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ABSTRACT

A PRELIMINARY INVESTIGATION OF
THE FORMATION OF CARBON BLACK

BY THE PYROLYSIS OF RESIDUAL FUEL OIL

by

Alvin E. Witt

Submitted to the Department of Chemical Engineering in partial fulfillment
of the requirements for the degree of Doctor of Science.

The objectives of this investigation were to study the process of
carbon black formation and to determine the important process parameters
and their influence on carbon black properties. These goals were
accomplished in a series of experiments in which process parameters
were systematically varied. The parameters included the reactor tem-
perature (2000 to 29000 F), the residence time (40 to 100 milliseconds),
and the drop size of the feed material (28 to 100 microns). Feed
materials consisted of two commercial carbon black oils and Naphthalene.
This program demonstrated how processing conditions affect the size and
structure of the carbon black particles.

The formation of carbon black can be consi ked as a nucleation
step followed by simultaneous gas phase and surface reactions. The
nucleation step has a high activation energy and is the most important
step in the formation process. The size and structure of the carbon
black are strongly influenced by the conditions of nucleation.

The gas phase reaction generates species which add to the carbon
nuclei. The activation energy for this process depends on the feed
stock and was between 35 and 45 Kcal per mole for the materials used
in this study.

The surface growth reaction and an apparent activation energy of
3 and 6 Kcal per mole for the two residual oils and 7 Kcal per mole
for the Naphthalene.

This study indicates that the process of nucleation must be studied in
depth before one can optimize the conditions for carbon black production.
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I. SUMMARY

Historically, the existence of carbon black or soot has been both

a blessing and a problem. The ancients collected carbon black from

flames and used it in inks and paints. Flames containing soot have

long been used as light sources or to increase heat transfer by radiation,

but improper conditions caused carbon to deposit in undesirable locations.

Even today, carbon is deposited in internal comustion engines or goes up

smoke stacks, where it becomes a major source of air pollution.

Currently, carbon black uses range from a filler in rubber (where it

increases tire life) to a filter for the clarification of fine wines.

These applications require the production of billions of pounds per year

of carbon black. Both the control of soot and the production of carbon

black require a solid understanding of the formation and growth process.

It was the objective of the present work to study the variables

which control the rate of formation and the quantities of carbon black

derived from residual fuel oils and f.rom the results of these studies to

try to clarify and add to the current models which attempt to describe

the complex carbon formation process. From a practical viewpoint, it

is desirable to learn the relative importance of process parameters

and to understand how these variable alter the physical properties of

the carbon black. In addition, an understanding of the formation

process should permit better control of carbon formation and allow the

optimization of the process.

The above objective was accomplished by an experimental program

in which the range of the controlled experimental variables encompassed

most production operating conditions. The controlled variables were

the type of oil, the fineness of the oil atomization, and the reactor
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temperature and residence time. The black making characteristics of

two slightly different commercial residual fuel oils Cosden Tar (CT)

and Aromatic Concentrate (AC) were compared to those of pure Naphthalene (N).

These materials were disintegrated into uniformly sized drops on a

spinning disk atomizer. Drops with diameters of either 28, 64 or 100 microns

were mixed with the combustion products of a natural gas-air flame. These

hot gases supplied the energy to vaporize and pyrolyze the feed materials.

The combustion gases and oil were reacted in a laminar flow reactor which

was operated at temperatures of from 2000 to 29000F. The reaction time

or residence time was varied from 40 to 100 milliseconds. After the

desired time, the reaction mixture was quenched with steam and the gas

and solid samples were collected. These samples were analyzed and

variations between samples were studied as a function of the processing

conditions.

The most important responses to process variations were the yield

of carbon black and the particle size of the carbon black. The latter

was determined from electron micrographs. In addition to these

responses, the samples were analyzed for surface area, absorptivity

(scale), hiding power (tint), and the percent extractable. These

analyses are all important industrial quality control tests.

In the following discussions, it is assumed that "the ideal carbon

black process" has a high yield and produces a material with a high

surface area, a high absorptivity, a short chain length, a small

diameter, and with a low concentration of extractables. It is

important to note that the carbon black produced during this study

was similar in morphology and microstructure to production blacks of

the larger particle sizes. But poor nucleation conditions prevented
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the production of small particle size,low extract carbon blacks in this

experimental equipment.

The process of carbon formation can be considered as a nucleation

step followed by simultaneous gas phase and surface reactions. Nucleation

is the most important step in the formation process. The nucleation

conditions determine the size and number of the original particles, which

in turn affect the final size, surface area, chain length, and percent

extractable of the carbon black particles. After the appearance of nuclei,

growth occurs by the rapid surface addition of the species which were

produced by gas phase reactions.

The most extensive studies of the nucleation process are those of

Tesner (1) on toluene and a higher aromatic similar to kerosene in

volatility. Tesner's flow system was turbulent, the present is laminar;

he was able to sample in the nucleation period, in the present apparatus

nucleation was distributed over a time period 10 to 20 times that observed

by Tesner.

In addition, in the present apparatus nucleation occurred long

before the first sampling point; however, it is still possible to make

meaningful comparisons with Tesner's work. First, the nucleation process

in both the present and in Tesner's work had an activation energy of

over 100 Kcal per mole, and the rate data could be fitted by a free

radical rate expression. Second, nucleation began very soon after the

reactants were mixed and ceased when reactant concentrations were still

high.

In the present experiments, the observed variation in the size of

particles at the first sampling point was explained by the fact that

the nucleation time was short (Tesner reports 10-4 seconds) compared
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to the one to seven millisecond vaporization time of the drops and thus

the first particles to form had a longer time to grow. The larger oil

drops formed more particles because nucleation occurred in a region of

higher concentration. The rapid agglomeration of these small particles

combined with surface growth made it impossible to determine whether or

not a secondary nucleation occurred.

In summary, nucleation is considered to be a high activation energy

process with possible radical characteristics. It occurs very rapidly

and terminates while reactant concentrations are still high. In terms

of the "ideal black process", nucleation is then very important. A high

temperature system with thorough rapid mixing (good nucleation conditions)

produces large numbers of small particles. Extractable material can be

rapidly boiled from these small particles, and, therfore, the reaction

can be quenched after a short residence time. This can result in a high

yield process which produces small, short chained particles.

Once the particles have nucleated, agglomeration and growth occur

simultaneously. The former causes the number of particles to decrease

and narrows the observed range of particle diameters. As the particles

agglomerate, gas phase reactions generate species which add to the surface

of the particles in a rapid surface reaction. Homann and Wagner (2),

working with low pressure flames, have reported that in acetylene and

benzene flames growth occurs by the surface decomposition of poly-

acetylenes and polycyclic aromatics, respectively. In this program,

differences were also observed in the growth process for the different

feed materials.

The assumption that growth occurs mainly by collision between a gas

molecule and a carbon particle sheds some light on the gas phase process.
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Collision theory yields the following relationship for growth by a gas

molecule collision with a carbon particle.

dt = constant (Ns) 1/3(C) 2 /3 X -E (1-1)
dt T/2 x(

Here C is the concentration of carbon black and Ns is the number of

particles. X is the mole fraction of fuel and inthesimple treatment

of Foster (3) it was assumed that the concentration of the actual adding

species would be proportional to X. As mentioned previously, in the

present experiments, nucleation occurred during the vaporization of

the droplet; hence, during this time, nucleation, growth and agglomeration

occurred simultaneously. Later in the process, only growth and agglomeration

occurred. However, it is quite probable that the concentration of the

adding species instead of being simply proportional to X may vary both

in nature and in propertionality to X depending upon the conditions of

nucleation. Then addording tothe-proposed three step formation model,

for the present experiments the activation Energy (E) in equation (1-1)

will be influenced by the nucleation reaction (En), the gas phase reaction

(Eg), and the surface reaction (Es). Since the activation energy for

nucleation was over 100 Kcal per mole, nucleation may strongly influence

the value of E determined from this equation. When equation (1-1) was

solved using the present experimental results for three different materials

under similar conditions (64 micron drops), the values of E were 35 Kcal

per mole (CT), 45 Kcal per mole (AC), and 41 Kcal per mole (N). The

influence of the nucleation conditions was seen from the fact that for

Cosden Tar (where the number of nuclei varied due to drop size), the

values of E were 18, 35 and 50 Kcal per mole with increasing drop sizes

of 28, 64 and 100 microns. All values of E were less than the 57.6 Kcal
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per mole reported by Foster who used methane as a feed stock, but comparable

to the 30-40 Kcal per mole reported by Homann (4).

Obviously, equation (1-1) cannot be expected to predict anything about

particle growth if a major fraction of the growth process occurs by

agglomeration. In this case, the apparent activation energy for particle

growth would be expected to show little influence of the gas phase generation

of adding species and would thus have a low value. The change in size of

the particles with time fitted a volumetric growth law, i.e., the rate

was proportional to the amount of material present. However, reasonable

fits of the data were also obtained for a diffusional, or a surface-area

limited process. The accuracy of particle size, as determined from electron

micrographs, does not permit an absolute selection of a growth model. The

activation energies determined from the variation of size with time and

temperature were 3 Kcal per mole for the Cosden Tar, 6 Kcal per mole for

the Aromatic Concentrate, and 7 Kcal per mole for the Naphthalene. These

values are close to the 3-7 Kcal per mole reported by Tesner (5).

After the analysis of the formation process, it was possible to

reach some conclusions regarding the variation of the other product

characteristics. As one would predict for a growth process, the surface

areas of the carbon black decreased with increased residence time. Since

high surface area is desirable, it is important to quench the mixture

as soon as the extractable had boiled off.

The scale is an industrially important parameter which is related

to the absorptivity or blackness of the carbon particles. Industrially,

this parameter is correlated with particle size. The correlation with

size did not hold for this study. Regions of growth showed an increase

in scale but not at a rate commensurate with the observed change in
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size. In addition,particles with widely different diameters were observed

to have the same scale. These variations were probably due to variations

in chemical composition which will affect the particle absorptivityo

Industrially, the percent tint is considered as a measure of the

hiding power of the particles. It was found that the tint is a measure

of the particle chain length. This measure of chain length passed through

a minimum with residence time. This can be explained if one assumes that

the particle-to-particle bonds in the reactor are relatively weak and

depend on the amount of extractable, and then these bonds could be fractured

by collisions or chain movements. Initially, the particle cohesion is

due to the stickiness of the extractable material which is gradually

removed, thus weakening the bonding so that collisions at this stage

may rupture the chains; later in the process the colliding particles

are bonded by linkages similar in strength to those within the particles.

In conclusion, it has been shown that the carbon black formation

process can be considered as a process of nucleation, followed by gas

phase reaction and growth. The nucleation step is the most important

and needs to be investigated in depth to permit optimization of processing

conditions.
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II. INTRODUCTION

The production of carbon black dates back to ancient Rome and

China where oil flames were impinged on cold surfaces to produce carbon

black for use in paints and inks. Since 1864 this industry has grown from

a few hundred pounds per year to the production of 2.7 x 109 pounds (6) in

1964. Of this total, the furnace process accounted for 2.3 x 109 pounds

while 0.201 x 109 and 0.245 x 109 pounds were made by the channel and

thermal processes, respectively. Roughly 95% of all carbon black is used

as a filler in rubber products, with one of the major uses being a filler

in automobile tires. Approximately 60 years ago it was discovered that

carbon black greatly increases the strength and wear resistance of natural

rubber products. It is carbon black that has increased the expected life

of a tire from 3,000 miles up to 30,000 to 40,000 miles. Today, approximately

one-third,by wieght, of an automobile tire is carbon black.

In addition to use in rubber industry, carbon black is used in paints,

radio resistors, inks, explosives, and as a filter for the clarification

of fine wines. It is widely used because it is relatively cheap, chemically

inert, and available in a wide range of sizes and properties with a consistent

quality.

2.1 Definition of the Problem

Historically, the carbon black industry has followed a pattern of

evolution. As researchers have developed new analytical techniques for

characterizing blacks and new processes, the production people have

installed the new process and varied processing parameters in an effort

to find the effect of processing parameters on black properties. However,

the main emphasis has always been on producing carbon black. This type of

progress, combined with increasing costs and decreasing availability of

natural gas led to the use of residual oil as a feed stock. Because the oil
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process gave blacks with unique properties and higher yields than did the

natural gas process. The production of oil blacks increases every yearo

As competition increases, it is becoming more and more critical to

determine optimum operating conditions and also to learn the effect of

these parameters on the properties of carbon black. Even though, in the

final analysis, the important fact will be how the carbon black affects its

rubber partner and the process economics.

Close examination of Figure 2-1, which is a rough schematic of one

type of oil black furnace, helps to point out the reasons why it is so

difficult to optimize black properties and to determine the parameter

interactions in a conventional furnace. In this furnace, the natural gas

and air enter the reaction zone tangentially and form the primary fire.

The atomized oil is injected into the center of the swirling blast gases.

The mixture of combustion products and oil then flow through the 12 inch

diameter by 12 foot long furnace. The oxygen content of the furnace gases

is such that if the mixture were allowed to reach equilibrium all of the

carbon would be gasified. At the end of the furnace, when the carbon

black is fully developed, the reaction mixture is quenched to approximately

800°F with water. It is obvious that the time-temperature history of

the oil or carbon black particle is very difficult to determine in this

swirling turbulent gas. In addition, both bi-fluid and pressure atomizers

produce a wide range of drop sizes, and this makes it difficult to determine

the effect of the fineness of atomization on black structure.

Ideally, one desires to make a fine (small) carbon particle with a

high degree of structure (chaining). High temperatures favor fine

particles but also increase the rate of consumption of carbon by reactions

(2-1) and (2-2).

C + H20 ---- CO + H2 (2-1)

C + CO - 2C0 (2-2)
2
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Therefore, one would like to determine optimum conditions for a high

yield, a high degree of chaining and a small size. In addition, it is

desirable to be able to predict the effect of changes in temperature,

residence time, drop size and starting material on the physical and

chemical properties of the black.

It was the purpose of this thesis to conduct a controlled experimental

program in which the process variables of temperature, drop size, and

residence time were systematically varied. From this work, general trends

of the effect of process parameters on the black properties were

determined, and more insight was gained into the formation process.

These tests also defined areas that warrant more investigation. Before

going into the experimental program in depth, it is first desirable to

review the current state of the art.

2.2 Literature Survey

The subject of dispersed carbon formation is like a maze, with many

plausible roads pointing the direction to truth. There are numerous

theories on carbon formation, but as yet none of these are able to

answer all of the questions on the mechanism'of nucleation, growth or

the origin of the final chain structure of the black. Because of the

magnitude of the problem, only the highlights of carbon formation are

covered in this section. First, the current picture of the physical and

chemical properties of carbon black is discussed. This is followed by a

review of the status of prominent theories on dispersed carbon formation.

Next, a discussion of the commercial production of carbon black is given

to place the goals of this thesis in their proper perspective. And

finally, a brief survey of liquid atomization techniques is given.

2.21 Physical and Chemical Properties of Carbon Black

The nature of carbon black particles has been investigated using

x-ray diffraction, light scattering, electron miscroscopy, and mass



-23-

spectrometry.(7)(8). A very simplified model of carbon black is shown in

Figure 2-2. Electron micrographs have shown that in thermal blacks

(-the different black processes are described in section 2.231) there

are often discrete spherical particles, while n channel blacks most of

the particles are in a chain structure with very few discrete particles.

Furnace blacks are the extreme case and are almost always fused into a

peanut structure forming aggregates. Often it is very difficult to define

a meaningful particle size in these large aggregates. In this experimental

program the particle size is considered to be the diameter of the nodules,

as indicated on the figure. In practice, this dimension can vary from
o

40 to 2,000 A depending on the age (elapsed time from nucleation) of the

particles. Each particle or nodule is composed of up to 104 crystallites

with each crystallite contining from 5 to 10 layer planes of carbon

atoms. These layer planes are identical to the layer planes in graphite.

However, in contrast to graphite, the carbon atoms in adjoining layers

are not stacked on top of each other. It is because of this structure that

carbon black is not crystalline or amorphous but an intermediate state

called "turbostratic". An average carbon nodule can contain in the layer

plane structure as many as 105 to 106 carbon atoms. One important problem

in defining a mechanism of carbon formation is to describe a route whereby

simple fuel molecules, containing a few carbon atoms, can be converted in

only fractions of a millisecond, into these large aggregates.

It has been found that hydrogen and oxygen are covalently bonded into

the black structure. The chemical composition of the chain structure' varies

from 1/2 to 1-1/2% of hydrogen and up to 8% oxygen on a weight basis.

Another property which may be of use in this study is the complex

refractive index which depends on the H/C ratio but is independent of size

or state of aggregation (9). The complex refractive index of an absorbing
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CARBON BLACK CHAIN
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medium for light of a wavelength/ , is given by the following

equation:

m = n- in\ (2-3)

Here n is the normal refractive index or the ratio of the velocity of

light in a vacuum to the velocity in the medium, and n' is the absorption

constant. This constant is related to the absorption coefficient by

equation (2-4).

' = 4n'// (2-4)

In addition to these more conventional methods of describing carbon

black, the industry has many tests (10). for characterizing carbon black. The

tests used in evaluating the product from this experimental program were

scale, nitrogen surface area, tinting strength, and benzene extract.

Specific details on some of these tests are given in Appendix C. Scale

is a measure of the diffuse reflectance from a carbon black-varnish

dispersion. For oil furnace blacks it varies from 83 to 96. Surface

areas and benzene extracts for similar materials vary from 30 to 220 m2/gram

and from 0.02 to 6.0%, respectively. Generally, the percent extract is

less than 0.1%. The tinting strength is a measure of the hiding power

of the black and on an arbitrary scale varies from 83 to 250%.

This description on the morphology of carbon black, although brief,

is adequate as a basis for discussion of carbon black formation.

2.22 Formation of Dispersed Carbon

A complete description of carbon formation in flames has not been

produced, even though a large amount of work has been directed towards

attaining an understanding of this process. The root of the difficulty

lies in the fact that the whole process of carbon formation, which performs

the feat of converting the carbon contained in. gaseous hydrocarbon molecules

into relatively large and neatly structured solid particles, occurs in a

-4
time of only about 10 seconds. To observe, let alone to measure the
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details of such rapid events, is extremely difficult. Nevertheless,

a large number of experimental observations on the various aspects of carbon

formation have been compiled and are available for testing the various

hypothesis which might be proposed. The published literature is generally

concerned with carbon formation in flames and, therefore, in many cases

it will be necessary to try to extend this information into the region of

industrial oil black furnaces.

In the last section, the physical properties of carbon black were

described briefly. This structure should be kept in mind, since it is

this complex structure that makes it difficult to describe a mechanism

or a series of mechanisms for carbon black formation. Before discussing

the theories of carbon formation, it is first necessary to provide some

background information. In this section, we begin by reviewing ion

formation, ion identification and ion concentration in flames. In the

final analysis, all of these topics aid in model development. Then the

general phenomena which have been observed during carbon formation are

discussed. With these facts presented, several models of carbon black

formation are briefly outlined. Finally, recent pertinent experimental work

is both discussed in detail and summarized.

2.221 Ion Formation in Flames In recent years, van Tiggelen (11),

Calcote (12),and Thring l(.),among others, have been trying to find

answers to the questions of: How are the ions formed? What is their

concentration? What is the nature of the ion? All three of these

problems are interconnected because the mechanism proposed for production

must be able to predict the number, as well as the type, of ions that

are found in the flame. The most obvious source of ions is thermal

ionization, i.e., ionization which is controlled by the concentration

of species of low ionization potential present in the flame. This
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includes the ionization of (1) impurities (such as metallic species),

(2) equilibrium and non-equilibrium species present at flame temperatures,

and (3) carbon or soot particles. In many cases there are not enough

impurities present to produce a significant number of ions. Even if

there were, the ionization of impurities, as well as equilibrium and non-

equilibrium species, would be very dependent upon temperature and this

is not the case. As an example, large concentrations of ions are found

in relatively cool hydrocarbon flames. It was probably Stern (14) who

first suggested that the positively charged particles were carbon.

The reasoning behind this assumption is that most simple molecules and

atoms present in reacting systems, including free radicals, have ionization

potentials of over 10 electron volts. Since the most energetic hydro-

carbon flame reaction gives off only about 4 electron volts, chances of

ionization are small. On the other hand, carbon has a thermionic work

function of approximately 4 electron volts, and, therefore, it stands

a good chance of becoming ionized. Hence, carbon or soot probably comes

from the dehydrogenation and ionization of the hydrocarbon molecule.

2.222 Ion Concentration. Thermal considerations alone do not

account for the large number of ions, i.e., 101 to 1012 ions per cubic

centimeter that are found in flames. Nor can these considerations

account for the fact that the ion concentration is greater in the reaction

zone than in the hot gases. Chemi-ionization (15) has been proposed as a

mechanism for accounting for the remainder of the ions. It has been

shown that chemi-ionization is possible in flames, but it is very

complicated because of the presence of a large number of species. Some

proposed reactions that could account for some of the more prominent

positive ions, other than soot, are given in equations (2-5), (2-6)

and (2-7).
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CH + O =CHO + + e (2-5)

CHO+ + H0 H + CO (2-6)
+ 3

H30+ + e - H20 + H (2-7)

Additional ions will also be produced due to inelastic collisions if

an electric field is imposed on the flame.

In summary, all ions are produced in the lower part of the flame

by (1) ionization of carbon particles, (2) chemi-ionization, and

(3) collisional exchange.

2.223 Ion Identification. Using a mass spectrometer and Langmuir

probes, the positive ions in major concentrations, excluding soot,

have been found to be H30, H20, CO + , NO+, COH+ , and C2H02 (16)(17)

(18)(19). It was also found that the mass of the positive particle is

much greater than the negative particles, and from a comparison of mobility.

data, a majority of the negative particles were identified as electrons,

In a recent work, van Tiggelen and Feugier (20) have identified other

negative ions of a methane-oxygen flame. These ions, in order of decreasing

importance are CH , 0 , CH3 , C03H2 , H2 , C03H3 , C02H2 , and C20H3

2.224 General Phenomena of Carbon Formation (21)

2.2241 Effect of Flame Type. In general, the properties of the

carbon are little affected by the type of flame, the nature of the fuel,

or other conditions under which they are produced. But the tendency to

form carbon and the extent of formation depend strongly on these factors.

The simplest test for carbon in flames is luminosity. For a diffusion,

the flame height where luminosity first appears is often an important

experimental point.

Diffusion flames are often used for studying carbon formation since

the fuel and oxygen meet only in the thin reaction zone. Mixing of
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additional oxygen with the diffusion flame reduces carbon formation,

and if enough oxygen is added, a premixed flame is obtained and no

carbon is formed. In a diffusion flame, the amount of carbon formed

depends strongly on the fuel. The extent of carbon formation decreases

in the following order:

NAPHTHALENES > BENZENES > DIOLEFINS > MONO-OLEFINS > PARAFFINS

In most cases with a given series of organic compounds the tendency to

form carbon decreases with increasing molecular weight. In general,

the carbon-to-hydrogen ratio is one of the principal factors controlling

carbon black formation. This fact will also hold for industrial pro-

duction of carbon black. A lesser influence is exhibited by the

compactness of the fuel molecules.

I.n premixed flames, efforts have been directed towards establishing

the conditions of incipient carbon formation, i.e., the critical air-to-

fuel ratio. In principle, carbon formation should not occur in mixtures

containing more than enough oxygen to convert the carbon into its oxides.

Equilibrium considerations indicate that carbon formation should occur

only with a O/C atom ratio one or less. However, carbon particles have

been observed in premixed flames with a O/C ratio of 1.45 to 2.14 (22).

This occurs because the decomposition of hydrocarbons to carbon can

proceed more rapidly than the oxidation reactions of the hydrocarbons

or the reactions of the carbon with CO2 or H20. For premixed flames,

the tendency to form carbon as a function of fuel is:

NAPHTHLENES >BENZENES > ALCOHOLS > PARAFFINS > OFEFINS
ALDEHYDES , KETONES AND ETHERS> ACETYLENE

Well-defined relationships exist between the carbon forming tendency

and the structure of the fuel.
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2.2242 Effect of Pressure. An increase in the pressure on a

diffusion flame causes an increase in the amount of carbon formed.

Parker and Wolfhard (23), studying the effect of pressure on carbon formation

found no carbon at a pressure of 25 mm of Hg. The first visible carbon

was found at a pressure of 180 mm of Hg. The possibility that the low

pressure diffusion flame actually burned as a premixed flame was excluded

by the fact that the low pressure limit for carbon formation was inde-

pendent of burner diameter. Therefore, they demonstrated that there is

a real effect of pressure on carbon formation.

A similar increase in carbon formation with pressure is found in

premixed flames. In addition, as pressure increases, the intensity of

the C2 and CH bands decreases. This point will be used later in

discussing the proposed mechanisms of carbon black formation.

2.2243 Effect of Diluents (gases added in large amounts). The

result of diluent addition depends on whether the flame is diffusional

or premixed. Street and Thomas (24) have found that for premixed flames,

dilution of combustion air with nitrogen increases carbon formation

while enrichment with oxygen decreases it. With diffusion flames, the

result is just the opposite. In the latter case, the addition of the

diluent would be similar to a reduction in pressure.

2,2244 Effect of Additives (trace quantities). Generally additives

have only a small effect on carbon formation in a diffusion flame. It

is interesting to note that SO3 and H2 tend to decrease carbon formation

while bromine, chlorine and their organic compounds tend to increase

carbon formation.

As in diffusion flames, additives have only a small effect on

premixed flames. An exception is S3 which strongly increases carbon
3
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formation. In contrast SO2 and H2 decrease formation, but much larger

amounts than that for SO3 are required to produce a significant effect.

2.2245 Effect of an Electric Field. Many investigators have been

interested in this phenomena. Most of this work has been concerned with

premixed or Bunson burner types of flame. Calcote has studied both the effects

of transverse (25) and longitudinal (26) fields on the stability of burner

flames. His results indicate that the ionic concentration in the flame

is 10 ions per cubic centimeter. It is important to note that even

though there is a large number of ions present, they do not appear to

play a significant role in the combustion process.

Weinberg and Payne, using primarily premixed flames, have studied

flame properties in an electric field (27). They have looked briefly at ion

motion, induced gas movement, changes in heat transfer and changes in

carbon deposition. They found that diffusion flames were significantly

more deflected than premixed flames. This would be expected since

diffusion flames contain more carbon. However, the presence of the

field did not seem to alter the primary mechanism of carbon formation.

Electron diffraction and electron microscope measurements showed no

field-induced change in either size or orientation of the collected

particles.

In a more recent work using more sophisticated equipment, Weinberg

and Place (28) have found that the electric field can affect the nucleation

and growth of the carbon black. This work adds considerable insight

into the carbon formation process. It was shown that with a large

flux of positive ions through the pyrolysis zone, the amount of carbon

produced increased while particle size decreased. This change in mass

resulted from an eightfold increase in the number of particles formed.
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Since the only change was the number of positive ions entering the flame

zone, it seems likely that these ions act as nuclei for carbon formation.

In additional experiments, cesium was added to the flame. Cesium was

chosen because it ionizes readily at flame temperatures. This added

ion flux resulted in a 2 to 3 fold increase in the mass of carbon formed.

By manipulating the field, it was also possible to control carbon residence

time in the flame. In this manner, they found that by controlling

residence time they could control ultimate particle size.

The present author (29), using an electric field, collected carbon black

in the fuel rich zone of a diffusion flame as a function of position

above the burner. He fould the size of the particles to be uniform at

any one location in the flame. The first carbon particles to form were

approximately 50 A in diameter. As samples were taken further from the

burner, particle size increased, but there was no indication that any

more small particles were formed, thus indicating that after the initial

nucleation, no new particles were formed.

2.225 General Theories of Carbon Formation. Theories of carbon

formation might better be classed as qualitative chemical models. In

the following section, a brief description will be given of a few of

these models. It is worthwhile to note that some are concerned primarily

with nucleation while others are concerned only with growth. It is to

be expected that these two processes would be controlled by different

laws.

2.2251 C2 Condensation Theory. Smith (30) first suggested that solid

carbon results from the polymerization of C2 molecules. This theory

is attractive since it is physically satisfying and C2 absorption bands

are detected in flames. But the concentration of C2 in premixed flames
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appears to be insufficient to cause formation of significant amounts of

carbon. Two other disturbing facts are that this polymerization reaction

has a high energy of activation and in some flames carbon is found before

C2 band emission begins.

2.2252 The Hydrocarbon Polymerization Theory. This model postulates

that solid carbon is the end product of a series of processes which

include polymerization followed by dehydrogenation and graphitization.

There are many alternative routes for this scheme. Gaydon and Wolfhard (31)

suggest that carbon black may be formed in either of two ways:

(1) very large, possibly unstable, molecules could be formed which

graphitize from within; or (2) that the concentration of large hydro-

carbons increases until the saturation pressure is reached, at which

time they condense to form nuclei. They note that since sulfur trioxide

is a chain initiator in polymerization reactions and since it increases

carbon formation, possibly nucleation is a chain reaction.

The main argument against polymerization has been put forth by

Porter (32) as an argument for the acetylene theory. He employed absolute

reaction rate theory to show that at flame temperatures, polymerization

rates would be much slower than depolymerization and decomposition reactions.

2.2253 The Acetylene Theory. In this scheme, Porter asserts that

all carbon is formed more or less directly by simultaneous polymerization

and dehydrogenation of acetylene. This is supported by the fact that

above 1000°C many hydrocarbons decompose into smaller molecules,

especially into methane and acetylene. Acetylene itself is easily

decomposed into carbon and hydrogen. While this theory seems reasonable

for the growth of particles, it does not explain the origin of the complex

carbon nucleus.



-34-

2.2254 Surface Deposition Theory. According to Tesner (33)(34), the

carbon formation process can be divided into two parts. First is the

nucleation of a new phase. In the second stage the particles grow but

no new particles are formed. He postulates that growth occurs through

the direct deposition of hydrocarbons on the particle surface (35).

2.226 Pertinent Results of Experimental Investigations. Bonne,

Homann and Wagner (36) simultaneously followed the total concentration,

number density, and particle size of the carbon black. They also

measured C2H2, CH CH2 C3H2 COH2 concentrations throughout the

entire combustion zone. At the end of the reaction zone, where oxygen

had been used up, the concentrations of higher acetylides passed through

a maximum. They noted that as soon as carbon formation began, the

acetylide concentrations decreased. At this time they found no other

hydrocarbons present in sufficient amounts to account for growth. In

addition, they found no correlation between CO concentration and carbon

formation.
O

The first carbon they collected was 40 A in diameter with an atomic

C/H ratio of 2.0. Only after extended residence time in the flame did

the black approach the normal black formula of C8H. Bonne, et, al.

consider growth as a combination of agglomeration and further addition

of large polyacetylides.

In light of this work it would appear that Porter's (37) acetylene role

could be modified and better named a polyacetylide model. Possibly

acetylene yields polyacetylides, other polyunsaturates and related free

radicals.

In a recent work, Homann and Wagner (38) reported on experiments on

benzene'and acetylene flames. In both types of flames they found three

groups of hydrocarbons. These were:
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1. Acetylene and polyacetylenes (mass range 26 to 146).

2. Polycyclic aromatic hydrocarbons (mass range 78 to 300).

3. Reactive polycyclic hydrocarbons, probably with side chains,

containing more hydrogen than aromatics (mass range 150 to

greater than 550).

For acetylene flames, they postulate a scheme of acetylene reactions

with C2H and C2H3 radicals to form polyacetylenes and polyacetylene

radicals. More radical reactions lead to group 3 hydrocarbons with

group 2 hydrocarbons being generated as a by-product. These reactive

polycyclic materials (group 3) then add more polyacetylenes to form

small active soot particles. Then agglomeration of small soot particles

and addition of polyacetylenes yields large (250 A) inactive soot

particles which grow by a heterogeneous surface decomposition of C2H2

and polyacetylenes.

In benzene flames polyacetylenes are again present but they do not

take an active part in soot formation. In contrast to acetylene flames,

here the polycyclic aromatics are added to the radicals to form soot

particles. These aromatics seem to be more efficient building bricks

and hence more carbon black is formed in the benzene flame.

Foster and Narasimham (39), studying the pyrolysis of methane (turbulent

flame), noted two regions of carbon formation. The first region

includes a rapid precipitation of carbon black in less than 10 milli-

seconds. The second region is a growth region with no new particle
0 0

formation. Initial particle sizes were 33 A at 2,543°R to 230 A at

3,173°R. The particle growth was correlated by the equation:

dC = 3.87 x 108 | 0 ) C2 3s/ 3 57,000 (2-8)
dt T0 5 RT
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X = mol fraction CH4

C = Soot concentration mg/ml

Ns = Number of soot particles/ml

The effect of flow and temperature on the structure of carbon black

has been studied by Surovikin and Pokorskii (40). They pyrolyzed toluene and

green oil in the combustion products of a diesel fuel-air flame. In one

series, with toluene, they varied velocities from 130 to 985 ft/sec at

2,320°F. The degree of structure of the carbon black (oil absorption

number) decreased from 1.18 to 0.8 with increasing velocity while the

surface area remained constant at 100 square meters per gram. Hence,

they conclude that the formation of structure is a molecular process

which is not affected by the turbulent pulsations in the stream. They

also found that at a velocity of 600 ft/sec green oil gave carbon black

with surface areas increasing from 48 to 120 m2/gr with increasing temp-

erature from 2,200 to 2,5300 F.

Surovikin 41) used a tubular reactor to determine the kinetics of

the formation of carbon black from liquid hydrocarbons. Feed stocks

were toluene and green oil. Temperatures in the reactor varied between

2,390°F and 2,418°F with contact times between 2.0 x 10-4 and 0.08

seconds. Over this time range, he found that surface area decreased

with increasing time from 87 to 78 m2/gm and 102 to 82 m2/gm for green

oil and toluene, respectively. This work showed a sharp maximum in the

rate of particle formation, with most of the particles formed in

4 x 10 seconds. With toluene,an nduction period of 13 x 10-4
2 to 4 x 10 seconds. With toluenean induction period of 13 x 0

second was measured. It was not possible to measure an induction

-4
period on the green oil, but it was less than 2 x 10 sec.

Tesner and co-workers (42) are currently studying the kinetics of

carbon black production from liquid aromatic hydrocarbons. This work
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again has demonstrated that the production of carbon black is a two-step

process. These studies still do not allow one to identify the nature of

the initial radical nuclei, but they do show that the appearance of highly

unsaturated nuclei is required. The generation of these radicals requires

the overcoming of a high energy barrier (120 Kcal/mole), and their formation

is the start of an avalanche type of chain branching process. This process

seems to be very similar to a branched chain explosion. The explosion

is then rapidly terminated by a quadratic termination step, yielding a

sharp maximum in the particle formation rate. For black formation,

this step probably consists of radical loss on the surface of the carbon

black. Activation energies for the growth process were found to be

6 to 7 Kcal/mole for toluene and 3 Kcal/mole for green oil.

Tesner and Surooinin (43) have studied the basic principles of the

kinetics of carbon black formation under conditions where a highly

atomized oil is injected into a stream of hot combustion products.

In these studies, toluene and green oil were used as feed materials

with reactor velocities of 120 to 984 ft/sec. With a change in gas

velocity of an order of magnitude and with liquid or vapor feed the length

of the induction period and the surface area of the carbon black remained

constant. Hence under the experimental conditions, diffusion and heat

transfer have no substantial influence on the formation of carbon black.

Again an induction period was noted, with oxygen disappearing and large

amounts of hydrogen appearing just before carbon black began to form.

A large amount of tar-like resin was found to be present at the same

time.

On a slightly different tack, Bass (44) used high speed photography to

study the pyrolysis of green oil. With a reactor velocity of 32 to
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66 ft/sec and a temperature of 1290-13000C, he found the surface area

to vary with drop size. When drop size was decreased from 4.85 mm to

1.86 mm, the surface area increased from 68 to 120 m2/gm. For smaller

drops, he also took photographs to study the shape of the flame envelope

around the particle. He observed tear-drop shaped flames similar to those

reported by Gerald and Chang.

Testing the dominant hypothesis against available data allows one

to improve the model of carbon black formation. First in the early stages,

one has the formation of polyacetylenes, polycyclic aromatics and reactive

hydrocarbons. The types and roles of these materials could depend strongly

on the types of feed materials used. Subsequently, these materials,

through radical reactions, nucleate solid carbon particles. As in other

types of nucleation reactions, the presence of very small particles or

ions will increase the number of nuclei formed for a given set of con-

ditions. These small particles then grow through heterogeneous surface

addition reactions. One point of confusion is: Are the black particles

chained at this point? If so, why isn't the chain structure damped out

with increasing size. If the particles are not chained, when does it

occur and how? These are just a few of the questions that must be

answered in order to obtain a firm picture of the mechanism of carbon

black formation. With a picture of the theoretical problems associated

with carbon formation, a discussion of current production techniques

should point out some of the experimental facts and problems.

2.23 Carbon Black Production

2.231 History. In discussing carbon black production, one must

remember that this industry is not new but on the contrary it has

evolved from a small plant built in New Cumberland, West Virginia
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in 1864. It is only in recent years that modern instrumentation-and

analytical techniques have begun to transform this very complex art

into a more controlled science. Because of this fact, most published

material is directed towards production and very little fundamental

information is available in the open literature.

The first plant for the successful manufacture of carbon black

was built in New Cumberland, West Viriginia in the year 1864 (45). In

this plant, the forerunner of the contact or channel process, a natural

gas air flame, was impinged on a soapstone slab. The deposited product

was then scraped from the slabs. In the modern contact process (46)

the natural gas is first treated to remove its gasoline. Next, the gas

is burned with an insufficient supply of air. The luminous flame

impinges on the underside of mild steel channels where black deposits.

The black is then scraped from the channels. Rising costs of natural

gas combined with a low efficiency and an increasing national interest

in air pollution are slowly forcing this process out of the picture.

In 1916 the thermal process went into production. In this cyclic

operation, combustion gases first heat brick checkerwork to 3,0000 F,

then methane is pyrolyzed into carbon and hydrogen on the hot surface.

This process is more efficient than the contact process but the particles

are larger and do not reinforce rubber as well. These particles are

generally not chained but occur as discrete spheroids.

The furnace process, developed in 1928, is a result of effort aimed

at producing finer particles at a higher yield. In this process, natural

gas and 50% stoichiometric air are burned inside a refractory furnace.

The temperature is approximately 2500°F. As the price of natural gas

increased in the early 1940's, the industry began to feed oil into the
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hot blast gases formed from a natural gas and air fire. In this case,

the oil is the source of the carbon in the carbon black. This process

gives improved yields and a product with good reinforcing properties.

Table I gives the relative importance of the different types of processes.

Table I (47)

Carbon Black Production

Production in 1964

Process (pounds)

Furnace 2.3 x 109
Channel 0.2 x 109
Thermal 0.245 x 109

TOTAL 2.745 x 109

Of the output of carbon black, 95% is used as a rubber filler.

2.232 Current Production of Oil Blacks. Nelson (48) describes

oils that are good for carbon black manufacture as being composed of 4%

to 40% paraffins, 8% to 52% aromatics and 38% to 60% unsaturates. In

Summary, these oils have between 60% to 96% paraffins, aromatics and

unsaturates. He classes black-making oils by a characterization factor

which is defined by:

CF = (Mean Boiling Point F)/3 (29)
sp. gr.

Figure 2-3 gives Nelson's plot of percent yield from one furnace process

against characterization factor. The yield is based on a 100% yield

from an oil with a characterization factor (CF) of 10.84. On this basis,

the feed stocks used for this experimental program, which have charac-

terization factors of from 0.87 to 0.94, should give high yields.

One current source of oil is thermally cracked recycle oil with a

high aromatic content. Currently, yields for oil blacks run as high as

60% of the carbon available in the oil (49).
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Figure 2-3
EFFECT OF CHACTERIZATION FACTOR ON YIELD
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A typical process is the Continental oil black process (50) which

begins with thermally cracked recycle oil containing a high percentage

of aromatics. This oil is vaporized between 375 and 400°F and injected

directly into the furnace as shown in Figure 2-4. Heat for cracking is

supplied by the combustion of gas and air which enter the furnace

tangentially. This 12 foot furnace has a 12 inch diameter reaction zone

which is kept under 26000F by controlling the air-to-fuel ratio. The

product is then quenched with water to stop the carbon depleting reactions.

After further cooling, the carbon is collected and either further

processed or packaged for sale. Continental Carbon runs a similar

process ('51) but they start with an aromatic oil cut from the cat cracker.

This material has a high boiling point and, therefore, it is pressure

atomized into the center of the furnace. They have obtained yields up

to 60% and have found that the temperature history of the material is

critical in determining the quality and type of black.

Several general statements can be made on the important parameters

in oil black manufacture (52).First, the oil should have a H/C ratio

of 0.75 to 1.25 and secondly a mean molecular weight of 225 to 550.

High boiling oils are generally preheated and atomized with a bi-

fluid atomizer (30-100 microns diameter drops) and then fed to the

furnace with enough oxygen for 25; to 50 combustion of the total carbon

(carbon in natural gas plus carbon in oil). With these conditions, it

has been found that particle size is dependent on the velocity of the gas

in the furnace and the residence time. Factors which favor small particles

are the addition of diluents, high temperatures, and short residence

times. Black properties are also improved by the addition of trace

amounts of easily ionized material, i.e., cesium (53).





Patent literature discusses effects of adding 02 to improve yield (54)

or adding oxygen to a second furnace section to improve properties (55).

But as patent literature is somewhat vague, it is very difficult to

determine what the authors are trying to claim.

In summary, close scrutiny of a typical process flowsheet shows

that it is very difficult to separate the effects of drop size, residence

time and reactor temperature on the final carbon black product. This

separation of interactions is one of the primary goals of this thesis.

Since atomization is a major problem, tne next section will review some

of the pertinent literature.

2.24 Atomization of Liquids

In most gas-liquid chemical reactions, one of the important

parameters is the amount of liquid surface available for reaction.

A review of comustion literature indicates that a considerable amount

of effort has been expended on finding methods of providing initmate

contact between a liquid fuel and the oxidizer. The equipment used to

generate those surfaces is called an atomizer. Atomizers can generally

be classed according to the primary source of the energy which causes the

disintegration of the liquid. Thus, one can distinguish between

pressure atomizers, in which pressure energy is used; rotary atomizers,

where centrifugal energy causes disintegration; and bi-fluid atomizers,

where a gas impinges on a liquid and shearing causes the drops to form.

In their normal industrial mode of operation, all of these atomizer

types produce a wide distribution of drop sizes.

Since drop size control, as well as a knowledge of the size

distribution, is very important to the understanding of a combustion

process, several investigators have modified the more conventional

-44-
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atomizers in order to obtain a sharper drop size distribution. Of

these atomizers, two types can be operated to produce homogeneously

sized drops.

First is the dropper technique used by Chang (56) and Gerald (57).

Here oil is forced, under pressure, through a small capillary (0.003

to 0.006" O.D.) which is centered in a small orifice. High velocity

air flowing around the capillary and through the orifice controls the

size of the drop. Recent modifications of this idea have led to a needle

which is vibrated to control the drop size. This type of atomizer (58)

has been used to produce a stream of drops with a controlled diameter

of 25 to 500 microns.

The spinning disk is a modification of the rotary atomizer. In

1950 Hinze and Milborn(59) carried out a theoretical experimental analysis

on a rotary cup atomizer. They found that for a given liquid and cup

geometry, three distinct types of atomization exist over definite

ranges of disk speed. At low liquid feed rates, a liquid torus is

formed around the edge of the cup. The torus is deformed and has a

series of bulges around the edge of the cup. Liquid drops are thrown

off the cup from these bulges. They called this a region of direct

drop formation. At higher flows, the bulges transform into ligaments,

which disintegrate into a series of drops. Thus the drops are formed

in the second region by ligament breakup. Finally, at high flows the

torus leaves the disk and breakup is by way of sheet disintegration.

Of these regions, only the first produces drops of a single size.

The region of direct drop formation probably describes earlier work

done by Walton and Prewitt(60). They were the first to recognize the

importance of the spinning disk as a tool for producing a cloud of
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uniformly sized drops. Two sizes of drops, instead of one, are formed

in this type of atomizer. As the drop is thrown from the disk, a

satellite drop is formed, which is approximately one-fourth the diameter

of the primary drop. Owing to this difference in size, the satellites

are projected a shorter distance from the disk and thus can be separated

from the main droplet stream. In their experimental work, they operated

low speed motor diven disks and high speed air tops. This experimental

program included disks with diameters from 2 to 8 centimeters, disk

speeds up to 50,000 radians per second, liquid densities of 0.9 to

13.6 g/cc and surface tensions of 31 to 465 dynes/cm. Over this range

of operating conditions, they obtained drops of from 12 to 3,000 microns

in diameter.

If one looks at the disk atomizer to determint the controlling

parameters, one sees that the liquid collects on the edge of the disk

and remains there until the centrifugal force acting on the bulge is

greater than the retaining force of surface tension. Therefore, one

would expect a proportionality between the product of the drop mass

and the accelerating force and the product of surface tension and linear

dimension of the drop.

3& 2

6 L e d d (2-10)

Rearranging

d 1/2 = const. (2-11)

The experimental data of Walton and Prewitt gave values of the constant

of about 3.3 to 45. The higher values correspond to the high speed air

driven tops.
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At about the same time, May (61)developed an improved air driven

top in which the driving air sucked the satellite drops from the main

stream. This unit produced drops of 20 to 100 microns and gave a value

for the constant of 4.7. The homogeneity of the spray from this unit

was very good. The standard deviation in drop size was 2.3% of the

mean drop size with 95% of the drops lying within 5% of the mean. A

distribution of the drops from one of May's runs is given in Figure 2-5.

May found that the general criteria for smooth operation of a spinning

disk are: (1) the disk surface must be wetted by the liquid; (2) the

liquid should be fed to the center of the disk; (3) the disk surface

should be smooth, and, finally, (4) feed rates should be low enough to

remain in the region of direct drop formation.

More recently, Renier (62) and Simpson (63) have worked with disk

atomizers. Renier determined the point of transition from direct drop to

ligament drop formation for six liquids and three sizes of disks. These

liquids covered a variation in density ( ) of 1.03 to 2.13 g/cc, in

surface tension () of 36-63 dynes/cm, and in viscosity /() of

1.4-324 centipoises. Operating at speeds of 3,000 to 15,000 RPM, he

produced drops of 75 to 400 microns in diameter. Renier represented

his data by the following equation:

D = a(.) -1.01 (I) -0.68 (6)31 d)- 4 3 ). 0 6 (2-12)

This variation of drop diameter (D) is very similar to that found by

Prewitt and Walton, except for the effect of viscosity . ). Simpson

used the same atomizer on residual fuel oils, but he found that they

could not be atomized satisfactorily until heated to approximately 2000F.

Therefore, the exponent on ,/) in equation (2-12) must be viewed with

suspicion. For a rough sizing of experimental equipment, equation (2-11)

should be satisfactory.
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Now that the state of the art of carbon formation and atomization

have been briefly described, it is time to outline the goals and approach

of the present experimental program.

2.3 Specific Goals and General Approach

The primary goal of this work was to determine the important process

variables and then to determine how they influence the physical properties of

the carbon black. In addition, efforts were made to shed more light on

the mechanism of the nucleation and growth processes.

The process variables considered in this study were drop size, reactor

temperature and residence time. With the present experimental apparatus,

all of these parameters can be altered independently. In addition to

these variables, three different feed stocks were utilized. They include

two commercial feed stocks (Aromatic Concentrate and Cosden Tar), and a

pure material (Naphthalene). Properties of the feed stocks are given in

Appendix A. A summary of the experimental conditions is given in Table I.

Detailed testing was carried out on Cosden Tar (CT). With this oil,

drop diameters of 28, 64, and 100 microns were investigated at temperatures

of 2000, 2300, 2600, and 2900F. Only the long residence time was

investigated at temperatures of 2000 and 23000F because of the very low

yields at these conditions. At 2600 and 29000F, three residence times

were studied. Aromatic concentrate (AC) and Naphthalene (N) were run

at all the above temperatures and residence times with drops of 64 microns.

After each run-, the solid carbon was first weighed to determine the

yield, then the solid product was analyzed. These tests included tint,

extract, scale, surface area, and electron micrographs. Details on

these tests are given in Appendix C.
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The reaction gas from each run was analyzed for CO, C02, C2H2,

CH4, 02' N2 and H2' The water content of the exit gases was determined

by a material balance around the system. These data also gave the amount

of oil and carbon that had been gasifiedo The next section will describe

the equipment and its operation in depth.
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Table II

Experimental Program

Key:

Drop Size:

100 microns +

64 microns 0

28 microns -

Test Number: 1 2 3 4 5 6 7 8 9

Drop + 0 - + - 0 0 + -

Probe + + + - - - 0 0 0

Probe Position (Residence Time)

Fully extended +

1/3 Inserted 0

2/3 Inserted -

Temp. Series Test Number

oF Number 1 2 3 14 15 7 

Cosden Tar (CT)

2000 x x x x

2300 II x x x

2600 x x x x x x x x x

2900 IV x x x x x x x x x

Aromatic Concentrate (AC)

2000 V x

2300 VI 

2600 VlI _x x 

2900 Vlli x x x

Naphthalene (N)

2000 1 x

2300 2

2600 3 x x x

2900 4x x x
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III. PROCEDURE

3.1 Equipment Description

Since this work was primarily an experimental investigation, a

considerable amount of time and effort was expended on the design,

construction, and debugging of the experimental equipment. Whenever

possible, available information on actual "black making" conditions

was taken.into account. For example, according to the literature, the

normal "make-temperature" is from 2400 to 29000 F at a residence time

of 5/100 to 15/100 of a second (64). In addition, good conversion is

favored by high temperature and short reaction times. After the desired

residence time, the hot gas and solid stream is quenched to 8000F with

nitrogen or water to stop gasification reactions which deplete the yield.

In general, only a limited amount of information is available on actual

process conditions and even less is known about the interaction of the

various process parameters. Whenever possible, the apparatus was designed

to encompass production conditions.

Figure 3-1 is aschematic of the experimental equipment, while the

actual apparatus is shown in the photographs on Figure 3-2. Starting at

the top of the figure, residual oil was fed through a nozzle to a

spinning disk, where it was disintegrated into small drops by the

centrifugal force of the disk. The disk speed and temperature were

controlled so that a stream of uniformly sized drops, of a known size and

at a controlled feed rate could be mixed with the combustion products of

a natural gas-air flame.

The exhaust temperature of the burner gas was controlled by the air

to fuel ratio and the amount of preheat in the fuel and air streams.

The stream of drops were conveyed with nitrogen from the atomizer into



-53-

APPARATUS

Figure -1Sweep Gas

Oil

Gas

Bric-k - -Hot-Rods

To

St em

Gas Sample ·Coil

Filter

Motor

a

a

a

a

U

I

u
m

i

i

m

Furna ce

I

V CIALA

h

_ ��

mm

- -

-~~~~~~

.....

-

I- - _

®

" ~ ~ ." ^""'

It

II

J
I

L�IL IiL
! Phi $v

~~--t"T-d

\



Fiture 2

yioaC e

OfL' Trans

01 1 Seal

I'

i

aQench robe
Gas Saple, 

13 kr.L-~3

r %C

V

- IVW4 *Iq

00011WI, %4at ev

pre s S"If 
Conrol

1jeate" 00
-4I Ito

Coll~
Filter



-55-

the exhaust gases of the burner. The gas-oil stream then flowed downward

through a vertical reactor which was held at the desired temperature.

When the predetermined reaction time had elapsed, the gas stream was

quenched with steam to approximately 800°F before passing through the

collection system. The next few pages will describe the specific equipment

items and their function in more detail. A more complete equipment

description is located in Appendix H.

3.11 Oil Feed System

The most attractive starting materials from the standpoints of

availability and cost were the "Bunker C" type oils. Residual fuels are

generally composed of hydrocarbons boiling above 7000 F. A major portion

of the residual oil consists of polynuclear aromatic and Naphthalene

hydrocarbons with long paraffinic side chains. The asphaltenes and resins

of the crude oil are found in this fraction of the oil. Details of the

composition of the residual oil depend markedly on the source of crude

and its processing history. Table III gives some of the properties of

the two "Bunker C" type fuel oils and the Naphthalene that were used as

starting materials for this study.

Table III

Feed Materials

Aromatic Concentrate Cosden Tar Naphthalene
(AC) (CT) (N)

% Asphaltenes 1.6 4.9 0.0
% H 9.08 8.72 0.25
% C 88.1 87.58 93.8
Atomic H/C.Ratio 1.23 1.19 1.25

These oils are typical of materials used industrially for carbon black

manufacture and were furnished by Curt Beck of Cabot Corporation. A more

complete description of the starting materials is located in Appendix A.
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The oil was fed to the disk by a pressurized nitrogen system as

shown on Figure 3-3. Nitrogen from a cylinder first flowed through a

regulator, two control valves, and then a four foot long glass capillary

with an internal diameter of 0.25 mm to 0.75 mm. Pressure drop across

the capillary was read from an oil manometer and total system pressure

was indicated on a mercury manometer. These two quantities provided an

indication of the oil feed rate. From the capillary the nitrogen flowed

to the heated oil tank and forced oil to flow to the atomizer.

3.12 Atomization System

The different types of liquid atomizers were discussed in section 2.24.

A spinning disk atomizer was selected for use in the present investigations

because it readily provided a cloud of niformily sized particles. The

critical parameters for disk operation are given in equation (3-1) (65).

dW - = const. (3-1)

This equation shows that at constant oil properties and disk size, the

drop diameter is inversely proportional to disk speed. A three inch

diameter disk was constructed to produce drops of from 25 microns to

100 microns in diameter. In order to maintain a uniform centrifugal

stress on the disk (Figure 3-4), the design thickness, t, of the disk was

varied according to the following equation (66).

t = to exp (-2ucr 2 )/2gf (3-2)

t = thickness of radius = 0

p = density

r = radius

i.) = speed

f = allowable stress
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For ease of construction, the shallow exponential curve of this equation

was approximated by a conical shape. Power for driving the disk was

supplied by a 1/5 hp Precise Electric Grinder with a maximum speed of

45,000 rpm. The speed of the disk was controlled by a variac on the motor

primary. Since one of the critical variables was disk speed, it was

necessary to monitor accurately and control the disk speed. This was

accomplished by combining a photoelectric pick-off, an oscilloscope, and

an oscillator. Briefly, a light beam from the pick-off was bounced from

a narrow reflector strip on the disk shaft to the photocell in the pick-

off. The resulting voltage pulse was then fed to the vertical plates

of a dual-beam oscilloscope, while the signal from an audio oscillator

was fed to the horizontal plates of the scope. When a simple Lissajous

figure (in this case a stationary straight line) was obtained, the

frequency of the oscillator was matched to the pulses from the pick-off

and the disk speed was then known. Details of the disk speed measurement

system are given in Appendix 1.

Having developed an atomizer capable of producing the proper sized

drops, it was next necessary to provide a means of conveying these drops

to the furnace. Figure 3-5 shows a schematic of the disk housing developed

to accomplish this. This housing was designed by successive experimentation;

the details of its evolution are discussed in Appendix J. The important

features of the disk housing are: (1) The nitrogen sweep gas inlet at A.

(This gas flow helps to move the drops from the housing to the reactor.)

(2) The gas flow baffle. (This was necessary to prevent the gas in the

housing from rotating with the disk.) (3) A small flow of bleed nitrogen

entering behind the baffle. (This prevents the formation of low pressure

region which could cause vortex flow.) Oil drops that hit the wall of the
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housing into the trough system and were collected on the outside of

the housing. An oil seal was used on the oil collector to prevent the

loss of process gas.

3.13 Burner

A burner of the can type was chosen because this design has good

stabilization properties, a high throughput, and verylittle axial re-

circulation. This unit, shown in Figure 3-6, premixes natural gas and

air before they enter the burner throat through 28 small jets. The resulting

flame stabilized in the center of the burner. The air and gas streams

were provided with electric furnaces to permit the addition of preheat.

3.14 Reactor System

As the drops leave the disk housing, they enter the transition piece

shown in Figure 3.-7. Here they contact the combustion products from the

burner and enter the reactor. The reactor was a one-inch inside diameter

by three foot long silicon carbide tube. As shown in Figure 3-8, this

tube was positioned in the center of the 4 inch by 5 inch rectangular

opening in the furnace. Electrically heated silicon carbide rods were

provided to compensate for heat losses from the furnace and to maintain

a flat temperature profile along the reactor wall. Nine inches of zirconia

brick and two inches of block insulation were located around the reactor

tube. Five Pt,Pt -13% Rh thermocouples were attached to the outside of

the reactor to provide the reactor temperature. This furnace could be

operated at temperatures of up to 2900°F.

3.15 Quench and Product Collection System

In order to quench the reactions, a water and steam cooled probe

(Figure 3-9) was inserted into the reactor to the desired height, and

the reaction mixture was quenched with steam. Steam was used Instead

I'
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of water because the higher volumetric flows promoted better mixing and

hence a quicker quench. A vacuum pump was connected to the end of the

collection system and adjusted so that the reactor pressure (slightly

above one atomsphere) remained constant and independent of the probe

location. After quenching, the gas and carbon black flowed through the

sampling system and the agglomerator. The agglomerator coil provided

enough residence time for the carbon particles to agglomerate and thus

facilitate removal on the sintered metal filter. All equipment items

in the collection system were insulated and maintained above 3000F by

strip heaters to prevent condensation of water.

3.1-6 Data Collection System

Gas flows to the burner and disk housing were measured using the

rotameters shown on the flow panel in Figure 3-10. Temperatures in the

reactor and transition piece were measured using Pt, Pt-13% Rh thermo-

couples and recorded on a Leeds and Northrup recorder. Temperatures

in the collection system, the oil tank, the disk housing, the fuel pre-

heat furnace, and the quenched gas were obtained with chromel-alumel

thermocouples and indicated on a Wheelco pyrometer. Iron-constantan

thermocouples, in conjunction with a Honeywell potentiometer, were used

to measure cooling water temperatures.

The solid carbon particles were analyzed for extract, scale, surface

area, and tint and photographed (using an electron microscope) to

determine their size and shape. A sample of the off-gas from the

process was collected in a 250 cc gas sample bulb. After the temperature

and pressure of the gas in the bulb had been adjusted to room temperature

and pressure, a sample of the gas was injected into a two column

Fisher-Hamilton gas partitioner for separation. Details of gas and
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solid analysis are given in Appendices B and C, respectively. The

description of-the equipment should be clarified somewhat in the next

section on equipment operation.

3.2 Equipment Operation

Due to the complexity of the experimental equipment, it was necessary

to follow a rigorous operating procedure to minimize product variations

caused by slight differences in operating conditions. The overall operation

can be broken down into pre-run operations, run operations, and run

cleanup operations, which included gas analysis.

3.21 Pre-Run Operations

The major operation in this area was temperature adjustment. During

the experimental program the reactor temperature was controlled at four

different levels (2000°F, 23000F, 26000F, and 29000 F).. This control was

accomplished using the electrical setup shown in Figure 3-11. Before

adjusting the variacs and slide wire resistors, the.quench probe was

first placed in position. This was necessary since the probe acted as

a large heat sink. With the probe in position, it was possible to adjust

the power to the hot rods and bring the reactor wall temperatures to the

desired level. The L. and N. recorder provided a continuous indication

of the reactor wall temperatures.

When the furnace temperature began to level out, the strip heaters

on the product collection system were activated to bring temperatures to

3000 F (this required approximately three hours). The preheat furnaces

on the natural gas and air furnaces were then adjusted to provide enough

preheat so that the burnt gas and vaporized oil mixture were at the

reactor temperature. The amount of preheat required was determined

experimentally.
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In the meantime, oil was charged to the reservoir and heated to

2300F. With all auxiliary equipment at temperature, the atomizer was

placed on the transition piece and sealed with asbestos tape. The disk

housing was then allowed to preheat on top of the furnace for 60 minutes

when the furnace was operating at 20000 F or 2300°F and for 30 minutes

when the furnace was over 23000 F. At this time, the oil feed nozzle was

placed in the housing and 20 minutes were allowed for preheat before

starting the run. This brought the nozzle temperature to approximately

2300F.

3.22 Run Operations

When everything was hot, the disk was started and its speed adjusted

to approximately the desired level, Then the variac on the disk heater

was adjusted to 3-1/2 amps. This brought the disk temperature to approxi-

mately 2300F.

Next the natural gas and air flows were set and the burner ignited.

As soon as the burner had stabilized, the valve on the vacuum system was

adjusted to bring reactor pressure to one atmosphere. This valve was

adjusted throughout the run to compensate for the increasing pressure

drop due to carbon deposition on the filter. At the same time, steam

was added to the probe coolant to bring probe temperature to approximately

2000°F and quench steam was added to bring the gas temperature at the

probe exit in the range of 230 to 3000 F. This temperature provided a

sufficiently rapid quench. At this point, the gas flows to the burner were

adjusted and nitrogen flows to the housing were started. With all flows

on target, the oil flow was started and the disk speed adjusted to the

proper value. This signaled the beginning of the run.

After five minutes of operation, the entire reactor exit flow was

valved through the sample bottle for 45 seconds. The flow was then
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rerouted around the bottle, but one end of the bottle was left open to

the process system for an additional 2-1/4 minutes to allow bottle pressure

to equalize with system pressure.

During the run, the following readings were taken:

1. Disk voltage and current

2. Oscillator frequency (disk speed)

3. Oil tank pressure

4. Pressure differential on oil feed capillary

5. Natural gas rotameter setting and pressure

6. Air rotameter setting and pressure

7. Sweep nitrogen rotameter settings and pressures (two)

8. Current flows on: filter heater, steam preheater, sample

system heater, and disk heater.

9. Reactor temperatures

10. Temperatures in the oil feed system

11. Quench temperature

12. Preheat temperatures of air and fuel

13. Temperature of gas exiting from the filter

14. The length of the run

After 20 to 30 minutes, the pressure drop across the filter increased

due to collected carbon and flows began to decrease. At this time, the

run was terminated.

3.23 Run Cleanup Operations

After the run, the disk housing was removed from the furnace and

the disk cleaned with solvent. The overflow oil from the housing was

measured and the oil tank refilled to determine the exact amount of oil

that had been fed to the reactor.
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Next, the solid carbon was brushed from the filter and quench probe.

The sintered metal filter was then back-flushed with water to prepare it

for the next run. Carbon black that had accumulated in the sample system

and agglomerator coil was blown into a cloth filter bag. The total weight

of product was then obtained and this permitted calculation of the process

yield. The solid samples were submitted to Cabot Corporation for analysiso

Gas samples taken during the run were analyzed on.a gas chromatograph.

Now that one is familiar with the equipment and its operation, the

results of the experimental program will be presented.
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IV. PRESENTATION OF RESULTS

In this chapter, the experimental data will be presented in graphical

form. Tabulations of the data are located in Appendix E. Since drop

size is one of the critical variables, it will be discussed first. Next

the data on carbon black formation will be reviewed.

4.1 Atomization

The disk atomizer was operated on four different feed stocks at

a feed rate of approximately 25 cc of oil per minute. This gave a drop

feed to the reactor of 5 cc per minute. Since the room temperature

viscosity of dibutyl phthalate was very close to that of hot oil, it

was used to calibrate the disk. It was also used to establish housing

design and check disk operation. The results of the initial calibration

tests are shown on Figure 4-1. Here the drop size, in microns, is

plotted against disk speed.

Next, the disk was calibrated using the two residual fuel oils.

There was only a slight viscosity difference between these oils, and,

therefore, their atomizing characteristics were very similar. The

dependence of drop size on disk speed for Cosden Tar and Aromatic

Concentrate is given on Figures 4-2 and 4-3, respectively. The

uniformity of these drops can be seen pictorically on Figures 4-4

and 4-5. These figures contain light microscope pictures of the

craters (OOx) formed by the oil drops on magnesium oxide coated slides.

Naphthalene, a pure material, was used as a control in this study.

Its atomization behavior was similar to the residual oils. On Figure 4-6

is presented the relation of drop size to disk speed for Naphthalene,

while the magnesium oxide craters are shown on Figure 4-7.



-74-

ATOMIZATION OF DIBUTYL PHTHALATE

Figure 4-1
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ATOMIZATION OF COSDEN TAR

Figure 4-2
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ATOMIZATION OF AROMATIC CONCENTRATE

Figure 4-3
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Figure 4.4
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ATOMIZATION OF NAPHTHALENE

Figure 4-6
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NAPHTHALENE CRATERS

Figure 4.7
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4.2 Formation of Carbon Black

This section will consist of a graphical presentation of the

carbon formation data from this investigation. As the results are

described, pertinent trends will be pointed out, but the development

of a model which will attempt to explain the results will be left for

Chapter V. The parameters for which the carbon black was analyzed were

yield, surface area, scale, tint, extract, and particle size. These

tests are described in Appendix C. This section will be composed of

three parts. In the first part, the effect of temperature and drop

size of the above-mentioned parameters will be presented. The following

two.parts will show how these parameters change as function of residence

time at temperatures of 2900 and 2600F.

4.21 Temperature Effect

The reactor wall temperature was maintained at four levels during

the course of this program. These levels were: 2000, 2300, 2600 and

2900°F. The aluminum oxide reactor used during initial testing had

thermowells inserted into the gas stream in addition to those attached

to its walls. Since the wall and gas stream thermocouples registered

very little temperature difference and responded rapidly to changes in

reactor operating conditions when a high conductivity silicon carbide

reactor was installed in place of the alumina reactor, the thermocouples

were cemented to the wall, and it was assumed that the wall temperature

was close to the gas temperature. The temperature effect was determined

using the full length of the reactor and three different feed stocks.

Cosden Tar (CT) was investigated in depth, with drop diameters of 100,

1L. -__ rt '_*_?__ ...... I 1. I___ ._ .. _.. ...... ..- A-L A ....

oI, ana zo microns. unly ot micron arops were usea witn one Aromatic

Concentrate (AC) and the Naphthalene (N).
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Yield is defined as the grams of carbon black produced per gram

of oil fed. These data have been normalized to a constant residence time

of 91 milliseconds. Figure 4-8 shows how yield from Cosden Tar was

affected by temperature and drop size. All three drop sizes behaved

approximately the same at temperatures of 2000 and 2300°F. Between

2300 and 2900°F a rapid increase in yield was obtained from the 100 micron

drops. The yields at the highest temperature, 29000F, were in the order

of increasing drop size. That is, the drops requiring the longest time

to vaporize give the highest yields and drops requiring the least time to

vaporize produced the lowest yield. A similar performance is presented

on Figure 4-9 for 64 micron drops of the three different oils. Again,

yield was approximately the same at the lower temperatures, while at

2900F the last material to completely vaporize gave the highest yield.

After weighing, the carbon black was analyzed for surface area by

the method of Brunauer, Emmett, and Teller (B.E.T). In all solids analysis

of low temperature carbon black (2000°F), the reader should keep in

mind that this material contains from 5 to 45% of a benzene-extractable

hydrocarbon. It is not known if and how this extractable may have

altered the various analyses. The variation of surface area with tem-

perature is indicated on Figure 4-10. Looking at plot a, and keeping

in mind that a high surface area means a small particle size, for

black made from Naphthalene a steady increase in surface area was

observed with increasing temperature, whereas the surface area of both

Aromatic Concentrate and Cosden Tar black passed through a maximum.

The curves on graph b show that the surface area of black from both

64 micron and 28 micron drops of Cosden Tar passed through a maximum

while the surface area of black from the 100 micron drops steadily
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EFFECT OF TEMPERATURE ON SURFACE AREA

Figure 4-10
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increased with temperature. In all cases at 29000 F, where vaporization

time was only a small part of total residence time, the surface areas

were nearly the same.

Scale, at least for the present, will be considered as a measure

of the blackness or absorptivity of the particles. It should be kept

in mind that a change in hydrogen-to-carbon ratio, for the same size

carbon particle, could change its absorptivity and the value of scale.

The variation in scale with temperature is depicted on Figure 4-11.

In both plots (a and b), a general decrease in scale was found between

20000 F and 26000 F. The scale remained essentially constant between

2600 and 29000 F. One should note on plot b that 28 micron drops

produced black with the highest scale, while 64 micron drops produced

the lowest scale black.

In the discussion of results (Chapter V), an attempt will be made

to attach a physical significance to the value of percent tint. At the

present time, let us consider the tint as a hiding power of the carbon

black and keep in mind that it should be related to the size and general

structure of the carbon black chain. The variation of tint with

temperature for Cosden Tar black is shown on Figure 4-12. With this

oil, and 64 micron drops, the tint steadily increased with temperature,

while for black from 100 and 28 micron drops, the tint passed through

a maximum near 26000 F. Sixty-four micron drops of all three feed

materials demonstrated a similar behavior, and the results are indicated

on Figure 4-13.

The variation of particle size with temperature is plotted on

Figure 4-14. These diameter values were taken from electron micrographs,

and it should be remembered that they are average values and subject
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EFFECT OF TEMPERATURE ON SCALE

Figure 4-11
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EFFECT OF TEMPERATURE ON TINT

Figure 4-12
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EFFECT OF TEMPERATURE AND FEED STOCK ON TINT
Figure 4-13
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EFFECT OF TEMPERATURE ON PARTICLE SIZE

Figure 4-14
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to considerable variation (+30%). In all cases, the particle diameter

decreased as the temperature was increased. Only a small change was

observed between 2600 and 2900°F.

4.22 Residence Time Effect

In order to gain more insight into the growth process, experiments

were carried out at three residence times. The runs were made at the same

conditions as the tests described in section 4.21, except that the residence

time was varied by changing the position of the quench probe. These tests

were made at 2900 and 2600°F, since only these temperatures produced

carbon black at a reasonable rate.

4.221 2900°F. The effect of residence time on the yield of carbon

black from Cosden Tar is shown on Figure 4-15. As noted earlier, the

last material to vaporize completely (100 micron drops) gave the highest

yield. The first material to vaporize completely (28 micron drops)

showed only a gradual increase in yield with residence time. The results

from similar conditions with 64 micron drops and three feed stocks are

depicted on Figure 4-16. In this case, the last material to vaporize

was Aromatic Concentrate (AC), and it gave the highest yield. Naphthalene,

the first material to vaporize, showed a steady increase in yield with

time but had a lower yield than either of the oils at 90 milliseconds.

The general reduction of surface area with residence time is

shown on Figure 4-17. The variation of surface area with feed stock

is depicted on plot a. Except for Naththalene, the smallest particles

were present at approximately 40 milliseconds. This figure indicates

that the particles were steadily growing as the residence time was

increased. In contrast, the size of the black produced from Naphthalene

appeared to pass through a minimum. In a similar manner, the size of
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EFFECT OF RESIDENCE TIME ON YIELD

2900°F

Figure 4-15
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EFFECT OF FEED STOCK ON YIELD

2900"F

Figure 4-16
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the carbon black from 100 micron drops of Cosden Tar (plot b) passed

through a minimum while black from 64 micron and 28 micron drops

steadily increased in size with time.

The variation of scale over the same range of operating conditions

is given on Figure 4-18. On graph (a) is shown how the scale increased-

with time, while at 90 milliseconds all three feed stocks produced

blacks with approximately the same scale. The scale of blacks produced

from the three drop sizes of Cosden Tar is shown on graph (b). All

blacks initially had the same scale (89) at 40 milliseconds and increased

in scale to slightly different values at 90 milliseconds.

The change in tint with time is plotted on Figure 4-19. The

black from Naphthalene and Cosden Tar (64 micron drops) passed through

a maximum at 60 milliseconds, while black from Aromatic Concentrate

appeared to have a minimum at 60 milliseconds. The variation of tint

with drop size is depicted on plot b. Here the black from 28 micron

drops showed a steady loss of hiding power with time, while the tint

of the other two materials passed through a maximum at 60 milliseconds.

The actual size of the black particles (determined from electron

micrographs) as a function of time is shown on Figure 4-20. All particles

showed an increase in diameter with time which produced a straight line

when the log of diameter was plotted against time. The black produced

from Cosden Tar was initially smaller than that produced from Aromatic

Concentrate and Naphthalene. After 90 milliseconds, the largest black

was produced from Cosden Tar.

4.222 26000F. The variation of yield with residence time, at

26000 F, is plotted on Figure 4-21. The different feed stocks (plot a)

show a considerable amount of variation. The yield of black from
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EFFECT OF RESIDENCE TIME ON SCALE

2900°F

Figure 4-18
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EFFECT OF RESIDENCE TIME

ON PARTICLE SIZE

29000 F

Figure 4-20
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Cosden Tar and Naphthalene increased with time except for the

Naphthalene point at 44 milliseconds. Black production from Aromatic

Concentrate appeared to pass through a minimum at 70 milliseconds.

The yield of black from 64 micron and 28 micron drops of Cosden Tar

(plot b) increased gradually with residence time.

Similarly, erratic variations with time were also present in other-

analyses. The variation of surface area with time is shown on Figure 4-22.

The black from different starting materials (plot a) had surface areas

at 45 milliseconds ranging from 38 to 60 square meters per gram. As

residence time was increased, the black from Naphthalene and Cosden Tar

increased in size, while the black from Aromatic Concentrate appeared

to have a minimum in size at 70 milliseconds. A similar behavior was

noted for the different drop sizes of Cosden Tar (plot b). The black

produced from 100 micron drops of Cosden Tar had a maximum surface area

or minimum size at 70 milliseconds. Blacks from the other drop sizes

had surface areas which decreased with time.

The variation of scale with time is shown in Figure 4-23. The

scale of the black from Naphthalene and Cosden Tar increased with time.

The scale value appeared to pass through a minimum for black from

Aromatic Concentrate. An analogous behavior was noted in the case

of the black produced from different sized drops of Cosden Tar. For

this material, the scale of the black from 28 micron and 64 micron drops

increased with time, while the scale of the carbon black produced from

100 micron drops appeared to pass through a minimum.

Changes in tint as a function of residence time, at 2600°F, are

shown in the next two figures. The increase in the tint of the black

produced from Naphthalene is shown on Figure 4-24. At the same conditions,
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EFFECT OF RESIDENCE TIME
ON SURFACE AREA

2600°F

Figure 4-22
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EFFECT OF RESIDENCE TIME
ON SCALE

2600°F
Figure 4-23
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EFFECT OF RESIDENCE TIME

AND FEED STOCK ON TINT

2600°F

Figure 4-24
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the tint of the black from Cosden Tar decreased with time, while the

tint of black from Aromatic Concentrate went through a maximum. The

behavior of the different sized drops of Cosden Tar was slightly

different (Figure 4-25). The black from both the 28 micron and 100 micron

drops showed a minimum tint with residence time while the tint of the black

from 64 micron drops steadily decreased with time.

The variation of particle size with residence time at 2600°F is

shown on Figure 4-26. In all cases, a plot of the log of diameter against

time produced a straight line. At 44 milliseconds, Cosden Tar produced

the smallest particles and at 94 milliseconds the largest particles.
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EFFECT OF RESIDENCE TIME

AND DROP SIZE ON TINT

2600°F

Figure 4-25
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EFFECT OF RESIDENCE TIME

ON PARTICLE SIZE

26000 F

Figure 4-26
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V. DISCUSSION OF RESULTS

This section consists of a discussion and evaluation of the results

presented graphically in Chapter IV. First will be described the results

of preliminary tests which showed that the equipment operated consistently.

Then, the experimental data will be evaluated and compared to a three-step

model for carbon black formation.

5.1 Preliminary Measurements

Before beginning the full-scale experimental program, it was necessary

to evaluate the equipment operation as well as the operating procedure in

order to establish reliability and reproducibility. Some of the most

important areas were: the uniformity of drops, the flatness of the

temperature profile, and the closing of the material balance.

5.11 Atomization

The atomizer described in Appendix H is far from optimum, but with

good control of the oil feed rate and sweep gas flows, it produced a

clean stream of drops (no drips). The results of the calibration tests

on this atomizer were presented in section 4.1. Disk atomizer operation

is described by (67):

(D 7)1/2d Dv = const. (5-I)

According to this equation, if oil and disk properties are constant,

then a log-log plot of drop size against disk speed, should produce

a straight line with a slope of -1.0. The corresponding plots shown in

Figures 4-2, 4-3 and 4-6 contained lines with slopes of -1.0 to -1.02.

These slopes indicate that the atomizer was operating in the region

of direct drop formation where the most homogeneously sized drops are

formed. Further verification of homogeneity was shown by the photographs

of the craters contained in Figures 4-4, 4-5 and 4-7. These photographs
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also indicated the presence of a few satellite drops. In the analysis

of the data, the satellites were neglected since they were generally

one-fourth of the diameter of the primary drop and, therefore, 64 small

drops are required to equal the mass of one large drop.

5.12 Temperature Control

It was desirable, from a kinetic standpoint, to maintain a flat

temperature profile in the reactor. The two typical reactor temperature

profiles shown in Figure 5-1 demonstrate the degree of success obtained

in temperature control. Some problem was encountered at the bottom of

the reactor due to the presence of the probe. Since the probe acted

as a heat sink, it had to be accurately centered in the reactor and

had to have a clean reflective surface in order to minimize heat losses.

With these criteria fulfilled, it was possible to maximize the temperature

gradient in the gas, at the probe entrance, and the indicated profiles were

obtained.

The large heat losses at the top of the furnace made it necessary

to adjust the preheat furnaces to maintain a uniform temperature profile

throughout the reactor. The point to note is that extra energy, above

the combustion energy, was added so that the mixed oil-gas stream was

heated to the desired level.

5.13 Material Balance

The problem of accounting for all of the carbon fed to the reactor

as oil was not completely resolved. From Figures 4-8 and 4-9 which show

the effect of temperature on yield, it was noted that yields are generally

below a normal oil black yield of approximately 50%. The first thing

that came to mind was that the unaccounted for carbon was present in the

gas phase as C02, CO, C2H2, or CH4. But, according to the gas analysis,
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this was not the case. At this point, the flow system was recalibrated,

but still only 11.8% (20000 F) up to 20.6% (29000 F) of the carbon fed as oil

ended up in the gas phase. An additional point is that oil leaks, either

as liquid or vapor, are readily visible as smoke or fire. They did not

exist. Finally, the amount of carbon collected from runs made at similar

conditions was reproducible, i.e., a 3.7 and 4.3 % or a 3.1 and 3.1% yield.

The fact that yield was also a function of the time required for

vaporization, i.e., the largest drops or highest boiling oil gave the

largest yields, indicated the possible formation of a gas phase species,

which was a slow carbon former.

Since the carbon collection system was held over 3000 F, any such

materials present must have been vaporized at 300°F because they were

not found in the collection system. In addition, they must be liquid

at room temperature because the gas analysis (which would include the

unknown if it were a vapor) totaled from 98 to 102%. On this basis, a

cold trap was designed to quench all of the gas leaving the filter.

The trap was cooled with liquid nitrogen and, therefore, collected

water plus other condensables. The amount of the water collected was

calculated from a hydrogen and oxygen balance around the system. Next,

from the change in weight of the cold trap, and assuming that the gas

phase material had the same carbon-to-hydrogen ratio as the oil, the

amount of residue was determined. In two runs, this weight accounted

for 69% (60.8 grams total) and 80% (78 grams total) of the carbon fed

and the material balance was within 8% and 5% of closing. The resulting

trap residue was cloudy, brownish liquid with a strong odor (similar

to Naphthalene). This material was submitted to Cabot for analysis.

The only positive results obtained were from a spectrophotometer
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which showed absorption bands at 224, 275, 286, 297 millimicrons and

indicated the possibility of methyl-napthalene being present in a

concentration of 20-30 ppm, and obviously this does not quantitatively

explain the difficulty. However, a sample held at the Fuels Research

Laboratory for the same period of time had lost most of its characteristic

odor and, therefore, possibly a large portion of the sample which Cabot

analyzed had evaporated before analysis. Physically, this is not too

satisfying, but it is obvious that an unknown material was present and

that its identity is still a mystery. Close examination of Russian data

indicates that they experienced a similar problem. Tesner (68) states

that essentially no carbon from the oil was gasified and also that 80%

of the carbon in the oil which was converted to carbon black appeared

during the nucleation period. However, a material balance using his

stated carbon black concentrations and gas flows accounted for only

16% to 38% of the carbon fed as oil. In Foster's (69) well-mixed reactor,

only 85% of the input carbon was accounted for as carbon, CO2 and CO.

On this basis, it would seem obvious that this apparent loss of carbon

needs to be investigated further and that possibly the identification

of the species may shed some light on the formation process.

5.2 Carbon Formation

In the following. section, the data from this work will be analyzed

and compared to existing experimental work and theory. At the same time,

an attempt will be made to clarify the literature on carbon black formation

and to integrate this information with the present work in order to

develop the proposed picture of a three-step process for dispersed carbon

formation.

For the purposes of this discussion, it will be assumed that the

ideal carbon black process will be the one which has a high yield and
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produces small uniform particles (diameter of around 150 angstroms).

These particles should be as black as possible, i.e., low in scale, and

have a high hiding power, i.e., high in tint. In addition, the amount

of extractable in the black should be low since the extract affects

the dispersion characteristics of the black. Since in most applications

the black is dispersed in another medium, dispersibility is an important

parameter. As the results of this work are discussed, an attempt will be

made to predict methods of approaching the ideal black process.

5.21 Overall Model

In Chapter II,

reviewed. There it

30-40, and 5-9 Kcal

formation process.

number of particles

reports a decreasing

The first step

part of the process

methods of approach.

of Formation Process

the various theories of carbon formation were briefly

was mentioned that activation energies of 120, 57,

per gram mole had been reported for the carbon

In addition, one research group believes that the

is constant after nucleation while another group

I number of particles.

in clarification of this picture is to look at the

that each group has investigated in depth and their

Table IV shows a comparison between the basic

approaches of the different investigators.

Investigator

Tesner,
Surovikin and

Snegyreua

Surovikin

Bass

Homann and
Wagner

Foster and
Narasimham

Present Work

Carbon

Feed Stock

Form

Vaporized
and

Atomized

Vaporized

Dropper

(Lo

Gas

Drops

Table IV

Black Investigators

Type of

Reactor

Turbulent

Turbulent

Laminar

Flame
Iw pressure)

Turbulent

Laminar

Feed Stock

Green Oil

and Toluene

Green Oil

and Toluene

Green Oil

Benzene and
Acetylene

CH4

Residual Oils

and Naphthale

Residence Time
Time Range

(milliseconds)

0. 1-80

2.2-80

14-80

?

0.2-30

10-30

40-100

T

I

i

ii

II
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The important points to be noted in the table are: (1) most work has

been carried out in a turbulent reactor, (2) the present work was done

in a laminar reactor, and (3) the work of Homann and Wagner was carried

out in a low pressure flame. The relative temporal positions of these

investigations as compared to the important events in the process of

carbon formation are shown in Figure 5-2. Here a normalized number of

carbon particles is plotted against residence time. Close examination

of this figure points out a possible reason why these investigators appear

to describe different processes. Tesner and the other Russian investigators

have looked very closely at the early stages of carbon formation (0.1 to

5 milliseconds). This is the region of carbon nucleation, followed by

a short growth region. They obtained only one point per run at the rel-

atively long time of 80 milliseconds. It is obviously difficult and dangerous

to extrapolate the number of small carbon particles over such a range on the

basis of one point per run. On the other hand, Foster covers a short

intermediate time period and even though he assumes constant particle

number he cannot prove it. Homann and Wagner cover the widest time span

but they could resolve the initial regions as well as Tesner. Most of

the first particles Homann and Wagner collected were around 50 angstroms

in diameter and collected after a time of about 2 milliseconds. Even

at this point in time they still found a significant number of particles

with diameters of from 100 to 175 angstroms. These latter must have

been growing for some time. Tesner and co-workers describe dispersed

carbon formation as a two-step process consisting of nucleation followed

by growth. They believe that after nucleation the number of particles

is constant. Homann and Wagner describe growth as a combination of

agglomeration and surface growth with a decreasing number of particles.
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It is the belief of this author that the observations of these

investigators are all consistent within the time regions where their data

are the most accurate. Furthermore, it is felt that the process of

dispersed carbon formation can be better described by considering three

steps in the formation process. The first is the production of nuclei

described by Tesner. The second and third steps consist of a gas phase

reaction which produces active species which then deposit on the surface

of the existing carbon particles, causing growth. These last two steps

occur simultaneously and have different temperature dependences. This

scheme schematically is:

Nucleation-+-Gas Phase Reaction--Surface Growth

In the next few sections, the experimental data from this work and those

of other authors will be compared to this model,

5.22 Analysis of Nucleation

Since most of Tesner's data was taken during the period of nucleation,

his interpretation of this step and the comparison of his data to those

of the present work will be discussed first. Before proceeding, it

should be pointed out that many free radical or bond-breaking reactions

have high activation energies. For example, the generation of the C2

radical requires 150 Kcal per mole, or the rupture of the carbon-hydrogen

bond in acetylene or methane requires 125 and 101 Kcal per mole,

respectively. In addition, the removal of a hydrogen atom from ethane

requires 98 Kcal per mole. In this light, if nuclei are formed by a

free radical process, then one would expect a high activation energy.

Tesner and co-workers noted a sharp maximum in the rate of particle

formation as a function of time, which occurred at a time when the

hydro-carbon concentration was still high. If one assumes that nuclei
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are formed by a radical process, then a logical reason for the sudden

decrease in the rate of particle formation is that the radicals decay

on the large amount of surface presented by the new carbon black

particles. In this light, Tesner analyzed his data according to

Semenov's (70) equations for a chain branching explosion with a

quadratic termination step. Semonov's equation assuming a uniform

particle size and the destruction of radicals by their mutual interaction

is:

dn 2
d n 0+ (f - g)n g0n (5-2)

In this equation, n is the number of carbon particles and dn/dy is

the change in the number of particles with time. f and g are constants

for the kinetic rates of chain branching and chain termination, resp-

ectively, and go is the geometrical factor for radical destruction.

With data on particle size (surface area and electron micrographs) and

carbon concentrations, Tesner calculated the number of particles as a

function of time. With this information and equation (5-2), he calculated

n which he called the initial number of active centers. This number
o

seems to be the same as the number of critical nuclei, which one would

calculate from nucleation theory. With values for n and n, Tesner

calculated the activation energy for nucleation (En) from the following

equation:

1013 En (5-3)

n = N 10 3exp( )

This equation assumes that the active center is formed by a monomolecular

reaction involving bond rupture of the initial hydrocarbon (N). Tesner

also calculated En from the temperature dependence of n, i.e., a plot

of log n vs 1/T. In both cases, he obtained values of En of 122-126 Kcal
o n
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per mole for toluene and 118 to 122 Kcal per mole for green oil. These-

values of E are in reasonable agreement with the before-mentioned values

of activation energies for radical reactions of approximately 100 Kcal

per mole. This analysis does not prove the existence of a branched

chain or radical process but it does seem plausible and it helps one

to gain insight into the process of nucleation.

The question at this point is: Can the current experimental

results be compared with this work, and if so, do they agree? First

of all, it should be remembered that the data of the current work must

be extrapolated back to the nucleation region, and this is as uncertain

as Tesner's prediction of long time results from his data. Even though

the author sees no reason that his data should fit Semonov's equations,

for comparison's sake the analysis was made on one run and the calculated

activation energy was 100 Kcal per mole. The apparent concordance of this

value with those of Tesner is interesting but may be of no significance.

Due to the large differences in residence times between this work and

that of Tesner, direct comparison of the two may not be very meaningful

in a quantitative sense, but several interesting comparisons can be made.

-4
First, Tesner states that nucleation begins in around 10 4 seconds

-4
and is complete in approximately 5 x 10 seconds. In no case in the

present work did the electron micrographs contain small particles which

would indicate a secondary nucleation. This is shown in Figure 5-3

which contains electron micrographs of the carbon produced from 100 micron

drops, with a furnace temperature of 2900°F and at residence times of

42, 64, and 92 milliseconds. A further indication of the speed of the

nucleation process can be seen from a comparison of the carbon black

produced under similar conditions. In Figure 5-4 are shown two samples
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of carbon black produced from 64 micron drops at 29000 F with a residence

time of 42 milliseconds. Figure 5-4(a) is an electronmicrograph of

carbon black from Naphthalene which vaporized in approximately 1,8 milli-

seconds while Figure 5-4(b) is of carbon black from Cosden Tar which

vaporized in approximately 7 milliseconds. Note first the range of sizes

which indicates that carbon is being formed while vaporization is still

going on and, secondly, that the size variation is much larger in the

carbon black made from the Cosden Tar. This indicates a wide range in

the growth time for this material. The variation in hydrocarbon concen-

tration around the drop (laminar reactor) could account for some of this

variation but not all of it.

A further indication that the nucleation which occurred in Tesner's

work was similar to the nucleation which occurred in the present work

comes from the comparison of the temperature dependence of the total number

of nuclei. In this calculation, the particle diameter (electron micro-

graphs) and the total amount of carbon black collected, at the end of

Tesner's reactor or the present system, were used to calculate the total

number of particles. The dependence of total number of particles on

temperature is shown on Figure 5-5. Here the slope of Tesner's data

is 1.3 which compares favorably to a value 1.1 for the 64 micron drops

of the three materials from the present work. The closeness of these

values adds credence to the idea that we have a similar nucleation

process. A similar plot of number of particles from the different sized

oil drops of Cosden Tar is shown on Figure 5-6. Here it should be

remembered that there is a. large difference in the number of nuclei

produced from different sized drops. The slope of the lines decreases

from 1.5 for 100 micron drops to 0.5 for 28 micron drops. This can be

understood if one remembers that carbon nuclei form before vaporization
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PARTICLE FORMATION
Figure 5-5
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EFFECT OF TEMPERATURE ON THE
NUMBER OF PARTICLES

Figure 5-6
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is complete and that the vapor around the large drop is more concentrated,

and, therefore, nucleation is taking place in a region of higher concen-

tration and thus more nuclei are formed. This variation will be discussed

again under growth. The present work showed a slow decrease in the number

of particles with time. (Possible reasons for this decrease will be

discussed in a later reaction.)

Still another method of looking at nucleation is through classical

nucleation theory, using the concept of the critical nucleus and assuming

an incompressible solid. The critical nucleus is defined as the smallest

particle that is stable as a solid at system conditions. If one assumes

that embryos of all sizes and all structures are in equilibrium, the

number of critical nuclei, n, is given by (71):

n = n exp (G (5-4)

where G* is the excess free energy of the critical nucleus. A G* is

defined by:

G* 1 6 (5-5)
= (LAT/T )

where 6-is the surface free energy and L is the latent heat of

vaporization. A T is- the temperature difference between the sub-

limation temperature and the system temperature, while T is the

sublimation temperature. A similar relationship can be developed to

determine the radius, r, of the critical nucleus. In this equation,

2iT2 (5-6)
Here it is seen that r.* also depends on r- and . The values of

6d and L are not well established for carbon black, and since G* and

r.* are very sensitive to these number, a precise answer cannot be
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obtained. Yet, it is interesting that, depending on the values chosen

for and L, values of r.* of from 20 to 40 angstroms and G* from 20 to

100 Kcal per mole can be calculated. Considering the inaccuracy of the

physical property data, these are not unreasonable numbers and are within

the range of what has been observed experimentally.

5.23 Nucleation Summary

It is obvious from this discussion that nucleation is a high energy

barrier process. The species which produce the critical nucleus have not

been identified, but the process appears to be a chain reaction or free

radical type of process.

From the standpoint of the ideal black process, a maximum amount of

nucleation over a short time interval is desirable. In order to obtain

this process, several alternatives present themselves. The first is to

maximize temperature. Since conventional furnaces are near the maximum

temperature obtainable with a natural gas air flame, an obvious improve-

ment is to eliminate nitrogen and combust with pure oxygen, although

it may still be possible to improve nucleation by improving the initial

mixing of the oil and burnt gases. Still another approach is to move

into a second temperature regime and use an electrically augmented

burner to boost the energy content of the flame. An even higher temp-

erature could be obtained in a plasma arc where residence times can be

reduced to microseconds. The utility of this approach will depend to a

large extent on energy costs. Even with a higher temperature, it is

important from the standpoint of yield and size distribution to provide

rapid mixing and a uniform vaporization time.. Rapid mixing is

accomplished commercially using turbulent flow systems. Ideally, the

residual, oil should have a narrow boiling range and the drop size
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distribution should be uniform. Practically, the boiling range criterion

cannot be reached, but an improvement in degree of atomization is attain-

able. From the present study in a laminar flow system, it was not possible

to determine if an optimum drop size exists since there appears to be

interaction of drop size and mixing. In practice, a balance will have

to be established between the economics of obtaining a more uniform drop

size and the end effect on the carbon black properties.

Another possibility is to add a species to the gas which will act

a' nucleation sites and hence promote faster nucleation. Tesner obtained

smaller particles with a lower activation energy from green oil than

toluene. In this study, smaller particles were obtained from the residual

oils. Green oil, like the residual oils used in this study, should

contain small carbon particles which are a result of the manufacturing steps,

and it is possible that these particles act as nucleation sites. A few

of the larger particles of this type are shown in Figure 5-7 which contains

photomicrographs of the residual oil. Another point along this line

is that Tesner found an induction period for nucleation when using toluene,

and this was not the case with green oil. Weinberg and Place (72)

have found that cesium ions increase the number of nuclei. Therefore,

it is possible that nucleation can be improved by seeding the gas stream

with a suitable material.

5.24 Growth of Carbon Particles

All workers in the field appear to believe that after the formation

of 40 to 50 angstrom particles no new particles are formed. Homann and

Wagner believe that existing particles grow by agglomeration, and surface

reaction'to particles as large as 2000 angstroms in diameter. It is

for this growth region that reported activation energies range from
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5 Kcal per gram mole to 57.6 Kcal per gram mole. It is the opinion

of this author that this region can best be described by a gas phase

reaction which produces a hydrocarbon species that in turn adds to

the surface of the carbon particles in a rapid reaction.

5.241 Gas Phase Reaction. First let us consider the work of Homann

and Wagner, which was carried out in a low pressure flame. They observed

the formation of gas phase species which act as building blocks by

adding to small carbon particles, causing growth. For acetylene and

benzene flames the active species were polyacetylenes and polycyclic

aromatics, respectively. They feel that these species decompose on

the surface of the particle with an activation energy of 30 to 40 Kcal

per mole. It is important to note that the important species were

different for two different fuels.

On the other hand, Foster and Narasimhan envisioned carbon growth

as a bi-molecular collision between a carbon particle and a methane

molecule. This is reasonable if one considers that the concentration

of the molecule which is actually causing growth is probably proportional

to the methane concentration. From kinetic theory the collision rate

between carbon particles and an active gas species is given by

z = N N l 2_ x 8trR T m n (5)

where d, N, m are the diameter, number, and mass, respectively of the

carbon, s, and methane, m, particles. The number concentration, N,

mass concentration, c, and soot particle diameter, ds, are related by

= 1 6 1 (5-8)
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These relations can then be combined with an Arrheius factor into a

growth equation:

dt = constant (N ) 1/3(C) 2/3(x/T 0 5)exp(-E/RT) (5-9)

Here X is mole fraction of methane, and it is assumed that the concentration

of the species causing growth will be proportional to the methane

concentration. From data on the mass of carbon produced and particle

size as a function of time and temperature, all of the numbers in

equation (5-9) can be calculated except for the constant and the

activation energy. Foster, from his data, calculated these parameters

assuming Ns to be constant and plotted the log of:

dC T0O 5/X(N ) 1/3(C)2 / 3

against 1/T. From this plot he calculated an activation energy of

57.6 Kcal per gram mole.

The data of the present work were evaluated in a similar manner

using the value of mole fraction of oil for X. One should remember

that data were taken on particle size and concentration at three

residence times. These data are generally quite consistent and fit

an equation of the form

kt
d = ke kt (5-10)

as shown in Figures 4-20 and 4-26. However, these data were taken only

at two temperatures and thus a small variation in temperature could

significantly affect the calculated value of E. The results of this

calculation are shown in Table V.
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Table V

Activation Energy for Growth

Drop Size Eg
Oil microns Kcal/mole

Naphthalene 64 41

Aromatic Concentrate 64 45
Cosden Tar 100 50

Cosden Tar 64 35
Cosden Tar 28 18

Foster and Narasimhan -- 57.6
(methane)

Homann and Wagner 30-40

It is interesting to note that all of these values are below the 57.6

value obtained by Foster. This one would expect, since the methane

molecule is much more stable than the large oil molecules used in this

study. The closest value is the 50 Kcal per mole which was obtained

from the 100 micron drops of Cosden Tar. One would expect this value

to be higher because, as mentioned in the last section, the number of

nuclei depends strongly on drop size and temperature,and the large

number of small particles produced from Cosden Tar would then influence

the activation energy determined from equation (5-9). Due to this strong

influence of number, this author does not believe that this activation

energy can be called an activation energy for growth. It really reflects

the combined influences of nucleation, gas phase reaction, and surface

growth. If one compares the activation energy for 64 micron drops of

Naphthalene and Aromatic Concentrate, where the number of particles is

essentially the same, then a variation of an activation energy of

nucleation is not present and the values should be relatively cose,

if the gas phase and surface reactions are similar. As will be seen in

the next section, the surface reactions are similar, and, therefore, the

gas phase activation energies should be nearly the same, as is indicated
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by the values of 41 and 45 Kcal per gram mole. Looking closer at this value,

and assuming that the surface reaction is very fast (i.e., low activation

energy), then these values should be indicative of the magnitude of the

activation energy for a gas phase reaction, such as breaking up a poly-

acetyiide molecule (30-40 Kcal).

5.242 Surface Reaction. In this section, the above assumption of

rapid surface reaction will be justified. Tesner used his data on

concentration and size of carbon black particles as a function of time

and temperature to calculate an activation energy for growth. He reports

a value of three Kcal per mole for green oil and six to seven Kcal per

mole for toluene. Since this value is based on the actual change of

particle diameter, it should approximate the activation energy

(Es) for the surface reaction.

The data of the present investigation were treated in a similar

manner and produced values of three Kcal per mole for Cosden Tar,

six Kcal per mole for Aromatic Concentrate, and seven Kcal per mole

for Naphthalene. Granted, the absolute magnitudes of these numbers

are not precise since they are based on average particle sizes from

electron micrographs, and these are hard numbers to obtain; however, the

low value indicates that roughly one of every three surface collisions

is an effective contributor to growth and hence there is a rapid reaction.

The form of equation (5-10) suggests that growth rate is proportional

to the amount of material present. This would suggest that the carbon

black particles contain active centers or sites for the addition of a

gas phase species.

The precision of particle size data, from electron micrographs,

does notallow one to differentiate between diffusion limited, surface-
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area limited, or volume limited growth models. A statistical study of

many particles will be required to establish the true mechanism of surface

growth process.

5.243 Growth Summary. The growth of carbon black particles occurs

by the surface addition of a species that as yet is unknown. But, this

reaction is fast and tends to be limited by the gas phase reaction. Not

enough is known about the composition of the residual oils to enable

one to explain the differences between oils or between the oils and

Naphthalene. But the fact that Naphthalene had a higher growth activation

energy is consistent with Tesner's work. This analysis again pointed

out that nucleation is the important factor and that for the ideal black

process the initial few milliseconds, when mixing and nucleation occur,

are the most important. It is felt that the activation energy for

growth as determined by Foster includes the effect of nucleation (En),

gas phase reaction (Eg), and surface growth (Es), although E is so
g ' s

small that it probably contributes very little to the overall E. The

present experimental results do not allow one to determine all of

these numbers, but they suggest that both En and E may be important.

5.25 Evaluation of Measured Parameters in Light of the Proposed Model

During the discussion of nucleation and growth, the analysis made

use of particle size (electron microscope), the variation of particle

size and the yield. In this section, the variation of the parameters

surface area, scale and tint will be compared to the predictions of the

proposed model.

5.251 Nitrogen Surface Area. The nitrogen surface area of the

carbon black gives an average particle size for the carbon black.

Generally, the particle size from surface area measurement is larger

than the size determined from the electron micrographs (often a factor



-132-

of 2). This is probably due to an interacting affect of chaining, porosity,

and the amount of extractable material left on the black surface. Generally,

if the chains are very short, the two particle sizes are in good agreement.

Keeping in mind that a high surface area means a small particle, Figure 4-10

showed that the particle size of the black formed with a residence time of

approximately 91 milliseconds decreased as the temperature was increased

from 2000 to 26000 F. Since nucleation is a strong function of temperature,

as the temperature was increased, the number of nuclei increased and

smaller particles resulted. Also, as the temperature increased, the

rate of the growth reaction or the production of gas phase species

increased rapidly. From 26000 F to 29000 F, even though the number of nuclei

had increased, the growth reaction was fast enough that the surface area

decreased. This was true for all materials except Naphthalene, which

continued to increase in surface area between 2600 and 29000 F. This

is reasonable since Naphthalene also had the highest activation energy

for growth. On Figure 4-17 the change in surface area with time at

2900F was presented. For Cosden Tar all drop sizes showed an increase

in size with time, and the largest growth occurred between 62 and 90

milliseconds. This regionof acccelerated growth agrees with the yield

data. If one assumes that the gas phase reaction is controlling at

62 milliseconds, the number of active species in the gas phase must be

very high, causing a large number of collisions and hence a rapid growth

rate. The only exception is one low surface area point for the 100 micron

drop at 42 milliseconds. This black contained 2.2; extractable, which

one would expect to decrease the surface area.

A similar behavior was exhibited by the Aromatic Concentrate,

although the drop in surface area between 60-90 milliseconds was not
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as great. But in this case, both of the intermediate points contained-

over 1% extract and, therefore, the reported surface areas are probably

low. The erratic short-time point for Naphthalene is not as easy to

understand. In the first place, extract data are probably not really

comparable to the residual oils, since if Naphthalene were on the black

surface most of it would not be found by the extract measurement (see

Appendix C). Secondly, the particle size of this material from the

electron micrographs is much smaller, which would indicate that the surface

area should be around 50 m2/gram.

At 26000F, extracts are generally higher and surface areas do not

behave as regularly as at 2900°F. But as time increases, the surface

decrease is in agreement with the change in yield over the same region.

In all cases where surface area behavior is erratic (for example, when

Aromatic Concentrate showed an apparent decrease in size with time), the

behavior is not confirmed by the electron micrographs. That is to say,

particle size increases as one would predict.

In summary, the surface area measurement, which indicates the size

of the particles, agrees with the picture of growth presented in the

previous sections. For example, as the temperature increases and the

rate of growth increases, then the rate of decrease of surface area

increases. In the ideal carbon black process, it is desirable to produce

a very high surface area material (i.e., over 100 m2/gram) at a high

yield. Therefore, it is necessary to minimize growth time. Actually,

it would be best to allow only enough growth time to boil off the

extractable material. Again, this goes back to the desirability of

having the best possible nucleation conditions to produce many small

articles and thus it would take less time to meet extract requirements,

and a high. surface area black could be maintained.
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5.252 Scale. It is not really clear what a variation in scale

means. As was pointed out in Appendix C, the scale is a measurement of

the light absorption by the black particles. Cabot has been able to

correlate the scale measurement with particle size for black from pro-

duction furnaces. But on many pieces of experimental equipment, the

correlation does not hold. A possible explanation for this is that in

the small scale equipment, the temperature history of the black is

different from that in production,and probably chemical composition also

varies. Since a change in the carbon-to-hydrogen ratio changes the

absorptive properties of the black, the size correlation should not

be expected to hold. Another factor that may influence the scale

measurement is the amount of extractable. An absorbed layer of some

high molecular weight hydrocarbon should influence the absorptivity

measurement.

The variation of scale with temperature was shown on Figure 4-11.

These plots showed a decrease in scale from 2000 to 2300 F, while the

scale remained essentially constant for one oil and drop size between

2600 and 29000 F. At the low temperatures, extracts were generally over

2%. The electron micrographs of the 2000°F- carbon black showed the

particles to be contained in a film of oil. Therefore, the accuracy of

the scale value is doubtful. In addition, the black at 2600 and 2900°F

which have identical scales are about 100 angstroms different in diameter.

This difference may be within the accuracy of the scale measurement for

determining size. But at any one temperature, the variation between the

black made from different drop sizes or starting materials is opposite

to what one would expect. That is, the smallest particles have the highest

scale.
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At 29000F, as shown in Figure 4-18, scale increases with time.

That is what would be predicted for a growing particle. Again, the

position of these lines cannot be explained on the basis of size.

They are probably strongly influenced by the amount extractable and

chemical composition.

At 26000 F (Figure 4-23), the variation of scale is more erratic.

For the Cosden Tar, at 44 milliseconds the variation in scale (88 to 93)

does not agree with an observed size variation of 0 to 60 angstroms

from electron micrographs. Along the same line, the scale of the black

from Aromatic Concentrate appears to go through a minimum with time.

But according to the electron micrographs, this is not the case.

In summary, it would appear that for experimental programs of this

type, scale at best provides a reference with production material. If

one were analyzing the black for chemical composition, then this number

could be of more value. In addition, the change of chemical composition

might also be very helpful in determining more precisely how the particles

are growing.

5.253 Tinting Strength. The analysis of the tinting strength

brings one to the area of most confusion in carbon black formation.

That is, does the number of individual particles change? If so, when

and how do these small particles get together? Before discussing the

present results, a brief review of current theory and fact is in order.

Tesner and co-workers (73) do not mention the chaining of the particles

but do state as one of their prime assumptions that the number of particles

is constant during growth. Close examination of their data shows a

decrease in number of particles of from 10-27%. The larger losses in

number correspond to regions of a large amount of growth. On the other
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hand, Homann and Wagner (74) (75 describe growth as a combination of

agglomeration and surface reaction, hence, a large decrease in number

of particles would be expected. They feel that chaining takes place in

a region of slow growth after the particles have reached a round 250

angstroms in diameter. The present author, in a previous work (76),

found chained particles of 60-75 angstroms. One prevalent argument is

that the particles chain after they leave their growth environment.

The fact that almost all of the particles are in chains leads one to

believe that chaining occurs before quenching. In addition, Harling

and Heckman (7 ) have found that particle-to-particle bonds in the

chain are as strong as the crystallite bonds in the particle. It is the

present authors belief that chains are forming and breaking in the growth

environment. This would mean that the particle-to-particle bonds in the

reactor must be weak (i.e., Van der Waals Forces) and must strengthen

during quenching. The length of the chain is probably strongly affected

by the changes in chemical composition of the particle (off gassing),

rate of growth, and the movement of the chain, as a function of the

temperature.

In the present work, it was found that over regions where a large

amount of growth took place, the number of particles decreased by as

much as a factor of two. Also, over the same region the particles tended

towards a uniform size. Von Smoluchowski has developed a theory of rapid

coagulation of particles. He felt that rate of coagulation was determined

by the Brownian motion of the particles and their interaction when they

were close together. It is well to note that temperature would affect

the motion of the particles, while off gassing could strongly affect

particle-particle interactions. Smoluchowski describes the time of

coagulation according to (78):
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T D1R o (5-11)
1 T 1 

where T is the time required for the number of particles to decrease by

50%. In this equation, D1 is the diffusion constant for the particles,

R is the radius of interaction while -° is the original number of particles.

This relation assumes all collisions result in growth. If this is not

the case, cro must be multiplied by an effectiveness factor (>).

Muller (79) extended this theory to systems with a range of particle

sizes. He found that with a wide size range, the number of large

particles does not change but the number of small particles decreases

rapidly. Hence, it appears that the large particles capture the smaller

ones. The larger the initial size variation, the more rapid is the

approach to one size or constant particle number. Since the residence

time in the present experiments were relatively long compared with

coagulation times predicted by Muller's results, this theory can be

applied quantitatively to the present work, Figure 5-8 shows that

for constant conditions, the carbon black approaches a uniform diameter

with time. This discussion also introduces a possible area of- doubt

in the previous statement that there was no evidence of a secondary

nucleation. According to this approach, if secondary nucleation had

occurred, it would have been difficult to determine since the tiny

particles would rapidly attach themselves to the large particles. In

any event; this agglomeration could account for the observed decrease

in particle number. It would be very difficult to prove or disp-rove

this, since growth occurs simultaneously.

Now, the variation in tinting strength will be analyzed. Figure 5-9

shows how the tint compares to chain length. This relation suggests

that tint is a measure of an average chain length. Figures 4-12 and
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A COMPARISON OF TINT TO CHAIN LENGTH

Figure 5-9
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4-13 depicted the variation in chain length with temperature. This

change in length is shown more dramatically by the electron micrographs

in Figure 5-10. Here one finds very long chains at 2000°F. For all cases,

except the 64 micron drops of Cosden Tar, chain length goes through a

maximum around 26000 F. For the different drop sizes of Cosden Tar, the

shortest chain length corresponds to the material with the highest extract.

Since this material should be off-gassing the most, this gas flow would

hinder the collision and sticking of the particles. Also, since these

particles contain a large amount of extract, the particle-to-particle

bonds could be fairly soft and easily fractured by a collision. It is

quite possible that when the system is at 29000 F, the thermally induced

movement of the chains would make long chains unstable.

This possible interaction of off-gassing, bond strength, and thermal

movement was shown again in Figure 4-19. This figure showed how chain

length varied with time at 2900°F. Generally, the residual oils which

have around 1% extract at 42 milliseconds decrease in chain length from

42 to 62 milliseconds. After 62 milliseconds, there is very little

off-gassing, and chain length increases. Naphthalene behaves in a similar

manner, but its measured extract changes only slightly. The region of

increasing chain length is also a priod of rapid growth, and this

deposition of fresh material could help stick colliding particles together.

The picture is not nearly as clear at 2600°F (Figure 4-24). This

is also the region mentioned earlier where chain length went through a

maximum with temperature. One tends to doubt the apparent minimum in

chain length at 67 milliseconds that was exhibited by 100 and 28 micron

drops of Cosden Tar since these tints do not correlate with the length

of the chains as measured from the electron micrographs.
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In summary, it was shown that chain length was affected by

temperature and the amount of extractable. Again, it was seen that from

the ideal black standpoint (high tint), it is desirable to have small

particles (i.e., rapid nucleation) with a rapid quench to minimize growth

and chaining. From the variations in chain length with time and temperature,

it would seem that the black is chained during growth but that the chains

are continually making and breaking. This would be possible if the "at

temperature" bonds are relatively weak compared to the room temperature

bonds. No good explanation has been found for why the particles in one

chain are nearly all the same size or why unchained particles are almost

never found. It is possible that colliding particles are near each other,

nucleated at the same time, and grew in the same environment; hence, one

would expect them to be nearly the same size. In addition, coagulation

times are very short, and this would minimize the number of individual

particles.

5.3 Comparison of the Experimental Black to Production Carbon Black

During the discussion of the data from this program, extrapolations

were made toward the design of an ideal black process. This extension

can only be valid if the blacks have similar properties. In all cases

it was necessary to provide long residence times to reduce the extract

level to less than one percent. This long time produced large particles,

but they were of the same size as some commerical blacks, They are

comparable to the coarse blacks, which are designated by Cabot as F.E.F.

The properties of (FEF) black are compared to the 2900°F blacks from

this program in Table VI.
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Table VI

Comparison of Experimental and FEF Carbon Black

FEF Experimental

Scale 95.0 92-94
Surface Area (m /gm) o 42.0 31-37
Size (Electron Microscope) A 410.0 400-660
Tint (%) 200.0 160-224
Extract (%) 0.06 0.58-0.00

The only long time black which did not meet the extract criterion was

the material made from Aromatic Concentrate which contained 0.58%

extractable and had the low tint value of 160%. The electron microscope

examination showed the experimental blacks to have a similar microstructure

and morphology (80) to those of production blacks. A further piece of

evidence was the result of dispersion tests which were made on two samples.

Figure 5-11 shows a dispersion of the experimental blacks which is very

similar to production material. Many black spots would indicate a poor

dispersion. All of these tests indicate that the experimental black is

similar to production material, and, therefore, the predlictions on the

effects of process parameters should be meaningful.
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VI. CONCLUSIONS

Nucleation:

1. The process of carbon formation and growth can be considered

as a nucleation step followed by simultaneous gas phase and

surface reactions.

2. Nucleation is the most important step in carbon formation.

The rate and homogeneity of nucleation influences the final

size, surface area, extract, and chain length of the carbon

black particles.

3. Nucleation is a high activation energy process and therefore

is very temperature dependent.

4. Nucleation occurs in a period of time which is short compared

to the one to seven milliseconds required to vaporize the oil

drops.

5. Nucleation appears to occur in one burst, with no secondary

particle formation.

Growth:

1. The apparent activation energy for growth for the gas phase

reaction varies with feed material and is in the range of

35 to 45 Kcal per mole.

2. The surface reaction has an apparent activation energy of

3 to 7 Kcal per mole which depends on the feed material.

3. Pure materials have a higher activation energy for growth

than do residual oils.

General:

1. The carbon black produced in the experimental equipment

was similar to production material.



-146-

2. The industrially important empirical test for tint is a

measure of the chain length of the particles.

3. The linkage between carbon particles in the chains are for

some time in the growth process alternately breaking and making

chains.

4. Scale does not correlate with carbon particle size for this system.

Scale probably depends on the chemical composition of the particles.

5. Larger fuel drops produce more varbon particles per mass of fuel,

but this effect may be markedly modified by variations in the

speed of mixing fuel with hot gases.

6. Rapid mixing and short vaporization time are important factors

in obtaining a uniform product.
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VII. RECOMMENDATIONS

The present study indicated several areas where more detailed

investigations are required.

7.1 Nucleation

Since nucleation is one of the most important steps in carbon black

formation, it should be investigated in depth. The apparatus for this

work should be capable of turbulent flow, temperatures to at least 29000 F,

-4
and residence time resolution of 10 seconds. Initially, vaporized fuel

should be used to eliminate variations due to drop size and to circumvent

the problem of obtaining high throughput from disk atomizers. A great

deal of information could be obtained from the yield data and from a

statistical study on the electron microscope to determine particle number,

particle size, and particle size variation. Possibly a mass spectrometer

could be used to identify important species (similar to Homann's work).

It would be desirable at a later time to use a system with high

temperature capabilities. This temperature could be obtained with a

combustion flame (oxygen) or by utilizing an electric arc.

Possibly the seeding of the nucleation zone with small particles

or ions (such as cesium) would provide insight into the nucleation

process.

7.2 Growth

Once nucleation is better understood, the optimum nucleation conditions

could be used to study growth. A detailed electron microscope examination

of the particles would provide valuable information on coagulation, growth,

and chaining.

With the above information on nucleation and growth, it would then

be appropriate to vary the feed stock and drop size. At this point, one
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could incorporate tests such as tint, surface area, and scale. Then,

an overall model could be formed to predict the carbon black properties

which would result from a specific set of processing conditions.

A program for determination of the important gas phase species

which contribute to growth would be very interesting but difficult to

accomplish.

I
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VIII. APPENDIX
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APPENDIX A

Properties of Feed Materials

One of the primary goals of this work was to study carbon formation

from residual oils; therefore, two commercial carbon black oils were

chosen as starting materials. Naphthalene was used as a third feed stock.

This pure material then acted somewhat like a control in the evaluation

of experimental results.

In general, one can class residual oils as hydrocarbon mixtures with

a major fraction boiling above 7000 F. These hydrocarbons contain small

amounts of normal paraffins above C2 2H4 6, but a large fraction is composed

of polynuclear aromatic and naphthalene hydrocarbons with long paraffinic

side chains. If cracked oil was included in the residual oil, then olefins

and diolefins will be present along with other polynuclear aromatics. The

asphaltenes and resins are also concentrated in this fraction of the crude.

These oils, as shown earlier, also contain colloidal asphaltene particles

which may affect the carbon formation process. Actual details of the

composition of the residual oil depends strongly on the source of the

crude and its processing history.

Some of the properties that are normally measured on production oils

are given for this program's starting materials in Table A-i. Comparing

the two residuals, it is worthwhile to note that Cosden Tar contains 4.9%

asphaltenes as compared to the 1.6 asphaltenes in the Aromatic Concentrate.

The asphaltenes may have a tendency to coke during carbon formation, and

this could cause a gritty carbon black if the coke balls are not removed.

In addition, Cosden Tar contains 0.004% ash. Some oils contain as much

as 0.06% ash, and it is possible that this material could have some effect

on the nucleation process. A critical parameter for carbon formation
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Table A-I

Feed Stocks

Cosden Tar Concentrate Naphthalene

MO-1553 M0-1485

Sp. Gg. 1.06 1.05 1.0
Viscosity (s.s.u.)

1300 F 112 483
210°F 47 68 -

% Asphaltenes 4.9 1.6 0.0
% Ash 0.004 0.0 0.0
% Sulfur 2.6 0.0 0.0
% Carbon 87.58 88.17 93.75
% Hydrogen 8.72 9,08 6.25
H/C ratio 1.19 1.23 1.25
Mean Boiling Point F 693 790 410
% Water 0.0 0.5 0.0
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is the hydrogen-to-carbon ratio which was 1.19 and 1.23 for the two

residual oils and 1.25 for the naphthalene.

The boiling curves for the two residual oils are given on Figure A-1.

These data show that the Cosden Tar has about 15% more low boilers than

the Aromatic Concentrate and its mean boiling point is 690°F while the

mean boiling point of Aromatic Concentrate is 7900F.

In summary, the major differences between the two residual oils

is that the Cosden Tar contains 3 more asphaltenes, 2.6% more sulfur,

a small amount of ash, and has a mean boiling point that is approximately

100 degrees lower.
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APPENDIX B

Gas Chromatographic Analysis

All gas samples were analyzed on a Fisher-Hamilton Model 29 Gas

Partitioner. This dual-column, dual-dector system was used to separate

carbon dioxide, carbon monoxide, acetylene, methane, oxygen, nitrogen,

and hydrogen. The first column in this unit was a six foot long by

1/4 inch diameter tube packed with Di-2-ethylexylsebacate (DEHS) on

60 to 80 mesh Columpak. The second standard column was 6-1/2 feet long

by 3/16 inches in diameter and packed with 42 to 60 mesh molecular sieves.

With this column system, acetylene could not be separated from oxygen.

Therefore, a six foot long by 3/16 inch column of silica gel was added

ahead of the molecular sieve column.

The resulting system gave separation, as shown schematically on

Figure B-1, when operating with a helium carrier. Each sample required

approximately seven minutes for separation. For hydrogen determination

only the second column was used and argon was the carrier gas.

Concentrations of the various gases were determined by comparing the

peak heights of the reactor gas sample with peak heights obtained from a

bottle of Matheson Standard Gas. The analysis of the standard gas is

given in Table B-1.



-!155-

Table B-1

Gas Analysis

Compound

CO

Co

,2 2,C0iHH
2

Concentration (%)

11.6

9.98
1.17

3.14
63.12
0.98
9.98
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APPENDIX C

Analysis of the Solid Product

All of the analyses of the carbon black were carried out by the

laboratories of Cabot Corporation. The following sections contain

brief descriptions of their procedures.

C.1 Scale. The Cabot Nigrometer Scale is a relative measurement of

the diffuse reflectance from a carbon black-varnish dispersion. The scale

provides an indication of the blackness of the particles.

To prepare carbon black for scale determination, the black is first

dried at 2300 F for one hour. Then 0.25 grams of the black are intimately

mixed into 3 cc of 00 Linseed Oil Varnish by mulling in clockwise, counter-

clockwise, and then clockwise directions. The resulting black paste is

smeared on a glass slide to a thickness of approximately 1/8 of an inch.

This sample is then placed into the Nigrometer which has been calibrated

on a Standard Black Tile, and the reflectance of monochromatic light from

the sample is determined as a percentage of an arbitrary scale. Generally,

the smallest blacks give the lowest scale reading. For many carbon blacks,

Cabot has been able to correlate the scale with the actual particle size.

Figure C-l shows this relationship.

C.2 Tinting Strength. The percent tint is a whiteness test that

appears to be a measure of the hiding power or chaining of the carbon

black particles. For this test, 0.2 gram of the paste from the scale

measurement is mi.xed with 10 grams of white paste. The white paste is

65% lithopone (white printing ink) and 35% 00 Linseed Oil Varnish. After

mulling, the paste is placed on a slide and positioned in an I.D.L. color

EYE. This instrument indicates the reflectance from the sample as a

percentage of the reflectance from a white standard. This value is then

compared to the value from a standard carbon black.
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RELATION OF SCALE TO PARTICLE SIZE

FOR PRODUCTION BLACKS

Figure C-1
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C.3 Benzene Extract. For this test, a weighed amount of carbon black

is placed in the thimble of a Soxhlet Extractor and the sample is extracted

with benzene.for eight hours, After this time, the benzene is evaporated

to dryness, and the residue is weighed to determine the amount of material

extracted from the carbon black.

C.4 Nitrogen Surface Area. This is the standard B.E.T. analysis which

determines surface area from the volume of nitrogen required to form an

absorbed monolayer on the surface of the carbon black particles.

C.5 Dispersion Test. This test developed by L. Doppler of Cabot

Corporation, provides an indication of how well the black can be dispersed

in a medium. First, a sample of carbon black is mulled into varnish with

an automatic muller and then the paste is smeared between two glass plates

and photographed at lOOx under a light microscope. The uniformity of the

dispersion on the resulting picture provides a rapid visual indication of

the mixability of the carbon black. A large number of black spots or

carbon agglomerates is an indication of a poor dispersion.

C.6 Electron Microscope. The secret to a good electron microscope

picture lies in the dispersion technique. F. A. Heckman and D. F. Harling

of Cabot Corporation have developed a good, reproducible ultrasonic

dispersing technique. In this technique, carbon black is first placed

in a vial of acetone at concentrations of 0.2 to 0.5%. The mixture is

then sonified for three minutes at the maximum intensity of a Branson

Model S-75 Sonifier equipped with a Step-horn and a flat tip. Immediately

after sonifing,a carbon or SiO substrate grid is dipped into the acetone.

Excess liquid is blotted from the grid. After drying, the grid is placed

in the electron microscope and photographed at 10,00Ox and 60,000x. The

resulting pictures are then blown up to 50,000x and 300,000x before printing.

.1
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APPENDIX D

Drop Size Determination

In order to correlate disk speed with drop size, it was necessary

to calibrate the atomizer. The Magnesium Oxide Method of May (81) was

chosen because it was relatively rapid and reasonably accurate. In this

technique, clean microscope slides were coated with magnesium oxide by

moving them back and forth in the tail flame of a burning magnesium ribbon.

In this manner, the slide was coated with a soft smooth layer of particles

which had a grain size of approximately 0.5 microns. In order to obtain

a good crater, the layer of magnesium oxide should be at least twice as

thick as the diameter of the particles to be measured. When an oil drop

struck the surface of the slide, it left a well-defined circular impression.

The diameter of this crater was then measured by illuminating the sample

with strong transmitted light and using a microscope with a calibrated

eyepiece.

In his work, May carried out a set of experiments in which he measured

the size of drops coming from a spinning disk by both the crater and the

absolute method. In the absolute method, the drops were caught and mounted

in a second liquid. This liquid was immiscible with the oil, it had a high

viscosity, a different index of refraction, and a density similar to the

droplets. With this technique, the drops were preserved in spherical

form and could be measured using a light microscope. May compared drops

with diameters ranging from 200 microns down to 20 microns and found the ratio

of the true drop size (Absolute method) to the crater size equal to 0.86.

This conversion factor was then used to calibrate the present disk. An

additional important fact was that the crater diameter was found to be

independent of the impact velocity of the drop.
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APPENDIX E

Experimental Data

The raw data and some of the calculated results are included in this

section. The outline of the experimental program and run conditions was.

given in Section 2.3. The following code was used to number the experimental

runs.

I - 1- 1

Series Number

Test Number

f Run Number
The Series Number provides the type of oil and temperature level, while

the Test Number indicates the drop size and probe position. The Run Number

labels the different runs made with the same series and test numbers. Normal

air flows were 0.93 SCFM and natural gas flows were 0.089 SCFM. The pertinent

experimental data are given in the following tables E-I, E-ll, E-lIl and E-IV.

Figures E-1 through E-10 contain representative electron micrographs. All

micrographs are magnified 50,000 times.
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Table E-I

Run Data

Temperature

(°F)

2003
2026
2050
2060

2010

2230
2340

2360

2570

2600
2600

2600
2620

2590

2590
2590
2640
2600
2580
2600

2880

2860

2900

2860

2860

2900

2930
2900

2900

2000

2340

2600
2600
2580

2900

2900

2900

2080
2300
2600
2600
2600
2900

2900

2900

Run Length

(min)

16

15

12

25
22

22

21

11

17

15

13

20
14

10

20

20
17.5
22

30
25

17.5
10.5
15

25
24
16
14
19
20

30
30
20
13
20
22
15
15

10
16
15
13
10
11

12
10

Total
Gas Flow

(SCFM)

1.34

1.34

1.37
1.45
1.34

1.45
1.4
1.4

1.45
1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1 o4

1.4

1.31

1.4

1.4

1.4

1.4

1.4

1.4
1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4

1.4
1.4

1.4

1.4

1.4

1.4
1.4

% Yield
(grams C per gram

of oil fed)

3,7
403

3.1
3.1

1.4

5.8
4,3
10.4

17.2
6.2

5.7
9.67
8.5

7.7

4.25
10.5
6.5
6.9

7.5

67.2
37.6
4.1

22.8
7.2

9.8
13.8
12.6

8.0

4.2
5.68

10.3

5.7
18.4

52
6.8

5.1

4.1

7.8

11.7
10.2

8.5

16.7

11.7
6.5

Run

I1-1-1
I-1-3

1-2-5

I-2-7

I-3-1

11-1-1

11-2-4

11-3-1
111-1-1

111-3-1
111-4-1

I 11-2-4

111-7-1

111-7-2
I -6-1

111-6-2
111-3-1

11-9-1
11-9-2
111-5-1

I V-1-1

IV-8-1

Iv-4-1
I V-2-1

IV-7-1
I V-6-1

I V-3-1
I V-9- 1

I V-5-1

V-2-1

V I-2-1

V 1-2-1

V 1-7-1

v 1-6-1

V 1 1-2-3
V I 1-7-1

V I 11-6-1

1-2-2

2-2-1

3-2-1

3-7-1
3-6-1

4-2-1

4-7-.1

4-6-1
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Table E-I I

Carbon Black Analysis

Surface Area
(m /gram)

53.9

4.9

23.6
28.3
25.2

32.7
94.2
38°6
38.5
36.6
40.1
41.5
62.6
32.6
45.8
63.8
72.3

35.6
57.2
53.0
36.6
55.8
56.1
30.6
48.1
58.6

29.9
48.2
45.6
55.8
45.1
36.7
39.0
45.5

13.0
20.2
32.8
34.3
38,8
41.0
46.2
32.9

Extract
(%)

10.3
45.3
9,5

15.9
1.1

3.2
0.7

13.8

0.1
0.68
1.16
0.0
0.58
1.06
0.55
1.62
0.05

0.0
1.29

0.0
0.45
2.18
0.05
0.0
0.98
0.05
0.53
1.81

9.3
1.8
1.15
0.58
0.54
0.46
1.82
1.36

5.48
0.57
0.97
0.49
0.43
0.28
0.89
0.39

Run

1-1-1
I-1-3
1-2-5
I-2-7
1-3-1

11-1-1
11-2-4

t1-3-1

I 11-1-1

111-8-1
111 -4-1
111-2-4
111-7-1
111-7-2
111-6-1
111-6-2
111 -3-1

I 1-9-1

i11-9-2
I 1-5-1

IV-1-1
V-3-1

IV-4-1
I V-2-1

IV-7-1
I V-6-1

IV-3-1
IV-9-1
V-5-1

V-2-1
V -2-1

VI 1-2-1
V I1-7-1
V 11-6-1

VII 1-2-1
V I 1-7-1
V I 1-6-1

1-2-2
2-2-1
3-2-1
3-7-1
3-6-1
4-2-1
4-7-1
4-6-1

Scale

89
94-1/2
98
93-1/2
97

94
92
95

93
89
93
92
93
91
92
88
94

89
89

93
90-1/2
89
92
91
89
94
90-1/2
89

93-1/2
92
91
90
93
94
90-- 1/2
90

96
97
94
93
93
94
92
93

Tint
(~)

20
-40

5040
49

83
62

112

212
128
1J73

187
178
202
206
219
162

148
206

190
227
219
214
232
219
146
224
235

102
184
208
224
208
160
133
218

57
98

197
190
156
187
220
167



Table E-Ill I I

Calculated Results

Shift
Temp.
(°F)

2660
2275
2106

2230
1880

2590

2390
2930
2800
2360
2700

3560
2920
2820

2990

2450

3540

3240

3870
3040
2860

2880

3080
3620

2990

3120

3970

4410

3130
3000
2680

2510
2180

3010
2980

2220
4000
4000
3500
3140
4010
3400
3300

Average
Di areter

N A
-re
878
916
852

858
879
859

859

825
799
798
820
794
797
795
790
797

797
794

713
756
758
764

764

758
756

760

758

886
830

796

794
799
759

758
758

1800

1800

1000
667
800
700
430
300
600
430

360
600

400
300

500
300
200
500
370
300
600
370
230

530
600
600
400
310
400
370
300

1000
600
500
430
400
400
370

320
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Run

1-1-1
1-1-3
1-2-5
1-2-7

1-3-1
1 -1-1

11-2-4
11-3-1
111-1-1
I - 8-1
111-4-1
111-2-4
111-7-2
11-6-1
111-6-2
111-3-1
11-9-1
11-9-2

111- 5-1

IV-8-1
IV-4-1
IV-2-1
IV-7-1
IV-6-1

IV-3-1
I V-9-1

V-5-1

V-2-1
V I-2-1
V 11-2-1
V 1-7-1

V11-6-1

V 111-2-3

VI 1-7-1
VI 1-6-1

1-2-2
2-2-1

3-2-1

3-7-1

3-6-1
4-2-1
4-7-1
4-6-1

Res idence

Time
(milli-
seconds)

124
118

123

125
107

105
101

94
67
46

94
67

47

47.5
96
67.5
69.2

47.5

92.4
62
42
89
62
43
87.5
62
44

123

109

100

69

46.6

91.5
62

43

120

108
92
63
44
81

62

41

Reactor
Velocity
(ft/sec)

22

23
22

22

26

26

27

29

28

28

29

28

28

27
28

28

27

27

29

30
31

31

30
30
31

30
30

22

25

27

27
28

30
30
30

22

25

30
30
29

34
32

36

Range of
Di amqters

A

400- 800

370-450
200-600
500-800
330-660

200- 800
400-800

200-800
200-400

430-530
160-430
120-530
400-600
200- 700
160-800
500-1000
220-1000
160-400

300-830
300-670
200-800
100-1000
100-800
160-1200
300-800
160-600

800-1 200
400-800
300-800
400- 800
300-800
300- 1000
300-800
200-830
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Table E-IV

Gas Compositions

N 2 0 CO2 CO CH4 C2H 2 H20 H2
Run (%)

I-1-1 74.7 0.23 4.29 2.17 0.46 0.09 15.1 2.32
1-1-3 76.3 0.14 5.48 2.88 0.53 0.09 11.68 2.3
1-2-5 73.8 - 4.6 3.38 - 0.16 13.27 4.25
1-3-1 73.8 0.28 4.11 3.03 0.21 0,16 13.85 3.98
11-1-1 72.97 0.83 3.5 2.57 0.51 0.19 13.44 5.41
11-2-1 76.47 0.34 4.56 1.98 0.11 0.09 14.02 1.79
11-3-1 72.67 0.21 3.2 3.23 0.36 0.18 14.53 5.04
111-1-1 72.66 0.39 2.27 2.54 0.19 0.15 16.71 4e51
II1-8-1 72.4 0.05 3.47 4.14 0.17 0.26 14.5 4.5
111-4-1 72.3 0.06 3.56 3.27 0.18 0.20 14.97 4.83
111-2-4 74.08 0.03 2.66 1.94 - 0,14 17.12 3.13
111-7-2 74.11 0.11 3.50 3.05 0,15 0.13 15.82 2.51
ii1-6-1 74.8 0.24 4.04 2.38 0.08 0.14 15.4 2,2
111-6-2 77.5 0.25 6.07 1.42 0.01 0.03 13.2 0.8
111-3-1 72.65 - 2.89 2.72 0.11 0.11 17.14 3.8
111-9-1 73.7 0.29 4.0 3.45 0.03 0.12 13.9 3.9
111-9-2 76.5 0.15 4.85 1.58 0.02 0.04 15.4 0.92
IIl-5-1 77.3 0.23 5.65 1.32 0.01 0.03 14.13 0.68
IV-l-I 67.7 - 1.69 3.81 0.16 0.13 19.03 0.13
IV-8-1 75.4 0.28 4.43 2.72 0.04 0.10 14.4 2.02
IV-4-I 72.8 0.23 2.78 2.39 0,08 0.19 17.2 3.74
IV-2-1 72.1 0.25 2.81 2.91 0.13 0.09 16.36 4.72
IV-7-1 73.3 0.08 3.2 2.84 0.10 0.15 16.4 3.26
IV-6-1 77.3 0.24 5.48 1.13 0.0 0.04 14.6 0.54
IV-3-1 72.58 0.26 2.83 3.93 0.07 0.06 16.25 4.22
IV-9-1 75.1 0.24 4.26 2.88 0.04 0.09 14.6 2.2
IV-5-1 78.4 0.25 6.69 0.77 - 0.01 12.97 0.23

V-2-1 75.6 0.22 3.97 1.64 0.2 0.13 16.6 0.96
VI-2-1 76.2 0.24 4.56 1.37 0.06 0,08 15.8 1.05
VII-2-1 76.1 0.24 4.58 1.46 0.04 0.06 15.7 1.18
VII-7-1 77.4 0.26 5.88 1.16 - 0.04 13o8 0.76
VI 1-6-1 73.7 0.12 3.81 2.41 0.22 0.26 15.7 3.12
V II-2-3 77.8 0.23 6.47 0.98 - 0.04 13.03 0.80
VIII-7-1 73.1 0.24 3.01 3.3 0.10 0.13 15.9 3.58
V Ii-6-1 77.3 0.27 5.71 1.38 0.27 0.03 13.9 0.79

1-2-2 74.1 0.85 2.55 1.12 0.20 0.13 17.88 3.19
2-2-1 75.3 0.12 2.46 1.46 0.14 0.10 18.4 1.28
3-2-1 72.8 0.29 2.57 7.10 0.16 0.20 11.4 4.86
3-7-1 71.63 - 1.77 2.99 0.49 0.40 17.4 5.81
3-6-1 73.9 0.26 3.07 3.38 0.29 0.31 14.5 3.52
4-2-1 70.4 0.10 1.34 4.66 0.10 0.20 15.8 7.96
4-7-1 73.0 0.13 2.78 4.66 0.56 0.30 13.8 4.34
4-6-1 66.3 - 2.95 3.80 0.65 0.70 16.4 10.5



ELECTRON MICROGRAPHS

Figure E-1
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EL CTIRON MICROG GRAPHS

Figure E-4

I.t 1*1
; i a,, s

I
V-

.

. , FI 

·>-et<
(i. Ah

B ~;, ^ X.0

.,% o s~"
III-9-2

IV-l-1

III-7-2

III- 8-1

.1?7

I~ ~ ~~~~~~~~ 

A

qW L ~
07 4
li 1

4� ;

,Z,"VA - ll"�'

ow- Aft. ,.'A .

.7 44^' � ,

''ia

"Nr
IEf~

1, .1, 

,M.%"

-



ELECTRON MiYI CROGRAPtIS

Figure E-5
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ELECTRON MICROGRAPHS

Figure E-7
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ELECTRON MICHOGRAPHS

Figure Pw-Q
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ELECTRON I ICROGiAPiS

Fiure E-9
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APPENDIX F

Droplet Vaporization

When the drops were mixed with the hot gases in the furnace, heat

was transferred to them by radiation and conduction, It was desirable

to know the differences in vaporization times of the different sized

oil drops. This permitted the determination of the effect of drop size

on carbon black properties.

In general, the steady state heat transfer to a sphere is a

function of the Reynolds and Prandtl numbers of the gas stream. In

this case, the Reynolds number corresponding to the difference between

the velocity of the oil drop and gas medium was less than one. Therefore,

it was assumed that the Nusselt number was equal to 2.0. This value was

used, with the realization that 2.0 is only correct for steady state

heat transfer from a stationary gas to a sphere.

One can consider the radiation from the reactor tube as black.

Therefore, the rate energy of impingement on the drop surface due to

radiation is given by:

gr = 77rD hr(T - T1) =7D26 T 4 (F-l)

Here, T 1 is the drop temperature, T is the gas and well temperature.

The radiation heat transfer coefficient h is then defined as:

hr T (F-2)

For the conduction transfer, it was assumed that the Nusselt number N
u

[defined by equation (F-3)] was equal to 2.0.

h D

N =c (F-3)
u Ki~~~~~~~~~~~~~
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Finally, the ratio of the two heat transfer coefficients

was given by

h 4
r 1/2 D (F-4)

C

The vaporization time was split into two portions to simplify the

analysis. The first time period consisted of the time up to a point

where vaporization became appreciable. It was assumed that during this

time heat was transferred to the drop by radiation from the walls and

the gases as well as by conduction from the hot gases. In addition, it

was assumed that no appreciable vaporization took place during this

period. The second time period was the vaporization time. Here it

was assumed that all heat transferred to the drop caused vaporization

of the oil. Furthermore, a constant drop diameter was assumed since

the work of Gerald (82) has shown that with residual oils the drop

diameter remains constant during 90% of the vaporization time,

The method of calculating the lifetime of the drops was based

on the work of Simpson (83) and much of the data he obtained for Residual

Fuel Oils was used. Simpson first defines three special parameters which

he terms the conduction, radiation, and absorptivity groups.

hRc1
A = Conduction Group (F-5)

hR
B = K -- Radiation Group (F-6)

C = k'R1 Absorptivity Group (F-7)

These three groups account for the heat conveyed to the drop by

conduction, radiation and the amount of radiation absorbed by the

drop. Using an approximate kg, calculated at the mean temperature
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of the gas and the drop, it was possible to calculate A according to

h R

A= k1 (Nu)c Kg (F-8)
k 2k

For the oils used in this program, A was calculated to be 1.6. Simpson

recommends a correction on the dimensionless temperature for this

value of A. is defined by

T -T
= - T (F-9)
T T

Here, T is the final surface temperature of the drop and T is the initial

drop temperature. In these calculations, instead of Td,

To was used to compensate for the high value of A.

To = 2A T (F-10)

For an A equal to 1.0, Simpson solved the governing equations for various

values of B and C and presented this data in graphical form.

All of the pertinent data on Simpson's charts was put into equation

form, along with the relevant equations, and programmed for the IBM-360

computer. This program then generated preheat times and vaporization

times for the various feed materials and drop sizes as a function of

temperature. As an example, for CT the calculated values for B for a

130 micron drop and a 25 micron drop are 0.25 and 0.055, respectively.

In addition, a 130 micron drop has a C value of 0.25 as compared to a

value of 0.05 for the 25 micron drop. Using these values and Simpson's

charts, it is possible to calculate , which enables one to calculate

a dimensionless time of preheat J, as defined by:

J id (F-ll)

Generally, the preheat time accounted for approximately 20% of the

total vaporization time.

J
t

I
j
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The vaporization period was approached by considering that the

total heat which reached the drop was the sum of the radiative and

conductive energy. The resulting equation was:

dm AH + -f') dT = h7T D2 (T, -T.) + h d2(T -T1)o (F-12)
dt v ' dt 

or rearranging,

AH PDAf + C D (l-f)T 13
6(h + h ) (To -T)

This equation accounted for the fact that the boiling point of the oils

was not constant. Here Af represented the fraction of oil vaporized

during any one interval and (1-f) represented the average amount of liquid

which remained in liquid form during the interval. In this manner, the

vaporization period was broken up into five or six time periods. The term

hc + hr was evaluated at an average temperature equal to To + Average

T over the Interval. Values of tAf and (l-f) were obtained from the

boiling point data given in Appendix A.

oc , the overall absorptivity of the drop was calculated from the

following equation:

2k'R2 E2k' R1) + (2k'R+I) 2kR (F-14)

This relationship assumes no refraction and no external reflection.

Simpson found these assumptions to be adequate for low values of C.

Since, according to Gerald's work, the diameter of the drop remained

constant for 90% of the vaporization time. Equation (F-13) was solved

on the computer for 90% vaporization using a constant diameter. For

the last 10% of the vaporization, the program took into account the
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variation in D. Figures F-l, F-3, F-3 give the total vaporization time

for the drops of Naphthalene, Aromatic Concentrate, and Cosden Tar as a

function of temperature and drop size.
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NAPHTHALENE VAPORIZATION

Figure F-1
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AROMATIC CONCENTRATE VAPORIZATION

Figure F-2
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COSDEN TAR VAPORIZATION

Figure F-3
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APPENDIX G

Data Processing

The raw data from each run was punched onto cards and processed

on the IBM-360 computer. The calculations performed by the machine

were straight forward and, therefore, will not be described in detail.

Input Information for the program:

1. Gas Analysis (dry basis)

2. Air and Nitrogen Flows

3. Natural Gas Flow

4. Oil Feed Rate (type of oil)

5. Average Reactor Temperature

6. Probe Position

The computer carried out the following calculations:

1. Using N2 flow as a basis, it computed flow rates

of the other gases.

2. Made an 02 balance.

3. Made an H2 balance

4. Calculated Water Content of of exit gases

from the 02 and H2 balance.

(5.) Computed concentrations of CO, C02, CH4, 02'

N2 , C 2 H2 , H2, H20.

(6.) Calculated gas velocity.

(7.) Calculated Reynolds Number.

(8.) Calculated Residence Time.

9. Made a carbon balance.

(10.) Calculated the theoretical yield of carbon black.

(11.) Computed the equilibrium temperature for the water gas

shift reaction.
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The information in brackets was printed out and used in the evaluation of

the experimental results.

f;

tr:
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APPENDIX H

Equipment Details

The flow system was described in the body of the thesis. This

section contains more details on the various items which might be of

interest to an experimenter working on a similar problem. This description

will start at the top of the apparatus and work down to the vacuum pump.

H.1 Oil Feed System. The details of the nitrogen flow measurement

system were covered in Section 3.11. Nitrogen from this system flowed

to the oil tank shown in Figure H-1. This insulated tank was maintained

at the desired temperature (approximately 230°F) by a Chromalox 2.5 kw

immersion heater that screwed into the two inch pipe coupling on the

top of the tank. The temperature of the oil was measured by two chromel-

alumel thermocouples inserted into the thermowells on the side of the

tank. The oil was pushed from the tank, through the 1/2 inch coupling,

the valve, and then a small screen filter (from an oil burner), the '

3/8 inch heated copper line and then a nozzle, before impinging on the

center of the spinning disk. The nozzle had a 0.0013 inch diameter hole

for the Cosden Tar and an 0.0021 inch diameter hole for Naphthalene and

Aromatic Concentrate.

H.2 Atomizer. The heart of the atomizer was the Precise Super 30

Grinder Motor. The speed of the motor was controlled by a variac on the

primary of the motor. A Sola voltage regulator was used to maintain

constant line voltage. A volt meter and amp meter were used to provide

operating information on the motor. In the grinder chuck was placed

the shaft of the aluminum disk that was shown in Figure 3.4. The motor

and disk were then mounted in the atomizer housing as shown in cross-

section on Figure H-2. The large sides of the housing were 17 inches in

diameter by 1/4 inch thick aluminum plates. These plates were positioned
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by means of a 1/8 inch by 3-1/2 inch wide brass spacer, Steel supports,

positioned the motor and oil feed nozzle on the sides of the housing.

A 300 watt radiant heater was positioned 1/2 inch behind the disk to

maintain disk temperature at 2300 F. Porous metal rings were located

on both sides of the disk. These rings were interconnected on the outside

of the housing and helped to damp out the pumping action of the disk.

Oil that hit the walls of the housing was collected by the lips at the

bottom of the housing. This liquid then flowed outside the housing and

through a liquid seal to a collection vessel. The liquid seal prevented

gas loss from the housing. This figure also shows the approximate position

of the photo-cell that was used to determine disk speed (Appendix I).

H.3 Burner System. The burner system is shown schematically in

Figure H-3. Air from the building supply and natural gas from a 20Q cubic

foot cylinder flowed through rotometers and 400 watt preheat furnaces

before mixing outside of the burner. Temperatures in the furnaces were

controlled by temperature controllers. The temperature of the gases

before and after mixing was measured using chromel-alumel therocouples.

The burner itself was of the can type, which provided good stabilization

with very little axial recirculation. The burner was shown schematically

in Figure 3-6. Air and fuel first enter the burner through a 1/4 inch

diameter pipe and pass into a two inch by 0.025 inch channel. They then

pass through four 1/8 inch holes into a two inch by 0.020 inch distribution

channel. Finally, the gases jet into the burner through twenty-eight

0.025 inch diameter holes which caused rapid mixing and stabilized the

flame.

H.4 Reactor System. The reactor system was composed of the transition

<'± piece, the furnace itself, and the furnace controls. The transition

i.-
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piece was shown in Figure 3.7. This piece was cast from A. P. Green

high density castable aluminum oxide. As shown in this figure, the burner,

atomizer, and reactor are sealed into the transition piece. In addition,

the transition piece provided for distribution of the burnt gas around the

outside of the drops. The gas jetted into the reactor through sixteen

0.040 inch diameter holes, which were inclined 45 degrees to the horizontal.

The silicon carbide reactor tube was 36 inches long with a one inch

inside diameter and had a 1/4 inch thick wall. Aluminum oxide was

originally used, but the thermal shocks from the probe caused it to

crack. As shown in Figure 3.1, the reactor tube connected to the

transition piece at the top, the quench probe at the bottom, and was

contained in an insulated furnace. This figure also shows the approximate

location of the 32 hot rods (7/16 inches in diameter x 24 inches long with

a 5 inch hot zone) and 5 thermocouples (Pt-Pt 13% Rh). All of the hot rods

are not shown on the figure. They were spaced as much as possible to

compensate for high heat losses at the top and bottom of the furnace.

The thermocouples were located at distances of two 3/4 inches, six

7/8 inches, thirteen 7/8 inches, twenty-one 1/4 inches and twenty-three

7/8 inches from the top of the reactor. The 4 inch wide by 5-1/2 inch

long furnace zone was surrounded by 9 inches of zirconia brick insulation

(k = 4 B.T.U./ft - Hr - F - in) and 2 inches of block insulation

(k= 0.63 B.T.U./ft - Hr - F - in). In addition, one half of the

furnace was on rollers to permit access to the reactor tube and thermowells.

Figure 3.11 shows the controls used to provide a flat temperature

profile in the reactor. The top zone was composed of four elements

connected in series and connected to the 110 volt AC line. A variac

was used to control the current between 4 and 14 amperes. Zones 1

V .
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through 3 were each composed of 4 elements connected in series with a

variable resistor of approximately 18 ohms. The three zones were then

connected in parallel and controlled by an induction reactor fed from

220 volt AC line. Total current flow varied from 15-45 amperes for the

bank of 3 zones. A similar arrangement was used for zones 4, 5 and 6.

Zone B consisted of four elements, in series,and controlled by a power-

statt on the 220 volt AC line. Currents on all lines were measured

using an Amprobe tong meter.

H.5 Product Collection System. This system shown schematically

in Figure H-4 included the quench probe, the crossover line, the sample

bottle, the agglomerator coil and the filter. Normal flow was through

the probe, the main crossover line, the coil and then the filter. For

sampling, valve A was closed and the entire flow passed through valves B

and C.

A cross-section of the quench probe was shown on Figure 3-9. This

unit consisted of four concentric stainless steel tubes. The outer two

tubes carried a mixture of water and seam for cooling the probe. Steam

flowed through the third tube and then jetted into the reaction mixture

through twenty-eight 0.025 inch diameter holes. The quenched reaction

mixture then flowed down the probe and through the crossover. The probe

was sealed to the bottom of the reactor with a packing gland which contained

asbestos packing.

The agglomerator coil consisted of an eleven foot long coil of

3/8 inch diameter copper tubing. This insulated coil provided a residence

time of approximately 0.2 seconds. This time allowed the carbon black

to agglomerate before it contacted the filter.

After the coil, the carbon black laden stream flowed to the filter

s'hown in Figure H-5. This unit consisted of a two inch diameter by
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twelve inch long sintered stainless steel filter which was contained in

a four inch diameter steel pipe. The pipe was wrapped with a 340 watt

heating tape and insulated with asbestos tape. This combination maintained

filter temperature at approximately 3000 F. Filters with 5 and 40 micron

pore diameters were used, but the 40 micron filter gave better overall

performance. Flow through the reactor and quench system was maintained

by a Stokes Rotary Vacuum Pump attached to the exit of the filter.
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APPENDIX I

Disk Speed

Since disk speed was one of the most important variables in

determining drop size, it was necessary to accurately moniter the speed

of the disk. Initially, speed determinations were made by using the

calibrated sweep on the oscilloscope and then measuring the distance

between the peaks. Figure -1 shows how the distance between peaks

varied with disk speed. This technique proved to be very time consuming.

An audio-oscillator (Hewlett Packard Model 200C) was then added to

improve the system. Then when the frequency of the oscillator was

matched to the frequency of the voltage pulses from the phototube,

a stationary Lissajous-figure was displayed on the screen. In this case,

the Lissajous-figure was a straight line. Thus, if the oscillator

frequency was known, one could obtain directly the disk speed. In

addition, any variation of disk speed could easily be seen on the scope.

The final scheme for disk speed measurement is shown in Figure 1-2.

The key component in this system was the General Radio Model 1536-A

Photoelectric pick-off. This pick-off directed a beam of light to the

disk shaft. The shaft was completely black except for a small strip of

silver. The light was reflected from the strip, back to the phototube

in the pick-off, which in turn sent a voltage pulse through the flash

delay to the Tetronix 502 Dual Beam Oscilloscope. This pulse rate

was then matched to the signal from the oscillator. Figure 1-3 shows

how the speed of a 3 inch diameter disk varied as a function of the

voltage applied to the disk motor.
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Figure I-1
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APPENDIX J

Disk Housing Evolution

The disk housing was one of the most critical pieces of equipment.

It had to convey approximately 5 cc per minute of atomized oil to the

top of the furnace. Because of the complexity of this unit, a considerable

amount of effort was expended before the final design was reached. This

unit is by no means optimum, but it will deliver the desired volume of

drops. Figure J-l depicts the evolution of the atomizer housing.

Figure J-la was the design used initially for calibration of the disk.

This unit permitted just a small stream of drops to leave the housing.

After calibration, the involute shown in J-lb was constructed. It was

felt that the circular motion of the disk combined with the flow of the

sweep nitrogen would carry a substantial portion of the drops from the

housing. This was not the case. Several different positions of the sweep

gas inlet were investigated along with a wide range of nitrogen flows.

Over this range, drop production was essentially constant and amounted

to approximately 1% of the oil fed to the disk.

In order to make more effective use of gravity, the housing shown

in Figure J-lc was constructed. This unit was an improvement over its

prececessor, but production was still only a few percent of the atomized

drops. Close examination of the droplet stream showed that all sizes

of drops were rapidly moving to the vicinity of the housing wall. This

indicated that the gas mass in the housing was rapidly rotating and

therefore not slowing down the oil drops. Hence, a baffel was inserted,

as shown in Figure J-ld.

The baffel stopped gas rotation and increased production up to

1/4 to 1/3 of the atomized oil. The operation of this housing is still
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very complicated. The primary sweep gas enters as shown on Figure H-2,

the picture of the atomizer. This nozzle must be positioned very

accurately since a small movement causes a large decrease in droplet

production. It is also necessary to maintain constant pressure around

the disk through line C. A bleed flow enters at B, to prevent the

establishment of a low pressure area behind the baffel. Even with these

flows, drop production depends on disk feed rate and goes through a

sharp maximum at approximately 22 cc/min. of oil flowing to the disk.

Therefore, production rates are limited to around 6 cc/min.

The lips shown in Figure H-2 were added to prevent oil from dripping

into the furnace. Oil striking the baffel or wall runs into the lips

and then flows to a chilled container where it is collected. A liquid

seal is maintained at this point to prevent gas loss. The oil in this

vessel, subtracted from the amount fed to the disk, gave the total amount

of-oil fed to the reactor. A photograph of the final design of the

atomizer is shown on Figure J-2.
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APPENDIX K

Sample Calculations

1. Calculation of Particle Diameter

This calculation is included to illustrate the difficulty of

obtaining a precise value for the diameter.

Measured Diameter
D Measured Diameter conversion factor

Magnification

In all cases the magnification was 50,000.

For Run IV-l-1 measured diameter range: 0.22-0.27 cm.

Average diameter was determined by measuring as many particles as

possible: 0.25 cm.

D = 0.25 x 108

.5 x 10

D = 500 + 40 A

In many cases, such as Run IV-9-1 where the range of diameters was

220 to 1000 angstroms, the value for average diameter will be less

precise.

2. Calculation of the Number of Particles Ns

Ns = (Weight of carbon per gram of oil fed)(oil feed rate)

(gas flow rate) (weight of single particle)

For Run IV-l-l

Weight of carbon = 0.672 gram
gram of 0.1

Oil feed rate = = 0.083 grams

Gas flow rate = 7.06 x 102 cc/sec

Weight of a particle = 1/6 D3

= 1/6 3.14 (5 x 156)3 1.37

-16 -16= 1.2 x 10 + 0.1 x 10 grams
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(6.72 x 101)(8.3 x 10.2 )
Ns = - 2 - -16

(7.06 x 10 )(1.2 x 10 )

Ns = 6.58 x 1015 +.7 particles

3. Calculation of Chain Length

Chain length was determined by measuring the length of the

backbone, including side chains, of all discrete particles on an

electron micrograph (50,000x). This number was then divided by

the number of particles and the length converted to angstroms.

From Run IV-l-1

Length (Conversion Factor)
Chain(Number of Particles) (Magnification)

Chain length = () (50,000)

0

Chain length = 2670 A

4. Calculation of Activation Energy

dt = const(Ns) /3(C))2/3 X e dt 0.5

For 100 micron drops of Cosden Tar:

a, Data available at 2600 and 2900°F.

b. Ns calculated as shown in Appendix K-2.

dc
c. dwas obtained from a plot of concentration against time at

each temperature.

d- = 18.6 x 10-4 grams 2900°F
dt cc-sec

dc - grams= 3.39 x 104 grams 2600"Fcc-Sec
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d. X is mole fraction fuel.

X = 2.31 x 10-4 2900F

TO-4

= 2.42 x 10 4 2600°F
T.5

e. Plotted.

dc T 0 5 1

dt X Ns 1/3 C 2/3 vs T

f. Slope of the above line.

M -E

E = MR

= 25.3 x 1.98

E = 50.1 Kcal per mole

5. Calculation of the Apparent Activation Energy for Surface Growth
for Naphthalene

Growth rate of the particles was plotted against 1/T. The

growth rate was determined by the change in diameter (electron

micrographs) as a function of time.

The slope of the above line:

E

R

,E = (1.98)3.4

E = 6.8 Kcal per mole
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APPENDIX L

Location of Original Data

The experimental data from this program are contained in two note-

books and on sections of recorder paper. The only analytical data not

totally included in this thesis are the electron micrographs. All of

the above are in the possession of the author.
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APPENDIX M

Nomenclature

Conduction group

Correction constant for grey body absorbtivity

Radiation Group

Carbon black concentration

Absorptivity Group

Heat capacity of liquid drops

Disk diameter

Diffusion constant

Drop or particle diameter

Activation energy

Activation energy for nucleation

Activation energy for gas phase reaction

Activation energy for surface growth

Allowable stress

Kinetic constant for chain branching (Equation

Excess Free Energy of Critical Nucleus

Gravitational constant

Kinetic constant for chain termination (Equati

Geometrical factor for radical destruction (Eq

Heat of vaporization

Heat transfer coefficient for conduction

Heat transfer coefficient for radiation

Correction constant for gray body absorptivity

Boltzmans constant

Thermal conductivity of vaporized oil

Thermal conductivity of liquid oil

5-2)

on 5-2)

uation 5-2)

A

a

B

C

Cl

C

D

D

d

E

E
n

E
g

E
S

f

f

G*

9

9

go,

AH

h

hr

K

k

kg

kX
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L Latent heat of vaporization

m Mass

M Complex refractive index

N Concentration of fuel

Ns Number of carbon particles per unit volume

n Number of particles or nuclei

n Number of active centers
0o

n Refractive index

n' Absorption

R Gas constant

R Radius (Equation 5-11)

R, Original drop radius

r Disk radius

r* Critical radius

T Absolute temperature

T, Original oil temperature

T Equilibrium temperature

T, Gas temperature

TX Corrected gas temperature

t Time

X Mole fraction

Greek

O< Effectiveness Factor (Equation 5-11)

Dc- Absorptivity

~' Absorption Coefficient

6 Dimensionless temperature
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X Wave length

Jo Original number of particles

_ft Density

?p Liquid density

~6 Surface tension

-'J Time

LU Angular velocity
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