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ABSTRACT

A local area network was designed, constructed,
analyzed and improved. The network employed a modified
token passing protocol, similar to a round robin approach,
implemented in a bus structure. The network was designed to
use either fiber optics or wire pair, or a combination of
both, as the network transmission medium. Network stations
were microprocessor-based, consisting of a central pro-
cessor, two slave processors and a shared memory resource.

After an original working model was successfully
constructed, the performance of the network, notably its
efficiency, access delay, and throughput were carefully
analyzed. Certain aspects of the protocol and hardware
design were found to cause significant downgrading of
performance. Based on the analysis, a revision of the
network was proposed. As an empirical measure of the
network's performance, a data traffic simulator was
constructed and used to verify the conclusions of the
analysis.

Work on the project was conducted at General
Electric's Corporate Research and Development Center
in Schenectady, New York.
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I. Background and Terminology

A. Introduction

The simplest function of a data communications network

is to transport data from one point to another. As data

sources have become more complex, however, data communi-

cation networks have been required to provide a wider range

of functions, thus necessitating a higher degree of

intelligence in the network itself. The concept of an in-

telligent network is the foundation of the emerging industry

of so-called "local area networks".

To date, there has been a great deal of work done in

developing the concept, but little has been accomplished in

the area of standardization [1]. Every major manufacturer

in the computer industry, hoping to seize a large share of

the new market, has proposed at least one network and

cross-compatibility has been given little attention [2]. In

addition to the competition roadblock, standardization has

also been hampered by the fact that a major portion of

these networks is not hardware but software, thus allowing

a much wider range of possibilities.

Because of the relative newness of local area networks

and the absence of any standard design, the creation of a

local area network presents an interesting free-form

problem. The network may be specified from the protocol

level to the actual hardware based on design objectives

alone; the problem becomes as much to determine what is

needed as what can be done. Such a project was initiated

at General Electric's Corporate Research and Development

Center in 1981. This thesis report describes the creation

of a local area network, from the initial specifications,

through prototype construction, to performance analysis and

construction of an improved network.

This report contains some limited background informa-
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tion as well as a record of the author's actual research.

The remainder of this section is devoted to establishing

needed terminology for description of the network. Section

II discusses the general goals and limitations for local

area network design and the reasons for choosing various

system attributes in the prototype design. Sections III and

IV are devoted to a general description of the prototype

network, from a system and hardware standpoint, respective-

ly. Sections V and VI detail the theoretical and actual

performance of the prototype network, and Section VII

describes changes made to the original network based on the

analysis made. Section VIII is devoted to summary,

including the applicability and future possibilities for the

network. Two appendices are also included, the first

describing the approach used in the software programming of

the network, including example programs, and the second

detailing the implementation of the network using both wire

pair and fiber optics as the network medium.

The author was involved with the project from its

beginning in June 1981, during which time the design

objectives described in Sections II and III were determined,

in concert with Dr. Sanjay Bose and Mr. Eugene Orlowski of

General Electric. The author completed the hardware design

is described in Section IV in 1981, and returned to the

project in May 1982 to conduct the research described in the

remaining sections of this report.

B. Descriptive Terminology

While one of the goals of this report is to avoid use-

less jargon and buzzwords, some uniquely-defined ter-

minology will aid in describing the project. This

terminology will be explained in the context of the basic

function and structure of a local area network. First, and

perhaps most difficult, is the definition of the term
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"local area network" itself. Several papers have been

written to this end [3], hoping to establish a basis for

classification, but for the purposes of this report, a

strictly functional definition will suffice: a local area

network is system used to support data communication among

several users, using a shared communication medium. Users

here may include any of a wide variety of data sources with

varying degrees of intelligence, or decision-making cap-

abilty, including computers, data terminals, computer

peripherals, instrumentation, and numerically-controlled

machinery. The communication medium may be free space,

single or multi-conductor wires, cables, or waveguides.

Data in the communication medium may be broadcast to

all units of the network, or forwarded from one unit to

another. Broadcast type networks include bus structures

and dendritic (tree-like, with branches) structures [4].

Forwarded-data networks include net structures, where data

can take any of several paths to a given destination, and

daisy-chain or ring structures [5].

The characteristic function of a local area network is

found in the interface between the user and the shared

communication medium. A common goal for a local area

network is "transparency", meaning that the user need not

be concerned with the network's operation (the network is

unseen, or transparent); the user merely gives the network

data with the understanding that it will be sent to the

appropriate destination without the need for any additional

instructions. All local area networks will provide intel-

ligence for arbitration among users as they require

use of the shared medium, as well as some mix of functions

for the interface to the user. As shown in Figure

I.l,these interfacing functions may include buffering

(temporary storage of data), packetizing (division of data

into standard length units), error-checking (inclusion of a
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Interface Unit Functions

Figure I. 1: Interface Unit Functions
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calculation based on the input which can be re-calculated

at the destination), formatting (conversion of data into a

standard form), routing (choice of path to destination),

and translation (one code or data format to another).

Obviously, for the network to achieve transparency, the

network must perform a set of functions on data received

from a source, or sender, and then invert these functions

before data is relayed to the destination unit.

As has already been implied, there must be some set of

rules that govern access to the shared medium. These rules

are called the network protocol. In general, the network

protocol can be viewed in a layered approach, covering

everything from actual connections to the medium to

commands given to the network for given applications [6];

however, for the purpose of this report, network protocol

refers only to the rules governing access at the system

level.

There are as many different network protocols as there

are networks, yet there are two basic types worth

distinguishing: random access and deterministic. A random

access protocol allows units to send information as soon as

they receive it, subject to some restrictions. Such a

protocol is Carrier-Sense Multiple Access (CSMA) [7], in

which a station with data to send first checks to see if

the shared medium is being used, and if it is not, the

station sends the data. Different propagation times among

the various units may result in two messages being sent at

once, causing a "collision." The protocol has further

stipulation regarding operation in case of a collision,

determining which unit may send again and which must wait.

A deterministic protocol has rules which never allow two

units to transmit at once in correct operation. Examples of

such protocols are Master/Slave protocols, in which a

central unit, the master, commands other units, the slaves,
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to send or receive data. Other examples are token-passing

protocols, where the right to send data is contained in

possession of the "token," which is a signal or code held

and then passed among the units in the network [8].

Finally, some terminology is necessary for the

description of the network units. The basic unit of the

network is the interface unit. This unit contains all

necessary intelligence for sending data and receiving data

from the user, and in many cases, contains all intelligence

necessary for the operation of the network. Other networks

may include control units which ensure correct operation of

the network. These units are generally much fewer in number

than the interface units and act in a monitoring and

command fashion.

This, then, is the composition of a local area network:

interface units, optional control units, and a shared

medium. The interface units connect users to the shared

medium, allowing communication with other units. Access to

the medium is governed by the protocol, which is

implemented by the interface units and the control units.
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Section II. Considerations for Network Design

This section examines the design objectives for the

prototype network and the reasons for many of the design

choices. It should be pointed out that a considerable

amount of the fundamental decisions described are

subjective; other designers might attack the same problem

in an entirely different way. The subjectivity arises out

of the fact that, as with all engineering problems, the

solution lies not in discovering the single perfect design,

but in striking a balance between conflicting performance

goals. Thus, this section is largely an account of the

trade-offs associated with local area network design.

The most obvious design trade-off involves simplicity:

the simpler the network, the lower its cost, the smaller

its circuit size, and in general, the greater its

reliability. There is little need, however, to extrapolate

the pure simplicity argument very far; a network must

provide at least basic functions in order to be superior to

conventional "dumb" circuitry. In general, these advantages

are had by high speed and efficient use of network

capabilities. More elegant designs can be justified by

other features, such as interface flexibility, failure

protection, easy expandability, and varying degrees of

network transparency. An initial decision, therefore, is

the scope of the network: what degree of elegance is

justified by the projected market? For the prototype

network, the approach was slanted toward simplicity, based

on a desire to produce a working model as soon as possible,

and also based on an assumption that many potential

customers would be willing to forego advanced features in

favor of lower price. Thus the goal was set to achieve the

best results from a small-scale system.

With the simplicity trade-off settled, it remained to
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make some more quantitative decisions. Since the projected

market was not the mainframe-to-mainframe network market

which requires more elegant features, but the smaller scale

control and instrumentation market, inquiries were made in

regard to data requirements. A study [9] showed a need for

regular transmission of short data messages, as opposed to

infrequent, long messages. The large majority of messages

were small (less than 256 bytes) and most devices were

incapable of assimilating data at rates faster than fast

terminals (about 20 kilobytes per second). A wide variety

of user types was projected, with most receiving much more

data than they send. Based on these reports, the design

became more specified: a medium-speed, short message,

medium utilization network.

The projected market also specified the operating

environment: typically a harsh factory environment, where

conductors might occasionally be severed, and where

electro-magnetic interference is often a problem.

Reliability needed special consideration. Finally, price

was also an important issue: it was necessary to keep the

network's cost well below that of the more elegant

networks, which typically cost in the $800 to $1000 range

per unit [10]. Clearly, a small price differential would

not justify the reduced performance; the network needed to

be about an order of magnitude less expensive.

At this juncture, some actual specification could be

made. Because of the simplicity and price requirements, a

medium-level (about 100K bits per second) network data

rate was favored. Because of the relatively constant level

of utilization and the acceptability of the lower network

rate, a deterministic protocol was preferred. This is

because, as will be shown in Section V, a deterministic

protocol is capable of higher efficiency than random access

protocols which exhibit instability beyond a certain level
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of utilization. Although arguably more complex to

implement, deterministic protocols offer the promise of

more efficient use of slower transfer rates. The projected

environment indicated a need for noise-immune fiber optics

in some if not all parts of the network, and suggested

advantages to a bus or dendritic structure over a ring

structure, since a ring network would be rendered

non-functional from a single break.

Further study indicated that a master/slave protocol

was not preferred because of a perceived need for many

units to communicate directly with one another; the

necessary intervention by a master unit would cause a

serious loss of efficiency. On the other hand, the need

for reliable operation warranted some kind of monitoring

function, supplied by a single control unit. The high

incidence of "dumb" users indicated a need for a

concentration of intelligence in the user interface to allow

for a flexible exchange of data. The number of users was

seen to vary widely, but many instances required only a

small number of users, thus leading to the four stations of

the prototype network. The combination of all these

factors led to the initial specification shown in Table

II.1; the actual implementation listed is the product of

the final specifications described in sections III and IV.
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Specifications of the Prototype Network

Network

Network

Structure

Protocol

Network Medium

Network Interface

Message format

Acknowledgement

Number of BIU's

Network Data Rate

Interface Data Rate

Interface Functions

Packetizing

Error-checking

Translation

Alternate routing

Max message length

Buffer size

Interstation distance

Initial

Bus

Deterministic

Peer-to-peer

Central control

Fiber optics

Flexible

< 32

100K bits/sec

9.6K bits/sec

Var. length

Shift and add

ASCII encoding

none

256 bytes

loom -15-

-15-

Actual

Bus

Token-Passing

Broadcast mode

Single control unit

Fiber optics

Dedicated processor

SDLC frames

Positive only

4

64K bits/sec

19.2K bits/sec

SDLC format

16-bit FCS

ASCII only

none

256 bytes

1024 bytes

0loo0m

Table II.1



III. Network Protocol

A. Bus Interface Units

As was stated in Section II, the desired protocol was

one which would be deterministic, support peer-to-peer

communication (as opposed to a master/slave arrangement),

and operate in a bus structure. Although the first two

requirements would seem to suggest a token-passing

protocol, the third does not: a token-passing protocol is

typically implemented in a ring structure. In that typical

implementation, the token is actually no more than a

message header. When an individual unit detects this

unique header, it knows that it may append whatever

messages it may have to send. Data flows in only one

direction along the ring, and when a station sees a message

addressed to it, it takes the message out of circulation by

storing it and not forwarding it as it passes the

collection of messages and the token to the next station.

Since the inferiority of the ring for this design was

sufficiently demonstrated, some changes were necessary in

the token-passing scheme.

The principal difference between the ring and bus

structures is access to data. In a ring, a station only

receives from the preceding station; thus "possession" of

the token is a logical concept. In a bus structure, all

data is broadcast, that is, all stations receive the same

data at roughly the same time. Thus, possession is not a

viable concept for the bus structure. The solution to the

problem lies in a redefinition of the right to send data.

Fundamentally, all that is required is that each station

have some unique condition, which it and all stations on

the network will recognize, that entitles it to send data.

The simplest form of this is a round-robin approach, each

station transmitting in a pre-defined order. All that is
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then necessary is some way for each station to keep track

of what the order is, when it will have the opportunity to

transmit, and when a particular station has completed

activity in its present turn. Such a procedure is the

basis for the algorithm used in the prototype network

protocol.

Each bus interface unit (hereafter BIU) is assigned a

unique address, called MYADD, in the range 0 to 255. Each

unit also keeps a count, called COUNT, of the number of

turns completed. When COUNT matches MYADD, the BIU knows

that it has exclusive right to transmit. It transmits

whatever messages it may have received from the user, waits

for acknowledgement from the various destinations, and then

sends the token message, which indicates completion of the

turn. If the BIU has no messages to send, it merely sends

the token message. Each BIU also keeps a value called

LIMIT, which is the largest possible value for COUNT. When

COUNT exceeds LIMIT, the BIU resets COUNT to zero, and the

cycle of turns begins again. The operation of this protocol

is illustrated in Figures III.1-5.

The protocol as stated to this point deals only with

access to the network medium. Of course, while the BIU is

interacting with the network medium, it must at the same

time be interacting with the user. This requirement will be

more fully examined in Section IV, but it can also be seen

in the flowcharts. In Figure III.1, it can be seen that

the BIU must maintain a constant attention to the network

medium, checking for an input. When an input is received,

the type of data received is determined and appropriate

action taken. In the case of a message received, the

network sends an acknowledgement to the sender, and then

must wait until the user is not busy before forwarding the

message. For instance, the user may be in the process of

transferring data when a message is received. Other network
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B I U Protoco 

Figure III.1: BIU Protocol
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BIU: Message Received

Figure III.2: BIU Protocol--continued
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Received

Figure III.3: BIU Protocol--continued

-20-

SET COUNT

TO NUMBER

RECEIVED

BIU: Initialize



BIU: Token Rece i ved

Figure III.4: BIU Protocol--continued
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BIU: Send Message

Figure III.5: BIU Protocol concluded
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CCU Protoco 

Figure III.6: CCU Protocol
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activity remains transparent to the user, except in the

case when the post-transmission timeout expires before an

acknowledgement is received (see Figure III.5). In that

case, the user is notified; otherwise, it may be assumed

that transmission of all prior messages was successful.

The inclusion of the central control unit (hereafter

CCU) provides the opportunity for more efficient operation

as well as greater reliability. Because of a perceived need

for quick intervention in the case of error (for instance,

two BIU's transmitting at once because of a mistaken

calculation of COUNT), the CCU is given a high level of

involvement. As seen in Figure III.6, the CCU contains a

constant monitoring function and intervenes after every

transmission of the token. Whenever the CCU detects the

error condition of two active transmitters, it

re-initializes the network. The CCU always is in control

when COUNT is odd, meaning correct operation of the network

is never more than one token away. After each BIU

completes a transmission turn, the CCU has the opportunity

to take any necessary correcting steps. In normal

operation, the CCU sends a token immediately following

reception of a token from a BIU. In the event of a BIU

failure, the CCU's timeout will expire without detection of

any transmission. In this case, the CCU merely sends a

token in lieu of the failed unit plus a second token to

advance COUNT to the next BIU address, and normal operation

continues without a re-initialization of the system. For

fastest and most reliable operation, the CCU was not

allowed to support a user in the prototype network;

however, there is no reason why the CCU's function could

not be performed by an interface unit.

The high level of involvement of the CCU also leaves

the opportunity for more complex interaction in scheduling

of turns. Although the network must be "fair", i.e. no BIU
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may be permanently locked out from transmitting, a

particular application may require certain users receiving

higher priorities or more frequent turns. This may be

implemented by use of the CCU's initialization command,

sent during the time when COUNT is odd. Instead of

allowing COUNT to increment to the next BIU's address, the

CCU may send the initialization message, resetting the

value of COUNT to the address of the station requiring

higher priority. Further, the CCU may be used to keep

track of failed units, automatically skipping their turn the

majority of the time and thus avoiding the longer delay

imposed by waiting for a timeout. Finally, a particular

BIU might request a temporary increase of priority by

communication with the CCU in a reservation-type procedure.

While none of these features was implemented in the

prototype network, the CCU involvement was designed with

them in mind for future development.
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Section IV. Hardware Implementation

The hardware implementation of the network can be

broken down into three tasks: determination of necessary

functions, matching function and actual integrated cir-

cuits, or chips, and specifying interconnection among

all chips. As has been noted previously, priority was

given to creating a working model as fast as reasonably

possible. In the hardware design, however, this goal was

balanced against a desire to allow for a large amount of

enhancement without a hardware overhaul. As a result, the

minimization of chip count has been sacrificed in favor of

anticipated improvements. This section describes the

transition from protocol to actual circuit. The specifics

of the receivers and transmitters used to implement the

shared medium are not covered in this section; Appendix B

contains a description of the implementation of the bus in

both fiber optics and wire pair. For the purposes of this

section, bus transceivers are assumed to exist, requiring

only synchronous data (NRZ data and a clock) and simple

control lines (Ready to Send, Clear to Send, and Carrier

Detect).

A. Determination of Necessary Functions

The determination of necessary functions does not

constitute an actual flowchart, but a rough estimate of the

capabilities needed and an indication of the complexity

involved. This estimate, as seen in Table IV.l, can be

viewed from the reception and transmission of data on the

shared medium to the exchange of data with the user.

Starting at the most elementary level, some part of the

hardware must be able to transmit and receive synchronous

data and perform the necessary manipulation of bus

transceiver control lines. Since data on the bus arrives
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Table IV.1 Necessary Functions for Network Units

Bus transceiver management
Data input/output
Transceiver clock
Control line management

SDLC formatting
Flag appending
Bit stuffing
CRC calculation
CRC check
Control code
Destination addressing

Sender addressing

Address recognition*

COUNT calculation

Network receive buffering*

User input buffering*

Control message composition
Data message*
Acknowledgement*
Token
Initialize**

User interface*
Format stripping
Conversion/translation
Prompting

Power-up procedure

**indicates BIU function only
*indicates CCU function only
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in packets as opposed to a continous stream, some method

must be used to separate packets. In addition, each packet

may require some sort of data preamble to be used to

synchronize bus transceivers, since the bus itself does not

supply a clock. A commonly used method of packet

separation is IBM's Synchronous Data Link Control (SDLC)

[11] format, in which packets are delimited by a unique bit

pattern called a flag (typically 01111110). If this format

is used, however, data must not be allowed to inadvertently

reproduce the flag pattern and thus cause a premature

termination of a message. This protection, called "bit

stuffing," is accomplished by never allowing six consecutive

ones in the data portion of a packet. At transmission,

whenever five consecutive ones are encountered in the data

stream, a zero is automatically inserted. Upon reception,

whenever five consecutive ones are encountered, the next

bit is automatically ignored. The SDLC format also

includes a sixteen-bit Cyclic Redundancy Check (CRC) code

for the purpose of error-checking. The CRC is a value

calculated from successive shifting and adding of the

output bit stream under a prescribed algorithm. The value

is calculated as the message is transmitted and appended

before the closing flag. At reception, the value is again

calculated from the received data. A match of the

transmitted value and the value calculated at reception is a

very good indication that the received message has no bit

errors.

Each station has its own address which it must

remember. Because of the bus structure of the network,

each station will receive all data transmitted on the

network; however, only some of those messages will require

action by that station. A station must be able to

distinguish between control messages, sent to it and all

other stations for the purpose of network maintenance, and
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data messages, which may or may not be addressed to it. If

a station receives a data message which is addressed to it,

it must send an acknowledgement to the sending station and

forward the message to the user; otherwise, the message may

be discarded or ignored. In addition, each station must

keep the current value of COUNT and compare it against its

address for transmission clearance. When the station is

able to transmit, it must prepare messages in the proper

format, including flags, CRC, sender and destination

addresses, and designation of the packet as a data message.

Another fundamental requirement is buffering. Because

of the transparency requirement, the station never knows

when it will receive data from either the bus or the user.

When the user transfers a message to the BIU, it must be

stored until the station has clearance to transmit on the

bus. When the station receives a data message addressed to

it from the bus, it must store it until such a time when the

user is ready to receive it. Most importantly, the station

cannot ignore the bus while receiving or transmitting to

the user, or vice-versa, since part of a message might be

lost during this dead time. This requirement forces either

two separate buffers or capability for very high speed

transfers which can be accomplished in less than one bit

period of the bus or user's input rate.

To this point, nothing has been said of the form of the

exchange between station and user. One of the network's

design goals is to be very flexible in this regard,

supporting different types of exchange serial, parallel,

IEEE-488, etc.), different speeds, and different levels of

intelligence in the user interface. A person at a terminal

will need to be prompted for information, such as the

message and its destination, while a computer or data

source is likely to supply that function automatically.

One requirement is the same for all, however: before the
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message is forwarded to the user, all formatting and any

other information used in network management must be

stripped off. Beyond that requirement, the station must

maintain constant attention to user input by managing and

monitoring the appropriate input circuitry.

Finally, each unit must have some standard procedure

for initialization after power is turned on. This is

necessary to prevent inappropriate operation during power

fluctuation or immediately after addition of a station to

the network. Some part of the station must have capability

to sense power-up and force all other parts of the unit to

follow a prescribed procedure until the station has begun

regular operation on the network.

B. Matching Functions to Circuitry

The level of complexity implied by the necessary

functions indicated the need for a microprocessor or even a

multiprocessor environment for the bus units. The

appropriate equipment for programming and debugging Intel

processors was readily available, making Intel a preferred

source. The procedure used for fleshing out the chip usage

was to start with the basic microprocessor configuration of

processor, Programmable Read Only Memory (PROM) for program

storage, Random Access Memory (RAM) for variable storage,

and then to add appropriate peripherals.

The choice of a central processor was largely

influenced by availability and ease of programming. The

choice was between 8085 family processors and 8048

processors, the 8086 being too new and too expensive at the

time. While the 8048 family offered single chip ROM (1-2K

bytes) and RAM (64 bytes) [12], the 8085 was considered to

have a more powerful instruction set and a wider range of

peripherals [13]. It seemed clear that more RAM would be

needed than 64 bytes for appropriate buffering; thus the
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single-chip advantage of the 8048 seemed less attractive.

Finally, the 8085 system was seen as the most easily

expanded; thus the choice went to the 8085 processor with

an Intel 2716 (2K EPROM) for program storage.

The use of variable memory is a more subtle problem.

In general, RAM is inexpensive and easily used; for most

small applications (< 32K), static RAM is available for

less than $10 per kilobyte. The problem is not in expense

or ease of use but in efficient access of memory. The most

straightforward design of the network would likely dedicate

separate banks of memory to user and bus buffers; however,

in such a system, an inordinate amount of time would be

spent in data flow through the central processor. To

minimize the need for central processor intervention (and

thus minimize many processing delays), memory for the

system was designed as a shared resource for all

components, accessible directly by the central processor

and available to all peripherals through a Direct Memory

Access (DMA) handler, the Intel 8257. This design casts

the central processor as a scheduler and manager, and not

as a data pipe. Data is stored and retrieved by the

peripherals under the direction of the 8085, with only

enough information needed to describe the data (length,

starting address, type) actually passing through the 8085.

The size of the buffer memory was calculated based on

anticipated performance and utilization. Since the

network's data rate would always be greater than the

transfer rate between the BIU and user, there would always

be some possibility for lost data through buffer overflow.

In fact, this problem is one of the most serious faults of

the network protocol when the user is a slow device (such

as a human at a terminal) which may take a long time to

complete a message for the system. Since the protocol does

not allow the user to be interrupted with output while
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composing a message, there is a very real possibility that

data will be lost. However, the larger the buffer, the

greater the ability to accomodate for speed mismatches. In

real use, it was projected that the user would be able to

input data at least at half the rate that it was being sent

to him; thus the memory was set at 1K bytes (four times the

maximum message length allowed, allowing for storage of two

user messages and two network messages of maximum length,

or any combination of smaller messages). The network buffer

was allocated slightly more memory space than the user

buffer. The partitioning of memory will be more fully

discussed in part C of this section.

The advantages of SDLC formatting suggested use of a

dedicated chip to perform the formatting. At the time that

the prototype network was being designed, Intel offered

only one chip capable of SDLC formatting, the Intel 8273.

Other manufacturers had preliminary versions of similar

chips, but the combination of guaranteed compatibility and

easy availability favored the choice of the 8273. Among

the functions offered by the 8273 were automatic flag

appending, bit-stuffing, CRC generation, and address

recognition. The 8273 could be programmed with two

addresses for recognition, in this application, one address

was the station's unique address, the other was a broadcast

address, used to send all stations control messages.

Alternatively, for the CCU, the 8273 could be programmed to

receive all messages, regardless of destination address.

Two channels of DMA were available, one for transmit data

and one for receive data; these were compatible with the

8257 DMA handler. In the DMA mode, the central processor

was required only to command the 8273 with receive or

transmit commands and message parameters. The data message

would be automatically accessed through the DMA handler,

and the processor notified at completion. The chip did
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impose some restrictions, most notably the limit of 64

kilobits per second as the data rate. In addition, the

chip required continual attention from a central processor,

being able to free-run only from command to successful

reception or transmission. These limitations, however,

seemed minor in comparison to the savings afforded by the

functions offered.

The last major component of the BIU was the user

interface. Based on the protocol and the rest of the

design, there were three basic requirements for this

component to meet: it must be flexible (e.g. programmable),

it must be capable of free-running, at least for periods of

time, and it must have capability for short term, small

scale storage. The first requirement is one of the original

design goals, but the second two are direct implications of

the network protocol and design. An explanation of the

operation of the DMA handler is needed for background.

Since memory is the direct resource of the 8085, the 8085's

data and address lines are hardwired to the data and

address lines of the memory. The DMA handler also has

capability to manipulate the memory address lines, but only

during its operation. After the DMA handler has been set by

the 8085, it may receive a request from a peripheral for

memory access. The DMA handler requests use of the address

lines by setting the 8085's HOLD input. When the 8085 has

completed its current operation, it acknowledges the

request by allowing the address lines to float and ceasing

operation until HOLD is released. The DMA handler monitors

the transfer between peripheral and memory, and does not

release HOLD until the transfer is complete. Thus, during

the time that a DMA transfer is being accomplished, the

8085's operation is suspended. In the worst possible case,

data might be coming in from the user at the same time the

DMA controller was servicing input from the network. As
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the data rate of the user approaches the data rate of the

network, the potential for lost data increases if the 8085

is required to obtain all data from the user. Prudent

practice suggests that the user interface be allowed to run

independently of the 8085 and contain enough intelligence

and storage capability to allow high-speed transfers to the

central memory. For these reasons, it was decided to use a

slave microprocessor, the Intel 8741A, for the user

interface.

The 8741A is a member of the 8048 family of

microprocessors, being a modified version of the 8748. The

chief difference between the 8748 and the 8741A is that the

external data/address bus on the 8748 is a data bus used

only for communication with a master processor on the

8741A. Like the 8748, the 8741A has 1K of program memory

and 64 bytes of RAM. Unlike the 8748, the 8741A can be

configured to operate with a DMA handler. Combined with

the capability of 16 pins of I/O and onboard timing, the

8741A is suited to almost any kind of interface. Perhaps

the biggest advantage to the design of the prototype network

is that by concentrating the user interface in the 8741A,

the user interface may be changed by altering a single

chip, without altering the basic operation of the network

interface. The user interface, then, is a module

consisting of the 8741A and its necessary line-driving or

conversion peripherals. The basic hardware layout for the

network is shown in Figure IV.l1, and the final assignment

of functions is shown in Table IV.2.

C. Interconnection of Chips

The interconnection of chips involves not only the

specification of wiring diagrams but the protocol for

exchange of data between the basic functional blocks of the

bus units. This protocol takes the form of establishing
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Table IV.2 Necessary Functions for Network Units

FUNCTION PERFORMED BY

Bus transceiver management 8273
Data input/output
Transceiver clock
Control line management

SDLC formatting 8273
Flag appending
Bit stuffing
CRC calculation
CRC check
Control code
Destination addressing

Sender addressing 8085

Address recognition* 8273

COUNT calculation 8085

Network receive buffering* 8273 to memory

User input buffering* 8741A and memory

Control message composition 8085
Data message*
Acknowledgement*
Token
Initialize**

User interface*
Format stripping 8273
Conversion/translation 8741A
Prompting 8741A

Power-up procedure 8085

*indicates BIU function only
**indicates CCU function only
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standard messages and format, and establishing priorities

for interrupts and DMA channel usage. The first step in

specification of the interconnection is to determine the

control and data needs of each station component. Next,

addresses must be stipulated for all necessary memory and

I/O locations, forming the station's memory map. Finally,

a rough flowchart is prepared, from which the actual

software can be derived.

In general, each major component in the station will

have the following: a chip select input used for enabling

operation, address and data lines for transfer of data, a

clock input or crystal input for onboard clock generation,

registers for indication of status or commands, and a reset

input which can be used to force the chip into a predefined

state. Because the 8085 is designed always to be the

central (or sole) processor, it does not have a chip select

input. Operation of the 8085 may only be delayed by the

HOLD input, used by the DMA handler in this design.

Because of its central role, the 8085 has clock and reset

outputs as well as inputs. These outputs can be routed to

the various peripheral chips. Finally, its orientation is

to send commands and read status, which is just the

opposite of the other peripherals which send status and

read commands. The clock for the 8085 is derived from a

crystal input and the reset input is connected to a switch

in parallel with an RC network which will pull reset true

shortly after power-up.

Some of the connection for the 8257 DMA handler has

already been discussed; the 8257 shares the address and

data lines of the 8085 by use of the 8085's HOLD input. In

addition, the 8257 requires commands from the 8085 before

any action may be taken. The mode register must be set to

establish the activity of each of the four available DMA

channels and the type of transfers to be made. Each
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channel has a set of four registers which must be set,

corresponding to two-byte values for starting address of

the transfer and the number of bytes to be transferred. The

higher order byte of the number to transfer register also

contains two bits which indicate whether the transfer is

written to or read from memory. Finally, a status register

is available for reading by the central processor.

Of four possible channels, three are used in the

prototype station design. Each channel has two control

lines, DMA request (DRQ) and DMA acknowledgement (DACK),

which are used to control transfer on an active channel.

The peripheral sets DRQ to initiate transfer. When the DMA

handler is ready with valid data (i.e. the handler has

control of the data/address lines) it responds by setting

DACK. The transfer is completed by normal operation of the

read/write lines associated with the data/address lines.

Assignment of channel numbers is not a trivial task; in the

event of simultaneous request by two or more channels,

service is granted by a priority scheme in which the lowest

channel number has the highest priority. Thus channel 0

should be assigned to the peripheral least capable of

waiting for memory access.

The 8273 SDLC chip is similar in format to the 8257,

but requires more commands and provides a wider range of

functions. In addition to command and status registers,

the 8273 has a parameter register, needed for passing

information about commands, and result registers, which

provide information about the completion of the last

command. The 8273 also provides interrupt outputs which

signify the completion of transmission and reception. The

commands used in the prototype design are Set Operating

Mode, Set Serial I/O Mode, Selective Receive, Transmit

Frame, and Abort Transmit. The two mode commands can be

set once for all time at power-up. Each requires a byte to
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be sent to the command register and a byte to the parameter

register. The parameter bytes are used to initiate

buffering of address and control parameters, a frame

preamble for synchronization, and NRZ data encoding.

Selective Receive requires a command and four parameters.

The first two parameters are the maximum message length and

the second two are the match addresses (one is the

station's unique address, the other is the network

broadcast address, OFFH). In Selective Receive, a valid

frame will not be saved unless the destination address is

one of the match addresses. When a frame with the

appropriate address is received, the 8273 saves the address

and control bytes for the central processor and stores the

message in memory through DMA. An interrupt is generated

at completion of the reception, at which time the central

processor must read the two saved bytes plus the Receive

Result register before any new commands are given.

Transmit Frame is similar; it requires a command and four

parameters, the first two being the message length and the

last two the destination address and control byte. An

interrupt is generated at completion of transmission, at

which time the Transmit Result register must be read.

Abort Transmit is a one-byte command which terminates any

transmission in process. Between any two transfers of

command and parameter to the 8273, the status register must

be checked to insure that the byte has been accepted.

The control byte previously mentioned is not stipulated

by the 8273, nor is it used by the chip for any

decision-making. It is an eight-bit value which is

forwarded to the central processor, making it ideal for the

determination of message type. The convention used in the

prototype network is that control code 01 represents an

initialization message, and that the byte following the

control code in the frame is the new value for COUNT.
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Control code 02 is the token message; no additional data

other than the CRC and flag follows the control code.

Control code 03 is the acknowledgement message; the byte

following the control code is the address of the station

sending the acknowledgment. Control code 04 is for data

messages; the first byte following the control is the

sender's address, and a message of up to 255 bytes precedes

the CRC and closing flag. The format for each of the four

different types of messages is shown in Figure IV.2.

The exchange of information between the 8741A and the

8085 is largely left undefined by the chips themselves.

The 8741A has a data bus which is dedicated to interaction

with a master processor. This bus is buffered and can be

loaded at any time. Depending on the sense of an

additional control line, the data exchanged is understood to

be either data or command. For the purposes of the

prototype network, there was a need for four distinct

messages from 8085 to 8741A, and another four from 8741A to

8085. The four master-to-slave messages cover the cases

when the destination does not respond to a message (code

01), when a message has been received from the network and

is ready for forwarding to the user (code 02), when the

user interface may proceed to compose a new message into

memory (code 03), and when it is necessary for the user

interface to wait for another command. In the first two

cases, parameters are sent following the command: the no

response code is followed by a byte corresponding to the

address of the unit which did not respond, and the message

received code is followed by a byte which is the length of

the message to be forwarded.

The slave-to-master messages are similar, covering the

cases when the user interface has completed composing a

message to be sent (code 01), when DMA set-up is required

for the start of a new message (code 02), when forwarding
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Possib1 SDLE Frames

FLAG DEST CTRL --DATA-- CRC FLAG

GENERAL FORMAT

FLAG OFFH 01 COUNT CRC FLAG

INITIALIZE

FLAG OFFH 02 CRC FLAG

TOKEN

FLAG DEST 03 SENDER CRC FLAG

ACKNOWLEDGEMENT

FLAG DEST 04 SENDER -- DATA-- CRC FLAG

DATA MESSAGE

Figure IV.2: Possible SDLC Frames
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of a message to the user is completed (code 03), and when a

system error requires discontinuation of the current

composition process (04). Only the first command supplies

any parameters to the 8085; in that case, a byte

corresponding to the length of the message is followed by

a byte for the destination of the message.

The 8741A is also required to operate some sort of

peripheral for communicating with the user. For the

prototype network, this peripheral was a Universal

Synchronous/Asynchronous Receiver/Transmitter (USART), the

Intel 8251. Like the 8273, the 8251 requires mode setting

at power-up (7-bit ASCII encoding, asynchronous mode with

odd parity, one start bit and one stop bit), and commands

for receive and transmit functions. In addition, the user

may require prompting during the composition of a message.

A stipulation was made that the user would initiate a

message by typing a linefeed (ASCII 10) and concluded a

message by entering a dollar sign ($). After the dollar

sign, the user must enter a two digit value for the

destination of the address; the conversion of the address

from ASCII to an actual number is handled by the 8741A.

Two additional issues must be discussed before a full

description of the hardware design can be given. First,

the interrupt structure for the 8085 must be determined.

Second, the algorithm for mapping the peripherals must be

stipulated. The question of interrupt structure is one of

assignment and priority. There is no reason forcing the

use of an interrupt structure; all necessary information

could be had by continuous monitoring of the status of the

individual peripherals. In the interest of speed, however,

interrupts are justified. The 8085 allows for three

interrupts. Once set by some external source, an interrupt

will be serviced following completion of the current

instruction. The 8273's receive interrupt was given top
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priority, followed by the interrupt output of the 8741A,

and the 8273 transmit interrupt. This priority grew out of

the faster network data rate and the 8741A's ability to

store data on the short term. The transmit interrupt

merely indicates availability of a status byte indicating

successful transmission, and thus it can be serviced last

in the case of conflicting requests.

The choice for address mapping is between so-called

"memory-mapped I/O" and "I/O mapped I/O." [14] In

memory-mapped I/O systems, there is no distinction made

between memory and peripherals as data sources; each has a

unique address and can be accessed by any of the memory

access instructions. In I/O mapped I/O systems, memory and

peripherals are regarded as separate entities; peripherals

can only be accessed by use of IN and OUT instructions.

The memory-mapped structure has the advantage of allowing

more complex arithmetic and logical manipulations of data

from peripherals, but requires slightly more time for

simple transfers (13 clock cycles as opposed to 10).

Because of the need for fast transfers, and the

anticipation of little need for arithmetic manipulation of

peripheral data, I/O mapped I/O was chosen. In this

mapping scheme, each peripheral data source has its own

address. An eight bit I/O port is used to manage the

peripherals' chip select and control lines. The I/O

address is the value the port must output to access a given

peripheral. Since some peripherals may have several

registers accessed by a set of control lines, it is possible

for one peripheral to have several I/O addresses, each

corresponding to one particular register. The memory map

is shown in Table IV.3 and the I/O map is in Table IV.4.

After an initial wire-wrapped version mysteriously

failed to function and proved a near impossible problem in

debugging, subsequent versions of the prototype network
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were constructed on an SDK-85 microprocessor development

board. This allowed easy access to memory and registers

for analysis of bugs in development. As a result, the

memory map starts at 0800H as opposed to the normal 0,

because the development board provides program and memory

space that cannot be overwritten. Another revision

required was the change of the lowest priority interrupt,

required by the development board for a keyboard management

function. The 8273 transmit interrupt was disconnected and

its function replaced by monitoring of the transmit status

register.

The tables and figures that follow contain all

necessary information for the actual interconnection and

programming of the network stations. The basic circuitry is

the same for the CCU and the BIU, with the exception that

the CCU contains no user interface, and thus needs no 8741A

nor its associated peripherals. The software of the two

kinds of stations is similar; however, the CCU uses a

general receive command with the 8273, in order that it may

monitor all activity on the network. Appendix A details the

method used for producing actual assembly language code

from the details provided in this section.
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Table IV.3 Station Memory Map

ADDRESS

0-07FFH

0800H-OFFFH

100OH-10FFH

110OH-135AH

135BH-13BFH

13COH-13FFH

MEMORY CONTENTS

Monitor programs and memory (PROM)

Main program memory (PROM)

Buffer for user interface input (RAM, 256 bytes)

Buffer for network input (RAM, 603 bytes)

Scratchpad memory (RAM, 101 bytes)

Program stack (RAM, 64 bytes)

Table IV.4 Station I/O Map

MNEMONIC

IAODMA

ITODMA

IA1DMA

IT1DMA

IA2DMA

IT2DMA

IMSMDA

I08273

I18273

008273

018273

I08741

I18741

RESIDENT

DMA: Channel 0 address register

Channel 0 terminal count register

Channel 1 address register

Channel 1 terminal count register

Channel 2 address register

Channel 2 terminal count register

Mode setting register

8273: Command/Status register

Parameter/Result register

Transmit Result register

Receive Result register

8741: Data register

Command register
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10H

llH
12H

13H

14H

15H

18H

40H

41H

42H

43H

80H

81H



Table IV.5 8257 Specifications

Channel 0 (highest priority): 8273 Receive data
Channel 1: 8273 Data for transmission
Channel 2: 8741 receive and transmit data
Channel 3: (lowest priority): not used

Clock input: from 8085 clock output
Reset input: from 8085 reset output

Mode byte: MSB Autoload
TC stop
Extended write
Rotate priority
Enable Ch. 3
Enable Ch. 2
Enable Ch. 1

LSB Enable Ch. 0

(off)
(off)
(off)
(off)
(off)

l=on

Commands: Mode set
Set starting address (each channel)
Set terminal count (each channel)
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Table IV.6 8273 Specifications

Receiver interrupt (RxInt): to 8085 RST 7.5
Transmitter interrupt (TxInt): not used
Receiver DMA (RxDRQ and RxDACK): to 8257 Channel 0
Transmitter DMA (TxDRQ and TxDACK): to 8257 Channel 1

Clock input: from 8085 clock output
Reset input: from 8085 reset output

Modem control lines (RTS, CTS, CD): to bus transceiver
Transmit Clock: from clock generator

Modes:
One bit delay (off) Command 64H
Data transfer mode (off) Command 57H
Operating mode byte

MSB HDLC mode (off) l=on
EOP interrupt (off)
Early Tx int (off)
Buffered mode (on)
Preframe sync (on)
Flag stream (off) Command 91H

Parameter 06H

Commands:
Selective Receive (for BIU only)
Command C1H
Parameter <Buffer size (L)>
Parameter <Buffer size (H)>
Parameter <Match address#l>
Parameter <Match address#2>

General Receive (for CCU only)
Command COH
Parameter <Buffer size (L)>
Parameter <Buffer size (H)>

Transmit Frame
Command C8H
Parameter <number of bytes (L)>
Parameter <number of bytes (H)>
Parameter <destination address>
Parameter <control code>

Abort transmit
Command CCH

Abort receive
Command C5H
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Table IV.7 8741 Specifications

Data Bus (DO-D7): to 8085 Address/data bus
Chip select: tied low
Clock input: 6.144 MHz crystal
Reset input: 8085 reset output

I/O Port 1: 8251 output lines
I/O Port 2: P10-P12 to 8251 control lines

P24 (OBF) to 8085 RST 6.5
P26, P27 to DMA Channel 2

Tests (TO and T1): to 8251 RxRDY and TxRDY lines

Modes: none

Commands from 8085:
No response Command 01H

Message for user

Begin DMA from user

Hold: no DMA

Messages to 8085:
User message complete

Request DMA

Transfer to user done

Abort message buffer

Parameter <station address>

Command 02H
Parameter <message length>

Command 03H

Command 04H

Status=01H
Parameter <message length>
Parameter <destination address>

Status=02H

Status=03H

Status=04H
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Table IV.8 8251 Specifications

I/O lines (DO-D7): to 8741A Port 1
Control lines: from 8741A Port 2
Data received interrupt (RxRDY): to 8741A Test 0
Transmitter ready interrupt: to 8741A Test 1

Chip select: tied low
Clock input: from 8085 clock output
Reset output: from 8085 reset output

Transmit data (TxD): to user
Receive data (RxD): from user
Transmit clock (TxC): from clock generator
Receive clock (RxC): none (asynchronous operation)

Mode Byte:
Stop bits: 1 D7=0

D6=1
Parity: odd D5=0
Enable parity D4=1
6-bit characters D3=1

D2=0
Baud rate factor: 16 D1=l

D0=1 Mode byte=5BH

Command byte:
Hunt mode (off) 0 MSB
Internal reset (off) 0
Request to send (off) 0
Error reset (off) 0
Send break (off) 0
Receive enable
Data Terminal Ready (off) 0
Transmit enable
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Table IV.9 8085 Specifications

Interrupts:
RST 7.5 8273 Receive interrupt
RST 6.5 8741A Output Buffer Full flag
RST 5.5 SDK-85 kit board use

Reset: Debounced switch and RC network (for power-up)

Clock: Derived from 6.144 MHz crystal

I/O Mapping: I/O mapped (see memory and I/O maps)

Program memory: 2K bytes (Intel 2716)

Working memory: 1K bytes (two Intel 2114)
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DETAILED FLOWCHARTS

The next 21 pages contain the detailed flowcharts

for the BIU, CCU, and 8741. They are the basis for the

assembly language programming of the network units. In

essence, they are an amplification of the flowcharts

which appear in Section III. The flowcharts contained

here should be consulted only for information regarding

implementation of function, while those of Section III

provide the clearest picture of the network operation.

Figure IV.3.0 Detailed Flowcharts
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BIU Flowchart: Power-up/Reset

Figure IV.3.1 Detailed Flowchart: BIU
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BIU: On RST 6.5 (8741 Interrupt)

Figure IV.3.2 Detailed Flowchart: BIU
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BIU: Messoage Ready

Figure IV.3.3 Detailed Flowchart: BIU
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BIU: Start Buffer

Figure IV.3.4 Detailed Flowchart: BIU
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BIU: Transfer Comp1 t

Figure IV.3.4 Detailed Flowchart: BIU
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BIU: On RST 7.5 (8273 RxInt)

Figure IV.3.5 Detailed Flowchart: BIU
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BI U: Receive Error

Figure IV.3.6 Detailed Flowchart: BIU
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BITU Initialize

Figure IV.3.7 Detailed Flowchart: BIU
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BIU I ncr Token

Figure IV.3.8 Detailed Flowchart: BIU
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BIU: Send Message

Figure IV.3.9 Detailed Flowchart: BIU
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B I U Ack Recei ved

Figure IV.3.10 Detailed Flowchart: BIU
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BIU: Message Received

Figure IV.3.11 Detailed Flowchart: BIU
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CCU Flowchart: Power-up/Reset

Figure IV.4.1 Detailed Flowchart: CCU
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CCU: Waiting

Figure IV.4.2 Detailed Flowchart: CCU
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CCU: On RST 7.5 (8273 RxInt)

Figure IV.4.3 Detailed Flowchart: CCU
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CCU: Token Received

Figure IV.4.4 Detailed Flowchart: CCU
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8741 Flowchart: Power-up/Reset

Figure IV.5.1 Detailed Flowchart: 8741
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8741: Begi n Message

Figure IV.5.2 Detailed Flowchart: 8741
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8741: Get Command

Figure IV.5.3 Detailed Flowchart: 8741
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8741: No Response

Figure IV.5.4 Detailed Flowchart: 8741

-71-



8741: Output Message

Figure IV.5.5 Det

- / z-



V. Analysis of the Prototype Network

A. Definition of Performance Parameters

After a prototype network of four stations had been

successfully brought to operation, a quantitative measure

of the performance of the system was desired. Primarily,

this measure concerned the data-handling capability of the

network (a discussion of reliability of the network is

contained in the first part of Section VII), which may be

characterized by three parameters: access delay,

efficiency, and throughput. Part A of this section

concludes with a definition of these parameters, part B is

devoted to the development of a mathematical model of the

network operation, and part C uses this model to project

values for the three parameters.

In order to accurately describe the network, the

general definitions of the performance parameters must be

tailored to the network's unique features. These

parameters may not be directly measurable, but once

determined, they should give an accurate description of

regular operation. For instance, because of the network

transparency requirement, the user is not aware of any

access delay time. However, if a steady stream of data is

fed to a network interface, the delay will have a noticeable

effect. The access delay is defined as the time from user

completion of a message (including destination address) to

the time at which that message is actually transmitted on

the network medium. Because of the independent operation

of the user and bus interfaces, the access delay is not a

constant quantity (consider the difference in delay for the

cases where the user completes input of a message just

before the station's token COUNT is reached, as opposed to

just after). For this reason, coupled with the negative

nature of delay, the access delay is considered for the
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worst case (i.e. message completed just after COUNT

reached). In the case of the prototype network, the access

delay corresponds to the amount of time needed to transfer

a completed message from the user interface to memory plus

the amount of type taken by the network to cycle through

all possible values of COUNT. The high-speed nature of the

user interface-to-memory transfer means that the COUNT cycle

time is the principal component of access delay.

Efficiency is generally defined as the percentage of

information transmitted that is "useful." [15] "Useful" is

defined in relation to the user, not the network or its

internal function. Useful information excludes any data

appended to a message for network management purposes, that

is, only the actual data message is useful in this sense;

whatever other information used for formatting, addressing,

error-checking, or transceiver synchronization is

considered to be non-useful "overhead." This definition of

efficiency will require a subtle change to be fully

indicative of the prototype network's efficiency. In a

random-access network, there always exists some level of

utilization at which all time is used in transmission of

data, i.e. there is no "dead time" when there is no data on

the network medium. In any deterministic-type network,

such as the prototype network, just the opposite is true:

there will always be some dead time while a consensus is

being reached on which unit has the right to transmit. If

efficiency is to reflect the dynamic operation of the

network, it must take any dead time into account. Thus the

definition of efficiency is altered to be the percentage of

time spent in transmission of useful information. The

result is that the longer the dead time, the lower

efficiency, so that the efficiency may be viewed as a

measure of the utilization of the network data rate.

Throughput is the rate of data transfer through the
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network. From the argument of the previous paragraph, if

that definition is amended to be the rate of useful data

transfer, then the throughput is merely the product of the

efficiency and the network data rate. This definition is

realistic since the useful data is sole concern of of the

user; the actualities of data flow inside the network are

not important from a performance standpoint. With these

definitions, an accurate performance model of the network

needs only to describe the timing of network activity.

B. Mathematical Performance Model

Although the user's input data rate to a given BIU is

generally much slower than the bus transmission rate, the

combination of many users can achieve almost any collective

input data rate. Since the network medium is the part of

the network through which all messages must pass, it is the

basis of the performance model for the network. As was

argued previously, the time spent in transfer of a message

from user interface to memory is insignificant in

comparison to the time spent waiting for authorization to

transmit. Thus for low enough network data rates (less

than 10M bits per second), the significant performance

parameters can be determined from a consideration of

message flow on the network medium, ignoring the smaller

delays associated with message transfer to and from memory.

The following argument is based on a hypothetical

observation of the network medium over a period of time.

This observation is made at one end of the bus, called node

zero, where the location of each station corresponds to a

node. The CCU is assumed to be located at node zero.

Besides allowing easier conceptualization, this assumption

corresponds to the worst location for the CCU (i.e. the

location which maximizes propagation delays). The

magnitude of propagation delays is minimized by central
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location of the CCU. Finally, the observation is based on

the additional assumptions that all BIU's are identical in

terms of processing times, that all BIU's are functioning,

and that communication on the network is evenly

distributed, i.e. over a long enough period of time, any

given BIU will send messages to all other BIU's. Other

simplifying assumptions will be stated as they are made.

Table V.1 shows the meaning of the variables used in the

equations and figures.

The model follows from the sequence of events under two

different conditions, first when each BIU has a message of

length M to send, and second when none of the BIU's has a

message to send. Under the first condition, the COUNT

cycle time will be maximumized (corresponding to maximum

access delay) and under the second, COUNT cycle time will

be minimized (minimum access delay).

Figure V.1 shows the sequence of events under the first

condition, starting just after the CCU has issued a token

message. COUNT is assumed to have the value which will

enable station i to transmit. For T/r seconds, the token

message is passing node 0. Afterwards there is dead time

while the message propagates to node i (Poi), station i

receives the token and realizes that it may transmit (tl),

and finally the message which station i sends propagates

back to node 0 (Poi). For the next M/r seconds, the

message is passing node zero, and afterwards another dead

time begins. Assuming that the message was sent to station

j, this dead time corresponds to the time taken for the

message to travel from node i to node j less the time the

message took to get to node zero (Pij - Poi), plus the

processing time before station j to sends the

acknowledgement message (t2) and the time taken for the

acknowledgement message to reach node 0 (Poj). For the

next A/r seconds, the acknowledgement message passes node

-76-



BUS ACTIVITY VIEWED AT CCU NODE

BIU i sends message to BIU

ELAPSED TIME:

T/r

Poi+tl+Poi

M/r

Poj+Pij-Poi+t2

A/r

Pij+Poi-Poj+t3

T/r

t4

T/r

S = 2Poi + 2Pij + (2T+A+M)/r + tl + t2 + t3 + t4

Figure V.1: Bus Activity (with messages)
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Table V.1 Definition of Variables

variable

T

A

M

L

S

r

Pij

tk

meaning (units)

token frame length (bits)

acknowledge frame length (bits)

message frame length (bits)

minimum loop time per BIU (seconds)

maximum loop time per BIU (seconds)

bus data rate (bits per second)

propagation time from node i to node j

(seconds)

kth processing time (seconds)

Where each tk corresponds to the time from a given

input received until a given output is issued by a

particular kind of unit:

tk input received

tl token (COUNT=MYADDR-1)

t2 message

t3 acknowledge

t4 token

t5 token (COUNT=MYADDR-1)

t6 token (COUNT=LIMIT)

to output sent

message

acknowledge

token

token

token

token
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0, followed by a dead time corresponding to the propagation

time of the acknowledgement to node i less the propagation

time of the acknowledgement to node 0 (Pij-Poj), plus the

time taken after reception of the acknowledgement before

station i sends the token message (t3), and the time for

the token message to reach node 0 (Poi). For T/r seconds

the token message passes the node, followed by a processing

delay (t4) before the CCU issues the token message which

will allow station i+l to transmit. The total time taken

for the single station S, is given by:

S = 2Poi + 2Pij + (2T + A + M)/r + tl + t2 + t3 + t4.

The process is repeated for N BIU's in completing one

cycle of COUNT, which makes the total maximum loop time, ST:

i=N

ST = 2 (Poi + Pij)+N(2T + A + M)/r+N(tl+t2+t3+t4) + t6-t4.

i=l;i#j

The t6-t4 term is added to account for the fact

that after COUNT has been cycled, COUNT=LIMIT and must

be set to zero before the next cycle.

Figure V.2 shows the second case, a simplified version

of the first where there are no messages to be sent. The

processing time is t5 for all stations, the time between

reception of the token and transmission of the token when

no messages are ready. All messages propagate between CCU

(node 0) and the ith BIU and thus the loop time per BIU for

this case (minimum access delay), L, is given by:

L = 2Poi + 2T/r + t4 + t5.

Similarly, for the total group of N BIU's, the total loop
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BUS ACTIVITY VIEWED AT CCU NODE

No messages sent

(node O)

ELAPSED TIME:

T/r

Poi +t5+Poi

T/r

t4

T/r

L = 2Poi + 2T/r + t4 + t5

Figure V.2: Bus Activity (no messages)
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time, LT,

i=N

LT = 2 (Poi) + 2NT/r + N(t4 + t5) + t6-t4.

i=l

The propagation time sums in all of the formulas can be

simplified by the assumption that all stations are

separated by an average distance d. This assumption is

particularly valid for large N, since the stations need not

be separated by exactly d in each case, but the average

interstation separation is d. With this assumption,

i=N i=N

2 E Poi = 2 id = N(N+l)nd/c.

i=l i=l

Where c/n is the propagation velocity on the communication

medium with c being the speed of light. Therefore,

LT = N(N+l)nd/c + 2NT/r + N(t4 + t5) + t6-t4.

For ST, the propagation term also includes a Pij term,

where j has not been specified. Clearly, there is a best

and worst case for that sum, corresponding to transmission

to nearest neighbor and to most distant station,

respectively. For the best case, Pij is simply d, and

thus

STb = N(N+l)nd/c +2Nnd/c +N(2T+A+M)/r +N(tl+t2+t3+t4) +t6-t4

= N(N+3)nd/c + N(2T+A+M)/r + N(tl+t2+t3+t4) + t6-t4.

In the worst case, the farthest distance is the same

for any two stations equidistant from the center of the
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bus, therefore,

2 Pij = (N-1 + N-2 + N-3 + . . . + N/2)4nd/c N even)

i=l

= N(3N-2)nd/2c and

STw = 5N(N)nd/2c + N(2T+A+M)/r + N(tl+t2+t3+t4) + t6-t4.

However, while the worst case may be valuable as a

absolute maximum, neither worst nor best case fit well with

the assumption that communication is evenly distributed.

For large N, the average propagation time, AP, will be more

significant:

i=N i=N

AP = {[1/(N-l)] Pij}

i=l j=l,j#i

i=N

= [2nd/c(N-1)] (1 + 2 + 3 + . . . + i-l)

i=l

= N(N+l)nd/3c and thus

AST= 4N(N+l)nd/3c +N(2T + A + M)/r +N(tl+t2+t3+t4) + t6-t4.

C. Theoretical Values of Performance Parameters

From the definitions of part A and the model of section

B, the theoretical values of the performance parameters

follow quite simply. The access delay, characterized by

system loading (i.e. length and number of messages sent) is

given by the maximum loop time, ST, so that the maximum
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access delay, MAX AD, is given by:

MAX AD = 4N(N+l)nd/3c + N(2T+A+M)/r + N(tl+t2+t3+t4) + t6-t4.

M is understood to correspond to the average message length,

and the maximum value of access delay is the result of M

being equal to the maximum allowable message length. In

the special case when M is zero, the so-called minimum

access delay is the total loop time LT, so that

MIN AD = N(N+l)nd/c + 2NT/r + N(t4 + t5) + t6-t4.

A more detailed definition of M is needed to determine

the efficiency. The message frame includes non-useful

information, thus M is expressed as m+O where m is the

useful information and 0 is the non-useful overhead. With

this definition, the efficiency is the ratio of Nm/r to the

total maximum loop time:

E = (Nm/r)/[4N(N+l)nd/3c +N(2T+A+M)/r +N(tl+t2+t3+t4)+ t6-t4]

= m/[4(N+l)rnd/3c +(2T+A+M) +r(tl+t2+t3+t4) + r(t6-t4)/N].

The throughput is the product of the collective input

data rate, R, and the efficiency. The upper bound on

throughput is for R=r, since data cannot leave the network

any faster than the bus data rate. In this case, the

throughput is given by:

TP = rm/[4(N+l)rnd/3c +(2T+A+M) +r(tl+t2+t3+t4) +r(t6-t4)/N]

= m/[4(N+l)nd/3c +(2T+A+M)/r +(tl+t2+t3+t4) + (t6-t4)/N].

There are several qualitative observations which can be

made about the calculations at this point. In
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configurations where the propagation time contribution is

insignificant (as is the case for d << 1 Km), the access

delay is linear in N and the efficiency is independent of

N. As the data rate increases, the access time decreases

and will go to zero for small processing times. However,

for the efficiency, the negative effect of the process

times becomes larger in direct proportion to the data rate.

Thus a highly efficient system may be realized by

minimizing processing delays while maximizing the data rate

for any value of N.

A final step in the analysis is to determine values for

each of the variables used in the model. The most

revealing values are those of the processing times tl

through t6 and the overhead variables T, A, and 0, since

the other variables are specified by the network

configuration.

As may be seen in the detailed flowcharts of section

IV, the interrupt structure of the BIU and the CCU requires

considerable decision-making and peripheral commands in the

time from message or token reception to appropriate

reaction. Thus, the processing times are a very

significant factor in the evaluation of the performance

parameters. The actual values of the processing times are

obtained from the assembly language program for the BIU and

CCU. Each sequence of events associated with a processing

time consists of many assembly language commands, each of

which in turn requires a given number of clock cycles. The

sum of the cycles multiplied by the clock period yields the

value of the processing time. These values are generally

constant, although the independence of the bus and user

interfaces could result in further process delays in the

case of both interfaces requiring memory access. However,

since the time between successive interrupts is much larger

than the time required for memory transfers and
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Table V.2 Calculation of Processing Times

1 clock cycle = 2/(6.144 MHz) = 326 nanoseconds

tk number of cycles

tl

t2

t3

t4

t5

t6

1775

1089

1731

1384

1729

1414

time (milliseconds)

.578

.354

.563

.451

.563

.460
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decision-making, the processing times may be safely

approximated as constant. Table V.2 shows the calculation

of the processing times.

Values of the overhead variables come from the SDLC

frame formats and an additional consideration of the

network design. The Manchester encoding chip used in the

bus transceiver requires 11 bit periods for synchronization

at the beginning of each message. Using the definition

previously stated that only user input is useful

information, the values of A and T are the lengths of the

acknowledge and token frames, respectively, plus the 11

bits of synchronization each. 0 is the number of bits in a

message frame less the length of the actual message plus

the 11 bits. The calculated values of all the model

variables are shown in table V.3.
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Table V.3 Values of Variables for Prototype Network

Variable

T

A

0

m

c

Meaning

token frame length

acknowledge frame length

message overhead

message length

speed of light

Value

59 bits

67 bits

67 bits

8 to 2040 bits

300000 km/sec

--design parameters--

bus data rate

number of stations

refractive index

interstation distance

--performance parameters--

maximum access delay

minimum access delay

efficiency

throughput (maximum)

38.4K bits/sec

3

1.47

100 meters

180 milliseconds

12 milliseconds

88.6%

34K bits/sec
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Section VI. Simulation of Data Traffic

The theoretical values of the performance parameters

were verified by actual operation of the prototype network.

To facilitate this verification, a data traffic simulator

was constructed. The simulator was required to generate

data, move it through the network, and provide timing and

accuracy checks. Part A of this section discusses the

design objectives for the traffic simulator, part B is

devoted to a description of the operation of the actual

system, and part C reports the results of traffic

simulation.

A. Simulator Design Objectives

The traffic simulator essentially performs the inverse

operation of the prototype network. The prototype network

takes data from many sources, channels this data through a

single data path, and transfers it to different

destinations. The simulator must generate data, send it to

many stations, and then retrieve it from many stations.

Combined with the objective of measuring performance

parameters, this function suggests several of the

fundamental design requirements:

1) The simulator must be capable of effective data rates

approaching that of the network bus, at least on the

short run.

2) The simulator must have capability for several

input/output channels.

3) The simulator should generate data either from a random

process or some kind of programming.

4) In order to implement error-checking, the simulator must

have storage space for at least one message.

5) The simulator must be able to time I/O operations

accurately.

In addition to the above considerations, another

practical goal was considered in the design process. While
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the traffic simulator was to be a valuable diagnostic tool,

it was not to be used as part of a final operational

system. Thus, an effort was made to produce as little

highly specialized hardware as possible, endeavoring to use

more general purpose equipment and software. This goal

mitigated against the construction of a distributed system,

such as creation of a data source for each station with

some kind of central control, in favor of a central

programmable source, such as a small computer, with

multichannel I/O capability. By making the simulator

software intensive, its flexibility and future usefulness

were greatly increased.

The need for high data rates suggested the use of

parallel formatting (e.g. data bytes derived from the

logical sense of eight separate wires) as opposed to the

serial format (bytes derived from eight or more consecutive

pulses) used by both the original user interface and the

network medium. The associated trade-off is a decrease in

cable length and greater cabling expense, but since the

simulator was to be an diagnostic tool only, these problems

were not considered troublesome.

Design goals 3, 4, and 5 were easily satisfied by any

of a group of desktop computers, but few of these computers

offered multiple I/O channels. This problem was solved by

using a popular parallel interface, the IEEE-488 1978

standard interface [16]. Briefly, the IEEE-488 interface

(originally marketed as HP-IB by Hewlett Packard) is a bus

structure using a polling algorithm. Using a pull-up bus

structure, many devices maintain constant connection to

16-line bus, eight lines for data and eight lines for

control and handshaking. When a given device is active, it

manipulates the appropriate lines by grounding them, while

inactive devices merely allow their lines to float high. A

single unit is designated as system controller. All other
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units may send or receive data only by command of the

system controller. The system controller initiates and

monitors all transactions and may send or receive data as

well. Because the system transfers data by handshake

(interchange of control lines), the data rate is limited

only by the speed at which active devices can execute the

handshake. Typically this translates to a data rate as

high as 25K bytes per second or higher. Two desktop

computers, a Hewlett-Packard 9825 and a Hewlett-Packard 86,

were available for use as IEEE-488 controllers. Because of

the higher speed capability of the HP-9825 and the greater

programming flexibility of the HP-86, both were used in

different parts of the simulation.

As was mentioned earlier, however, the prototype

network was designed for a serial interface (RS-232) at the

user level. Thus, the major work in creating the simulator

was developing the IEEE-488 user interface. This work was

not wasted, however, because of the wide use of IEEE-488.

Each of three prior demonstrations of the prototype network

had used at least two IEEE-488 compatible data sources.

Moreover, the hardware design of the prototype BIU's had

anticipated such possibilities by concentrating the user

interface in the 8741A. To accomplish the IEEE-488

interface, the only hardware changes was the replacement of

the 8251 USART with pull-up line drivers (Texas Instruments

SN75160 and SN75161). All other changes were accomplished

by a new program for the 8741A. Appendix A describes the

actual programming of the IEEE-488 user interface in

detail.

B. Operation of the Traffic Simulator

Before the simulator was actually programmed and used,

two helpful troubleshooting tools were constructed. One

was simply an LED monitor of the state of the IEEE-488 data

and control lines, the other was a slow handshake device,
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which was actually a user interface without an associated

BIU programmed to add about a second of delay to each data

handshake. The slow handshake device, when activated,

slowed the IEEE-488 data rate to a speed at which the

byte-by-byte transfers could be verified visually. These

two devices, as well as a parallel logic analyzer were not

used in the actual operation of the simulator, when speed

was an absolute necessity, but they proved invaluable to

debugging and confidence testing of the simulator.

The simulator itself consisted of only a desktop

computer connected to the IEEE-488 user interfaces of the

BIU's, thus the heart of the system was software. The

software was designed to take full advantage of the

features of the interface while exercising and analyzing the

prototype network. Before any tests were conducted, the

network bus data rate was measured with a frequency counter

and the value recorded. This value was continually updated

to account for any temperature effects. Three basic tests

were designed, a no-message test, a steady-state medium

message test, and a short-term maximum message length test.

The no-message test required no simulator action at

all. For this test, the network was allowed to operate

with no user input at all, which meant that each station

sent only the token message when the token COUNT matched

MYADDR. The transmitter enable line of one BIU was

monitored with an oscilloscope, yielding a periodic signal.

In this mode, the period of the signal corresponded to the

minimum access delay. The test was conducted for one, two,

and three-station network configurations.

The steady-state test required use of the simulator.

In this test, the goal was to provide as even a flow of

information through the network as possible. In this

test, a random message (created by use of a psuedo-random

number generator and decimal to ASCII conversion) was
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routed to a given station to be sent to some other station.

As soon as the transfer to the sending station was

completed, a timer was started. The destination station

was monitored until the message was successfully recovered,

at which time, the timer was stopped and the message

checked against the original message for any errors. The

elapsed time was adjusted to take account of any delays

inherent in the simulator, determined at the beginning of

the test. The value of the message length divided by the

network bus data rate was calculated. This value divided

by the elapsed time corresponded to the efficiency. The

length of the message divided by the elapsed time

corresponded to the throughput. This test was conducted on

a long-term basis, several hours at a time until the

measured parameters became constant to at least three

places.

The third test was essentially like the second, except

that it involved a series of tests instead of a single

continuous test. The goal of this test was to measure

performance of the network at full loading. Unfortunately,

this test could not be performed continuously for all data

rates because of a limitation in the simulator data rate.

The user interface was found to be able to operate IEEE-488

at a rate of about 12K bits per second at best, the

limitation being the user interface's handshaking ability.

Thus, the simulator could only maintain a 12K bits per

second effective data rate. However, on the short run, that

data rate could be multiplied by the number of stations by

taking advantage of the multiple listeners capability of

IEEE-488, which allows any number of listeners (data

receiving stations), but only one talker (transmitter). In

this test, all stations were addressed to listen as a basic

message was sent, without the closing character and

address. Then each station was given an individual closing

character and destination address in quick succession.

The effect is of N nearly simultaneous messages being sent.
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A timer was started and is not stopped until each station

indicated it had a message ready for the user. The messages

are then read back by the computer and checked for errors.

The elapsed time corresponded to the maximum access delay.

The sum of the lengths of the messages divided by the

elapsed time corresponded to the throughput. The throughput

divided by the data rate corresponded to the efficiency.

Because of the margin for error in this test, the average

was not computed immediately, but only after several

iterations and the discarding of clearly erroneous values.

C. Experimental Data

In general, the experimental data indicated that the

model of Section V. was accurate, although the narrow range

of the network bus data rates (up to 64K) and number of

stations (up to 3) could not supply far-reaching results.

The model did seem to underestimate the magnitude of the

delays by a small margin, which became more significant at

higher network data rates and longer message lengths. This

would seem to indicate additional delays due to memory

transfers, ignored in the model, were somewhat of a

factor. At no time did the experimental values fall

outside of 15% of the predicted values.

Using the first test, the minimum access delays were

found to be essentially linear in N, as expected,

corresponding to insignificant propagation delays. The

test was conducted for three values of N and four values of

r. As a function of r, the delay was found to be a sum of

fixed delay and a linear term in r. The least squares

coefficients of fixed and r-dependent delay were found to

be

MIN AD = N(123r + 1.24 msec).

-93-



These calculations displayed a correlation coefficient

value of 0.85. The projected value of the coefficient

for r was 118, and the projected value of the fixed

delay was 1.15 msec. These results seem to indicate an

additional amount of both fixed and variable delay, but

justify the approximations made in Section V.

The second test showed efficiency to be essentially

independent of N. This test was conducted for three values

of N, five values of m, and four values of r. Assuming N

independence (the least-squares coefficient of N was found

to be less than .001), the equation for efficiency was

E = m/(262 + m + .0021r)

and the equation for maximum access delay was found to

be

MAX AD = N(262 + m + .0021r)

For these values, the correlation coefficient was determined

to be 0.81. The value 262 corresponded to the fixed

overhead, projected at 252, while the coefficient of r

corresponded to the sum of processing times, projected at

1.95 milliseconds. As before, both terms were slightly

higher, indicating additional delay not accounted for in the

model, perhaps as a result of memory transfers and

transceiver delays. However, since the average of the

observed data fell within 10% of the model, the model was

considered to be sufficiently accurate.

The third test proved less consistent than the second,

due to the indeterminant nature of token count at the start

of each test. While the same general form was found for

the efficiency and delay equations, both delays averaged

considerably higher:

E = m/(408 + m + .0035r)

MAX AD = N(408 + m + .0035r)

-94-



The correlation coefficient here was only 0.48, giving

another indication that the test was not totally accurate.

These results indicated that the test was not achieving

simultaneous completion of the data messages, with at least

one station missing an opportunity to transmit because its

message was incomplete. Thus, only the form of the results

of this test was considered valid, with the second test

viewed as the more accurate determination of the values of

the coefficients. The results of the third test were viewed

as more convincing proof of N-independence of the efficiency

(the coefficient of N was on the order of .001).

In both the second and third tests, error-checking was

conducted. Because of the error-checking performed by the

network itself, two kinds of errors were recorded. If an

error was detected by the network, the entire message frame

was discarded and not forwarded to the user (the

simulator). This was termed a detected frame error. If an

error was detected by the simulator but not the network, an

undetected error was said to exist. In processing over 10

million frames, no undetected errors were found and less

than 100 detected errors were indicated. Because a frame

consisted of on the order of 100 bits, the detected bit

error rate of the network was less than one in 10 million,

and the undetected error rate still less.

In summary, then, the simulation of data traffic

validated the conclusions of the performance model,

although indicating slightly additional delay. The network

was shown to be able to maintain steady, high-volume usage

without instability. In a generally safe environment,

errors were few, and the errors which did occur were

detected by the network. Thus the prototype network

satisfied the majority of its original design objectives.
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Section VII. Network Revisions

Based on the results of the analysis and simulation,

alterations to the original prototype network were

proposed. These changes included efforts to improve

network reliability and improve performance. Part A of

this section describes reliability improvements, part B

discusses performance improvements, and part C recalculates

the performance model based on the changes made.

A. Reliability Improvements

While Section VI. detailed the data accuracy of the

prototype network, no mention was made of component

failures; the performance model of Section V. was founded

on the assumption that all components operated correctly

and to specification. Particularly during the early

development of the prototype network, operation was

severely affected by inability of the Intel 8273 to

function correctly. The failure was premature and

unnotified disabling of the receiver, caused by internal

transitions on the modem control lines. As a result, many

messages were lost and the network had to be periodically

(every few seconds) reset. Before the simulation of

traffic was begun, this problem required at least a

temporary solution. After much experimentation, the problem

was localized to the modem control lines (RTS and CTS). By

changing the gating of these control lines, stability was

increased to the order of minutes before requiring reset,

and finally, by tying CTS low at all times, the problem was

essentially eliminated. However, this problem combined with

the 8273's data rate limit of 64K, was seen as a clear

indication that the 8273 should be replaced.

The selection of a replacement SDLC protocol chip

involved the evaluation of many alternatives (Texas

Instruments' TMS9903, Standard Microsystems' CDM5025,
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Signetics' 2652, Fairchild's F6856, Western Digital's

SD1933, NEC's uPD7201, Intel's 8274 and others) [17]. The

goals for this chip were data rate on the order of 1

Megabit/sec, DMA capability, SDLC formatting, dual receive

addresses, and modem control lines. Compatibility with the

existing network was seen as required. With these goals and

requirements, the choice became essentially limited to the

Intel 8274 and the NEC uPD7201. Due partly to the bad

experience with the 8273, and after successful laboratory

evaluation of the uPD7201, the uPD7201 was chosen, despite

its different implementation of DMA control lines.

The appealing features of the uPD7201 were its data

rate to 880K, dual independent SDLC channels, and

simplified command set. The difference in DMA operation

involved the use of a single DMA acknowledge line for four

channels, but only simple gating was required to interface

with the 8257 DMA controller. With this change in the

hardware and software designs, there were also several

other changes proposed to improve performance.

B. Performance Improvements

One of the first improvements to be made in the

prototype network was to be the addition of several more

stations, since the three station network would not be

adequate for most applications. Because the access delay

is a linear function of N, however, an increased number of

stations quickly leads to maximum delays on the order of

seconds, which is generally unacceptable. To minimize

these delays, the data rate r must be increased and the

processing times minimized. The effect of increasing the

data rate is to decrease efficiency and throughput; this

effect becomes dramatic in the region where r nears 1M

bits/sec. The cause of the sharp decrease in efficiency at

high data rates is the processing times; thus, any attempt
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to increase the data rate (decrease access delays) must be

accompanied by reductions in the processing times to

maintain high efficiency. The access delay per station and

the efficiency (roughly independent of N for short distance

configurations) are shown as a function of the network data

rate in Figure VII.1.

To minimize the processing delays, four changes were

made: a revision of the acknowledgement scheme, a

redefinition of the token message, restructuring of the BIU

software, and a change in the bus transmitter control

line. From the detailed flowcharts, it can be seen that

the majority of the processing time is spent setting modes

or issuing commands to peripherals, or waiting for a

response. The goal of the changes is to minimize this time

by eliminating all waiting and performing set-up commands

before the token count reaches the value.

In the prototype network, after a station sent a

message, it waited for an acknowledgement. This added two

processing times and twice the interstation propagation

time to the delay. For the revised network, a different

acknowledgement scheme is employed. When a station

receives a message from another station, it makes no

immediate response, but records the fact that it needs to

acknowledge the message. Then, when its next transmission

turn arrives, it first transmits any acknowledgements,

followed by a message if it has one. Stations are still

allowed only one message per turn, but may add any number

of acknowledgements. A sending station knows that its

message was not received correctly if no acknowledgement

has been received by the time its next turn arrives. At

this time, the station may re-transmit its message.

The token message is the most common message on the

network. However, since there is no other information

involved in the token other than its existence, there is no
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need to frame the token message as an SDLC frame. For the

revised network, a single sequence (10 bits) is proposed as

the new token message. This sequence is chosen as ten

consecutive ones, which corresponds to the SDLC abort code.

As was stated in Section III, the SDLC format never allows

more than five consecutive ones in the data, using six ones

for the flag. When an SDLC receiver receives more than six

consecutive ones, it aborts the current data stream being

received and signals reception of the abort code. This

method works perfectly for the token. When the receiver

interrupts the processor, the processor must check its

status to determine the cause of the interrupt. If the

receiver indicates that an abort was received, the

processor merely increments the value of COUNT and

continues operation. The uPD7201 has a special command for

sending the abort sequence.

Beyond the savings of overhead from redefinition of the

token, the abort sequence allows for the elimination of

another processing time. For the revised network, the

processor monitors COUNT as before. However, when the

token count is one less than the station's address, it

issues the command to its transmitter to send a message.

The transmitter is not able to transmit immediately,

however, due to a special circuit used to provide the CTS

signal. This circuit is essentially a shift register used

to monitor the last eight bits received from the network.

As soon as eight consecutive ones are received, the circuit

allows CTS to go low, and transmission follows reception of

the token by no more than a gate delay. At conclusion of

the transmission (messages and/or acknowledgements followed

by the abort code), the transmitter relinquishes RTS and

the token recognition circuit is disarmed until the

processor issues another transmit command. The heart of

this operation is the dual independent channel capability
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of the uPD7201. Channel A is used for receiving only and is

always active. Channel B is used for transmitting only,

and is only active after processor initiation and the next

token reception.

A final revision concerns the user interface. Because

the central processor may keep the 8741 on hold longer

under the new acknowledgement scheme, provision is made for

more efficient storage by the 8741. In the prototype

network, the user did not forward the destination address

until the conclusion of the message. For the revised

network, the first two characters received after the

initiating character are interpreted as the destination

address. This structure has two main advantages: the 8741

may perform any necessary division of the message into

blocks for immediate transmission, and the local buffer of

the 8741 may be used more fully. In the prototype network,

if a message was started but not completed, the 8741 could

not send data in either direction until a timeout expired.

Under this new structure, the 8741 may save blocks of data

up to 32 bytes, and transfer them to memory at once. If

the user lags in input, the partial message may be sent

over the network to be followed by a conclusion. While on

hold, the 8741 may continue to receive data, up to 32 bytes

before it must hold off the user. Although this change

does not directly affect the performance model, it can be

seen that it will effectively reduce access delay.

C. Recalculation of the Performance Model

Using the same variables and procedure as the prototype

analysis, the benefits of the network revisions may be

demonstrated. In the case that no messages are being sent,

the sequence of events is the same as it was for the

prototype network. For each station the bus, the minimum

loop time, L, is given by
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L = 2Poi + 2T/r + t4 + t5.

However, the magnitudes of t4 and t5 have been reduced

from milliseconds to microseconds and the magnitude of

T has been reduced by a factor of five. As before the

minimun access time becomes

MIN AD = N(N+l)nd/c + 2NT/r + N(t4 + t5) + t6-t4.

In the case when each station sends a message, the

sequence of events is different due to the elimination of

the wait for acknowledgement. In this case, as shown in

Figure VII.2, the activity observed at node 0 commences

with the token as before. After the token has passed the

node, there will be a wait of 2Poi as the token travels to

node i and a message comes back from node i. There also is

a waiting time tl, corresponding to the token-to-message

delay, which is greatly reduced in this network. For steady

state operation, there must be one acknowledgement for each

message sent. Thus, an acknowledge frame is assumed to be

the first part of the message, passing the node for a time

A/r. This is followed by a message taking M/r, and finally

the token, T/r. After the token passes, the CCU has a

delay t4 before the token is sent again, completing the

cycle. Thus the maximum loop time S is

S = 2Poi + (2T + A + M)/r + tl + t4.

Again, the values of T, tl, and t4 are greatly

reduced, and the 2Pij term vanishes along with t2 and

t3. The maximum access delay becomes

MAX AD = N(N+l)nd/c +N(2T + A + M)/r +N(tl + t4) +t6-t4.

And finally, as before, the efficiency and throughput
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VIEWED AT CCU NODE (node O)

ELAPSED TIME:

T/r

Poi + tl

A/r

M/r

T/r

t4

T/r

Figure VII.2 Revised Bus Activity (with messages)

S = 2Poi + (2T + A + M)/r
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are given by

E = m/[ N(N+l)rnd/c +(2T + A + M) + r(tl + t4) + r(t6-t4)/N],

and TP = rE, respectively.

While the formulas may not seem to be much different

from those of the prototype network, the differences are in

fact quite significant. To this end, Table VII.1 and Figure

VII.3 show the improved performance for comparison to

Tables V.1 and V.2 and Figure VI.1.

Again some qualitative observations are important.

With the processing time effectively made insignificant,

the propagation times are no longer totally insignificant.

Thus the system does not achieve access times in the

nanoseconds when d is on the order of hundreds of meters.

However, both the propagation times and the processing times

do not make an overwhelming contribution to the delays

until r exceeds 1 Megabit/sec or N exceeds 20. Since both

of these cases are on the extreme limits of the intended

operation of the network, the revisions are most useful.
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Table VII.1 Values of Variables for Revised Network

Variable

T

A

0

m

c

tl

t2

Meaning

token frame length

acknowledge frame length

message overhead

message length

speed of light

processing time (BIU)

processing time (CCU)

Value

10 bits

67 bits

67 bits

8 to 2040 bits

300000 km/sec

500 nanoseconds

500 nanoseconds

--design parameters--

bus data rate

number of stations

refractive index

interstation distance

--performance parameters--

maximum access delay

3 stations

32 stations

minimum access delay

3 stations

32 stations

efficiency

3 stations

32 stations

throughput (maximum)

3 stations

32 stations

880K bits/sec

up to 32

1.47

100 meters

7.68 milliseconds

80.5 milliseconds

75.7 microseconds

1.23 milliseconds

93%

95%

818K bits/sec

838K bits/sec

-105-

r

N

n

d

MAX AD

MIN AD

E

TP



Figure VII.3

Access Delay and Efficiency: Revised Network
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Section VIII. Conclusions

At the time of this report, the revised network is

still in the development stages. After a working model is

completed, the traffic simulator will again be used to

verify performance before a final circuit board version is

produced. Timing will be much more critical in the 880K

version because the network data rate is approaching the

clock rate of the microprocessors. If necessary, small

delays may be inserted to increase the magnitude of tl and

t4 to insure correct operation. However, these delays will

not have the effect of the processing delays of the

prototype network due to the associated software redesign.

An alternative for networks of many stations would be to

arm the transmitter two or more tokens in advance of the

desired count. Regardless, the prototype network and the

revised design demonstrate that a network of this sort may

achieve high efficiency and acceptable access delays,

despite heavy loading and many users.

The value of the broadcast token protocol can be seen

by comparison to the chief competitor, Carrier Sense

Multiple Access protocols, such as that used in Ethernet

and other popular local area networks [18]. Because of the

nature of the protocol, CSMA networks may experience

instability or seriously degraded performance under heavy

loading. Generally, such networks operate at efficiency

(utilization) levels less than 20% in order to assure

proper operation. Thus the revised network may achieve up

to five times the data throughput using the same network

data rate; moreover, there are no problems with

instability. With appropriate buffer space, the revised

network could be designed to maintain total transparency at

constant effective data rates up to that of the network bus,

even exceeding that rate on the short run.

The final parts cost for the network is under $150 per
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station for the wire pair bus, with fiber optic or hybrid

stations costing less than $800 per station (Appendix B

describes the cost differential for various implementations

of the network bus). Thus, while the added cost of the

optical fiber may not be justified for all locations,

where needed it is available at a reasonable price. All

parts are commercially available and most are readily

second-sourced.

As designed, the network is not intended for high-volume

long-length transfers, as in computer-to-secondary memory

applications. However, the network is ideally suited

for high-volume short transfers, such as process control,

factory communications, and small scale computer

interfacing. Such a network would be well suited to

local data handling such as electronic mail or

interconnection of word-processing equipment.

Thus the network seeks the middle ground, providing a

flexible interface to a wide variety of equipment.

Although not capable of the highest data rates in local

area networks, it does not come with the highest price

either. The available data rate is used with a high level

of efficiency, and operation is highly reliable. Combining

flexibility, simplicity, and low price, the network is well

suited to most small and medium scale applications.
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Appendix A. An Approach to Assembly Language Progamming

While the actual assembly language programs used for

the CCU and the BIU are not particularly noteworthy, the

process used for converting the detailed flowcharts of

Section III to assembly language is significant. This

appendix details this process and uses sections of the code

for the IEEE-488 (hereafter, HP-IB) interface as an

example.

Ideally, the programmer should have little need for

assembly language programming, instead relying on the

simplicity of a higher-level languages. However, for

systems such as the prototype network where memory and

program storage are limited, the structure of a

higher-level language imposes a prohibitive space

requirement. Thus assembly language must still be used to

tailor software to the small system. While the unflagging

consistency of a compiler/interpreter leads to waste on the

small scale, this consistency must be emulated by the

assembly language programmer if reliable and readable code

is to be generated.

The major focus of an assembly language program is

organization. The most critical design objectives are often

not the actual software, but are contained in the

assignment of memory and I/O, and in the stucturing of the

program itself. For most small-scale systems such as the

prototype network, the majority of the function is I/O

related; thus careful design of the I/O portion of the

system is essential for short, efficient programs.

The goal of the process used for the assembly language

programming of the prototype network is to show that with

proper preparation and organization, the commonly accepted

standard of 10 lines of documented code per man-day can be

easily exceeded. This is accomplished by allowing the

-109-



programmer to act as a highly intelligent compiler, working

within the context of a strict organization, but able to

handle special situations with flexibility. This process

is described by the five steps listed below.

1. Preparation: The programmer must be fully acquainted

with the processor to be used, its assembly language

and the associated assembler. It is better to write a

few sample programs before starting the actual

programming than to write code which evolves as it goes.

After the programmer feels comfortable with the

language, he should make a second reading of all

appropriate data books for the express purpose of

compiling a list of peculiarities to be observed in

programming. These peculiarities often are the cause of

malfunction if ignored; anticipating them prevents trouble.

2. Assignment: Based on the detailed flowcharts and

specifications, memory and I/O pins must be assigned.

Memory assignment includes register and main memory

allocation. As a rule of thumb, no fewer than three

registers (at least one of which may be used as a memory

pointer for indirection) should be saved as work registers.

Remaining registers should be assigned to variables which

are used most often or which are used when timing is

critical. If flags are needed, one register may be used for

up to eight flags using a bit mask (eight bit processors).

If the assembler allows, all main memory variables should be

described by labels as opposed to absolute locations, in

order to promote relocation ability. In a similar manner,

I/O pins should be assigned to minimize delay, in careful

observance of direction, data sense, and electrical

requirements. When this step has been completed, a chart

should be made, listing the meaning of all registers,

variable labels, and I/O pins. The more detailed this

chart, the more straightforward the programming will be.

-110-



3. Initial Software: Using the detailed flowchart and the

chart prepared from the assignment phase, a first draft of

the program is made. If preparation is sufficient, there

will be few structural changes in subsequent versions. As

the program is written, the trade-off between length of

program and speed of operation should be remembered. Use of

CALL or JUMP instructions will lessen program length, but

increase execution time (for instance, the Intel 8085

requires 19 cycles for a CALL/RET pair [19]). Thus,

sections requiring minimum delay should avoid short

subroutines. Keys to readable and reliable code are

consistency and modularity. In each section, branch labels

should be chosen which relate to the function of the

section, i.e. START for the first section label. Subsequent

labels in the section should be similar to the main section

label, as S2 for the second label in section START, or

should reveal the process, as WT for a wait loop. When

possible, the same sequence of instructions should be used

for similar functions; for example, a convention of

increment before test in loop structures leads to easier

debugging. As already implied, the program should be

divided into small sections, each with narrowly defined

tasks. Besides providing easier programming, the modular

approach often produces sections which may be used in

several different programs, or several times within the same

program.

4. Debugging: After the initial program has been edited

of errors and successfully assembled it may be tested in

actual operation. When possible, this testing should be

modular as well, testing each function independently. When

errors occur, likely trouble spots are omitted lines in the

program, incorrect decision testing, or unplanned branching.

Each section of the program should be checked to see how it

is called, where it branches or returns, and what variables
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or registers it affects.

5. Final Program: Any changes or improvements are

made in the last step of programming. After these changes

are completed, the final program should be documented.

While the first draft of the program likely requires few

comments, the final program needs extensive comments in

order to provide for future use. These comments need not

explain every line, but the function of each section as well

as any peculiar operations should be carefully explained.

As a demonstration of these steps, the remainder of

this section is devoted to an example program. The program

is a collection of several sections from the HP-IB

interface program for the 8741. Combined in this fashion,

it was used as a test for the interface hardware. Sections

GETB, LISTEN, OUTB, and TALK are actual sections from the

HP-IB interface program, while START was modified

specifically for this program. The overall function is to

monitor the HP-IB for talk and listen commands addressed to

the unit. If addressed to listen, the unit reads data from

the bus until a linefeed is encountered. If addressed to

talk, the unit sends whatever data it has stored to the

HP-IB. Steps 1 through 5 are explained below.

1. HP-IB requires 16 data lines (eight control lines and

eight data lines). The 8741 provides 16 I/O lines,

but four are dedicated to the DMA and 8085 interface.

Thus, additional I/O lines are required. These lines are

supplied by the Intel 8243 I/O expander. Texas Instruments

SN75160 and SN75161 line drivers are used for driving the

HP-IB (see Figure A.1). In addition to the HP-IB signals,

the drivers require three inputs: pull-up enable (tied low

for HP-IB), direction control (tied high for non-master),

and talk enable (high for talk). The expander provides four

4-bit I/O ports, connecting to the lower four bits of the

8741 and the 8741 Sync output. The 8741 provides up to
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Figure A.1: IEEE-488 Interface Hardware Design
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sixteen registers and 48 additional RAM locations.

Registers RO and R1 may be used for indirect addressing of

memory. There are 1K bytes of EPROM available for program.

In addition, the following peculiarities were noted:

a) Output and input may not be mixed at the same time on

any port.

b) A "1" must be written to each input pin of Ports 1 and 2

prior to each reading.

c) For ports 4-7, if the port is changed from output to

input, the first reading must be discarded as invalid.

d) An eight level stack occupies locations 8-23 of RAM. If

more than eight nested calls occur, the stack overflows into

remaining memory.

e)Conditional jumps may not extend beyond page boundaries

(four pages of 256 bytes).

2. For this small example, program length restrictions

are not a problem. However, because of the repeated use

of input and output, a subroutine is written for each

procedure. Including the subroutines, the program is

divided into five sections, START, GETB, LISTEN, TALK, and

OUTB. The assembly-time variable for HP-IB address is

designated ADRS. A resulting value, the listen address

MYADD is computed from ADRS by the assembler. Reset causes

the execution of the statement JUMP 0, therefore the program

contains a jump instruction at location 0 to START. Because

of the slight need for registers, only one register bank,

bank 0, is used in favor of expanded RAM availability. R1

and R2 are designated as work registers, along with the

accumulator. RO is designated as the pointer to memory and

R4 is the byte counter. The assignment of I/O ports is

more involved, due to the imposed restrictions. Because of

their input only nature and their high usage, ATN and IFC

are assigned to TO, one of two test inputs. The eight HP-IB

data lines are assigned to port 1 to take advantage of
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higher-speed transfers and manipulative flexibility. The

remaining six HP-IB control lines are assigned to ports 4

through 7 (expander ports) in such a way as to avoid mixing

output and input at any time. The final assignment is shown

in Table A.1.

3-5. From Table A.1 and the detailed flowcharts (Figure

A.2), first and final versions of the program were prepared.

Debugging revealed errors in the hardware design

corresponding to a transposition of the data lines. After

this error and syntactical errors were corrected, an

updated version was writtten, documented and assembled

(Figure A.3).
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Table A.1 Assignment of Memory and I/O

Random Access

Locations

0

1-3

4

5-7

8-23

24-63

Memory

Contents

RO

R1-R3

R4

R5-R7

Stack

General

Function

POINTER

Work registers

COUNTER

Not used

I/O Buffer

Program Memory

0-2

3-9

10-1024

I/O Ports

Port Pin #

1 0-7

2 0-3

4-7

4 0

1

2,3

5 0,1

2

3

6 0

1

2,3

RST INT

INT VEC

General

Reset interrupt

Not used

Program memory

Assignment

HP-IB data lines

Expander port I/O

For DMA and 8085 interface

SRQ (Service Request)

TE (Talk enable)

Not used

Not used

EOI (End or Identify)

DAV (Data valid)

NRFD (Not Ready for Data)

NDAC (Not Data Accepted)

Not used

Test Inputs

TO is ATN (Attention)

T1 is IFC (Interface Clear)
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HPTEST: Power-up/Reset

Figure A.2.1 Detailed Flowchart: HPTEST
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HPTEST: Read byte (GETB)

Figure A.2.2 Detailed Flowchart: HPTEST
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HPTEST: LISTEN

Figure A.2.3 Detailed Flowchart: HPTEST
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HPTEST: TALK

Figure A.2.4 Detailed Flowchart: HPTEST
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HPTEST: Send Byte (OUTB)

Figure A.2.5 Detailed Flowchart: HPTEST
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Figure A.3: Final Program for HPTEST

LF EQU OAH ;Constants defined

ADRS EQU 06D ;ADRS is HP-IB address (0-32)

MYADD EQU ADRS+32D ;Listen address has bit 4 = 1

ORG 0 ;Begin actual program

JMP START ;Reset forces CALL 0

ORG 10 ;Skip other interrupt branches

; START is the main module of this program. From power-up,

; HP-IB I/O lines are set for input and control lines set

; high. Secondary entry point S2 is for resetting control

; lines after reading a control byte or after completion of a

; subprogram. WT is a waiting point, left only when ATN

; (TO) goes low. After leaving WT, one control byte is

; read. This byte is tested against MYADD, the listen

; address. If there is a match, the subroutine LISTEN is

; executed. If not, the residue is tested to see if the

; difference is bit 6 high and bit 5 low (bits 6 and 5 high

; after exclusive or) indicating a match of the the talk

; address, in which case the subprogram TALK is executed. If

; neither match, ATN is tested again. ATN still low indicates

; another control byte is available. Otherwise, the program

; returns to S2, and waits for ATN to go low again.

START: SEL RBO

MOV A, #01H ;Set SRQ high, TE low

MOVD P4, A

S2: MOV A, #03H

MOVD P6, A ;Set NDAC and NRFD high

WT: JTO WT ;Wait until ATN is low

LP: CALL GETB ;Read a control byte
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Figure A.3: Final Program for HPTEST-continued

XRL A, MYADD

ANL A, #07FH

JZ LISTEN

XRL A, #060H

JZ TALK

JTO S2

JMP LP

;Match with listen address

;Check only lower 7 bits

;Go to LISTEN on match

;Match with talk address

;Go to TALK on match

;If ATN high, go to S2

;Otherwise, go to LP

; GETB is the subroutine used to read the eight data lines.

; It includes all necessary manipulation of control lines DAV,

; NRFD, and NDAC. At return, the byte read is in the

; accumulator and a back-up copy remains in register R2.

; Only R2 and the accumulator are affected.

GETB: MOV A, #01H

MOVD P6, A

NDAV: MOVD A, P5

ANL A, #08H

JNT1 START

JNZ NDAV

CLR A

MOVD P6, A

ORL P1, #OFFH

IN A, P1

CPL A

MOV R2, A

MOV A, #02H

;Set NRFD high (false)

;Test NDAV only

;Reset if IFC is low

;Loop if NDAV high

;Set NRFD low (reading data)

;A 1 must be written to each

;port pin before reading

;Convert data to high = true

-123-



Figure A.3: Final Program for HPTEST-continued 2

MOVD P6, A

MOVD A, P5

ANL A, #08H

JNT1 START

JZ DAV

MOV A, R2

RET

;Set NRFD and NDAC high

;Reset if IFC low

;Loop if DAV still low

;Restore input to accumulator

; LISTEN reads data bytes and stores them in local RAM (up to

; 32 bytes). Reading is terminated when a linefeed (LF) is

; encountered, at which time, the program returns to S2. The

; terminating linefeed is saved as part of the message.

; Register RO is used as the memory pointer, and R4 is the

; count of bytes received. Only RO, R4 and the accumulator

; are affected.

;***************************************

LISTEN: JNTO LISTEN

MOV RO, #018H

MOV R4, #OOH

L2: CALL GETB

MOV @RO, A

INC RO

INC R4

ANL A,#07FH

XRL A, #LF

JNZ L2

JMP S2

;Wait for ATN to go high

;Initialize pointer

; and counter

;Read a data byte

;Store in memory

;Increment pointer

; and counter

;Test lower 7 bits only

;Compare with linefeed

;If no match, continue

;If match, return to S2

;
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Figure A.3: Final Program for HPTEST-continued 3

; TALK transfers a block of bytes to HP-IB. <R4> bytes,

; starting at the base address 018H (24D), are sent to the

; HP-IB bus. At conclusion, R4 is zero. RO, R4, and the

; accumulator are affected.

;

TALK: JNTO TALK

MOV A, #03H

MOVD P4, A

MOVD A, P6

MOV RO, #018H

T2: CALL OUTB

INC RO

DJNZ R4, T2

MOV A, #01H

MOVD P4, A

IN A, P1

MOVD A, P5

JMP S2

;Wait for ATN to go high

;Set SRQ and talk enable high

;Read NRFD and NDAC (throwaway)

;Initialize data pointer

;Send data byte

;Increment pointer

;Decrement counter

; if not zero, send again

;All bytes sent:

;Set SRQ high, talk enable low

;Read data lines (throwaway)

;Read NRFD and NDAC (throwaway)

; OUTB transfers a single byte to HP-IB. The byte to be

; output must reside at the location pointed to by RO. Only

; the accumulator is affected.

;***************************************

I

OUTB: MOV A, #OCH

MOVD P5, A

MOVD A, P6

;Set EOI and DAV high

;Read NRFD and NDAC
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Figure A.3: Final Program for HPTEST-continued 4

ANL A, #03H

XRL A, #03H

JZ OUTEX

MOV A, @RO

CPL A

JNT1 START

OUTL P1, A

OUT2: MOVD A, P6

ANL A, #01H

JNT1 START

JZ OUT2

MOV A, #04H

MOVD P5, A

OUT3: MOVD A, P6

ANL A, #02H

JNT1 START

JZ OUT3

MOV A, #OCH

MOVD P5, A

OUTEX: RET

;Test only NRFD and NDAC

;If both high, no listeners:

; go to exit

;Fetch byte for output

;Convert to high = true

;Reset if IFC low

;Send data byte (latched)

;Read NRFD

;Test NRFD only

;Reset if IFC low

;Loop until NRFD low

;Set EOI high and DAV low

;Read NRFD and NDAC

;Test NDAC only

;Reset if IFC low

;Wait until NDAC high

;Set EOI and DAV high

END
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Appendix B. Implementation of the Network Bus

The hardware description of Section III omitted any

details of the network medium and the transceivers used to

implement the bus. This appendix contains a brief

description of three different network implementations and

the advantages and disadvantages of each.

The first section of all of the transceivers is a

Manchester encoder/decoder (Harris HD-6049) [20]. The

encoder takes clock and data and produces a single stream

of data from which both clock and data may be recovered,

which function is performed by the decoder. The Harris

integrated circuit performs both functions, requiring only

an 11 bit delay for synchronization. The delay is

accomplished by use of modem control lines RTS (Ready to

Send) and CTS (Clear to Send). The BIU/CCU sets RTS to

indicate it wishes to send data. The Manchester encoder

responds by performing synchronization and then sets CTS to

indicate that it is ready for actual data. Synchronization

is only required once for each continuous message.

As originally designed, the network bus was implemented

solely in fiber optics, capitalizing on the superior

electromagnetic noise immunity of optics. However, the

cost of such a network was much higher than a traditional

wire network due to some necessary specialized technology.

As a cost reduction measure, a second prototype network was

designed with the same structure, only using wire pair as

the transmission medium. While this design had a

substantial price improvement, the potential harshness of a

factory environment continued to cause concern. The final

step, therefore was to design the network with a

combination of both, offering wire pair economy in the

majority of the network, but fiber optic reliability in the

limited areas where electromagnetic noise was sufficiently
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Each design is described below.

1. Fiber Optics Implementation

While several existing networks have employed fiber

optics as the transmission medium (for example, NEC's N6770

Datalink [21]), very few of these are bus type networks.

Most are ring type networks, allowing the optics to be used

in a unidirectional, point-to-point configuration.

Bidirectionality can only be achieved by some sort of tap

or "T" connector; unfortunately, such devices for fiber

optics tend to be rather expensive. More importantly,

because optical signals are power as opposed to voltage or

current, the amount of signal tapped off at a given node

must be lost to downline receivers, constituting a sizeable

attenuation problem in a multi-node network. Of course,

repeaters may be employed to maintain more manageable

signal levels, but in that case, the inherent reliability

of the bus structure has been compromised. For the first

design, it was determined to adopt a strictly passive

optical bus structure, accepting the imposed limitations.

The limitations thus imposed acted to restrict the

number of possible nodes, and to a lesser extent, the

distance between nodes. The optical transceivers selected

for the network, developed by Mr. Robert Harris of GE, had

typical sensitivity of -50 dBm with a dynamic range of about

25 dB. Using an LED source at 820 nm, a typical value for

the optical power coupled into the fiber (Siecor 133, 50

micron core) was -13 dBm (50 microwatts). The fiber had a

typical attenuation of 10 dB per kilometer; an interstation

distance of 100 meters was chosen for the prototype.

Passive optical couplers were chosen which had a 1:1 tap

ratio with a 1 dB insertion loss (insertion loss is the

input signal less the sum of the output signals). Because

the optical receiver and transmitter are separate units, a
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coupler was required at each station to combine transmitted

and received data to a single fiber. No additional couplers

were required for the stations at either end of the bus,

where communication is unidirectional, but an additional

coupler was required at each mid-bus location, where

signals are being received and sent in both directions.

Finally, modular connection to equipment required a

combination of fusion splices, which exhibited a worst case

loss of 0.2 dB, and Amphenol connectors, which had a worst

case loss of 2 dB. These factors combined to form the

flux budget for the optical bus. Figure B.1 shows the

configuration of one end station and one mid-bus station.

For the flux budget, there are two conditions which

must be satisfied: first, the signal strength at any

receiver must not be less than the minimum sensitivity, and

second, the difference between the strongest possible

signal and the weakest possible signal at any receiver must

not exceed the dynamic range of the receiver. From the

figure, it can be seen that any signal will encounter two

connectors, but a varying number of couplers, fiber links,

and splices. The lowest attenuation will occur when a

signal is sent from an end station to its nearest neighbor;

the highest will occur (for greater than three stations)

when a signal is sent from one end of the bus to another.

If there are N stations, those attenuations are given by:

2(2dB) + 3(4dB) + 3(.2dB) + 1dB = 17.6dB lowest

connector coupler splice link

2(2dB) + N(4dB) + 2(N-1)(.2dB)+ (N-l)(ldB)=5.4N+2.6 highest

The two conditions reduce to:

-13dBm - (5.4N + 2.6) > -50dBm

5.4N + 2.6 - 17.6 < 25dB
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Optical 1 Top Configuration

S D

END STATION

FIBER

LOSS: 10 dB/km

SPLICE

0.2 dB

S D

MID-BUS STATION

CONNECTOR

2 dB

DIRECTIONAL~

DIRECTIONAL
COUPLER

4 dB along any path

Figure B.1: Optical Tap Configuration
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The first condition is satisfied for N less than 6.4, while

the second is satisfied for N less than 7.4. N must be an

integer, and the more stringent condition observed, thus the

passive optic bus will support a 6 station configuration.

With six stations, the margin for error is only 2 dB, and

reasonable practice would suggest a maximum of five

stations, giving a margin of 7.4 dB. Alternatively, the

distance between stations could be shortened or lengthened,

with a difference of 1 dB per hundred meters. Until

cable lengths exceed an average of 400m, however, the

coupler loss will be the more significant

restriction on the number of stations.

Even accepting the restricted number of stations,

however, the cost of the purely fiber optics network is

prohibitive for a "low" performance system. The optical

couplers mentioned above cost approximately $300 and the

fiber optic cable on the order of $2 per meter. Adding the

cost of connectors, the price per station approaches $750

for the transceiver alone (almost five times the price of

the other hardware). Thus the cost needs to decrease

dramatically in order to compete in the projected market.

2. Wire Pair Implementation

An economical alternative is twisted wire pair, using

differential line drivers as the transceivers.

Specifically, the transceivers chosen were for EIA

standard RS-422. The cost of a transceiver (Texas

Instruments SN75178) and supporting hardware is about $25,

with copper wire pair less than $.15 per meter. Because of

loading and transmission line effects, there are

limitations to data rate, total network line length, and

number of stations, but these limitations fall well within

the projected network specifications. The maximum number

of stations for RS-422 is 32. The data rate and network
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line length are jointly constrained. The data rate may be

as high as 10 Megabits per second if the line length is

limited to no greater than 40 feet. The line length may be

increased by a proportional decrease in the maximum data

rate, up to a maximum length of 4000 feet at a data rate of

100 Kilobits per second. At the projected network data

rate of 1 Megabit per second, the maximum network line

length would be 400 feet, or about 120 meters.

Clearly, the network line length restrictions are the

main disadvantage of the wire pair network. Furthermore,

because the twisted pair is not shielded, there may be

significant electromagnetic noise problems. While the line

length restrictions could be overcome by forming several

independent branches in the network, the interference

problem would remain, and thus the wire pair network alone

is not the final solution.

3. Multi-media Implementation

Many of the projected applications of the network

involve a network configuration of several local clusters

and one or more long interconnecting length. Clearly, the

wire pair implementation is ideally suited to the clusters

of such a network, because of the short distances involved,

and the fiber optic implementation is more suited to the

long lengths, which also are more likely to pass through

areas of electromagnetic interference. This common

topology suggests the use of a hybrid implementation, using

both fiber optics and wire pair.

This multi-media implementation is accomplished by

using the branch structure previously discussed. The

network remains a single network, that is, there is still

only one CCU and each BIU may send and receive data

directly from all other BIU's, but the links

interconnecting the network stations may be either fiber

-132-



optics or wire pair. The advantage is clear, combining the

economy and larger number of stations of the wire pair

implementation and the longer length and noise immunity of

fiber optics. The cost increase over the wire pair

implementation may be small, since many applications will

require only the minimum of two optical stations.

In this implementation, there will be three types of

tranceivers: fiber optics transceivers, wire pair

transceivers, and hybrid transceivers which link a wire

pair branch to a fiber optics branch. The wire pair

transceivers are as described above for the strictly wire

pair implementation and the fiber optics transceivers are

the same in general structure as described earlier for the

purely fiber optics implementation, except for some

hardware improvements. To decrease transceiver size, an

integrated fiber optic receiver (Burr- Brown FOR10KG) and

an infrared LED (Motorola MFOE102F) replace the custom

designed fiber optic transceiver. The Burr-Brown receiver

is a zero-crossing receiver, requiring only TTL data and

clock and power supply. The LED is capable of radiating

700 microwatts at a wavelength of 9000 Angstroms. The flux

budget for this new transceiver is approximately the same

as for the custom designed units; moreover, the entire

transceiver fits in a 2" by 2" circuit board.

The hybrid transceiver must perform two functions: data

must be be both exchanged with the BIU and forwarded to the

remainder of the bus. For example, consider a hybrid

station which receives data from its wire pair transceiver.

This received data must be forwarded to the BIU and, in

order to preserve the bus structure, the data must be

transmitted to the fiber optic link. Thus, for received

data, the hybrid station is a directional repeater. When

the BIU transmits, both the fiber optic and the wire pair

transceiver must transmit the data. Thus, for transmitting,
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the hybrid transceiver is a bi-directional transmitter.

This function requires additional logic, largely consisting

of ORing the two receiver outputs to the BIU and allowing

each transmitter enable to be activated by the BIU or the

other receiver.

The main disadvantage of this structure is the repeater

nature of the hybrid transceiver. In a sense, the

advantages of the bus structure are compromised; if a

hybrid station fails, all "downstream" BIU's will lose

data. Furthermore, additional delays are added and the

concept of simultaneous reception becomes unrealistic.

Thus, the BIU's and the CCU must be programmed with short

delays to allow all stations to have received all current

messages. Fortunately, these delays are small (generally

less than one bit period), but even small delays, as seen

in Section V, will reduce performance.

As a final note, the multi-media configuration can be

exploited to bring a further reduction in cost. If the

fiber optic links of the network only connect two stations,

then both transceivers are like the transceivers at the end

of the network shown in Figure B.1. Each of these stations

require only one of the expensive optical couplers, thus

decreasing the cost per transceiver to about $450.
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