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ABSTRACT

A low-noise, low-turbulence, subsonic wind tunnel was
designed for investigating both wide and narrow band flow
noise processes. The open-circuit design incorporates such
innovations as interchangeable open jet and closed duct test
sections within a sealed test chamber which can be either
reverberant or anechoic by the use of removable wall treat-
ment. Low noise level at the test section is achieved by
using upstream treatments such as a honeycomb of soda straws
and an exterior fiberglass covering on the contraction, and
by using downstream treatments such as a combination muffler-
diffuser and another honeycomb of soda straws. Low turbulence
level is achieved by using the honeycomb, damping screens,
and a large area contraction ratio.

Final measurements of the aerodynamic performance verify
the preliminary estimations of tunnel drag losses and power
requirements. Moreover, results show that the original design
criteria are met successfully.
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Title: Associate Professor, Naval Architecture and Mechanical
Engineering
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I. Introduction

The subject of generation of hydrodynamic and aerodynamic

noise has received a great deal of attention lately, largely

due to problems arising from jet noise and boundary layer

noise. Theories have been developed providing the basis for

the understanding of the laws governing the generation of

aerodynamic sound 1]. However, direct experimental confir-

mation of the theories has not been accomplished, mainly due

to the lack of the necessary facilities.

Moreover, much of the work that has been done with boun-

dary layer noise, such as the measurement of wall pressure

fluctuations, has been limited by the noise levels in the

various wind tunnels in which the measurements were carried

out.

A program of research in the area of flow noise has been

instituted in the Acoustics and Vibrations Laboratory at

Massachusetts Institute of Technology. The type of tests

anticipated include investigations of both narrow band and

wide band flow noise processes such as Aeolian tones, boundary

layer excited panel vibrations, and wall pressure fluctuations.

The first necessary step in this program was the construction

of an air duct facility meeting low noise and low turbulence

requirements.

The preliminary design points for this facility include:

(a) A uniformly distributed maximum mean velocity of
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180 ft/sec in a 15 inch square test section,

(b) Either open jet or closed duct test section

capability,

(c) A turbulence level of 0.1 % in the uniform mean

velocity area at the test section,

(d) A background noise level in the test chamber 10 db

below signal level for each type of test with the low

frequency cutoff at 200 cps.

The open circuit wind tunnel layout lends itself to

treatment in three separate sections: an upstream section,

a test section, and a downstream section (Figure 1). The

details of the design concepts for each section are

discussed in this report.
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II. Design Criteria

A. Upstream Section

The upstream section consists of an inlet, a honey-

comb, screens, and a contraction (Figure 2). Design of this

section was influenced by three criteria: low-noise, low-

turbulence, and a uniform velocity profile. A criterion of

secondary importance, but still significant, was minimal

drag loss to achieve the highest possible velocity in the

test section.

A-1. Inlet

The inlet provides a direct opening to the honeycomb

section. The cross-section is a square 67 inches on a side.

Since the laboratory space provides the return loop of

the open-circuit wind tunnel, the location of the inlet away

from obstructions is of primary importance. A minimum of

5 feet clearance to the nearest wall and 1 1/2 feet clearance

to the floor is allowed. To ensure a smooth entry of the

return around the edges of the inlet, an 8-inch diameter

round collar is attached at the periphery.

A-2. Honeycomb

A honeycomb is generally utilized only as a flow-

straightening device. It aids in breaking up large-scale

eddies and swirls which may be present at the inlet. However,

there is some evidence to the effect that a wall of small
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tubes such as soda straws serves to attenuate the trans-

mission of a diffuse sound field 2]. Preliminary tests

tended to confirm this evidence for the attenuation of

frequencies above 4000 cps. Thus, in addition to its use

as a flow-straightener, a honeycomb of this sort can be

used to diminish noise transmitted through the inlet.

Accordingly, the honeycomb is constructed of approxi-

mately 130,000 plastic soda straws, 3/16 inches in diameter

and 10 1/2 inches in length, carefully stacked in a

hexagonal close-packed configuration and held in place

fore and aft by 18-mesh screening (Figure 3). The choice

of plastic straws over paper is dictated by durability con-

siderations and by the fact that the extrusion process

results in seamless construction and clean-cut ends. The

whole section proved to be quite inexpensive and relatively

easy to construct.

A-3. Screens

Low-turbulence levels at the test section requires the

use of fine mesh screens in the low velocity settling

chamber before the contraction. Such screens remove large-

scale eddies and introduce a great number of small eddies

which decay rapidly 3], [4]. However, the Reynolds number

based on wire diameter must be less than about 60 if the

screens are not to add turbulence of their own [5]. More-

over, imperfections in screens have been reported to produce

-4-



slowly decaying longitudinal fluctuations [4].

A section of four 18 mesh screens with wire diameter

of 0.010 inches is used in the tunnel. The Reynolds

number based on wire diameter is 40 to satisfy the no

self-turbulence criterion. Further, each screen was cut

from a 7 foot wide roll to avoid a seam imperfection.

Special care was exercised in handling and stretching the

screens, each being mounted on a readily removable frame

in case the need for replacement arises.

A rough estimate of the effect in reducing turbulence

can be made by using the turbulence reduction factor

f = (1 + k)n/2

where k = screen pressure-drop coefficient, and n = number

of screens. With four 18 mesh screens in place, the

turbulence reduction factor becomes of the order of 0.10.

This factor cannot be used in estimating the turbulence

level in the test section as we have no reliable estimate

of the turbulence level at the inlet. However, a turbulence

reduction factor of 0.10 does give indication that screens

are indeed necessary to achieve low-turbulence at the test

section.

A-4. Contraction

The contraction section was designed with velocity

requirements and size limitations in mind. From reports on

the effect of contraction cones in decreasing velocity
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variations in the flow 6, p. 67] and in reducing the

longitudinal turbulence component 4], it appeared desir-

able to use the largest feasible area contraction ratio.

Considerations of laboratory space limitations and test

section size determined an area contraction ratio of 20:1

over a length of 5 to 6 feet.

The actual shape of the contraction section for a short

length is not easily determined. Care must be exercised so

that separation does not occur along the walls or this could

lead to extreme fluctuations at the test section. Theoretical

approaches have been limited to potential flow considerations

[7], 8] and as such are not directly applicable to this case.

Maestrello reported having success with a contraction with

the curve of a ninth degree polynomial [9]. The advantage

of this approach is that the transition from settling chamber

to contraction and from the contraction to the test section

can be varied merely by specifying derivatives.

Two ninth degree polynomial curves were drawn which gave

our 20:1 area contraction. In the first curve, the con-

traction length was limited to 5 feet. The function and its

first five derivatives were set equal to zero at the exit

and the first three derivatives were set equal to zero at the

inlet. These, along with the contraction ratio served to

specify each of the ten constants obtaining the equation:

=xy = 26.05 ~6 (-56 s + 189 ~ - 216 + 84) where =

-6-
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The shape is shown as the heavy line in Figure llb. A

second curve was then developed with the same contraction

ratio over a length of 6 feet. This curve was determined

by setting the function and its first six derivatives equal

to zero at the exit and by setting the first two derivatives

equal to zero at the inlet. This results in the equation:

y 26.05 _ (2 21 + 36) where = 2-
6 6 9 2 12'

which has the shape shown as the heavy line in Figure lla.

This curve has a much more gradual transition to the test

section than the previous curve at the expense of a steeper

initial slope at the inlet. However, since the exit velocity

is much higher than the inlet velocity, a smoother transition

is necessary to prevent separation.

Scale model contraction sections using each of the above

curves were then constructed of fiberglass with static pressure

taps at various stations along the walls. Tests were con-

ducted on these models in a small low-turbulence open jet

wind tunnel. The results (Figure 11) show the static pressure

distribution along the wall of each contraction. The static

pressure at each of taps #1 reflects a small loss from the

upstream static pressure. However, after remaining almost

constant through most of the area reduction, it drops rapidly

to a negative value. This is as expected from the equations

of motion in streamline coordinates. However, the static wall

pressure of contraction #1 (Figure llb) dropped more quickly
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to a lower value at the exit than did the pressure for

contraction #2 (Figure 11a). This is an indication that

the velocity increase at the wall of contraction #2 is also

more gradual, thus making separation less likely. Moreover,

the higher static pressure at the exit of contraction #2

indicates there is less drag loss in this section. The

conclusion drawn from this testing program was that con-

traction #2 was certainly the better choice.

The full size contraction section follows the curve of

contraction #2. It is constructed as a wooden frame over-

laid with 1/8 inch bending plywood. Sufficient framework

reinforcement is necessary to hold the shape at all points,

but especially in the high velocity section where the under-

pressure is about 0.2 psi. The section has an exterior

covering of fiberglass with density 12 lb/ft3 to minimize

sound transmission to the interior.

The final specifications for the contraction are:

cross-section: square, 67 inches on a side at

inlet, 15 inches on a side at exit

area ratio: 20 to 1

length: 6 feet

curve: defined by the equation

y = 26.05 ? (7 2 2 + 36)(~ - ~ ~ 36)

where X = 12 and x = length

coordinate in inches with origin at

the exit.
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B. Test Section

The wind tunnel at the contraction exit penetrates a

chamber which encloses either the closed duct or the open

jet test section (Figure 4). In addition to being inter-

changeable, the test sections may be moved to various positions

along the entire 13 feet, 6 inches of ducting within the

chamber. This is of advantage in work requiring different

boundary layer thicknesses.

B-1. Reverberant/Anechoic Chamber

Since this wind tunnel is to be used primarily for measure-

ment of both narrow and wide band flow noise levels, it is

necessary to have the appropriate test chamber for making

these sound measurements. For diffuse field acoustic power

measurements, a reverberation chamber is required, but for

free field sound pressure level and directivity pattern

measurements, an anechoic chamber is required. It is antici-

pated that all of the above measurements will at some time be

required. Thus the test chamber has been designed with flexi-

bility in mind in that both reverberant and anechoic modes are

possible by merely changing the wall treatment.

The three primary criteria for the chamber design were as

follows:

(1) The transmission loss of the walls, floor, and door

must be sufficient to have the background noise in the

test chamber 10 db below signal level for each type of

test contemplated with fan operating at maximum capacity.
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(2) The interior wall absorption coefficient must be

sufficiently small and chamber size must be sufficiently

large to permit acoustic power level measurements by

reverberant chamber techniques to be made in 1/3 octave

bands at least as low as the band centered on 200 cps.

(3) Anechoic treatment and chamber size must be sufficient

to permit free field sound pressure level measurements to

be made over a half space down to 200 cps.

For the first criterion, estimations were made of the

fan noise from data by the various fan manufacturers. This

along with the laboratory room characteristics gave an

estimate of the noise level in the laboratory space. Several

wall constructions were then considered and the transmission

loss of each was estimated using published data 10]. Finally,

predictions of the signal levels of each type of test

contemplated were made from published similar tests. From

this information the decision was made to use mortar-filled

6 inch cement block walls, a 5 inch poured concrete ceiling,

and a 40 - 60 db transmission loss door.

The second criterion is satisfied by the choice of wall

materials and the sizing of the chamber. Basic rever-

beration chamber requirements dictate a minimum of 20 room

modes in the lowest 1/3 octave frequency band of interest and

a non-integer relationship between any two of the room

dimensions, length, height, and width 10, pp. 176-177].
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The center frequency of 200 cps requires a room with volume

of 850 ft3. Preliminary calculations showed that a chamber

length of 13 feet, 6 inches is adequate for measurements of

power radiated from panels, allowing proper distancing of

microphones from the walls. This fixed the room dimensions

at 13 feet, 6 inches long, 9 feet wide and 7 feet high.

The third criterion could be met by the classical

anechoic wedge treatment applied to wall, ceiling, and floor

surfaces of the chamber. An inexpensive alternative, however,

is to hang thick fiberglass blankets slightly away from the

walls and ceiling. This treatment, of course, changes the

description from "anechoic" to "semi-anechoic" since the

low frequency cutoff is not as sharply defined as with the

wedge installation. Either of the two installations are

possible in the chamber.

Two aspects of anechoic chamber design are considered.

First, the level of the diffuse sound field must be 10 db

below the direct signal level from the source in order to

avoid interference. Second, the level of the reflected

signal very near the wall must be 10 db below the direct

signal level from the source. These two criteria are satis-

fied in this chamber size by using the fiberglass blanket

installation and by setting the low frequency cutoff at

200 cps.

The wall treatment selected consists of a 3 inch

blanket of fiberglass spaced out 3 inches from the walls and

-11-



ceiling by mechanical fasteners. More specifically, the

blanket consists of a 1.5 inch layer of 0.5 lb/ft3 fiber-

glass and a 1.5 inch layer of 1.5 lb/ft3 fiberglass separ-

ated by a flexible canvas septum. The fasteners penetrate

the canvas septum and hold the blanket in place with washer-

like holding plates. The floor is covered with a 2 inch

thick fiberglass board of 12 lb/ft3 density and a layer of

the 3 inch wall treatment.

Great care is exercised to avoid sound shorts into the

chamber from exterior electrical conduits, air leaks, and

wind tunnel structure. Conduits are isolated by rubber

sections and all penetrations of cables and power leads into

the chamber are sealed. The two test section penetrations of

the walls are sealed all around with a 1/4 inch layer of

silicone rubber sealant. This also helps damp out any tunnel

wall vibrations which enter the chamber.

B-2. Ducts and Test Sections

The ducting through the entire length of the chamber is

3/4 inch plywood, square cross-section of 15 inches on the

interior side with a small fillet at the corners. It is

made of three removable sections of different lengths to

allow positioning of the test sections at various distances

along the chamber length. The sections attach to each other

by means of flanges at the ends, and, in addition, each is

held in place by cables from the chamber ceiling and floor.

-12-



The cable supports are isolated from vibrations by rubber

mountings.

The open jet test section (Figure 5) is obtained by

installing a collector in the gap between two long duct

sections. The collector has been designed so that its

leading edge interior will run along the constant mass flux

boundary of the jet. This design allows 10 inches of open

jet flow.

The closed duct test section (Figure 6) is constructed

to bridge the gap between the two long sections. Alignment

is achieved with pins in the hardwood flanges. A plexiglass

door allows ready access to probes, models, and plates which

may be mounted in one of the other sides.

C. Downstream Section

The downstream section includes a muffler-diffuser, a

honeycomb of soda strams, an adjustable-gap coupling between

the diffuser and the centrifugal blower and the blower itself.

C-1. Muffler-Diffuser

In order to isolate blower-generated noise from the test

section, a muffler is incorporated in the diffuser section.

This muffler is basically a fiberglass filled box through

which the expanding diffuser passes and a fiberglass cruci-

form wedge which is placed in the diffuser duct. The box

is constructed of 0.75 inch plywood with appropriate rein-

forcing and is 8 feet long, 4 feet wide and 7.5 feet high.

-13-
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It is filled around the flow duct with layers of 2 lb/ft 3

density fiberglass. The flow duct is 15 inch square cross

section at the inlet and is circular with 40.25 inch

diameter at the exit. Transition from square to round

occurs along the entire length of the muffler. The surface

of the duct is made up of fiberglass cloth and wire screen

of very low flow resistance in order not to impair the

absorption of sound by the fiberglass packing. Within the

duct is an 8 foot fiberglass cruciform wedge to absorb the

high frequencies (Figures 7 and 8). The wedge is con-

structed of dense 12 lb/ft 3 fiberglass on a masonite frame-

work and is faced with layers of shear flow resistant fiber-

glass and fiberglass cloth.

In addition to its acting as a muffler, this section

also serves as a diffuser for the flow, although of neces-

sity it does not conform to good diffuser design practices.

The main effect is the area increase which is the same as

that for a 15° cone over the entire length of 8 feet.

However, the first half of this length is only a slight

increase in area due to the presence of the cruciform

wedge, and the second half experiences an increase much

more like that of a 23 ° cone. Neither of these angles

approach the theoretical optimum of 5 to 7° 3, p. 56].

On the other hand, the rough walls will build up a thick

boundary layer which will tend to minimize losses from

separation.
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C-2. Honeycomb of Soda Straws

A honeycomb of soda straws is employed between the

muffler-diffuser and the blower to aid in attenuating high

frequency sound. A secondary purpose is to reduce the

fourth angular harmonic of the cruciform wake impinging

on the 12 bladed centrifugal blower. This should help in

reducing the blade frequency component of blower noise.

C-3. Adjustable-Gap Coupling

In order to avoid any surging problems with models of

high blockage in the test section, a sliding ring is

provided which couples the muffler section with the fan.

The ring can be opened to relieve any unstable back

pressures that may cause fluctuations at the test section.

In addition, this gap provides vibration isolation between

the blower and the rest of the tunnel.

C-4. Blower and Motor

The blower is a Chicago Blower size 36 1/2 single inlet,

single discharge centrifugal type with a 39 3/8 inch wheel

diameter (Figure 9). The inlet is circular with 40 5/8

inch diameter and the discharge is rectangular 35 5/8

inches by 32 inches. It is matched to the tunnel require-

ments with a rating point of 16,800 cfm against 5 inches

static pressure at 960 rpm and 16 h.p. The 12 blades are

backward-slanted airfoil shape which are reported to have

lower noise rating than other types [ll, 25: p. 3.

-15-



Octave band sound power level data from the manufacturer

tended to confirm this.

Power is provided by a 20 h.p. shunt-wound DC motor

with a continuously variable 4:1 speed range (Figure 10).

Speed control is provided by a rheostat which varies the

field current. The motor drives the fan by a V-belt pulley

arrangement. An additional idler pulley is used for very

low flow velocities.

Both motor and blower are mounted on a single vibration-

isolation base (Figure 9). The base is designed to minimize

the transmission of structural vibrations to the test chamber

caused by the motor or the blower. Special effort was taken

to reduce rocking and rotational modes of vibration by

providing a near center of gravity mounting with resonant

frequency just above the maximum motor and blower rotational

frequencies. This gives us effective isolation well below

the 200 cps low frequency cutoff criterion. Mounting

isolation is achieved by commercially available ribbed

neoprene rubber pads.

-16-



III. Estimation of Power Factor

Friction losses in the wind tunnel are reflected in

loss of static pressure for each section. The product of

this loss and the area over which it appears yields the

drag of the section. And finally one obtains the power

lost by multiplying the drag and the velocity. Rather than

summing up the power lost for each section, it is customary

to express the loss in terms of a loss coefficient:

6p A 14K= where q 1 pV .
1 q
pA V 2

To circumvent having to compute q for each section, a new

loss coefficient is defined which refers everything to the

q at the test section [6, p. 69]:

K - K = where qo = 1 pV 2 at the test section.
q0 qo 2'

A summation of the coefficients of all sections yields the

total static pressure drop which must be balanced by the

static pressure rise through the fan.

In the loss estimations which follow, Pope's [6]

notation is used throughout with the slight modification

that area ratios are used to refer local velocities to the

test section velocity.

A. Static Pressure Loss

A-1. Honeycomb

-17-



In this section we have stacked soda straws held in

place by screens at both ends. Losses will arise from

blockage of the screens and friction of the small tubes.

The screens are 18 mesh with 0.01 inch wire diameter.

This gives a blockage coefficient, = open area/total area,

of ~ = 0.52. From experimental results of resistance

coefficients for screens of different blockage coefficients

13, p. 648], we obtain K = 1.8 for each screen. With

A2
reference to the test section, K; = K( ) where A = area

of test section = 225 in2 and A = area of inlet section =

4,489 in2 , we obtain KO = .0091.

The loss through the soda straw section is primarily

friction resistance of laminar flow through a tube. For

straws of 3/16 inch diameter with a flow velocity of 12 ft/sec,

the Reynolds number based on diameter is Red = 1200 which

is considerably less than the critical Reynolds number for

flow becoming turbulent in a tube. The laminar resistance

coefficient then becomes A = 0.053, which results in a

static pressure loss coefficient of K = 0.0053.

A-2. Screens

The upstream settling chamber has four 18 mesh screens.

Using the same values as we used in determining the loss

coefficient for screens in the honeycomb section, we obtain

K; = 0.0127.
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A-3. Contraction

Assuming a smooth curve, Pope 6, p. 72] gives

Ko = 0.32 L/D o where X = skin friction coefficient, L =

length of section, and Do = effective diameter of the test

section. The skin friction coefficient is determined as a

function of Reynolds number using an empirical relation

established by Prandtl for smooth pipes at high Reynolds

1
number, = 2 log10 Re J - 0.8 [12, p. 515]. In our

case X = 0.012 which results in K = 0.0177.

A-4. Test Section

The losses in the test section are assumed to be greatest

when running in open jet configuration. Thus the losses are

calculated for a system consisting of 12 feet, 8 inches of

closed duct and 10 inches of open jet using the relation for

pressure loss along a pipe,

LKo = where L = length of section and D = effective

diameter.

For the closed duct portion of the test section,

Prandtl's universal law of friction for smooth pipes gives

= 0.0108. The loss coefficient becomes K = 0.1137.

An estimate of friction coefficient for the open jet

based on free jet considerations is X = 0.08. For an

open jet length of 10 inches, we have K = 0.0513.

A-5. Muffler-Diffuser

The duct in the first half of the muffler experiences

-19-

~~~~~~~~~~~~~~~~~~~~~~~~a--..~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--- 



little divergence due to the cruciform wedge. Rough-walled

pipe considerations applied to this first section yield

K0 = 0.0141.

Diffusing action takes place in the second half. The

area increase is that of a cone with vertex angle of 260.

Diffuser efficiency for this angle is 7D = 0.6 [3, p. 56]

A2
Using the relation K; = (1 7)[l ( AO [3, P. 63],

we obtain K = 0.384.

The downstream soda straw section contributes a pressur

drop coefficient of Ko = 0.0038. This is obtained by

using the Blasius formula for frictional resistance of
-1/4

smooth circular pipes X = 0.3164 ReD

e

A-6. Blower Exit

The kinetic energy of the air from the blower can be

considered entirely lost. Consideration of this gives

KO = 1.0 (A°) where Ao = test section area and A = blower

discharge jet area. The fan specifications show a discharge

area of 7.8 ft2 , but we will assume jetting reduces this area

by one-fourth. The pressure drop coefficient is K = 0.071.

A-7. Sum of Static Pressure Loss Coefficients

Section

Inlet screens

Honeycomb

Screens

.0091

.0053

.0127

% Total Loss

1.2

0.7

1.9

-20-
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Contraction .0177 2.6

Closed duct .1137 16.7

Open jet .0513 7.5

Muffler-diffuser
1st half .0141 2.1

2 nd half .3840 56.3

Downstream honeycomb .0038 0.6

Blower exit .0710 10.4

K = .6827 100.0

Using ~~~~~~~~jet energy -1

Using Pope's energy ratio, ER = circuijt nerlossesy 1
circuit~ lose Ko

[6, p. 69] we get:

1 1
ER = - 6127 = 1.466.

Z K .6827

Moreover, the total drop in static pressure is obtained from

& = Ko q0 where q0 = dynamic pressure at the test

section. Assuming a maximum velocity of 180 ft/sec at the

test section, this results in a total drop of static pressure

p 5.08 inches of water. This loss must be balanced by

the pressure rise through the fan.

B. Power Factor Measurement

The above power factor estimations indicate that a fan

is required with a capacity of 16,800 cfm against a static

pressure of 5 inches. The Chicago Blower centrifugal fan

size 36 1/2 fills this requirement with a motor of 16 h.p.

power rating.
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Actual measurements of the static pressure loss in the

finished wind tunnel reveal that 15.8 h.p. is required to

provide a static pressure rise through the fan of 5.14

inches of water when the test section velocity is 180 ft/sec.

The estimated value for this same design point was a static

pressure rise of 5.08 inches through the fan which shows

agreement within 1 %. However, the loss coefficient for

the section upstream of the open jet is found to be K =

0.0318 as compared to an estimated value of K = 0.0862.

Thus, we have less drag in the upstream sections and slightly

more drag in the downstream sections than was anticipated.
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IV. Tunnel Performance

A. Aerodynamic Performance

The most critical point in the final analysis of any

wind tunnel is how it performs at the test section. Three

important performance checks are: (1) the velocity profile

across the test section, (2) the turbulence level profile

across the test section, and (3) the boundary layer profile

at the wall.

A-1. Open-Jet Velocity Profile

The mean velocity profile across the test section was

determined using a constant temperature hot wire anemometer.

The DC bridge voltage in such a unit is a direct indication

of the mean velocity at the probe. The actual profile

(Figure 12) of the duct 1 inch upstream from the jet edge

shows a symmetrical velocity distribution. Outside the

boundary layer the flow is remarkably uniform. This flat

distribution was also confirmed by a number of standard

pitot-static traverses. The jet edge at this point is 6

feet down the duct from the exit of the contraction section.

A check on the boundary layer thickness at this point

gives an indication of the velocity profile upstream,

assuming the boundary layer thickness is linear with

distance. Taking the relation, 6(x) = 0.37 x ()-1/5

L12, p. 537], one obtains a boundary layer thickness of

1.28 inches for the flow at the test section if the boundary

-23-
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layer begins at the exit of the contraction section.

However, the results show a boundary layer thickness

6 = 1.03 inches. Using the above equation, one can project

back to find that the boundary layer begins slightly

into the duct from the contraction exit. Another conclusion

from this is that the velocity profile at the exit of the

contraction is uniform and no large scale separation is

occurring.

A-2. Open-Jet Turbulence Level Profile

The turbulence levels associated with the mean velocity

profile in Figure 12 are shown in Figure 13. The turbulence

level is given in percent T % = 100 - U where u is theU

fluctuating longitudinal velocity component and U is the

corresponding mean velocity. Again the measurements were

taken with a constant temperature hot wire anemometer.

Symmetry of the profile is evident. As expected the levels

are greater as the walls are approached, but the level is

uniform over the entire region outside the boundary layer,

with a value of 0.17 % at a mean flow velocity of 32.2

m/sec. At higher velocities, the turbulence levels

decrease to a minimum of 0.15 % at a flow velocity of 58

m/sec. Lower velocities result in increased turbulence

levels, e.g. at a velocity of 16 m/sec the level is 0.4 %.

A-3. Boundary Layer Upstream of an Open Jet

The boundary layer profile (Figure 14) taken at a

-24-
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point 1 inch upstream from the jet edge shows a boundary

layer thickness of approximately 1 inch. That it is

turbulent can be seen from the shape of the profile.

Appropriate boundary layer parameters for this profile are:

Boundary layer thickness 6 = 1.03 inches

Displacement thickness 6 = 0.130 inches

Momentum thickness e = 0.106 inches.

Applying these parameters to the determination of the

wall shear stress by the use of the relation To/poU 2 =

0.225 (/U6) 1/4 [12, p. 536], one obtains the friction

velocity defined as v = ro/pO. Using 6 = 1.03 inches, we

get v = 1.16 m/sec. This, in turn, is used in plotting a

dimensionless velocity distribution in the boundary layer.

The distribution is the law of the wall" and "law of the wake"

for turbulent boundary layers established by Coles [13]:

v* K ln (Yv*) + c + ff-, (-v* K - K 6
The constants K = 0.40, c = 5.1, and 0 = 0.55 are found to

be valid for all boundary layer flows. The wake function

() can be approximated (6) 1 + sin r ( -) [14, p. 6].

On a semi-log plot our data fits the law of the wall as

evidenced by a slope of 5.75 in the intermediate region

(Figure 15). This gives K = 0.41 which agrees with Coles'

results. The slope intercept at y* = 1 gives c = 5.1.

The solid line is a plot of Coles' relation.
The solid line is a plot of Coles' relation.

2
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V. Summary and Conclusions

A low-noise, low-turbulence wind tunnel has been

designed according to the following aerodynamic and

acoustic criteria:

(a) A uniformly distributed maximum mean velocity of

180 ft/sec through a 15 inch square open--or closed--

jet test section,

(b) A turbulence level of 0.1 % in the uniform mean

velocity region at the test section,

(c) A background noise level in the test chamber 10

db below signal level for each type of test contemplated,

(d) A signal level measurement low frequency cutoff

of 200 cps.

Test results indicate that the specifications (a), and

(b) have been met successfully. Moreover, tunnel drag losses

and power requirements were estimated accurately, thus showing

that Pope's method can be applied with good results.
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FIGURE 1. GENERAL LAYOUT.
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FIGURE 2. UPSTREAM SECTION INCLUDING THE INLET,

HONEYCOMB, SCREENS AND CONTRACTION.

FIGURE 3. UPSTREAM HONEYCOMB OF STACKED SODA STRAWS.
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FIGURE 4. UPSTREAM PENETRATION OF

REVERBERANT/ANECHOIC TEST CHAMBER.

FIGURE 5. OPEN JET

TEST SECTION.
FIGURE 6. CLOSED DUCT

TEST SECTION.
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FIGURE 7. MUFFLER-DIFFUSER SECTION, LOOKING DOWNSTREAM

FROM INSIDE TEST CHAMBER.

FIGURE 8. MUFFLER-DIFFUSER SECTION, LOOKING UPSTREAM FROM THE FAN.
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FIGURE 9.

FIGURE 10.

CENTRIFUGAL FAN ON VIBRATION ISOLATION BASE.
THE ADJUSTABLE-GAP COUPLING IS IN FULLY
CLOSED POSITION.

THE 20 HORSEPOWER DC MOTOR AND DRIVE UNIT.
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FIGURE ~-~ 12 %m/sec)VELOCITY PROFILE IN DUC 1 INCH
UPSTREAM OF OPEN JET TEST SECTION
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FIGURE 13. TURBULENCE PROFILE IN DUCT 1 INCH
UPSTREAM OF OPEN JET TEST SECTION.
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FIGURE 14. BOUNDARY LAYER MEAN VELOCITY PROFILE
IN DUCT 1 INCH UPSTREAM OF OPEN JET
TEST SECTION.
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