability in the floor load to that actually

imposed by the live load process, therefore leaving the dead load both de-

terministic and constant in time, as it is commonly assumed to be. Flexi-

bility in choosing a dead to live load ratio is also maintained.

Consideration of random (though constant in time) dead load is concep-

tually straightforward. Equations 2.5 and 2.14, for either the jump or

continuous process formulations can be viewed as conditional results, given

a particular value of dead load. In each case then, replace the left hand

side, v+, with +ID. Assuming the dead load to be independent of the other

load processes, denote its distribution as fD(s). Then:

0

is the true mean rate of outcrossings, accounting for random dead load.

We shall explore this example three times. Each particular combina-

tion of an interaction diagram and a matrix [C] will be referred to here

as a study. Each study will consist of at least three cases, which here

refer to sets of parameters characterizing the individual load processes.

The purpose of these studies is twofold. First, we shall examine the be-

havior of equations 2.5 and 2.13 by comparing the rates obtained for dif-

ferent cases. Then, we shall proceed to the main tasks of finding out

whether and how a failure boundary may be linearized.

2.3.1 Parameter Selection

The studies have been chosen in such a way as to represent situations
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that may be encountered in practice, as far as possible. Interaction dia-

grams used here are from a paper dealing with column strength [18], and

may also be found in reference and text books, such as [41].

These diagrams have been presented in nondimensional form, based on

ratios of parameters. Parameters that have not been previously introduced

here are listed below:

e = ratio of ultimate moment to ultimate axial force, Mu/Pu

b = section width

h = total section depth

eh = depth between reinforcing layers

fc = concrete (crushing) strength

and

A fsy
P1 =

0.856bhfj

where

A s = reinforcing steel area

f = yield strength of reinforcing

Geometrical parameters are illustrated in figure 2.6.

Since the columns are symmetric, each interaction diagram may be re-

flected about its vertical axis. This describes behavior in the region of

(positive) axial force and negative bending moment. Furthermore, assume

no net tensile strength, therefore restricting each diagram to the region

of positive axial force. This convention serves to close each diagram in-

to a convex polygon.

The interaction diagrams and [C] matrices used in this work are pre-
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sented at the beginning of each individual study, along with the reasoning

behind their selections.

Load parameter values that define individual cases were suggested in

part by McGuire's report [29]. Floor live load was modeled as the "sus-

tained" live load in the report. To represent a building without vacan-

cies, p was chosen as zero. Also, the renewal rate of the live load pro-

cess was chosen as vL = 0.125 (per year), the value used in the report.

Finally, a value of 57% for the coefficient of variation of the live load

was used in the report, and is used in most cases here.

Judgement had to be excercised in the selection of reasonable values

for other parameters, however. For the dead load D, values of 150, 100,

and 75 (lbs. per ft.2) were chosen to represent normal, lightweight, and

very lightweight construction, respectively. Dead to mean live load

ratios of 3:1 or 2:1 were used. The parameter Pw was chosen in all cases

as 0.9977. So, with vw = 2190, we have a mean rate of

(1 - 0.9977)2190 = 5

storms per year. With Vw = 1314:

(1 - 0.9977)1314 = 3

storms per year is the mean rate of arrival. Further, the storms have

mean durations of:

(1/2190)(8760 hrs./yr.) = 4.00 hours

(1/1314)(8760 hrs./yr.) = 6.67 hours

in these respective cases, or a total of 20 hours per year, either way.

Mean wind pressures of 10 to 35 (lbs. per ft.2 ) were used; with a stan-



-52-

dard deviation of 5.0, this corresponds to coefficients of variation from

14% to 50%.

The values used for the stochastic load process parameters are pre-

sented in tabular form with each study.

2.3.2 Computational Procedures

Before proceeding, the computational procedures necessary to carry out

the case studies will be briefly discussed.

Equation 2.5 for modified square wave processes has been evaluated

using Simpson's rule by a Fortran computer program. We shall refer to this

program as the Outcrossing Rate Program, O.R.P. for short. A listing and

a summary of O.R.P.'s input formats is given in the appendix.

As input, O.R.P. accepts the following:

1. The matrix [C].

2. The column interaction diagram, in a point-by-point form.

3. The parameters vw, , w' aw, VL, L, 0L, and D.

Furthermore, either normal or gamma distribution functions can be specified

for either load process.

As output, O.R.P. yields:

1. The transformed interaction diagram in terms of wind and floor loads,

and the extrema pertaining to this diagram.

2. The four paths from extrema to extrema, as illustrated in figure 2.3,

and the x and y axis intercepts.

3. The value of the mean outcrossing rate (including the individual contri-

butions due to each load process as well as the sum).

One precaution should be taken when using the program with linear
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boundaries. By specifying the identity matrix for [C], such boundaries may

be input directly; that is, the transformation will not change the diagram.

This boundary should not take the form of vertical or horizontal lines,

such as the axes, however. Either zero or infinite slopes along portions

of the failure boundary may confuse the routines that search for extremum

points and result in invalid output.

Equation 2.14 for continuous Gaussian processes may be evaluated by

hand. When doing so, it is helpful to proceed in the following manner:

1. Reduce the coordinates of the transformed interaction diagram (from

O.R.P. or hand calculations) by division by the appropriate standard de-

viations; so the points W* and L* become W*/aw and L*/aL.

2. Find the reduced means, corresponding to pw/Ow and (D + L)/aL.

3. Find the points O i, and the distances to the mean, ri.

4. Find the distances cli and c2i, and then use standard tables to evaluate

(cli) and (c2i).

5. Having tabulated all of the above, compute the crossing rate due to each

segment, and then sum all of these rates.

Step 3 amounts to an elementary excercise in analytic geometry. How-

ever, for the purpose of checking for errors, it is useful to make plots or

geometric constructions as one proceeds.

2.3.3 Study 1

The first column chosen has a rectangular section with = 0.90 and

pp = 0.50. This section is deep and well suited to bending, and moderately

reinforced. Assume the following interaction matrix:

6.0 x 103 1.5 x 10-4

6.0 x 10- 2.25 x 10-3
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(all in units of ft.2/lb.). This corresponds to a situation such as fol-

lows. Most of the axial effects are due to the vertical loading and most

of the bending to the wind, but there are significant effects due to the

off diagonal terms. Column eccentricity translates vertical loads into

bending effects. Wind load adds to axial forces, such as may be the case

when the column is not near the centroid of the building.

The interaction diagram, showing the mean load effects for cases A, B,

and C as well, is shown in figure 2.7. After it has been mapped to load

space, it assumes the form of figure 2.8. Since the off diagonal terms of

[C] are about an order of magnitude less than those on the diagonal, the

diagram has not been badly distorted.

To facilitate evaluation of v+ by equation 2.14, the coordinates on

the latter diagram were reduced by division with ow and oL . The resulting

diagram is shown in both figures 2.9 and 2.10. It was noted that the seg-

ment closest to the mean made the greatest single contribution to the out-

crossing rate in each case, with the next largest contribution owing to an

adjacent segment. This suggested that linearizations of the failure sur-

face be made by simply extending the segment closest to the mean in any

given case. This minimization of r corresponds to the criterion suggested

in the papers by Hasofer and Lind [25] or Ditlevsen and Skov [17]. Figures

2.9 and 2.10 also illustrate the linearizations.

Outcrossing rate results for the different methods are plotted versus

r and shown in figure 2.11. The top curve shows the results of equation

2.14, and the points below it the results based on the same continuous pro-

cess but with the failure surface linearized. The lower curve shows the

results for the jump process (equation 2.5) assuming normal distributions
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Figure 2.11: Continuous and jump process results, study 1.
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on each load. All of the plots are smooth curves that are almost straight

lines on semilog paper. The curvature that does exist might be attributed

to the fact that the tail of a normal distribution decays at a greater than

exponential rate.

The linearizations were in error by 37%, 4.8%, and 30% for cases C, A,

and B (listed with respect to increasing r). All of these errors are in

the form of underestimates. This is due to the nature of the failure dia-

gram; it is convex, and therefore, the linear segments are always on or be-

yond its boundary. No relationship between the magnitude of the error and

r has been found in this or in the other studies. Instead, the reason case

A gave the least error seems to be that it is nearer the center of the seg-

ment (that A and B are both closest to) and this segment is much longer

than the closest segment to C. However, using this concept does not help

to formulate an objective criterion to predict or judge the magnitude of

the error.

Then, the jump process was used to find the outcrossing rates for both

the full and linearized boundaries, assuming gamma distributions on both

load processes. These results are plotted on figure 2.12. Note that the

results based on the full boundary now fall on a straight line, due appar-

ently to the nearly exponential nature of the gamma tail. However, the er-

rors caused by linearization have become 28%, 12%, and 30% respectively.

The only apparent conclusion is that for these cases use of gamma distribu-

tions made the error less sensitive to the position of the mean point than

use of normal distributions.

All of the results are summarized in table 2.1.

Although the method of linearization is unconservative, it was judged
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to be acceptable for this study. The reason is that it still gives esti-

mates within the proper order of magnitude, which may be all that is re-

quired, and that it works about as well for either gamma or normal distri-

butions. However, both A and B fell near a long linear segment. It was

decided to test this method again with an interaction diagram with a more

constant curvature. This is done in study 2.

2.3.4 Study 2

The column chosen for this study is circular in section, with a value

of = 0.60 only. Such a section is efficient only for withstanding axial

force, not well suited to bending. Interaction was assumed as:

3.5 x 10-3 8.0x 10-5

L ~0.0 2.40 x 10- 3

This corresponds to reducing the coefficients that result in bending moment

from the levels assumed in the first study. The zero term expresses that

axial effects due to wind load have been neglected. A slight increase in

the transformation from vertical load to axial effect has also been made.

The interaction diagram in load effect space is shown in figure 2.13.

It is typical of diagrams for circular columns, with the nearly constant

curvature desired of the failure boundary.

The diagram in reduced space and its linearizations are shown in figure

2.14. Results are summarized in table 2.2, and plotted on figures 2.15 and

2.16.

In one aspect, study 2 resembles study 1 with respect to results for

v+. The curve for the continuous Gaussian process and the curve for the

jump process with normally distributed loads are similar. Again, the
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Figure 2.15: Continous and jump process results, study 2.
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latter curve gives the appearance of having been translated down a constant

distance from the former curve. Perhaps if another criterion (rather than

equation 2.18) were used to match the processes, the curves could be

brought into coincidence.

Error of linearization ranged from 7.6% to 24% in this study. Gener-

ally, errors are smaller than in study 1.

There was an even weaker link between the results assuming gamma ver-

sus normal distributions, however. While case C gave the least error for

the Gaussian process result, only 7.6%, it gave nearly the worst of any

errors due to linearization, 15%, assuming gamma distributions. So, while

the continuous process formulation has suggested a method of failure sur-

face linearization that has so far been effective for jump processes and

gamma distributions, it cannot predict the error associated with lineariza-

tion for the latter process.

The first two studies have still failed to find many limits of useful-

ness of this method of linearization. A third study was therefore carried

out.

2.3.5 Study 3

Again, a rectangular section was chosen, this time with e = 0.70.

This section is not as deep as that used for study 1; in fact, it may be

assumed to be a square section. Structural interaction was assumed as:

6.0 x 10-3 0.0

5.0 x 10- 3 2.0 x 10-3

The zero term indicates that bending effects due to floor loads are entire-

ly negligible. This may be the result of pinned connections to the rest
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of the structural system, and balanced loading on all spans that frame into

the column. However, all of the other terms in the matrix are of the same

magnitude, which means that axial effects due to wind are especially impor-

tant in this study.

The interaction diagram in load effect space is shown in figure 2.17.

The locations of points corresponding to mean effects for cases A through E

are scattered over a wide portion of the diagram.

However, the plot in reduced space shows A, B, C, and D at relatively

similar locations. In fact, all four are linearized in the same way as

shown on figure 2.18.

Case E, with very light vertical load, is entirely different. This is

illustrated by figure 2.19. The segment closest to E has a positive slope.

It corresponds to an entirely different mode of failure. Whereas all pre-

vious failure modes represented linearly corresponded to overloads, this

mode instead corresponds to a tensile failure, caused by removal of axial

load.

Results are summarized in table 2.3. The footnotes to the last column

will shortly be explained.

The results based upon continuous Gaussian processes or modified

square waves with normal distributions are given in figure 2.21. Note that

the last points, corresponding to E, behave strangely. Both curves show up-

turns because of E. This is due to the fact that all four of the segments

nearest to E make significant contributions to the outcrossing rate, in-

stead of only one or two as with cases A through D. However, this leads to

an especially inaccurate linearization. The error based on the continuous

process is 65%, because only one segment is linearized. In fact, this
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Figure 2.22: Linearizations of the jump process, study 3.
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amounts to accounting only for tensile failures, and ignoring all others.

Figure 2.22 shows the results based upon gamma distributed loads. No

upturn for case E is evident, as when normal distributions were assumed.

Nevertheless, the linearization (as illustrated by figure 2.19) is inaccu-

rate by more than an order of magnitude, completely out of the range of

figure 2.22 and so not plotted.

What is plotted is instead the result of linearizing for E in the same

way as for A through D. The error is thereby reduced to only 38%. Refer-

ring to figure 2.20, the reason will now be given. The D.L. line on the

figure indicates the portion of the vertical load that is permanent and

constant. Since the gamma distribution only considers positive random vari-

ables, this line shows the minimum vertical load that is consistent with

the assumptions. By this formulation, the segment linearized in figure

2.19 represents an impossible failure mode. Yet, it is not an impossible

mode when normal distributions are assumed, so the error due to the linear-

izations was not nearly as extreme when used for computations relating to

continuous Gaussian processes.

Clearly, one could now construct numerous cases exemplifying the same

behavior. By selecting a failure mode that is impossible to attain with

positive random loads and suitably choosing parameters, practically any de-

gree of inaccuracy could be produced. However, such excercises would be

useless, and so are not engaged in here. Instead, let us draw some general

conclusions from all three studies that have been performed.

2.3.6 Conclusions drawn from Case Studies

It would be difficult to judge the merit of any individual conclusion
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advanced here. Therefore, let us proceed to list conclusions roughly in

the order in which they were reached, regardless of their relative impor-

tance.

First, the continuous process formulation of equation 2.14 provides a

good approximation to the jump process formulation of equation 2.5. Com-

parable results are obtained for outcrossing rates when the parameters a1 1

and 2 2 are selected reasonably. Matching the mean rate of crossings of

the mean level of each individual load process led to equation 2.18. Out-

crossing rates obtained in this way appear conservative, since in every

case the rate calculated using the continuous time formulation exceeded the

rate calculated using the jump process formulation.

Outcrossing rates are related to the location of the mean point E[X]

relative to the failure boundary. Part of this sensitivity is expressed by

the relationship between the outcrossing rate and r. On a semilog scale,

the rate v+ decays approximately linearly with increasing r, which corres-

ponds to a second-moment safety index.

Linearizations were also made in each case with regard to r, by con-

structing a tangent at the point on the failure surface closest to E[X].

Typically, errors due to linearization of the continuous process formula-

tion were less than that involved with matching to the jump process by use

of equation 2.18, especially when loads are assumed to be normally distri-

buted. Therefore, although these errors were in the form of underestimates,

overestimation associated with the matching leads to a result which is on

the whole generally conservative. To assure this conservatism, a function-

al relationship between r and linearization error would be desirable. How-

ever, none was found. Other elements must be considered, two of which have
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been identified.

The shape of the diagram must be accounted for. Shape is difficult to

quantify. More conveniently, charts could be made, plotting ratios of the

outcrossing rates based on one boundary and approximations to it. This was

done by Veneziano, Grigoriu, and Cornell; two of their figures are repro-

duced here.

In figure 2.23, a circular boundary of radius r is replaced both by

an inscribed circle centered on the coordinate axes and a tangential verti-

cal line. The mean point E[X] is at the origin of the (reduced) coordinate

system, and a11 = 2 2

Using the parameter X, the rate v+ for an offset disk can be com-

pared to that for a centered circular boundary of smaller radius. With

careful selection of the ratio X/r, the dashed curves allow for considera-

tion of a broad range of circles with r in the practical range of 1 to 5.

Then the solid curves yield the desired information regarding linearization

error. Note that all of these encompass only one order of magnitude. The

principle relationship is seen to be between the outcrossing rate ratio

(error) and the degree of offset X/r. On the other hand, the curves for

the five radii are virtually indistinguishable for most of their length.

Figure 2.24 compares an elliptical region to another two approxima-

tions. The dashed curves again indicate an inscribed circle, the solid

curves a pair of lines forming a double boundary (often referred to as a

D-type barrier). Since symmetry holds, the outcrossing rate for the set is

simply twice that would be noted for a single line. Again, note the lack

of sensitivity to r displayed by the solid curves, except for r = 1.0.

Also, note the convergence of these curves to unity as y goes to zero and
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the ellipse becomes increasingly elongated.

The second element that has been identified as a cause of lineariza-

tion error but has defied quantification is skewness in the load distribu-

tions. This manifested itself in case 3E, when blind adherence to the mini-

mum-r linearization criterion resulted in a linearization corresponding to

an impossible failure mode. In cases where skewness arises because the ran-

dom variables are restricted to positive values, such as with gamma distri-

butions, regions of the failure surface corresponding to negative values

should be deleted. This transforms the failure region into an open domain,

as illustrated in figure 2.25. For the purpose of evaluating equation 2.5,

however, a closed region is required. This is satisfied by adopting pseudo

boundaries, as illustrated. With this change, computations of v+ and fail-

ure surface linearizations can then proceed as before. Plots of lineariza-

tion error, similar to figures 2.23 and 2.24, but relating to various open

regions would then serve as useful guides.

In any case (no matter what the distribution assumptions, etc.) engi-

neering judgement should still be excercised before linearizations are made.

Clearly, linearizations made corresponding to unlikely or impossible fail-

ure modes should be expected to lead to large errors. For this reason, it

would be desirable to carry out linearizations in load effect space, which

structural designers are more familar with. A method for doing this is

suggested in the next section.

2.4 Linearizations in Load Effect Space

The method suggested in this section was motiviated by Veneziano's

discussion of various second-moment methods [39]. Schemes similar to the
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minimum-r in reduced space criterion of the last section were considered.

They were characterized mainly by their search for a single best direction

from E[X] and a resulting single point on the failure surface. On the

other hand, Veneziano's own scheme [38] searches in a number of fixed di-

rections and approximates the failure surface by semicircular segments.

This is illustrated in figure 2.26. If the number of search directions is

large enough, such a method becomes asymptotically invariant, in the sense

defined by Veneziano [37].

The method, as adapted here, retains the feature of searching in a

number of fixed directions. However, linearizations are to be made at only

the single point, intercepted on the failure boundary, closest to E[X].

So, the method here is not intended to approach invariance, but instead to

simply approximate minimization of r. Whereas a mathematically strict

minimization scheme demands that both a direction and a distance be found,

this approximation reduces the problem to simply comparing a number of dif-

ferent values for r. As a result, it is no more difficult to deal with a

continuous boundary than its discrete approximation. Most importantly,

it can be implemented equally well in any chosen variable space.

The suitable number of searches and their directions depend upon the

problem considered. For an illustration here, a reinforced concrete co-

lumn is again used as an example, and three search directions are chosen.

In reduced space, these directions would correspond to ' = 0°, g = 90°,

and i = 45° .

Given the failure diagram, the method could be carried out by means

of a graphical construction, such as in figure 2.27. The construction pro-

ceeds as follows:
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1. Plot the point of expected load effect, E[M, P]. For linear structural

behavior, this is the same as the load effect at the mean loads.

2. Plot the point corresponding to the load effect arising when the first

load is S 1= + l1' the second load being S2 = p2. A ray from E[M, P]

passes through this point at a distance 6(al), and defines direction 1.

Similarly, plot the load effect produced by S1 = Pl and S2 = P2 + 02'

thereby defining 6(02) and direction 2. These correspond to i = 0° and

= 90° , respectively.

3. By laying off segments from the two points plotted in step 2, construct

a parallelogram with sides of length 6(a1) and 6(a2). The ray from

E[M, P] through the opposite vertex defines direction 3, equivalent to

= 45 ° .

4. Measure the distances from E[M, P] to the failure boundary in directions

1 and 2 as 611 and 622, respectively. Then, measure the distances from

E[M, P] to the boundary that are projected onto the other two rays,

631 and 632.

5. The reduced space distances corresponding to the three directions can

now be found. Corresponding to directions 1 and 2, these are:

rl = 611/6(1)

r2 = 622/6(a2)

Since in reduced space directions 1 and 2 are orthogonal, the Pythago-

rean theorem applies and:

r3 = /[631/6(l)]2 + [632/6(02)12

Compare the values rl, r2, and r3. The least of these, along with its

corresponding angle A, is used for the linearization.
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In the case of the example, figure 2.27, careful scaling reveals that

r1 = 3.85, r2 = 3.40, and r3 = 2.80. So, one would choose i = 45° and

r = 2.80, as is illustrated.

Given this (or any other) method of finding the point at which to

linearize, many alternative methods could be adopted to define the line

itself. Two procedures are presented here.

Both methods define the line as the tangent to the boundary at the

point of linearization. Consider the situation where the boundary is

given analytically in terms of some function, say P = g(M). Then, differ-

entiating g yields the slope at the point of linearization, and so the

equation of the line desired can be found. However, it may be the case that

the engineer has no analytical expression for the boundary. For instance,

this situation would arise when a column interaction diagram is obtained

from a standard handbook. In this case, the alternative is to simply fit

the tangent by eye.

Any method of linearization of a two-dimensional boundary allows the

problem to be cast in the same form as a scalar load effect problem. First

of all, define a non-dimensional equivalent load effect:

E M + Pr (2.20)

where M' and P' are the intercepts of the linearization on the load-effect

axes. Clearly, a value of E < 1 indicates the safe region, E > 1 indicates

failure, and E = 1 defines the boundary. Assuming once again the example

of linear structural interaction of equation 1.5, substitution into equa-

tion 2.20 yields:
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E * M + cWP + + +L L (2.21)LM' TP' ] L M' P' L (2.21)

for the equivalent problem.

More generally, considering two loads S1 and S2, the coefficients can

be lumped into constants a1 and a 2 to yield:

E = aS 1 + a2 S2 (2.22)

which can be treated in the same manner as a problem of the form, say:

M = clMSl + C2MS2 (2.23)

where M denotes bending moment. Whereas in this latter case, M possesses

a physical meaning and E is simply a convenient device, the two problems

are mathematically alike. This formal correspondence will be exploited in

the next chapter.

To close this section, let us illustrate these concepts with a speci-

fic example. Figure 2.28 depicts the linearization of the same problem

considered in case study 1A. However, the diagram in figure 2.28 is shown

in its original smooth form, versus the piecewise linear form it was ori-

ginally presented in (figure 2.7). This is because it no longer needs to

be digitized for input to a computer program.

The figure shows that r3 = 3.61 was chosen, corresponding to : = 45°.

This is slightly higher than the r = 3.47 found in the reduced space lin-

earization of the earlier study, and would therefore lead to a somewhat

lower value (by 36%) for v+ by use of equation 2.14.

In this example, the tangent was fit by eye. The corresponding

values for the intercepts M' and P' are shown on the figure. Using these
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values, the coefficients of equation 2.22 are found to be a = 1.54 x 10 2

and a2 = 1.81 x 10 . So, the problem is now transformed into an equiva-

lent scalar problem such as considered in the next chapter.
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SCALAR LOAD COMBINATIONS PROBLEMS

3.1 Upcrossing Rates for Scalar Sums of Processes

As stated in Chapter 1, and then demonstrated in section 2.4, the vir-

tue of linearizing a two dimensional problem is that such an approximation

reduces an outcrossing rate problem to a scalar problem. Hence, the focus

of this chapter will be on problems of the form:

M = ClMSl + C2MS 2 (2.23)

Simplifications resulting from this form are exploited here. Further sim-

plifications result from the fact that only non-negative random variables

are used in this chapter.

Recognizing that only two points are necessary to determine a line,

and again placing all the work here in non-dimensional form, let us write

in place of equation 2.23:

Z = cS1 + (-c)S 2 (3.1)

where:

. S1 i S2
1 ' 2 p2

using mean values for convenience. The corresponding scalar coefficient

c, and scalar level Z are:

C = c Mpl
clMl + 2MP2

and

ClMl1 + C2MP2
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Alternatively, one may have originally started with a two-dimensional

diagram, reduced to the equivalent load effect of equation 2.21. In such

a case, it is a straightforward excercise to show:

cW Cp

C = c c

-r P+ ++ --]p

and so on. From this point on, no distinctions will be drawn according to

the origins of a problem, since it does not matter for the purposes of

this chapter. Furthermore, the bar denoting the reduction of the problem

to this form will be omitted; that is, we shall write S 1 and S2 , not S1

and S2. While this helps keep the notation brief, it should be borne in

mind that the non-dimensional form of equation 3.1 is actually implied.

Note also that all previously defined notation with regard to distri-

bution functions will be followed here. So, F(x) still refers to load 1,

and to consider the inclusion of p, we write F(x), etc. However, argu-

ments of these functions will no longer be explicit. Since we intend to

refer to c1S1 and c2S2 throughout, we would have to include the coeffi-

cients in the arguments. Instead, we simply use x, and so the following

are implied:

F1(x) = F1 (c1s1) with x = c1S 1

and

F2 (x) = F2 (c2 s2) with x = c2s 2

The meaning of x as a dummy variable should be clear in all contexts.

Additionally, we introduce the shorthand notation for convolution:
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F F2(z) - x)dF2 (X) F (z dF2(x) F2( - x)dF ( x ) (3.2)

0 0

The derivation of the mean upcrossing rate for the scalar sum is simi-

lar to that which led to equation 2.5. Again, let us seek the rate vl+,

conditioning on the level of the (factored) load c2S2. However, matters

are made simple by the fact that if x is the conditional level, then the

remaining load necessary to reach the threshold is just z - x. So, by the

same sort of arguments that led to equation 2.11, we get:

V1+ 
= Vl [P + qlFl(z - x)][q l - q lF(z - x)]dF(x) (3.3)

Accounting now for P2:

V1l = VP 2[p1 + qlFl(Z)][ql - qlF1(Z)]

+ [ + qF 1(z - x)][q - qlF1(z - x)]fz(x)dx (3.4)

0

Rearranging, and recalling that 1 - F1(.) = G1():

Vl+ = VlqlP2G1(Z)[p1 + qFl(z)] + vlPlqlq2[F2(z) -F12(z)

+ Vl 1qq 2 JZF1 (z - x)G l (z - x)f2(x)dx (35)

0

Again using symmetry, the total result is found to be:

v+= VlqlP2G1(z)[p1 + qlFl(z)] + V2Plq2G2(z)[p2 + q2F2(z)]
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+ vlPlqlq2[F2(z) - F1*2(Z)] + 2P2qlq2[F1l() - F1*2(z)]

+ Vlq1 q 2 Fl(z-x)Gl(z-x)f2 (x)dx + 2qlq~ 2 F2(z-x)G2(z-x)fl(x)dx (3.6)

o o0

3.2 A Markovian Approach

It is possible to derive equation 3.6 in other ways than that adopted

in the last section. One such approach, using a Markov chain, is outlined

here. It is not carried through to completion because it is very laborious,

and the desired result is in hand anyway. Yet, it provides a term by term

insight into equation 3.6 that would otherwise be difficult to acquire.

An alternative way to regard the processes is that they are intermit-

tently being activated and then stopped. At every renewal, the probability

of being activated is q; and, if the process is already activated, it may

be stopped with probability p, or reactivated with probability q. So, the

expected amounts of time that processes 1 and 2 are active in the span

[O,T] are qlT and q2T, respectively. Roughly speaking, the necessary con-

dition every Markov chain must meet is that the probability of being in any

future state, when the present is known, is not affected by any additional

knowledge of past states. These conditions are met because the Poisson

square wave processes assumed for loading are independent, and each pos-

sesses the so-called memoryless property [5 ]. Then, define the states of

the chain as follows:

State O: Neither process is active

State 1: Process 1 is active
State 1 Process 2 is stopped
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State 2: Process 1 is stopped
State Process 2 is active

State 1*2: Both processes are active

This continuous time Markov chain has an associated transition inten-

sity matrix, [Q]:

-(qll+q2v2)

plV 1

P2V2

qll

-(Pvl+q2v2)

P2V2

q2v2

0

-(qlvl+p2v2 )

P1 V1

The construction and interpretation of such matrices is discussed in de-

tail by Parzen [31].

The stationary distribution is found by solving the matrix equation:

{n110111n121*2} [Q] = { 0 0 0 } (3.7)

and imposing the condition

1I0+ 1 + + 2 + 11*2
= 1

It then turns out that the stationary distribution for the chain does

not depend upon the rates Vl or v2:

IlO = P1 P2

1 = ql 1 P2

12 = Plq 2

111*2 = qlq 2

0

q2 v2

qll
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These represent the expected or long-run proportion of time spent in each

state.

Changes of state in the Markov process constitute possible upcrossing

events. Such changes are illustrated in figure 3.1. Note, however, the

following convention. When one load is acting and its level changes, tran-

sitions from state 1 to state 1, or from state 2 to state 2 are to be

counted. This means that upcrossings due to one process or the other act-

ing alone are counted. On the other hand, transitions from state 0 to state

O are not physically recognizable, and may be ignored. Furthermore, states

1 and 2 are mutually inaccessible, and so are states 0 and 1*2. This means

that the possibility that both underlying processes will be simultaneously

changed has again been neglected as second-order.

It is then helpful to examine the mean rates of transition from each

state to each other state accessible from it. Denoting these rates by A,

they are found as the rate of transition from a former state to a latter

one (from [Q]) multiplied by the total proportion of time spent in the for-

mer state (from II). There are 11 such rates, but only 7 are of interest:

A, 1 = V 1lP 1 P2 ql

A0,2 = 2 P1 P2 q2

2

A1,1 = lql P2

A1,1*2 = v2P2qlq2

2

A2,2 = 2 P1q2

A2,1*2 = vlPlqq 2

A1*2,1*2 = qlq2(qlvl + q2v2)
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Further, note that

A0,1 + 1,1 = VlqlP 2

A0,2 + 2,2= V2q2P1

Then, the mean rate of upcrossings due to arrivals into state 1, de-

noted as v+l, should be:

v+1 = (A0,1 + Al,1)P{Safel In states 0 or 1}P{UnsafelIn state 1}

= VlqlP2[pl + qlFl(Z)]Gl(Z) (3.8)

This is precisely the first term of equation 3.6. So, it is clear that

this term accounts for upcrossings associated with transitions into state

1, with only the underlying load process 1 active.

Similarly, it can be shown that the other terms of equation 3.6 have

Markovian interpretations. The second term accounts for crossings due to

transitions into state 2. The third and fourth terms account for transi-

tions into state 1*2 from states 1 and 2, respectively. Finally, the inte-

gral terms account for transitions from state 1*2 back into state 1*2.

Therefore, the integral terms account for crossings that occur with both

load processes active.

3.3 Further Simplifications

There are two distinct ways that equation 3.6 may be simplified. The

first relates to the level of the failure threshold, z. The other has to

do with the relative renewal rates of the individual load processes. These

will be discussed in turn in the following sections.
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3.3.1 Results for High Failure Thresholds

As the level of z is increased, the probability that at any given time

either load has a value greater than z tends to unity. That is:

Fl(z) 1 and F2(z) - 1

as z -+

However, the function F1. 2(z) increases more slowly than either Fl(z)

or F2(z), which always bound it from above. So, as a more conservative

pair of approximations:

F2 (z)-F 1*2 (z) + l-F1*2 (z) = G1 *2 (z)

F1(z)-F 1* 2 (z) '+ -F1* 2(z) G1 *2 (z)

Substitute the above into the first four terms of equation 3.6. The

new result, after combining terms, is the desired approximation:

v+ - lqlP2Gl(z) + v2Plq 2G2(z) + (Plvl + P2v 2)qlq 2 G1 *2 (z)

+ lqlq2 JZF1 (z-x)G1 (z-x)f 2 (x)dx
0

+ 2qqlq2 ZF2(z-x)G2 (z-x)fl(x)dx (3.9)

0

The accuracy of this approximation depends upon the distributions of

1 and 2, the means and variances, and z itself. Therefore, the only way

to check the accuracy is to actually use equation 3.6. However, since all

approximations have been in the nature of increases, the result is conser-

vative. Perhaps the greatest advantage of the result above is the combi-
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nation of the third and fourth terms of equation 3.6 into the third term

above, placing an even greater emphasis on symmetry.

3.3.2 Transience

A transient process is one that models a sequence of events with negli-

gible time duration. Analyses of combinations of transient processes with

processes that possess time duration have been carried out

However, they have all used methods quite dissimilar than what will follow

here. They implicitly assign a different sort of character to transient

processes than to processes of time duration events. Instead, consider

that a transient process is simply a limiting case of a modified square

wave process, one for which p is very close to unity. Examine the behavior

of equation 3.6 as process 2 becomes transient. Let:

P2 1 and v2

in such a way that

P2V2 VT

This yields the upcrossing rate for the sum of a transient process with a

modified square wave:

v+= V qGl(z)[p1 + qlF1(z)] + TPlG2(z) + VTql[F1(Z) - F1*2(z)

Numerical studies are still required to explore the range of validity of

this result.

3.4 Computational Procedures

A Fortran computer program has been written to evaluate v+ by equation
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3.6. It is referred to as the Upcrossing Rate Program, U.R.P. for short.

As input, U.R.P. accepts the following:

1. The parameters v pl' 1 ' a1' 2' P2 ' 2' and 2'

2. The coefficients c1 and c 2.

3. The threshold level, z.

In order to make the results of this program comparable to the earlier pro-

gram (O.R.P.) normal and gamma distribution functions can again be speci-

fied for either load process.

As output, U.R.P. yields the rates due to the individual processes,

1l+ and v2+, as well as the final rate v+.

One precaution should be taken when using the program. Simpson's rule

is used to numerically perform the integrations of equation 3.6. The error

in these routines depends upon the length of the interval, dx, used for

Simpson's rule. The program has been found to give results comparable to

those of Hasofer [24] in a particular case involving one transient pro-

cess. It also appears to give good results over a broad range of stochas-

tic process parameters. Hovever, if it is to be used for very high thres-

holds (say, more than 4 standard deviations above the mean) of combined

loads, its output should be carefully scrutinized. In particular, it would

again be helpful to check its results versus any others that may be avail-

able so that the number of intervals used can be adjusted accordingly.

Finally, one should note how the simplifications that led to equation

3.6 result in savings of computational effort. In terms of executable

statements, O.R.P. had 417, U.R.P. only 194. Time spent in the central

processing unit of the I.B.M. 370/67 at M.I.T. is typically reduced more

than 50%.
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CHAPTER 4

ENGINEERING PRACTICE FOR LOAD COMBINATIONS

4.1 Past and Present Developments

It is not only interesting, but also educational to study the develop-

ment of practice with regard to load combinations. Such a study helps to

explain the ambiguities and shortcomings in present practice.

Early practice for load combinations reflected the disorderly state of

the emerging profession of engineering. The following passage from an 1896

text [20] for structural engineers illustrates this:

All the exterior forces which may possibly act upon
a structure should be considered, and due provisions
should be made for resisting them. The static load, the
live load, pressure from wind and snow, vibration, shock
and centrifugal force should be provided for, as should
also deterioration from time, neglect, or probable abuse.
A truss over a machine shop may at some time be used for
supporting a heavy weight by block and tackle, or a line
of shafting may be added; a small surplus of material in
the original design will then prove of value.... When a
live load is joined to a static load, the judgement of

the designer, or the one who prepares the specifications

for the designer, must be excercised.

The book, although nearly 300 pages long, says essentially nothing

more at all about loading. However, most of an entire chapter is devoted

to safe working stresses, which amount to a collection of opinions of some

eminent engineers as well as a few formulae adopted by various railroads.

As time went on and the profession matured, the present system of

structural codes was evolved to promote improved practice in the U.S. Pro-

fessional organizations (such as the American Concrete Institute and the

American Institute for Steel Construction) form special committees which

draft recommended codes of standard practice. These are in turn adopted,
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sometimes with modifications, by local governments (usually at the municipal

level) and so take on the force of law. A similar system is in effect in

Europe, where however the committees are nowadays usually on an interna-

tional level, and the governmental authorities on the level of individual

nations. In any case, the judgements of designers have to some degree been

replaced by the judgements of the code committees.

Early codes emphasized concerns of structural resistance almost to the

exclusion of loading. Laboratory tests on structural members led to better

judgements about resistances. Along with the use of higher strength materi-

als, allowable stresses came to be increased. However, load values were

selected almost arbitrarily, and so the working stresses were set at arti-

ficially low values to provide an extra factor of safety accounting for the

uncertainty in the loads.

To rectify this situation, load studies were commissioned. Special em-

phasis rested upon floor live loads in offices. An early example is the

survey made of the Little Building, in Boston [6 ]. Design levels specified

in codes began to be based upon the maximum levels found by this and other

surveys.

Anemometer data for wind speeds were collected from meteorological

records, and searched for annual maxima. Now, probabilistic concepts began

to be applied. Maps were drawn depicting annual extreme wind speeds for 50

and 100 year mean recurrence intervals. Similar maps were drawn for extreme

snow loads as well.

This situation is well summarized by the way the checking of a steel

member designed by elastic methods might proceed today. Assume that the

local building authorities have adopted the recommendations of the American
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National Standards Institute for loading, A58.1 - 1972 [ 3], and the recom-

mendations of the A.I.S.C. [2 ]. First, the 50 year (or 100, for some im-

portant structures) return period wind for the site is read from the map,

and a corresponding pressure found from a table. Another table, depending

upon the type of building, is consulted for the floor live load. Live load

reduction factors may apply, depending upon the type and location of the

member in the structural system. Nominal unit weights of various construc-

tion materials given in the code aid in the estimation of dead load. Using

elastic structural analysis, find the stress level, f, for the superposi-

tion of these loads. Now the A.I.S.C. provisions are consulted, and depend-

ing upon the type of member, including its specific properties such as size

and grade of steel, an allowable stress level, fa' is found. According to

both A.N.S.I. and A.I.S.C. provisions, fa may be increased by 1/3 since

lateral loading was considered. The increase is allowed to account for the

fact that maximum lateral and maximum gravity loads are not likely to occur

at the same time. So, the safety check is simply

f 4/3 fa (4.1)

If the above is true, the design is deemed safe, unless a design for the

dead and live loads alone, without allowing a 1/3 increase in fa results in

the selection of a heavier section. In such cases, only the heavier design

is deemed safe.

With regard to the issues discussed above, U.S. practice for steel

structures has changed little in the past 20 years. The loads specified in

the 1972 version of the A.N.S.I. code are essentially the same as in the

1955 version. More significantly though, are the facts that most steel
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structures in the U.S. are still designed on the basis of allowable stress,

although plastic design is becoming more widely used, and that no distinc-

tion is drawn between the effects of dead and live loads.

In Europe, the need for reconstruction following World War II led to

the development of new philosophies. While these developments proceeded on

an international level, many were first conceived in the U.S.S.R., where

many eminent probabilists have emerged. These developments included the

concepts of loads specified in terms of characteristic (fractile) values,

limit states design, and split safety factor checking formats.

Specification of loads based in terms of characteristic values empha-

sizes their probabilistic nature in an explicit way, while at the same time

helps to provide flexibility. A characteristic value is one for which there

is a specified probability of being exceeded in a given length of time.

For example, a 5% characteristic value of annual wind speed is one for which

there is a probability of 0.05 that it is exceeded in a one year period.

U.S. codes have employed characteristic values in a roundabout fashion that

can be misleading. Loads described in terms of mean return periods corres-

pond to fractiles of annual maximum distributions. For instance, a mean re-

turn period of 100 years corresponds to a probability of exceedence of 0.01

in a given year. Flexibility results from the ability to choose reference

periods other than one year and different fractile levels as well.

Some of these concepts have found their way into present U.S. practice.

For example, plastic design of steel structures amounts to design for an ul-

timate limit state defined by the initiation of a collapse mechanism. The

ultimate strength design provisions of the A.C.I. [1 ] are another example

of limit states design, and they also use a split safety factor format, like
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the Europeans. First, the ultimate design load, U, is found. For cases

dealing with dead load, D, and floor live load, L:

U = 1.4D + 1.7L (4.2)

where D and L are to be based on a loading code, such as A.N.S.I. In case

lateral wind load acts:

U = 0.75(1.4D + 1.7L + 1.7W) (4.3)

This is entirely equivalent to the former 1/3 increase in allowable stress.

However, if the effect of dead load is stabilizing, the provisions require

the following to be checked:

U = 0.9D + 1.3W (4.4)

The maximum value of U, computed in the above different ways is then com-

pared to a nominal value of strength (resistance) Rn:

U < qRn (4.5)

The values of depend upon the type of member under consideration, and

range from 0.70 for compression members to 0.90 for flexural members.

The present ambiguity regarding the use of split factor formats in the

U.S. may soon end, however. The most recent proposal for a steel building

code also uses a split factor format similar to that of the A.C.I. This

code is known as Load and Resistance Factor Design. The basic format of

L.R.F.D. is:

n

ORn > YE 7 yiciS . (4.6)
i=l

where c are the coefficients that transform the loads, Si, into effects.

Other than the fact that the equation accounts for this transformation ex-
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plicitly, it is novel only in its use of YE' E is an engineering judgement

factor, mainly to account for uncertainty in structural analysis.

The values of the y factors have been proposed on the basis of a first

order, second-moment probabilistic method, as outlined in a report to the

American Iron and Steel Institute, which sponsored its drafting [19]. Fur-

thermore, the specific load combination problems considered are the result

of the application of the design rule attributed to C. J. Turkstra, dis-

cussed in section 1.3. These applications reduce equation 4.6 to special

cases, four of which are listed below:

a) Mean Dead plus Mean Maximum Lifetime Live Loads

ORn > 1.l(l.lc0D + 1.
4cLL) (4.6a)

b) Mean Dead plus Instantaneous Live plus Mean Maximum Lifetime Wind Loads:

ORn 1.1(1.1D + 2.0LI + 1.6W) (4.6b)

c) Mean Dead plus Mean Maximum Lifetime Live plus Mean Maximum Daily Wind

Loads:

ORn 1l.l(l.lcDD + 1.4 cLL + 2.3cwW) (4.6c)

d) Mean Maximum Lifetime Wind minus Mean Dead Loads:

ORn Z 1.1(1.6W - 0.9D)

Since some of the above loads, such as instantaneous live or daily

wind loads are not contained in any present U.S. loading code, recommended

values will be related to values contained in ANSI-A58.1-1972 in the commen-

tary to the specifications. The commentary will also outline the basis of

a reduction factor, applicable to wind forces in certain cases.
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4.2 Theoretical Objectives in Codified Design

Proceeding hand in hand with changes in specifications, researchers

have begun to formulate the theory behind codes. No longer are codes based

solely on intuitive grounds; and so, no longer are their aims vaguely de-

fined either. It is the purpose of this section to outline present, and

even future aims of codes.

Two papers, by Lind [28] and by Rosenblueth [35], are referenced here.

They are especially worth noting since both of these men have been actively

involved with code committees.

Lind discusses how the process of selecting consistent partial safety

factors can be formulated as a sequence of mathematical operations based on

explicit postulates. These postulates reflect the principles upon which

current code proposals are based.

Eight postulates are given in all. The first five postulates are gen-

erally accepted; the last three are special postulates relating to indivi-

dual proposals. Four of the first five postulates deal with randomness of

loading, randomness in strength, the probability of failure, and the suffi-

ciency of data on loads. All of these have previously discussed in one form

or another in this report, however, the fifth one has not. It should be

noted carefully, since it is often implicitly assumed, but rarely stated so

concisely:

The design values are to be chosen such that the
reliability as nearly as possible is constant over the
domain of load influence coefficients.

This is, in fact, the main objective of most significant probabilistic code

proposals that have been made to date.
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Rosenblueth speaks of adopting a strategy for evolution to an "ideal

code." First, however, the concept of optimizaiton must be introduced.

The cornerstone in optimization formulations is the concept of utility.

Utility is described by an objective function which quantitatively takes in-

to account benefits and costs. Denote the benefits a structure provides by

B; its initial (including capitalized lifetime maintenance) costs by Ci;

and finally, costs associated with failure by Cf. The latter may also in-

clude the loss of potential benefits, as well as costs of demolition, etc.

All of the individual terms are actually implicit functions of design para-

meters. Then utility is expressed as:

U = B - Ci - PfC F (4.7)

often in units of monetary value.

The owner of the structure seeks to maximize his own expected utility

of the structure, E[U]. For instance, benefits may consist of rental in-

come, so the owner would desire as much rentable space as possible, until

the marginal costs of providing it become greater than the marginal benefits

to be received. This is a well established principle of economics. In ad-

dition, constraints may exist, such as the amount of capital available to

the owner, etc.

For application to codes, this example needs to be broadened and modi-

fied. A code committee deals not with a single structure, but with an en-

tire class of structures governed by the code. Roughly speaking, the objec-

tive function now sums the contributions of all the structures designed to

the code (though the number of structures so designed remains random and un-

known). Further, the utility function relates benefits and costs to be
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shared by society as a whole; the code committee acts as an agent for soci-

ety. In this case, benefits may include esthetic considerations, and costs

of failure would certainly consider possible loss of life. Finally, the

parameter values the committee may control are those contained in the code

itself, such as partial safety factors.

The process of maximizing society's objective function with respect to

such design criteria is known as code optimization. This is a relatively

new field of research, with the first comprehensive treatment being

Ravindra, 1970 [33]. Although it is not the purpose here to provide a de-

tailed discussion of the subject, a recent report by Kulkarni [27] serves

as an excellent introduction, and provides a referenced summary of others'

work.

Now, we may summarize Rosenblueth's three steps:

1. The adoption of partial safety factor formats (similar to L.R.F.D.) deal-

ing with safety on a member by member basis.

2. An explicit treatment of probabilities of failure, recognizing the influ-

ence of such matters as static indeterminancy.

3. An optimization format, where the contribution each individual structure

makes to society's objective function is openly dealt with.

Rosenblueth concludes that the main obstacles to achieving the ideal code

are computational difficulties and a lack of knowledge concerning conse-

quences of failure. He suggests that more work be done in these areas, but

foresees steady progress.

The U.S. is still dealing with step 1. However, this does not neces-

sarily reflect the true state of the art, because the Europeans have con-

tined to make major contributions; therefore, these are the subject of the
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next section.

4.3 Recent European Developments

The most complete applications of new design philosophies are to be

found in recent European draft proposals. Three of these are outlined here.

The first is a proposal of the European concrete organization, the Comite

European du Beton (C.E.B.). The volume on structural principles, examined

here, is not oriented to concrete construction only. It is more general,

and can be applied to a code dealing with any material. Another proposal

is due to the Nordic Committee for Building Regulations (N.K.B.). Third, a

proposal of the United Nations' Economic Commission for Europe (E.C.E.),

which tries to harmonize the C.E.B. and N.K.B. proposals, is outlined. All

of these codes are properly viewed as "codes for code writers" more than as

practical documents, and as such, place a sharp focus on the state of the

art of structural safety in codes.

Before proceeding, it should be noted that all three codes have adopted

the general format of partial coefficients. For example, let characteristic

load and resistance parameters such as wind velocity, material properties,

dimensions, etc. be denoted as sk and uk. A load parameter is any such that

an increase in its value is detrimental to safety, and a resistance para-

meter is any such that increasing its value is beneficial to safety. Let

the partial coefficients be denoted as s and yu' respectively, with all 

values greater than 1. Then, use design values sd and ud:

sd = YsSk (4.8a)

ud = Uk/Yu (4.8b)
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Using structural analysis to translate design load values into load effect,

Qd' and strength of materials to translate the design parameters of resis-

tance into a resistance Rd the resistance is required to exceed the load-

ing:

Qd(Sld, S2d,..) < Rd(Uld' U2d'..) (4.9)

Such a partial factor format is invariant, unlike the split load and resis-

tance factor formats of U.S. codes. The problem of lack of invariance

arises when two different formulations of a safety check of a single struc-

tural arrangement that are equivalent in structural mechanics yield dif-

ferent values for a safety index or factor. It is a potential difficulty

in conventional as well as probabilistic safety checking. The problem has

long been faced when considering soil stability, but has only recently been

recognized with building structures, as pointed out by Ditlevsen [15].

4.3.1 C.E.B. Drafts

The draft of the C.E.B. for October 1975 is considered here as repre-

sentative [12]. Load actions are characterized as "permanent", "variable",

or "accidental". Among permanent actions are dead weight, shrinkage, and

forces due to expected support settlements. Variable actions include work-

ing loads, construction loads, temperature, forces due to wind and snow, and

earthquakes "in regions habitually exposed to them." Accidental actions

cover other earthquakes, as well as extraordinary settlement, explosions,

-A h+k-- Inunnr\ bc Mnn1C N vnliri Airvt+innc r ratae f nurrirrpnrallu W1 at

are spec
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ified to make these definitions more precise. In his review of pro-

Borges indicates that design values for all variable actions are to
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Table 4.1 (After the C.E.B.)

Recommended s values

Action

1. Associated with

Domestic buildings

Office buildings

Retail premises

0.5

Parking garages

2. Associated with

Wind

Snow

Wind and Snow

0.6

0.55

0.55

0.55 and 0.4
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based on the 5% upper fractile of the annual maximum, however [8].

For the ultimate limit state, there are two types of classifications

for load combinations. First, there are fundamental combinations, with the

format:

n

1.25D + 1 .4 5(Slk + Ysi ik) (4.10)
i=2

or

n

0.80D + 1 .4 5(Slk + Xi Ysi ik) (4.10b)
i=2 ik

where the products 1.45 Ysi correspond to the ys of equation 4.9, in a

strictly formal sense. In the above equation, slk is considered to be the

central variable action in the combination, and sik are the accompanying

actions. In general, only two such accompanying actions need to be pro-

vided for. Furthermore, there is a check for accidental combinations:

n

1.25D + .Osik + YsiSik (4.11)
i=2

In this combination, slk is the characteristic value of a single defined

accidental loading, while ysik represent values of any other variable ac-

tions which could act at the same time as the accidental action.

Table 4.1 lists the values suggested for s in this particular draft.

However, the code states that values for ys would have to be based on judge-

ment, especially of the nature of the accidental action being dealt with.

It should be emphasized that the individual loads under consideration

by this scheme are to be rotated, each in turn taking the place of the cen-

tral load, Slk. So, for example, if three variable loads are to be taken
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into account in a fundamental combination, three computations should be per-

formed, and the maximum load effect retained. Yet, since the y values in

table 4.1 are often the same, the rule is often simplified.

The provisions of the C.E.B. contrast with those of L.R.F.D. in more

than matters of just format. Whereas in L.R.F.D., y factors for different

loads helped to account for their different variability, the ys factors of

the C.E.B. do not. Such variability is partly taken into account by the

leading 1.45, but mainly accounted for by specifying the loads in terms of

characteristic values. Instead, the ys factors of the C.E.B. account only

for the fact that loads are still spedivied in terms of annual maxima.

Clearly, the C.E.B. implicitly uses Turkstra's suggestion too, but in a dif-

ferent way than L.R.F.D. Instead of defining loads in terms of new distri-

butions (such as maximum daily wind), reductions are made in values relat-

ing to annual maxima by y So, these factors have a role similar to the

a. and b. of equations 1.3 and 1.4, but a more direct one.
1 1

4.3.2 N.K.B. Draft

The version of the N.K.B. proposal outlined here was released in Octo-

ber 1974 [11]. It contains two methods; the first is closest to a practical

code, the second more theoretical. Since the second method is not substan-

tially different from that based on reference [25], it will not be discussed

here.

As in the case of the C.E.B. code, load actions must be classified.

The N.K.B. characterized actions as constant, usual short-term, usual non-

short-term, unusual, or extreme. The precise method of classification will

not be discussed here, since it is expected to be abandoned in any upcoming
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draft. However, it is interesting because of the manner in which actions

are characterized by means of a parameter a:

Constant action: a = 0

Non-short-term: a = 0.5
usual action

Short-term usual: a = 1

Unusual: a = 2

Extreme: a = 4

These values are to be added together. Then, load combinations can

be placed in any of three classes. To quote directly from the N.K.B.:

Combination I comprises: Usual actions corrected
in view of their duration, in such a number that the
sum of a for all actions doen not exceed 4.

Combination II comprises: One unusual action com-
bined with usual actions, corrected in view of their
duration, in such a number that the sum of a for all
actions does not exceed 4.

Combination III comprises: One extreme action
combined with usual actions, corrected in view of their
duration, in such a number that the sum of a for all
actions does not exceed 5.

Correction of a usual action in view of its dura-
tion is performed by multiplication of the value relat-
ing to usual action by a factor

V
C = 1 - ( + 0.85[1-C]) 1 + 0.85 V

where V is the coefficient of variation for the action
and relates to the annual maximum. Normally, is put
= 1, i.e.

1 + 0.85 V
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This scheme appears to be based on a model that assumes the extreme

type I (Gumbel) distribution on individual loads. The form of the type I

distribution is:

F(x) = exp [-e-a(xu)] (4.12)

where u is the mode of the distribution. In fact, it appears that the a

in the N.K.B. draft has a similar influence as a in equation 4.12. In the

former case, increasing a values imply a progressively less likely type of

load. On the other hand, increasing a with the Gumbel distribution, with

constant x and u, results in increasing F(x), therefore lower risk. It

should be pointed out that the above notation for the Gumbel distribution

is standard, contributing to the evidence that the N.K.B. assumed this

distribution in their analyses. The commentary to the draft was too incom-

plete to be conclusive, though.

The partial coefficient s values the N.K.B. recommended are as in

table 4.2. These values were used in analyses derived from the theoretical

second-moment safety checking method proposed by the N.K.B. A failure

function was chosen which linearly combined one resistance and three load

variables. For any particular case (corresponding to mean values and coef-

ficients of variation assumed) a value for u was then computed with this

method. A range of cases corresponding to those which may be encountered

in practice was studied. It was found that the ys values chosen tended to

make u nearly constant throughout this range, and so the minimum safe value

of yu was used as the recommended value. Further examples show that the set

of ys values recommended made yu less variable than some other (still appar-

ently reasonable) sets. So, from these studies, the recommended y values

are seen to be based on more than just intuitive grounds. Yet, such studies
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Table 4.2 (After the N.K.B.)
Recommended ys values

Load Combination

I II III

Dead loads from the
mass of the structure

Earth pressure

Live loads:

ordinary loads

exceptional loads

Accidental loads

Loads caused by
deformations

1.5 1.2 1.0

1.5 1.2 1.0

1.3 1.3 1.0

--- 1.5

--- 1 1.0

1.0 1.0 1.0

Load Type
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do not constitute code optimization. Instead, we choose to call such an

approach discretization, meaning a small set of specific y values are

selected to correspond approximately to the continuous range that fully

probabilistic or second moment methods would imply. Discretization was

also the basis of the L.R.F.D. proposal.

The motivation for presenting this a-method is that it illustrates

just one of the many avenues that have been explored in the hope of making

load classification schemes precise and unambiguous. Such an advance, in

Rosenblueth's terms, would help promote progress beyond step 1.

4.3.3 E.C.E. Draft

The E.C.E. draft referenced here was dated January 1976 [10]. It is

an openly stated attempt to reconcile the C.E.B. and N.K.B. proposals. In

most respects, this meant that ideas were taken directly from one proposal

or the other; in some cases, sentences or entire paragraphs were taken from

the earlier documents. Nevertheless, a substantial change dealing with

load combinations was introduced.

Like the C.E.B., loads are classified as permanent, variable, or acci-

dental. The format adopted for cases not involving accidental actions is:

n

D + 1.3 0 (slk + 0.70 ik) (4.13)
i=2

and, for cases involving accidental actions:

n

D + .0 slk + E Ysi Sik (4.14)
i=2

where the meanings of the sik and ysi are the same as in equations 4.10

and 4.11. Note the generally lower factors suggested by the E.C.E. report.
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This is a consequence of the fact that all variable actions are to evaluated

at the upper 2% characteristic values of the annual maximum distributions.

Again, judgement must be excercised in the selection of the ysi values.

A discretization was carried out to get values for yu' similar to the

N.K.B., and using the same second-moment theoretical method. Again, the

values for ys were chosen a priori.

After this point, the E.C.E. report departs significantly from the

C.E.B. and N.K.B. In an appendix, a method for selecting parameters for

distributions other than annual maxima is given. It amounts to a scheme to

evaluate equations 1.4 and 1.5, and further, to get the mean and variance

of the extreme value distribution for combined effects of loads.

The method (attributed to Ditlevesen) embodies the use of Bosshard's

probability p with the discrete-time (Borges-Castenheta) model. The extreme

type I distribution is assumed to hold for load intensities within elemen-

tary intervals. For a given load, let the parameters relating to the annual

maximum distribution be a and a. Again, for this individual load, let

the year be divided into k intervals. Then, we can calculate the mean and

standard deviation of the extreme value distribution corresponding to K

intervals, K being arbitrary:

1 Is

A(K)

K =pa A(K)
(4.15)

and

Pa - B(K) K

K A (K) (4.16)
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where K

A(K) = 1 - p

B(K) -= j ( qJ P in 

C(K) : q P [ [ n + 1

So far, only the implications of the scheme for a single load have

been considered. Now, construct a matrix, such as in table 4.3, with its

entries corresponding to the number of intervals, K, to be used for each

load. Proceed loadwise from this point. For every load, use the assump-

tion regarding the number of intervals in one year, k, to calculate the

entries corresponding to K. Using these values for K, compute K and oK

for each load. The parameters of the distribution of the annual maximum

for one combination of n loads are now given as:

coramb I 1K (4.17a)
all

loads

comb 2 2 (4.17b)
all 

Iloads J

This calculation must be repeated for any other combination number,

much the same as Turkstra's result 1.3. Using these with the theoretical

second-moment method, non-arbitrary values of s can be chosen. Then, a
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Table 4.3 (After the E.C.E.)
Numbers of intervals used in the E.C.E. scheme

Load Number

Number of time
intervals in one year

Number of repititions

Number of repititions

1

1

2

Number of repititions

to-

C -0
.0 
E =o

1

2

3

k3

k3/k2

k3/k2

k < k 2 <
I 2

k, .I k/k 

II II - - - l r I R $

3 1 1

k3

t

k2 

.

t
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discretization process can be carried out without the need to select the ys

values beforehand.

4.3.4 Reliability Consistency of the European Formats

Clearly, the European draft proposals, taken in concert, portray the

evolution of structural codes. However, although based on approximate

"second step" methods, they still have not progressed beyond the partial

safety factor format the Rosenblueth described as a first step. Accord-

ingly, they cannot guarantee that they satisfy Lind's constant reliability

criterion. Therefore a brief study of this subject is offered here, based

on the methods discussed in earlier chapters.

Since the codes deal only in scalar terms, the formulation of Chapter 3

is used. As indicated in equation 1.9, the upcrossing rates so obtained can

be interpreted as probabilities of exceedence, in reference to a reduced or

characteristic capacity level.

This study is directly comparable to study 2, section 2.3.4. All of

the stochastic process parameters used there are assumed here as well, with

the wind load becoming load 1, the floor load, 2. These values were chosen

because they not only represent a realistic situation, but also because in

the earlier study they exhibited no pathological behavior, as did case 3E.

The coefficients c and c2 can now be interpreted as the wind and floor

load influence coefficients. They may represent a linearized boundary, or

a natural scalar threshold such as moment capacity about a single axis of a

beam. In any case, these are the coefficients that define the domain over

which the reliability is desired to be a constant. For the purpose of ex-

ploring this domain, four combinations of c and c2 were chosen. Holding
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the sum equal to unity, c1 was taken as 0.2, 0.4, 0.6, and 0.8, giving

complimentary values for c2.

As a result of this linear and scalar interaction, safety checking is

possible in terms of load effects. So, for the C.E.B., equation 4.10:

z = 1.25 c2 D + 1.4 5 (clslk + 0.5 c2s2k)

or

z = 1.2 5 c2 D + 1.4 5 (c2s2k + 0.5 clslk)

whichever is greater. Since c2 relates in this case to gravity floor load,

it is in both cases applied to dead load. Similarly, equation 4.13 yields

the checking threshold for the E.C.E.:

z = C2 D + 1.3 0(clslk + 0.7 2 S2 k)

or

z = C2 D + 1.3 0(c 2s 2 k + 0.7 clslk)

where again, the larger result is retained.

For both codes, the characteristic values sk (5% for C.E.B., 2% for

E.C.E.) relating to the annual maxima were found by application of:

F(x) = (p + qF(x)) exp(-qvG(x)) (4.18)

Annual max

an equation whose basis is explained in Grigoriu's collection [21].

The results are presented in figures 4.1 to 4.6. It should be empha-

sized that the lines drawn between points are not interpolations, but are

only meant to guide the eye of the reader.

A horizontal line would be the result of perfectly consistent reliabil-

ity. While none are to be found, the results are encouraging. Differences



0 o

CO
,-q

'

C'

-123- o
,H

-W4.,,

.,
P

co¢
UHCD

R

. .w

C-,

1

r)

T4O

U)a

r4

r.

,0.H

C

a)4

C',C-,'-4-1a
r::(dr.
w

u

a)
k4

:3
0 · 0

co CN

o; 0

-11
O O

o 0

N cu

o 0

o C)

O 0

o 0Nl c\o 0

-I C
u C)



o

O

00 C

.o -o

o C

C C

N co
o C

u u

o C

c C

o o

rN Co o
U UC) C

-124- o
o

.r-4

-D

n

...4J

1U.,4
a)

to0
4-l

Ua

(n
-I

a)To~~~~~~~~~~~~~~~~~t

0

wU)
::

1

k4
-W

E

I .

a)

u

CC,

Q)p

.1-44

O
r-q



-125-

oo ,,

(N

o o

o 0

o o

0 0

U( U

Co C0o o

c

o 0

o 0

o o

U C4
U U

0
r1-

Io

4J

4J
to

QU(13

C)

(14(2

-o

r
0()
94J

C'4.H0
co

cij

0
-4



-126-

of greater than an order of magnitude in pf are not found, and most are in

fact relatively slight.

The most noticable observation is than in almost every case the E.C.E.

implied a higher risk than did the C.E.B. However, this is not of great

significance, because the main purpose here is to check consistency within

codes, not between them.

More careful inspection reveals other patterns. For instance, the

E.C.E. gave generally similar risks regardless of the distributions that

were assumed. In fact, the plots were originally made without regard to

distribution type (as though figures 4.1 and 4.2 were plotted together) but

in this manner the C.E.B. results were overlaid and not readily distinguish-

able. On the other hand, the C.E.B. gave generally greater risks when the

gamma distribution was assumed rather than the normal distribution.

Other similarities exist between cases A, B, and C. Notably, in all

cases the C.E.B. gave its peak risk with c1 = 0.8 and c2 = 0.2, and the

E.C.E. gave its peak at c1 = 0.4 and c2 = 0.6 in all but a single instance.

While no similar statement holds true for minimum risks, the plots appear

to have the same general shape and risk level from case to case.

Plainly, it would be presumptuous to draw general conclusions from the

few examples this study illustrates. However, they demonstrate how the

formulation of Chapter 3 can be applied to check design formats. Also,

they do show that partial safety factor formats can lead to relative risk

consistency, although the limitations of such methods remain unclear.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Load combinations were examined in this work from both mathematical

and practical points of view. In mathematical terms, two dimensional out-

crossing rate problems were analyzed employing both modified Poisson square

wave and continuous time Gaussian process formulations. Scalar upcrossing

rate problems were also pursued. Relating to engineering practice, design

code formats for load combinations were presented and discussed.

Case studies, germane to both mathematical and practical aspects,

played an important role in this thesis. Computer programs written to fa-

cilitate computations are available, and should be useful in future work.

Based upon this work, including the case studies, the following conclu-

sions are reached:

1. For two dimensional outcrossing problems where loads are assumed to be

normally distributed, the modified square wave and continuous time Gaus-

sian process formulations yield similar results. However, the continu-

ous time formulation offers great savings in computational effort, and

can be readily extended to three or even higher dimensional situations.

2. A two dimensional failure surface can be replaced by a linear boundary

with acceptable accuracy. These linearizations can be made either in

terms of loads or effects. In any case, they permit the reduction of

the outcrossing problem to a scalar upcrossing problem, which results

in significant savings of computational effort.

3. For square wave processes, the mean upcrossing rate reduces to an expli-

cit analytical expression whose terms are readily interpreted. The op-
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erations reduce to random variable (rather than stochastic process) op-

erations, i.e., at most convolutions of two probability distributions.

4. Codified approaches to load combinations appear to meet their currently

stated objectives. Yet, progress toward eventual goals lags, mainly due

to the difficulty in applying mathematical results already in hand.

The following areas are recommended as topics worthy of future re-

search. The first two would repair shortcomings in this work:

1. Outcrossing and upcrossing results should be pursued for sums of pro-

cesses similar to square waves, but with different pulse shapes. Trian-

gular pulses would especially be useful, say, for studying bending ef-

fects due to vehicular traffic on simply supported bridge spans.

2. Non-linear structural interaction should be studied. Perhaps a simula-

tion approach would be required, but at least case studies indicating

the amount of error inherent in assuming linear structural behavior

could be carried out.

The last recommendation amounts to a remedy of conclusion 4, above.

It is:

3. Study general upcrossing formulae for simplifying cases, in the hope of

discovering and developing implied load combination rules at simpler

code levels.

Alternatively, the following approach may prove fruitful. A set of

charts expressing the influence of the various parameters (i.e., p, v, i,

and a) on the mean annual rate of upcrossings at various thresholds could

be constructed. The E.C.E. proposal (e.g., equations 4.15-4.17) indicated

that engineers may be willing to accept the modified square wave results

of Chapter 3, especially because they lend themselves so well to interpre-
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tation. To overcome the involved computations required, even when liberal

distribution type assumptions are made, such charts may be necessary. One

should note that charted solutions are often favored in situations where

calculations are of greater than routine difficulty. Such is the case with

column interaction diagrams, for which analytical expressions are available.

A given set could relate parameters and distribution types estimated for a

given locality with the design levels for individual loads, structural in-

fluence coefficients, and pf in any manner found to be convenient. At

first, these charts would serve mainly as research tools, such as seismic

ground motion records do for earthquake engineers. However, they may prove

to be precursors of standard design aids of the future.
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