DESIGN AND ANALYSIS OF
A MULTI--MEDIA, MULTI-ACCESS DATA NETWORK

by
John Christian vom Lehn
Vrd

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREES OF
BACHELOR OF SCIENCE
and
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May, 1983
@) John Christian vom Lehn, 1983

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or part.

- a -

Signature of Author e et m—+ = « e w ® w e s s s &
Department of Eleqgtrical Engineering and Computer Science
May 1, 1983m

Certified by . .) ere s e e s e e
Professor Jeff;ﬁy ﬁ@’szﬁplro, Academic Thesis Supervisor

Certified by . . c « « s s s s s s e e v s s
C.M. Puckette,fGE“Corporate,Beﬁeafﬁh and_Pevelgpment Center

ACCepted % . 4 e o ¢ o o * o o o e o
Professdr Arthur C. Smith, Chairman, .\\\\\
Departmental Committee on Graduate Students

Lrehives

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY T

SEP 11983
LIBRARIES

DESIGN AND ANALYSIS OF

A MULTI-MEDIA, MULTI-ACCESS DATA NETWORK

by
John Christian vom Lehn

Submitted to the Department of Electrical Engineering and

Computer Science on May 3, 1983 in partial fulfillment of

the requirements for the degrees of Bachelor of Science and
Master of Science in Electrical Engineering.

ABSTRACT

A local area network was designed, constructed,
analyzed and improved. The network employed a modified
token passing protocol, similar to a round robin approach,
implemented in a bus structure. The network was designed to
use either fiber optics or wire pair, or a combination of
both, as the network transmission medium. Network stations
were microprocessor-based, consisting of a central pro-
cessor, two slave processors and a shared memory resource.

After an original working model was successfully
constructed, the performance of the network, notably its
efficiency, access delay, and throughput were carefully
analyzed. Certain aspects of the protocol and hardware
design were found to cause significant downgrading of
performance. Based on the analysis, a revision of the
network was proposed. As an empirical measure of the
network'’'s performance, a data traffic simulator was
constructed and used to verify the conclusions of the
analysis.

Work on the project was conducted at General
Electric's Corporate Research and Development Center
in Schenectady, New York.

Thesis Supervisors:

Dr. Jeffrey H. Shapiro
Associate Professor of Electrical Engineering

Mr. C.M. Puckette
General Electric Company
Corporate Research and Development Center

Table of Contents

Section I. Background and Terminology

Section II. Considerations for Network Design
Section III. Network Protocol

Section IV. Hardware Implementation

Section V. Analysis of the Prototype Network
Section VI. Simulation of Data Traffic
Section VII. Network Revisions

Section VIII. Conclusions

Appendix A

An Approach to Assembly Language Programming

Appendix B
Implementation of the Network Bus

References

12

16

26

73

88

96

107

109

127
135

List of Tables

I1.]1 Specifications of the Prototype Network 15
IV.1l Necessary Functions for Network Units 27
IV.2 Assignment of Necessary Function 36
IVv.3 Station Memory Map 44
IV.4 Station I/0 Map 44
IV.5 8257 Specifications 46
IV.6 8273 Specifications 47
IV.7 8741 Specifications 48
IV.8 8251 Specifications 49
IV.9 8085 Specifications 50
V.l Definition of Variables 78
V.2 Calculation of Processing Times 85

V.3 Values of Variables for Prototype Network 87
VIII.1 Values of Variables for Revised Network 105

A.l1 Assignment of Memory and I/0O for HPTEST 116

List of Illustrations

I.1 Interface Unit Functions 9
III.1-5 BIU Protocol (flowcharts) pp. 18-22
III.6 CCU Protocol (flowcharts) 23
IV.1l Basic Hardware Layout 35
IV.2 Possible SDLC Frames 41
IV.3 Detailed BIU Flowcharts PP. 51-63
IV.4 Detailed CCU Flowcharts pp. 64-67
IV.5 Detailed 8741 Flowcharts pp. 68-72
V.l Bus Activity (with messages) 77
V.2 Bus Activity (no messages) 80

VII.1l Access Delay and Efficiency vs. Data Rate 98

VII.2 Revised Bus Activity (with messages) 103
VII.3 Revised Delay and Efficiency 106
A.l1 IEEE-488 Interface Hardware Design 113
A.2 HPTEST detailed flowcharts pp. 117-121
A.3 Final Program for HPTEST PP. 122-126
B.1l Optical Tap Configuration 130

Acknowledgements

Grateful acknowledgement is made of the contributions of Dr.
Sanjay K. Bose, who designed the basic protocol for the
network and supported the initial software programming, and
to Mr. Eugene J. Orlowski, whose continuing technical
assistance through the construction and demonstration of the
network has been invaluable. Acknowledgement is also made
of the assistance of Mr. C.M. Puckette of General Electric
and Professor Jeffrey Shapiro of MIT whose patient
supervision of this project provided a constant positive
incentive.

I. Background and Terminology

A. Introduction

The simplest function of a data communications network
is to transport data from one point to another. As data
sources have become more complex, however, data communi-
cation networks have been required to provide a wider range
of functions, thus necessitating a higher degree of
intelligence in the network itself. The concept of an in-
telligent network is the foundation of the emerging industry
of so-called "local area networks".

To date, there has been a great deal of work done in
developing the concept, but little has been accomplished in
the area of standardization [l]. Every major manufacturer
in the computer industry, hoping to seize a large share of
the new market, has proposed at least one network and
cross-compatibility has been given little attention [2]. In
addition to the competition roadblock, standardization has
also been hampered by the fact that a major portion of
these networks is not hardware but software, thus allowing
a much wider range of possibilities,

Because of the relative newness of local area networks
and the absence of any standard design, the creation of a
local area network presents an interesting free-form
problem. The network may be specified from the protocol
level to the actual hardware based on design objectives
alone; the problem becomes as much to determine what is
needed as what can be done. Such a project was initiated
at General Electric's Corporate Research and Development
Center in 1981. This thesis report describes the creation
of a local area network, from the initial specifications,
through prototype construction, to performance analysis and
construction of an improved network. ’

This report contains some limited background informa-

.6

tion as well as a record of the author's actual research.
The remainder of this section is devoted to establishing
needed terminology for description of the network. Section
ITI discusses the general goals and limitations for local
area network design and the reasons for choosing various
system attributes in the prototype design. Sections III and
IV are devoted to a general description of the prototype
network, from a system and hardware standpoint, respective-
ly. Sections V and VI detail the theoretical and actual
performance of the prototype network, and Section VII
describes changes made to the original network based on the
analysis made. Section VIII 1is devoted to summary,
including the applicability and future possibilities for the
network. Two appendices are also included, the first
describing the approach used in the software programming of
the network, including example programs, and the second
detailing the implementation of the network using both wire
pair and fiber optics as the network medium.

The author was involved with the project from its
beginning in June 1981, during which time the design
objectives described in Sections II and III were determined,
in concert with Dr. Sanjay Bose and Mr. Eugene Orlowski of
General Electric. The author completed the hardware design
is described in Section IV 1in 1981, and returned to the
project in May 1982 to conduct the research described in the
remaining sections of this report.

B. Descriptive Terminology

While one of the goals of this report is to avoid use-
less jargon and buzzwords, some uniquely-defined ter-
minology will aid in describing the project. This
terminology will be explained in the context of the basic
function and structure of a local area network. First, and
perhaps most difficult, 1is the definition of the term

7

"local area network" itself. Several papers have been
written to this end [3], hoping to establish a basis for
classification, but for the purposes of this report, a
strictly functional definition will suffice: a local area
network 1is system used to support data communication among
several wusers, using a shared communication medium. Users
here may include any of a wide variety of data sources with
varying degrees of intelligence, or decision-making cap-
abilty, including computers, data terminals, computer
peripherals, instrumentation, and numerically-controlled
machinery. The communication medium may be free space,
single or multi-conductor wires, cables, or waveguides.

Data in the communication medium may be broadcast to
all units of the network, or forwarded from one unit to
another. Broadcast type networks include bus structures
and dendritic (tree-like, with branches) structures [4].
Forwarded-data networks include net structures, where data
can take any of several paths to a given destination, and
daisy-chain or ring structures [5].

The characteristic function of a local area network is
found in the interface between the user and the shared
communication medium. A common goal for a 1local area
network 1is "transparency", meaning that the user need not
be concerned with the network's operation (the network is
unseen, or transparent); the user merely gives the network
data with the understanding that it will be sent to the
appropriate destination without the need for any additional
instructions. All local area networks will provide intel-
ligence for arbitration among users as they require
use of the shared medium, as well as some mix of functions
for the interface to the user. As shown in Figure
I.1,these interfacing functions may include buffering
(temporary storage of data), packetizing (division of data
into standard 1length units), error-checking (inclusion of a

8

Interface Unit Functions
INTERFACE UNIT

——Arbitration

--Buffaring

-—Packetizing

—-Error-checking

——Formatting

--Routing

--Translation

Figure I. 1l: Interface Unit Functions

SHARED NETWORK MEDIUM

calculation based on the input which can be re-calculated
at the destination), formatting (conversion of data into a
standard form), routing (choice of path to destination),
and translation (one code or data format to another).
Obviously, for the network to achieve transparency, the
network must perform a set of functions on data received
from a source, or sender, and then invert these functions
before data 1is relayed to the destination unit.

As has already been implied, there must be some set of
rules that govern access to the shared medium. These rules
are <called the network protocol. 1In general, the network
protocol can be viewed in a layered approach, covering
everything from actual connections to the medium to
commands given to the network for given applications [6];
however, for the purpose of this report, network protocol
refers only to the rules governing access at the system
level.

There are as many different network protocols as there
are networks, vyet there are two basic types worth
distinguishing: random access and deterministic. A random
access protocol allows units to send information as soon as
they receive 1it, subject to some restrictions. Such a
protocol is Carrier-Sense Multiple Access (CSMA) [7], in
which a station with data to send first checks to see if
the shared medium is being used, and if it is not, the
station sends the data. Different propagation times among
the various wunits may result in two messages being sent at
once, causing a "collision." The protocol has further
stipulation regarding operation in <case of a collision,
determining which wunit may send again and which must wait.
A deterministic protocol has rules which never allow two
units to transmit at once in correct operation. Examples of
such protocols are Master/Slave protocols, in which a
central unit, the master, commands other units, the slaves,

_l 0..

to send or receive data. Other examples are token-passing
protocols, where the right to send data is contained in
possession of the "token," which is a signal or code held
and then passed among the units in the network [8].

Finally, some terminology is necessary for the
description of the network units. The basic unit of the
network is the interface unit. This unit contains all
necessary intelligence for sending data and receiving data
from the wuser, and in many cases, contains all intelligence
necessary for the operation of the network. Other networks
may 1include control units which ensure correct operation of
the network. These units are generally much fewer in number
than the interface wunits and act in a monitoring and
command fashion.

This, then, is the composition of a local area network:
interface units, optional <control wunits, and a shared
medium. The 1interface wunits connect users to the shared
medium, allowing communication with other units. Access to
the medium is governed by the protocol, which is
implemented by the interface units and the control units.

-11-

Section II. Considerations for Network Design

This section examines the design objectives for the
prototype network and the reasons for many of the design
choices. It should be pointed out that a considerable
amount of the fundamental decisions described are
subjective; other designers might attack the same problem
in an entirely different way. The subjectivity arises out
of the fact that, as with all engineering problems, the
solution lies not in discovering the single perfect design,
but in striking a balance between conflicting performance
goals. Thus, this section 1is largely an account of the
trade-offs associated with 1local area network design.

The most obvious design trade-off involves simplicity:
the simpler the network, the 1lower its cost, the smaller
its «circuit size, and in general, the greater its
reliability. There is little need, however, to extrapolate
the pure simplicity argument very far; a network must
provide at least basic functions in order to be superior to
conventional "dumb" circuitry. 1In general, these advantages
are had by high speed and efficient use of network
capabilities. More elegant designs can be justified by
other features, such as interface flexibility, failure
protection, easy expandability, and varying degrees of
network transparency. An initial decision, therefore, is
the scope of the network: what degree of elegance is
justified by the projected market? For the prototype
network, the approach was slanted toward simplicity, based
on a desire to produce a working model as soon as possible,
and also based on an assumption that many potential
customers would be willing to forego advanced features in
favor of 1lower price. Thus the goal was set to achieve the
best results from a small-scale system.

With the simplicity trade-off settled, it remained to

-1 2..

make some more quantitative decisions. Since the projected
market was not the mainframe-to-mainframe network market
which requires more elegant features, but the smaller scale
control and instrumentation market, inquiries were made in
regard to data requirements. A study [9] showed a need for
regular transmission of short data messages, as opposed to
infrequent, 1long messages. The large majority of messages
were small (less than 256 bytes) and most devices were
incapable of assimilating data at rates faster than fast
terminals (about 20 kilobytes per second). A wide variety
of user types was projected, with most receiving much more
data than they send. Based on these reports, the design
became more specified: a medium-speed, short message,
medium utilization network.

The projected market also specified the operating
environment: typically a harsh factory environment, where
conductors might occasionally be severed, and where
electro-magnetic interference is often a problem.
Reliability needed special consideration. Finally, price
was also an important issue: it was necessary to keep the
network's cost well below that of the more elegant
networks, which typically cost in the $800 to $1000 range
per unit [10]. Clearly, a small price differential would
not Jjustify the reduced performance; the network needed to
be about an order of magnitude 1less expensive.

At this Jjuncture, some actual specification could be
made. Because of the simplicity and price requirements, a
medium-level (about 100K bits per second) network data
rate was favored. Because of the relatively constant level
of wutilization and the acceptability of the lower network
rate, a deterministic protocol was preferred. This is
because, as will be shown in Section V, a deterministic
protocol 1is capable of higher efficiency than random access
protocols which exhibit instability beyond a certain level

_13..

of utilization. Although arguably more complex to
implement, deterministic protocols offer the promise of
more efficient use of slower transfer rates. The projected
environment indicated a need for noise-immune fiber optics
in some if not all parts of the network, and suggested
advantages to a bus or dendritic structure over a ring
structure, since a ring network would be rendered
non-functional from a single break.

Further study indicated that a master/slave protocol
was not ©preferred because of a perceived need for many
units to communicate directly with one another; the
necessary intervention by a master unit would cause a
serious 1loss of efficiency. On the other hand, the need
for reliable operation warranted some kind of monitoring
function, supplied by a single _control unit. The high
incidence of "dumb" users indicated a need for a
concentration of intelligence in the user interface to allow
for a flexible exchange of data. The number of users was
seen to vary widely, but many instances required only a
small number of users, thus leading to the four stations of
the prototype network. The combination of all these
factors 1led to the initial specification shown in Table
II.1; the actual implementation 1listed is the product of
the final specifications described in sections III and IV.

_1 4...

Table II.1

Network Structure
Network Protocol

Network Medium
Network Interface
Message format
Acknowledgement
Number of BIU's
Network Data Rate
Interface Data Rate
Interface Functions
Packetizing
Error-checking
Translation
Alternate routing
Max message length
Buffer size

Initial

Bus
Deterministic
Peer-to-peer
Central control
Fiber optics
Flexible

< 32
100K bits/sec
9.6K bits/sec

Var. length
Shift and add
ASCII encoding
none

256 bytes

Interstation distance 100m

-15-

Specifications of the Prototype Network

Actual

Bus

Token-Passing
Broadcast mode
Single control unit
Fiber optics
Dedicated processor
SDLC frames
Positive only

4

64K bits/sec

19.2K bits/sec

SDLC format
lé-bit FCS
ASCII only
none

256 bytes
1024 bytes
100m

III. Network Protocol

A, Bus Interface Units

As was stated in Section I1I, the desired protocol was
one which would be deterministic, support peer-to-peer
communication (as opposed to a master/slave arrangement),
and operate in a bus structure. Although the first two
requirements would seem to suggest a token-passing
protocol, the third does not: a token-passing protocol is
typically implemented in a ring structure. 1In that typical
implementation, the token 1is actually no more than a
message header. When an individual unit detects this
unique header, it knows that it may append whatever
messages it may have to send. Data flows in only one
direction along the ring, and when a station sees a message
addressed to it, it takes the message out of circulation by
storing it and not forwarding it as it passes the
collection of messages and the token to the next station.
Since the inferiority of the ring for this design was
sufficiently demonstrated, some changes were necessary in
the token-passing scheme.

The principal difference between the ring and bus
structures is access to data. In a ring, a station only
receives from the preceding station; thus "possession" of
the token 1is a logical concept. 1In a bus structure, all
data 1is broadcast, that is, all stations receive the same
data at roughly the same time. Thus, possession is not a
viable concept for the bus structure. The solution to the
problem lies in a redefinition of the right to send data.
Fundamentally, all that is required is that each station
have some wunique condition, which it and all stations on
the network will recognize, that entitles it to send data.
The simplest form of this is a round-robin approach, each
station transmitting in a pre-defined order. All that is

16

then necessary 1is some way for each station to keep track
of what the order is, when it will have the opportunity to
transmit, and when a particular station has completed
activity in its present turn. Such a procedure is the
basis for the algorithm wused in the prototype network
protocol.

Each bus interface wunit (hereafter BIU) is assigned a
unique address, <called MYADD, in the range 0 to 255. Each
unit also keeps a count, called COUNT, of the number of
turns completed. When COUNT matches MYADD, the BIU knows
that it has exclusive right to transmit., It transmits
whatever messages it may have received from the user, waits
for acknowledgement from the various destinations, and then
sends the token message, which indicates completion of the
turn. If the BIU has no messages to send, it merely sends
the token message. Each BIU also keeps a value called
LIMIT, which 1is the largest possible value for COUNT. When
COUNT exceeds LIMIT, the BIU resets COUNT to zero, and the
cycle of turns begins again. The operation of this protocol
is illustrated in Figures III.1-5.

The protocol as stated to this point deals only with
access to the network medium. Of course, while the BIU is
interacting with the network medium, it must at the same
time be interacting with the user. This requirement will be
more fully examined in Section IV, but it can also be seen
in the flowcharts. In Figure III.l1, it can be seen that
the BIU must maintain a constant attention to the network
medium, checking for an input. When an input is received,
the type of data received 1is determined and appropriate
action taken. In the case of a message received, the
network sends an acknowledgement to the sender, and then
must wait until the user is not busy before forwarding the
message. For instance, the user may be in the process of
transferring data when a message is received. Other network

17

BIU Protocol

START

INPUT
RECEIVED _NO

2

YES
YES

NO
YES

NO

ERROR

CONDITION }NO YES

Figure III,1: BIU Protocol

~18-

GO TO
MESSAGE
RECEIVED

GO TO
INITIALIZE
RECEIVED

GO T0
TOKEN
RECEIVED

BIU: Messoge Received

SEND
ACK TO
SENDER

NO

FORWARD
MESSAGE
TO USER

RETURN
TO
START

Figure III.2: BIU Protocol--continued

-19-

BIU:

Initialize Received

SET COUNT
TO NUMBER
RECEIVED

IS
COUNT=
MYADD?

GO TO
SEND
MESSAGE

RETURN
T0
START

Figure II1I.3: BIU Protocol--continued

-20-

BIU: Token Received

TOKEN
RECEIVED

INCREMENT
COUNT

IS
COUNT=
MYADD?

SET
COUNT

GO 10
SEND
MESSAGE

RETURN
T0
START

Figure II1.4: BIU Protocol--continued

-21=

BIU

YES

SEND MESSAGE
g
SET TIMEOUT

) <"l|iEi:|l"’
NO
ii]
YES

NOTIFY USERs
NO ACK
RECEIVED

Figure II1.5: BIU Protocol concluded

-22—

Send Message

70 SEND NO

SEND
TOKEN

RETURN
T0
START

CCU Protocol

ERROR
DETECTED

SEND
INITIALIZE
COUNT=0

START
TIMEOUT

TIME
EXPIRED

YES

SEND TOKEN

TWICE
ADJ COUNT

YES

Figure III,.6: CCU Protocol

-23-

YES

SEND TOKEN
g
ADJ COUNT

activity remains transparent to the user, except in the
case when the post-tranémission timeout expires before an
acknowledgement is received (see Figure 1III.5). 1In that
case, the wuser 1is notified; otherwise, it may be assumed
that transmission of all prior messages was successful.

The inclusion of the <central control unit (hereafter
CCU) provides the opportunity for more efficient operation
as well as greater reliability. Because of a perceived need
for quick intervention in the case of error (for instance,
two BIU's transmitting at once because of a mistaken
calculation of COUNT), the CCU is given a high level of

involvement. As seen 1in Figure III.6, the CCU contains a
constant monitoring function and intervenes after every
transmission of the token. Whenever the CCU detects the
error condition of two active transmitters, it
re-initializes the network. The CCU always is in control

when COUNT is odd, meaning correct operation of the network
is never more than one token away . After each BIU
completes a transmission turn, the CCU has the opportunity
to take any necessary correcting steps. In normal
operation, the CCU sends a token immediately following
reception of a token from a BIU. In the event of a BIU
failure, the CCU's timeout will expire without detection of
any transmission. In this case, the CCU merely sends a
token in 1lieu of the failed unit plus a second token to
advance COUNT to the next BIU address, and normal operation
continues without a re-initialization of the system. For
fastest and most reliable operation, the CCU was not
allowed to support a wuser in the prototype network;
however, there 1is no reason why the CCU's function could
not be performed by an interface unit.

The high 1level of involvement of the CCU also leaves
the opportunity for more complex interaction in scheduling
of turns. Although the network must be "fair"™, i.e. no BIU

...24_

may be permanently locked out from transmitting, a
particular application may require certain users receiving
higher priorities or more frequent turns. This may be
implemented by wuse of the CCU's initialization command,
sent during the time when COUNT is odd. Instead of
allowing COUNT to increment to the next BIU's address, the
CCU may send the initialization message, resetting the
value of COUNT to the address of the station requiring
higher priority. Further, the CCU may be used to keep
track of failed units, automatically skipping their turn the
majority of the time and thus avoiding the longer delay
imposed by waiting for a timeout. Finally, a particular
BIU might request a temporary increase of priority by
communication with the CCU in a reservation-type procedure.
While none of these features was implemented in the
prototype network, the CCU involvement was designed with
them in mind for future development.
..25_

Section IV. Hardware Implementation

The hardware implementation of the network can be
broken down into three tasks: determination of necessary
functions, matching function and actual integrated cir-
cuits, or chips, and specifying interconnection among
all chips. As has been noted previously, priority was
given to creating a working model as fast as reasonably
possible. In the hardware design, however, this goal was
balanced against a desire to allow for a large amount of
enhancement without a hardware overhaul. As a result, the
minimization of chip count has been sacrificed in favor of
anticipated improvements. This section describes the
transition from protocol to actual circuit. The specifics
of the receivers and transmitters used to implement the
shared medium are not covered in this section; Appendix B
contains a description of the implementation of the bus in
both fiber optics and wire pair. For the purposes of this
section, bus transceivers are assumed to exist, requiring
only synchronous data (NRZ data and a clock) and simple
control 1lines (Ready to Send, Clear to Send, and Carrier
Detect) .

A, Determination of Necessary Functions

The determination of necessary functions does not
constitute an actual flowchart, but a rough estimate of the
capabilities needed and an indication of the complexity
involved. This estimate, as seen in Table IV.1l, can be
viewed from the reception and transmission of data on the
shared medium to the exchange of data with the user.

Starting at the most elementary level, some part of the
hardware must be able to transmit and receive synchronous
data and perform the necessary manipulation of bus
transceiver control 1lines. Since data on the bus arrives

26

Table IV.1l Necessary Functions for Network Units

Bus transceiver management
Data input/output
Transceiver clock
Control line management

SDLC formatting
Flag appending
Bit stuffing
CRC calculation
CRC check
Control code
Destination addressing

Sender addressing
Address recognition#*
COUNT calculation
Network receive buffering*
User input buffering¥*
Control message composition
Data message*
Acknowledgement*
Token
Initialize**
User interface*
Format stripping
Conversion/translation
Prompting
Power-up procedure
**indicates BIU function only
*indicates CCU function only

-27~-

in packets as opposed to a continous stream, some method
must be wused to separate packets. 1In addition, each packet
may require some sort of data preamble to be used to
synchronize bus transceivers, since the bus itself does not
supply a clock. A commonly used method of packet
separation is IBM's Synchronous Data Link Control (SDLC)
[11] format, in which packets are delimited by a unique bit
pattern called a flag (typically 01111110). If this format
is wused, however, data must not be allowed to inadvertently
reproduce the flag pattern and thus <cause a premature
termination of a message. This protection, called "bit
stuffing," 1is accomplished by never allowing six consecutive
ones 1in the data portion of a packet. At transmission,
whenever five consecutive ones are encountered in the data
stream, a 2zero is automatically inserted. Upon reception,
whenever five consecutive ones are encountered, the next
bit 1is automatically ignored. The SDLC format also
includes a sixteen-bit Cyclic Redundancy Check (CRC) code
for the purpose of error-checking. The CRC is a value
calculated from successive shifting and adding of the
output bit stream under a prescribed algorithm. The value
is calculated as the message is transmitted and appended
before the <closing flag. At reception, the value is again
calculated from the received data. A match of the
transmitted value and the value calculated at reception is a
very good indication that the received message has no bit
errors.,

Each station has its own address which it must
remember. Because of the bus structure of the network,
each station will receive all data transmitted on the
network; however, only some of those messages will require
action by that station. A station must be able to
distinguish between control messages, sent to it and all
other stations for the purpose of network maintenance, and

._28_

data messages, which may or may not be addressed to it. 1If
a station receives a data message which is addressed to it,
it must send an acknowledgement to the sending station and
forward the message to the user; otherwise, the message may
be discarded or ignored. In addition, each station must
keep the current value of COUNT and compare it against its
address for transmission clearance. When the station is
able to transmit, it must prepare messages in the proper
format, including flags, CRC, sender and destination
addresses, and designation of the packet as a data message.

Another fundamental requirement is buffering. Because
of the transparency requirement, the station never knows
when it will receive data from either the bus or the user.
When the wuser transfers a message to the BIU, it must be
stored until the station has clearance to transmit on the
bus. When the station receives a data message addressed to
it from the bus, it must store it until such a time when the
user 1is ready to receive it. Most importantly, the station
cannot ignore the bus while receiving or transmitting to
the wuser, or vice-versa, since part of a message might be
lost during this dead time. This requirement forces either
two separate buffers or <capability for very high speed
transfers which can be accomplished in less than one bit
period of the bus or wuser's input rate.

To this point, nothing has been said of the form of the
exchange between station and user. One of the network's
design goals is to be very flexible in this regard,
supporting different types of exchange serial, parallel,
IEEE-488, etc.), different s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>