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ABSTRACT

Fundamental equivalence properties, which include transfer line re-

versibility, are established for queuing models of manufacturing networks.

The basic tool used for arriving at these properties is the analysis of hole

(or empty space) motion in the networks. Specifically, it is shown that

networks can be grouped into equivalence classes, where members of the same

class can have different layouts. The relationship among the performance

measures of members of the same class is exhibited.

A simple queuing network model is used to introduce and prove those

results. However, the same properties can be shown to hold for more

realistic models.
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I. Introduction

In this paper we present some fundamental equivalence properties for

queuing models of manufacturing networks. The basic tool used for arriving

at these properties is the analysis of hole (or empty space) motion in

the network. Specifically we show that networks can be grouped into

equivalance classes, where members of the same class can have different

layouts. We also exhibit the relationship among the performance measures

of members of the same class. These results are of interest to designers

of manufacturing systems as well as other systems that can be modelled

as networks of queues.

The model which we use as a vehicle for illustrating the equivalance

result is rather simple. It is a variation on one that has been used

extensively by queueing theorists to model networks of queues (e.g.

Jackson (1963)). New features have been added to model finite storage

capacities and assembly and disassembly operations. The equivalence

results, however, are not model-dependent. In Ammar (1980) some of the

ideas presented here are explored in the context of another model.

The idea of focusing on hole motion in a network is inspired by a

similar type of tool used to study semiconductor.devices. Newell (1979)

uses the motion of holes in analyzing the approximate behavior of queues

in tandem.

We show in this paper that transfer line reversibility is a consequence

of the results we obtain. That is, reversal of the order of operations in

a transfer line leaves the production rate unchanged. This was conjectured

by Hillier and Boling (1977) and proven for a rather general model of
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transfer lines by Muth (1979) and Dattatreya (1978). Another proof of

transfer line reversibility, similar to the one by Muth, is by Yamazaki

and Sakagegawa (1975). However, we also show that, although production

rate is unaffected by line reversal, another performance measure, the

mean in-process inventory, does change.
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2. THE MODEL

In this section we discuss a model of manufacturing networks. It is

important to emphasize that this model has been chosen for its simplicity

rather than its accurate depiction of the manufacturing process. This

allows us to explain the equivalence results to follow in the simplest

possible way, without getting entangled in modelling details. For a

presentation of some of these equivalence ideas in the context of a more

realistic model the reader is referred to Ammar (1980). In that model,

each machine's processing time is fixed, and machines fail at random times

and require random lengths of time to repair. The results presented here,

however, are valid in both models.

2.1 Definitions and Network Operation

Each machine i in a manufacturing network can be fed by, i.e.,

receives parts from, a set, U(i), of buffers called the upstream buffers.

Machine i in turn feeds a set of downstream buffers, D(i). Note that

the number of buffers in U(i) is not necessarily equal to those in D(i).

(See Figure 2.1).

Each buffer j feeds exactly one machine, its down-stream machine, dj,

and is fed by exactly one machine, its upstream machine, u.. (See Figure

2.2). All buffers are assumed to have finite capacities: buffer j can

hold no more that N parts.

A machine takes one part from each of its upstream buffers. These

parts are assembled into a single item. The machine then disassembles

that item, depositing one part into each of its downstream buffers. We
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assume that the time to perform the whole assembly-disassembly operation

is an exponentially distributed random variable with rate i.'

We call the time between input of parts to be assembled and output

of disassembled product a cyle. For mathematical convenience we assume

that parts that are being operated on reside in their respective upstream

buffers. That is, the machine has no capacity to hold parts.

The transformation into disassembled product is assumed to take place

instantaneously at the time of output. Thus machines act as transfer

mechanisms between buffers.

A machine is said to be blocked if any of its downstream buffers

is full. We also say that a machine is starved when any of its upstream

buffers is empty. A machine which is neither starved nor blocked, upon

the completion of a cyle, starts a new cycle immediately. A starved machine

cannot start a new cycle until each of its upstream buffers has at least

one part. A blocked machine, which is not starved, does not start its

cycle until none of its downstream buffers is full.

There are two special cases of machines. An input machine is one

that does the first processing on some of the raw material entering the

system. It is assumed that buffers upstream of input machines contain an

unlimited supply of the required raw material, so that an input machine

is never starved. Output machines are those from which some of the final

product emerges. We assume that the buffers downstream of output machines

have infinite capacity. Hence output machines are never blocked.

2.2 System State and Markov Process Formulation

We define the state of a system at time t as
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s(t) = (nl(t), . . .,n (t)) ,

where kB is the number of buffers in the system and ni. (t) is the number

of parts in buffer i at time t. Each n. i(t) satisfies
1

< n. (t) < N .
- 1 - 1

(2.1)

Also we define the indicator variable

Ij(t) =

1

if machine j is starved
or blocked at time t

otherwise

(2.2)

(2.3)I(t) = (I (t ) ... , Ik (t))
1 k~M

where kM is the number of machines.

According to our exponential processing time assumption, if machine i

is not starved or blocked at time t,it completes a cycle at time t+6t

with probability

(2.4)li6t + O(6t) .

Thus the number of parts in each buffer in D(i) increases by one

at time t + t with probability given by (2.4). That is,

Prob[nj(t+6t) - nj(t) = 1IIi(t) = 1]
(2.5)

= i6St + (6t)

for all j e D(i).

and
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Similarly the number of parts in each of the buffers in U(i) decreases

by one at time t + St with the same probability (2.4) or

Prob [n (t + t) - n(t) = -lI Ii (t) = 1]

= ViSt + 0(6t)

for all e u(i).

However, if machine is is blocked or starved at time t it completes

a cycle at time t + t with probability 0 since a blocked or starved

machine cannot work.

Thus

Prob[nj(t + t) - nj(t) = 0I i (t) = 01

(2.7)

= Prob[n(t + St) - nt)= 0I(t) = 0i ( t) = = 1

for all j e D(i) and e U(i).

In addition, no buffer gains or loses more than one part. We

summarize this behavior in Table 2.1. For the meaning of the subscripts

see Figure 2.2.

Table 2.1 Buffer Level Transition Probabilities

ni (t + t) - n(t) ProbE*lId (t), I (t)]
1 1

1 11 I (t)6t
Ui i

' -1 'PI.d. d.(t 

......... 1 1 _

0 1- u. Iu. (t)6t - d. Id. (t)St
.__ _______ __ m1 1 ,1 i

m,iml > 2 

----------------------- ·--- -----· ---·---- ·---·----------��--------------- --�-----····-··------�-------
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Using Table 2.1 and the memoryless property of the exponential

distribution we can obtain for each pair of states, sl and s2' the

following quantities

T(s2,sl,6t) = Prob(s(t + t) = s2Is(t) = s] (2.8)

The quantities (2.8) can be used to construct a continuous time

discrete state Markov process with M states of the form (2.1), where

kB

M I= (N. + 1) (2.9)
i=l

2.3 Steady State Probabilities and Performance Measures

This Markov process may be multiple-chained. Thus we cannot

define steady state probabilities for those systems. However given a

starting state we can define steady state probabilities as follows:

P (s ) = lim Prob[s(t) = slls() = ] . (2.10)
SO t~ot

We use probabilities (2.10) to calculate performance measures of a

manufacturing network, in particular, production rate and mean in-process

inventory.

Let i be an output machine. We define

R. (s) = limiting production rate from machine i (2.11)
given that s(0) = s.

For all buffers j in the network we also define

�1_1� __ ____1 _1__1__·l�_l___r___l_1____1__111�111



-8-

nj (s ) = limiting mean in-process inventory (2.12)

at buffer j given that s(O) = s.

The production rate or machine i is the rate at which it produces

parts when not starved. Thus

Ri (s) = i Prob[machine i not starved s(0) = s0]

N. N
Nj

nj nz

je (i) q (i)

The mean in-process inventory at buffer j is calculated using the definition

of the expected value of a random number as follows

i(s0) = n n.P (n17n2 .. " ,n ) (2 .14)
all states so

2.4 Example

Consider the example of the three-machine two-buffer assembly system

shown in Figure 2.3. The five parameters of the system are

N. i =1,2
1

and

j = 1,2,3

For this system we can draw the state transition rate diagram as

in Figure 2.4. Here

s(t) = (nl (t), n2(t)) .
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For this example, the Markov process describing the system is single

chained, and hence the steady state probabilities are independent of

the starting state. Hence

P (s1 ) = P(s1 ) for all sl, s (2.15)

The performance measures of the assembly system can be calculated

as follows

N N 
1 2

R2 (s0) R2 = R 2 P(n n 2 (2.16)

nl=l n2 = 1

and

N1 N2

n.(s) = n. = E n.P(n 1n2) (2.17)

nl=0 n2=0

for i = 1,2.

1�· �_I�
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3. DUALITY

In this section we define a duality concept in the context of the

manufacturing networks described earlier. We then state and prove a duality

theorem that relates the dynamics of the dual systems. This duality is

extended to a more general equivalence idea in the next section.

3.1 Part-Hole Duality

We define a hole in a manufacturing network as an empty space, (See

Newell (1979) Sevast'yanov (1962), Gordon and Newell (1967).) Thus a

buffer of capacity N that contains n parts has N-n holes.

In our manufacturing network model holes or empty spaces move in the

opposite direction of parts. (see Figure 3.1). At the start of a cycle,

a machine takes one part from each of its upstream buffers,which in-

creases the.number of empty spaces or holes in them by one. Also at

the end of a cycle,when a machine deposits the disassembled product into

its downstream buffers it is decreasing the number of holes in each of

these buffers by one. Thus every end-of-cycle is an event of part

production, while every beginning-of-cycle is a hole production event.

Since every end-of-cycle must have a corresponding beginning-of-cycle,

every part production event has a corresponding hole production event.

Note that a full buffer has no holes, and an empty buffer is full

of holes. Hence a machine starved of parts is blocked by holes and also

a machine blocked by parts is starved of holes. Also note that where

we assume an infinite supply of parts, this is equivalent to having

infinite room for holes. Similarly infinite room for parts is equivalent

__ a � � _III�___1___Ya_____Cl_�__r�_____ll_�
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to an infinite supply of holes. Table 3.1 summarizes the part-hole

duality ideas introduced here.

Parts Holes

n N-n

00 room X supply

X supply X room

starvation blockage

blockage starvation

Table 3.1 Part-Hole Duality

3.2 Dual Systems

A manufacturing network (M) is i-dual to another network (M') if

part motion in buffer i of M' corresponds to hole motion in buffer i of

M, and if otherwise the networks M and M' are identical. Note that this

condition requires buffer i to have the same capacity in both networks.

To explain this definition consider the primal network M in Figure

3.2. Buffer i has upstream machine u. and downstream machine d.. Holes
1 .

in buffer i move from machine di to machine ui. Thus the dual system

M' has machine u. as the downstream machine of buffer i while d. is its
1 1

upstream machine (See Figure 3.3). (Note that in system M' the labels

ui and d are no longer consistent with earlier notation).

We establish the convention of superscripting all quantities

pertinent to the dual system with a prime. For example, n (t) and
1~

_�_�__ _�____I_____���___�__���,�----^- ��""C�
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n!(t) denote the number of parts in buffer i at time t in M and M'

respectively.

3.3 Duality Theorem

Theorem 3.1

For the two i-dual systems M and M':

T(s(t + t), s(t), 6t) = T' (s' (t + t), s' (t), t) (3.1)

whenever

n'. t) = n (t) and n'. (t + t) = nj(t + t)

(3.2)
for all j # i

and

n!(t) = N.i n.(t) and n(t+6t) = N. - n (t+6t). (3.3)

Conditions (3.2) and (3.3) are called the duality conditions.

This theorem states that if the states of systems M and M' satisfy

the duality conditions at times t and t+6t, then the probability of

transition between such states in system M is the same as that for

system M'.

Before proceeding to prove Theorem 3.1 we note the following facts:

1. When the duality conditions hold

n. (t+6t) - n. (t) = -(n (t+6t) - n(t)) . (3.4)
1 1 1 1

This can be shown from condition (3.3).

2. When the duality conditions hold

I(t) = I'(t), (3.5)

This can be shown as follows:

1----- 11~1"-^-~~-�--"~1-""~�·-·-�--)111111111�
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a. For all machines j, ju i and jdi,

I.(t) = I't). This follows from (3.2).

b. If I (t) = 0, this implies that machine u. is
1

blocked or starved in the primal system M.

Case 1 If machine u. is starved in the primal then

it is starved in the dual, hence I' (t) = 0.
U.

Case 2 If machine u. is blocked in the primal not because
1

buffer i is full, then it is blocked in the dual

as well and I' (t) = 0.
u.

1

Case 3 If u. is blocked in the primal because buffer i

is full, then buffer i is empty in the dual and

machine u. is starved in the dual system.

Thus I' (t) = 0.
u.

1

c. If I (t) = 1, then machine u. is neither starved nor
Ui 1

blocked in the dual system and I (t) = 1.
u.

Thus I (t) = I' (t).
U. U.

d. Similarly we can show that I (t) = I (t).
1 1

Therefore when the duality conditions holds,

I(t) = I'(t).

We now let

qi(t) = (n(t),...,ni l(t), ni+l(t),...,nk (t)) .(3.6)

That is q(t) is a description of the state of the system except for the

state of buffer i at time t. Note that qi(t) and ni(t) provide a complete

description of the state at time t. Also let

_� ____� ·_ 1 �11�1� __ _�
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qi(t+6t) - qi(t) = (nl (t+6t) - nl (t),

(3.7)

. n..k8 (t+6t) - (t))

Proof of Theorem 3.1

We have

T(s(t+6t), s(t), t) = Prob[s(t+6t)Is(t)] (3.8)

= Prob[qi (t+6), n (t+6t) jqi(t),n(t)] (3.9)

In (3.9) we condition the state at time t+6t on the state at time t.

Consider now conditioning the difference in buffer levels between t+6t

and t on the value of the buffer level at time t. Hence

T (s(t+6t) ,s(t), t) = Prob qi (t+6t)-qi(t),

ni (t+6t)-ni(t) Iq (t) ,ni(t)] (3.10)

The only useful information in the value of the condition qi(t), ni (t)

is whether machines are starved or blocked and thus

T(s(t+8t),s(t),at)

=Prob[qi (t+6) -qi(t), ni(t+6t)-ni(t) II(t)] . (3.11)

When the duality conditions hold we have

qi (t) = q (t) and qi (t+6t) = q (t+6t) (3.12)

and

qi (t+6t) - qi(t) = qi(t+6t) - qi(t) (3.13)1 1 1 1

using (3. 13) , (3.4) and (3.5) we can write

I�
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T(s(t+St),s(t) ,t)

= Prob[q (t+,t)-qq (t) ,n (t)-n! (t+6t) II' (t)]

(3.14)

Using the same argument with which we constructed (3.11) from (3.9) we

can say

Prob [q(t+6t)-q!(t) ,n!(t)-n!(tt6t)II' (t)]

P= rob[q! (t+6t) ,n! (t+6t)q! (t) ,n!(t)]

T' (s' (t+6t) ,s' (t) 6t). (3.15)

Hence

T(s(t+6t),s(t),6t) = T'(s'(t+6t),s'(t),6t) (3.16)

We have thus proven Theorem 3.1.

3.4 Steady-State Behavior of the Dual Systems

Theorem 3.1 can now be used to relate the steady state probabilities

of the two systems.

The relationship is simply stated as follows

P ()(s) = P s'(O)() (3.17)

where
s =(nl,..., n k B

and
s' = (n,. .. ,

1 in the i-dual systems M and M'B

whenever in the i-dual systems M and M'

__________I__��__�.��_��- ·Il^-a
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n.(0) = n'(0), for j # i,

n. (0) N. - n (),
1 1 1

n. = n', for j # i

I i I

This result can be seen easily from the definition

P (s) = lim Prob[s(t) = ss(0)] . (3.19)
s(0)

Using Theorem 3.1 it is clear that

Prob[s(t) = sjs(0)] = Prob[s'(t) = s'Is'(0)] (3.20)

and (3.17) follows.

We can use (3.17) to relate the performance measures of the two i-dual

systems. This is best illustrated in the duality example that follows.

3.5 Duality Example

Let system Mbe the three-machine two-buffer assembly system in

Figure 2.3, and let M' be the three-machine two-buffer transfer line

in Figure 3.4. In both systems machines with the same label have the

same mean processing times and buffers with the same labels have the

same capacities. Thus system M' is the 2-dual of system M.

The state transition rate diagram for the three-machine transfer

line is in Figure 3.5. Note that this transition diagram can be obtained

from the one for the three-machine assembly system (Figure 2.4) by a

relabelling of the state space according to the duality conditions.

That is,

_ ���II��L�n_ �X_____ll___���__r_�rr________lp__l_·___*
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n(t) = nl( t)

and

n'(t) = N2 - n2( t)

As a consequence of the duality theorem we can obtain the following

steady state result: (Recall that since the Markov process is single-

chained we omit the subscript of the initial state).

P(nln 2) = P'(n{,n2) (3.21)

whenever

ni = n1 (3.22)

and

n' = N2 n2 (3.23)

For system M we have

N1 N2

R2 = 2 l E P(nl'n2 (3.24)
nl=l n2=1

Using (3.21), (3.22), and (3.23) we can rewrite (3.24) as

1 N2-1

R2 P2 L (ni,n; ) (3.25)

We recognize the right hand side of (3.25) as the rate at which machine 2 in

We recognize the right hand side of (3.25) as the rate at which machine 2 in

the transfer line (M') moves parts from buffer 1 to buffer 2. Since no

parts are being rejected or destroyed this is equal to the rate at which

machine 3 moves parts out of the system. (For a proof of conservation

_ I__IIII��--� I-.�nil�-�F----- �·"·�-r�- ---^-lrB^�·ln ��II·-�--- �---�-----�--------�--.�--�-�-�------�1. ---------·-- ·-----�---�--
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of flow in a related model, see Ammar (1980)). Hence

R2 = R3 (3.26)

i.e. the production rate of system M is the same as that for system M'.

We also have

N1 N2

nl= n 2=0
be rewritten1 

be rewritten as

N1

n1 =

nlP (nl,n2 )

v n P (nxn2) .

0

nL

or the mean

is the same

we can show

= nI (3.29)

in-process inventory in buffer 1 of the assembly system (M)

as that for buffer 1 of the transfer line (M'). Similarly

that

n2 = N2 - n2

This can

Thus

(3.27)

(3.28)

��I �1�1� �_I1_Fa__l_____�____�
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4. EQUIVALENCE

Let system-M' be the i-dual of system M, and M" be the j-dual of

system M'. If i=j then system M and M" are identical. If ij then we

have three distinct systems M,M', and M". We can say that by Theorem

3.1

T(s(t+6t),s(t),6t) = T'(s'(t+6t),s'(t) ,t) (4.1)

whenever

n (t+6t) = n(t+6t),

ni(t)

n! (t+6t)

= n (t) for k#i,

= N.-ni(t+6t),
1 1

1 1 1

T' (s' (t+6t),s' (t),6t) = T"(s (t+t), s"(t), t))

n ' (t+6t) = n(t+6t)

n (t) = n(t) for kIj ,

n''(t+6t) = N. - n (t+6t),
3 ] 3

n'.' (t) = N. - n'(t) .
3 3 3

(4.7)

(4.8)

(4.9)

(4.10)

combining conditions (4.2) through (4.5) with conditions (4.7)

(4.10) we have

and

(4.2)

(4.3)

Also

(4.4)

whenever

(4.5)

(4.6)

and

By

through

____ _111__ 1_1 I�L��
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n (t+ t) - n (t+6t), (4.11)

n '(t)= n(t), #i, zi , (4.12)

n!'(t+6t) = N. n.(t+6t), (4.13)
i1 1

n!'(t) = N. - n (t), (4.14)

n''(t+6t) = N. - n(t+6t), (4.15)

and

n'"(t) = N. - n(t). (4.16)

Furthermore conditions (4.11) through (4.16) imply that

T(s(t+6t),s(t), t)) = T" (s"(t+6t),s"(t),6t) (4.17)

It is clear that we can construct another system M"'which is k-dual

to M",where ki, and kj. A similar result to (4.17) can now be

established. We say that such systems generated using one or more

duality steps are equivalent.

4.1 Equivalence Classes

A kB-buffer and kM-machine equivalence class contains all systems

with kB buffers and kM machines that are equivalent to each other.

That is, any two members of an equivalence class can be derived from

each other through one or more duality steps.

Let us denote i-duality as follows

1 ·11��.�..1__�_--�
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That is system M' is the i-dual of system M.

One method of generating all members of an equivalence class from

a representative member is through Figure 4.1. Note that not all duality

relations are shown in the figure.

Since each buffer can have parts flowing in either direction, the

number of members of a kB - equivalence class is 2 .

Also note that there are in general several kS - kM equivalence

classes. For example, the two three-buffer, four-machine systems in

Figure 4.2 cannot be derived from each.. other through any series of

duality steps. Thus they belong to different equivalence classes.

All members of the same equivalence class are related by Theorem

3.1, and their performance measures are also related by the steady

state consequences of Theorem 3.1. These comments are best illustrated

by the examples in the next section.

4.2 Equivalence Example

Consider the two-buffer three-machine equivalence class illustrated

in Figure 4.3. This class has four members (2 2): a three-machine assembly

system (A), a forward (F) and a reversed (R) three-machine transfer

line, and a three-machine disassembly system (D). Recall that all buffers

and machines of members of the same equivalence class that have the same

label are identical.

In the following discussions we use the superscripts A, F, R, or

D to indicate the system which a quantity describes.

In sections 2 and 3 we have encountered systems A and F. To

summarize that discussion we have shown that

___��____1___1_________l__·_________P�
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F AR = R
3 2

and

-F - A
nl =nl

and

-F -A
n2 =N2 -n 2

(4.18)

(4.19)

(4.20)

By similar argument we can show that for systems A and R the following

holds

R A
R = R 
1 2

-R - A
n =N1 - n11 1

and

(4.21)

(4.22)

(4.23)
-R - A
n2 =n 2

Also we can relate systems R and D as follows

R D D

1 3 1
(4.24)I

-D --R
n = n ,

and

(4.25)

-D -R
n2 = N2 - n2 (4.2(

We can now use these results to relate systems that are not the duals of

each other but are equivalent.

For example we can say that for systems F and R:

F R
R = R (4.2'
3 1

6)

7)

IXI�__III__II_�I__���_ � � I I�---� I �1_
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-F -R
n = N - n (4.28)

and

-F -R
2 2 -n2 (4.29)

These relations follow immediately from (4.18) through (4.23).

4.3 A Note on Transfer Line Reversibility

In the example of the previous section systems F and R were a

three-machine transfer line and its reverse. We have shown that they have

the same production rates but different mean-in-process inventories.

Consider now a k-machine transfer line with k-l buffers. If the

order of the machines and buffers in the transfer line is reversed we obtain

the reversed transfer line (RTL). We call the original line the forward

transfer line (FTL) for emphasis.

System RTL can be obtained from FTL by considering a series of k-l

dual systems as follows:

1 2 k-2 k-l

FTL + ® - A---- t .+ RTL

It is clear that FTL and RTL are equivalent systems. Thus we can use Theorem

3.1 to show that

T (s(t+6t), s(t) ,t) = T (s' (t+6t) s' t) ,st) (4.30)

whenever

n!(t+6t) = N. - n.(t+6t) and (4.31)
1 1 1

n (t) =N. - ni (t) .1 1 1

���� 1_ �11��·1_·

(4.32)



-24-

for all i. Therefore

FTL RTL
P (nl...,nK) = P (n{,.n.

whenever

n =N. - n.
i 1 1

for all i.

By using (4.33) and the performance measures formulas we can show that

FTL RTLR = R

and

--FTL --RTL
n. = N. - n. , for all i.

1 1 1
(4.36)

Hence, in general, if a transfer line is reversed its production

rate remains unchanged. This result has been shown by Muth (1979) for a

rather general transfer line model. However the effect of line reversal on

mean in-process inventory does not appear anywhere in the literature. Here

we have shown that the mean in-process inventory can be increased or

decreased through line reversal.

(4.33)

(4.34)

____ _�I_�_ · -�LIS�L IL�

(4.35)
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5. Conclusions and Future Research

In this paper we have demonstrated duality and equivalence ideas in

the context of a simple manufacturing network model. Some of these ideas

are explored in Ammar (1980) for a more realistic (and complex) model

of assembly systems.

The concept of i-duality was explained in Section 3 and it was

shown that state transition probabilities are related in i-dual systems.

Steady-state probabilities and performance measures of the dual systems

were also shown to be related.

The idea of the equivalence of two networks was explored in Section

4. An example of establishing an equivalence class as shown. Finally we

demonstrated how equivalence can be used to determine how transfer line

reversal can affect performance.

Future research in this area will have to deal with extending these

equivalence ideas to more general manufacturing network models such as the

one in Muth (1979).
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Figure 2.3 Three-Machine Two-Buffer Assembly System
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Figure 2.4 State Transition Rate Diagram For System of Figure 2.3
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Figure 3.2 Primal System M
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Figure 3.3 Dual System M'
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1 1 2 2 3

Figure 3.4 Three-Machine Transfer Line
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(a)

(b)

:Two Four-Machine, Three-Buffer Systems
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