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Abstract

Three dimensional lower hybrid plasma waves are examined,

where the third dimension is treated as a perturbation of the

two dimensional problem. The derivation of the lower hybrid

wave from the general Harris equation is shown. The dispersion

of the wave is balanced by introducing a nonlinearity, the pon-

deromotive force. The resulting nonlinear equation is reduced

by the multiple scales technique to the three dimensional non-

linear Schrodinger equation. To carry out this reduction, a

plane wave solution is assumed. The three dimensional nonlinear

Schrodinger equation is solved by perturbing the two dimensional

Schrodinger soliton solutions. This results in a set of coupled

second order differential equations. A method of numerically
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integrating these equations is discussed and used to obtain

a wavenumber vs coupling coefficient (i.e. growth rate) graph.

The meaning and the accuracy of this data is discussed. Using

other techniques, predictions are made of what the data should

be.
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Notation

References occurring in the text are placed in brackets,

thus: [Acl]. Usual notation is not included below. The

numbers in parentheses refer to the equations in the text.

It should be noted that in Section 2.4 there are some operators

having the same symbol as used elsewhere. These operators are

not included below. Also the subscript s stands for species

unless otherwise stated.

plasma frequency (2.1.1)

f distribution function (2.1.1)

cyclotron frequency (2.1.1)

VTH thermal velocity (2.1.4)

kL, k,, a, b, c coefficients in dispersion relation (2.1.31)

F pondermotive force (2.2.21)

x plasma dielectric tensor (2.3.5)

angle between k and k (2.3.11, B.2)
x z

small parameter (2.3.19)

1i small ordering parameter (2.4.8a-10a)

kLo, kilo, a0, bo, c, Ao, B dispersion relation coefficients

(2.3.24-25)

¢(x, y, z) plane wave solution (2.4.1)

P, Q, R derivative expressions (2.4.8a-10a)
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a/axi, /yi' /Dzi multiple time scales notation (2.4.8b-10b)

c 1 constant from nonlinear terms in dispersion relation

(2.4.11)

vg group velocity (2.4, B.9.10)

Te, T, T Ts temperature (2.3.23)

E Schrodinger energy variable (5.1.3)

n, T, ~ rescaling factors (2.4.21-22)

C2 constant of integration 93.2.6)

91( ), k( ), R( ), n Gelfand-Levitan parameters (3.2.19)

r coupling coefficient

H integration step size (4.1.1)

R slowly varying function (5.1, only)

', a, boundary condition variables (C.7, 9, 10)

T dummy time variable (A.1.13)

e angle in Figure A.1

8' angle in Figure A.2
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Chapter One

Introduction

Today's research in thermonuclear fusion could be broadly

divided into two major areas, the heating and the confinement

of a plasma. When people first began to consider fusion, they

thought that electric currents would be sufficient to heat the

plasma to fusion temperature. However, as the temperature

increases, the resistivity decreases. Thus, at a temperature

less than that needed for fusion, heating by currents becomes

impractical. Many techniques have been suggested for heating

the plasma and many have been tried. One method is the excita-

tion of low frequency plasma waves with electromagnetic radia-

tion. If these low frequency waves can be excited, it is possible

that ion heating could result. This method has the advantage

that ions are heated directly. The ions are what we want to

fuse, so it is they that must be heated. But difficulties arise

with the stability of the waves. If the excited wave damps out

or breaks up, what good is it?

Recently, the lower hybrid wave has received much attention.

In this thesis, we will discuss the lower hybrid dispersion re-

lation in the reduced form of the nonlinear Schrodinger equation.

This will be considered in three dimensions. The applicability

of the results obtained here to the fusion problem is not known.
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The question of lower hybrid stability in three dimensions is

interesting in its own right as a nonlinear wave phenomena,

and this is how we approach the problem.

We begin by using the three-dimensional Harris dispersion

relation for longitudinal waves. The plasma we are considering

has no d.c. electric fields and has a magnetic field along
A

the z axis. The plasma is being excited at x = 0 by a

waveguide. The major assumption being made is that there is

little or no variation in the y direction. This allows us

to consider the y direction as a perturbation of the two di-

mensional problem. After showing the derivation of the lower

hybrid dispersion relation, the question of wave stability

arises. Is the lower hybrid wave stable to perturbations in

the y direction? Clearly if the wave has only dispersive terms,

it will break up or damp out. Therefore, to balance the disper-

sion, we include in the model some nonlinearity. This nonlin-

earity is introduced in the form of the ponderomotive force.

This force causes a modulation in the number density of the

plasma and thus enters the dispersion relation. After including

the nonlinearity, we resort to the multiple time scales method

to reduce the dispersion relation to the three dimensional non-

linear Schrodinger equation. Once again the y direction is

considered as a perturbation and the nonlinearity is ordered

the same as the dispersion term (a2 /ay2 ). This ordering

balances the dispersion with a nonlinearity.
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What has been described above is included in Chapter Two.

Chapter Three deals with trying to solve the three dimensional

equation. However, since there are no known solutions, we must

resort to perturbation theory. Once again the y direction is

considered as a perturbation of the two dimensional equation.

Doing this, we must solve the two dimensional equation, but

the general solutions are not used. Rather, a class of solu-

tions known as solitons are considered. They are stable in

two dimensions. These solutions are used with perturbation

theory to yield a coupled set of equations. These equations

are not easily solved; and in Chapter Four, we describe a com-

puter method of solution which is then used to obtain the data

given in Section 4.2. To verify the data, Chapter Five is de-

voted to making some predictions about what the solutions should

look like.
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Chapter Two

Lower Hybrid Dispersion Relation

2.1 Expansion of the Harris Equation

To obtain a plasma wave dispersion relation, one can use

either the fluid model or the more general kinetic theory ap-

proach. Here it is advantageous to use the kinetic theory

approach because we wish to include thermal effects which are

better handled in kinetic theory. In this chapter, we wish to

show the derivative of the lower hybrid dispersion relation from

the longitudinal Harris equation. To balance instabilities due

to thermal effects, we introduce the nonlinearity due to the

ponderomotive force. This ponderomotive force is discussed in

Section 2.2. In Section 2.3, we use the expression for this

force obtained in Section 2.2 to modulate the number density

of the lower hybrid wave. Finally in Section 2.4, we describe

the reduction by multiple time scales of the dispersion relation

to the nonlinear cubic Schrodinger equation.

To begin, we assume a plasma of many species in a d.c.

magnetic field, B, which points along the z axis. There is

no d.c. electric field. We excite the plasma at x = 0 with

a waveguide and we also assume there is little variation in the

y direction. For each species, s, we have a plasma frequency
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(W2s = 4n q 2/ms) and a cyclotron frequency (Os = qsB/msc),
Ps Os s S S s s

where ms is the mass, q5 the charge, and nOs is the number

density of the species s. We also assume that each species is

described by an equilibrium (denoted by a o subscript) dis-

tribution function in velocity space (f ). This distributionos

is a function of velocity both parallel (v ls) and perpendicular

to the z axis (vls). These subscripts II and L are used

with other variables as well to show orientation with respect

to the z axis. With the above assmptions, the longitudinal

Harris equation derived in Appendix A is,

Z JN2(kLvLs/Q s)

k2 = Z S dv 2w v, dv N
s P s- s s s (k W + Q N)

os ~s Is 

O afOs NS 05] (1)
vls V aVs

where k is the wavenumber (which can be directed it or to

the z axis) and w is the angular frequency. The term Z JN2
N

is a summation of the Bessel function squared over all orders.

To obtain the lower hybrid dispersion relation, we must

expand the Harris equation with the following assumption,

Q. << << Q . (2)
1 e
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Here i stands for ions and e for electrons. Also it is

important to note that since we are dealing with three dimen-

sions,

kl2 = k 2 + k 2 (3)
£ x y

In the expansion, we need to decide which terms to keep. As

stated earlier thermal effects cause instabilities (such as

dispersion) in the plasma and these we want to consider. Since

the thermal terms are of higher order we keep the k 4, k 4
x z

and k 2k 2 terms. However, because we are considering the
X z

third dimension (the y direction) as a perturbation, we will

disregard thermal effects and only retain first order terms in

k 2 Another consideration is the nature of the distribution
y

function f . First it should be noted that this is a velocity

distribution in three dimensions. A good assumption for plasmas

is to assume a Maxwellian distribution. We have

= 1 exp - fls _ _ s
p exp (4)

o /rr 3 V3 v VTHS
THS THS THS

where vTHS is the thermal velocity of species s.

To actually carry out this expansion, we must simultane-

ously Taylor expand in two variables. This is algebraically
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complicated. Therefore, to illustrate the procedure we will

break it up into several phases, by first setting k 2 = 0
x

and then k 2 = 0, but by so doing we will lose the expression
z

for the cross terms (k 2k 2). We will just quote the results

for these terms [Ka2]. To begin we assume

k =0, k 2 k 2x

As a result, we have eliminated the first term of the Harris

equation which we can handle later. We also do not consider

the third dimension. However since k 2 = k 2 + k 2, we can
± x y

just add the results from using k 2 to the results from k 2x y

to get k 2. Therefore we obtain

(00 00 Z JN 2(kiv/Qs) N af
k 2 = w2 J dv j 2 v dv Ns (5)

x s _ Ii0 QsN - v av1
s

The derivative of f with respect to v is

_fO 2v
05 =- f · (6)

avL T HS OsVTHS

At this point we can substitute equation (6) into equation (5).



x Ps -X ~SpSJo dv~ 1 4 v dv1
O

N JN2 (kv/s)

SN -
S

2 2 2 V
S 1 V_ I_

VTHS exp v2 2HS TTHS VTHSV
To simplify the above, we need to use the following equation,

[Nol],

00Jo

dy e jN2(Ay) = e IN (X)

(7)

(8)

where X = A2/2, where we identify X = k VTHS/2 s2 and

y2 = v 2 /VTH S. . To do this it is noted that the argument of

JN is both multiplied and divided by vTHs . This gives

JN(kLVTHS Y/Qs). Also note that IN is the modified Bessel

function. Using relation (8) with equation (7) we obtain

NQ
2 = 2 S 2 e

Ps N - N s vTHs

k si THS_ = THS
s 2 25~~~

IN ( s ) ,N 5

(9)

Letting N = ±1, ±2 to eliminate higher order terms, and using

16
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-X
the expansions of e s and IN(Xs) to second order, we can

reduce the above equation to a series of terms,

I k 2= k 2 2 Q k 4
k 2 W2 I 1 ___ I + 2 THS k4
X Ps (W - Es)Qs (I Q s)Qs ps 4 - 2 Q 4

2 s k 4
_THS s LI] (10)

4 w + 2 As 4

After using some algebra we can combine some of the terms to

get

2 k 2 2 2 k 4

k 2 =pS -X + pS THS (11)
X ( 2 - 2 s (W2 - 4s2)

5 S S

So far everything we have done has been general. The above

applies to all longitudinal waves. We have reduced the Harris

dispersion relation to a series of terms to order k 4. Now

we can use the assumption made at the beginning of the section

(i.e. equation (2)) to make the equation specifically for the

lower hybrid wave.

To make the dispersion equation specific, we must consider

each ordering of equation (2) and each species separately.

First just using w << Qe and considering electrons in the

first term of the RHS of equation (11), we obtain
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W2 k 2
pe kx (12)

2
e

Now considering the same assumptions for the second term of

equation (11) we get,

W2 v2 k 4
pe THe x (13)

4Q 4
e

Last using >> Qi and ions we get for the first term,

2 k 2(14
-pi x (14)

For the second term, we obtain

2 2 k4

pi THi x (15)
4

Combining equations (12)-(15), we have the lower hybrid disper-

sion relation for the k direction,x

W2

k 2 = _ pe
x 2
e

2

+ pi
2
03

k 2 + 
1.

2 2

pe THe

4Q 4
e

2 2

+ pi THi 4+ k4.
4 X2]

Since we are finished with the k part of the dispersionx

(16)
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equation, we can proceed to solve for the k
z

term. We let

k = 0.

But it should be noted the argument of the Bessel function con-

tains k . To handle this we need to find the limit of Z JN(Q)
N

as goes to zero.

Z JN (Q) + N2

N N
as Q + 0. (18)

Making these substitutions into equation (1) and noting that

co f ,
Os dv = af ,

-o av IOi - s
we obtain I

we obtain

(19)

k2 = 2 27 v dv k 
k}! os ps -coj0 k

afos
k v

11
- w + Q Ns

To simplify the above, we have to integrate by parts. Following

this approach we let,

k v - w + Q N
I1 VI s

dv = af OOS' (21)

(17)

(20)
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and therefore we obtain)

du = -
k 2 dvl

II 

(klvi - o + QsN)2
11 11 s~

v = f. (22)

The integration by parts finally yields,

I K K +--CO 0 -CO I1 I

00

2 f v dv 1 f
0

0*~ @~~Ii

(k vl- + Q N) 2

Last, we integrate over f which just gives 1 times every-

thing else, and our dispersion relation becomes,

k 2

k 2 = 2 1
ps (k v - + sN) 2

li II s

(23)

(24)

We have reached the point where we need to apply the speci-

fic assumptions that will reduce this general equation to the

lower hybrid dispersion relation. First note that

N << k v .
s il 1i

os d%

(25)
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With this relation and w << e, we obtain the following from

equation (24),

k2 2
1 TH (26)

Now considering ions and w >> i' we obtain

k 2 W2 [1 - THi (27)

Combining the above two equations, we have the complete lower

hybrid dispersion relation for the k direction,

k2 = k 2 2 1 11 THe + 2[ 1 l V THi (28)

What we have done so far is found the dispersion relation

for the kx and k (= k) directions, but there are still the

cross terms (i.e. k12 kl2). Using Taylor series expansions

in k and kz and also using equation (2) which is the lower

hybrid assumptions, the following for the cross terms can be

obtained [Ka2],
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2 22 2

k k2= k4 k4 e THe +2 T(29)
3l 2 2 W2 2

s

Now we have found all parts of the lower hybrid dispersion

equation, we just need to combine them together. We should

realize that because we are assuming exp[iwt - ik * Q], that

the k's represent derivatives. However, to properly place

the terms with respect to the derivatives requires that we keep

account of their position from the beginning. This is not

easily done and we will state the result of doing so [Ka2],

k k 3 + k + a c 4

aX X Z axX 4 3X23Z 2 3z 4

= 0. (30)

The ¢ is the potential which was in each part of the lower

hybrid equation, but we avoided writing it on both sides of the

equations. The other factors are as follows,

2 2 2 2

k = 1 + pe pi k = 1 p p e
2 2 I 2 W2

e

W2 v2 2 2 2 2 W2 2

1 pe THe pi THi 1 pe THe + pl THia + , +2
4 e2 2 2 3 W2 e 2 W2 W

e e e

(31)



23

2 V2 2 2

c=pe THe + piVTHi
002 (2 62 032

Last, we look at the k
Y

dependence of the lower hybrid dis-

persion equation. This follows exactly the k
x derivation

except higher order terms are eliminated and we get

ky 2q.
y

This gives us a 2/3y2 term in equation (30). The complete

three dimensional equation is as follows,

ak + 2 + a
ax I ax ay2 az - if

4
+ c a = 0.

az4

(32)

(33)

(34)

D + - 4 b D Dz a X4DX2DZ
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2.2 The Ponderomotive Force

In the derivation of the lower hybrid dispersion relation,

we have just considered linear effects, some of which were

higher order thermal effects. As stated earlier these thermal

effects result in the dispersion of a linear wave. We want to

balance this dispersion with the ponderomotive force. This

force is nonlinear and is a result of a praticle interacting

with oscillating E and B fields. Since we are only con-

sidering oscillating E and B fields, we can set,

E = 0 and B = 0. (1)o o

Using the equation of motion for an electron,

dv
m - = - e[E + v x B], (2)

dt

we can let each variable be perturbed around an equilibrium

point. In other words,

v + v1 + 2 + ... E + E1 + E2 + ...

B + B1 + B2 + ... . (3)
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Each term is a smaller perturbation around the equilibrium.

Now separating according to order, we obtain

dv 0
m 0 e[ + v x ] = 0, (4)

dt

dv 1 0 0
mdv 1 0+ vX 1 + v1 X / = -e E1, (5)

dt

dv2
m - e[E 2 + v1 x B1]. (6)

dt

dv2
We wish to solve the above set of equations for n -

dt
which is the ponderomotive force. To do this we need to find

expressions for E2 and B1 in terms of v1. Using the

concept of Fourier transforms, we know that all derivatives

with respect to time just involve multiplying by w. We are

assuming that E = E1 cos t. From Maxwell's equations we

have

dB1
V x E (7)

dt

which is the following using Fourier transforms,

V x E1 = - wB 1 . (8)
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Therefore,

V x E1

1B1 - -W

Now we have to find an expression for E1 in terms of vl.

Equation (5) gives us such an expression,

mW v1 = - eE1l

Solving for E1,

meE1 - v1.
e

This can be substituted into equation (9) to give us an expres-

sion for B1 totally in terms of vl,

B1 =- V x v.
e

To find an expression for

E1 about an equilibrium point
1

we must Taylor expand

r 
o

Doing this we have,

E1 = E1 (r o) + (r1

(9)

(10)

(11)

(12)

V)E 1 + (13)
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E2 is equivalent to the second term in the above expression,

E 2 = (r1 ·V)E1.

To solve for rl, we use

drl
dt v .
dt 1

This yields,

V1

1

Using equation (16) and equation (11) in equation (14), we

obtain an expression for E2 totally in terms of vl,

E2 (v1 V)vl
e

Substituting the expressions for E2 and B1 into equation

(6), we now have the ponderomotive force,

dv2
m - m[(vl · V)v + v1 x (V x Vl)].

dt

(14)

(15)

(16)

(17)

(18)
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The above expression is the ponderomotive force for a

general wave [Chl], but the lower hybrid wave is longitudinal.

Therefore, since for longitudinal waves,

(19)V X E1 = 0

which from equation (11) implies that

(20)V x v 1 = 0,

we can reduce our expression to the following

F = - m(v V)v. (21)

Remember that when we derived the ponderomotive force, we only

considered one particle of one species. To generalize to many

particles and many species, we write,

Fs = - ms N(vs V)vs, (22)s s 5

where N is the number of particles and s stands for species.
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2.3 Modulation by the Ponderomotive Force

We begin with the equation derived in the last section,

Fs = - ms N(vs V)v . (1)

This is the Ponderomotive force that will result in a modulation

of the number density of the plasma. To use equation (1), we

first have to find an expression for the velocity. This is

possible through the plasma dielectric tensor. The expression

for the velocity can be substituted into the momentum equation

to find the number density modulation. The new number density

is substituted into the lower hybrid dispersion relation to

yield a nonlinear equation.

First to find v, we use

J = ns fs Vs' (2)

where this expression is equivalent to the following,

i w XE(3)
47r

X is the plasma dielectric tensor and w is the angular
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frequency. Equating equations (2) and (3), we can obtain an

expression for vs in terms of X,

v = - i X E
4T nsq s

To solve for vs, we need to find X which for a plasma is

of the form, [Krl],

Xxx

X = Xyx

0

Xxy 0

Xyy 

0 X zz

Up to this point, everything regarding the ponderomotive force

has been completely general. Here we are going to specialize

the derivation of the density modulation to longitudinal waves

by letting

E = - V. (6)

By substituting equations (3) and (6) into the expression for

vs, we obtain

(4)

(5)



Xxx

V = Ix- 
S 47 nq y x

Multiplying out equation

vector form.

Xxy

Xyy

0

a/ax

o . a/ay

xzZ a/az

(7), we can get the equation into

i~1 | A a + i + + 
s 47r nq s Xxy +y Xyx ax Xyy Y ;

s s 

+ (X a k] - (8)

To calculate the ponderomotive force, we need to find (vs · V),

(vs V) = i x a a a a a 
4 nsq s ax ax x xy ay x ax ay

a a a+ z z a
yay ay 3y (9)

This is a rather cumbersome equation and this has to be multi-

plied by v again. One should note that there are x, y,

and z components. These are not all needed if one should

happen to be larger than the others. At zero frequency, the

electrons can be considered infinitely magnetized; therefore,

31

(7)
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they travel along the field lines which is the z direction.

The z component is definitely the largest, so

'__ ± ±1~ X + X ±Fz = 2 [Xxx DX x zz xy y ax zz 
pe pe

a aZ z za+ X a Xz z

+ a F 31X a ,, (10)
yy ay ayZZ 

With the equation for the modulating force fully derived,

we need to find the expressions for the components of the di-

electric tensor. To make these expressions applicable to the

lower hybrid wave, we assume that w is approximately pi.

From this we get

2 2
e e pe e e pe

Xxx Xyy 2 xy Xyx pe
e e

e pe
Xzz = (11)

22 

i i 3 pi i i pi
Xx Xyy 2 Xy Xyx 3
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W2

Zi = i21 (12)
zz 2

Looking at the above relations, one can see that Xxy and

Xyx are imaginary. Also, we must again realize that the y

dimension is a perturbation on the two dimensional equation.

Therefore, we want to neglect this term. If we did not we

would be perturbing the ponderomotive force which is itself

a perturbation. We do not want a perturbation of a perturba-

tion. With all of this in mind, we can substitute equations

(11) and (12) into equation (10) to get

F = _1 a pe a (2 + pe- a- al] 2(13)
e 4i az 2 x2 azW2 z

F = 1 a I 2a -2 + pi I a l2. (14)
47 az 2 ax 2 az

With this expression for the ponderomotive force, we can

find the density modulation by using the z component of the

momentum equation. It must be remembered that we have derived

the ponderomotive force with the assumption that there were no

dc E and B fields. Therefore, we get the following for

the momentum equation,
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F
sz

-VPZ =-kT Vn =-kT - n
S S s

(15)

where k is Boltzmann's constant and T is the temperature.

Summing over electrons and ions and substituting equations (13)

and (14) for F
z

3n

az

in equation (15), for ns/Dz we get,

W2 9~ 2 W 2 2 W2

_1 1 a Kpe _ 2 _ pe _) l2 _pi 3) 2

kT 4' az 2 x W2 az 2 ax

2

ti 2 az j

We can simplify equation (16) by using the cold lower hybrid

dispersion relation,

2 22 2 

1 - P cos2 pe + sin2 pe 0,
6t 2 to2

Q 2e

where

-1 xi = tan
kz

(16)

(17)

Taking the terms in the brackets of equation (16), grouping
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them together, and remembering that /9y = 0, so that

a2 + 2 = vl2

ax az

we get

2 2 2

pi V 12- pe + p e I ' (18)
0w2 Co2 z 2 ax

e

Assuming ¢ to be small in equation (17) and using £ to

denote a small parameter, we obtain the following,

2 2 2 

pi + pe £2 pe (19)
0 2 0 2 S 2

e

Multiplying this equation through by IV$ 2,

jv~ (20)IV1 2 _pi IVf 2 + De I V[ 12 e | V| (20)
w 2 Co2 2e

In deriving the expression for the ponderomotive force, we

assumed that the z component was much larger than the x

or y component. Therefore, we can say that la/az| 2

|Vq1
2 and IDa/ax12 0 or IDa/ax12 = £21Vf1 2 . Using
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these assumptions, we reduce equation (18) to

2 2 t2

_P p Iv l2 _- 2 Vf!2 + pe 21vl 2. (21)
W2 2 2

e

From equation (20) we realize that this is no more than

-IVfI 2 . Therefore, equation (16) is simply

an 1 1 a

az kT + i 4 az

Note that Te + iis Te + Ti and will be expressed simply

as Ts from now on.

With this simplified form for the differential equation

in ns, we can integrate to obtain

ns= n - - IV1 2/(noT5 )]. (23)

This is the equation for the modulation of the number density

[Jol]. Plugging it into the lower hybrid dispersion relation

(equation 2.1.32) and only allowing modulation of the lower

order terms, we obtain

k _ k l 2+ 2+ a 4 + b + c a
LO ax2 O a 2 ay2 O aX4 O aX2az2 O az4



+ A I Ivql2 
4rr o x n T xO S

+ 1 B a [V 12 3( = 0
4 7r o z n T azs

where klo, k o, ao, bo, and co are the equilibrium

values of the corresponding coefficients described in equations

(2.1.31) and (2.1.32), except n0O
replaces n. The other

coefficients are defined as follows,

c 2

A = pe +
0o 2

e

2Co.pi
W2

2 2

B = pe +
0 ..2 .. 2

37

(24)

(25)
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2.4 Multiple Time Scales Perturbation

To completely solve the equation for the lower hybrid

dispersion relation (equation 2.3.24) would be difficult.

Therefore we will resort to perturbation theory. The idea is

to assume a solution that is a perturbation of the solution

to the linear equation. In the limit of only considering lin-

ear effects, this assumed solution should reduce to the linear

solution. Morales and Lee, [Mol], used this idea and assumed

a solution with an explicit x dependence (besides the linear

solution). With perturbation theory, they obtained the modified

Korteweg de Vries equation. Yet their analysis assumes a real

solution which means energy propagates away from and toward the

source. Obviously, power should only propagate away from the

source, since this is how the plasma is being excited. More

is said concerning this in Appendix B.

To fulfill the above criterion, assume a plane wave solu-

tion,

~_~ ~ (ik z - ik x)
¢(x, y, z) = (x', y', z') e z (1)

where x' = x, y' = y, and z' = z - v x. 4(z - v x) is a
g g

solution to the nondispersive lower hybrid equation. The method

of multiple time scales involves ordering the terms of an assumed
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solution according to the importance of their spatial (or

temporal) variations, (see [Nal] for a description of this

method). Equation (1) contains a non-dispersive solution,
A

c(z - v x), with some added dependencies, x' and y' (these

model the nonlinearity), that modulate an exponential. With

this information, we proceed to ordering.

What exactly are terms we want to order? Because the

three dimensional dispersion relation (2.3.24) contains a/ax,

3a/y, and a/az, these are what we want to order. Solving

for the above mentioned derivatives by taking first a/ax

where p is as given in equation (1),

+ -ik -v + - (2)
ax x g az' ax'

The same is done for 3a/ay and a4/az to yield,

a/ay + a/ay' (3)

and

a/az + ikz + a/az'. (4)

Each term representing the derivatives has to be ordered. The

terms resulting from the exponential terms are of first order;

those resulting from the nondispersive solution are second

order; and finally the x', y' dependencies are of highest
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order. Consequently,

likI >> vg a a (5)

ik| >> a . (6)

Since we have considered there to be no variations in the y

direction, the y direction can be treated as a perturbation

of the two dimensional equation. Therefore,

Y'a v a (7)

This ordering information can be conveniently expressed using

the small parameter ,

= = -ik - v a + 2 a (8a)
ax x g a z '

= Q = ik + (9a)
az azz

= R = a (10a)
ay ay'
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Using the multiple time scales notation, we define the following

a -ikx
axO0

a = ikz,
az0O

a

ax1

-V
g az'

a

az1

a 

ay,
a - 0,

ayo

a a

ax2 ax'
2

a = 

az 2

a =o

aY2

Before continuing, we want to simplify the nonlinear terms

of the dispersion relation (2.3.24) into a more manageable form.

Since these terms are perturbations, the derivatives of % in

equation (1) just bring down a constant (ikz or -ikx) from

the exponential. Therefore,

1A a + 1 B
4 o x noTs x 4 o° az not s jz

e
(ikzz - ikxx)

(11)

where cl is a constant. Using this, we can change equation

(8b)

(9b)

(10b)
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(2.3.24) into

Eta a a 1 + nonlinear terms = 01 (12)
ax Dy az

The E operator above can be further specified by substituting

the definitions in equations (8a - 10a) for the derivatives in

(2.3.24),

E(P, Q, R) = R2 + k p2 _ I1 I Q 2 + aP 4 + bp 2Q2 + CQ 4 (13)

As a brief summary before progressing into some lengthy algebra,

we will repeat the main steps of the perturbation theory. First

we assumed a plane wave solution to the dispersion relation.

Then we ordered the derivatives (with respect to x, y, and z)

according to importance of spatial variation. Finally, we sim-

plified the nonlinear term. Now we must find expressions for

each order of the small parameter . To obtain successively

better solutions to the equation in question (2.3.24), solve

each equation of order . But it is important to remember that

all higher order solutions must be consistent with lower order

solutions. The result of solving the lower order equation will

be used to solve the higher order equation. To continue, the P,
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Q, and R terms in equation (13) are to be expanded and orders

of equated.

0 k (-kx2 ) - Ik C (-kZ2) + ak 4
E~~~~~ k -X2 I 

+ bk 2k 2 + ck 4 = 0
x z z

(14a)

or we can generalize the above to,

s + E a + E a + E a 3
ax0 o a a0

= 0 (14b)

where /axi is the i-th order term of the expansion of the

derivative as defined in equations (8b)-(10b), we evaluate the

operator E (equation 13) with the zero order terms of the

derivative expansion, (i.e. P = -ikx, Q = ikz, and R = 0).

Continuing,

a a a' +E + E + ER = (15)
ax1 az1 ay,

where E. refers to the derivative of E with respect to the

variable j. For each order of expansion the zero order

expressions are used to evaluate each term. Finally,

62 E a + Ea + E + 1 +x2E + E EppP ~QRa2 a 2 aY 2 2

Ep- 2EpQ + EQ
Q

Ep2 a2

EQ 2 ax 2Q , 
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1- R E
+ 1 E 2EPR P 

ER E 
+ E - 2 + R (16)

2 EQQ 2EQR E RR ER 21 Q Qz 1 .

Let us analyze these equations to extract some physical

sense. The zero order term (equation 14a) is just the lower

hybrid dispersion relation without the nonlinear terms and

without the y dependence. This is what we hoped. Our per-

turbation theory reduces to the original problem. The first

order terms give an expression for the group velocity, v

The group velocity is an unknown in the second order equation.

Therefore, by using the expression for v obtained from the

first order terms, v can be eliminated from the second order

equation. Before solving for v and substituting it into

equation (16), we can eliminate some of the terms in equation

(16). First notice that since all terms are evaluated by the

zero order expressions only the second derivative with respect

to R is nonzero. Since 3/3x' terms are of highest order,

any terms with a 3/3x', (3/Dx2), multiplied by one of the

thermal term coefficients (a, b, c, which are higher order

dependencies of the linear dispersion equation) can be neglected

as higher order. Therefore from equation (16) we get,
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a + k -2ik a + [(k - 6a k 2 - bk 2) v 2
3v2 x x __i x z g

- 4b k k vg + (-Ik - bk 2 - 6c k 2)][ 3 = 0 (17)z iz'

where vg is solved from equation (16). Solving equation (15)

for k , yields

klt + (ak 4 + bk 2k 2 + ck 4)
k -x x z z (18)

~ kX~k 2
x

This is substituted into equation (17). The first two terms

of (17) pose no problems, but the last term is extremely com-

plex. We need to simplify this somehow. We have already said

that the thermal terms are of high order, so expand this term

in equation (17) by incorporating this information. By balanc-

ing degrees of smallness, we can obtain the answer. Since this

is difficult, we will just state the results, [Ka2],

- (ak 4 + bk 2k 2 + ck 4) 2 (19)
k2 x x az z 2
z

Since we have found all of coefficients of the different
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terms, adding equations (17), (19), and (11) gives the following,

- 2ik k a 3 (akx4 + bk 2k 2 + ck 4)

ay 2 ax k 2 x X Z z z'2

+ cfl2¢ = o.

Dividing equation (21) by 2/c1 and rescaling the parameters

by

(20)

C1
n = - Y',

2

2k 2c
z 1 1

3 (akx4 + bkx2kz2 + ckz4)
X X Z Z

yields the following,

- Inn + ioT + E(T + 2[1q2 q = 0.

Therefore, the three dimensional nonlinear lower hybrid disper-

sion relation reduces by a multiple time scales approach to the

c1
= 1 x' I ,

k kx l
(21)

I (22)

(23)
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three dimensional nonlinear Schrodinger equation. Note that

in the equation there are two second derivatives. These are

of opposite signs so non-Laplacian. This makes for interesting

behavior.
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Chapter Three

The Nonlinear Schrodinger Equation

3.1 The Two Dimensional Equation

In the previous chapter, the three dimensional nonlinear

Schrodinger equation was obtained from a multiple time scales

reduction of the lower hybrid dispersion relation. In this

chapter, we would like to find a way of solving this equation.

Unfortunately, there are no known solutions. As a first step

in looking at the three dimensional solutions, we will investi-

gate the behavior of the known two dimensional solutions in

three dimensions. Therefore, we resort to perturbation theory.

This is reasonable because throughout the derivation of the

dispersion relation the third dimension has been considered as

a perturbation. We need to find the solutions of the two di-

mensional equation and perturb it to obtain a solution for the

three dimensional problem. We will just consider one specific

group of two dimensional solutions. These are solitons.

Solitons are pulse shaped nonlinear waves that asymptoti-

cally keep their shape and velocity after colliding with each

other. When two solitons collide, they emerge only shifted by

a phase factor. In other words, solitons do not destroy each

other upon collision. Solitons are found in some systems where
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nonlinearity balances dispersion. Asymptotically, a solution

to such a system will consist of N (where N is an integer)

solitons and a small background radiation. This occurs no

matter what the initial conditions are.
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3.2 The Soliton Solutions

In the previous section, we discussed the properties of

solitons. Now we want to find the soliton solution for the

two dimensional nonlinear Schrodinger equation so that it can

be used to find a solution to the three dimensional equation.

Beginning with the Schrodinger equation,

i~t + xx + 2 11 2 = . (1)

Assume a solution of the form,

¢ = A(x, t) ei ~(x' t) (2)

Substituting equation (2) into equation (1) and separating the

real and imaginary parts, respectively the equations are

-At + Axx - A(Ox)2 + 2A3 = 0,

At + 2AxFx + A xx = 0.

(3)

(4)

Using the traveling wave assumption ( = x - ut) in equation

(4) the equation becomes
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AE = % 
(5)

A u

Integrating, we obtain

A = c2(u - 2~)1/2

where c2 is a constant of integration. Substituting this

result into equation (3) results in a differential equation,

A + uA 1 +2A 3 = 0.
4 4c2

2A

(6)

(7)

To integrate this equation multiply both sides by A and letting

= u -2 A3,
f(f) =_ 12A'1 (8)

4c2
2A3 4

gives the expression

1 (A )2 = f(q) dA.

Let g(A) = f(f) dA and the expression for A is

(9)
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(10)A = g (A).

Rearranging equation (10), yields

= dA- = f -
g A)

(11)

If the constants of integration are properly chosen, the soliton

is

- E = sech(A).

The technique used above only gives one soliton solution,

yet there are N such solutions. To obtain the N soliton

expression, we can use the inverse scattering method. The gen-

eral method will be outlined to give an idea of the procedure

involved. We begin with some general nonlinear equation,

%t = N[p(x, t)]

where N is some general nonlinear operator. If there is

operator L such that

(12)

L = T (13)
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and an operator B such that

(14)*t = B

that satisfies the following relationship

Lt = BL - LB
t

(15)

then we can use L and B to find the N soliton solutions.

Basically we start with some initial conditions at t = 0 and

find the scattering data (reflection and transmission coeffi-

cients) for t = 0. Equation (14) gives the time evolution of

this scattering data for x = . Using equation (13) we can

find (x, t). To do this inversion, we must use the Gelfand-

Levitan equation,

A A

g,(x, y, t) + k(x + y, t) + J k(y + y', t) gl(x, y', t)dy'
x

(16)= 0

where

k(x + y, t) = R(x + y) +
N -K n(x + y)

nn m en = 1 n
(17)
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R(x + y) = 1 i
2 -_

ik(x + y)
R(k) e dk (The Fourier Transform),

(18)

(x) = - 2 - (y, ) .(y x).
dx

(19)

The K 's are the eigenvalues of the scattering problem definedn

by equation (13). This procedure will yeild the N soliton

solutions for the differential equation specficied in equation

(12).
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3.3 The Derivation of the Coupled Equations

In the previous section, we discussed the soliton solution

of the two dimensional nonlinear Schrodinger equation. We did

not obtain a general solution to the two dimensional problem.

However, we can use the specific solution (i.e. the soliton

solution) with a perturbation to help us understand the proper-

ties of three dimensional equation. Following the perturbation

technique used by Schmidt, [Scl], we will obtain a set of coupled

second order differential equations. Beginning with the three

dimensional nonlinear Schrodinger equation (equation 2.4.23),

ifT + U ~ - Tn + 21 12 = 0 (1)

We assume a solution of the form,

= ~o(,' T) + 1(, T) Z (AN sin Nk n + BN cos Nk n), (2)
N

where 0(E, T) is the solution to the two dimensional equation,

for+ 0E + 210ol2o = 0.(3)

The second term on the right hand side of equation (2) is the

perturbation where we have assumed a general waveform described



56

by a Fourier series with k as the excitation wavenumber,
n

and AN and BN as the Fourier coefficients. Thus, we have

a general perturbation which is assumed to be small compared

to o ( ', ).

Recalling from the previous section, the two dimensional

soliton solution is

o(~, T) = A sech(As) exp [i - u ( - u T)] (4)
~0 ~2 e c

with s = - ueT and A = (1/2)(u 2 - 2uu )1/2 Now, we

gubstitute equation (2) into equation (1) and we note the last

term on the left hand side is nonlinear,

21Jo + f1 [ ]1 2(o + 1 [ ]), (5)

where [ ] = AN sin Nknn + BN cos Nk rn. Using

1fl2 = if*,

we expand equation (5) and linearize by eliminating all terms

in high powers of 1' To get an equation describing the per-

turbation (P1), we disregard the terms only dependent on 0o

This equation for the perturbation is
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i1T + 1 + N 2kn21 + 41oI 12 1 + 2o 2
1 * = 0. (6)N n 1

The Z N2k 2 1 term results from taking the second derivative
N n 1

of ~1 with respect to n.

Doing a general stability analysis, we assume a solution

to the perturbation equation (equation 6) of the form,

~1 = [f(AS) + ig(AS)] exp[i - u (S - UCT) + YT], (7)
2 e c

where f, g, and y are real and A and S are defined as

before. Substituting equation (7) into equation (6) and using

a change of variables, z = AS and t = T, the following

equation in f and g results,

A2fzz + 6A2 sech2 (z)f + N2k 2 f _ A2f + iyf + iA2gzz
ZZ N zz

+ 2iA2 sech 2 (z)g + i N2k 2g _ iA 2 g _ yg = 0. (8)
N n

Separating the real and imaginary parts of equation (8) and

redefining



k 2
k2 = 1

A2
and r - Y

A 2

results in the following coupled set of equations,

f + 6 sech2 (z)f - (1 - N2 k2)f = rg
ZZ

gzz + 2 sech2(z)g - (1 - N2k2)g = rf.
gzz
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(9)

(10)

(11)
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Chapter Four

The Computer Solution

4.1 The method of solution

This section is devoted to explaining the numerical inte-

gration method used to obtain the data given in Section 4.2.

Finally Section 4.3 is devoted to discussing the meaning of

the data and the accuracy of the program.

Since the sech2 (z) functions are assumed to be slowly

varying, it can be approximated by a series of line segments.

We solve for each line segment and match these solutions. One

method which achieves this is the predictor-- corrector inte-

gration scheme, [Acl]. We will describe this technique for a

first order differential equation. This is sufficient since

one can easily generalize to higher orders by expression the

higher order differential equation as a system of first order

equations. We have two functions; one is the derivative; the

other is the solution we are seeking. What we do is fit a

polynomial to the last three points of the derivative. These

points are evenly spaced by some spacing, H, which is the

step size. A parabola is used to give a much better approxi-

mation than a line. We extrapolate this parabola and integrate

using the following,
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Yl tl d Y dt l y.S I -dt = J1 dy. (1)
t dt to o

For a parabola equation (1) becomes,

Yip= + - (2y - I + 2y ') (2)Ylp = Y-3 -2 +4 (2y 

The p stands for predicted. This gives us a guess at the

next value of our solution. We substitute this predicted value

back into the differential equation to obtain y' Now repeat

the process and use Yip for fitting the derivative points.

This time there is no need to extrapolate. We are looking for

Ylc (c stands for corrected) and we know the value of the

derivative at that point. So we use

Ylc = Y_1 + (Y'1 + 4Yo + Ip) (3)

As the final step, substitute lc back into the differential

equation to obtain Yc' Then proceed using the above method

to get the next value and so on.

The problem with the predictor-corrector method is that

we assume we have three points to fit the parabola to. What

we need is some other method to give us these initial points.
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The technique used was the Bulirsch and Stoer integration,

[Acl]. Here we use a line extrapolation process to obtain

the first three points. To get the first point use

Yl = Y + H (4)

Note that y and yo are the conditions to be specified.

Equation (4) is just a description of finding a slope, as is

shown below. We have

dyo
Y - Yo = H yo' = H (5)

dt

and since H = dt, we really have

dyo = Y1 - YO (6)

which is the slope. For the next two steps we use one point

as the starting point and use the slope at the second point to

get a value for the third point that is distance H away. The

equation used is

(7)YN= YN - 2 + 2H YN - 1
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To find the values YN 1' we merely use the answer from the

integration before and substitute it into the differential

equation. Therefore, we have a method for integration a dif-

ferential equation.

The coupled set of equations involve boundary conditions

determined by the starting values. How can we use the method

outlined above to solve this boundary value problem? What we

do is guess the starting conditions and perform the integration

to see if we obtain a valid answer. For example, if at x = 0

we have the function y = 1 and at x = 1 we have y = 2 then

we must pick an initial slope y'. With this estimate we inte-

grate until we get to x = 1. Here we check to see if y = 1.

If it does we have a solution; if not then we must guess another

value for y'. If there is only one boundary conditions, then

we need to have some physical idea of what should happen at in-

finity. With our problem we know that none of the solutions

grow at infinity; they must decay to zero or oscillate.

The problem has an added difficulty. Because the sech2 (z)

potential wells extend from minus to plus infinity, the boundary

conditions must be satisfied at infinity. What is infinity? A

value must be picked, but we must specify the values for the

functions f and g and the slopes of f and g such that

to the left of minus infinity the solution decays to zero or

oscillates. In general these conditions are found by assuming
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zero for the value of the sech2 (z) function and solving for

B2 and setting e a (where a is real part of B) to zero,

thus preventing the function from blowing up at minus infinity.

Then we can solve for the boundary conditions. See Appendix C.

Until now there has been no discussion of how to handle

the coupling between the two equations. The coupled part of

the equations is treated as any other part. An example will

explain. Solving for fo, go, fo', and go' (the subscript

shows the order of the value and the ' means derivative), we

integrate to find the next value of f (i.e. fl) using fo,

f' and go times the coupling coefficient. With these we

integrate using the predictor-corrector method discussed above,

thus finding fl. We find gl by using go, go', and fo.

Now the process continues in the same manner. To find f2 we

substitute the previously obtained values into equations (7)

and use gl times the coupling coefficient for that part of

the equation. After we find the first three points, we use

equations (2) and (3) as described above to find the rest of

the function values.

Upon finishing the integration, we must decide if the value

chosen for the coupling coefficient is correct or not. The

solution should either begin at zero and go to zero at infinity,

or should oscillate to zero at both plus and minus infinity, or

should be a completely oscillatory function. If the solution
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obtained from the integration does not fit one of the above,

then we must refine the value of the coupling coefficient.

Using this technique, we can obtain a graph of r vs. k2 .

This is shown in the next section.
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4.2 The Data

Table 1 below gives the numbers obtained by using the

method discussed in the previous section.

k k2 r

0 0 0

.1 .01 .1

.2 .04 .2

.3 .09 .35

.35 .1225 .41

.4 .16 .37

.45 .2025 .3

.5 .25 .27

.6 .-36 .23

.7 .49 .2

.8 .64 .16

.9 .81 .11

.95 .9025 .05

1.0 1.0 0

1.1 1.21 0

>1.1 >1.21 0

Table 1
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Figure 1 shows the f function for k2 = 0 and r = 0

and Figure 2 shows the g function under the same conditions

for k 2 and F. Figure 3 is a plot of the values given in

Table 1.
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4.3 The Meaning of the Results

The important result from the numerical integration is

that there is a continuous spectrum for k2 > 1. For this

region r equals zero. So it seems that there could be stable

waves for these corresponding wavenumbers. For the discrete

region (O < k2 < 1), we note that there is only one growth

rate. Therefore, if the excitation pulse is composed of only

one spatial frequency, it will grow through space and other

nonlinear effects would have to be considered. If the excitation

pulse is composed of many spatial frequencies, it is hard to say

what will occur. The different frequencies could interact to

produce some sort of stable pulse. This is a question that needs

to be considered in further research.

At this point it is appropriate to say something about the

compute program, (see Appendix D). The program was written on

MACSYMA, a system developed by the MATHLAB at MIT. As far as

the uncoupled second order differential equation is concerned,

the program worked quite well. The integration scheme was

checked against known solutions of Schrodinger well problems

and gave reliable results. Unfortunately, some problems de-

veloped when a fourth order equation was tried. The specifica-

tion of the boundary conditions at minus infinity had to be

very accurate to guarantee that the solution decayed at plus
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infinity. To obtain accurate values of was hard due to

some instabilities inherent in the technique used. These

problems did not manifest themselves in the second order equa-

tion. It seems that coupling the two second order equations

together intensified the instability making extremely accurate

results difficult to obtain. However, the results obtained

are reasonable. This is discussed in the next chapter.
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Chapter Five

Predictions for Solutions of the Coupled Equations

5.1 The Schrodinger Well Analogy

In the previous chapter, we obtained values for the coupling

coefficient versus the wavenumbers (k) by numerically integra-

ting the coupled set of equations. But how can we be sure the

values are correct? This chapter is devoted to predicting what

the results should be by using some approximation techniques.

Also we will be able to gain a better physical understanding of

the problem and the results. In Section 5.1, we compare the

problem to that of a Schrodinger well which gives a physical

meaning to the r = 0 solutions. Section 5.2 deals with finding

the bounds on the coupling coefficient. The last section dis-

cusses the behavior of the solution at infinity and gives a gen-

eral shape for the r vs k2 curve.

To relate our problem to the Schrodinger well problem,

let N = 1 and the coupling coefficient in the coupled equations

equal zero; we then have

f + [6 sech 2 (z) - (1 - k 2 )]f = 0 (1)
zz

+ [2 sech2 (z) - (1 - k2 )]g = 0. (2)
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Comparing equations (1) and (2) with the general form of the time

independent Schrodinger equation,

(3)%xx - (v - E)4 = 0,

we realize that we have two potential well problems just by

redefining some terms. Let the potential v = -6 sech2(z) or

-2 sech2(z) and the energy (or eigenvalues) E = - (1 - k2).

Using Landau and Lifshitz, [Lal], the discrete eigenvalues for

v = -6 sech2 (z) are E = -4 and E = -1. For v = -2 sech 2 (z),

E = -1 is the only eigenvalue. Also for E > 0 the spectrum

is continuous. Pictorially,

I
of" 01 - OI

Om- go-- 

-. _ _

vYc)

-_,,~- i _I. , .-

~I~~~ I

To find the analytic expressions for the eigenfunctions at

WOMEMMIlb-
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E = -1 and E = -4 for the above pictured potential wells,

we refer back to Chapter 3. In deriving the coupled set of

equations, we assumed the solution of the equation describing

the perturbation to have a real and an imaginary part. This

resulted in the two wells. We can treat each well separately

to obtain an expression for the eigenfunctions. First con-

sidering the real function (f), we let k = 0 to obtain

E = -1. From equation (3.3.6) the equation for the perturbation

is

(4)if, + $15 + 61ol 2
1 = 0

for 1 real. ~o

sional equation,

is the soliton solution of the two dimen-

i OT + ±0o + 21pol 2q = 0.

If we take the derivative of equation (5) with respect to c,

i( o) + ( ) + 61 0o12 ao E = 0,

we realize that qog satisfies the perturbation equation (4).

(5)

(6)
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Therefore, the derivative of the soliton solution for the two

dimensional equation is the k2 = 0 solution of the real part

of the coupled equations. The shape of this curve is shown in

Figure 1.

The same procedure can be used to solve for the eigenfunc-

tion of the imaginary equation (g). Again let k2 = 0, thus

E = -1. For an imaginary function the perturbation equation is

im- r+ + + 21joI 2 = 0 (7)

Comparing equation (7) with equation (5), we realize that %o,

the two dimensional soliton solution, is a solution to the

perturbation equation. This function is shown in Figure 2.

From the properties of self-adjoint equations, the lower eigen-

function for the 6 sech2(z) potential at E = -4 has no zero

crossings and is a pulse shape but not necessarily sech(z).

Comparing the above analysis with the results obtained

by the numerical integration in Figures 4.1 and 4.2, we notice

that the graphs are the same. For k2 = 0 and r = 0 the

coupled equations reduce to two uncoupled Schrodinger well

problems where the value for E (which equals -(1 - k2))

corresponds to an allowable eigenvalue for both potential wells.

In other words, for both wells at k2 = 0 there are valid so-

lutions without the need of a coupling coefficient. As we
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increase E, we no longer have valid solutions for r = 0.

This is completely analogous to obtaining solutions for a

Schrodinger well.

I1

'

FI Gu RE

FOR Uo=

FOR U = E I

ONE: THE DERIVATIVE OF 1E SOLITal SkUTI,6g

Z,

X

THE SOLITOWt SOLUTION.

·. I __ -- -

I;

FIGURE Two:/6
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5.2 The Bounds on the Coupling Coefficient

Do the values for the coupling coefficient obtained in

Chapter Four make sense? Assuming the coupling coefficient to

be real, we can obtain its upper bound. Recalling the set of

equations (equations 3.3.10 and 3.3.11 with N = 1)

f
zz

+ 6 sech2(z)f - (1 - k2)f = g (1)

(2)+ 2 sech2 (z)g - (1 - k2)g = -rf.

Assuming a solution,

Bz Bzg % e , (3)

and substituting into equations (1) and (2), yields

f(B2 + 6 sech2 (z) - (1 - k2)) = rg (4)

g(B2 + 2 sech2 (z) - (1 - k2 )) = -rf. (5)

Let E = -(1 - k2) and let B2 = 0 for turning point solutions.

Taking the determinant, the set of equations becomes
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(6 sech2 (z) + E) (2 sech2 (z) + E) = -r2 . (6)

We can assume sech (z) varies slowly such that we can define

R as a slowly varying function with values between zero and

one. Substituting in R,

(6R + E)(2R + E) = -r2. (7)

The value of E (the eigenvalue) and where E intersects the

sech (z) well (the value of R) determines what is required

to yield a valid solution. The solution must oscillate or decay

to zero at both infinities. Therefore, we can vary R to ob-

serve the effect it has on the values for the coupling coefficient.

We can use graphical methods to study equation (7). Allowing

R to vary between zero and one in steps of .25, we can plot

each side of equation (3). The left hand side yields parabolas

as shown in the following figure; the x's mark the places where

B2 = 0. Note that -r2 < 0 to assure that F is real as we

assumed earlier. As is shown, E can vary between one and

minus six,

-6 < E < 0. (8)
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R'o

.r

In Section 5.1, we found that at E = -1 there exist two

valid solutions with r = 0. Since this value of E is the

smallest E for which this is true, we will begin by letting

E = -1 in equation (7).

The R giving the maximum coupling coefficient is found

from equation (7) to be

R = 1/3.

Using this value for R, the E giving the maximum coupling

is,

E

(9)

WIX
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E = -4/3.

With R = 1/3 and E = -4/3, equation (7) gives a value for

r,

r = 2/3.

This is the maximum coupling coefficient. As one realizes

from Chapter Four, the coupling coefficient is always smaller

than two-thirds. The data agrees with the above analysis.

(10)

(11)
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5.3 Behavior at Infinity

By assuming that we are observing the solution to the

coupled equations far from the potential wells, we can obtain

an understanding of what type of spectrum (i.e. continuous or

discrete) results from a given value of k2. Beginning with

the coupled equations (equations 3.3.10 and 3.3.11) and assuming

N = 1, we have

f + 6 sech2(z)f - (1 - k2 )f = rg
zz

+ 2 sech2(z)g - (1 - k2)g = -Ff.

(1)

(2)

As we let z +, we realize that sech2(z) - 0. Therefore,

we can write the following,

f - (1 - k2)f = g

g - (1 - k2 )g = -Ff.

Bz
Assuming the usual e dependence for f and g, we get

f[B2 _ (1 - k2)] = g

(3)

(4)

(5)

g[B2 _ (1 - k2)] = -rf. (6)
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Eliminating f and g and solving for B2 yields,

B2 = 1 - k2 + ir. (7)

We have obtained an equation describing the behavior of

the solutions to the coupled set of equations far from the ef-

fects of the potential wells. Moving in from infinity, these

potentials will greatly influence the solution. However, from

the definition of the problem, we can not have exponently

growing functions at infinity. The solutions must decay or

oscillator to be valid. We can immediately wee what happens

at infinity for a given k2 by looking at equation (7). If

k2 is greater than one, there is a negative real part which

results in an oscillatory function. F is zero since if it is

not it will contribute some exponential part which is not wanted.

The function is already valid. Therefore, we can conclude that

for k2 > 1 the spectrum is continuous and any value of k2 > 1

is permissible; also F = 0. The solutions are completely os-

cillatory.

For the range of k2 between zero and one, the real part

of equation (7) is positive; hence we have an exponential part

to our solution which must be balanced by a suitable coupling

coefficient. We can interpret these results in a more physical
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physical manner by considering the Schrodinger well problem.

Letting E = -(1 - k2 ), we note that for k2 = 1, E = 0. This

is the transition between the discrete and the continuous spec-

trum. This is just the conclusion we obtained

occurs at k2 = 0 ? In this case E = -1. But

from Section 5.1 that for both wells (depth six

was a valid eigenvalue. There is no need for a

ficient. We have covered all the k2 from k2

by going from E = -1 to E = . With r 0,

solutions for the energies between E = -1 and

these are not valid solutions with r =

above. What

we remember

and two) E = -1

coupling coef-

= 0 to infinity

we can get valid

E = 0. Although

0.

From the three sections in this chapter, we can construct

a graph of r vs k2 . The solutions at k2 = 0 are known;

the maximum r is 2/3 at k 2 = 1/3; the spectrum is continuous

for k2 > 0. Therefore, the plot of F vs k2 is

i t y3 i

-
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The above conclusions agree with the results of the

numerical integration in Chapter Four. The graph above looks

very similar to that in the previous chapter. Overall the

numerical integration scheme has given answers that are pre-

dictable by the techniques used above.
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Chapter Six

Conclusions and Suggestions

What we have done in this thesis is show the development

of a model for the lower hybrid plasma wave in three dimensions.

Most of this had been previously done by others, but we have

shown the complete details of each step to give the reader a

much better understanding of the physics involved and where

the equations come from. We have used some important and

powerful perturbation techniques to give us a reasonable equa-

tion that we can solve. We have found that in three dimensions

there is a range of k's in the y direction resulting in

instability.

The question arises as to what kind of instability this

is. Do the wave pulses (solitons) grow to some saturation

level or do they break up? Are there strange nonlinear effects

that cause the development of stable waveforms? It would be

good if a nonlinear equation (for example the nonlinear three

dimensional Schrodinger equation) could be directly integrated.

Recently some questions have arisen concerning the validly of

the plane wave assumption used with the multiple time scales

reduction of the dispersion relation. These are questions

for further research.
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APPENDIX A

The Harris Dispersion Relation

A.1 Perturbation of the Vlasov Equation

The derivation of the Harris dispersion relation is a

complicated procedure involving some expansions rarely used.

We hope to simplify this derivation by pointing out the prin-

ciples used in the derivation and showing as much of the al-

gebra as is considered reasonable. We begin with the Vlasov

equation developed from macroscopic kinetic theory. We assume

a velocity distribution function (fo(v)) that is perturbed

by a high order distribution function (fl(x, v, t)). The

Vlasov equation is

af + * a + ( (in one dimension). (1)
at ax m av

Now we linearize about an equilibrium point by assuming zero

order quantities perturbed by first order quantities. This

not only applies to the velocity distribution function, but

to the electric (E) and magnetic (B) fields as well.

Therefore we have,

0

f o(v) + f1(v, x, t), E = + E, B + B1 (2)
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(Note, we

fields.)

(equation

get

assume a magnetized plasma with no dc electric

Substituting equation (2) into the Vlasov equation

1) and separating with respect to orders of f, we

afl q v x B af v x B
1 1 E1 + 

at ax m c av m c av

(3)

To solve this equation, we will use the method of unper-

turbed orbits. What we do is assume the perturbation is small,

small enough such that single particle motion is unaffected

by the perturbation in fields. We establish boundary condi-

tions on a set of relations that will simplify the left hand

side (L.H.S.) of equation (3). These relations have to be

something that will make the L.H.S. of equation (3) into a full

derivative. Therefore,

dx Idxv= v'(t'),
dt

dv q v x Bdv' _ q 
dt m c

Equation (3) becomes

dfv x B af
d1 = E1 o

dt m c av

(4)

(5)
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with the use of the following boundary conditions,

x'(t' = t) = x, v' (t' = t) = v. (6)

Solving equation (5) for the perturbed velocity distribution

(fl), we get, fxt VI _ I d px B1] _f

fl(x, v, t) = - q I dt' (xI t) + 
m -o c Dv

. (7)

We wish to solve equation (7) by first assuming longitu-

dinal waves

evaluating

(the lower hybrid wave is longitudinal) and then

afo/3v by using the unperturbed orbit equations.

In assuming longitudinal waves we have,

v x B1 = 0

as well as

E = - V = - ikp.

We have taken the Laplace-Fourier transform of (x, t) so

we have

i(k · x - wt)
q(k, w) e

(8)

(9)

(10)
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Substituting equation (10) into our equation for fl(x, v, t)

(equation 7) we obtain the following

fl(x' v, t) = q i
m -oo

i(k x' - t')
dt' e

af
ik (k, ) o

To evaluate the dot products

af v ' af
k - k x o+

av I v, av,

in equation (11) we can use Fig. 1,

af
k °

1 av,

(12)

Now we need expressions for v and x' of equation (11).x

This is where the equations of unperturbed orbits enter. These

equations are derived from the force equation assuming E = 0

and B is finite and uniform, [Chl].

v ' = v cos(8 - T),
x 4-

v = v.
z f i

V
x =x- -

Q

v ' = v sin( - T),
y -

(13)

[sin(8 - QT) - sin 8],

v
y' = y + [cos(0 - QT) - cos 0].

z' = v T +

(11)

(14)

(15)
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where is an angle dependent on initial conditions as shown

in Fig. 1 and Q is the plasma cyclotron frequency (qB/mc),

and T is the variable for time. Substituting equations 12-

15 into equation (11) and noting the change of limits we have

the full equation for the perturbation of the velocity distri-

bution assuming longitudinal waves

fl = q (k, w)
m

i(k x - wt) i O
e

J-t

Df
dT cos(8 - T) 0L v

f + k fl
te av J

k v
x exp iL- k_ i (sin(8 - QT) - sin 8)

- T1. (16)
t, i
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A.2 The Expansion of the First Order Velocity Distribution

Function

In the previous section (A.1), we developed the expression

for the first order distribution function (fl). Now we want to

expand this using the assumption of asymptotic behavior (t + )

and also continue to only consider longitudinal waves. Before

continuing, there are important identities which will be used

throughout the expansion of the equation, [Nol],

00

exp[± iR sin 08] = E JN(R) exp[± iNe] (1)
N = -a

00

exp[+ iR cos 0] = E JN(R) exp[T iNO] (2)
N = -oo

R cos 0 exp[+ iR sin 8] = JN(R)N exp[+ iNe] (3)

R sin 0 exp[+ iR cos 8] = - JN(R)N exp[+ iN0] (4)

d e exp[iNO] = 6[N], (5)
0 27r

where JN is the N-th order Bessel function and 6[N] is

the Dirac delta function. Also it should be noted that

d3v ... 27 v dvL dvl 2(6)
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From the properties of a general distribution function, we know

n = f dv3 (7)

where n is the number density. From Poisson's equation with

the electrostatic assumption,

k2~ = 4p = 4 E es I d3 v flS'
s

8)

where s signifies the species. Substituting equation (A.1.16)

into equation (8) using the relation in equation (6), we obtain

our dispersion relation,

k 2
= 4 Ei e s I I

s -co -C

2 v dv dv I de iq e
0 2 m

I dTk cos(0 - s T)
-00

L
* exp i - k [vL (sin(8

I.0 9

+ k l v T - T] .

Taking the first term of equation (9),

. o + k

avL av - il

- sT) -sin )

(9)



2,f de iq i(k x - t) i 0
Ie

J0 2 m -

af
dT k cos( - Q T) 

1 S av
s v

exp i kv- - (sin(O - QsT) - sin )
2s

+ k v T - wTj, (10)

and using the identity of equation (1), we obtain the following

27r de iq i(k x - t) 0
- e 

JO 2, m -

- ) o ~
dT k cos( - sT) v j N

9VN Rsv

e iNO exp i - -sin ( - QsT) + (k,v - w)

Using identity (3) this can be further reduced to

2,F de iq i(k x - t) I 002 d2 iq e-

0 27r m Jo- 

JN 2 (k v /)N ki I ± 

DvI

exp i[Qs TN + T (k llv - )].
5 l1 IIi

k 1Ivil /Qs
etY 5n

(12)

Integrating equation (12) we obtain a compact expression, we have

93

(11)

a f E
.aM 

F -



. -- L -- - : 1

kv
i i (Ns + kllvl -W) 

Taking the second term of equation (9),

·fr de iq i(k x - wt) 0I 
2 d q e

0 27 m -co

af r k v
dTk ° exp i - (sin( - T)

1, av Qs
(i s

- sin ) + k viT - T

and using identity (1) twice we get,

(14)

-de '2 d2r iq e
0 2 m

i (k x - t)

I-00
dT ki JN2 exp i[ T + T(kl v- )]

N~~~~Sfj

af

Integrating we obtain

JN2(k v / s)kN L I- S

Combining equations (13) and (16) and substituting these results

94

(13)

(15)

N i(kilvll - + sN)

af

avll
(16)

k , .'J'2 (k, v /92 _) af
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into equation (9), we have

k2 = Z A2 i
S pS - 0

oO

dvil 0
2 v dv

1L

Z JN2 (kv / )
N (k - S

. (kWv - w + N)

NQ af
+ S 

V avi

where

4T n q2
2 s

ps ms

which is the plasma frequency for the associated species. This

is the Harris dispersion relation for k in the x direction

as is shown in Fig. 1.

[
i 1

afos
vi 

(17)
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A.3 The Extension to Three Dimensions

Since in the last section we obtained the Harris disper-

sion relation for k in the x direction, we just need to

make the necessary changes to find the equation for kl in

the y direction. This will extend the Harris equation to

three dimensions (klI in z direction, k x k y). It seems

reasonable to assume that the Harris relation will be the same

for k as for k This can be shown to be true. In the
-L y LX

following, we make the necessary changes to prove the above.

The first change occurs in taking the dot product in equation

(A.l1.12); now we have

af0 v af' afo
k · - = k + k (1)

av vI avJ avll

which can be clearly seen in Fig. 2. Also we must let

i(k y' - t')
= (k, w) e (2)

Using the expressions for y' and v y' that result from the

unperturbed orbit derivation (shown in equations (13) and (14),

we obtain a new expression for the first order velocity distri-

bution function,
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i(k y - wt) 0 af
fl = iq (k, ) e dT sin( - T) om -tv,

af v
+ k v * exp i (cos(8 - T) - cos 8)

+ kvR T - T (3)

Looking at the second term of equation (3), we see that

the only difference in this case and the k case is in the

exponent of equation (3). From identity (A.2.2) we note the

only effect is in the sign of the exponent; but since we use

this identity twice, this sign difference cancels. We obtain

an answer similar to the expression obtained for k ,

JN 2 (klvl/s)k l afo (4)N (4)

N i(k vl - + sN) avil

For the first term in equation (3), we obtain a minus sign in

front of the summation because we have used identity (A.2.4)

instead of (A.2.3). But returning to Fig. 2, we notice that

the angle ' is in the - direction. This results in a

negative sign in front of the sin( - T) term, thereby,

cancelling the other negative sign. Consequently, just as we

proposed, the Harris dispersion relation is the same for k
I-x
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and k . Therefore, the full three dimensional equation is
LY

shown in equation (A.2.17), just remember k 2 is k2 + k2'- x y
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Appendix B

Power Flow and Spatial Causality

In assuming a solution to the lower hybrid dispersion

relation (equation (2.3.24)), we considered a plane wave. This

assures us that power flows in the direction of the moving

wavefront. If in a non-dispersive media,

= o exp[ikxx + ikzz], (1)

A

then the wave is moving in the positive x and positive z

directions. The power flow is in the same directions. Attach-

ing a waveguide to the plasma chamber, the waveguide will act

as a source exciting the plasma. But we cannot be too hasty

and assume that positive k will cause propagation in thex

positive x direction. We must analyze this more carefully

using the group velocity. Another consideration is the exci-

tation pulse. What prevents it from causing some response in

the waveguide instead of just in the plasma?

Considering the problem of power flow, we want to find the

signs of the wavenumbers causing power flow into the plasma.

In a dispersive medium, the dispersion relation must be used

to find the group velocity. It is the group velocity that gives
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the direction of power flow. Since the y direction is a

perturbation its effects will be disregarded. Note k > k
X Z

for the same order mode (see the picture below).

Z e

Using the linear lower hybrid dispersion relation,

2 2 = 2. + 2 COS 2,
pi pe (2)

(where pe, i is the plasma frequency) we can solve for vg.

Considering the x and z directions, cos i is defined by

the diagram below,

Ki

Y

L

. - -

1 · _
_ _ 

4

'4'�VX��
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Therefore,

cos =
k
z

(3)

k 2 + k 2
z x

Substituting equation (2) into equation (1) yields

k 2

w 2 = 2 + 2 Z
pi pe k 2 + k 2

Z X

Simplifying the above expression by using

m
2 _ e 2

i m. pe
i

m
k 2 = e k 2
Z Xm.

1

where m
e

obtain

is the electron mass and mi is the ion mass, we
1

2 = 22 
pe k 2

X

The group velocity is defined as

(4)

(5)

(6)

(7)
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v a- and v = (8)
gx gz

From the above expression and equation (6), the group velocities

evaluated in the x and z directions are

k
v -,/-2 w z (9)

Vgx = - "pe k 2

X

and

v /- Vw Pe (10)
gz pe k

x

The criterion that power flows in the positive x and positive

z directions requires v and v to be positive. This
gx gz

can be accomplished by allowing kz to be negative and kx

positive. These are the necessary signs for the wavenumbers.

Now consider the problem of having the excitation pulse

cause some response in the waveguide instead of in the plasma.

Remember that we have already specified that the excitation

carrying the power should more into the plasma. Therefore,

there can be no response for x and z less than zero assuming

the excitation occurs at z = 0 and x = 0. This is a problem

of spatial causality. It is completely analogous to causality

in time. How can we guarantee that the excitation pulse results
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in a causal response? If an excitation results in a causal

response, its real and imaginary parts are related ty the

Hilbert transform. We must be sure that the excitation pulse

meets this criterion to obtain spatial causality, [Opl].
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Appendix C

The Boundary Conditions

The boundary conditions are found for z equal to minus

infinity. Therefore, the sech2 (z) functions are equal to

zero. Using this in the coupled set of equations from Chapter

Three yields

f - (1 - k2 )f = rg

Zg - (1 - k2)g = -rf.gzz

BzAssume a solution of the form e giving the following,

[B2 - (1 - k2)]f = rg

[B2 - (1 - k 2 )]g = -f.

Eliminating g and f,

B2 - (1 - k2 ) = + ir.

Using complex notation,

1)

2)

(3)

(4)

(5)



B2 = /(1 - k2 )2 +

where

~'= tan- 1 F1 -k1
1 - k2

Therefore,

B = (1 - k 2 + 2) 1/4 e+i'/2
e

Taking the real and imaginary

a = (1 - k2 + r2) 1 / 4

parts,

Cos 2 

= (1 - k 2 + r 2)1/4

we then have

f = e [cos(z) + sin(fz)], (11)

and

g = e [cos(z)

106

r2 ei (6)

(7)

(8)

sin r1 ¾

2

(9)

(10)

+ sin (Bz) (12)
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These two equations will give the boundary values for f and

g if we eliminate the e z solution. This is done to pre-

vent the solution from blowing up at minus infinity. Remember

the solution must oscillate or decay to zero at plus and minus

infinity. To find the starting slopes, we just take the first

derivative of equation (11) and equation (12),

f' = g' = [a(sin(z) + cos(z) + 3(cos(Bz) - sin(fz))] e. (13)



108

Appendix D

The Computer Program

The following page is a copy of the program used to per-

form the numerical integration of the coupled set of equations.

This program is written in the MACSYMA language and is called

by using,

lam 5(p, Q, i, h, zl, u, s, t, gl). (1)

The variables correspond to the following:

p initial value of f

Q initial slope of f

i initial value of g

h initial slope of g

zl the wavenumber k

u the spatial variable used to specify infinity

s the integration step size

t the number of integration points

gl the coupling coefficient.
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Iirm1 (F, (: i hyz:L 2 t..Is, t- c 1 ) 1 =b]. cck.( E1 pm .Jr n e f, ra c rd ,2 b2 x, y w, z x223 

arTra (l flo at't), Y arrp,.:(m,' loatt) 7 P arm(Jf'lott, a rra(wfloat,t),
arrv ( n ? fIoat.y t) I r f J.:; m arr) .(z.f Tlot . ( Io e 1o-t t) rraY(f Io lo. tt),I
ii., r T'm ( , f 1 o ..' t ) 
1t:o03 Oy rc03,y JOi, riEOJh
forT' kO step thT'r.J t do

(:1k]: . +:*s*(k+1)Y
u. : ..1 + s
:i. F k. :4

r Tph2 ( 1 ' 

t h e r,
( eEl.] .'t. , f[i:. -( z:l.**2--1 -6*sec'h:hu)* * ( .J **2 ) *P-s l*JiEk2], w 4k] h,
z[k. ] -( z2-+2*seh ( **2 ) * i.-.Ck ]
if k=.-O then (1 Ek+i. +-+s*e[e.k. mECk+1 l +as*f ik],

JiCk.+:i i+s*wEk] rnEk+:l.]h+s*z[k2C)
if k:l1 thenr (]. k+:I.] 1 C[O+2*s*e[k. m[Ek+3: mEO+2*s*fEk ,j11,.+1.j[O i(+2; s*w[Ek, nk+1 :|.3nO+2*s*zk ),
if k::lt then (1Ek+13.'+2*s*e kJ, mk+12+ 2*s*f[k3,

jCk.+1J.: i+2*s*wEk3 nCk+l +h+2*s*zEk] )
'Et[.k...:L , nr:mCk+9l] .i.+:J[k+l.::] h:nEk+13)

else
(a:l Ck-4+4*s/3* ( 2*eEk-3]-eEk-2+2*e[k-13),
b: mCk-43+4*s/3*(2*fCk-33-fEk-23+2*f k-1),
a2:.i[k-43+4*s/3*(2w[k-3-wk.-23+2*wEk-1])
b2: nE[k--43+4*s/3*(2*z[k1:-3-zk-23+2*zCI.k-I]), 

>: b , - ( z:L **2*-:L 6*se~(u)**2)* I*Jf )Jk , 
x2:b2p i2:+- (z.l**2-1+2*5sech(u)**2)*a2-91*lCk3,

1[Ck:1[k-2+/3*(e[k.-2+4*e[k-1+x)
mCk:mlk.-2+s/3*(fEk--23+4*flk-1+),9
JEk:lJk-2]+s/3*(wCk-2]+4*wCk-13+x2),
riCk.]r-i.k-2 +s/3*(zEk-2 +4*zEk-1 +2),
ek3tmEk fk3]:-.(z:L**2-1+6*sech(u)**2)*lEk+1*dCk,
wkrr:nk., z Ek :-(z:l**2-:L+2*sech(u)**2)*j[CkJ--l*lk] ),
Prirnt (lk:IymCk.JEk. riCk]) )
' ")Y T'Ph2(J "jj","") y ));

*
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