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Abstract

Many issues remain unsettled in the field of model-based vision. In this the-
sis, I identify and explore several conflicting pressures in the two-dimensional
subdomain. In particular. the strengths and weaknesses of a common recog-
nition strategy, called hypothesis-driven recognition, are investigated. In this
strategy, a sequential search through a vast space of image interpretations
is avoided by making a commitment to a small set of initial hypotheses de-
rived from the image data. The hypotheses guide further search by allowing
predictions to be made, which are then verified. Verification can be much
faster than most data-driven approaches, but involves certain risks. The
investigation consisted of the review of relevant literature and the develop-
ment of three recognition systems that demonstrate the differences between
the hypothesis-driven and data-driven approaches. The implementation re-
quired the definition of a feature set and several matching algorithms, in
addition to many detailed considerations. The implementation of one of the
modules led to a probabilistic interpretation of the Hough transform. The
relative strengths and weaknesses of the three systems reveal useful insights
for the design of future algorithms.

This thesis contains a discussion of the issues identified in the domain, a
description of the recognition systems and an evaluation their performance,
and a review of four related systems in terms of the identified issues.

Thesis Supervisor: Prof. W. Eric L. Grimson

Electrical Engineering and Computer Science
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Chapter 1

Introduction

A general-purpose vision system with capabilities similar to those of humans would cer-

tainly have applications in many fields. The development of such a system has proved to

be a significant challenge. In response, the general vision task has been subdivided along

various axes and investigated in limited domains. The goal of research in the domain of

model-based recognition is to find methods by which sensory data from the world can be

used to identify objects by matching them with object models. Many of the recognition

systems that exist today have been developed for specific worlds and to achieve limited

goals. Methods have varied, and there does not seem to be a clear path to follow to-

ward developing a system which can be applied to a more general set of situations. In

this thesis, I present an overview of some of the issues in the domain of two-dimensional

model-based recognition, in which the world is defined to contain only objects with fixed

two-dimensional shapes. In particular, I focus on the distinction between hypothesis- and

data-driven recognition, and on the advantages and disadvantages of these approaches.

Data-driven recognition systems process the image data uniformly, without making com-

mitments to early hypotheses. Hypothesis-driven systems use early hypotheses to limit the

search for supporting evidence. My investigation has consisted of the development of three

recognition systems demonstrating varying degrees of hypothesis-driven search, and the

review of several current systems described by other researchers. In addition to exposing

many practical considerations, the process of implementation has led me to find a usable

feature set and to develop a probabilistic interpretation of the Hough transform. While all

three recognition systems are successful, the central theme of this thesis is the comparison
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of the methods and the general insights derived from the work.

1.1 A Definition of Model-Based Vision

A completely general model-based vision system would be quite sophisticated. It would

continually sense the moving world around it and keep a three-dimensional map of the

positions of identified objects. The objects would be recognized from a vast library of

models that covers many classes of objects, including flexible objects, and perhaps even

conceptual families, such as "tables", whose members can take on many shapes. The objects

would be recognized confidently at any scale or perspective. despite significant occlusion,

shadows, reflections, and uneven lighting. And all of this would be done in real time. In

this extreme, the only difference between "model-based" vision and general vision is that it

explicitly identifies the objects in the image with models, rather than simply determining

the presence of unidentified shapes.

In practice, this kind of system is so far from realizable that it would be meaning-

less to use it to define model-based recognition. It may be an ultimate goal, but current

research under the label of "model-based recognition' has much more modest expecta-

tions. The boldest of the current algorithms struggle to invert the projection of a static

three-dimensional world onto a single two-dimensional image and recover the identity of

the 3D object. Model libraries typically contain fewer than ten objects, all rigid and solid.

Recognition heavily emphasizes shape; color and texture are typically not used. Distur-

bances such as shadows and highlights are rarely interpreted, but simply tolerated. Even

with these reduced goals, computer recognition is generally slow and far less reliable than

human recognition.

Thus, a definition of current model-based recognition could be stated as:

Using models of objects that are found in a particular world, a model-based

recognition system interpretes sensory data about the world by finding corre-

spondences between the data and the object models, implying the identity of

objects in the world.

While this definition is general enough to include the most general vision system, it

leaves room for a realistic definition of "world'. Recognition systems have been designed
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Figure 1.1: A typical image of objects in the two-dimensional domain, (halftoned for pll,to(,opx

reproduction).

to operate in several different worlds. or domains. each with their own restrictions and

assumptions. The domains have usually been defined by a combination of the needs of

a specific task, and the assumptions required to develop a working system. In the next

section, i describe the general domain used in this thesis.

1.2 The Two-Dimensional Domain

1.2.1 An Example

In the two-dimensional domain, a typical model-based vision system recognizes objects,

such as those shown in Figure 1.1, using some kind of model of each of the objects. as

schematically depicted in Figure 1.2. The sstem begins with a sensed image of a two,-
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Figure 1.2: Object models (only the shapes are shown).

dimensional world, such as the grey-level image shown, containing none, one, or several of

the modeled objects, possibly along with other objects. The system's task is to identify and

locate the modeled objects in the image, as in Figure 1.3. This example demonstrates the

basic flavor of the problem definition in this domain. A more detailed description of the

domain is presented in the following sections.

1.2.2 Aspects of the Domain

Dimension: The most significant aspect of a domain is the dimension of the objects in its

world, and the dimension of the sensory information from the world. First, the world

is assumed to be static. No systems have yet been developed to recognize objects

from image sequences of a world in motion. The world is also limited in the spatial

dimensions. In a two-dimensional image of a three-dimensional world, an object

can have many shapes, depending on the viewpoint of the camera. A recognition

system in this domain must be able to anticipate the affects of projection, despite

the fact that information is lost. There is no unique inversion of this projection: an

infinite number of object arrangments could have caused the same image. In the

two-dimensional domain, the projection problem is removed. Objects are restricted

to those that have a small number of resting states when placed on a flat surface.
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Figure 1.3: The result of recognition.
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The major advantage is that when viewed from above, the shape of the outline of the

object in the image will be consistent, though it may be in any position and at any

rotation. Some systems also allow scale ariations. Thus shape alone may be used

directly from the image to identify objects from their models. This is a significant

restriction.

Object Type: In order to be able to identify an object from the shape of its outline, the

objects in this domain must be rigid. They also tend to have smooth boundaries such

that a continuous line can describe the outline. This rules out fuzzy or extremely

complicated objects. Some systems explore the recognition of objects with one degree

of freedom such as scissors, but none have been successful with flexible objects such

as cats.

Occlusion: Some early vision systems required that objects be separate from each other

in the imazge, so that simple global measurements of objects, such as the number of

holes, could be used for identification. When this condition is relaxed and objects

are allowed to touch and overlap, the recognition process becomes much more com-

plicated. The effect of allowing partial covering is that identification must be based

on local measurements, and it is not known which parts of an object will be visible.

This greatly increases the size of the search for a model match. The inclusion of

overlapping objects is one of the ways in which the domain is general. However, any

tilting that might occur when objects overlap must be small enough that the shape

distortions are not significant.

Image Type: Earlier vision systems often used binary images, in which every pixel is

either "on" or off". A binary image can be produced by backlighting objects or by

placing them against a white background and using special lighting to reduce shadows.

A brightness threshold is then applied. In such images, the object boundaries are

easy to find, and it is clear which parts of the image are background and which are

occupied. If the system is extended to recognize objects under natural lighting, a grey-

level image is usually needed. Grey-level images simply store a number proportional

to the brightness of the scene at each pixel. Other sensing techniques can a13o be

used as input, such as sonar readings of a room, or robot manipulator touch-points.
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Model Libraries: Many systems are designed to find only a single model in an image.

Some have included several models, but consider each one sequentially. A few systems

have incorporated knowledge about relationships among the models in their recogni-

tion strategy. These have typically worked with libraries of less than ten objects. The

important problems of very large libraries have not been investigated in depth.

The domain I have chosen is two-dimensional, contains rigid objects, has only a single

model, but allows occlusion and natural lighting. In this domain, model-based vision con-

sists of finding the best consistent correspondence between parts of the model and parts

of the image. I refer to these object parts as features. The choice of a useful feature set

is an important part of developing a recognition algorithm within a domain. The features

typically form the basis of the object model, or representation. The structure of the object

model and what information it makes easily available is a second important apect of a

recognition algorithm. The matching scheme is a third. This is the emphasis of model-

based recognition research, in which a correspondence between image and model features

is found. The first two aspects are important enough on their own that they have received

isolated investigation by other researchers. However, no conclusive discoveries have been

made and thus feature definition and object representation are still important unknowns.

Because the implementation decisions made at the earlier levels have such an effect on the

matching scheme, model-based recognition research often includes significant work at all

levels.

1.3 Approach and Presentation

My approach has been to work within the limited domain described above, with the goal

of discovering insights that will apply to many algorithms and possibly can be generalized

beyond the domain. The investigation has included the development of various algorithms,

in which several types of features and several matching strategies were tried. Through

the implementation and from investigating related algorithms, the need became clear for

a uniform perspective which could provide a more general understanding of the trade-offs

and concepts in the field. In Chapter 2, 1 present some of the issues relevant to model-based

vision. One of the identified trade-offs involves the matching scheme. Because the set of all

possible correspondences between image features and model features is large, recognition
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algorithms are designed to avoid trying every mapping. Some algorithms simply use the

data in a uniform manner to produce the most likely hypotheses (by some criteria). Many

approach the problem by developing early partial hypotheses about feature matches or the

position and orientation (pose) of the model in the image. These initial hypotheses are

then used to guide the search for completing the hypotheses. These two strategies led me

to develop three recognition systems. The first of these systems is based on the Hough

transform. In order to make this method work, several alterations were needed, which

were guided by a probabilistic investigation of the method. The second uses a hypotheses-

directed local search for features, but then combines these feature groups in a data-driven

module. The third system uses the same feature groups as seeds in a classic hypothesis-

driven approach to predict the location of all model features in the image. The systems and

related details are presented in Chapter 3. In Chapter 4, reviews of four related algorithms

by other researchers are presented and discussed in terms of the issues introduced in the

earlier chapters. Finally, Chapter 5 summarizes the major points of the thesis.
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Chapter 2

Issues in Machine Vision

The field of Machine Vision is still in its infancy, and as such, even the determination of the

issues is itself an issue. It is currently a field of construction by trial and error, rather than

a science based on discoveries of natural truths. Results are often in the form of a partially

successful heuristic algorithm for a limited domain, rather than conclusive research which

can serve as a building block towards clear higher goals. I believe that this is a natural

phenomenon for this kind of field, but I also believe that there is much to be gained by

attempting to develop a broader perspective. In addition to building limited vision sy stems

for specific tasks, it is useful to try to form generic models of processes, to categorize

approaches, and identify common trade-offs. In this chapter, I outline my interpretation of

where model-based recognition fits into general vision research, describe some of the major

challenges in vision research, and then present the issues within my domain which are the

focus of this thesis.

2.1 Perspectives on Vision

Because the problem of developing a vision system with human-like capabilities is over-

whelming, it is typically attacked by trying to divide the problem into manageable parts.

The task of determining a natural division is very difficult, since it requires a clear un-

derstanding of the operation of the whole system. Furthermore, the problem may not be

subdividable. That is, it may be that the interaction among functions which seem con-

ceptually distinct is, in fact, so extensive that none of the parts can be usefully considered
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independently of the whole. If this is so. it will be very difficult to develop any of the

parts successfully without significant global understanding, since the inputs from all other

parts cannot be determined. (Marr [76] discusses two types of theoretical approaches in

consideration of this problem).

Despite this possibility, the investigation of vision has been partitioned in many ways.

Neurobiologists have tried to understand vision by investigating the only successful exam-

ples in existance: biological systems. Due to the complexity of animal neural systems, this

work is mostly limited to early vision: the processing which occurs on the retina or imme-

diately thereafter. Psychological experiments have also been performed to understand how

biological examples work, but through external probing. This work can help determine what

human vision systems do, and hence indirectly support or discourage hypotheses about how

it is accomplished, but is limited to external stimuli and measurements. Computational

approaches try to develop executable algorithms to perform the same (or related) functions

as biological vision systems, but usually without explicitly imitating the mechanism. These

are limited by the state of technology, and more importantly, by the absolute demand for

explicit descriptions of any proposed mechanism. This demand can be an asset, since it

automatically limits the investigation to viable solutions. However, it is also responsible

for diverting attention from general approach questions to detailed algorithmic questions,

and for forcing vision systems into limited domains.

Within the computational approach, vision is often categorized by level. Levels are

ordered by the sequence in which it is assumed that they are performed in the human

visual system. It seems clear that the first processing done on images is at the retinal level.

Generally, it is assumed that this earliest vision is very local, and therefore performs tasks

such as smoothing and edge-detection. Intermediate levels might find locations in the image

on which to focus attention [Ullman 83J, find related portions of the image, find features

of some type, or parse the image into separate objects. Higher levels recognize objects in

the image, find navigable paths, inspect parts for defects, and so on. Ultimately, higher

levels of perception merge with cognitive processes, and require an understanding of the

representation of knowledge. It should not be assumed that information is only passed up

the hierarchy- more likely, information flows in both directions, allowing knowledge about

objects to help parse the image, for example.

Another perspective divides computational vision into categories by the type of clue
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that can be found in visual data to determine the shapes of objects in the world. One

can find shape from stereo images, for instance, and determine the depth of objects by

finding corresponding points in the two images. Adding another dimension to the problem,

in finding shape from motion, a continuous sequence of images from changing perspectives

provides a quite different kind of information about the world. Shape is also implied by

shading. By inspecting smoothly varying intensity levels in a single image, with some

assumptions about the surface and the light source, one can infer continuous curvatures.

These modules are often referred to as "shape from" routines. They require dealing with all

levels of vision, concentrating on the middle- to higher- levels. It seems that natural vision

systems accomplish all of these tasks, though not necessarily in distinct modules. Limited

success has been achieved in several of these categories, but only recently has any attempt

been made to combine the parts. It is also not clear that detailed shape or a depth map

for the entire image is a necessary intermediate representation of the world. Higher-level

modules may never need to know the distances of every part of every object from the sensor

in order to accomplish their tasks.

While it is not known which, if any, of these divisions of the vision problem are optimal,

they are not arbitrary. By using them to guide the attack, the understanding of vision is

allowed to proceed.

2.2 General Challenges in Visual Recognition

Because humans process visual information so well, and subconsciously, it is easy for us

to take it for granted, and difficult to realize what might be hard for a machine to do.

The problem is distinctive in the large amount of information that must be processed, and

in the surprising fact that the information is very poorly structured. There is no explicit

association of parts of an image with particular objects, and no explicit representation of

depth. The image intensities do not even directly indicate the color of the object, since that

also depends on the lighting and angle of viewing. From an array of reflected intensities, the

shapes, identities and locations of the objects in the world must be deduced. The problem is

not even well posed, since the projection of three-dimensional data onto a two-dimensional

retina is not invertible. Many possible wolds could theoretically form the same image, but

from our knowledge of the kind of shapes that are in the world (and stereo vision, and
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motion) we are able to confidently infer the most likely world that could cause the image.

This is truly an outstanding accomplishment of evolution. The magnitude of the challenge

to develop vision systems should not be underestimated.

In this section, I briefly describe several of the general hurdles faced by model-based

recognition. The aspects of recognition domains described in Section 1.2 highlight many of

the difficulties presented in more detail below. In the next section, I focus on three issues in

the two-dimensional domain which motivated the development of the algorithms presented

in Chapter 3.

Edge Detection
At the lowest level, the intensity data can be misleading in several ways. The human vision

system is remarkably good at "subtracting out" the effects of uneven lighting, reflections,

shadows, and other effects which make the image intensity inaccurately indicate the color

(greyness) of objects, and the locations of object boundaries. Early systems used backlight-

ing through a diffusive material, so that the outlines of objects were very clear. Features

in the middle of objects were made invisible, however, and the method was obviously re-

stricted in its application. The detection of edges in an image has received much attention,

and many different algorithms have been proposed. But none seem to be able to find all the

object boundaries and markings that our human vision system can find, at least without

finding a large number of less important intensity fluxuations in addition. When too many

are found it is very difficult to rank the importance of the edges so that higher levels can

make use of them. Thus, even the lowest-level modules remain elusive.

Features and Representation
At the middle level, a very fundamental problem is exactly how to capture the essence of

what makes one object different from another, and how to explicitly represent this informa-

tion. Because of occlusion, simple global parameters are not acceptable, so local features

are usually used. The global shape of the object is important, however, so the features must

be kept in a structure which maintains global geometric references. Whatever features are

used, it must be possible to extract them repeatably despite rotations and translations of

the object. In a three-dimensional world, there is usually no part of an object that does not

cause a different intensity pattern to appear in an image as the object is rotated. There

is clearly a need to abstract the data to a more invariant form than intensities. This ab-
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straction must be able to circumvent the effects of perspective and occlusion, as well as

whatever weaknesses the edge-finding process may have.

The feature extraction process must accomplish a great deal, and hence features are

not typically easy to extract. Even in the two-dimensional world it is difficult to determine

which features would be useful to extract. They must capture whatever information dis-

tinguishes an object from all others, and yet must be general enough that the same set of

features can be used in different arrangements to represent a broad class of objects. They

must be able to be extracted without any knowledge of the identity of the object, as they

must be found in the image before the object is matched with any mnodel. Section 3.3

presents a more detailed description of the requirements of a feature.

Matching and Occlusion

Once the features are extracted, they must be matched with the correct model. The

first problem that all algorithms must confront is the sheer size of the search space. It seems

unlikely that every possible mapping of the model into the image can be tried sequentially.

For example, if there are one hundred image features and only a single model with 20

features, then there are (10) = 5.36 x 1020 complete mappings (allowing only one-to-one

mappings). To check a single possibility requires checking each of the 20 feature matches in

the mapping. Many of the mappings will be completely wrong, and it may be possible to

rule them out after checking only a few matches. Note, however, that individual matches

may be perfectly acceptable, and only the combination of particular matches can rule out a

mapping. More progress can be made by organizing the mappings by families, or in a tree

(as Grimson, Lozano-Perez have done [84, 85J), and pruning entire branches of mappings

at once by checking a single match.

The job of reducing the search space is further complicated by the introduction of

occlusion. By allowing the possibility that a model feature may not be visible, a few bad

matches can no longer be taken as evidence that the rest of the mapping is incorrect. One

way to account for occlusion is to add a null feature to the set of image features, and allow

matching to it in the same manner as if it were any other image feature. But this addition

is not just a slight increment of the size of the search, since matching to the null face is

always possible, whereas matching to a particular image feature can usually be ruled out

fairly easily. The significance of this can be seen in a matching tree. Consider a tree in
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which each level represents the assignment of a particular model feature to one of the image

features. If every match but one could be eliminated at each level (an extreme example),

then the tree could be traced down to a single leaf. If, instead, the possibility of occlusion

existed for n of the model features, there would be 2n possible leaves.

Pose Determination
While the mapping of the model features into the set of image features is important to

determine, and is the basis of recognition, another part of the hypothesis is the position and

orientation (pose) of the model in the image. By making explicit the pose in a hypothesis,

separate local feature matches can be evaluated in terms of the global hypothesis without

requiring checks against all other matches in the feature mapping. The pose can act as a

focus for a hypothetical mapping as it evolves. Some recognition algorithms emphasize the

pose instead of the mapping. For example, since each match makes some restrictions on

the pose, one can search for poses which are consistent with the most matches. Again, the

size of the space of all poses can be large (and is not discrete), and a sequential search is

probably not appropriate. There may be some way to direct the search to the most likely

pose, but it will not be simple hill-climbing. A model feature may have many peaks of

good matches in the space of all poses, and a function indicating the "goodness" of the

combination of the matches of all the features in a model will be very complex, with many

local maxima. It is also not clearly defined, and most definitions are time-consuming to

evaluate.

Image Reasoning
Even viewing the problem as a pose search does not directly express other aspects of

recognition. Recognition may also require limited reasoning about the image, probably

before object models are consulted. One of the reasons that the mapping search space is so

large is that separate objects are not identified, so all possible combinations of features from

two objects are tested despite the fact that a single model cannot be the cause of features

in two objects at once. If the recognition algorithm could partially parse the image, the

combinatorics of matching would be drastically reduced. In addition, when accounting for

occlusion, it should be possible to include hypotheses about which object is causing the

occlusion. Random omissions of model features in the image are much less acceptable than

consecutive ones, since consecutive occlusions could all be caused by a single object. If

19



that object is identified, the extent of the occlusion could be predicted, allowing omissions

beyond the object to be taken as evidence against the hypothesis. Image reasoning has not

yet been developed to a great extent, and work within the limited domains has been able

to be partially successful without appreciable reasoning. In broader domains, however, I

believe limited image reasoning will be a very important part of recognition.

Model Libraries
A further complication is introduced when a large library of models is to be used.

Multiple models introduce the possibility that any particular model is not anywhere in the

image, just as occlusion introduces the possibility that a model feature is not visible in

the image. As with null feature matching, null object matching is always more difficult to

rule out than a match with a specific model. In addition, a sequential search again seems

infeasible if the library is large enough. Models might be arranged in trees, so that certain

evidence could rule out entire classes of objects, but such a tree is difficult to actually

organize. There does not seem to be anything fundamental enough about an object to

place it in any clear position in a tree. More likely, a graph arrangement would reflect

similarities of many types among the models. The elimination of every model but one

is still a large problem. At some point, it would probably be necessary to consider many

models individually, and determine exactly what to look for in the image in order to confirm

or discard each model. This notion of verification is considered in greater detail below, in

section 2.3.3.

2.3 Approaches and Conflicting Forces in Recognition

The previous sections have introduced several factors to consider in the design of a model-

based recognition system. In this section, three discernible trade-offs are identified and

discussed. These issues in particular are central to this thesis and recur throughout. They

are the motivating factors behind the development of the algorithms presented in Chapter 3.

2.3.1 Feature Complexity versus Search Algorithm Complexity

I have purposefully left the definition of a feature vague, because it can actually be any

abstraction of the lowest-level information in the image. In order to be useful, a feature

20



must have certain qualities, but one aspect of the feature set in particular pertains to

the overall algorithm strategy, and that is its complexity. In an extreme example, one

could consider the identification of a portion of the image with an object to be a featare.

That is, the entire complexity of the recognition algorithm could be pushed down into the

feature extraction module. In the other extreme, consider a set of features which are very

simple, such as a list of the edge pixels, which do not make explicit much of the important

information of the image. Not only will there be a greater quantity of data to process, but

it will not be in a form which is easy to reduce, since the data is less closely related to the

higher level concepts of hypotheses.

Along the continuum between the drastic extremes, the more complicated the features,

the more time will typically be spent on their extraction. The extraction process is typically

performed without reference to model data, though I believe a greater exploration of the

flow of information from higher to lower levels would be worthwhile. Thus it seems that too

much computation during feature extraction may be wasteful, since the additional model

information available to the matching module should be able to eliminate some of the

work. However, if the information available in a feature is too sparse, it may needlessly

increase the work of the matching module. For example, consider a feature which identifies

a distinctive point along the edge of an object. If only the point is given, the image feature

could be matched to any model feature. The elimination of matches could only come from

pairing the match with other matches, since that is the only way shape constraints could

be applied. Simply including an indication of the type of the feature reduces the number

of possible matches, but the type must be reproducible. If an indication of the tangent

angle at the point were included, an (error-prone) pose hypothesis could be made from a

single match, allowing individual elimination of the match with respect to any other pose

hypothesis. If a further parameter is calculated, such as the rate of curvature or some other

local indication of shape, matches could be evaluated in complete isolation, comparing only

the feature parameters, since they are independent of any pose hypothesis.

How much more information will be useful? If a new set of features is proposed, where

each new feature is a pair of old features, matches could be accurately and effectively

pruned using the multiple pose-independent degrees of freedom. If old features are paired

by adjacency along the contour, for example, a new problem is introduced. If an old

feature is omitted in the image, or if the order of two close features is reversed, three of
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the new features will not be preserved. Thus. the new feature set is less repeatable. If

this weakness is to be accounted for rather than ignored, the matching module will have to

spend additional time undoing the pairing and trying likely recombinations. Or, in order

to assure that the pairings of the old features were the same as in the model, all possible

pairings might be used. Suddenly, instead of perhaps 100 old image features. there would be

(120) = 4950 new image features to match with the new model features. Increased feature

complexity does not usually imply an increased quantity of features, but at some level, in

some form, increased feature complexity will exceed its utility.

2.3.2 Accuracy versus Speed: Completeness

As mentioned in Chapter 1, the design of existing recognition algorithms has depended

heavily on the application; there are many sub-domains, each with a different definition of

recognition. In particular, the required accuracy of the pose and even the required accuracy

of the identity of recognized objects varies from task to task. Some algorithms have been

able improve execution times by achieving more modest goals. Others have taken shortcuts

without acknowledging a reduction in accuracy. A common place for making over-zealous

reductions is in the matching module, where the search space must be drastically truncated

in some manner, but the best hypothesis must be preserved. Unless care is taken, parts of

the supporting evidence for the correct hypothesis can be lost, reducing the probability of

finding the best result.

In particular, I believe the completeness of a search is an important consideration to

introduce in evaluating the accuracy of a recognition algorithm. I define completeness

relative to an acceptance criterion. A search through the set of all possible mappings of the

model features into the image features is complete if it can guarantee to have found all the

mappings which satisfy the acceptance criterion. A separate issue is how many extraneous

mappings are also found, but if none of the acceptable mappings are discarded, the search

is complete. In the interest of speeding up a search, a severe acceptance requirement may

be used, so that only very good mapping hypotheses are found. Typically, however, there

is a practical limit on how severe the criterion can be. This is due in part to the presence of

distortions and noise in the image and approximations and errors in the feature extraction

process. Mostly, the severity is limited by the ability to define an accurate and efficient
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acceptance criterion. Many versions have been tried. but it is difficult to determine a test

which can be easily applied to a mapping, or more importantly to a partial mapping, that

will indicate whether the modeled object could have caused the image features to appear,

especially allowing for occlusion and arbitrary lighting.

Another restriction on the acceptance criterion is that in some images, the best inter-

pretation will be weak, while in others it will be strong. Thus, a fixed criterion must accept

weak interpretations in case the object is highly occluded. for example. Since processing

time has a tendency to increase with the number of accepted interpretations, this can slow

down the search. A common response to this problem is to have a floating acceptance

criterion, which adjusts its severity to the clarity of the image. Rarely is any a priori es-

timation of the image quality made. Instead, the criterion is adjusted dynamically during

the search, using the "best" interpretation that the search has produced so far to set the

severity of the criterion for the rest of the search. This approach still results in a complete

search, and can potentially cause drastic reductions in the total search time. However, it

runs a significant risk of increasing the severity too much, and thus counting too heavily on

the correctness of the acceptance criterion. For example, consider using the total length of

the modeled object's boundary found in the image to be a heuristic measure of the quality

of the interpretation. A simple acceptance criterion would be a threshold on the matched

length. Start the threshold at zero length, then reset it to largest value obtained so far.

It is quite possible for an erroneous interpretation to be found early with length slightly

greater than the correct interpretation. In this case, the correct mapping would be lost.

This approach fails because the length is not a perfect indicator of the correctness of an

interpretation, though it is relatively easy to implement. Typically, a much more rigorous

verification of hypothetical interpretations must be used in a later stage to discriminate

anmong many reasonably good hypotheses. This verification process is usually much too

slow to use as the acceptance criterion in the initial search, so sufficient error margins in

the severity of less accurate criteria must be included.

Using a floating acceptance criterion with sufficient severity restraint, the search is

commonly further improved by organizing it in a "best"-first order. Again, the definition

of "best" is quite restricted. It is difficult to make arbitrary changes in the order of the

search, so typically only very weak estimates can be used. It is clear that a perfect defi-

nition of "best" cannot be found, since the entire purpose of the search is to find the best

234.



interpretation. A better way of expressing the ordering is -most-likelv"-first. This can be

mathematically defined using probability, but I do not know of anyone who has found it

worth determining. The goal of the ordering is simply to find the best interpretation earlier,

so that the acceptance criterion can be tightened for a greater portion of the search.

Even with a severe criterion, fixed or floating, a complete search takes a long time. A

common tendency is to count heavily on "best"-first ordering, and simply stop the search as

soon as the first interpretation above a pre-defined quality threshold is found. This could be

interpreted as a complete search with an infinitely severe acceptance criterion, but I will call

it incomplete. Incomplete searches can be very fast, and can even have acceptable failure

rates for some applications. But there is no guarantee that the best interpretation is found

by any criterion, unless the best-first ordering can be shown to be strictly correct, in which

case the search would be unnecessary. Several recognition systems rely on this method, but

few seem to make a distinction between this kind of potential error, due to the search being

ordered by a heuristic measure, from error due to inaccuracies of the acceptance criterion.

Completeness and the severity of the acceptance criterion can be even more important

in situations where it is possible that either multiple or no instances of the modeled object

will be visible. In both cases, finding the "best" mapping is no longer sufficient. Each

mapping must be evaluated on its own, rather than relative to other mappings. All initial

hypotheses must be considered, whether or not a good interpretation has been found.

Therefore, the criterion for acceptance cannot float, and must be accurate enough to both

exclude close but incorrect interpretations and include very weak correct interpretations.

The major difference from finding a single model is that the recognition module is forced

to prove that all hypotheses which are not clearly correct are certainly incorrect, rather

than simply proving that they are worse than the best hypothesis. Even a very weak initial

hypothesis could possibly be grown into a correct interpretation of the image. Proving that

it cannot requires a much deeper investigation of the vast majority of initial hypotheses.

The increased accuracy of the criterion, the requirement that it be fixed, and the need for

a complete search can make an otherwise fast algorithm very slow, or possibly infeasible.

The incomplete search only fails by its willingness to commit to an early hypothesis

above some threshold of quality measure. Ultimately, all recognition methods suffer from a

dependence on a quality measure, but the measure is allowed to be arbitrarily accurate. The

greater accuracy is achieved through verification, as mentioned above, and need not require
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a complicated acceptance criterion during the search. Alternatively, this can be viewed as

a multi-stage acceptance criterion, where quick but relatively conservative tests are applied

during most of the search, and more complicated tests are reserved for interpretations

which pass the simple tests. Thus, with slight modification, the incomplete strategy can

be converted into a search technique which is still incomplete, but no more prone to failure

than complete searches. As each sufficiently good hypothesis is found, rather than simply

terminating the search, the hypothesis is verified extensively. If it fails on close inspection,

the search is continued. It may be that a better very good interpretation will be missed,

but if the verification process is good enough, the earlier interpretation will simply be one

of several acceptable interpretations. The only difference is that a complete search can

be used to find all the acceptable interpretations in order by a quality measure, whereas

the incomplete search will still only find the first. With this modification, incomplete

searches are also similar to complete searches in execution time. The identification of

these recognition search properties is, however, an important step in the understanding

and development of future recognition systems.

2.3.3 Hypothesis-Driven Search

At the end of many recognition algorithms, or during the search stage as described in the

previous section, a verification routine is employed, in which a strong hypothesis is exten-

sively checked by looking for supporting evidence in the image. This is the test stage of the

hypothesize-and-test paradigm. In the previous section, verification is presented as merely

the application of a more complete acceptance criterion. While it is possible to simply use

more stringent tests on the matches already made, verification usually involves finding new

evidence for the hypothesis. Thus, verification and normal fixed-structure search differ in

a more important way than just precision. During verification, the development of the

hypothetical interpretation of the image is driven by the current hypothesis. Together with

the model, the hypothesis is used to predict what the image should hypothetically contain.

I call this kind of search hypothesis-driven. In a systems perspective, hypothesis-driven

search is something like a feedback loop. It uses the output of the first recognition stages to

form a prediction of the input, and then responds to the error between the predicted input

and the actual image. Verification usually does not involve search. The test knows what
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to look for, and simply checks to determine if it is there. With the search space being such

an important problem in recognition, why is verification not used at an earlier stage? The

most common reason is that it is expensive in its own way, and at earlier stages there are

too many hypotheses to check. However, if the concept behind verification is generalized a

little, hypothesis-driven search may be taken as a feasible approach to recognition.

The distinction between hypothesis-driven and straight search methods is not always

clear when trying to categorize actual implementations. One way of distinguishing verifi-

cation is that it drives the processing of image data from hypotheses, rather than simply

crunching through the image data and reporting what hypotheses are left. (For this reason,

normal search techniques will be called data-driven). Hypothesis-driven search attempts to

find evidence to develop a hypothesis, rather than trying to eliminate all of the incorrect

hypotheses. Naturally, hypothesis-driven recognition must start from somewhere- it must

have some seeds, and the best hypothesis must not be excluded from the seeds. Thus, there

is a trade-off between hypothesis- and data-driven recognition. How far in the elimination

process should one go before switching to development? How can one be sure that the best

hypothesis has not been excluded? In order to be sure, is it necessary to start with such a

large number of seeds that the process is not, in fact, more efficient?

This issue is closely related to the accuracy versus speed issue presented in the previous

section. Data-driven recognition techniques are often complete, since they make no com-

mitments to early hypotheses. Hypothesis-driven recognition can be complete, but often

is not since it is difficult to guarantee that the partial hypotheses which are used as seeds

will always include the best final hypothesis. This is because a partial hypothesis typically

does not contain enough information to evaluate it accurately. To be complete, hypothesis-

driven recognition must attempt to develop all of the hypotheses which are not eliminated

by the initial data-driven stage.

One advantage of verification is that it is free to use a different set of features than

those which are used to make initial hypotheses. In fact, it is free to use any form of

comparison between the predicted and actual images, even forms which are quite removed

from the concept of features. For example, the shape of the areas in the image which are

occupied, based on some distinction between background and objects, can be used to rule

out hypothetical transforms which place the model in unoccupied regions. In this case,

the "features" would be some encoding of the occupied areas, but the notion of features
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is not really needed. Another possibility is to place the model features in the image and

then check the image to see if the model features could be formed. The checking procedure

can be more liberal than the formation procedure, since it will not cause a combinatoric

explosion of possible matches. Or, a more feature-to-feature kind of comparison can be

made, but the criterion for choosing the comparison features may be different.

There can be some ambiguity in the distinction between the two approaches. It is

not always possible to determine whether an algorithm is implicitly eliminating hypotheses

through explicitly developing others, or vice versa. The concept of verification is not as

concrete as it may seem at first, but it does provide another perspective on the problem-

one which can lead to concrete changes in an algorithm.

This thesis explores this particular issue through the development of three algorithms

which use identical features to facilitate comparison, but separate in their approach to

hypothesis formation. The first algorithm does a large amount of feature processing before

ever determining any hypotheses. The second grows hypotheses from the set of all initial

feature matches, using the connectedness of the contours to guide the formation. The

longest grown hypotheses are then collected in a data-driven module. The third algorithm

begins with the extended contour matches of the second algorithm, but then continues in a

hypothesis-driven approach using the matches to predict the locations of further matches

in the image. The details are presented in the next chapter.
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Chapter 3

Presentation of Research

To develop and confront the issues presented in Chapter 2, have implemented several

recognition algorithms. I present the latest two versions in this chapter. The process of

implementation has had many stages, and has forced me to find workable solutions amidst

conflicting criteria. Implementation has consisted of finding:

* A subdomain of the general vision problem, as described in Chapter 1, which restricts

the dimension of the viewed world and the types of objects in it.

* The form of the information to be extracted from images, and a set of features to

further abstract the data.

* A representation for objects in the subdomain, which uses the features in a structure.

* A method for matching parts of the image representation with the model representa-

tion.

One of the contributions of this thesis is simply the development of the two recogni-

tion systems. Parts of the systems are new, while other parts are based on well-known

approaches. In particular, I have developed a probabilistic interpretation of the Hough

transform Hough 621, and have implemented several improvements to the method based

on the interpretation.

Another goal of this thesis has been to explore hypothesis-driven recognition (described

in Section 2.3.3). To this end, the recognition algorithms are based on the same feature

extraction module and model representation, to facilitate comparison, but differ in the way
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Figure 3.1: Modules of the recognition algorithms. Left: Data-driven. Middle: A combination.

Right: Hypothesis-driven

that they identify the model in the image. The first algorithm is driven primarily by the

image data, while the third directs the search dynamically, using intermediate hypotheses.

The second is a combination of both strategies. The algorithms share similar modules for

grouping hypotheses and for searching local neighborhoods of features, but use the modules

differently to achieve the different goals. A comparison of the algorithms and their relative

strengths gives some insight into the trade-offs between the two approaches.

Figure 3.1 shows block diagrams of the three algorithms. The dashed box indicates

that the model is constructed before recognition begins, using the same feature extraction

modules as are used on the image during recognition. After initial matching, the algorithms

29



diverge. The following outlines briefly describe the algorithm modules, in order to give some

overall perspective of the detailed explanations in later sections. The first algorithm consists

of three parts:

1. Initial matches are made between all similar types of image and model features. A

parameter associated with each feature is used to eliminate particularly bad matches.

For each match, a hypothetical pose of the model in the image is formed, using the

position and orientation of the features.

2. The hypothetical poses are structured so that they may be indexed by the value of

the pose. This is done by placing pointers to a match at all those locations in an array

which correspond to a pose consistent with the match. (A variation of the Hough

transform). Pose cells with the most matches are found, indicating likely poses.

3. For each of the most likely poses, each of the matches stored at that pose are used

as seeds in a verification process. The neighbors of the match along its contour are

checked for further support of the hypothesis.

Finally, the hypotheses are ordered using the number of matches as a measure of quality.

Currently, the first match is taken as the conclusion. This algorithm is heavily data-driven,

with a verification stage at the end.

The second algorithm uses model information about the connectivity between features

together with the hypothetical initial matches to control the order of image data processing

at an earlier stage. The resulting extended matches are grouped by pose. It essentially

tries to perform step 3 before step 2:

1. Initial matches are made as above and pruned, but hypothetical poses are not formed.

2. Contour neighbors are explored for each initial match. Correct matches will have more

matching neighbors. This can be thought of as extending the size of the feature. For

each extended match, a good estimate of the hypothetical pose can be made.

3. Likely matches are grouped by pose. This could be done with an array as in step 2

of the first algorithm, but because there are fewer matches, they can be grouped by

cluster accretion instead.

30



Again, the largest group is taken as the conclusion. Step 2 is hypothesis-driven, but

step three is still data-driven.

The third algorithm uses the same feature extension module as the second algorithm,

and then proceeds with a further hypothesis-driven stage:

1. Initial matches, as above.

2. Feature extension along contours, as above, including an estimation of the pose.

3. For each hypothetical pose, the positions of other model features in the image can

be predicted. For each prediction, the closest image feature of the proper type is

found and matched if similar enough to its predicted value. This technique finds

matches that are not on the same contour, so could not be found using connectivity.

The closest features are tried first, and the estimate of the pose is updated as new

matches are found.

Again, the hypothesis with the most matches is taken as the conclusion. Both of the

final stages of this matching strategy are hypothesis-driven.

The following sections describe the modules of the algorithms in detail, in the order

that they are executed during the recognition process. In section 3.1, the edge extraction

process is discussed. It is not an emphasis of this thesis, but the effects of edge detection on

the rest of the algorithm can be important, and are not necessarily obvious. The method

used is standard: the image is convolved with two Gaussians, and the zero-crossings of

the difference indicate edges. Section 3.2 describes how the edge contours are traced to

construct orientation graphs, and why an orientation graph is a very useful abstraction. In

section 3.3, the feature finding process is described, and a set of criterion for features is

presented. Section 3.4 introduces the pose-indexing process with an example of a simple

Hough transform, followed by a discussion of several aspects of the method. In Section 3.5,

the topic continues with a detailed presentation of a probabilistic interpretation of pose-

indexing. By taking a probabilistic approach, many approximations and assumptions are

revealed in the standard Hough approach, and a few of the implied improvements are

used. Section 3.6 then describes the actual implementation of the pose array. Section 3.7

presents a method for extending feature matches by exploring the contour neighborhoods

of the model and image. In the first algorithm, this process serves to verify hypotheses and
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find further supporting evidence. In the second algorithm, these extended matches pro-

vide accurate pose estimations which are grouped using a simple cluster accretion method,

described in Section 3.8. In the third algorithm, the extended match poses are used to pre-

dict other potential matches, as described in Section 3.9. All of the algorithms have been

implemented, and are successful. They also provide some insight into the distinctions and

trade-offs between two general concepts: data- and hypothesis-driven recognition. Results

and a discussion are presented in Section 3.10.

3.1 Edge Extraction

The edge-extraction module is not the focus of this thesis, but is worth discussing. It

is a standard implementation of the difference-of-Gaussian (DOG) approximation to the

Laplacian-of-Gaussian operator (V 2G) [Marr, Hildreth 80], and was largely copied from the

recognition system used by Grimson and Lozano-Perez [84,85].

3.1.1 Edges as an Initial Abstraction

To be able to recognize objects using relatively natural images of the world, as opposed

to images of objects under special lighting conditions, is considered to be an important

and viable aspect of a vision system. Most earlier systems have worked from binary im-

ages, in which the presence of objects is unmistakable due to backlighting or other special

preparation of the background or objects. Such requirements restrict the applicability of

the system, but make the job of finding the outlines of objects very simple. When images

with natural lighting are considered instead, the problems of shadows, low contrast, and

uneven illumination make simpler methods unacceptable. It is no longer clear how to de-

fine an edge. Instead, places in the image where the intensity is changing quickly (how

quickly?) are taken as edges. In a more general language, they are the first abstraction of

the image, or the lowest-level features. The name "edges" has been kept because a physical

object edge usually causes a sudden change in intensity in an image. However, sometimes

a physical edge does not cause an image edge feature, and more often, the so-called edges

are caused by shadows, highlights, or changes in reflectivity on the object's surface such

as scratches, colorings, or texture. Highlights and shadows, in particular, are not part of

the object and will not usually be in the same position relative to the object. This kind
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of extraneous information makes recognition harder for an algorithm that assumes that all

edges are physically real. While they contribute to the size of the problem, most algorithms

are not forced to explicitly distinguish between physical and non-physical edges, since more

extraneous edges are introduced simply by physical edges not belonging to modeled objects.

A more fundamental aspect of edges as a primary abstraction is what information

they do not capture. The use of edges in some form is one of the few common threads

among vision algorithms, probably because the highest concentration of information in

images occurs at sharp changes in intensity. It is presumed that areas of constant or slowly

varying intensity do not tell much about the world. Therefore, algorithms which use only

edge data will not be able to analyze smoothly curving surfaces from shading. Also, since

it is not usually safe to assume that an object will be either lighter or darker than its

background, the direction of the intensity changes across the edges are often discarded,

making foreground/background region sorting difficult or impossible. This is some of the

information thrown away by the edges used in my algorithm, with no better reason than

for the sake of simplicity.

3.1.2 The Laplacian and Gaussian Operators

The Laplacian is the sum of the squares of the second derivatives in the z and y directions.

It is a second derivative, so in order to find the edges along which the image intensity

is changing most rapidly, the points at which the value of the Laplacian cross through

zero must be found. The Laplacian is not the only operator which can be used to detect

changes in a two-dimensional scalar field, such as an image1. Other possibilities include

the second derivative along the gradient, which is the direction in which it is maximum, or

other combinations of the derivatives in the z and y direction. For a complete discussion

of the issues of edge detection, see Canny 83J. The Laplacian does have several properties

which are notable. One is that it can be implemented by a convolution of the image with

several impulse functions. Also, the zero-crossings are guaranteed to form a closed contour

if the image is "smooth" enough to allow a second derivative. Practically, the smoothness

requirement is not just a mathematical detail. Any second derivative operator is going to

'In this section, I use mathematical language which is intended for continuous functions, when in fact an

image is a discrete set of intensity values. The actual implementation uses differences, for example, instead

of derivatives.
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Figure 3.2: Original image (halftoned for photocopy reproduction).

amplify white and other kinds of noise, creating a serious problem. The standard response

to this problem is to smooth the image by convolving it with a Gaussian operator, which

causes each pixel to take on a value equal to a weighted average of its neighborhood. Since

convolution is associative, the Laplacian can be applied to the Gaussian once and for all,

and the result can then be applied to each image to perform both the smoothing and

edge-finding at once. The resulting operator is often described as looking like an inverted

Mexican hat (see Figure 3.3). This shape can be closely approximated by the difference of

two Gaussian curves of different sizes (DOG). Because there are mathematical tricks which

make a Gaussian particularly easy to convolve with an image, the DOG approximation is

very easy to calculate.
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Figure 3.3: a. Gaussian, b. Laplacian, c. Convolution of Gaussian and Laplacian, resem-

bling a Mexican hat.

In order to apply smoothing, however, there is an important parameter which must be

determined, and that is the choice of the size of the Gaussian. While some smoothing is

needed to prevent the entire image from being covered with edges, the more smoothing

that is done, the less detail is detected. A popular way of approaching this problem is to

find the edges using Gaussians of many different scales, and then to use the whole set of

resulting zero-crossing images to form a "scale-space representation" of the image. There

has been some work using features found in this space to identify objects in images [*], but

so far it is very susceptible to highlights and occlusion since it depends on uninterpreted

image intensities to represent objects. In the implementation I am using, the size of the

Gaussian is fixed at a value which makes a reasonable trade-off, preserving details which

are the size of a few pixels and yet not interrupting connected edges the size of half the

image. This fixed value would probably cause more problems if my algorithm was trying

to perform recognition of objects at different scales. But because the objects are always

the same size, obscured details are consistently invisible, and the arclength of the boundary

(which is used to index higher-level features) is not significantly affected.
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Figure 3.4: The Sign of the convolution of the zmage mwth the DOG operator.

3.1.3 Zero-Crossing Detection

The result of the DOG operator is an array of values which indicate the magnitude of

the second derivative of the smoothed intensity of the original image at that pixel (the

Laplacian array). The sign of this array is shown in Figure 3.4. Where the value of the

Laplacian crosses zero. an edge is indicated, as shown in Figure 3.5. In order to assure the

proper connectivity of pixels which are designated as being on the edge. the four immediate

neighbors of each pixel are checked to see if the sign differs either vertically or horizontally.

These pixels are set to one in a zero-crossings array.

There are several problems with this edge detector. as can be seen in Figures 3.2

through 3.5. While it is nice that isolated objects will usually cause a closed connected

contour around their boundary, in more complicated situations. the closed contours will be

forced to wander away from strong edges in order to be closed. At sharp corners, such as

the pencil tip, and "T' junctions. where three different grey-levels come together, signifi-

cant separation is notable Berzins 831. Perhaps the most noticeable problem is the "reset"

contour, a second outline outside of each object which occurs as the Laplacian returns to

zero in uniform areas of the image. This may be a problem of the specific implementation
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Figure 3.5: Zero-crossings before thresholding. Note: etra reset" contours, deviation at pencil
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Figure 3.6: Zero-crossings after thresholding. Note small breaks at high curvatures along useful

edges, and remnants of unwanted edges.
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that is avoidable, since it does not usually appear in other zero-crossing detectors. A more

commonly acknowledged problem is that in relatively constant areas, even very weak fluctu-

ations will cause zero-crossings. Further discrimination is needed to use the zero-crossings

as edges.

A simple but imperfect way to eliminate some of the unwanted zero-crossings is to mea-

sure the magnitude of the third derivative, indicating the "strength" of the zero-crossing.

This is approximated at each zero-crossing pixel by the sum of the squares of the horizontal

and vertical differences between the neighbors in the Laplacian array. Edges where this

value is below a fixed threshold are removed. (If no thresholding were to be done, only the

sign of the Laplacian would be needed). As can be seen in Figure 3.6, a simple threshold can

leave some undesirable remnants, while also breaking real edges where they are weak. There

is definitely a need for a more adaptive method of eliminating weak zero-crossings, partic-

ularly because a fixed threshold tends to break good contours near sharp corners. Several

methods are proposed by Canny 83], and should be used in future implementations.

3.2 The Orientation Graph

At this stage, some image information has been lost and the edge information has been

isolated in the zero-crossings array, but not in a very compact form. Many algorithms sum-

marize the edges by fitting straight line segments to the connected contours. Depending

on how this summary is used, it may be adequate since the segments can be made to fit

the curves very closely. However, no one has yet proposed a canonical method for segment-

ing curves such that the segmentation would be repeatable under changes in orientation,

occlusion, and small perturbations. Therefore, one-to-one matching of segments between

model and image segments would either have to be carefully forgiving, or it will fail. In

response to this problem, I keep information from every pixel along the contour, and find

features in it to summarize the contour information as a discrete set of symbols, rather than

segmenting it. Since the information in the zero-crossing array is indexed by position in the

image, and does not explicitly indicate the connectedness of the contours, the contours are

turned into a graph of orientation versus arclength. A similar encoding has been used by

several researchers [Turney, Mudge, Volz 84; Asada, Brady 84], but for different purposes.
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3.2.1 Initial Formation

The entire zero-crossing array is scanned from top to bottom. When a set bit is encountered,

the connected contour is traced along the outside, pixel by pixel, until it ends (as detected

by back-tracking) or returns to the starting point in the case of closed contours. This

is done to find a beginning point. From here, the contour is retraced in the opposite

direction, and the position of each pixel in the array, along with the direction of the pixel

jump (indicating the orientation of the tangent at that point) are stored in arrays indexed

in units of pixels of the arc-length. Thus, a record of orientation versus arc-length is formed.

As the contour is retraced, the bits are cleared in the zero-crossings array. By the nature

of the formation of the contours they will never form a T junction, but occasionally touch

each other tangentially, so the removal of one contour only rarely affects others.

The direction of the jump from one pixel to the next is a crude indication of the tangent

angle. First, it can take on only eight discrete values, counting diagonal jumps. A perfectly

straight line might produce a repeated pattern of five horizontal jumps and one diagonal

jump, and this should not be interpreted as a staircase. The orientation graphs are therefore

smoothed with a Gaussian curve having a standard deviation of about 3 pixels. Second, in

order for a contour to produce a similar orientation graph under any global rotation, the

fact that diagonal jumps are longer than horizontal or vertical jumps must be taken into

account. A circle, for instance, should be a smooth ramp since the tangent angle is varying

smoothly with arc-length. It will look like a wavy staircase with four steps when plotted

with one jump per unit length on the arc-length axis, since diagonal jumps move further

around the circle. I have found a simple but effective method for reducing this imbalance.

An arc-length counter is kept as the orientation array is being filled. For every horizontal

or vertical jump, it is increased by one. For every diagonal jump, it is increased by AV.

Whenever the counter is greater than one, the current pixel data is added to the end of the

array, and the counter is decremented by one. In this way, horizontal and vertical jumps

are recorded exactly once, while diagonal jumps may be stored twice to make up for the

longer jump. After smoothing, this method produces ramps of constant slope for circles in

the image.
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3.2.2 Advantages and Disadvantages of the Orientation Graph

The orientation graph provides a representation for the contours in an image which is

independent of its position within the image, and mostly independent of its orientation (it

causes only a shift of the entire graph). This is very important, since the position and

orientation of modeled objects in the image are not known ahead of time, so cannot be

required in order to interpret the image data. (The positions along the image contours

are kept in order to make accurate hypotheses at a later stage.) At the same time, the

graph does capture the shape of the contour, and represents it in one dimension (arc-

length). This step does not discard any information, since the contour was originally only

one-dimensional, but was in a two-dimensional space. Bringing it into a one-dimensional

array simply increases its accessibility. In addition, the orientation graph is derived from

local data, so that shapes in one part of the contour are unaffected by any other part of the

contour. This makes the shape of the graph repeatable despite partial occlusions, a vital

requirement for the system.

While the orientation graph captures the relative angular shape of the contours, such

as bumps and corners, it does obscure the spatial shape of the object. The orientations can

theoretically be integrated to reconstruct the spatial shape, but smoothing and any other

small integrated errors quickly accumulate. The positions along the contour are saved

separately for this reason, and they are currently used only in the more global recognition

stages. Therefore, during the local matching stage, the spatial features of two objects may

be different, but if the angular characteristics are similar, their orientation graphs will not

reflect their differences. Furthermore, the orientation graph records only the shape of the

object boundary. Nowhere does it make explicit the shape of the object's area, or even

which side of the contour the object is on. Thus contours connected by the body of an

object but not connected by the boundary (due to occlusion or edge detector gaps) are not

associated with each other.

Another potential drawback of working with contours in this form is the difficulty of

performing the correct processing of closed contours. Since the starting point on a closed

contour is arbitrary, distinctive shapes which cross the starting point should not be dis-

criminated against. The information to do so has not been lost, but the representation

does not lend itself to circular access. This may seem like a detail, but it is nonetheless a
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problem caused by the non-circularity of the one-dimensional array.

3.2.3 Orientation Graph Examples

In the following examples, the image contours are shown above the orientation graphs of

the same contours. The horizontal axis of the graphs indicates arc-length along a contour,

and the vertical axis indicates the angle of the tangent to the contour at that point. It takes

a little practice to see exactly which part of the graph corresponds to which part of the

image. Also shown are the features explained later (in Section 3.3) which may help to show

the correspondence. Figure 3.7 contains isolated objects of various complexity. Figure 3.8

shows one of these objects occluded by several others. There are several points to notice in

each example.

* The circle in the image produces a ramp in the orientation graph, as mentioned above.

Note that the ramp is smooth due to the adjustment for diagonal jumps. A square

object produces a staircase graph, with smoothed steps. Each side of the square has

a constant orientation as it is traversed, so the graph is level for each side.

* The hole in the widget is a separate contour, so it has a separate graph. There is no

iml!ication that a contour will all be caused by one object, or that each object will

all be on one contour. The piano has a single continuous closed physical boundary,

but the edge-finder broke the boundary into two contours (due to a shadow).

* Each graph begins at the top of the contour in the image. Thus the starting point

of a graph can be almost anywhere on the object, depending on its orientation. The

initial value of the orientation is likely to be close to horizontal, however, since it

always begins at the top of the object.

* For each of the objects that forms a closed contour, the starting point is the same

as the last point on the object. Unfortunately, their orientation values will not be

identical, but will differ by 2. As a closed contour is traversed counter-clockwise, the

tangent orientation must increase by exactly 2f if the contour does not cross itself (it

can not), and it joins itself smoothly. If, for some reason, the contour is traced in the

opposite direction, the orientation would decrease. This cannot happen with closed

curves, but broken contours are equally likely to be traversed in either direction.
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· Note the effect of rotating the frob. In addition to changing the starting point, the

entire graph is shifted vertically as well. However, the shapes of the graphs remain

almost identical, and almost all of the same features are found on both.

* In the occluded image, contours from several objects run together. The contour of the

widget from the isolated example has been spliced in with the other contours, as indi-

cated by the dark bars. Portions of the original contour are missing completely. The

separation between spliced sections can be any amount, and does not have anything

to do with the separation in the original graph.

* Parts of the original contour have been traced backwards in the occluded image.

Because of this, inside/outside consistency cannot be enforced using the direction of

the graph tracing.

* Despite splicing and reversal, the orientation graph is repeatable in those portions

of the object which remain visible. The local nature of the graph formation and the

diagonal pixel jump adjustment provide this important quality.

3.3 Feature Extraction

The orientation graph reduces the contour information to one continuous dimension. While

it might be possible to perform recognition on this representation directly, using auto-

correlation for instance, the splicing effect of occlusion and the large amount of calculation

required discourage this. Instead, the data is further abstracted to a (discrete) symbolic

form which makes explicit the interesting features of the contour's shape. This abstraction

is important for several reasons. Not only does it reduce the size of the data, but it focuses

the attention of the recognition process, and therefore reduces the amount of computation

required to process the data. At later stages, these features are compared with the model

features in search of consistent partial matches. By extracting features, the search is limited

to a finite number of comparisons, though the number is large. However, the recognition

algorithm relies heavily on the accuracy of the features in order to reduce the amount of work

needed to discard incorrect matches and keep correct ones. To be useful, any abstraction

must correctly summarize its input without missing or distorting information. Thus, there

are heavy demands governing the choice of a feature set. I present a set of criteria for
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features, then describe the set of features used in these algorithms, with a justification in

terms of the criteria.

3.3.1 Criteria for a Feature

The job of a feature is to focus the attention of the recognition algorithm on a distinctive

part of the object, and to represent its local neighborhood in an informative way so that

accurate matching can be performed. Therefore, a feature must be:

Local. In order for a feature to be robust to occlusion, it cannot be based on a large

portion of the object. If it were, then any covering of a part of the contour would

render the visible part useless. Features must also be local in the sense that they are

not dependent on any global reference, especially one such as the center of mass"

which is significantly perturbed by occlusion, or any origin which requires that the

pose of the object is known (since it is not).

Repeatable. One of the most important requirements of a feature is that it can be reli-

ably found in the same location on the object over and over again, despite varying

orientations and nearby occlusions. This also means that extra features and feature

omissions should be kept to a minimum.

Distinctive. Features must be different enough from each other that they are never

switched, and so that inter-feature matches need never be considered. But they

must also be distinctive in the sense that they capture what is distinctive about the

object, so that they are useful for distinguishing an object from others.

Informative. If the feature can describe its local neighborhood sufficiently well, hypothet-

ical matches may be initially filtered before further investigation. Any early pruning

of the search space is very valuable since it will significantly reduce overall recogni-

tion times. Also, the features must contain enough information that an image/model

feature match can be used to form a narrow hypothesis about the global pose of the

modeled object in the image.

Simple. If a feature requires too much processing to extract, then perhaps it should be

broken into simpler parts to reduce the computation time. Any complicated process-

ing of the image data should be performed at a higher level of the recognition process
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where the model information is available, and where the algorithm is designed to

avoid unnecessary work. This is typically a design trade-off.

General. The utility of a feature set will also depend on its ability to describe a wide

range of objects. It is very tempting to work with a set of features which are simple,

but only successful for a limited class of objects, such as polyhedra.

Other criteria have been proposed, based on slightly different definitions of a feature (see

Marr, Nishihara 178]). There is obviously a certain amount of overlap among these criteria,

and conflicting pressures are what make the choice of features a problem without a clear

solr tion.

3.3.2 Choice of Features and Their Detection

Based on the above criteria, I have chosen four types of features for the contours which can

be extracted from the orientation graphs, as shown in Figure 3.9. They are:

* Tips: points of maximum curvature in the image, corresponding to points in the

orientation graph where the first derivative of orientation with respect to arc-length

is maximum. This is detected when the first derivative is above a threshold and the

second derivative crosses zero. The tip feature should appear in exactly the same

location regardless of the direction in which the contour is traversed. The value and

sign of the first derivative at the tip are kept for further discrimination among tip

matches. When an image tip is matched to a model tip, the sign of the slope can be

used to eliminate the ambiguity of relative traversal direction. The position of the

tip feature along the contour is usually fairly stable, with the worst possible situation

being a long constant slope (see the circle feature below).

* Peaks and Valleys (Points of Inflection): Local maxima and minima in the orientation

graph are found when the second derivative is above a threshold and the first derivative

crosses zero. In the image, these are the places where the curvature changes sign, as

in the middle of an 'S' or the middle of a smoothed '2'. The peak and valley features

are also detected in either direction of traversal, but unlike the tip, there is no sign

associated with the feature to disambiguate the traversal direction along one of the

contours relative to the other. Also, a peak will never look like a valley (unless the
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flat objects are allowed to be flipped over). This can also be seen in the image. When

trying to match an image 'S' to a model 'S', one can be rotated 180° and still line up

with the other. No matter how an 'S' is rotated (or in which direction it is traversed),

it will never look like a '2'. The value of the second derivative can still be used as

a parameter of the feature. Peaks and valleys can be located fairly accurately, too,

unless the extremum is leveled (see the line feature below).

* Circles: Circular arcs in the image appear as ramps of constant slope in the orientation

graph. It is more difficult to detect a ramp efficiently, repeatably, and symmetrically

because it does not occur at a single point. The set of possible contour shapes which

could be interpreted as a ramp feature is much larger than that for a tip, peak, or

valley, so the detector is more complicated. It is also harder to use the feature since it

may extend over a large enough section of the contour that it is likely to be partially

occluded. Yet, if the feature is detected and matched, it is very strong evidence for

the presence of the object, but with a degree of freedom as to the exact position of the

object in the image. At each point along the contour, the circle detector tries to grow

a straight line out in both directions. If the line can be grown with some slope such

that every point along the line is within a max-error threshold of the contour, and

if the total length of this line is above a min-length threshold, and the magnitude of

the slope of the line is above a min-slope threshold, the detector indicates the length

and slope of the feature. Actually, since the line length must be greater than the

min-length threshold, an initial check is made to see if the initial (middle) point lies

within twice max-error of the line between the two points half min-length away. If

it does, the slope is set to best fit the three points, and the interior of the interval

is checked at each pixel. If these points are within max-error of the line, then the

interval is grown first in one direction, then the other. Because the line is grown in

both directions, the process is symmetrical (with respect to traversal direction) up to

this stage. However, the circular arc detector described so far would indicate a circle

at every point along a ramp, and would find shorter overlapping circles at both ends

of it. Therefore, whenever two circle features overlap, the shorter one is discarded.

Unfortunately, the only simple implementation of this incompletely defined rule turns

out to be asymmetric. I have not noticed significant detection instability due to the
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asymmetry, but it is possible, and the detection algorithm is considered to be an

incomplete solution.

When a circular arc is finally kept, each end of the circle is taken as a separate feature.

This is a simple but imperfect way of reducing its susceptability to occlusion, and

ignoring the extra degree of freedom introduced when two circular features of different

lengths are matched. It assumes that one end or the other may be occluded, but not

both ends while leaving the middle visible. The method also relies heavily on the

stability of the location of the endpoints of the circle, which are not as reliable as the

overall detection of the feature and its slope. A more general method of matching

circles would probably be useful.

Since the top of a ramp will remain the top when the contour is traversed in the oppo-

site direction, the circle-top and circle-bottom features are distinct types of features.

The slope (the reciprocal of the radius) is kept as a strong discriminating parameter,

and its sign disambiguates the relative direction of traversal in a match. Theoretically,

the circle feature becomes unstable only along curves of slowly changing curvature,

when segmentation becomes a problem: where should a circle of one slope (radius)

end and another one start? Practically, the endpoints are fairly unstable even along

good circles due to a relatively high sensitivity to noise.

* Lines: Straight line segments in the image appear as level sections of the orientation

graph. A detector similar to the circle detector is used, with the slope known to be

zero. As with the circle detector, an asymmetry is introduced when the shorter of

overlapping line segments is discarded during the traversal. Also, the line is used to

create two individual endpoint features, as with the circle, but of the same type since,

unlike circles, there is no way to distinguish between one end of a line and the other.

Therefore, for one image line segment and one model line segment, there are four ways

to match the two pairs of line features. For each of the matches, there is no relative

traversal direction ambiguity, since each endpoint indicates which side the line is on.

The line length is kept to help discriminate matches; image lines more than some

threshold longer than the model are not used, but image lines shorter than the model

are kept since they could be caused by occlusion. The line feature becomes unstable

on slight curves (very slow ramps in the orientation graph) when long enough lines

49



N)

Figure 3.10: Inverted" model features.

can be formed, but the endpoints move. Like the circle feature, the endpoints are

fairly susceptible to noise.

3.3.3 Evaluation of Chosen Features

The orientation graph of the widget in Figure 3.7 shows the features extracted from the

object, which can be used as a model. Figure 3.8 is a typical image, with the features shown.

Portions of the image orientation graph caused by the modeled object are indicated, and

the repeatability of the features can be examined in these regions. The locality of the

Tip, Peak, and Valley features is guaranteed from the local independence of the orientation

graph and the local tests used to measure the first and second derivatives. Circle and Line

features are also local in that they depend only on the part of the contour they describe,

and are not referenced to any global origin. In the case of longer, less local, circular or

linear features, the use of both endpoints reduces the feature's susceptibility to occlusion.

As can be seen, the repeatability of the Line and Circle features is not as good along the

middle of the line or circular arc as it is at the ends of the feature.

In Figure 3.10, the features are approximately inverted to demonstrate that they cap-

ture most of the object's shape. The relative lack of overlap reflects the orthogonality of the

feature set; the only common redundancy is the presence of tips in the middle of small cir-

cular arcs. The ability of the inverted features to look like the original object demonstrates

the extent of the information contained in the features. Also, from any match of an image
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feature to a model feature, a complete estimate of the hypothetical position and orientation

of the model in the image can be formed. (If lines and circles were more thoroughly uti-

lized, instead of using endpoint features, a limited degree of freedom would remain in the

hypothetical pose). The descriptive power of the feature set can be estimated from the lack

of undescribed boundary. If almost every part of the contour is represented, then it is at

least possible that the features will enable accurate discrimination among different objects.

The general applicability of the feature set to objects in the two-dimensional domain can

only be evaluated through testing a wide range of shapes (see Section 3.10). The features

are relatively simple, which reduces computational costs and is a reassurance that they are

elementary in some sense.

3.4 Pose Grouping with an Indexing Array

(Hough Transform)

The modules described up to this point are the first stages common to all three algorithms

presented in this thesis. They begin with a two-dimensional array of intensity values, and

produce a representation of the contours in the image, based on the features described

above. These modules are used both to create a model of an object, and as the first stages

of the recognition process. The rest of the recognition algorithm attempts to match parts

of the image representation with the model. During matching, various hypotheses about

the position and orientation of the model in the image will be developed, either explicitly

or implicitly. This section describes a method for organizing and combining the hypotheses

into compatible groups. It serves as the main recognition module for the first algorithm,

which is driven from the image data. The second algorithm must also perform this task, but

it can use a simpler method since the data has been reduced by a different main recognition

module.

The pose indexing method was popularized by Hough [62) as a transformation, but it

can be thought of in several other ways. It provides a means of grouping consistent hy-

potheses by placing pointers to them in an array of appropriate dimension, such that similar

hypotheses are close to one another. Each hypothesis is taken as a vote for a particular pose,

and the votes are tallied in the array. A significantly extended implementation by Ballard

[81] relies on a high degree of accuracy in the hypothetical poses in order that consistent
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poses fall in the same array element. If, instead, the array is viewed as a histogram, and

more generally as an approximation to a probabilistic distribution in hypothesis space, two

modifications are suggested which make the method more flexible and successful. These

are: to place votes in as many buckets as are consistent with the feature match considering

the conditional error distribution, and second, to weight each distribution according to the

a priori probability that the match is valid. With these modifications, the method works

relatively well, although it still suffers from the need for a large amount of memory and a

trade-off in bucket sze concerning noise reduction, resolution and grouping power.

3.4.1 A Simple Hough Example

The concept behind the Hough transform is quite straightforward, but its implementation

can be somewhat confusing. Figure 3.11 illustrates an example application of the transform

to recognition. Consider a triangular model, defined with respect to the origin as shown

(the origin is arbitrary, but must be consistent). The objective is to find places in the image

where parts of the model appear, and to collect all the found parts into consistent groups.

This is done by making all possible matches of the model with the image, and for each

match, making a vote for the position and orientation of the model origin which aligns the

match. The votes are kept in the pose array, in which there is an array bucket for every

pose. Each bucket keeps track of the number of votes for that pose. At the end, all the

buckets are checked for local maxima or for values above some threshold. These buckets

indicate poses of the model in the image such that many matches are aligned. The poses

can therefore be interpreted as locations of the model in the image.

The application of the transform depends on the definition of a match. For this example,

with only straight lines, a match will be defined to be the alignment of a model line segment

centered on an image segment. Given the image shown, there are five image lines and three

model lines, so there are fifteen possible pairings. Unfortunately, each line pairing can be

matched two ways: with the object origin on one side, or 180 degrees around with the origin

on the other side. So there are thirty matches, and there will be thirty votes. Five of the

matches with arrows to their votes are shown. The match is made, and the position and

rotation of the model origin is noted. The cell (box) in the pose array corresponding to

that z and y position and that orientation, is incremented. Finally, after all matches and
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Figure 3.11: An example application of the Hough transform.
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votes, the array contains the values shown (some not boxed). The matches in any bucket

can come from lines anywhere in the image- anywhere that there was evidence supporting

the pose. Note the local maximum bucket containing two votes. The bucket corresponds

to the a pose which aligns two line segments. There is another potential location of the

triangle in the image, but the two lines are not at exactly the proper angles, so the votes

were not placed i the same bucket.

Several weaknesses are apparent in this simple application. First, the method is not

very tolerant of noise- if a the lines of the model are slightly distorted, the votes will not

go in the same bucket even though there is good evidence for a triangle at that location.

Second, the size of the array cells has a lot to do with whether close votes are grouped, and

it is possible for very close votes to be split between cells. Third, the total number of votes,

based on the amount of data and the method of matching, will affect the height of the peaks

relative to other cells in the image. The signal to noise ratio is not very good. Fourth,

the particular type of matching used in this example would do poorly if occlusion were

introduced, since the midpoints of the lines would vary. Perhaps the line segments could

slide along each other, making multiple votes along the way. Consider curved surfaces; how

many votes would be needed? Filling the buckets can be computationally expensive.

3.4.2 Interpreting the Pose Array

The Hough Transform was introduced in 1962 (US patent 3,069,654) as a means for de-

tecting parameterized curves in binary images. Rather than trying to identify the position

and orientation of a modeled object in an image, it was originally a method for estimating

the radius and position of a circle, for example, from portions of the circle. The parameter

space had as many axes as there were parameters in the shape, and took each piece of edge

data as a vote for the values it supported. In this application, it can be seen as a transform

from image space to parameter space. Many improvements and generalizations have been

made, particularly by Ballard [81].

The strength of the approach comes from the fact that the information implied by

features scattered over the image is organized by the values implied by the features, rather

than being organized spatially. In this sense, it is a hash table, hashing the hypotheses on

their parameter values. Since the goal of the table is to find all the hypotheses that are
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consistent with a particular pose value, it is necessary to push a pointer to a hypothesis

into every bin representing a pose with which it is consistent. That is, the hashing of a

hypothesis formed from a match with limited reliability is one-to-many, not one-to-one.

The same conclusion can be reached via another useful interpretation, which comes from

a probabilistic view (of Bayesian flavor). In this view, the desired output of a recognition

system is Pr(H 1i), a probabilistic distribution over the possible hypotheses about the model

in the image, given the image. Peaks in this distribution signal likely hypothetical poses,

and it provides the perfect measure of "goodness": the probability of the hypothesis. Since

a continuous distribution cannot be represented on a finite machine (except analytically-

possibly worth trying but very complex), it is approximated by a histogram. The possible

values of H are broken into discrete "buckets", and a probability is associated with (fills")

each bucket. Thus, from this perspective, the pose-array is a histogram. This allows access

to probabilistic approaches in determining which buckets to fill. This perspective has proven

to be quite useful, and is significantly expanded in Section 3.5.

3.4.3 The Histogram Segmentation Issue

The discretization of the set of all poses by its representation as an array must be done

carefully. In particular, the size of the buckets and the way they are interpreted can make

the difference between success and failure of the method. There are several trade-offs

involved:

Resolution- If the histogram buckets are too large, the location of the peak buckets will

not be informative enough to be useful, since each bucket stands for a wide range of

values.

Noise- Large buckets will also tend to drown out sharp peaks in the distribution, since

every bucket will have many entries. The value of a bucket represents the average

density of the distribution within the entire bucket, so important small high density

regions will not be represented since the surrounding area will be averaged in.

Population- If not enough data is used to fill the histogram, or if there are too many

buckets, each bucket will either contain an entry or be empty. The resolution of the

histogram value has been sacrificed.
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Computation- The number of buckets is proportional to n3 , in the case of a three-

dimensional array, where n is the number of divisions along each axis. Any algorithm

which must operate on each bucket sequentially or proportional to the density of the

buckets may suffer from very long execution times as n is increased. Naturally, size

requirements are also explosive.

One way to reduce the conflict of these considerations is to use a relatively dense array,

but to consider the buckets in groups when searching for the peaks in the distribution.

Thus, resolution in both pose and probability value can be preserved, at the cost of extra

computation. If necessary, the buckets can be inspected in a course-to-fine hierarchy, using

the larger groups to restrict the application of the finer inspection. Another alternative is to

fill more than one bucket for each piece of data. This is equivalent to the first method if the

same configuration of buckets is filled as was used to group the buckets in the first method.

If so, then the number of buckets versus the number of data points will determine which is

more efficient. However, it will be seen that it is very useful to fill other configurations of

buckets, depending on the data, and that this can significantly improve the success of the

histogram method.

3.5 A Probabilistic Interpretation

As introduced in Section 3.4.2, using an array to organize hypothetical poses can be inter-

preted as approximating a probability distribution by a histogram. Each cell of the array

is a bucket of the histogram, and should contain the probability that the hypothesis asso-

ciated with the bucket is true, given the image. One way to fill the buckets would be to

look at each one sequentially, finding an approximation to the probability of each possible

hypothesis, one at a time. By considering this process carefully, it can be seen that a more

efficient method for filling the histogram is available, in which each feature match is used to

fill whichever buckets it is relevant to. This method closely resembles the extended Hough

transform, but is derived from a very different perspective.

3.5.1 Definition of Terms

The problem is to determine an efficient way of finding Pr(HII). I is the set of features

which have been extracted from the image, (fi). I can take on many values, but its
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particular value is found at the beginning of each run of the recognition algorithm. H is

a hypothesis about the relation of the model to the image, composed of two related parts.

The first part, T, indicates the transformation necessary to place the model in the image.

For two-dimensional vision, T is a translation in z and y and a rotation in the x-y plane.

The'space of all T is therefore three-dimensional, with axes x, y, and . T can take on a

continuum of values, but the histogram divides the space into discrete chunks of volume.

The second part, M, indicates which matches led to the hypothetical transform. Each M

is a complete assignment of every model feature to an image features, or to a null feature

to indicate that the model feature has been occluded. Each M is made up of a set of

matches, m, where each m is a pairing of one model feature to one image feature, (fI, fi).

The set of all M is discrete by nature, however, it is also very large. Very. For example, if

there are twenty model features and fifty image features, then there are (50 + 1)20 distinct

M. It would take quite a while to consider every M, and even more time to consider every

combination of T and M. Fortunately, for any particular T, only a few M are likely enough

to be worth examining individually. For this reason, I like to envision the space of all H

as a small set of M associated with each point in the T space. In my opinion, M is a

more fundamental part of recognition than T, although T is the focus of most recognition

systems. M says, "I recognize this part of image as being the same as that part of the

model", whereas T says, If I move my model exactly like this, it will look like the image".

3.5.2 A Bayesian Flip

Pr(HII) is difficult to calculate directly; it asks the "inverse", recognition question, "Where

and what object caused this image?". The first step is to convert this to the "forward",

projection question, "How might this object look in an image?". The following relation is

just what is needed:

Pr(HI() = Pr(H) Pr(IIH).

In words:

The probability Pr(HII), that a particular hypothesis H is true given the

obeer-,ed image , can be found from the probability Pr(IIH), that the image

cculd have happened given that the hypothesis really is true, multiplied by an
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a priori estimate that the hypothesis could be true, Pr(H), and scaled by a

normalizing constant, 1/ Pr(I).

The normalizing constant is not important in this application. The a priori distribution

can be further broken down: Pr(H) = Pr(T, M) = Pr(T) Pr(M), since Pr(T) and Pr(M)

are independent without I available to link them. Pr(T) might be interesting to use in cases

where certain orientations are known to be more likely, such as when a cup is to be found on

a table. Pr(M) is the a priori probability that a particular match is true, before the image

has been seen or any H has been proposed. It might seem that no information is available

to distinguish one M from another. While this is mostly true, Pr(M) could be used to

devalue mappings which are not one-to-one, or to indicate that a model feature is more

likely to be matched with the null image feature if a nearby model feature is also occluded.

Currently, both distributions are approximated to be uniform. Under this assumption,

Pr(H I) is directly related to Pr(IjH).

3.5.3 Getting to the Feature Level

To find Pr(IIH), it is broken down to the level of the individual matches, where heuristic

estimations of the probabilities can be made based on the geometry of the matched features.

Given H, the location, orientation, and type of each image feature caused by a model

feature can be predicted exactly. Let this predicted image feature be designated fi', a

vector indicating type, position, orientation, and discriminating value (just like all features).

The difference between the predicted and actual image feature values is due to error: fi =

fi' +ef,. A distribution for the error, Pre(ef,) can be justified analytically, or from empirical

evidence based on many observations of the way model features appear in images. Note

that it is independent of H- the difference between the predicted image feature and the

measured value is due only to error, which does not depend on where the feature is or which

feature it is matched with. This independence allows all matches to be treated in the same

way. More importantly, Pr,(e/i) for one e, is independent of its value for a different efi. (It

may be useful to use different Pr(ef ) based on the type of fi, in which case matches may be

treated differently, but they are still independent of each other). With H given, Pr(filH)

can be found from Pr,(ef,) using Pr(filH) = Pr,(fi - fi[), where H is needed to determine

fi. Because of the independence of Pr(), knowing the error at any one image feature does
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not help to predict the error at another image feature, so the conditional distributions are

independent. Also, the image features not caused by the model do not influence Pr(IIH).

Under these conditions,

Pr(IJH)= I Pr(filH).
all fi in M

Note that the product is over all fi in M, including terms for the probability of occluded

model features (matched to the null image feature), but not including any reference to other

image features. Also, the distribution Pr(fi H) does not actually depend on all of H. H is

T and M, where M is a set of matches m, each of which is a model/image feature pairing,

(fa, fi). The error probability of a particular match is independent of all other matches,

so all m other than the one including fi can be removed from the condition.

All together,

H m
(- II Pr(T) Pr(M)Pr(T, MII)= II Pr(fiT,(fm, fi)).

all (fmnf,) in M

This equation provides a means of determining the likelihood of any hypothesis from the

distributions of each match. However, as mentioned above, it is not feasible to check every

possible combination of T and M. The trick is to determine which mappings are likely for

each T. For any given T, the model can be placed in the image, and the most likely image

feature matches to each model feature can be found by their positional and rotational

proximity, and by the similarity of their feature discrimination values. If no sufficiently

likely image matches exist, then the model feature is matched to a null feature, indicating

that it has been occluded. Returning to the earlier example of fifty image features and

twenty model features, this is where the '+1' comes from in the expression for the number

of mappings, '(50 + 1)20'. In practice, this is not just a slight increase in the number of

possible matches for each model feature. It is rare that more than one image feature is

even a reasonable match candidate. If occlusion were not allowed, evaluation of each H

would go very quickly. The only M considered would be made from the best match for

each model feature, no matter how bad it was. When occlusion is accounted for, it is

quite possible that any sufficiently poor match is incorrect. Thus, there will often be two

significant matches for each model feature, especially since almost all of the hypothetical

poses considered are not actually correct. In the worst case, if every match were dubious,

59



there would be 220 possible M for each H, instead of one. In response to this problem,

the actual implementation effectively sets a proximity threshold, beyond which any match

is discarded, and occlusion is assumed. This approximation is not necessarily the best

alternative. It might be better to try both possible matches in certain cases. The fact that

this approximation is made would not otherwise be obvious, and is one of the important

insights of the probabilistic perspective.

3.5.4 A Helical Distribution

Even with a vastly reduced set of M to consider, it would take a long time to step through

every T in the histogram. If each axis of the T space is divided into n pieces, the number

of T to consider will be proportional to n3. For each T, the important m must be found.

Instead of imagining the process as occurring one bucket at a time, one can think of each of

the Pr(filT, m) for each m as existing throughout the space of all T simultaneously. Instead

of stepping through T, then, each of the (for example) 20 x 50 = 1000 different matches

needs to be considered. For each m, the value of the distribution could be determined at

every T. Actually, Pr(fi T, m) is only significant at those places in T where an M which

uses m is likely. In fact, at all other places it can be ignored, since the term will not appear

in any of the Pr(IIT,M) products calculated at those values of T.

Therefore, what is of interest is, for each m, the locus of points in the space of T where

Pr(filT, m) is non-zero. For features with a roughly Gaussian error distribution in each of

x, y, and , Pre(efi IT, m) looks like a fuzzy ellipsoid centered at the origin of the space of

efL . The most likely value for e, is zero- of all possible places the image feature might be,

the predicted location is most likely. In the space of all fi, Pr(filT, m) looks like a fuzzy

ellipsoid centered on fi'. However, the locus in T where Pr(filT, m) takes on significant

values will be a helical arc. At every T, f, can be found, and given m, ef, = fi - fi' gives

Pre(ef,). The fuzzy ellipsoid can be thought of as just a look-up table, and each T implies

a pointer into it. The helical arc, then, is the set of T values which would point near the.

center of the ellipsoid; they predict image feature locations close to where the image feature

actually is.

Figure 3.12 graphically illustrates why this should be a helical arc. If the model is

placed in the image such that the model feature and the image feature correspond exactly

60



MOoEL IMAGE

T

anu

I /
/

-

I:t\S
G1S

Figure 3.12: The helical distribution for T given a feature match.

in position and orientation (To), then e = 0. The value of T can be inferred from the

location and orientation of the origin of the model in the image. If the position is shifted

slightly (T1), then T shifts slightly in the x and y directions, but remains at the same 6 value,

and Pr(fi T, m) goes down before many different transforms have been covered. However, if

the modeled object is rotated slightly about the feature match (T2), T shifts proportionally

in the direction, but it also moves along a large arc in the position directions, traversing

a good portion of a helix before Pr(filT, m) drops off, covering many likely Ts. This

is because the transform variable rotates the model around its origin, not around any

particular feature, so the position makes up for it. The radius of the arc is the distance of

the model feature from the model origin.

The fuzzy helical arc is just the locus of significant values of Pr(fiIT, m). It is actually

defined over the entire space of Ts. If Pre() is approximated by a rectangular solid instead

of a fuzzy ellipsoid, then the helical arc (with a small rectangular cross- section) represents

Pr(fi T, m) completely. There are also two other axes in the space of ef, which have not

been discussed. These correspond to the errors in the other feature parameters: type and

discriminating value. Pre(ef,) = 0 if the error along the type-axis is non-zero. There is no
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chance that a model feature will cause an image feature of a different type. The probability

of an error in discriminating value is a useful distribution to consider. It could also be

modeled as a Gaussian, or more crudely as a box distribution, just as the other axes are

approximated. In the latter case, the presence or absence of the helical arc would be affected

by the difference in discriminating value.

3.5.5 Error Distributions for Lines and Circles

The above section assumed a Pre() which was a fuzzy ellipsoid. This is a reasonable

assumption for point features, such as the tip, peak, and valley features, and for the "end"

features of lines and circles if they are not considered in pairs. However, if the entire line

or circular arc is considered, a different distribution should be used. When two lines are

matched, for instance, the orientation error should be very small if the lines are straight,

but the position in the direction of the line is uncertain due to instability in the location

of the endpoints along the contour. In addition to the instability, the lengths of the lines

may be different due to occlusion, in which case there is a degree of freedom in the match.

The two effects can be accounted for by using a Pre() which looks like a fuzzy line in the

x-error-y-error plane. The resulting locus of non-zero probability in T space is also a fuzzy

line, since the coupling between position and orientation does not matter.

Circular arcs are even one step more complicated. In addition to the degree of freedom

introduced by arcs of different lengths, there is a degree of ambiguity introduced when arcs

of slightly different radii are matched. If the radii are too different, the match is discarded,

so the difference is guaranteed to be small. A compromise is to position the arcs on top

of one another such that as much of the tighter arc is on one side of the wider arc as it is

on the other side of the wider arc. This is done as the shorter arc slides along the longer.

The resulting distribution in T space is (coincidentally) a helical arc, but with its center

on the center of the wider circle, rather than on a feature. These alternative distributions

are used in addition to considering the end features.

The distributions discussed so far are derived analytically, not empirically. Trying to

generalize to other kinds of contour feature, the conditional distribution of the image feature

error should probably be estimated more carefully for each case. One way to do so would be

to assume that the major cause of error comes from location instability along the contour.
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In that case, the error distribution could be modeled by matching various points along the

contour in the neighborhood of each feature, and recording the pose implied by each. In

this way, the particular neighborhood of each feature would indicate the possible errors,

rather than a generic analytical distribution. This has not been implemented, but seems

promising.

3.6 Pose Array Implementation

Whichever interpretation is preferred, the histogram approach is implemented as follows.

Every possible match between image and model features of the same type is considered.

From the probabilistic perspective, it was seen that the desired quantity is Pr(fiIT, m):

the conditional distribution for the image feature, given that it is caused by a particular

model feature, and found for all of the transforms which make it significant. This conditional

distribution can be approximated by a helical arc in the space of T values, whose presence is

conditional on the difference between the discrimination values associated with the features.

If the values are close enough, a helical arc of buckets is filled with information pointing to

the match. After all matches have been considered, the buckets are searched sequentially,

and the ten with the most match pointers are put in an ordered list for later verification.

3.6.1 Using the Discrimination Values

For tips and circles, the curvatures of the image and model features are compared. For

peaks and valleys, the second derivative of orientation is used, and for line features length

is used. Currently, the magnitude of the difference in the absolute values is compared with

the appropriate threshold, and matches which are not close enough are simply discarded.

(Line features are a little different: image lines must be no more than a threshold longer

than model lines, but they may be shorter). I have found that as many as sixty percent

of the matches can be selectively discarded in this way without significantly affecting the

presence of important matches at the histogram peak locations, and that in some cases the

peaks are more pronounced due to the reduction of extraneous data. It should be worthwhile

to weight the surviving matches proportional to the closeness of the discrimination values,

but this has not been tried.
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3.6.2 Filling the Helical Arc

For each match which survives, the buckets corresponding to significant values of Pr(fi IT, m)

must be determined, and filled in the pose array. For matches of features which are well

defined to be at a point along the contour, the only ambiguity in the implied pose is due to

inaccuracies in the feature extraction process. There are no degrees of freedom. Since the

position of the image feature is known, and the position of the model feature relative to

its (arbitrary) origin is known, the model is well located in the image, at least at the point

where the features line up. From the orientation of the image and model contours at the

feature, the orientation of the model in the image is also well defined. However, as seen in

a probabilistic perspective, small errors in the exact position along the contour may cause

angular ambiguity of five or more degrees, which, in turn, causes large errors in the estimate

of the position of the model origin in the image. This coupling must be accounted for, or

the histogram method will fail. The correct distribution for the pose given the match will

reflect the coupling. It will have its highest concentrations of probability along a helical

arc, as shown in Figure 3.12. If the rotational and positional parts of the pose were not

coupled, the distribution would appear as a section of a cylinder, or if the positional error

was not caused by rotation, a rectangular volume of high probability would suffice. But

there is a particular angle associated with each position along a circular arc, so the path in

three-dimensional pose space is a section of a helix.

If line and circle features were not reduced to their endpoints, a match would produce

a different type of distribution, as discussed in Section 3.5.5. Since the features could

have different lengths, there is a degree of freedom as, for example, the shorter line slides

along the longer. With circles, an added match ambiguity is introduced if the circular arcs

have different radii. In this case, the two degrees of freedom make the distribution fill an

extended volume of high probability.

To use the conditional distribution in the pose array, it is further approximated as either

being zero or constant at each location corresponding to an array element. For each match,

at every bucket along a helical arc in the pose histogram, an indication of the match pair

is pushed onto a list corresponding to the bucket. No weighting is currently used among

the buckets that are filled, even though the distribution might indicate a higher probability

at some than others. Also, all other buckets in the histogram are ignored, despite the fact

64



that the real distribution might indicate a small non-zero probability at some of them.

A more problematic approximation comes from the fact that the helical arc of buckets is

actually found by stepping through the angle at a fixed step size, so buckets may be missed

along arcs of large radius. Future implementations may attempt a linear approximation of

the arc, filling all buckets along lines through the three dimensional space. Until then, the

success of the algorithm depends on the fact that strong hypothetical values for T will have

many matches, so the peak is likely to still be detectable.

3.6.3 Finding the Peaks in the Histogram

After all matches have been used to fill the pose array (T space) buckets, each bucket

contains a list of matches which are likely for that hypothetical transform. Pr(T, MjI),

must still be constructed from these matches. The probabilistic perspective shows that this

is proportional to Pr(IIT, M), the conditional probability for the image given the transform

and the likely matches, which can be found from the product of the Pr(f ilT, m) over all m

in M. While it would be more accurate to estimate values of Pr(filT, m) for each match,

they are currently all approximated by the same constant, one. This would make all the

buckets have the same value if it were not for the more significant effect of occlusion. Since

the product at each bucket should be over all m in M, there should be as many terms in

the product as there are features in the model, typically roughly 20 terms. If only four

matches are listed at a particular bucket, the other sixteen are assumed to be occluded.

The terms for these matches are estimated to be much smaller: for example, Poc = 1/2.

Therefore, if there are n,m real matches in a bucket, the probability is equal to p20.n". If

the buckets are just to be ordered, they may simply be ranked by n,m.

Because all the information needed to make a more accurate estimate Pr(IJH) is avail-

able at each match, the best poses could be more carefully ordered. Note that the standard

Hough transform simply adds numbers in the buckets. The buckets which are local max-

ima do not contain information about the matches, despite the utility of this information in

later stages of recognition. It is also difficult to justify summation at each bucket, though it

could perhaps be as useful as the product if the logarithms of probabilities are considered,

or if only ranking is to be performed and the probabilities are crudely approximated, as

above.
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To find the peaks in the array, the buckets are searched sequentially. Whenever a

bucket with more than a fixed threshold of matches is found, a local climbing technique

is used to find the bucket with local maximum number of matches. This bucket and

each of its 26 immediate neighbors are collected, and those array buckets are emptied to

prevent them from being found more than once. The sequential search then continues. By

including all the neighbors around the peak, bucketing errors due to the approximation

of the distribution for each match are partially repaired, at the cost of including more

potentially incorrect matches as well. The result of the pose-indexing module is a list of

the most likely hypotheses, with a list of the supporting feature matches for each.

3.7 Match Extension by Exploring Feature Neighborhoods

The features found along the contours contain information about their position and order

relative to other features which has not been exploited by the modules described in the

previous sections. In the first recognition scheme, the pose-indexing module collects matches

from the whole image, based only on the pose each match implies, and produces a list of

matches A ith each hypothetical pose. The neighborhood information can be used to recover

matches which were not originally indexed to the same pose due to noise or other errors. If

a match is correct, the whole sequence of features along the contour around a feature should

match with the model, until the contour is occluded. Since this is much more likely for

correct matches, neighborhood searching also provides a means for verifying hypotheses.

In the second recognition scheme, the same module is used to "extend" all matches by

searching their neighborhoods. The extended matches are much more discriminating than

single feature matches, and they allow a much better estimate of the pose to be made so

that accurate pose-grouping can be accomplished more easily. Because the contours provide

an order to the features, the algorithm can be very efficient. Whether it is efficient and

successful enough to be used as the first stage in the recognition process is addressed in

section 3.10.

3.7.1 The Neck-and-Neck Neighborhood Search Strategy

The pose indexing array uses global spatial information to correlate matches. It takes every

match and finds where the origin of the model should be placed in the image, then groups
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Figure 3.13: The Neck-and-Neck neighborhood matcher.

matches which put the model at the same place. The neighborhood matching module

only considers the immediate neighboring features along the model and image contours,

to check if they will match as well as the seed match. It is local, and only compares

the orientation graphs, not the spatial image contours. To perform the same operation,

a human might take two orientation graphs plotted on clear plastic, align the seed match

features, and look to see if the bumps and other features in the graphs were also aligned. If

the immediate neighbors are similar, the comparison continues away from the seed match

in both directions until significant differences are detected. Every pair that is aligned is

made part of the extended match.

Figure 3.13 illustrates the algorithm at work. The initial seed match is used to align the

arc-lengths and orientations of the two contours, defining a local origin for the comparison.

The relative traversal direction is dictated by the feature match, as described in section 3.3.

One side of the match is checked first, then the other. Since the features are kept in order

along the contour, the next feature and its distance (arc-length) from the seed match can

be found along both contours. If their arc-lengths and orientations relative to the local

origin are within bounds of each other, and the features are of the same type, the pair
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is taken as a new match and the comparison continues. If the differences between these

features is too great, an estimate of the error is made by taking the difference between the

orientation values at the arc-length of the feature closer to the local origin. The error is

accumulated as incorrect matches are made, but is reset to zero if a correct match occurs.

After an incorrect match, the next feature along the contour which had the feature closest

to the origin is used in the next match. Thus, the features always stay neck-and-neck in

the race away from the origin. Matching in one direction ends when the accumulated error

grows above a bound, or when the end of a contour is reached.

The neck-and-neck algorithm is very efficient relative to the pose-indexing module, since

it does not have to confront the same explosion of possible matches. For a given starting

match, the neighborhood matches to test are well ordered- not all combinations need be

tried. Also, incorrect seed matches, which are much more numerous, require less time to

process than correct seed matches. The overall execution time is kept down even if correct

matches perform a significant amount of redundant search. When two similar contours are

compared, in the best case, the entire stretch of similarity is found for every seed match in

the stretch. This redundancy is not avoided, since different seed matches can find slightly

different sets of extended matches due to slightly different initial alignments.

This module is an example of a model-driven search. Rather than considering every

possible image feature, the hypothesis directs which feature is to be checked (based on the

model). What is left of the search is very small. The difficulty is in efficiently finding

initial hypotheses to begin the search. The first algorithm uses pose indexing to find a few

good hypotheses. The extension module can then be used as a verification tool, since the

number of unique matches it finds is a good indication of the quality of the hypothesis.

Match extension does not explicitly interpret the cause of any occlusion, however, so it

allows hypotheses which give strong evidence for an one part of an object even if nothing

at all is detected in the image where the rest of the object should be. That is, any missing

matches are assumed to be due to occlusion, even when no occlusion is possible. This is

one of several reasons why a preliminary image parsing module would be very useful, as

discussed later.

The second and third algorithms use all possible initial matches as seeds for the match

extension module. In this case, the extended matches alone do not determine the best

hypothesis. In particular, matches are never extended across separate contours, so evidence
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from several contours is not correlated. Further steps are needed to group the extended

matches, and they are presented in the next two sections.

3.8 Grouping Poses

The second algorithm takes the extended matches, and then accomplishes the same task

as the pose index array accomplishes. It arranges the evidence into corroborating groups.

In the pose indexing module, the matches used to load the array are made from weaker,

single-feature matches. Noise can affect the hypothesis significantly, and there is little

information to discriminate between good and bad matches. The extended features are

much more informative. Bad matches are indicated by their relative shortness, and the

relatively few surviving matches give fairly good estimates of a hypothetical pose. It is

possible for a short match to be correct, but the cost of processing all short matches is

prohibitive. Under these conditions, pose indexing is not practical. Instead, pose groups

of extended matches are grown. Each extended match is considered sequentially, and the

pose is estimated from the set of matches by taking the average difference in orientation

at the features, and then aligning the centroid of the image features with the centroid of

the model features at the estimated orientation. The pose is sequentially compared with

a list of the current pose groups, and if it falls within a rectangular bound of any of the

groups, the extended match is merged with the group. Merging consists of checking every

feature match in the extended match with every feature match in the group, and discarding

those new matches which contain either a model or image feature already in the group. The

remaining new matches are added to the group, and the group pose is reevaluated including

them. The efficiency of this grouping algorithm could easily be increased by ordering the

groups by pose, and by ordering the features within the group by type or location, but

neither of these improvements has been implemented.

This method of grouping has a minor drawback: the final groups depend to some degree

on the order in which the extended matches are processed. This is because the group pose is

used to determine whether or not an extended match should be merged, but the group pose

changes during the growth of the group. This can cause bad matches to be included in, or

good matches to be excluded from a group while it is small and the group pose estimate is

inaccurate. Thus, an otherwise large group may form as two separate groups. The bounds
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used for inclusion and the number of extended matches both influence the extent of this

effect. Unfortunately, the algorithm is fairly sensitive to the size of the inclusion bounds,

just as the size of the pose array buckets affects its grouping capability, but without the

same bucket-splitting problems.

The success of the grouping scheme also depends on the accuracy of the pose estimate,

both for the extended match and the group. The current estimate (described above) is fast

and simple, but does not find the best orientation and position simultaneously. A better

estimate can be obtained by solving a system of linear equations for all three variables to

minimize the sum of the squares of the distances between matched features, as described

by Ayeche and Faugeras [86]. Unfortunately, this method is slower, and requires a fourth

variable, scale, in order to be linear. It is not acceptable to ignore the scale solution, since

it significantly influences the position values. Despite this, grouping with this method was

tried and was successful; only execution speed was prohibitive. It might be useful to use

this more accurate estimate in a later stage, after the groups have been formed, to further

combine groups. This would reduce the separation effect.

The groups form the final hypotheses of the second algorithm. I consider the grouping

module to be data-driven, since it simply groups all matches and does not attempt to use

any of the matches to control the search for other matches in the group. However, it is

an example of a module which could almost be interpreted as hypothesis-driven. If the

first member of each group is taken to be a seed for a hypothesis, then the accretion of

the group could be considered to be the development of the hypothesis. In addition, due

to the pose adjustment performed as each extended match is added, the grouping process

does make some commitment to the first member of each group, and can theoretically make

mistakes due to this commitment. But the order of the execution is not affected by the

hypotheses; each group does not predict the existence of other extended matches and then

search for them in the list of extended matches. Therefore, the module is not driven by the

hypotheses.

3.8.1 Other Grouping Schemes

One way to eliminate the dependence on the order is to think of each hypothetical pose

as a cube in the space of poses. The dimensions of the cube reflect the accuracy of the
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hypothesis. Any cubes that overlap form a group, and the job of the grouping algorithm is

to search for the linked chains of cubes. A reasonable way to implement this algorithm is

to do group accretion as above, but without forming a single running group pose. Instead,

the list of all the members is kept, along with an enveloping box. Each new pose is quickly

checked for inclusion in the group envelope, and if it fits then it is sequentially checked

against each of the cubes in the list. If the new cube intersects any of these, it is added

to the group. Overlapping groups can be melded in a final stage, where the envelopes are

again used for an efficient initial check. Note that unlike the first method, where a group

pose is constantly being adjusted, the box-growing approach can easily extend groups over

large portions of the pose-space. If the space is dense enough, depending on the number of

hypothetical poses and the estimated error of each, there may be extraneous links between

groups, or possibly even a flooding of the entire space. This method was attempted, but

found to extend groups over too large a portion of the pose-space, and so it was not used. It

does have potential value, however, in applications where the population and error bounds

are more appropriate.

In a slightly different application of grouping, a maximal clique algorithm was devel-

oped to combine the extended matches along contours, without regard to pose. (This

method would clearly have needed a further stage to relate hypotheses across contours,

had it worked). Extended matches which contained any of the same feature matches were

combined to form a new extended match. The approach suffered from severe flooding, since

no global discrimination was made and poor combinations were allowed to propagate their

error. If tighter local or global constraints had been used, the method might have been

more successful.

3.9 Predicting Matches from Hypothetical Poses

The second algorithm collects the extended matches into groups by the pose that each

match implies, using a data-driven driven approach. The third algorithm uses the same

extended matches in a simple hypothesis-driven search for other matches in the image.

Each extended match indicates a hypothetical location of the model in the image, and thus

indicates where image features should hypothetically be found. A small search is performed

around every potential image feature location, and if a reasonable match is found it is added
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to the hypothetical mapping and used to reevaluate the pose. This is a typical verification

process, demonstrating a commitment to a small set of good hypotheses which are used to

focus attention on a few potential matches. It is also typical in that a significant amount

of time is devoted to each seed hypothesis, so the number of seeds must be limited at the

cost of performing an incomplete search. In the current implementation, extended matches

are verified in order by the number of individual matches in the extended match, until ten

unique poses have been considered.

Two reorganizations of the feature data are used to increase the efficiency of the verifi-

cation module. First, the image features are placed in a fifty-by-fifty array corresponding to

their position in the image. Each feature is placed in the array cell containing its position,

and in the eight neighboring cells. This assures that each cell contains all features within

one cell width of any position within the cell. In each array cell, a list of image features is

kept for each feature type. For each type, there are usually only three to five features per

cell even in crowded areas of the image. To find a predicted match to a model feature, the

array is simply indexed and the first image feature of the correct type with position and

orientation values within certain bounds of the predicted values is used as a match.

Second, for each model feature a list is included in the model representation of all the

other model features ordered by their distance from the feature. The list from the model

feature in the initial seed for the extended match is used to define the order of feature

verification. Starting with model features close to the seed match, the estimated pose is

used to predict the location of the other model features in the image. For each one, the

best image feature is found using the method described above. If a good match is available,

it is added to the hypothetical mapping of the model into the image. Including the new

match, the pose is reestimated using the averaging technique described in Section 3.8. The

ordering is vital to the success of the process. The risk of using this or any hypothesis-driven

matching scheme is that a narrow commitment to an initial hypothesis will not allow the

inclusion of the correct match. In this case, if the pose estimate is not exactly correct, the

narrow image search for the matching feature is likely to fail. As discussed in Section 3.5,

the error in the position of the matched features is usually very small, and the orientation

error is also not particularly large, especially when the entire contour-extended group of

matches is used to estimate the pose. However, because of the coupling between orientation

and position, even the slightest error in orientation will cause an amplified error in position
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Figure 3.14: The four models used to test the algorithms.

proportional to the distance from the match. Therefore, the close features are found first,

allowing greater accuracy in the pose estimation when the further features are considered.

Using this verification module, a mapping can be constructed using virtually no search,

yet enforcing relatively tight geometric consistency. However, if the seed matches are not

already partially correct, there is no hope that this module will find a correct interpretation

of the image.

3.10 Results and Discussion

The three algorithms were developed on a Symbolics 3600 Lisp Machine. To evaluate

the their performance, the four model objects shown in Figure 3.14 were recognized in

ten images. Each image contained all four modeled objects and several other objects,

as shown in Figure 3.15. The images are essentially random arrangements of the modeled

objects demonstrating varying amounts of occlusion. One of the not-modeled objects closely

resembles a modeled object and acts as a decoy. All of the modeled objects have at least

one axis of symmetry, and in many cases the rotated version of an object was found in

addition to the correct interpretation. The algorithms are not designed to identify flipped-

over objects, so single axis symmetries did not have an effect. Table 3.1 indicates the results
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Figure 3.15: The test procedure in action. The fuzzy outline of the clip is the most highly ranked

hypothesis of the second algorithm. Small circles indicate the matched features, and lines connect

matched points on the orientation graphs.
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Figure 3.16: A histogram of the visibility of models in the 40 test images. The horizontal axis is

the ratio of the number of visible model features to the total number of features in the model. The

vertical axis indicates the number of model instances with that visibility.

of the trials, which are described below and discussed in the next section.

To determine the correctness of the matches, the location of each model in each image

was defined by hand and matching features were found automatically (item 5 in Table 3.1).

In addition, the portions of the model which were visible in each image were found by hand

to determine the number of unoccluded model features (item 3, and see Figure 3.16). The

fewer the number of visible features, the harder the recognition task. Also, the ratio of

visible to matchable model features gives an indication of the repeatability of the features

(item 8). In all cases, when the number of features or matches was recorded, it was broken

down by feature type in order to track the relative utilities of the different types. Also kept

were the total number of model features (item 2), and the total number of image features

(item 1). The product of these gives the total possible number of initial matches (item 4).

The sum of the products of each feature type gives a more realistic indication of the number

of initial matches faced by any algorithm using this feature set (item 4, Total).

The initial matching module eliminates many of these matches using the discrimina-

tion values of the individual features. This initial screening serves both to reduce the

amount of data (item 12) and to improve the population of correct matches relative to

total matches (items 9, 10, and 11). The "Total" column does not equal the weighted sum

of the feature type columns for ratios because it was averaged separately, and division is
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Average Statistics for 40 Trials, by Feature Type

| Total Tip Peak Valley Circle Top Circle Bot Line 

1. Total Image Features [ 236 11 58 64 30 30 35
I .26 i 111 ! 58 I .4 . . , 3

2. Total Model Features l 74 1 28 9.8 11 6.3 6.3 13

3. Visible Matches visibility varied from 20% to 100% (see histogram)

4. Possible Matches (1. x 2.) 5149 13097 561 684 186 186 435

5. Correct Matches 23 11 3.5 4.2 1.4 1.5 1.7

6. Initial Matches 1563 597 244 283 116 116 207

7. Correct Initial Matches 13 6.3. 1.31.8 1.3 1.4 1.0

8. Repeatability (5./3.) .47 .64 .51 .50 .35 .41 .20

9. Correct Matches per

1000 Matches (5./4.) 1.0 3.6 6.4 6.0 8.9 9.1 3.9

10. Correct per 1000

After Screening (7./6.) 8.6 11.0 5.6 6.7 13. 13. 5.4

11. Improvement (10./9.) 7.6 2.9 1.5 1.3 1.9 1.8 3.5

12. Reduction (6./4.) .064 .188 .435 .404 .682 .682 .477

13. Reduction of Correct

Matches (7./5.) .53 .52 .34 .36 .71 .75 .38

14. Use of Available

Correct Matches

Pose Indexing .67 .60 .71 .68 .65 .60 .52

Ext. Mch. Grouping .66 .53 .71 .68 .68 .65 .59

Mch. Verification .70 .66 .76 .67 .66 .58 .52

Table 3.1: Values averaged over ten images, four

separately, not the total of the averages.

models in each. The total column is averaged
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Correct First-Ranked

Interpretations out of 40

Percent of Available

Correct Matches Found

Failures: Percent Visible,

D = Decoy, F = Flipped.

Minimum Percent Visible

with Success

Confidence: Best score

Relative to Second Best

Rank of Seed Leading

to Best Interpretation

Lowest Rank of a Seed

that Lead to Success

Pose

Indexing

34 (85%)

67%

81, 62D, 52,

51F, 33, 12

24

1.8

3.6

69

Extended Match

Grouping

37 (93%)

66%

62D, 51F, 12,

24

2.0

N/A

N/A

Extended Match

Verification

33 (83%)

70%

91, 89F, 62D,

51, 36, 24, 12

33

2.6

2.0

10

Table 3.2: A comparison of the three algorithms.

not left-distributive.

For each of the three recognition routines, the top-ranked hypothesis was interpreted

as correct if it contained mostly correct matches. The number of correct top-ranked pose

hypotheses out of the forty trials reflects the basic success of the algorithm, as shown in

Table 3.2. Another measure of each algorithm is its ability to use the available matches,

indicated by the ratio of correct matches in the final hypothesis to the total number of

correct matches available. In addition, the number of features in the most highly-ranked

wrong hypothesis is kept, and the ratio of the number of matches in the first interpretation

to the number in the best wrong interpretation is an indication of the confidence of the

identification of the best hypothesis. A value close to two means that the second best

interpretation was only half as good as the best interpretation. For the few failures, the

percentage of the model that was visible is indicated with characters indicating several

special cases.
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Average Execution Times (seconds)

Pose Extended Match I Extended Match

Indexing Grouping Verification

Model Construction: 11

Image Feature Extraction: 22

Initial Matches: 0.6

Pose Indexing: 71.0

Finding Peaks: 6.5

Match Extension: 6.2

Match Extension: 3.0

Pose Grouping: 4.7 Verification: 1.4

Table 3.3: Execution times for the different recognition modules.

To evaluate the effect of truncating searches by using a heuristic measure of the quality

of a partial match, the rank of the seed that eventually produced the top-ranked hypothesis

was recorded (for the first and third algorithms only, since they have a final hypothesis-

driven stage). The number of matches in the seed and the number of correct matches in

the seed were also recorded, indicating the quality of the seed.

Despite the fact that absolute execution times are heavily influenced by programming

ability and quirks of particular machine architectures, and are generally not indicative of

the utility of an approach to solving a problem, the average execution times for each module

of the three algorithms have also been recorded (see Table 3.3). The edge-finding process

is excluded from these times.

3.10.1 Discussion

There are several interesting points to notice in the data. One is the importance of the

initial match screening. By using the discrimination values the total number of matches is

reduced by an order of magnitude. The percentage of correct matches among all possible

matches is quite small, so the overwhelming majority of the calculations performed by the

first recognition module are on incorrect matches. The efficiency of the recognition system is

greatly improved by extracting features with enough descriptive strength to allow effective

screening at the level of initial matches. The accuracy of the recognition process may also

be improved despite some reduction in the number of correct matches available, due to the
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elimination of incorrect information that could, for example, lead to false peaks in the pose

indexing histogram. Thus the initial matching module can be said to be performing some

degree of recognition.

A significant amount of execution time is spent finding the features in the image, but

I do not interpret this as an indication that te features are too complex. The feature

extraction procedure is fairly simple, and its efficiency could probably be improved a great

deal. As with other low-level vision tasks, a large amount of repetitive calculation lends

itself to special-purpose hardware or parallel implementation.

One the other hand, the relatively large execution time of the pose indexing module

is much more intrinsic to the method. While pose indexing provides a general means of

correlating data from many sources, it must be used properly to be successful. Filling the

proper distribution of buckets is a naturally time-consuming task. Also, due to its data-

driven nature, it processes all of the input data uniformly, without drawing any conclusions

that might be used to reduce the work.

The shorter execution times of the hypothesis-based modules are probably significant.

They are mostly due to the much reduced search space inherent in hypothesis-driven meth-

ods. However, the execution speed is also affected by the relatively small number of input

hypotheses. In particular, if all the expanded matches were verified instead of the ten

longest, the module might take one or two orders of magnitude longer to execute. Thus,

the cutoff number (ten) has a great influence on the module's speed. In a typical example

of the accuracy versus speed trade-off, the cutoff also affects the ability of the recognition

system to find the best interpretation of the image. The issue is whether the ranking of the

extended matches, based on the number of matches in each, can guarantee that the best

interpretation will be among the ten top-ranked hypotheses. In the terms introduced in

Section 2.3.2, will the top ten extended matches always include all the hypotheses which

meet the acceptance criterion? The answer is, no. The final, accurate acceptance criterion

is based on all the matches in a hypothetical mapping. To expect a simpler measure such

as the number of matches in one section along a contour to be as selective as the complete

criterion is asking too much. The inclusion of the cutoff makes the search incomplete.

But how bad is the problem? The negative effect of the cutoff is to exclude a needed

expanded match from consideration by the verification module. In the recognition trials,

this would result in an incorrect best hypothesis and no correct interpretations in any of
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the other hypotheses. This happened with the third algorithm in four of the forty trials. In

at least one of the cases, the model contours were broken into several small parts, such that

no single contour extended match would be very long. This is exactly the way in which the

extended match count is an inaccurate assessment of the quality of the final interpretation

it would spawn. It would seem that the cutoff is too tight and should include more matches.

However, it is not clear how much is to be gained by a small increase. There will probably

always be some cases in which the largest correct extended match is relatively small, and

to include it would mean including a very large number of incorrect matches during every

execution of the module. An indication of this phenomenon is that among the successful

trials of the verification algorithm, the average ranking of the extended match that led to the

correct interpretation was only 2.0. (The lowest rank that led to a successful interpretation

was ten because of the cutoff- it does not reflect the lowest ranking that could have led

to a success if given the chance). Despite this low average, in ten percent of the trials

the potential correct seed was ranked worse than tenth. Thus, doubling the number of

hypotheses included might only increase the success rate a small amount. This reflects the

weakness of an incomplete search: its dependence on the accuracy of an early evaluation of

partial hypotheses.

The same phenomenon can be seen in the first algorithm, where only buckets in the

pose indexing array that contain more than four matches are used as seeds to the match

extension module. In this case, the measure of quality is also the number of matches, but

the matches have been correlated from the entire image and are closer to being a complete

mapping. It is conceivable that a reasonable estimate of the acceptance criterion could

be made from the matches, but since only the number of matches is used, some error is

predictable. This method of applying a cutoff is also different from the first case in that

it is less severe, and fixed. The number of matches of the best excluded seed in the first

case could float depending on the quality of other seeds. In this second case, the average

rank of the most successful seed was also low (3.6), but the lowest-ranked seed leading to

a correct interpretation was ranked sixty-ninth. As before, this indicates a large number of

very accurate rankings, with a few rare cases in which the ranking was far out of order.

When the algorithms were successful, the confidence level was usually very good. On

average, the best interpretation had twice as many matches as the second-best for all of the

algorithms. The percentage of available correct matches actually found was also high for
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each approach, at close to two-thirds. Surprisingly, the percentage was roughly constant

over feature type despite the lower repeatability of line and circle features. When the

algorithms failed, the incorrect interpretations were sometimes still quite reasonable- the

decoy was more visible than the model in one of the images, and in another image the only

features which could disambiguate the rotation of the model were occluded. In one image

only twelve percent of the model was visible. Discounting these errors, the three recognition

algorithms missed only eight instances of the models in 112 trials, and the second algorithm

missed none of 37 trials.

Two of the failures are notably bad. In one case, despite 81visibility, the pose-indexing

method ranked five incorrect interpretations higher than the correct interpretation. This

was simply a case of an image with many features which coincidentally produced peaks by

supporting poses that fell in the same pose buckets. It is surprising that this did not occur

more often since the buckets are fairly large and the helical arc fills many buckets. In the

second case, despite 91because the final hypothesis-driven module was not given the correct

seed among the top ten seeds. While the model contours were somewhat disconnected, it

seems more like a fluke demonstrating the method's sensitivity to a fixed cutoff.

The success of the second algorithm in particular is partly due to its multi-tiered

structure. The algorithm consists of a data-driven initial feature matcher, followed by

a hypothesis-driven match extension using connectivity, followed by a data-driven grouping

scheme based on hypothetical pose. At each stage, the data were further refined but not

over-refined. The only selective thresholding was in the initial match discrimination. I do

not find it surprising that the most accurate algorithm is a compromise between the two

approaches.
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Chapter 4

A Review of Related Research

To place this thesis in context with other work and to further explore the concepts pre-

sented in the earlier chapters, this chapter presents condensed versions of four recognition

approaches developed by other researchers. Each algorithm is described briefly, and dis-

cussed in comparison with other methods and this thesis. The discussion covers feature

choice and extraction, object representation, computational efficiency, module complexity

trade-offs, and particularly flow of control (data- versus hypothesis-driven). I attempt to

find the strengths and weaknesses of each method, though actual experimentation is needed

to carefully determine which kinds of images will cause an algorithm to miss a visible object,

for example. Though most of the approaches were developed for a limited domain similar

to mine, I also consider the ways in which the algorithms rely on the assumptions of their

domains, and the aspects of the algorithms which might be successfully extended beyond

their domains.

There is considerable research focused on other aspects or domains of recognition. In

particular, algorithms for recognizing three-dimensional (3D) objects have been developed.

Most of these systems begin with 3D data, however, rather than a 2D image. This avoids the

significant problem of inverting the projection of the world from three to two dimensions.

These 3D-to-3D systems bear a strong resemblance to the 2D-to-2D systems discussed

below. It seems generally to be the case that this extension is feasible, with a few subtle

but important differences. The extension of 2D-to-2D systems to 2D-to-3D is much more

complicated, perhaps in a fundamental way. The few recognition schemes that work in

this domain have achieved only limited success, and tend to take different approaches from
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those presented below. While the work is quite interesting, it is not reviewed in this thesis.

4.1 Bolles, Cain: Local-Feature-Focus

One of the better-known recognition systems for the 2D domain was created by Bolles

and Cain [82], dubbed the Local-Feature-Focus method. Their work was motivated by the

exponential growth of the execution times of simple matching schemes in the number of

features. This led them to organize model features into pre-computed clusters around focus

features. The clusters are used to predetermine efficient search strategies for each focus

feature, and also to limit the search to a local neighborhood. The recognition module then

must only examine the matches within the cluster when forming initial hypotheses, and does

not compare matches of model features from different clusters. This reduces the number of

matches significantly, but also removes the ability to correlate information globally during

hypothesis formation. Their implementation also emphasizes the detection and exploitation

of various symmetries, and also of similarities between features of different models in a small

model library. However, they deemphasize feature definition and extraction based on the

assumption that those modules can be built to fit the task. The features they actually use

(corners and holes) are very specific to a certain class of shapes, and it is not obvious that

the recognition method can be successfully generalized to more complicated object domains,

where their notion of a feature is less well defined. Hypotheses are then verified, taking

advantage of the fact that the images are made under a special lighting conditions so that

objects are always black and background is white. Despite the use of binary images and

special-purpose features, the recognition approach is interesting and potentially modifiable

to more general domains.

Perhaps the major strength of this system is its pre-computation of local match extension

strategies for every distinct feature in a small library of object models. Models are developed

from images of isolated objects, and the focus features with their local feature clusters are

automatically chosen. First, all distinguishable feature instances are found by searching

through the whole model library for similar features. All quarter-inch holes, for example,

from within one model or between models, are grouped, and considered together to be a

distinctive feature. It is not obvious that a typical library will have many duplications,

but if it does then dealing with them explicitly will increase the speed and accuracy of
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the recognition algorithm. Each distinctive feature is developed as a focus feature. The

smallest cluster of nearby features which will accurately distinguish every instance of that

feature in the model library is found, with some redundancy included. Thus, when a focus

feature is hypothetically matched in the image, the features in the cluster can be used to

tell exactly which model feature it is. This is essentially a pre-determined search strategy

for every distinct model feature.

In addition, the system performs a great deal of work searching for symmetries of various

kinds among the model library to determ;ne even more efficient clusters. It seems to me

that this work is excessive unless a highly symmetric library is expected. In fact, any

particular feature, such as a corner of angle forty degrees, which is unique within estimated

error bounds would not need a cluster at all, if it were not for two other concerns. First, in

order to be more robust to occlusion, a redundancy level can be set, defining the minimum

number of features included in the cluster which will uniquely identify the focus feature. If

a redundancy level of three is specified, then any two of the cluster features can be occluded

or noisy and the focus feature will still be identified correctly, no matter which model it

belongs to. Second, the clusters are always made large enough that the model pose can be

determined from the cluster matches. The focus features are then ranked by size, with the

smaller clusters considered to be better since larger clusters take considerably more time

to match during recognition. If most of the model features are unique, then there will be

many clusters as small as the redundancy level.

Image features are first sifted by eliminating any which are not within the error bounds

of any model features. For example, if there are no holes with approximately a half-inch

radius in the model library, then a half-inch hole in the image will be ignored. If there are

any similar model features, then there should only be one focus feature which is similar, since

similar model features are pre-grouped. Image features matching the best focus features

are considered first. The initial match defines the list of cluster features to look for in the

local neighborhood. All possible local matches are found, in which the image feature is

similar to a cluster feature, and is located at a similar distance from the focus feature.

The problem is then to decide which of these local matches are correct. The correct

matches are defined to be the largest group of geometrically compatible matches which can

be found. The largest group is found using a maximal-clique algorithm. First, each of the

potential matches is made into a node in a graph. Pairwise constraints on the matches are
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then applied for each possible pair of matches, that is, for each possible arc in the graph. A

pair of matches is compatible if they are one-to-one (e.g. two image features cannot both

be matched to the same model feature), belong to the same model object, have similar

separation in the image as in the model, and if the orientation of the image features with

respect to the line between the features is similar to the model. If all of these constraints

are met, an arc is placed between the matches in the graph. (Constraints very similar to

these are even more thoroughly exploited by Grimson and Lozano-Perez [84,851, as shown in

Section 4.2). The largest group of matches for which every match has an arc to every other

match in the group is taken as the correct interpretation. From these matches, an initial

hypothesis is made about the pose of a model in the image. In addition, mirror symmetry

is explicitly included in the formation of initial hypotheses. Note that the constraints listed

above will allow a mirror-symmetric match to be made. Any three of the cluster features

are then used to determine which symmetry has been found, and this is considered when

the hypothetical pose is calculated.

Each initial hypothesis is immediat ly verified so that if the hypothesis is good, the

image features can be marked as "explained", and no future processing will be done to

them. While the "worse" focus features can be used if needed, the algorithm stops if the

image has been exhausted. Therefore, not all focus features are tried in determining which

are best. If a mediocre hypothesis is considered to be good enough (as it might, since

occlusion is always possible), then those image features will not be available later to the

correct hypothesis. This kind of consideration can significantly increase execution times,

since it may be very difficult to reliably determine when enough hypotheses have been tried

that the best has already been found.

Verification proceeds in two stages. First, matches to all model features at the hypo-

thetical pose in the image are sought. The pose is refined based on these matches. Then,

a polygonal approximation to the model boundary is placed in the image, and the image

is checked for the proper light-to-dark transitions along the boundary segments. This form

of verification relies very strongly on the fact that special backlighting is used in the image

formation, so that the image is black where objects are and white elsewhere. Determining

this information with grey-level images is a difficult task which deserves research. Places

along the contour which are black on both sides are assumed to be caused by occlusion. All

white areas and transitions in the wrong direction are taken as negative evidence, however.
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This kind of application of polygonal contour approximation is valid, since its error is only

the distance between the actual contour and the polygon. Many other systems use line

segments as features, thus relying on a repeatable assignment of segments to the contour.

As is discussed below, it can be very difficult to achieve such a canonical segmentation.

Bolles and Cain state that their recognition process is designed based on the assumption

that verification is expensive, and so initial hypothesis formation is worth spending time

on in order to sufficiently reduce the number of initial hypotheses. It might have been

useful to concentrate on finding a more efficient verification module. However, from my

perspective, it seems that cluster growing is already a form of model-driven search, even if

it does not explicitly verify a hypothetical pose. The initial match of an image feature to a

focus feature begins a model-driven search in the local neighborhood of the image feature

for those features which are similar to the cluster features. Once they are found, the process

returns to a data-driven mode as the maximal-clique is determined. The search for cluster

matches is, admittedly, not guided by a hypothetical pose, but only by a hypothetical

positional match. It is curious that no use is made of a hypothetical orientation at this

stage, which could be deduced from the orientations of the image and model features. Holes

have no orientation, but matched corner features could be used to predict exactly where

the cluster features should be found, and not just how far away they are. In any case, the

cluster match search is both guided and limited by a hypothetical initial match and model

knowledge, and so is hypothesis-driven.

4.2 Grimson, Lozano-Perez: Tree Pruning with Constraints

Grimson and Lozano-Pirez [84,851 attack the search space problem directly. They represent

the set of all model-to-image matches in an "interpretation tree", and then use geometric

constraints on pairs of matches to prune large branches of the tree. The tree-pruning pro-

cess is a good example of a data-driven stage, which is followed by a hypothesis-driven stage.

Their algorithm is somewhat general, in that it is designed to work for several domains of

input data: two-dimensional grey-scale images, three-dimensional range images, and tactile

data. In each case, the input consists of sparse samplings of the object's surface which indi-

cate both the position and the direction of the surface normal. Models consist of polyhedral

approximations to the surface and pre-calculated ranges for the values of the constraints
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for every different pair of surfaces. In the implementation for the two-dimensional domain,

surface samples are in the form of connected line-segments approximating the image con-

tours, and the model is also polygonal. (Special methods for recognizing a library of models

are not considered). One advantage of data-driven recognition approaches is that they can

guarantee that every possible mapping of the model features into the image has been con-

sidered, since they never rely on the accuracy of early hypotheses. However, the set of

all mappings is very large, so data-driven methods are often slower. The success of their

approach hinges on being able to find a set of constraints which can be applied quickly,

but is also powerful enough to eliminate large portions of the tree. The constraints work

well, but to include the possibility of occlusion, several heuristic modules are needed to

further reduce the search. These modules invalidate the guarantee of a complete search of

all consistent mappings. The gain in speed is large and the cost in error may be acceptably

small. This kind of trade-off is one of the main issues in this thesis, and is discussed below

and in Section 4.5.

Edges are found in the image using the DOG edge detector Marr, Hildreth 80], which

is described in Section 3.1. The continuous contours are then approximated by connected

straight line segments. These are the features, which are matched by each branch of the

interpretation tree. While a polygon may be used to closely approximate a curve, and to

reduce the amount of data needed to represent it, there are several significant drawbacks

to using line segments as features. First, line segments do not make anything about the

contour more explicit- they do not perform any abstraction of the data. They encode

the contour, reducing the amount of data needed to represent it (with some loss), but

without interpreting the contour in any way. This means that the search is not focused

by further abstraction to particular parts of the contour. However, simply abstracting the

contours from the image may provide enough of a focus. Second, line segment features

are not repeatable except on polygonal objects. The particular place where one segment

ends and another begins is not defined in such a way that the same contour will have the

same features using a different starting point. The segmentation is also very sensitive to

noise and occlusion.. Hence, a one-to-one matching of line segments between the model and

the image cannot be expected by any means. In order to use line segments as features,

therefore, the matching algorithm must anticipate faulty segmentation. In this algorithm,

segmentation errors are accounted for by using them to determine the acceptable ranges

87



of values for the set of geometric measurements between matches. The ranges are used to

constrain the set of compatible match pairs.

It is possible to place constraints on individual matches if the features are distinctive

enough, but simple line segments do not have much character. Each line segment feature

has four degrees of freedom, which can be interpreted as length, orientation, and the x and

y positions of the midpoint. Three of the degrees are needed to define the transform of

the model into the image. Only the fourth, length, is available for discriminating whether

the features are similar. Thus, the only constraint on individual matches is that an image

segment cannot be matched to a model segment which is more than some error bound

shorter than it. Shorter image segment matches are allowed, since occlusion is possible. This

constraint is employed under the dubious assumption that the segments can be matched

one-to-one, and that a short line segment in the model cannot cause a longer one in the

image.

More can be said about pairs of matches, since two independent segments have eight

degrees of freedom. After three are used for the alignment and the two lengths are used to

constrain the individual matches, there are three degrees left with which to discriminate.

One is the difference between the segment orientations. If this value is outside the range

of possible model values for the two matched features, the matches are inconsistent. The

other two degrees of freedom can be thought of as the projections of the distance between

the segment midpoints onto each of the segments. These are used to restrict the range

of possible positions of the image midpoints along each of the model segments. If these

ranges disappear, then the two matches are inconsistent. How heavily the determination

of the ranges is influenced by the irreproducability of line segments is not clear. It seems

that segmentation errors are approximated as constant bounds on the error of the distance

between segment midpoints, and on angular error.

The constraints are used to eliminate image/model mappings which include any incon-

sistent pairs of matches, in the following way. The top node of a tree is associated with an

image feature. Each branch from the node represents a match of the feature with a different

model feature. The next level represents the ways to match a second image feature with

all different model features. At this level, the constraints can be applied to each node to

determine if that combination of the two matches is consistent. If not, then the node and

all of the branches below it can be pruned out of the tree. At the third ievel, two more
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consistency checks can be made for each node, one check between the first and third level,

and one more between the second and third level. At level n, there will be n - 1 sets of

constraints to apply, since there will be n - 1 new pairs of matches in the interpretation. It

might seem more natural to organize the tree in the opposite way, finding image matches

for each model feature at each level. But this would make a broader tree, and since more

constraints are applied as the search goes deeper, the tree would not be pruned as effec-

tively. Using this method, the tree is pruned quite efficiently, and the correct interpretation

can be found quickly. However, only images of the isolated model can be matched this way.

Consider the broader tree mentioned above, where each level finds a match for a model

feature instead of an image feature. Occlusion can be taken into account by adding a

special branch from each node which indicates that the model feature does not match with

any image feature. As mentioned earlier, the addition of such a relatively likely branch at

every node is not just an incremental increase in the size of the task. A tree which without

occlusion might only have one consistent path will now have 220 paths (for the example of

twenty model features), since the null branch is consistent with every match. In the actual

deep tree, the effect of occlusion is less obvious. It will cause branches corresponding to

some model features to never be taken, at any level. But since not all image features are

due to the modeled object, it must also be possible to indicate that an image feature is

not matched to the model. Again, this is done by adding a null branch at every node, and

the addition of a branch which is consistent with every match dramatically decreases the

pruning power of the constraints.

Accounting for occlusion increases the search time enough that other methods must be

introduced. A common way to improve search times is to try to perform a "best-first"

search, and then to ignore the rest of the search after a good enough match has been found.

Ignoring the rest of the search space relies on having an accurate way of ordering the

search. ut, as discussed in Section 2.3.2, if this could be done perfectly, no search would

be needed. The whole point of the search is to find the best interpretation. Nonetheless,

if a very good interpretation is found, there may be no need to continue the search, and

it may be possible to arrange for the more likely matches to be checked first. To this

end, several additions are made. First, the longer image features are put at the top of

the tree, since they contain more information about the image. Also, the tree is traversed

depth first, so full interpretations are made as soon as is possible. Second, a measure of
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the quality of a partial interpretation is defined as being the total length of the model

segments matched to real image segments. Interpretations which can never be better than

the current best interpretation are discarded. Thus, the best interpretation according to

the quality measure is still guaranteed, but, as the authors point out, there is no assurance

that the quality measure accurately indicates the most correct interpretation. Third, the

search makes a further commitment to long interpretations by assuming that any image

features which have been matched to a model feature in a long interpretation cannot be

excluded from other interpretations by making a null match with that image feature. This

short cut seems very difficult to ustify. It is difficult to predict how much these measures

will improve the speed of the algorithm, and how much they will reduce the accuracy. If the

complete search were to be made, accounting for occlusion, it is difficult to imagine that

any reasonable interpretations would be missed. Since some visible instances of the model

are in fact missed, it is probably due to the extra pruning. Also, multiple instances of the

model may not be found, since any interpretation worse than the best can be discarded.

Even with these measures, the size of the tree grows so quickly with the number of

model and image features that a further step must be taken. To reduce the number of

features in the tree, a low-resolution Hough transform is implemented which groups the

matches by hypothetical pose. Pose resolution is not important because the Hough buckets

are only being used to group the matches; careful pose estimation is made later. Thus, the

pose-space can be divided into large buckets to reduce the possibility of incorrect grouping

due to the considerable inaccuracy of the pose implied by a single match. The buckets are

inspected in overlapping groups, and the matches in the most full bucket groups are used

to form small interpretation trees. The Hough grouping serves both to reduce the number

of features in each tree and to provide a means of performing a best-first search. By using

the hypotheses with the most support first, it is likely that the best interpretations can be

found sooner.

Each sufficiently long interpretation is verified by finding the pose which best fits the

matches, and then rechecking each match to make sure that it is within an error margin of

being correct. Interpretations which were pairwise consistent are not necessarily globally

consistent, and these are discarded.

This recognition system was initially designed to perform a complete search over the

space of all possible matches for consistent interpretations. In its purest form, there is no
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ordering of the search, and it is very slow. With the inclusion of several speed improve-

ments, the tree search is "best"-first to some extent, and is no longer complete by the

same consistency criteria since it makes some commitment to "good" interpretations. It is

possible to add one further significant short-cut. That is to define a quality threshold, and

to end the search whenever an interpretation is found which surpasses it. This technique

has been used in many other algorithms without acknowledgment of its potential error.

To determine the effect of truncating the search, trading speed for accuracy, Grimson and

Lozano-Prez compared the number of tree nodes traversed without a quality threshold

to the number traversed with a quality threshold of ten matches (in an image of twenty

features). The results indicated a speed reduction from sixty to ninety-five percent, but in

twenty to forty percent of the cases, the early commitment was incorrect. Results varied

quite a bit with the accuracy of the data, which was simulated, and with the shape of the

object. But the comparison demonstrated a clear trade-off between accuracy and speed.

4.3 Ayeche, Faugeras: HYPER

Ayeche and Faugeras at INRIA, in France, developed a recognition system called HYPER

[Ayeche, Faugeras 86] for the two-dimensional domain including scaling. The system be-

gins with a two-dimensional image of a two-dimensional world, in which special lighting is

not required and objects may occlude one another. A additional goal is to allow mod-

eled objects to appear at any scale in the image, thus adding a degree of freedom to the

transformation between model and image. The pose space is then four-dimensional, with

two axes for position, one for rotation, and one for scale. They, too, use connected line

segments as features and to represent the model and image, and suffer from some of the

related problems presented above. The general form of the system is to make a limited

number of initial hypotheses from "privileged" segments, and then to develop, or verify,

the hypotheses, including adjustments as supporting evidence is found. The adjustment

process is implemented as a Kalman filter, which updates the predicted pose of the model

to minimize the sum of the squares of the match errors. Performance seems fairly good,

and the method has several strengths, as well as some questionable aspects.

Edges are found in the image using the difference-of-Gaussians method, with a flexible

threshold designed to preserve connectivity along weak portions of otherwise strong edges.
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A binary image (formed under special lighting conditions) can alternatively be used, and is

in fact required for certain complicated objects, and for objects with reflective surfaces which

may cause highlights. The contours are fit to polynomial curves, and then approximated by

connected straight line segments. Problems with this kind of segmentation are mentioned

above, in section 4.2. In particular, to match an image feature, the matcher must effectively

decode the segment, and return to the level of the contour to find if the model feature

could have been derived from the contour. If this is not done, and the segmentation is

assumed to be canonical, several problems will occur: initial hypotheses made from a single

match will contain significant error, supporting matches will require large error bounds, and

the mapping of features will not be one-to-one. HYPER does suffer from these problems

during the formation of initial hypotheses, but he uses a different matching scheme during

verification which successfully reduces the effect of segmentation being non-canonical.

The formation of initial hypotheses is an important step. Correct hypotheses must

not be discarded, but a large number of hypotheses will take a long time to verify. The

approach taken by Ayeche and Faugeras is to define "privileged" features, the ten longest

segments in the model, and to only consider these features when making initial hypotheses.

This seems like a risky reduction. It essentially relies on the system being so reliable that

it will still be successful even if fifty to ninety percent of the model is initially ignored

just to speed the search. The claim is made that it is very rare for all ten of the longest

segments to be simultaneously occluded. This may be the case, but longer segments are

more likely to be partially occluded, and it is not clear that the rest of the recognition

process is reliable enough to consistently be successful starting with only one or two correct

matches. In addition, there are many shapes which would have to be approximated by

many short segments, causing the longest to be almost arbitrary, and possibly clustered

in one portion of the model. Under these circumstances, the number of visible privileged

segments could be severely reduced. It is quite attractive to use best-first search methods,

but accurately finding the best starting point is important and not always easy, and the

method will not degrade gracefully unless the search is continued after the best matches

fail. Execution times may be forced to increase significantly in order to gain this robustness,

but it is hoped that the extra work is only required when a difficult image is encountered.

HYPER may truncate the best-first search too early, considering the somewhat arbitrary

choice of "best" features, and the need for some redundancy.
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From an initial pairing of a model feature with an image feature, a crude estimate can

be made of all four degrees of freedom of the pose. initial matches are further screened by

eliminating those matches which predict a scale factor outside of the a priori bounds, if any

are given, and also by a special first stage of verification. In this first stage, the angle of a

segment with one of its two immediate neighbors is used, as an auxiliary value associated

with the feature, to rule out many initial matches. This seems to be a much better way

to reduce the number of hypotheses as long as the accuracy of the segment angles is good

enough. However, the accuracy will be reduced by the contour segmentation problem.

Hypotheses are developed by attempting to continue segment matches along the con-

nected polygons in the model and image. The extension grows out from the initial match,

alternating between the two sides of the segment on the polygon. For each model segment,

a match is tried with the corresponding next image segment, and no skipping is consid-

ered. Thus, inconsistent segmentation problems will propagate without correction. The

segmentation error is reduced by the method of matching: rather than trying to line up the

midpoints of the segments, only the distance from the model midpoint to anywhere along

an infinite line containing the image segment is used. Thus, segments can be misplaced

along the contour to some degree as long as the orientation of the contour is not changing

quickly.

The quality of each potential new match is evaluated based on the difference between

the image segment and the hypothetical position of the model segment using the pose devel-

oped so far. An arbitrary measure is used, involving a weighted sum of limited normalized

differences of angle and length, and the distance between the midpoints. The orientation

error is emphasized, perhaps because the position and scale estimates are less accurate. If

the measure is below a relatively high threshold, the segments are matched. If matched,

the new match is used to adjust the hypothetical pose, using a Kalman filter, to minimize

the sum of the squares of the distances between model midpoints and image segment lines

(as mentioned above). This update is particularly good in that it solves for the transform

(pose) values simultaneously, and with a reduced though still significant amount of compu-

tation. After each unsuccessful match, the total amount of model perimeter that has been

eliminated is compared to the smallest total amount missed so far by previous hypotheses.

If it is greater, the current hypothesis is rejected, since it can never be better than the one

already found. This eliminates unnecessary work on bad hypotheses, but also eliminates
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the discovery of the second best hypothesis, which may be needed if there is more than one

modeled object in the image, or if the best hypothesis turns out to be incorrect through

later verification. A final verification stage is applied to the best hypothesis by repeating

the matching procedure, but starting with the final estimate of the transform. This can

eliminate bad matches or introduce good ones which were incorrectly classified the first

time, when only a few matches had been made and the pose was inaccurate.

The development of the hypothesis has several strengths. It begins near the initial

match so that errors in the initial estimate of the pose have the least consequence, and

evaluation of the error of matches far from the initial match, where orientation errors cause

amplified errors in position, has the benefit of many matches. The hypotheses are effectively

updated as they are verified, which significantly improves the likelihood that a single correct

match will lead to a correct complete hypothesis. Also, the overall method switches early

from a searching stage, which considers many initial matches and produces a (perhaps

drastically) limited number of hypotheses, to an efficient verification stage, which involves

no search since it relies (perhaps too strongly) on the connectedness of the segments to

order the matching. However, there is one severe apparent restriction which has not yet

been mentioned. That is, that information from contours which are disconnected, either by

occlusion or in the model, are never combined. Since the match extending technique relies

on the ordered connection of segments, occlusions which perturb the object boundary on

both sides of the initial match will prevent the match from being extended to other parts of

the object. If this is the case, it would significantly restrict the maximum amount of contour

which could support a hypothesis, despite a large percentage of the object perimeter being

visible.

The published results do not seem to suffer much from this problem, and are indeed

quite good, both in recognition success despite occlusion, and in having very short execution

times. Most of the images were taken under good enough lighting conditions to process

them as binary images, but they were not completely in focus, and the objects were not

quite parallel to the image plane, demonstrating some robustness to image imperfections.
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4.4 Turney, Mudge, Voltz: Feature Saliency

A data-driven recognition system developed by Turney, Mudge, and Voltz emphasizes the

ability to distinguish image objects among a library of models. They introduce a definition

of feature "saliency" that indicates which features are most distinctive. Features that

are more salient are weighted more heavily in the recognition process. Coincidentally, their

system uses modules that are superficially similar to mine. Their images are binary, but the

curved contours are represented in orientation graphs, and no line-segment approximation

is made. However, no distinctive shapes on the contour are identified. Instead, local

sections of the contour are used as features. As in one of my algorithms, all possible feature

matches are grouped using Hough transform techniques. Because of the type of feature and

the matching technique, this is a very computationally expensive approach. Furthermore,

since each match is only used to fill one bucket, and no verification stage is used, the method

is error-prone and sensitive to image noise. Its success depends on the clarity of binary

images, and on a large number of feature matches which help to make up for the inaccuracy

of the Hough vote from each one. Occlusion is allowed, but because of the strong emphasis

on salient features, if those sections of the model are obscured, the object will probably not

be recognized.

Because of the use of binary images, edge finding is simple and accurate. A third-order

interpolating polynomial is fitted to the chain of edge pixels to produce the orientation

graph. This seems to be a slightly more accurate method than the one described in sec-

tion 3.2, and also more time consuming. Rather than performing the further abstraction of

finding notable points along the contour that can be used to guide the comparison of two

graphs, the graphs are used directly. While it contains the shape information isolated from

the position and rotation of the object in the image, the orientation graph makes nothing

about the shape explicit. As a feature, the graph as a whole is not local, and so would

never match completely with an image if the object were occluded. Therefore, the graph is

divided into overlapping segments of some fixed length, and each of the segments is taken

as a separate feature. In their paper, the segments are twenty pixels long, and are centered

at every other pixel. Thus, there are many unfocused features to process, rather than a few

that capture the important parts of the orientation graph.

In order to determine saliency, before recognition begins, every model feature is com-
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pared with every other feature in the model library. This is done by performing a Hough

transform for each feature with each of the other models. For every feature match, a mea-

sure of the closeness of the match is symbolically added to an array bucket corresponding

to the model pose needed to align the features. Any peaks in the pose-array indicate a

similarity between the feature and some other part of the model library. A weighting factor

is assigned to each feature, and is used to scale the contribution of the feature to the Hough

buckets. By solving a very large equation, the values of the feature weights are found such

that the sum of the squares of all the Hough bucket values is minimized. Features which

contribute to peaks will have small weights, while relatively unique features will be heavily

weighted. The weight is taken as a measure of the "saliency" of the feature. This method

of determining the saliency tends to polarize the values- portions of the orientation graph

receive rr..;.-imum weighting, while the rest has a saliency value near zero. A smoother

assignment would help a great deal with the system's robustness to the occlusion of salient

features, but this is not done.

The recognition process consists of taking every overlapping section of every orientation

graph in the model library and aligning its midpoint sequentially with every point in the

image orientation graph. For each comparison, the model feature is shifted so that its

average orientation aligns with that of the image feature. The sum of the squares of the

differences in orientation between the model and image graphs at every pixel is used to

evaluate the match quality. As mentioned in section 3.2, the orientation graph obscures

position, since it is a derivative of it. Thus, the differences between portions of the contour

are not best found in the orientation graphs, but should be measured directly in the image.

In any case, the bucket corresponding to the model pose such that the model and image

features are aligned is incremented by an amount proportional to the product of the match

quality and the saliency of the model feature. Only one bucket is affected, despite the fact

that the alignment estimate may easily contain enough error to be incorrect by several

buckets. This is especially true since the bucket size is as small as the pixel size.

It is no surprise that the process takes several CPU minutes. It is a complete search in

the sense that every match is explicitly tested, and no hypotheses are formed or assumed

until the entire process is done. However, the combination of matches relies on having the

matches fall in the same buckets. If "falling in the same bucket" is taken as a criterion

for acceptance, then the method is indeed complete. This criterion is not at all robust to
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noise in the image, or to slight differences between the model and image objects. Since no

verification stage is used, the final interpretation is determined from the largest intersection

of the lowest level feature alignments in the Hough buckets.

The only apparent strength of the system is its ability to distinguish very similar objects,

such as two keys that differ only in their pin patterns, if the salient features are visible.

However, if the pin patterns are partly occluded, no matter how visible the rest of the

key may be, it will not be recognized as a key of either type. Furthermore, I believe it is

important to ignore fine distinctions until the general class of object is identified, in which

case it is not difficult to do a small amount of work to refine the identification. This system

does not generalize well to more realistic domains, due to its stringent rigidity and image

clarity requirements, and its lack of abstraction.

4.5 Discussion

In the preceding sections, I have reviewed the Local-Feature-Focus (LFF) system, the Tree

Pruning system, the HYPER system, and the Saliency system. The reviews contain var-

ious comments regarding domain definition, feature choice, search strategy, robustness to

perturbations in the image, and extensibility beyond the intended domain. In this section,

I present a more comparative discussion of the same issues, including comparisons with the

three systems I have developed- the Pose Indexing method, the Extended Match Grouping

method, and the Extended Match Verification method.

4.5.1 Domain Definition and Dependence

I chose these four recognition systems because they were designed for domains similar to

the one for which my algorithms were designed. There are some differences, however, and

in some cases domain restrictions have been exploited by the algorithms, and thus have had

an influence on their design. All of the systems were designed to recognize modeled objects

in a two-dimensional image of a two-dimensional world, in which the shape of an object

remains constant. Also, they were designed to succeed despite partial occlusion of the

modeled objects. Each system extracted edges from the image, and used only the shape of

the edges for identification, making the systems geometrically biased. (Some systems used

the binary value of the image to supplement the edges during verification).
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It is unfortunate that the type of image (binary or grey) and the required lighting

conditions have such a strong effect on the accuracy of edge determination. Both the

LFF system and the Saliency system work exclusively from binary images, in which edges

are easily found and the interior of objects can be distinguished from the background.

The HYPER system sometimes requires images in which edges can be found by simple

thresholding: that is, the objects are painted black and placed against a white background.

Under these conditions, with the extra edge accuracy, strict rigid geometry constraints

can be exploited that will fail under natural lighting conditions. In the LFF system. which

simply assumes that useful features can be extracted from the image to suit the application.

there are at least error statistics built in that define, for example, the range of distances to

search for cluster features. If grey images were used instead, with the appropriate statistics

the process would be slowed, but it would not fail unless enough features were omitted

in the image that the cluster search was insufficient to identify the cluster. However, the

powerful verification stage depends on being able to make object, background distinctions

that are much more difficult to make in a grey image. The Saliency method is very sensitive

to the kind of contour location errors that grey images introduce. The features do contain

enough information to make relatively good pose hypotheses from a single match, but their

use of the Hough transform is very unforgiving. It will not successfully group consistent

correct matches that have any error. In the HYPER system, the contours are approximated

as lines, and the connectivity is used to drive the match expansion. With grey images. the

segmentation and connectivity could be significantly reduced, but it is difficult to tell how

much this would affect the algorithm's success. The Tree Pruning system and all of my

systems are designed to use grey-scale images, but can suffer badly from highlights or parts

with intricate detail that obscure the object boundary. Most of the tests were performed

with solid-colored objects which had some contrast with respect to the background. While

human vision can find a very low contrast line by integrating the evidence along its length,

current edge-finding algorithms are primarily local and error-prone.

All of the systems require very simple images, and only HYPER demonstrates the

successful recognition of any moderately intricate objects. It is easy to underestimate

the difficulties which would arise in more complicated images that include textured regions,

highlights, shadows, and objects with many visible details. The restriction to simple images

seems to be due to the delicacies of edge finders, the emphasis on shape for recognition.
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and the dramatic increase in the size of the search space with the number of features in

the image. In order to allow realistically complicated images. all of the systems described

in this thesis would need to confront the issur directly, rather than through any simple

modification.

All but one of the systems requires that the image objects be in the same scale as the

models. It is not necessarily easy to relax this restriction. Purely data-driven methods

can sometimes make straightforward modifications to include another degree of freedom in

the pose hypothesis. at least theoretically. For instance, Hough transform techniques can

simply add another dimension to the pose-array. First. memory limitations may prevent

this. In addition, this would require being able to make scale estimations from a single

feature match, which in turn would require more complicated and accurate features. For the

Tree Pruning approach. initial tests have already been performed in which the constraints

are be modified to divide out scale, forcing one less constraint and greater complexity in

the remaining ones. The effect on recognition speed could be very large. The Saliency

method, using sections of the orientation graph, would require so many more comparisons

that it would be totally impractical. For hypothesis-driven methods, the problem is equally

difficult. If the initial hypotheses consist of a complete pose estimate (including scale), they

will require the same kind of extra work as data-driven methods require. Without a scale

estimate, it would be very difficult to use the model to find further matches. If hypothesis

development includes pose refinement, or does not begin with an accurate estimate of scale,

then it will need to follow a more conservative development approach to avoid committing

to an incorrect partial hypothesis. HYPER relies on either an a priori estimate of the scale,

or on the length of the image segment. which is very error-prone, especially across different

scales. Unless the line-segmentation module adjusts for scale (which is not known at the

time of segmentation), it will segment curves using roughly constant size segments, which

do not reflect on the scale of the object at all. Only polygons might work over a reasonable

range of scales. This weakness is helped by the use of the connectivity of the segments

to drive the hypothesis development, until the least-squares estimate of scale has enough

information to be accurate.

The explicit inclusion of small model libraries is made by the Saliency method and

the LFF system. In the Saliency method, making distinctions among the library models

is the entire motivation for the use of saliency. It involves a special preparatory stage in
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which the models in the library are compared, and the results of the comparison are used

during recognition to influence the choice of model match. Unfortunately, the emphasis

on model distinction is to the exclusion of model recognition in many cases. Despite using

model comparisons to weigh feature interpretation. they are not used to speed up the

search. Each model is still accessed independently and sequentially. The LFF system

also performs considerable precomputation on the model library. using the similarities of

features to combine them into cluster groups, and using the differences to optimize the

search strategy for each cluster. This kind of preparation can improve execution times

a great deal. Execution time need not be proportional to the number of models in the

library. Since an efficient method for discriminating among models is determined ahead

of time, unnecessary comparisons are never made. Other systems, such as HY PER, Tree

Pruning, and my own, could theoretically be converted for use with libraries. The models

could be checked sequentially, but it would then be necessary to include the ability to

find no match for a model. As mentioned in section 2.3.2, this requires a more careful

verification of good hypotheses, and probably a threshold on a heuristic quality measure.

Recognition, like test taking, is more difficult when "no match" is a possible outcome. To

be sure that no match can be made, many of the poor initial matches must be tried. It is

hard to prove that an initial match is so poor that it could not possibly be part of a correct

interpretation. Thus, even the fastest positive recognizers can become very slow if forced

to make a confident negative choice. In fact, this can increase recognition times by several

orders of magnitude. The LFF system avoids considering all the weak hypotheses by "using

up' the image. If it can find good hypotheses which account tr every image feature, then it

can make the negative claim that the other hypotheses are not possible. This approach can

be much quicker in this domain, but as images get more complicated or when non-modeled

objects appear in the image, it can fail without any grace. Any sequential approach, and

most known approaches to model libraries become impractical when the number of models

becomes large enough to be useful in everyday situations. The problem of large libraries has

,till not received much attention, but a hierarchical classification of objects seems necessary.
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4.5.2 Extension to 3D Domains

Several of the systems have been extended to the domain of three-dimensional data and

models. The Tree Pruning system was developed with this generalization in mind, and

requires only sparse surface position and orientation information. The constraints for this

domain are very similar, and only the global consistency test is significantly more com-

plicated. An extension of the LFF system. called the 3DPO system. was proposed using

clusters of 3D features such as cylinders and coplanar surface discontinuities. A descrip-

tion of a working system has very recently been published. and the general concepts seem

to extend well. My algorithms depend heavily on features in the orientation graph. The

three-dimensional analog may not be as useful: 3D surface features may be difficult to find

repeatably, and may not summarize the surface as completely as they do in two dimensions.

It is still important to focus the search, and the improvements to the Hough transform are

still applicable. The concept of hypothesis-driven search is quite generalizable. The use of

connectivity to direct early hypothesis growth would probably still be useful, even though

surfaces do not connect linearly.

None of the systems attempted to perform recognition under the kind of object transfor-

mations that occur in a projection of the three-dimensional world on to a two-dimensional

image. The design of recognition systems in this domain is typically overwhelmingly influ-

enced by projection. None of the methods reviewed would be reasonable choices to extend

in a similar form to the projection domain, because of their strong rigidity requirements.

4.5.3 Feature Choice

The LFF system requires human definition of the best features for the application. The

assumption that a good set of features can always be found may not be sound. Their

use of corners and holes restricts the class of recognizable objects considerably. I believe

that the clustering method will still work with a more general set of features, but the

determination of such a set is not straightforward. Is it the case that there exist objects for

which no reasonable feature set exists? Is there one set that will work for many objects?

In my systems, I attempt to use a set which covers a large number of shapes. But some

simple objects, such as a circle, have only one feature, and will probably be missed, since the

number of feature matches is currently used to judge (crudely) the quality of the hypothesis.
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The line-segment approximation at least evenly distributes the features over curves, but

its lack of repeatability is a significant drawback, as discussed above. The Saliency system

features are evenly distributed, but the lack of ability to segment a contour repeatably and

the inability of the feature to focus the attention of the recognition process is compensated

by brute force, at the expense of increased computation and decreased flexibility.

A detailed presentation of feature criteria appears in section 3.3.

4.5.4 Search Strategy

All of the systems in this thesis avoid performing a sequential search through all possible

mappings of the model into the image. However, all do work from the set of all possible

single matches of model features to image features. All three of my algorithms and the

Saliency algorithm explicitly form all possible single feature matches. The Saliency method

uses every match to fill the Hough transform array. In my approaches, the initial matches

are limited to features of the same type, and are immediately screened using the discrimina-

tion values associated with each type. The HYPER system only matches privileged (longer)

segments, but does try all combinations. If none of these work, there is no provision for

continuing with other initial matches. This is like a less accurate initial screening with

a preset rule that depends only on the individual features, not on a comparison of both

features. The LFF method ranks all features by the ease with which they can be processed,

and begins by trying to develop the best hypotheses first. If a good enough hypothesis is

developed, using a relatively accurate verification stage, the other initial hypotheses are

never used. If no good hypothesis is formed, the weaker focus features are still available.

The Tree Pruning system begins with all model matches to a single long but otherwise

arbitrary image feature. The second stage continues with another set of matches, pruning

the inconsistent branches. Towards the top of the tree, most model matches are tried by

several interpretations. As long as at least one interpretation continues down through all

of the levels, all individual feature matches will be tried.

This initial hypothesis generation stage is data-driven in all of the algorithms, since

hypothesis-driven recognition requires a set of hypothesis seeds to begin, and the set of all

hypothesis seeds is too large. The LFF system, HYPER, and my match extension module

(used by my second and third algorithms) immediately reverse the control of the search and
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use each initial match to determine the next match to try. In the LFF system, this is the

purpose of f!usters. In HYPER and in the match extension module. connectivity is used

to guide the de- ,.opment of the match In both cases, the length of the match extension is

used to judge the hypothesis. and only better hypotheses are kept. reducing the number of

hypotheses for further verification. Hypothesis-driven search can be very fast, as is implied

by the execution times shown in section 3.10. As discussed in section 2.3.3, the search

space is quickly reduced, but at the risk of missing the best interpretation. The data-

driven methods also reduce the search space. but by other means. Tree Pruning drastically

reduces the number of complete mappings which are considered. Before pruning, the leaves

of the tree represent all possible (on the order of 107") mappings. After pruning, Grimson

reports that from one to fifteen interpretations survive. having visited typically 4000 nodes

in the entire tree. The Saliency system and my Pose Indexing system reduce the number

of complete mappings through the Hough transform. Individual matches are grouped by

hypothetical pose, so very few of the possible combinations of individual matches are tried.

Ignoring the less filled buckets further reduces the search. effectively using a quality measure

based on the popularity of the pose.

The LFF system and the Extended Match Grouping system both require an additional

data-driven stage before final verification. The LFF cluster-guided matches are searched for

consistency using a maximal-clique algorithm. This is needed to resolve the ambiguity in

pose and model choice remaining after the focus feature match. (The process is remarkably

similar to Tree Pruning). The Match Grouping system groups the larger matches by pose

using group accretion. This is needed because of the local restriction of the search-

connectivity cannot be relied upon to globally combine consistent hypotheses. A model

may contain several separate contours. and these are further disconnected by occlusion and

edge-finding errors. HYPER should also require such a stage, but none is mentioned.

Finally, all but the Saliency system and my Match Grouping system make a last eval-

uation of the hypotheses in a verification stage. The LFF system uses the each cluster

hypothesis to find feature matches throughout the image. In addition, the object is placed

in the image and checked all along its contours to make sure that an object/background

boundary exists. (As nmentioned, grey images would make this much more difficult). The

Tree Pruning system has already considered all matches, but has only applied pairwise con-

sistency checks. A pose estimate is made, and each match is checked for consistency with
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the pose. The HYPER system uses the hypthetical pose developed using connectedness.

and redevelops the segment matches using the more accurate initial pose estimate. This is

needed since one-to-one line-segment ma:ching cannot be relied upon. The Match Verifi-

cation system checks for image features predicted from the pose implied by the extended

match, in a manner similar to HYPER's segment matcher. Matches close to the se- J match

are checked first, and the pose estimate is adjusted as matches are added to the hypothe-

sis. In my method. however. the search is not limited by connectivity. The Pose Indexing

method verifies the bucket hypotheses by expanding each match using contour connectivity.

and then using the total number of matches as a measure of the match quality.
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Chapter 5

Conclusion

In this thesis I have presented general issues in model-based vision, and focused on spe-

cific topics within the two-dimensional domain. It is hoped that the identification of the

trade-offs they involve will make the task of designing new recognition systems clearer.

In particular, the distinction between hypothesis- and data-driven recognition and tne in-

vestigation of their strengths and weaknesses shou!d prove useful in the evaluation and

development of future systems.

Chapter I included a definition of model-based recognition and of the two-dimensional

domain. The chapter identified the major axes along which recognition algorithms may

differ, and the importance of these aspects in vision. The aspects discussed were: the

dimension of the world and data, the class of identifiable objects, the ability to recognize

objects despite occlusion, the type of sensory data and special viewing restrictions. and the

inclusion of a library of models.

Chapter 2 continued with a discussion of the issues related to the aspects of model-

based vision, then introduced three fundamental trade-offs pertinent to the two-dimensional

domain. These were: feature complexity versus matching algorithm complexity, accuracy

versus speed (completeness), and hypothesis- versus data-driven recognition.

The implementation of three algorithms to explore these trade-offs was described in

Chapter 3. A collection of feature criteria were derived and presented along with a fea-

ture set that satisfies the criteria and demonstrates one example of the feature complexity

trade-off. Three recognition algorithms were also presented that demonstrated workable

compromises involving search completeness and the exploitation of early hypotheses. All
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three begin with the same initial feature matches, which are well pruned using descriptive

information contained in the features. The first algorithm uses a data-driven pose indexing

module that benefits from the developmer_ of a probabilistic analysis of Hough transform

techniques. Unfortunately. the robust approach requires extra computation. The second

and third algorithms use feature connectivity information to expand the feature matches

in an efficient hypothesis-driven module. The second rturns to a data-driven approach

that combines the extended features by pose. Experimentally. this algorithm was found

to be most successful t finding models in images. The third continues with a hypothesis-

driven approach. using the extended matches to predict the locations of other features and

to quickly find supporting evidence for the hypothetical pose. The third was found to be

faster, but occasionally missed objects due to the dependence on an accurate ranking of the

extended matches. which are only partial mappings. An evaluation of the performance of

the algorithms showed many of the predicted effects, including the value of a multi-tiered

system that combines hypothesis- and data-driven modules.

Four recognition systems designed by other researchers were presented in Chapter 4.

The presentation and comparison served to expand the concepts of earlier chapters by

providing further examples of domains, feature definitions, and matching schemes. In

each case, an attempt was made to understand the advantages and disadvantages of the

approaches.

5.1 Future Work

Improvements to the current algorithms have been indicated throughout the text. The

circle and line features require a more stable detection routine and a means for making

more complete use of the information they capture about the contour. In the pose indexing

module. a more acculrate way of filling the appropriate distribution of buckets would allow

a more confident detection of the correct peak by increasing the ratio of the number of

matches in the correct bucket to the background peaks. In the match extension module, it

would be useful to be able to extend matches along contours until an occlusion prevented

further matching. Currently, the extension is often limited by slight differences between

the contours.

It would be informative to perform extensive testing of the effect of cutoff values on the
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accuracy and speed of the algorithms. The algorithms contain many unjustified threshold

values, which. for the most part, I have left -untuned" in order to avoid the development

of algorithms that rely on careful tuning. However. if an analytic justification for certain

optimal values could be made. it might evoke better performance from the algorithms.

On a larger scale. I believe that two important shifts in emphasis are needed to make

headway against te current limitations. First. there is a need for more image interpretation

before models are considered. For example. a hypothetical association of features caused

by the same object would be quite advantageous. Not only would search combinatorics

be reduced, but explicit reasoning about occlusion would be possible. This need becomes

stronger as larger model libraries are supported. since it becomes more important to prede-

termine as much about the image as is possible before referring to the entire data base. In

three-dimensional worlds, an analysis of shadows. highlights, shading, and physical support

would all be very useful, though they are not necessarily easy to extract. A depth-map

is probably not as useful as some image parsing and the identification of likely geometric

relations among objects in the image.

Second, I believe that a rigid dependence on geometric shape will lead to algorithms

which will not generalize well to realistic environments. Not only must flexible objects be

included, but other cues should be used in addition (not independently), such as color,

texture, or eventually higher-level feedback such as context. It is well known that other

cues are needed, and I believe that it is important to incorporate them and expand to

flexible objects before the dependence on rigidity leads to the development of techniques

that are not realistically useful.
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