
December 1980

DISTRIBUTED DYNAMIC PROGRAMMING*

by

Dimitri P. Bertsekas**

ABSTRACT

We consider distributed algorithms for solving dynamic programming

problems whereby several processors participate simultaneously in the

computation while maintaining coordination by information exchange via

communication links. A model of asynchronous distributed computation

is developed which requires very weak assumptions on the ordering of

computations, the timing of information exchange, the amount of local

information needed at each computation node, and the initial conditions

for the algorithm. The class of problems considered is very broad and

includes shortest path problems, and finite and infinite horizon stochastic

optimal control problems. When specialized to a shortest path problem

the algorithm reduces to the algorithm originally implemented for routing

of messages in the ARPANET.

*This research was conducted at the M.I.T. Laboratory for Information
and Decision Systems with partial support provided by the National Science
Foundation Grant No. NSF/ECS 79-19880.

**Room No. 35-210, Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, Mass. 02139.

LIDS-P-1060

-2-

1. Introduction

Recent advances in microcomputer technology have intensified interest

in distributed computation schemes. Aside from modular expandability, other

potentf'a--d-atages o-f such schemes are a reduction in computation time

solving a given problem due to parallelism of computation, and elimination

of the need to communicate problem data available at geographically dis-

persed data collection points to a computation center. The first advantage

is of crucial importance in real time applications where problem solution

time can be an implementation bottleneck. The second advantage manifests

itself for example in applications involving communication networks

where there is a natural decentralization of problem data acquisition.

The structure of dynamic programming naturally lends itself well to

distributed computation since it involves calculations that to a great

extent can be carried out in parallel. In fact it is trivial to devise

simple schemes taking advantage of this structure whereby the calculation,

involved in each iteration of the standard form of the algorithm is simply

shared by several processors. Such schemes require a certain degree of

synchronization in that all processors must complete their assigned

portion of the computation before a new iteration can begin. As a result

complex protocols for algorithm initiation and processor synchronization may

be necessary, and the speed of computation is limited to that of the slowe'st

processor. These drawbacks motivate distributed algorithms whereby com-

putation is performed asynchronously at various nodes and independently

of the progress in other nodes. Their potential advantages are simpler

implementation, faster convergence to a solution and, possibly, a re-

duction in information exchange between computation nodes.

1_ _ I _ _____�·····ll�.i··-·----�-��I-��- �-_I_ ���-·-�-�_ -

-3-

This paper considers an asynchronous distributed algorithm. L-

for a broad class of dynamic programming problems. This class is described

in Section 2. The distributed computation model is described in Section 3.

It is shown in Section 4 that the algorithm converges to the correct

solution under very weak assumptions. For some classes of problems con-

vergence in finite time is demonstrated. These include-shortest .---

path problems for which the distributed algorithm of this paper turns

out to be essentially the same as the routing algorithm originally

implemented in the ARPANET in 1969 [1]. To our knowledge there is no

published proof of convergence of this algorithm.

_1__ ___ � �1_1� _

- %? -,fi

-4-

2. Problem Formulation

We use an abstract framework of dynamic programming, first introduced

in [2], [3] which includes as special cases a number of specific problems

of practical interest.

Let S and C be two sets referred to as the state space and the

control space respectively. Elements of S and C are referred to as

states and controls and are denoted by x and u respectively. For each

x6S we are given a subset U(x) C C referred to as the control constraint

set at x. Let F be the set of all extended real valued functions

J: S-+[-,o] on S. For any two functions J1, J2CF we use the notation

J1 < J 2 if Jl(x) < J2(x), V xS, (la)

J1 = 2 if Jl(X) = J2(x), V xS. (lb)

Let H; S x C x F + [-] be a mapping which is monotone in the sense

that for all x£S and uU(x) we have

H(x,u,J1) < H(x,u,J2), V J1' J2eF, with J1
< J2' (2)

Given a subset F c F the problem is to find a function J*sF such that

J*(x) = inf H(x,u,J*), V xES. (3)
U U(X)

By considering the mapping T; F -+ F defined by

T(J)(x) = inf H(x,u,J) (4)
UEU(X)

the problem is alternately stated as one of finding a fixed point of T

within F, i.e., a function J*F such that

_sC �

-5-

J* = T(J*). (5)

We will assume throughout that T has a unique fixed point within F.

We provide some examples that illustrate the broad scope of the

problem formulation just given.

Example 1 (Shortest Path Problems): Let (N,L) be a directed graph where

N = {1,2,...,n} denotes the set of nodes and L denotes the set of links.

Let N(i) denote the downstream neighbors of node i, i.e., the set of

nodes j for which (i,j) is a link. Assume that each link (i,j) is

assigned a positive scalar a.. referred to as its length. Assume also
13

that there is a directed path to node 1 from every other node. Then it

is known ([4], p. 67) that the shortest path distances d to node 1 from
1

all other nodes i solve uniquely the equations

d* = min {a.. + d}, Vi 1 (6a)
1 jsN(i)

d* = 0. (6b)

If we make the identifications

S = C - N, U(x) = N(x), F = F,J*(x) d* (7)

a + J(u) if x 1 (8)
H(x,u,J) = xu

0 if x= 1

we find that the abstract problem (3) reduces to the shortest path problem.

Example 2 (Infinite Horizon Stochastic Optimal Control problems): Let H

be given by

H(x,u,J) = E{g(x,u,w) + J[f(x,u,w)]Jx.,u}

� _ _ 1_1_ I __�_

(9)

-6-

where the following are assumed:

(1) The parameter w takes values in a countable set W with given

probability distribution p(dwlx,u) depending on x and u, and E-Ix,u

denotes expected value with respect to this distribution.

(2) The functions g and f map S x C x W into [-o,oo] and S respectively.

(3) The scalar is positive.

Because the set W is assumed countable the expected value in (9)

is well defined for all JF in terms of infinite summation provided we

use the convention + - = +oo (see [3], p.31). It is possible to con-

sider a more general probabilistic structure for W (see [3]) 4t th,

expense of complicating the presentation but this does not seem

worthwhile in view of the computational purposes of the paper.

It is shown in [3] that with this definition of H the abstract

problem (3) reduces under more specific assumptions to various types of

standard stochastic optimal control problems. Thus if g is uniformly

bounded above and below by some scalars and 0 < a 1 the- problem is

equivalent to the standard infinite horizon discounted stochastic optimal

control problem with bounded cost per stage (see [5] Sections 6.1-6.3).

Under these circumstances the mapping T of (4) has a unique fixed point

J* in the class of all bounded real valued functions on S and J* is the

optimal value function of the corresponding stochastic optimal control

problem.

If we assume that 0 < g(x,u,w) or g(x,u,w) < 0 for all (x,u,w)S x C x W

then we obtain stochastic optimal control problems of the type discussed

extensively, for example, in [5], Sections 6.4-6.6, 7.1-7.4, and [3], Chapter 5.
__ _1_____1_111_____________ll

-7-

If J* is the optimal value function for such a problem then J* is

the unique fixed point of T over all functions JF such that 0 < J < J*

if 0 < g(x,u,w) for all (x,u,w), or J* < J < 0 if g(x,u,w) < 0 for

all (x,u,w) (see [5], p. 256).

Example'3 (Finite Horizon Stochastic Optimal Control Problems): Let

S,C,U(x), W, p(dwlx,u), g and f be as in Example 2 and consider the set

of equations

N(N) = 0 , xNES (lOa)

Jk(xk) inf E g(xkukwk) + Jk+l[f(xkukwk)]lxkUk (lOb)
UkZU (x k)

k = 0,1,...,N-l, XkES,

where N is a positive integer. These are the usual dynamic

programming equations associated with finite horizon stochastic optimal

control problems with zero terminal cost and stationary cost per stage

and system function. It is possible to write these equations in the

form (3) by defining a new state space consisting of an (N+l)-fold

Cartesian product of S with itself, writing J* = (JoJ1l...,JN), and

appropriately defining H on the basis of (10). In fact this is a standard

procedure for converting a finite horizon problem to an infinite horizon

problem (see - [5], p. 325). This reformulation can also be trivially

generalized to finite horizon problems involving a nonzero terminal cost

and a nonstationary system and cost per stage.

-8-

3. A Model for Distributed Dynamic Programming

Our algorithm can be described in terms of a collection of n com-

putation centers referred to as nodes 'and denoted 1,2,...,n. The state

space S is partitioned into n disjoint sets denoted S...,S n Each

node i is assigned the responsibility of computing the values of the

solution function J* at all'states x in the-correspopding set S. A node

j is said to be a neighbor of node i if j i and there exist a state

x.iSi and two functions J1,J2EF such that

Jl(x) = J2(x) , V xsj (lla)

T(J1)(xi) ¢ T(J2)(xi). (11b)

The set of all neighbors of i is denoted N(i). Intuitively j is not a

neighbor of i if, for every JF, the values of J on S do not influence

the values of T(J) on S. As a result, for any JF, in order for node

i to be able to compute T(J) on S. it is only necessary to know the values

of J on the sets Sj, jN(i), and, possibly,-on the set-S..

At each time instant, node i can be in one of three possible states

compute, transmit, or idle. In the compute state node i computes a new

estimate of the values of the solution function J* for all states xS..

In the transmit state node i communicates the estimate obtained from

the latest compute phase to one or more nodes m for which iN(m). In

the idle state node i does nothing related to the solution of the problem.

Each node i also has one buffer per neighbor jN(i) denoted B.. where
13

it stores the latest transmission from j, as well as a buffer Bii where

it stores its own estimate of values of the solution function J* for

-9-

all states xS.. It is assumed that a node can receive a transmission

from neighbors simultaneously with computing or transmitting, but this

is not a real restriction since, if needed, a time period in a separate

receive state can be lumped into a time period in the idle state.

We assume that computation and transmission for each node takes

place in uninterupted time intervals [tl,t 2] with t1 < t2, but do not

exclude the possibility that a node may be simultaneously transmitting

to more than one nodes nor do we assume that the transmission invervals

to these nodes have the same origin and/or termination. We also make

no assumptions on the length, timing and sequencing of computation and trans-

mission invervals other than the following:

Assumption (A): There exists a positive scalar P such that, for every

node i, every time interval of length P contains at least one computation

inverval for i and at least one transmission interval from i to each

node mwith iN(m).

The contents of each buffer B.. where j=i or jN(i) at time t are
1J

denoted J .. Thus J is, for every t, a function from S. into [-a,m]

and may be viewed as the estimate By node i of the restriction of the

solution function J* on S. available at time t. The rules according

wi He _ , Y · . * . .

L I� �I � I� _

to which the functions J. are updated are as follows:

1) If [tl,t 2] is a transmission interval for node j to node i with
tl

isN(j) the contents J of the buffer B.. at time t are transmitted

and entered in the buffer Bij at time t2, i.e.

t t
J.2 Jj- (12)

2) If [tl,t 2] is a computation interval for node i the contents of

buffer B..ii at time t2 are replaced by the restriction of the function
t1 t

T(Ji) on S where,.for all t, J is defined by

Jt (x) if xS(13)
(13)

Ji J.. (x) if xS. and jsN(i)

0 otherwise

In other words we have

2 t t
Jii (x) = T(J i)(x) inf H(x,u,J), VXES.. (14)
ii ' i1

usU(x)

3) The contents of a buffer Bii can change only at the end of a

computation interval for node i. The contents of a buffer Bij, jsN(i),

can change only at the end of a transmission interval from j to i.

Note that by definition of the neighbor set N(i), the value

T(Jit) (x) for xS. does not depend on the values of J t at states xS
1 1 1 m

with mi, and mgN(i)7. We have assigned arbitrarily the default

value zero to these states in (13). Our objective is to show that

for all i = 1,...,n

-11-

t
lim J..(x) = J*(x), VXS., j i or jN(i).

It is clear that an assumption such as (A) is necessary in order for

such a result to hold. Since iteration (14) is of the dynamic program-

ming type it is also clear that some restrictions must be placed on the

mapping H that guarantee convergence of the algorithm under the usual

circumstances where the algorithm is carried out in a centralized,

synchronous manner (i.e., when there is only one computation node). The

following assumption places somewhat indirect restrictions on H but

simplifies the convergence analysis:

Assumption (B): There exist two functions J and J in F such that the set

of all functions JF with J < J < J belongs to F and furthermore

J > T(J) , T(J) > J (15)

lim Tk (J)(x) = J*(x), lim Tk (J)(x) = J*(x), xS (16)
k->c ko-o

where Tk denotes composition of the mapping T with itself k times.

Note that in view of the monotonicity of H [cf. (2)] and the fact

J* = T(J*);, Assumption (B) implies

2- 2
J > T(J) > T (J) > . > J* > .. > T (J) > T(J) > J

Furthermore if JF satisfies J < J < J then lim T k(J)(x) = J*(x) for all
k-

xES.

Assumption (B) leaves open the question of how to find suitable

functions J and J. On the other hand for most problems of interest

the choices are clear. In particular we have the following:

1) For shortest path problems (Example 1) it is straightforward to

C

-12-

verify that the choices

J(i) =

J(i) = _

(17a)

(17b)
if i 1

if i = 1

satisfy Assumption (B).

2) For finite horizon stochastic optimal control problems (Example 3)

for which the function g in (10) is uniformly bounded below it can be

easily verified that the functions J = (Jo JI'JN) and

J = (Jo J .. ,JN) where for all k and xo' -l N

Jk(X) = 0
(18),9 ik(x) -= -_Z-k

satisfy Assumption (B).

3) For discounted infinite horizon stochastic optimal control problems

with bounded cost per stage (Example 2 with ac(0,1) and g uniformly

bounded above and below) it is easily shown that every pair of functions

J, J of the form

J(x) = X, J(x) = , V xsS

where

1
1 sup infxI- S U(X

XES ucU (X)
E{g(x,u,w)} < <

1
_ < < 1- inf inf

xsS UsU (X)
E{g(x,uy*) I

satisfy Assumption (B).

- I I

-13-

4) For infinite horizon stochastic optimal control problems with non-

positive cost per stage (Example 2 with g < 0) it can be shown that

the functions J, J with

J(x) = J*(x), J(x) = 0, V XsS

satisfy Assumption (B) ([5], pp. 261, 298). If the cost per stage is

nonnegative (Example 2 with g > 0) then, under a mild assumption (which

is satisfied in particular if U(x) is a finite set for each x), it can

be shown that the choices J, J with

J(x) = 0, J(x) = J*(x), VxeS

satisfy Assumption (B) ([5], pp. 263, 298). The choice of J and J can

be further sharpened and simplified under more specific assumptions on

problem structure but we will not pursue this matter further.

Our convergence result will be shown under the assumption that the

contents JO. of the buffers B. at the initial time t - 0 satisfy
13 1

J(x) < J (x) < (x) , VXES. (19)

The broad range of initial conditions allowed by (19)-eliminates ,the need to

reset the contents of the buffers in an environment where it is neces-

sary to execute periodically the algorithm with slightly different

problem data as for example in routing algorithms for communication

networks. This is particularly true for cases 1)-3) above where con-

dition (19) implies that the initial buffer contents can be essentially

arbitrary.

-14-

4. Convergence Analysis

Our main result is the following proposition.

Proposition 1: Let Assumptions (A) and (B) hold and assume that for

all i = 1,...,n

J(x) < Jii (x) < J(x) , VxeS., j = i or jN(i). (20)

Then for all i = ,...,n

lim Jij(x) = J*(x), VxES., j = i or jN(i).
t- co

Proof: Since the contents of a buffer can change only at the end of

a computation or transmission inverval at a node we can analyze con-

vergence in terms of a discrete time process. We focus attention at

the sequence of times {t k } with 0 < t < t 2 <... where each tk is the

end of a computation interval for one or more nodes.

Let us consider for all t > 0

t; t

Ji S+ [s J Sj

t. t

where for each x ESj, the value Jij (x) [J. (x)] represents the

contents of buffer Bi.. at time t if the algorithm were executed with

the same timing and order of computation and transmission intervals

but with initial condition J(x) [J(x)] instead of J (x) for each

�

-15-

buffer B.. and xS.. The monotonicity assumption (2) and the-definition
1J 3

of the algorithm [cf. (13), (14)] clearly imply that for all t

t.

< Jij (x)
- 13

t:

< ij (X), VSj., i = 1,...,n, j=i or jsN(i).

(21)

It will thus suffice to show that

Jij (x)

t

Jij (x)

VX$Sj, i=l,...,n,

VxsSj, i=l,...,n,

j N(i)

jEN(i)

(22)

(23)

In view of the fact J > T(J) we have clearly

t
> Jjj. (X)

- 3
V xSj, i =

with potential strict inequality only for nodes j

1,...,n,jsN(i)

for which t was

end of a computation interval. For t [t1lt 2) the content of Bij is
t 1

-0 I-
either J. or J.. so from (24) we must haveij jj

t-
> J. (X),

3
VXESj, jEN(i), t[tl,t2)

tj
J. .(x) > J..(x), V ES., i=l,...,n, j6N(i), tt ,t2).

The last relation can also be written as

-t
> t (X),
- Jm

In view of the monotonicity of H it follows from (26) and (14) that

t

. . (x)
t 2

> J. (X)
- 3

V xsS..
3

(25)

(26)

(27)

with potential strict inequality only for nodes j for which t2 was the

end of a computation interval.

t.

J. . (X)

lim
t->o

lim
t->co

J(x) = J.. (x)1j
(24)

the

J ()
1J

t
J. (x)
jm

�-�TI*i�F�)lj�sj-�llI__� __-�I _�______�_���._··._ .

= J* W ,

= J* W

VxCxES, j=l,...,n, mN(j) , t[t 51t2) ·

-16-

Combining (25) and (27) we obtain

t t-l -2
J. (x) > J.. (x)

13 33
VxSj, i = 1,...,n, jN(i)

with potential strict inequality only for nodes j for which either

tl or t2 was the end of a computation interval. The precedirg argument

can be repeated to show that for all k, i = 1,...,n, and jN(i) we have

_> t _it > jjtk
13 - j3

tk+ l

3· V xeSj , te[tk'tk+l)

Let k be the first integer for which 2P <tkt whereP 'is-as in
1

Assumption (A). Then each node must have completed at least one

computation phase in the inverval [O,P] and at least one transmission

phase to all nodes in the inverval [P,2P]. It is easily seen that this

together with (28), the monotonicityof H, and the definition of the algo-

rithm implies that for all t[tkl t k +1)

1 1
tk

T(J) (x) > J. (x) > J (x), VxESj, i = 1,...,n, jiN(i).

This argument can be repeated and shows that if m(k) is the largest

integer m such that 2mP < tk then for all t[tk,tk+l)

t t
Tm (k)(J)() > J.j(x) > k(x), V xSj i = l, ... n, jN(i). (29)__ i1 - j3 3

Similarly we obtain for all t[tktk+l)

J..(x) J(x) > Tm(k)(J) (), XSj i (30)

tk
Jij (x)

13
(28)

i---·-� - -r -*- - - -----------------̂1. ------·---·----- '---"---··"�-sl*rr�----- --· - - -·I-

-17-

By combining (21), (29), and (30) and using Assumption (B) we obtain

(22), (23) and the proof of the proposition is complete.

Q.E.D.

Note that (21), (29), and (30) provide useful estimates of rate

of convergence. In fact by using these relations it is possible to

show that in some special cases convergence is attained in finite time.

Proposition 2: In the cases of Examples 1 and 3 with the choices of

J, J given by (17) and (18) respectively and J satisfying (20), there

exists a time t > 0 such that for all i = 1,...,n and t > t there holds

Ji (x) = J*(x), VxSj., j = i or jN(i).

Proof: For Example 3 it is easily seen that there holds

T (J)(x) = Tk (J)(x) = J*(x), yxsS, k > N+1

The proof follows from (21), (29) and (30)./ For Example 1 it is eb1ly seen

that

Tk (J)(i) = J*(i), Vi = 2,...,n, k > n.

Also for each i, T k(J)(i) represents the length of a path starting

from i with k links, and each link has positive length. Therefore

there exists a k such that T (J)(i) represents length of a path from

i to node 1, for otherwise the paths corresponding to Tk(J)(i) would

...--- ..---- '-~c --- 1 _^c ~ "~~---·~c
-. . .. _ .. _ ...̀ .. I-- ..- ·- ·---- ·- · .·- . ..- -----

i __ =_ _ __ �__ _ _ I _ _ _I�

-18-

cycle indefinitely without reaching node 1 and we would have Tk(J)(i) - .

Since Tk(J)(i) < J*(i) and J*(i) is the shortest distance from i to 1

we obtain

Tk (J)(i) = J*(x), Vi = 2,...,n, k > k.

The result again follows from (21), (29)and (30). Q.E.D.

It is possible to construct examples showing that in the case of

the shortest path problem the number of iterations needed for finite

convergence of T k(J) depends on the link lengths in a manner which

makes the overall algorithm nonpolynomial.

In many problems of interest the main objective of the algorithm

is to obtain a minimizing control law p*, i.e a function *: S + C

with *(x)EU(x) for all xS such that

H[x,*(x) ,J*] = min H(x,u,J*), VxS. (31)
UcU(x)

It is thus of interest to investigate the question of whether control

laws -pt: S C satisfying

P (x)E U(x), VxsS (32)

and

t t
H[x,t (x),J] = min H(x,u,J), VxCSi, i = l,...,n (33)

usU(x)

where J is given for all t by (13), converge in some sense to a control
1

law p* satisfying (31). The following proposition shows that convergence

is attained in finite time if the sets U(x) are finite and H haS con-

tinuity property which is satisfied for most problems of practical interest.

A rilated onvergence result can be shown assuming the sets U(x) are compact

(c.f. [5], Prop. 5.11).

-19-

Proposition 3: Let the assumptions of Proposition 1 hold. Assume also

that for every xS, uU(x) and sequence {Jk}CF for which

lim Jk (x) = J*(x) for all xS we have
kkoo

lim H(x,u,J) = H(x,u,J*). (34)
k-o

Then for each state xS for which U(x) is a finite set there exists

t > 0 such that for all t > t if t (x) satisfies (32), (33) then
X - X

H[x, (x),J*] = min H(x,u,J*).
U u(X)

Proof: Assume the contrary, i.e. that there exists a state xSi for

which U(x) is finite, and an increasing sequence {tk } with tk + X such

that

tk tk tk
H[x,i (x),J.] = min H(x,u,J.), Vk = 1,2,... (35)

u1U (x)

and

tk
H[x,p (x),J*] > min H(x,u,J*) = J*(x), k = 1,2,... (36)

usU(x)

tk
Since U(x) is finite, there exists a uU(x) such that (x) = u for

tk
an infinite subset of indices K. From Proposition 1 we have that-J-~, con-

verges pointwise to J* on the set S U S.. Using the definition
j N(i)

of the neighbor set N(i), (34) and (36), it follows that

- tk
lim H(x,u,J i) = H(x,u,J*) > J*(x)
k-)o1

On the other hand from (35) and Proposition 1 we have

- tk
lim H(x,u,J.) = J*(x)
k->O

kcK

which contradicts the previous relation. Q.E.D.

-20-

5. Discussion and Conclusions

The analysis of this paper shows that natural distributed dynamic

programming schemes converge to the correct solution under very weak

assumptions on the problem structure, and the timing and ordering of

computation and internode communication. The restrictions on the

initial conditions are also very weak. This means that, for problems

that are being solved continuously in real time, it is not necessary

to reset the initial conditions and resynchronize the algorithm each

time the problem data changes. As a result the potential for tracking

slow variations in optimal control laws is improved, and algorithmic

implementation is greatly simplified.

The crucial assumption in the analysis of this paper is the mono-

tonicity property of the mapping H [cf. (2)]. Indeed this property is

largely responsible for most of the basic results in dynamic programming

(see [3]). On the other hand the mapping H of many dynamic programming models

possesses a contraction property which is sufficient to guarantee the

validity of the distributed algorithm of this paper even in the absence

of the monotonicity assumption (2). To be more specific let F be the set

of all uniformly bounded real valued functions on S equipped with the sup-

norm

11JII = sup IJ(x) , V JF . (37)
xES

Assume that, in place of the monotonicity assumption (2), H has the follow-

ing properties

T(J)CEF (38)

-21-

I IT(J) - T(J')II < PI IJ-J' II J, ,J'J (39)

where p is a scalar with 0< p<l. Then T has a unique fixed point J* in

F and it is possible to show that the conclusion of Proposition 1 holds

provided Assumption (A) is in effect and the initial buffer contents Jo
1j

are uniformly bounded functions on the corresponding sets S. It is not

necessary to assume (B) for this result. The proof is very similar to

the one of Proposition 1 and utilizes the contraction assumption (39) to

show that the sequences sup sup {J.(x) -J*(|x)} decrease monotonically
i,j xES.

to zero as t. Note that sinceJthe value of H need not depend on u, this

result shows the validity of our algorithm applied to an arbitrary fixed

point problem of the form J = T(J) for which the mapping T = F + F satisfies

(38) and (39).

The use of the sup-norm (37) is essential for the validity of the

result described above. Indeed for the important class of Markovian

decision problems involving a finite state space and minimization of

average cost per stage (Howard [6]), a distributed asynchronous version

of the usual dynamic programming algorithm due to White [7] (see [5],

Section 8.2) may fail to converge to the correct solution. This is il-

lustrated in the following example constructed by John Tsitsiklis. In

this example the basic mapping H does not satisfy the monotonicity as-

sumption (2), and the corresponding mapping T is not a contraction mapping

with respect to the sup-norm (37). It is a contraction mapping with

respect to a different norm.

Example (J. Tsitsiklis): Let the space space consist of two states

S = {0,1}, and the control space consist of a single control C = {0}.

Consider the Markov chain with state space S for which at each stage if

the state is 0 a cost g is incurred and a transition to state 1 occurs

with probability pos(0,1). If the state is 1 a cost gl is incurred and

__a�illll_______L_______

-22-

a transition to state 1 occurs with probability pl1 (0,1). Consider the

mapping T: R + R defined by

T(J)(O) = go + po[J(1)-J(O)] (40)

T(J)(1) = gl + p 1[J(
1)-J(0)] (41)

Because there is only one control available at each stage the definition

of T does not involve a minimization as in (4). It is clear however that

T arises from a mapping H of the form considered in this paper except

that this mapping does not satisfy the monotonicity condition (2).

Now by applying a well known result (e.g. [5], p. 345) we have that

T has a unique fixed point J* = (J*(0O),J*(1)), and J*(O) is the average

gain of the process. Furthermore the standard dynamic programming algo-

rithm which consists of the successive generation of T(J), T 2(J),...

starting from an arbitrary initial JR 2 converges to J*. Indeed T is an

affine mapping involving the matrix

-P1 P

It can be easily seen that the eigenvalues of this matrix lie strictly

within the unit circle and as a result T is a contraction mapping with

2
respect to some norm on R . However T is not a contraction mapping with

respect to the sup-norm.

Now consider the distributed algorithm of Section 3 with two com-

putation nodes 0 and 1 corresponding to the two states. Consider a

sequence of events whereby node 0 does many iterations before transmitting

-23-
t

at time t1 the final value J (0) to node 1, while in the meantime node

1 is idle. Then node 1 does many iterations before transmitting at time
t 2

t 2 the final value J (1) while node 0 is idle, and the process is

repeated. If J (1) is the estimate of J*(l) available at nodes 0 and 1

at time 0, we have using (40) and (41)

J (0) l+p [g + J (1)]

t2 1 tl
J (1) - 1-p [gl - P1J (0)]

tI
By eliminating J (0) in the relations above we obtain

1-p1 '~)Pl PoP 1
J (1) _ p (g l+p go) (+p(lo) 1) J (1)

Thus the estimate of J*(1) is updated approximately according to the

equation

Pi PoPl
J(1) lPl (g1 l - go) (l+po)(-p J(

1 +Po

and it follows that, if P1 is sufficiently close to unity, then J(1)

will oscillate between positive and negative numbers of increasingly large

magnitude. This shows that the natural distributed version of the dynamic

programming algorithm for average cost Markovian decision problems is not

guaranteed to converge to the correct solution when the sequencing of

computation and internode communication is arbitrary.

-24-

References

[1] J. McQuillan, G. Falk, and I. Richer, "A Review of the Development
and Performance of the ARPANET Routing Algorithm", IEEE Trans. on
Communications, Vol. COM-26, 1978, pp. 1802-1811.

[2] D. P. Bertsekas, "Monotone Mappings with Application in Dynamic
Programming", SIAM J. Control and Optimization, Vol. 15, 1977,
pp. 438-464.

[3] D. P. Bertsekas, and S. E. Shreve, Stochastic Optimal Control:
The Discrete-Time Case, Academic Press, N.Y., 1978.

[4] E. L. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart, and Winston, N.Y., 1976.

[5] D. P. Bertsekas, Dynamic Programming and Stochastic Control,
Academic Press, N.Y., 1976.

[6] R. Howard, Dynamic Programming and Markoy Prceases, M.I.T. Press,
Cambridge, Mass. 1960.

[7] D. J. White, "Dynamic Programming, Markov Chains, and the Method
of Successive Approximations", J. Math. Anal, Appl., Vol. 6, 1963,
pp. 373-376.

- --- -I --

