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Submitted to the Department of Applied Mathematics
on October 15, 1993, in partial fulfillment of the
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Doctor of Philosophy

Abstract. This work considers broad classes of polynomial maps which generalize
the exponential Bell polynomials. These maps correspond to various convolutions
(such as Hadamard and Cauchy convolutions) and have been extensively studied in
combinatorics, but relatively little in connection with probability theory.

It is shown that the exponential Bell Polynomials Y (xl, X2 , .. ) map the space of
moments M to itself, a property which is called MP. The inverse image of M under
(Yn) is the space KC of cumulants. By Hamburger's solution of the problem of moments,
it follows that if the the Hankel determinants of the x, are non-negative, then so are
those of the Yn. These latter determinants are independent of xi, a property which
is called HMI. This property is explored in some detail. Another application of
exponential Bell polynomials is the determination of all random measures which arise
from a compound Poisson process.

Next, the ordinary Bell polynomials B°(xl, x 2,...) are introduced and shown to
have properties MP and HMI. The exponential and ordinary Bell polynomials are
contained in a class C of polynomials introduced by Comtet in his book Advanced
Combinatorics. The polynomials Y, and B ° are characterized within C by having
property HMI. This characterization has application to the problem of why exponen-
tial and ordinary generating functions are so ubiquitous in combinatorics.

Multidimensional analogs of the class C are next investigated. Analogs of properties
MP and HMI are introduced and the above results are extended.

A detailed study is made of the polynomials Yn(x 1, x 2,... ) when xi = t for i _ a
(mod m) and xi = 0 otherwise. This leads to a two-parameter generalization of
Stirling and Touchard numbers. The combinatorial, probabilistic, and congruential
theory of these numbers is investigated.

It is shown that renewal theory and binomial posets give rise to polynomials in C.
The class G of polynomial maps arising from generalized compound Poisson processes
is studied. These maps have property MP, but have property HMI only for Y, which
is also the intersection of 5 with C.

Thesis Supervisor: Dan Kleitman
Title: Proffesor of Mathematics
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Introduction

In this work we consider a broad class of polynomial transformations which gener-
alize the exponential Bell polynomials. These transformations correspond to a variety
of convolutions (such as Hadamard and Cauchy) and have been extensively studied
in combinatorics (for example see Rota [31], or Comtet [10]), but relatively little in
connection with probability theory; and then usually for particular cases such as the
Stirling numbers of the second kind. See [6], [19], [26],[25],[34],[25],[32], and [7] as

examples.

This apparent gap is curious as convolutions play a fundamental role in probability
theory, and hence so do their associated polynomials; examples include sums of inde-
pendent identically distributed random variables, the renewal equation, cumulants,
and Hermite polynomials. Although this work concentrates more on using probability
to develop combinatorial concepts, we hope it will lead to further consideration of the
rich connection between combinatorics and probability beyond simple enumeration.

In this regard we find that the Bell polynomials have a natural place in the study of
the moments of a random variable. Indeed, in Chapter I of the thesis it is shown that
the exponential Bell polynomials Yn(x1 , x 2,. ), n > 1, map moment sequences to
moment sequences. This is demonstrated by giving two constructions involving sums
of iid random variables, first as the moments of a compound Poisson process and
secondly as a limit of a sum of iid random variables. The distribution with moments
Y,(xl,... ) might not be unique as the moments do not always determine a unique
distribution (see [33, p. viii]).

Using Hamburger's solution of the problem of moments, we find that if the Hankel
determinants of the x, are non-negative, so are the Hankel determinants of the Yn.
Surprisingly, these latter determinants are independent of xl (a property referred to
as Hankel mean-independence), which we explore further. At present, Hankel mean-
independence lacks a full explanation. We show that it can not be explained by
transformations on a random variable. Perhaps an interpretation can be found in
terms of cumulants, but more intriguing (as suggested by Stanley) is to interpret
Hankel mean-independence in terms of Schur functions.

Another application of exponential Bell polynomials is the determination of all
random measures which arise from a generalized compound Poisson process. It is
shown in Chapter I that in addition to the usual axioms for an independent, stationary
point process, a further divisibility property is required.

In Chapter II the ordinary Bell polynomials Bn(xl, x 2 ,.. ), n > 1 are introduced,
and their properties are studied. In particular it is shown that they also map mo-
ment sequences to moment sequences and are Hankel mean-independent. This is
accomplished by showing that their Hankel determinants are obtained from those of
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xl1, x 2, - by deleting the first row and column. Several mathematicians, including

Kaluza [20], Horn [18], and Ligget [23] previously considered related problems. Al-

though is is not always true that (xn) is a moment sequence if (BO) is, Horn's results

conclude that various shifts on the indicies of the sequences provide nescessary and

sufficient conditions. For example (xn+1) is a moment sequence if and only if (Bn+1 )

is.

It is natural to ask if there are other polynomial transformations which are Han-

kel mean-independent or moment sequence preserving. In Chapter III we investigate

this problem for the class of polynomials introduced by Comtet in his book Advanced

Combinatorics [10]. What Comtet called Bell polynomials with respect to a sequence

(Qn) will be referred to henceforth as Comtet polynomials. These constitute a broad

class of transformations which include both the exponential and ordinary Bell maps.

We prove that the only Hankel mean-independent Comtet polynomials are the expo-

nential and ordinary Bell polynomials. This characterization theorem has application

to the problem of why exponential and ordinary generating functions are so ubiquitous

in combinatorics.

In Chapter V, multidimensional analogs of the Comtet polynomials are investi-

gated; these of course include analogs of the exponential Bell polynomials. These

analogs are shown to be moment sequence preserving; in fact a moment sequence is

transformed by these polynomials into the moment sequence of a multidimensional

compound Poisson process.

Returning to the one dimensional case, we make a detailed study of the polynomials

T,;m,a(t) which result from the exponential Bell polynomials when xj is put equal

to t for j _ a (mod m) and zero otherwise. (These polynomials are are not of

binomial type for m > 1.) Let Xo,X 1,... ,Xm-_ be iid Poisson random variables

with parameter t, and let ¢ = e27ri/m be a primitive m'th root of unity. It is shown

that the moments of Z = (1/rn) E=01 CihXh are the polynomials Tn,;m,o(t). We find

that Tn;1,o(t) = 0n(t) are the exponential polynomials whose k'th coefficient is the

Stirling number S(n, k) of the second kind. This suggests a generalization of the

Stirling numbers by looking at the coefficients of Tn,m,a(t). These numbers apparently

have not been considered previously. Call these coefficients Sm,(n, k). It is shown

that Sm,a(n, k) can be interpreted as the number of partitions of an n-set into k

parts where each block has cardinality - a (mod m). Several new recurrences are

obtained by finding partial differential equations satisfied by the generating functions.

In the Touchard case where m = 2 and a = 0, it turns out that S2,o(n, k) = (2k -
1.)!!C(n, k), where the C(n, k) are the central factorial numbers. It is shown that when

rn > 2 there is no homogeneous linear recurrence analogous to the Stirling number

recurrence. Other topics include congruential properties of these new sequences, and

a generalization of Stirling numbers of the first kind.
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In Chapter III it is shown that a binomial poset P gives rise to Comtet polynomials

by introducing a stochastic process on P and defining an associated renewal sequence.

In particular the ordinary Bell polynomials arise from a chain, and the exponential

Bell polynomials arise from the Boolean algebra.

Chapter IV considers the compound polynomials; they are the moments of a com-

pound random variable Y (not necessarily Poisson) defined by a sequence (p,) which

gives the probability of adding n iid copies of a random variable X. These polyno-

mials are moment sequence preserving and are a modification of the exponential Bell

polynomials when expressed in terms of factorial moments, but they are not Comtet

polynomials. It is shown that they are Hankel mean-independent only in the case

of the exponential Bell polynomials (the compound Poisson case). This leads to a

further characterization theorem for exponential and ordinary generating functions

in terms of the Hankel mean-independence property.
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CHAPTER I

Exponential Bell polynomials

The exponential Bell polynomials constitute the most general sequence of binomial
type (or sequence of convolution polynomials in the terminology of Knuth [22]). They
are described in [10, p. 133] and [31, p. 118]. We will denote the n'th exponential
Bell polynomial by Y(x, x2, x3 ,...); the polynomials are formally defined as the
coefficients in the expansion

(1) G(z)= Yn(x, 2, X3, - = exp .= expF().n>0

One can obtain all sequences of binomial type from them by specializing the variables
xi; this follows from Lemma 1 below. Clearly F(z) and G(z) satisfy the formal
differential equation

G'(z) = F'(z).
G(z)

The exponential Bell polynomials occur naturally in a large number of applications;
see [10, p. 133] and [31] for a wealth of examples. Here we will discuss how they arise

in connection with cumulants, moments of sums of independent identically distributed
random variables, recurrent events on a Boolean lattice, and compound Poisson pro-
cesses.

11



1. Properties

For future use we list the first few exponential Bell polynomials:

Yo = 1

Y1
= X1

Y2 = 2 + X12

Y3 = X3 + 3 2x1 +

Y4 = x4 + 4 3 x1 + 3x + 6x 2 + 4

Y5 = x5 + 5x4xl + 10x3l 2 + 1 + 15xx 1 + 10x2x3 + x5

Y6 = 6 + 6 1 + 10X + 15X4X2 + 15 2+ 60X3X2 + 2154 603+ 20 3

+ 45X2X + 15X 2X + 15X4 6

We note that the map (l,x 2 ,...)

space R'. Each term of degree k in

tion of n into exactly k parts, say n

n!/(cI!C2! ... cn!1!c12!2 ... n!Cn). Thus:

PROPOSITION 1.

(Y1, Y2,...) is a bijection of the sequence

Yn has factors xi whose indices form a parti-
= cl + 2c2 + 3c3 + .-. + ncn, with coefficient

Zn

EYn =
n>O

xC1 xC2 ... x C1 +C2+ Cn

Cl.C2....Cn> Cl!C2! ... Cn !! cl2!C2 . n!cn

See [10, p. 134] for proof.

A fundamental property of exponential Bell polynomials is the following convolu-
tional relation:

PROPOSITION 2.

Yn(xI + Y1, X2 + y2 * ) = (a Yi(X1 X2. .)Yn-i(Y1, y2 , )
Y,(zl~y,, szPROOFY2,= .i=O

PROOF.

Zn

2 Y2,( + Y1, 2 + 2 , + Yn) = exp
n>O n

( (m + Ym) l)M>1~ ,
= exp Em .+ E Ym = exp xm m exp E Ym)

m~l zm m m! ml m) ml m!

(Z m\ ~m
= z iE (i yi(l, X2,.. Yn-i(Yl 2, ).

n>O i=O
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We will often want to consider the t-Bell polynomials Y,(t) = Yn(txl, tx 2 ,... , tn)
with a fixed sequence (xl, x2,... ) as a function of the single variable t. Of particular
importance are the non-negative t-Bell polynomials defined as follows:

DEFINITION 1. Yn(t) is non-negative if Yn(t) > 0 for all t > 0.

Non-negativity of Yn(t) for all n is easily characterized as follows:

PROPOSITION 3. Yn(t) is non-negative for all n if and only if xi > 0 for all i.

PROOF. If xi > 0 for all i, then Yn(txl, tx 2 ,..., txn) > 0 when t > 0 because Y,(t)

has non-negative coefficients. To prove the converse, note that

Y(txl, tx 2, . , tn) = t + O(t2) as t -- 0. Hence if Yn(t) > 0 for all t > 0, it follows
that xn > 0. Note that xn is the only new variable which appears in Y"(t). Proceeding
by induction on n, we have xi > 0 for all i. []

The concept of a sequence of binomial type is introduced in [31] and is defined as
follows:

DEFINITION 2. A sequence of polynomials p(t) is of binomial type if degpn(t) = n
and

pn(U + V) =a ()Pku(U)Pn(V)

It is proved in [31, p. 162] that the exponential generating function for a sequence
(pl(t), p2(t),... ) of binomial type has the following form:

LEMMA 1.

p(t)T = exp t E az m .
n>O ' m>l

From this it is clear that pn(t) = Yn(l!ta, 2!ta2,... .,n!ta,).
We now refine the exponential Bell polynomials as follows. Note that

Zn M ZM

n>mO k mm!

This suggests the following notion of partial exponential Bell polynomials:

DEFINITION 3. The partial exponential Bell polynomials Yn,k are defined by

(2) Ynk ± = ( m ) Z )

13



We recover what can now be called the complete exponential Bell polynomials by
n

n = Yn,k, Yo = 1.
k=l

This follows the approach of Comtet [10, p. 133]. We can think of the partial
exponential Bell polynomials as a generalization of Stirling polynomials. It is easy to
see that the choices x, = 1 and x, = (-l)n-l(n - 1)! respectively produce S(n, k)
and s(n, k), the Stirling numbers of the second and first kind.

2. Moments and cumulants

Let X be a random variable on R C R with probability distribution function P(z).
The n 'th moment of X is

A = E[Xn] = J dP(z).

We define the moment sequence of X to be (n)>l (thus ignoring the zero'th moment
0 = 1), and denote the set of all moment sequences by M. Consider the Laplace

transform

+(s) = E[e--' = x e-Z dP(z),

It is easily seen that

0(-z) = 1 + E ,zn/n!
n>l

is the exponential generating function of the moment sequence. The cumulant se-
quence (n)n>l is defined by

Zn

log 4(-z) = k(z) = n!
n>l

Thus q(-z) = exp(Ob(z)) and

(3) 1 + pn(, in 2, the a=t exp m t

Hence n is the n'th Bell polynomial in the n'th Bell polynomial ine cumulants. We define to be the set
of all cumulant sequences (n)n>l. (Note that in defining we do not include the
zero'th cumulant o = 0, just as in defining M we did not include the zero'th moment
ito = 1.) It follows from equation (3) that AC is the inverse image of M under the
exponential Bell map.

Until further notice, we will only consider random variables defined on the entire
real line (-oo, oc). In this case we can find necessary and sufficient conditions for
a given sequence (n) to be a cumulant sequence using the classical solution of the
moment problem. A proof of the following theorem can be found in [33].

14



HAMBURGER'S THEOREM. A sequence (p,) is a moment sequence if and only if
A = det[ui+j],nj=o > 0 for all n > 0.

COROLLARY 1. M is closed in the weak topology of the sequence space R °°.

COROLLARY 2. A sequence (n) is a cumulant sequence if and only if

fn = det[Yi+j(cl, K2 , 3 .. )]inj=O > for all n > 0.

The problem of cumulants (i.e. when a given sequence is the cumulant sequence of
some distribution) is the problem of characterizing C.

OPEN PROBLEM 1. Are there more simple necessary and sufficient conditions than
those of Corollary 2 which characterize cumulant sequences? What about just neces-
sity or sufficiency?

One might be tempted to conjecture that cumulant sequences are characterized
by some analog of the Hamburger conditions, such as det[Kci+j+l]nj=0 > 0 or per-
haps det[Ki+j]?,j=l > 0. However, neither of these conditions is either necessary or
sufficient. For det[Ki+j+l],j=0o, consider the normal distribution with mean m and
standard deviation a2 . The cumulants are Il = m, 2 = o2 , I, = 0, for n > 3. We
have

m o 2

det[tq+j+l] -1 < ,,J=0= a2 0

contradicting necessity. On the other hand if ins = -1 for all n > 1, then det[Ki+j+l],j=o =
0 for all n. But

det[i+j+l] ,j=O-1 0 -1

which contradicts sufficiency.

The question of whether cumulant sequences are characterized by D, = det[Kci+j]j=1 >
0 is not so easily dispensed with. Consider the sequence

(Kln)n>l = (0,1,1,1,1,0,0,...).

We have

D1 = 1
D2 =0
D3 = 0

D4 = 1
Dn = 0 for n > 5,

15



where the last entry follows from the appearance of a row of all zeros in the determi-
nant Dn. Now

(Y,),>o = (1,0, 1, 1,4, 11,40,161,686,3304, 16716,91630,531916,...),

so if 6n = det[Yi+j(l1, K2,... )]j=o, then

60 = 1

61 = 1

62 = 2

63 = 10

64 = -523

65 = -1113510.

In particular (Y,),>l is a moment sequence, so (n)n>l1 is not a cumulant sequence,
contradicting sufficiency. The condition D, > 0 is also not necessary, although it
holds for many standard distributions. The binomial distribution ()pkq-k, for which
D2 = -2n 2p3 q3 , is a counterexample, but surprisingly the only one among the familiar
discrete distributions.

To state one of the main probabilistic features of the exponential Bell polynomials,
we introduce the following definition:

DEFINITION 4. Let (Pn(Xl, X 2,.. )) be a sequence of polynomials. If s, = det[Pi+3],j=o
is independent of xl, we say that (p,) is Hankel mean-independent.

THEOREM 1. The sequence (Y,(xl,x 2,...)) is Hankel mean-independent.

PROOF. Using Proposition 2 we have

Y(Xl, X2 * * * (= E ()Y(x0 *)Yn-i(X2*

- Z (i) ( Yn-i (°X2v***)-
Inverting the last equation gives

(4) Yn(O, X2 ) = () (-xl) n-i(XX2, )-

Consider the n x n matrix A = [aij], where a,j is the j'th term in the expansion of
(1 - xl)i, that is aij = ()(-xl) i - j for i > j and aij = 0 for i < j. Note that A is
lower triangular with ai,i = 1 for all i. Thus det A = 1, so multiplication by A or AT
does not change the value of det[Yi+j]. Premultiplication of [Y+j] by A replaces row

Ri by Ej= () (-xl)jRj. Post-multiplication by AT operates in the same way on the

16



columns. Note that the i,j entry of A-l is ai,j[ (the j'th term in the expansion of
(1 + x1)'). It follows easily that A[Yi+j]AT = [ci+j], where

cij= h (-x) Y+j-h
h=O

By equation (4) we have ci,j = Y+j(0, x2 ,...), which is independent of xl. 

COROLLARY 3. If (K),>l is a cumulant sequence, then for any constant c, (c, ;2, K3,... )
is a cumulant sequence.

From the proof of Theorem 1 we have

COROLLARY 4. The i,j minor Mi,j of [Yi+j(x,x 2,. ..)] for 0 i,j n is a
polynomial of degree 2n - i - j in the variable xl.

Corollary 3 and (3) show that every moment sequence gives rise to a one-parameter
family of cumulant sequences, which are in general not moment sequences. We will
see later that if (x,) is a moment sequence, then (Y,) is also one. Thus K: properly
contains M.

The cumulants are called semi-invariants due to the following property, which gives
a probabilistic explanation of Corollary 3.

PROPOSITION 4. If ( 1, K2 , iC3 ,... ) is the cumulant sequence of a random variable
X, then (K + C, K2 , R3, . ) is the cumulant sequence of the translated random variable
X + c, for any constant c.

PROOF. Consider E[eZX] = E>o0 ,zn/n!, the exponential moment generating
function of X. Making use of (3) we get

E[e(X+] exp (zc + -- ) =exp (c + 1)z + n ,

Hence the cumulants ;n~ for X and X + c are the same for n 4 1. 

As already noted, the cumulant space K is the inverse image of the moment space M
under the exponential Bell map. Here is a list of the first few cumulants:

K1 = 

K2 = P2- 1

KE3 = /3-311/2 +2/1

/K4 = /14 - 4113 - 3 2 + 12.122 - 64
: 5 = - 5114 - 10Y123 + 20-213 + 31-Otit2 - 60t 2 + 2415

One might be tempted to suppose that Hankel mean-independence of the exponential
Bell map should follow from Proposition 4. This, however, is not the case. For one
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thing, Theorem 1 is valid for sequences (xn), not just moment sequences. Moreover,
the diagonal but non-principal minors of n, are not independent of xl.

3. Sums of independent random variables

In this section we will show that if (n) is a moment sequence, then (Yn) is also a
moment sequence. This leads to the concept of a moment sequence preserving map,
defined formally as follows:

DEFINITION 5. A map (n) - (Yn) is called moment sequence preserving if
(xn) E M implies that (y,) E M.

For simplicity we will also refer to moment sequence preserving maps as M-
preserving. Such maps are plentiful. For example, given any random variable X
and a real function f(t), we obtain a new random variable Y = f(X), and thus f
induces an M-preserving map which sends E[X n] to E[Yn] (note that we are doing
the reverse of the moment problem here). We will show in two ways that if (xn) is
the moment sequence of a random variable X, then (Yn(xl,x 2 ,...)) is the moment
sequence of a random variable Y. On the one hand, Y can be obtained as the limit of
a sum of independent identically distributed random variables, and secondly, Y can
be obtained as a compound Poisson random variable. Either way we conclude that
the map (n) - (Yn) is M-preserving. The following lemma is not only of technical
use, but also leads to many interesting questions regarding M-preserving maps.

LEMMA 2. If (an)n>l E M, then (pan)n>l E M for all p E [0, 1].

PROOF. Let X be a random variable with moment sequence (an). If Eo is the
random variable that is always zero, then Z = pX + (1 - p)Eo is a random variable
with moments p0 = 1 and u,n = pan for n > 1. This new variable Z is called a convex
mixture of X and E0.

THEOREM 2. If X is a random variable with E[Xn] = xn, there exists a random
variable Z = Z(p) such that E[(Z1 + Z2 + ... + Zm)n] -- Yn(txl, tx 2,...) = Yn(t)
as m --+ oo,p - 0, mp --+ t, where Z1, Z2,... are independent identically distributed
copies of Z.

PROOF. By Lemma 2, for any p E [0, 1] there is a random variable Z = Z(p) such
that E[Zn] = pxn for all n > 1. Let Z1, Z 2,... be independent identically distributed
iid copies of Z. Now

E[(Z1 + Z2 + '. + Zm)n] = 2s i. .·EZZ ]
il +i2 +...=M. .a

18



By independence of the Zi, this gives

cl+ 2 c+...+ncn=n k c1,c2,. 1! 2!)
where k = cl + c 2 + + c,. Now let m + oo and p - 0O in such a way that mp -- t.
Since (;)mk! as mk m o with k fixed, we have

n!(mp)kx1 x 2
E[(Zl-JF Z2-+-...-JF Zm)n] 1 2 -4 Y(tx1, t2,...).

(ci2c2 +*+nc· =m cl!c2! . . (1!)c1(2!)c2 . .

By weak closure of M, it follows that (Yn(t)) E M.

Theorem 2 is analogous to the derivation of the Poisson distribution as a limit
of the binomial distribution, except that instead of operating with probabilities, we
transform the moment sequence of X into another moment sequence via a similar
limit process.

The second probabilistic interpretation of these polynomials involves compounding
the random variable X, as the next theorem demonstrates.

DEFINITION 6. Given copies Xl,X 2 ,... of a random variable X, the compound

Poisson random variable SN(X,t) is defined by SN(X,t) = E=~lXk, where N is
Poisson distributed with parameter t.

THEOREM 3. If X is a random variable with E[Xn] = xn, then Yn(tXl,tx 2,...)
are the moments of the compound Poisson variable SN(X, t).

PROOF. Let F(z) = 1 + En>1 xnzn/n! = E[ezX] be the exponential moment gener-
ating function of X. Put Sm = X1 + * + Xm, where the Xi are iid copies of X. Now
E[eSN(xt)lN = m] = E[ezsm(xt)], which by independence is (E[ezx])n = F(z)n. The
exponential moment generating function for SN(X, t) is

E[ezSN(Xt)] = P(N = m)E[eZSNIN = m] = Z e-ttF()mlF
m>O m>O m - e

= exp (t xnzm ) ) Yn(t) n!
M>1 n>O

Theorems 2 and 3 both show that the map (xn) - (Yn) is M-preserving. In other
words:

COROLLARY 5. If A, > 0, then S > 0.

19



However, the converse is false because of the Hankel mean-independence of (Y ). In-
deed, suppose we are given a moment sequence (Y). By Hankel mean-independence,
(Yn) is a moment sequence regardless of the value of xl. But A, is highly dependent
on xl for n > 1, so An can be negative for n > 1. For example, consider x1 = c, x, = 0
for n > 1. We have linear dependence of the rows of (Yi+j)'j=0, for n > 1, so ,n = 0
for all such n, but A1 = -c2 . Thus () is not a moment sequence for c 0.

4. Circular processes and partitions of an n-set

In this section we consider a class of random variables we call circular processes.
We introduce these processes with two classical examples, the Poisson process and the
excess of one Poisson process over another. As an application we will derive Dobinski's
formula for the Bell numbers Bn and Touchard's formula for the Touchard numbers
Tn. The methods presented easily extend and give rise to a generalization of the
Stirling numbers of the second kind. These numbers have remarkable combinatorial
and probabilistic properties which we explore in detail. This section expands on work
of Touchard [38],[39], Bell [4], Hanlon et.al. [1], Rota [28], Riordan [27], and others.

The following lemma will be useful:

LEMMA 3. For a random variable X on R, define the umbral variable 3 by o/

E[Xn]. Then if f(y) = ao+aly+. .+amym is any real polynomial, we have f(y+P) 
E[f(y + X)].

PROOF.

k k-iok m k k-i I kXf(y + /) = E Ey ( ) akyk- ik i J k dPr(x)
k-O i=O k=Oi=O

JR mE k( ak Z y xk dPr(x)= ak(y + x)k dPr(x)
k=O i=O k=O

= f (y + x) dPr(x) = E[f(y + X)]

Consider a random variable X, Poisson distributed with parameter t, and a polyno-
mial f(y). By Lemma 3,

f(y + ) - E[f(y + X)] = f(y + i)Pr(X = i) = t ( i )t
i>O i>O

For y = 0 and f(x) = xn we get

1 int i(5)on / i
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Dividing by n! and summing over n > 0, we obtain the exponential generating func-
tion of the polynomials (/n(t) = Yn(t, t,... ) (the exponential polynomials):

E _n(t) et(ez-1)

n>O

Since the Bell numbers satisfy Bn = ,$n(1), we obtain Dobinski's formula (see [28] and
[39]) by putting t = 1 in (5). In terms of exponential Bell polynomials, /3n -. >n(t).

Hence the total number of partitions of an n-set is the n'th moment of a Poisson
random variable (see also [39, p.316]. Here are the first few values of Bn and 4n(t)

(Bn) = (1,1,2,5,15,52,203,...)

0o(t) = 1
l(t) = t

2(t) = t+ t2

q3(t) = t+3t2 +t3

4(t) = t + 7t2 + 6t3 + t 4

gs5(t) = t + 15t2 + 25t3 + 10t4 + t5

q$6(t) = t + 31t2 + 90t3 + 65t4 + 15 t5 + t6

Next, let X and Y be iid Poisson variables with parameter t. Consider the excess
Z = Y - X of Y over X. We will show that E[Zn] is a polynomial T(t) with
Tn(1) = Tn, the n'th Touchard number. This extends the formula which expresses
Touchard numbers in terms of Bell numbers, namely (1 - 2)n - T, where pl, P2 are
distinct umbral variables with Pjn, #2n - Bn (see [39, p.309]). Define a new umbral

variable '- by 7/ -* E[Zn]. Now

Pr(Z=i)=Pr(Y-X=i)= Pr(Y = k)Pr(X1 (j)= t
k-j=i k-j=i Pi'
k,j>3 k,j>O

so by Lemma 3 we have

f(x+-y) E[f(y+Z)] = 1 (t)f(yr(Z=i)= E k - j)Z f~y~i)Pr-Zoo i) k!j!i=-00 =-00oo k-j=i
k,j>o

For f(x) = xn and y = 0 we obtain Touchard's formula ([39, p.317]):

e oo (k-jt *k j
i=-oo k-j=i

k,j>o

The Touchard polynomials can also be defined by T (t) = Y(0, 2t, 0, 2t,...) (or by
orthogonality to ,n(t) as described in [39, p.313]). From this we can obtain the
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exponential generating function

E Tn(t)z n et(ez+e-z-2)

n> n!

Here are the first few values of T. and T,(t) :

Tn

To(t)

T2(t)

T3(t)

T4(t)

T5 (t)

T6 (t)

T7(t)

T(t)

T(t)
T 1 0o(t)

= (1,0,2,0,4,0,14,0,182,0,4,0,14,0,182,0,3614,0,...)

= 1

= 0

= 2t

= 2t + 12t2

= 0
= 2t + 60t2 + 120t3

= 0
= 2t + 252t2 + 1680t3 + 1680t4

= 0
= 2x + 1020t2 + 17640t3 + 50400t4 + 30240t5

Note that unlike ((t)), the sequence (Tn(t)) is not a sequence of binomial type,
since it violates the requirement that the n'th polynomial must have degree n. The
Touchard polynomials will be said to have support 0 (mod 2).

Combinatorially it is better to consider the semi-reduced Touchard numbers T =

T'(1), where T(t) = Y,(O,t,O,t,...) is obtained by replacing t by t/2 in the above
formulas. It is clear from the construction of the exponential Bell polynomials that
T* is the total number of ways to partition an n-set into blocks of even cardinality.
The random variable whose moments are T*(t) is Z = (Y - X)/2; we call this a
circular process of order 2. The generating function of (T,7(t)) is

Tn (t)Z
n>O n!

22

_ t(coshz-1)e



The first few values of T* and T,*(t) are as follows:

Tn = (1,0,1,0,4,0,31,0,379,0,6556,0,...)

To(t) = 1

T(t) = 0

T2(t) = t

T3(t) = 0

T4 (t) = t + 3t2

T5(t) = 0

T*(t) = t+15t 2 +15t3

T7(t) = O

T8 (t) = t + 63t2 + 210t3 + 105t4

T;(t) = 0

T1(t ) = t + 255t2 + 2205t3 + 3150t4 + 945t5

By generalizing the above techniques we can construct polynomial sequences which

have support a mod m by considering Tn;m,,(t) = Y(xlt, 2t, x 3t, ... ) where xi = 1
for i -a (mod m) and xi = 0 otherwise. If a 0 (mod m), we call the T;m,o(t)
the circular polynomials of order m. To each (m, a) there corresponds a Dobinski-

type formula, and when a - 0 (mod m) we get the processes defined as follows. Let

Xo, X 1, X 2 ,.X. X,-i be iid Poisson variables with parameter t and ( = e27i/m a
primitive m'th root of unity. The circular process of order m is the random variable

Z = (1/rm) j=OlXXj. We have E[Z-] = T,;m,o(t), with exponential generating
function

,;M(t)=exp (m e - .

Note that (1m-1 n

mE T n;m,o(1)

where o,... ., f,m- are distinct umbral variables with /n -? Bn.

As an example we consider Tn,3,0. In this case we have

( _ e27ri/3 1 + iv
2

and the Dobinski-type formula is

T;3,() e= IE EZ Z (io + il + 2i2)n
e >oil>oi2>O i!il!i 2!3io+il+i2
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Here are the first few values of Tn;3,0(1) and Tn;3,o(t) 

Tn;3,0(1) = (1,0,0,1,0,0,11,0,0,365,0,0,25323,0,0,3068521,0,0,583027547,...)

TO;3 ,0(t) = 1

Tl; 3,0(t) = 0

T2;3,0(t) = 0

T3;3,0(t) = t

T4;3,0(t) = 0

T5 ;3,0(t) = 0

T6;3,0(t) = t + O1t2

T 7;3,0(t) = 0

Ts8;3 ,0(t) = 0

T9;3,0(t) = t + 84t2 + 280t3

T0o;3 ,0(t) = 0

Tii; 3,0(t) = 0

T12;3,0(t) = t + 682t2 + 9240t3 + 15400t4

The circular polynomials for m > 3 appear not to have been considered previously.

They have many combinatorial and algebraic properties analogous to those of the
exponential and Touchard polynomials. Just as we can define the Stirling number

S(n, k) of the second kind as the coefficient of tk in the polynomial q,(t), we can
similarly define generalized Stirling numbers Sm,,(n, k) of the second kind. We can

express them using the partial exponential Bell polynomials Yn,k defined earlier. Re-

call that S(n, k) = Yn,k(1, 1, 1,... ). In general, Sm,a(n, k) = Yn,k(l, X2, x 3,... ) where
x = 1 for i a (mod m) and xi = 0 otherwise. Clearly Sm,a(n, k) is equal to the
number of partitions of an n-set into k non-empty subsets with cardinalities a

(mod m). Note that Sm,a(n, k) = Sm,b(n, k) if a - b (mod m). Let ( = e2,i/m and

define

ex + e + ... + eCm-lX-
gm,a(X)= -1m

when a 0 (mod m), and

eX + (-aCx +... + (-a(m-1)eCm-lx
gm,a(x) = 

when a ~ 0 (mod m). We have

Sm,a(n, k) = k! d a(X)
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Let Bm,a(n) = Tn;,a(l) the total number of partitions of an n-set into subsets each
of size congruent to a (mod m). Thus

Z Sm,a(n, k) = Bm,a(n).
k>O

In particular the Bell numbers and semi-reduced Touchard numbers are given by

Bn = Bi,o(n) and Tn* = B2,o(n). Now

gm,o(X)k = E (- j .. i ) exp(x(io + (il + ' -+ m - 1))

io+"'-+im-1 +j=k io, ...i j1 m-
and similarly for gm,a(X)k. Hence for a 0 (mod m) the general Dobinski-type for-
mula is

(-1)(io + (i' + Y + -(mlim-1)n
io>0 ii>0 im-,_>o j>o i-0 m-ilj!mio+i2+ +im-

Carrying out the summation over j, we get

BI, 0 (1) = - ... ~ (io + Ci2 + .. + m-lim-1l)n

io >0 iml>OJ>O io!il! * ilj!io+i2+ +im1

For the classical Stirling numbers S(n, k) = Sl,o(n, k), the generating function

n yglo() y(e)(6) F(x,y)= E S(n,k) Xy =ke Y _=Y(e-)

n,k>O

satisfies the partial differential equation

(7) F = y(Fy + F).

Substituting the power series (6) into (7) and equating coefficients gives the well-
known recurrence formula

(8) S(n, k) = kS(n- 1, k) + S(n- 1, k - 1).

Similarly, the generating function for the semi-reduced Touchard numbers T*(n, k) =

S 2,0(n, k) is

(9) F(x, y)= T*(n, k) ' = = ey(coshx1)
n,k>O

This satisfies the partial differential equation

(10) Fx = y(F + F) + y2(FY + 2Fy).

Substituting the power series (9) into (10) gives the recurrence

(11) T*(n, k) = k2T*(n - 2, k) + (2k - )T*(n - 2, k - 1) for n > 4.

This formula yields some alternative combinatorial interpretations for T*(n, k). For

example, the number of partitions of {1, 2,... , n} (n even) into k blocks where 2i

25



and 2i - 1 are not both minimum elements of blocks satisfies the recurrence (11).
For instance the partitions when n = 4 and k = 2 are (12)(34), (123)(4), (124)(3). We
pose the following two related problems:

OPEN PROBLEM 2. For n even, find an explicit bijection between the partitions of
{1,2,... ,n} into k parts whose blocks have even cardinality, and partitions into k
parts where no two blocks have 2i and 2i - 1 as minimum elements.

OPEN PROBLEM 3. Find a combinatorial proof that T*(n, k) satisfies the recur-
rence (11).

For reasons to appear later, the semi-reduced Touchard number T*(n, k) is divisible

by 1 · 3 . 5 ... (2k - 1). We introduce the reduced Touchard numbers

S2,0(n, k)= T**(n, k) T(n k( -1)1 3 .5 ... (2k -1)

The recurrence (11) easily yields

(12) T**(n, k) = k2T**(n - 2, k) + T**(n - 2, k - 1) for n > 4.

From this recurrence and the initial values of T**(n, k), we find that the reduced
Touchard numbers are equal to the central factorial numbers discussed in [37, p.96]
(except we must remove the zero's from our sequence; that is, consider T**(2n, k)).

Associated with T*(n, k) are what we will call the sinh numbers. As T*(n, k) enu-

merates partitions of an n-set into k parts with even cardinality, S2,1(n, k) enumerates
partitions of an n-set into k parts with odd cardinality. The generating function

xnyk
F(x,y) = C S2,(n,k) = eYg2,1() - eysinh

n,k>O

satisfies the partial differential equation

(13) F~ = yFy + y2(Fyy + F).

This leads to in the recurrence

S2,l(n, k) = k2S2,i(n - 2, k) + S2 ,1(n - 2, k - 2) for n > 4.

It seems reasonable that there might exist linear recurrences like (8) and (11), for
all values of m. After all, Sm,a(n, k) has a combinatorial interpretation analogous to
those of S(n, k) and T*(n, k). However, we show in the next theorem that there are
no recurrences of the form (8) and (11) for m > 3. This will later be strengthened by
Theorem 6.
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THEOREM 4. If m > 3, then F(x, y) = eygm,O(x) does not satisfy a partial differential
equation of the form

(14)

amF(x, (y)Fy) OF(x, y) &2F(x, y) P(Y) mF( y )
mF x') =po(y)F -pi(y) y + p2(y) Oy2ax m O0 y + 2() 92 9ym

where the pt(y) are polynomials of degree < m.

PROOF. Suppose on the contrary that an equation of the form (14) holds. Note
that

anF(x'y) anF xy)a('y) = (gm,o(x))fnF(x,y) and F(xy) = Y,(yf',yf", yf',. )F(x, y).

Equating coefficients of ym in (14) yields

(15) (gm (x))m = a + algm,o(x) + a2 gm,o() 2 + - + amgm,o(x)m

for constants ao, al, a2 ,... , am. When m > 2, gmo(O) = 0 and thus a = 0. Now

- ex + eC + (2e2 . . . + Cm-leCm-l
gm, 0() =m

Equating the coefficients of emn on both sides of (15) gives

1 am

mm mm

so am = 1. Now we equate the coefficients of the term e(m- l+C)x. For m > 3 we have
±( + i1, so this term occurs only once on each side of equation (15), and we get

m mam
mm mm

This yields ¢ = 1, a contradiction. 

In what follows, the term "recurrence" means "homogeneous linear recurrence". We
now show that there is a recurrence in n for Sm,a(n, k) when m, a and k are fixed. We
will also obtain a practical method for computing such recurrences and gain further
insight as to why a recurrence in n of fixed order does not exist for m 3.

THEOREM 5. For fixed k there are constants bl, b2,... , bd and such that

d

Sm,a(n, k) + bim,a(n - i, k) .O.
i=1

PROOF. It is clear that

(16) dm gma(x) - ma(x) + aO
dxm
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For a 0 (mod m), let Cm,a(k) be the set of all sums of k terms from the set

{1, ,... ,(m-I}, and let Cm,o(k) be the set of all sums of k terms from the set
{0, 1, , . , m-1 }. For example,

C3,0o(2) = {0, 1, 2, C, 2, (2, 2( 2, 1+(, 1+2, (+( 2} = {0, 1, 2, (, 2(, 2(,2 -(2, - (, _-1}.

For k fixed we have

gm,(X) k _ { ((e + eX +... + eCM-/m) - 1) k / k! if a -0 (mod m),
k! - (ex + C-aex +... + C-(a(m-)emlx/mn)k k! if a ¢ 0 (mod m),

so gm,a(x)k is a linear combination of exponentials e where c E Cm,a(k). Since

dn ecx

dxn lo=0

it follows that Sm,a(n, k) is a linear combination of terms cn, where c C Cm,a(k). Hence

Sm,a(n, k), considered as a function of n (with k fixed) satisfies the linear homogeneous
recurrence whose characteristic polynomial is

Pk;m,a(X) = II ( - c).
cECma(k)

In other words, if bi is as the coefficient of x d- i in the polynomial Pk;,a,(x) of degree
d = Cm,a(k)I, we have

d

E biSma(n-i, k) _ 0
i=O

as the desired recurrence. O

PROPOSITION 5. The absolute values of the non-zero coefficients bi of the charac-
teristic polynomial Pk;m,a (x) are unimodal for m < 2 and non-unimodal for m = 3.

PROOF. It is easily seen that if 0 ¢ Cm,a(k), then bi = 0 unless mi. Moreover,

e

Pk;m,a(X) = IJ (x - c) = Z(-1)eej(rl,2, .. ,rd)x mj,
cECm,a(k) j=o

where = d/m, where rl,... ,re are the distinct m'th powers of the elements of
Cm,a(k), and e(ri, r2, ... , re) is the i'th elementary symmetric function.

On the other hand if 0 Cm,,,(k), then bi = 0 unless i _ 1 (mod m), and

e

Pk;m,a(X) = (-1l)jee-j(rl r2, . . . ,r)xm+l
j=o

where = (d - 1)/m. If m < 2, then rl,r 2,... are non-negative and hence the
following well known inequality holds (see [30]):

ei-l/ei-2 ei/ei-l

28



This implies that the sequence eo, e,... , ed is logarithmically concave and therefore
unimodal. When m = 3, we note that

P2;3,0(x) = 8 -x 4 -8x 7 + x10,

so the absolute values of the non-zero coefficients P2 ;3,0(x) are not unimodal. 

CONJECTURE 1. The absolute values of the non-zero coefficients bi of Pk;m,a(X) are
monotone increasing for m > 4

It is interesting to note that for m = 3,4,6, the set Uk 0 Cm,a(k) is a lattice in
the complex plane. The cases m = 1,2 are degenerate, and for m = 5 and m > 6,

U 0=o Cm,a (k) is everywhere dense. In general the convex hull of C,0(k) is a regular
m-gon. Because Cm,o(k- 1) C Cm,o(k), it is clear that Pk_l;m,o(X) divides Pk;m,o(X). If

ICm,o(k) - Cm,o(k - 1)1 is bounded, it is conceivable that there might be a recurrence
in (n, k) for Sm,O(n, k) of fixed order in n, with coefficients depending on k as in

equations (8), (11). To be specific, consider m = 2 (the Touchard case). Here we

have C2,0 (k) = {-k, -k+ 1,... I k- 1, k}, which gives the characteristic polynomials

x(X2 - 1), x(x2 - 1)(x2 - 4), ( 2 - 1)( 2 - 4)( 2 - 9).

These yield the recurrences

S 2,o(n, 1) = S 2 ,o(n - 1,1 ), n > 2
S2,o(n, 2) = 5S2,o(n - 1,2) - 4S2,o(n - 2,2), n > 3

S 2,o(n, 3) = 14S 2,o(n - 1, 3) - 49S 2 ,o(n - 2, 3) + 36S 2,o(n - 3, 3), n > 4,

The orders of these recurrences increase with k, in contrast with (8) and (11).
The sinh numbers satisfy the same recurrence as the semi-reduced Touchard num-

bers. However these are in general not minimal. Indeed for k = 1,2,3,... the
polynomials Pk;2,1(x) are

x(x 2 - 1), x(x2 - 4), x(x2 - 1)(x2 -9),...

which yield the recurrences

S2,1(n, 1) = S 2,o(n - 2,1), n > 2,

S2, (n,2) = 4S2,0(n - 2,2), n > 3,

S2,1(n, 3) = 10S2,o(n - 2,3) - 9S2,o(n - 4,3), n > 4,

For k > 2, these are of smaller order than the recurrences for S2,o(n, k). Note that
the k'th polynomial does not divide the (k + 1)'th. Although the orders of these
recurrences increase with k, there is still the recurrence (13) of fixed order in n.
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THEOREM 6. For m > 3 there is no non-trivial recurrence in (n, k) for Sm,a(n, k)

of fixed order in n with coefficients depending on k.

PROOF. If such a recurrence did exist, then

A k

gij(k)Sm,a(n -i kj) = 0
i=O j=o

where A is a constant and gij(k) is a function of k. Separating out the terms in

(S,a(n - i, k) gives

A A k

(17) Z- gio(k)Sm,a(n-i,k) = - -giij(k)Sm,a(n-i,k-j)
i=O i=0 j=1

Note that the homogeneous linear difference equation associated with the left hand

side of (17) is

A

(18) Egio(k)Sm,a(n - i,k) = 0.
i=o

For fixed k this has constant coefficients and finite order A in n; its solution in the

complementary function of (17). According to the classical theory of linear difference

equations, (17) has a particular solution which is a linear combination of exponentials

e" with c Uo Cm,a,(j) and coefficients which are polynomials in n. The general

solution is the sum of this solution and the complementary function. This contradicts
the fact that for m > 3, we have ICm,(k)\ Uk.o Cm,a(j)l > mk > A for sufficiently

large k. 

As an example of recurrences for Sm,a(n, k) which are not of fixed order in n, consider

the case m = 3, a = 0. For k = 1, 2, 3,. .. we have the polynomials Pk;3,0 :

x(x3 - 1), x(x 3 - 1)(x3 + 1)(x3 - 8), x(x3 - 1)(x3 + 1)(x3 - 8)(x3 - 27)(x6 + 27),...

These yield the recurrences

S3,0(n, 1) = S2,o(n - 3,1),

S:3,0(n, 2) = 8S 2,0(n - 3, 2) + S2,0(n - 6, 2) - 8S2,0(n - 9, 2),

S 3,o(n, 3) = 35S 2,o(n - 3, 3) - 242S2 ,o(n - 6, 3) + 910S 2,o(n - 9, 3)

-5589S 2,o(n - 12, 3) - 945S 2,0(n - 15, 3) + 5832S 2,0(n - 18, 3),

Note that the orders of these recurrences are not fixed, but grow with k.

We can produce further recurrences involving S,,a(n - i, k -j) by exploiting the

recurrences for smaller values of k. For example, the new factors that enter into the
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polynomial Pk;3,0(X) for k = 2 are ( 3 - 8)(x 3 + 1) = - 7 3 - 8. This leads to

S'3,o(n, 2) = 7S 2,o(n - 3, 2) + 8S 2,o(n - 6, 2) + 14S2,(n - 6, 1) + 10S2,o(n - 3, 0).

Here are some plots of the sets Cm,o(5 ) and Cm,o(5)m = {cmic C C,,o(5)}
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We now consider congruential properties of the generalized Stirling numbers Sm,a (n, k).

We prove:

THEOREM 7. Let p be a prime with p- 1 (mod m). Then

(19)

S,m, (n + 1, k) (mod p)
Sm,l(n + 1, k) + Sn,l (n, k - p) (mod p)

if a l 1 (mod m),

if a= 1 (mod m),
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PROOF. Sm,a(n, k) enumerates partitions of an n-set into k parts of sizes

a (mod m). Call the set of such partitions P. Consider the action of the group G

generated by the permutation (n + 1, n + 2,... , n + p) on P. This decomposes P into
orbits of sizes p or 1 (since G has prime order p). Hence

S,,,(n + p, k) number of elements of P fixed by G (mod p).

(See [16, p. 40] for details on group actions.) The fixed points are of two types:

(1) n + 1, n + 2,... ,n + p all in the same block,

(2) n + 1, n + 2,... , n + p all singletons.

rTo count the fixed points of type (1), we observe that for them,

A = {n + 1,... ,n +p}

can be treated as a single element of an (n + 1)-set {1, 2,..., n, A}. (Here we have

used the fact that A = p 1 (mod m).) Therefore the number of fixed points of

type (1) is S,a,,(n + 1, k). Fixed points of type (2) can occur only if a - 1 (mod m),
and in that case the number of them is Sm,a(n, k - p). The theorem follows from

this. 

By summing (19) on k, we get:

COROLLARY 6. Let p be a prime with p - 1 (mod m). Then

Bm,(n + p) Bm,a(n + 1) (mod p) ifa 1 (mod m),

Bm,l(n + 1) + Bm,l(n) (mod p) if a 1 (mod m),

The second congruence with m = 1 is the classical Bell number congruence. The
others are believed to be new. The above readily shows that the period of B,l(n)

(mod p) for p I 1 (mod m) divides

p-l'
and that of Bm,2(n) with a 1 (mod m) divides p - 1.

In conclusion, we note that when m = 1, one way to define the Stirling numbers
s(n, k) of the first kind is by the condition that

ZS(n, e)s(, k) = {

We will investigate this in more detail later. Along these lines we also note that it is
no coincidence that s(k + 1, £) is the coefficient of x in

Pk;l,O(X) = (X)k+l = (X - 1)(x - 2) ... (x - k).
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Define S,o(n,k) = Sl,o(n,k) = S(n,k) and s, 0(n,k) = s(n,k). We present a
method which can be used to define general reduced Stirling numbers s* ,0(n, k) of the
first kind. For clarity, we discuss the case m = 2, but it will be clear how this example
can be extended to the general case. Set s, 0(n, k) = 0 if k is odd. For k even, take
two copies of the set {1,2,..., n}, say A = {1, 2,..., n}, and J' = {1', 2',... ,n'}.
Decompose A/ into k/2 non-empty blocks and N' into the corresponding blocks with
the primes. Construct two permutations with the blocks as cycles, independently

for the primes and unprimes. If the part sizes of a such pair of partitions 7r are
nl, n2 , ... , nk/2, then the number of pairs of permutations is

-k/2 2

w(7r) = [i(ni-1)2

We define d*,0 (n, k) to be the total number of such pairs of permutations:

d;,O(n, k) = E w(r),
7r

and we define

5 s0(n, k) =(-l)n+kd,O(n, k).

For m = 1 or 2, there is a close connection between S,O(n, k) and sL,O(n, k),

namely:

PROPOSITION 6. If m = 1 or 2, then so(k,e) is the coefficient of xm t+l in

Pk;m,o(X). Moreover

,(n,£)S, k) n = k =_ (mod m)
Ct St~0(72 OI~mO~eI 0 otherwise

PROOF. As noted earlier, Pk;l,O(x) = (x)k+l; hence for m = 1 the result follows
from the well-known identities

n

(X)n = s(n, k)xk,
k=O

and
n

n= S(n, k)(x)k,
k=O

where s(n, k) = sl,o(n, k), and S(n, k) = S,o(n,k) are the Stirling numbers of the
first and second kind respectively.

Now suppose m = 2 and consider do0(k,£) = Is 0(k,f)L. By definition, d,o0(k,)

counts the total number of pairs of permutations of {1, 2,... , n} and {1', 2',... ., n'}.
Consider the elements n, and n' and count the total number of ways they can be
placed in such a pair. Each of n and n' is either in a cycle containing other numbers
or in a cycle by itself. In the former case, n can be placed after any of the elements
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{1,... , n - 1 } in the cycle decomposition of a pair enumerated by do(n - 1, k), and

similarly for n'; a total of (n - 1)2d2 (n - 1, k) places. In the latter case, n and n'

are fixed points and so there are a total of d2,(n - 1, k - 2) such pairs. This yields

the relation

d*,o(k, ) = (k - 1)2d,o(k - 1, ) + d,o(k - 1i,- 2).

Note that d;2,(0, 0) = 1 and do (k,) = 0 if k < 0 or < 0. Set

k

(20) Pk(X) = x(x 2 + 1) ... (x 2 + (k- 1)2) = c(k,e)x2 V.
e=o

We have c(0, 0) = 1 and c(k,) = 0 if k < 0 or t < 0. Now

k k-1

pk(x) = ( 2 + (k -1) 2)pk-(X) = c(k- 1,- 2)x2 + (k -1) 2 c(k -1,e)x 21,
e=1 e=o

which yields the recurrence

c(k,e) = c(k - 1,t- 2) + (k - 1)2c(k -1,/?).

This is the same as the the recurrence for d*,o(k, £) with the same initial conditions;

hence c(k,e) = d*,o(k,e). Substituting -x 2 for x2 and multiplying by (-l)k - 1 in (20)

gives
k

s* ,o(ke)xm t+l = x(x2 - 1)(x2 - 4)... (x2 - (k-1)2).
e=o

It is clear from the definition of C2,0(k) that

Pk;2,0(X) = x(x 2 - 1)(x 2 - 4) ... (x2 - k2),

and thus
P s*I(k, )x' t+

Pk;2,o(X) = Z ;,o(,·e)x L
e=o

Recall that S2,o(n, k) = T*(n, k), the semi-reduced Touchard number, and hence

S2,(n, k) = T**(n, k). We will prove that

k

(21) Xk+l = T**(k, )Pe;2,o(x) for k even,
1=0

from which the result follows. With the obvious convention that Po;2,0(x) = x, (21)

holds for k = 0. Now assume that k > 2 and that (21) holds for k - 2. Then

k+l X2 Xk-

k-i k-1
= 2 Z T**(k - 2, e)Pe;2,0(x) = T**(k - 2, )Pe; 2,0(X)(x 2 - 2 + 2)

e=o e=o

k-1 k-1

= T**(k - 2, )P;2,o()( 2 - t2) + C £2T**(k - 2, £)Pe;2,0(x).
e=o e=o
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Using T**(k - 2, k - 1) = T**(k - 2, -1) = 0 and shifting indices, we get

k k-1

xk = T**(k - 2,£- 1)Ptl; 2,0(x)(x - 2) + E £ 2T**(k - 2,£)Pe;2,o(x)
=o te=o
k k

= Z T**(k - 2, - 1)P; 2,o(x) + 2 T**(k - 2, t)Pe;2,o(x).
e=o e=o

Here we have used the fact that Pt_l; 2,o()(x - 2) = Pe;2 ,o(x). From (12) we have

T**(k, ) = t 2T**(k - 2,£) + T**(k - 2,£ - 1),

and the result follows. 

5. Further Properties of f,

In previous sections we have seen the significance of the quantities A, and 6, and
mentioned a few their properties. We now explore them in greater detail. For this
purpose we consider A(t) = det[txi+j]?j= 0 (except for i = j = 0, in which case
the matrix element is 1) and 6(t) = det[Yi+j(txl, tx 2, tx 3, . ... )]inj= where t is a real
variable. Here are the first few values of An(t) and an(t) 

x0(t) = 1

Al(t) = tX2 - t2 X

A2(t) = t2(X2X4 - X2) + t3 (2xlX2X3 - X2X4 - X3)

A3(t) = t3(X2X4X6 - X6 - X2 2 + 2X3X4X - 3) + t4( 4 - 3X2 X4 + X2X4 2 X22

+2XlX 3 X42 + 2xx 3sxs - 2x lx2x5 - 2lX2X 4 X5 - x23 6 + 2XlX2X3X 6 - XlX4 X6 )

So(t) = 1

61(t) = tX2

62(t) = t2 ( 2 x 4 - X2) + t3 (2X3)
3__ 2263(t) = t3 ( 2X4 6 - X2 6 X2x + 2 X3X4Xs - 3) + t4(12x 2 2x 4 - 9X4 + 7x224

-12x2x3x5 + 2x x6) + t524x(x 2x4 - x 2) + t6(12x6)

PROPOSITION 7. The polynomial Sn(t) has lower degree n.

PROOF. We recall that Y(t) = t + O(t2) as t -+ 0. Clearly the conclusion
holds for o(t). Now assume it holds for n-l1. By Laplace expansion on the last row,
6n(t) = (txn + O(t 2 ))n_l(t) as t -+ 0 and the result follows. i

PROPOSITION 8. The polynomial An(t) has lower degree n, and the coefficients of
tn in An(t) and 6,(t) are equal.
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PROOF. The first part follows from proposition 7. Since Y(t) txn as t -- 0,
it follows that n(t) An(t) as t - 0. This implies that the lowest order non-zero
terms of 6n(t) and An(t) are equal. El

COROLLARY 7. If Sn(t) > 0 for sufficiently t > 0, then An(t) > 0 for all sufficiently
small t > 0.

Note that for fixed t the corollary is false. For example if xl = 2 = 1, 3 = 4 = 2,

then 62(1) = 0 but A2(1) = -1. The corollary states that if (Yn(txl,tx 2,... ))n> is
a moment sequence for all sufficiently small t > 0, then (txl, tx 2 ,...) is a moment
sequence for all sufficiently small t > 0. To discuss this in more detail, we first prove
the following proposition.

PROPOSITION 9. An = 0 for all n > 1 if and only if xn = An for some constant A.

PROOF. Clearly if xn = An then An = 0 for all n > 1, since its second row is A

times its first row. Suppose conversely that An = 0 for all n > 1. Then

A = X1 - 0,
X X2

so putting x1 = A we get 2 = A2. Now suppose n > 2 and that k = Ak for k n
has been proved. Then

1 A

A A2

A 2 A3

An-1 An

An xn+l

A2

A3

A4

Xn+1

Xn+2

... An - 1 An

Xn+1

Xn+2

. A
n

... Xn+l

... X2n-2

... X2n-1

X2n-1

X2n

Multiply the first row of the determinant by
i'th row (i = 2, 3,... , n + 1). The result is the

1 A

0 0

A2

0

Ai -l and subtract

equation

0

the result from the

0 0 0 ... + 1 - An+l

0 Xn+ 1 - An+l Xn+2 - A 2 ... X2n-1 -2

For example when n = 3, this equation is

1 A

0 0

0 0

0 4 -A 4

A2 A3

0 X4- A4

X 4 -A 4 X5 - A5

x 5 - A5 x 6 - A6
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(22) An =0.

(23) =0.

An

Xn+l - An+ l

Xn+2 - An+2

X2n -A 2n

(24)



There is only one non-zero term in the complete expansion of the determinant (23),

and it is equal to (An+l - Xn+l )n. Hence x,+l = An+l, completing the induction. 

PROPOSITION 10. The polynomial En(t) is of degree (+l) in t, and the coefficient

of t(2 ) is
[n+l n

X) 2 i!
i=1

PROOF. By Hankel mean-independence we can assume xl = 0. Then every term

in the complete expansion of 6(t) has degree at most (n+1) in t, and the only terms

which attain this have the form cx 2 ). We can therefore suppose that xi = 0 for all

i $ 2. Setting x2 and t equal to 1, we have

Y2n(0, 1,? 0 ,...) = 2n -= 1 -3- 5-- (2n - 1), Y2n+ (0,1,0,...)=0.

We now substitute these values into

we illustrate with the case n = 5 :

65(1) = det[Yi+]ij=o =

We first pull out the odd factors 1

The total factor thus pulled out is

the determinant 6n(1) = det[Y+j],j= 0. For clarity,

1 0

0 1

1 0

0 3

3 0

0 3 5

1

0

3

0

3 5

0

0

3

0

3.5
0

3

0

3.5
0

0
TO

0

3.5
0

0

3. 5 ... (2rF1 - 1) from the i'th row (O < i < n).

n

11 n i-
i=O j<i

j odd

In the present example we get

65(1) = 335

1010 3
0103 0
1 0 3 0 3.5

0 1 05 0
1 0 5 0 5.7

0107 0
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Subtracting each row from the one two below it gives

335

1010 3 0

0 10 3 0 15

0 0 2 0 12 0

0 0 0 2 0 20

0 0 2 0 20 0

0 0 0 2 0 28

Starting with the 3'rd row, we subtract each from the one two below it, getting

1 0 1 0 3 0

0 1 0 3 0 15

0 0 2 0 12 0

0 0 0 2 0 20

0 0 0 0 8 0

0 0 0 0 0 8

5

= 34560 = II k!.
k=1

For arbitrary n note that after the odd factors are removed from the 2i'th and (2i +
1)'th rows are equal to 2i + 1 rows the column has entries

p(i)= l--' 2(m + i) + 1 if i = j (mod 2),
if i j (mod 2),

and similarly for the 2i'th columns. Subtracting a row from one two below it amounts
to forming

A\pj(i) = pj(i) - pj(i - 2).

We have

pj(i) =2i+2j-1 and p(i-1) = 2i-1,
pj-l(i) Pj-l(i)

so

Apj(i) = 2jpj_-(i).

Iterating this n times is equivalent to multiply subtracting successive rows which gives

A3pj(i) = 2.4.. 2j.

The final matrix will be upper triangular and hence the determinant is the product
of the diagonal terms. This along with the factored out odd terms gives the desired
result. 

We could continue our study of the coefficients of En(t) in this manner. For example,
we make the following conjecture:
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CONJECTURE 2. For n > 3, the coefficient of t( 2) in an(t) is

rn+l n+1i- 2 -)(2x4- X2x 2 -12(n - 2) 3

The above suggests among other things that simpler conditions than the non-
negativity of 6, for a given sequence to be a cumulant sequence may not exist. For
fixed xl, x 2,... with x2 > 0, Proposition 10 shows that En(t) > 0 for all sufficiently
large t.

A matrix is called totally non-negative if all its minors are non-negative (see [21]).
In closing we prove a simple non-negativity property of the Hankel matrices [Y+j],j=0.

PROPOSITION 11. An and det[xi+j+l],j=o are non-negative if and only if [xi+j]yj=o
and [Yi+j]?,y=0 are totally non-negative.

PROOF. By earlier work we know that the map (n) -f (Y,) is M-preserving;
hence 6 = det[Yi+j]?j=0 > 0. Since det[xi+j+l]j=o > 0 we have the xn are the

Stieltjes moments for a non-negative random variable (see [33] or [21]) and the Y
must also be moments of a non-negative random variable as they are derived by
compounding the orginal non-negative random variable. There exist by definition of
discrete moments values 0 < al < a 2 < ... and 0 < p < /2 < ... < 1 such that

= j- 1 a#j3. Now define bik = akv/ and B = [bij]. Then [xi+j] = BBT and
we know that the Vandermond matrix [a - 1] is totally non-negative (see [21]), since

3

V/ > 0 we have that B and BT are totally non-negative, and hence [xi+j] is totally
non-negative. This same argument applies to [Yi+j]. The converse is clear as An and
det[xi+j+l]ij=o are particular minors of [xi+ji,j=o. 

The assumption that A, > 0 in the above proposition can perhaps be weakened,
but this alone is not enough, even if we assume Y is non-negative. For example,
take x2n = 1 and all other x2n+l = 0 (these are the moments of a Bernoulli random
variable whose values are -1, 1). Then

1 0 1

[Yi+j]o<i,j<2 > 0 = 0 1 0

1 0 4

has the negative 2 x 2 minor

01
M1,3 = 0 1 -1I 0

Also total non-negativity of [Y+j] does not imply that (x,) is a moment sequence. To
see this, take xl = = = 1 and all other xn = 2 n-2 . Then [Yi+j] totally non-negative
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(see [21]), but

1 1 2 =-1.

124
Furthermore, if (x,) is not a moment sequence, [Yi+j] can still be totally non-negative.

6. Measures on Poisson lattices

In section 3 we introduced the general compound Poisson random variable and saw
that its moments are the exponential Bell polynomials. In this section we introduce
the concept of a Poisson lattice pair, which leads to a combinatorial interpretation
of a compound Poisson random variable, and explore its relation to exponential Bell
polynomials. We start with a distributive lattice £ which we can assume is contained
in the power set of some set S by virtue of Birkoff's representation theorem (see [5]).
We assume that C contains the empty set 0; on £ we define the concept of a measure
as follows:

DEFINITION 7. A measure on a distributive lattice £ is a function I : £ -, R+
such that (i) Iy(A) = 0 if and only if A = 0, and (ii) Ip(AUB)+a(AnB) = (A)+ (B)
for all A, B E £.

We fix a measure on £ and say that A E £ is #-finite if (A) < oo. We proceed
to define a point process on £ by considering another lattice R contained in the power
set of S with the property that for all p E 1X, the cardinality N(A, p) = lp n Al is

finite whenever A is 1-finite. We call p a rare set and its elements blips (see [2, p.
287]). The pair (C, R) is called compatible. Let B be the a-ring generated by the sets

SA(n) = {p: lpn Al = n C R,

where A runs through £. We can now define the concept of a Poisson lattice pair.

DEFINITION 8. A Poisson lattice pair is a pair of compatible lattices (,R)
contained in the power set of S with a measure P on L and a countably additive
measure Pr on B which satisfy the following:

i. If 0O < p(A) < oo, then EA Pr(Sn(A) = 1.
ii. If A E £ and 0 < /p(A) < oo, then N(A,p) is not identically 0.
iii. (independence) If A and B are disjoint and -finite, then the events S,(A)

and Sn(B) are independent. That is,

Pr(S,(A) n Sm(B)) = Pr(S,(A)) Pr(S,(B)) .

iv. (-invariance) If (A) = /1(B), then Pr(Sm(A)) = Pr(Sm(B)).
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v. (divisibility) Given A E 1 and n > O, there exist n pairwise disjoint sets Ai E C

with A1 U A2 U ... U An = A, and u(Ai) = (A)/n.

From this we get

THEOREM 8. Let (C, 1?) be a Poisson lattice pair. Suppose A E L satisfies 1i(A) =

t < oo. Then there is a constant A such that

G(t, z) = E[zN(A )] = Z Pr(SA(n)) Zn = e(f(z)-) e- (t) n
n>O n>O

where f(z) = Zk>l pkZk is the probability generating function for a discrete distribu-
tion with po = 0, and Y,(t) are non-negative exponential Bell polynomials.

PROOF. First note that for A and B disjoint,

SAUB(n)= U (SA(k)nSB(n-k)).
k=O

Hence if ,(B) = s, then

G(t+s,z)

(25)

00

= G ((AU B),z) = EPr(SAuB(n)) zn
n=O

oo n

= Z Z]Pr(SA(k))Pr(SB(n-k))zn
n=O k=O

= E Pr (SA(n)) Zn)
n=O

( Pr (SB(n))
n=O

= G(t,z)G(s,z).

From (25) and (v), it follows that log G(t + s, z) = log G(t, z) + log G(s, z) for s and

t in everywhere dense subsets of an interval [0, L].

If A c B, then N(B, p) < n implies N(A, p) < n; therefore

Pr(N(A, p) < n) > Pr(N(B, p) < n).

Hence if A C B. each coefficient of the series

i 001 - zG((A), z) = E ( Pr(N(A,p) = k)
k=O

00

zn = y Pr(N(A, p) < n)zn

n=O

dominates the corresponding coefficient of

1
_G(p(B),z).

Therefore

G(p(A), z) > G(,u(B), z)
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Hence log G(t, z) is a decreasing function of t for t in the range of j#. As indicated
above, these values of t are everywhere dense in an interval [0, L]. Hence the monotone
solution log G(t, z) of Cauchy's functional equation is of the form tC(z). That is,

(26) G(t, z) = etC(z) for all t in the range of IL.

Here C(z)
Set A =

is a function of z to be determined next.

C(O) and

f(z) = C(O) - C(z)

From (26) we have G(t, z) = 1 + tC(z) + o(t) as t -- O, so

C(z) = lim G(t, z)-1
t--o t

Hence

f(z) = lim
G(t,O)-1 _ G(t,z)-1

t t
G(t,0)-l

t

= lim G(t, z) - G(t, O)
t-.o 1- G(t, O)

By Abel's continuity theorem and the fact that G(t, z) is uniformly continuous in t,
the above expression is continuous at z = 1 and is the limit as t - 0 of the probability
generating functions for

Pk(t) = Pr(N(A, p) = kIN(A, p) > 0).

Therefore f(z) is a probability generating function
probability generating functions (see [14]). Let

(27)

by the continuity theorem for

00

f(Z) = Z PkZk,
k=O

where

Pk = limpk(t) = lim Pr(N(A,p)=
then = f() = O. We have (z) = )), 

then o = f(0) = 0. We have C(z) = (1 - f(z)), so

G(t, z) = et(f(z ) -1)

The substitution x, = Apn! gives

(28)
Z n

G(t,z) = e Y,(t)
n>0

kIN(A,p) > 0);

(26) becomes

Since the xn are non-negative, Yn(t) is non-negative by Proposition 3. 

Note that Theorem 8 describes all measures Pr(.) which can be defined on a Poisson
lattice pair, that is measures satisfying (i)-(v) (this also may characterize all measures
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on Poisson lattice pairs; see open problem 4). In particular if A E C, the distribution
of N(A, p) is given by

(29) Pr(N(A, p) = n) = e-
_

(A ) Y ( (A ))
n!

We recognize G(t, z) as the probability generating function for a compound Poisson
random variable as defined in section 3. Consider N(t), a Poisson random variable
with parameter A, and Z = EN(1) Xk, where Xk are iid random variables independent

of N(t). We assume that Pr(Z = 0) = 0; then
N(t)

Pr(Z = n) = Pr( Xk = n)
k=l

m

= E Pr(- Xk = nIN(t) = m)Pr(N(t) = m)
m>O k=l

= y Pr( X = n)e Mt(At)
m>O k=l

Thus we can write the above in terms of equation (29) and interpret Poisson lattices
as a general structure for compound Poisson processes.

It is natural to ask whether every non-negative integer-valued random variable with
a compound Poisson distribution arises in this way. We pose this formally as an open
problem:

OPEN PROBLEM 4. For every sequence of non-negative exponential Bell polynomi-
als (Yn(t)), does there exist a corresponding Poisson lattice?

The dual role that the exponential Bell polynomials play as moments and proba-
bilities is noteworthy. In section 3 we saw how the the exponential Bell polynomials
arise as moments of a suitable limit of a sum of random variables. On the other hand,
the derivation of the exponential Bell polynomials as probabilities, using a Poisson
lattice pair, is reminiscent of the way in which the Poisson distribution arises as a
limit of the binomial distribution. In some sense the limit of the moment sequence
of a sum of independent random variables comes from a distribution defined on a
Poisson lattice. It would be interesting to find a sequence of what might be called
binomial lattices whose limit is a given Poisson lattice. Later we will explore the
poset structure of more general Bell polynomials and a general duality principle.
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CHAPTER II

Ordinary Bell polynomials

Although the exponential Bell polynomials arise naturally, encompass many well-
known polynomial sequences, and have noteworthy probabilistic properties, they are
by no means the only class of polynomials with such distinctions. In this chapter we
shall explore another class of polynomials, the ordinary Bell polynomials, which have
similar properties, and are perhaps even more basic in nature.

Equation (2) suggests that the exponential Bell polynomials are useful when dealing
with k-fold products of exponential generating functions. If we desire instead to use
ordinary generating functions, it is natural to study (n>l XnZn) Hence we make
the following definition:

DEFINITION 9. The partial ordinary Bell polynomials Bn,k(xl,x 2 ,...) are
defined by

(30) (x Zn)= B,k zn.nk

It is natural to define the complete ordinary Bell polynomials as follows:

DEFINITION 10. The complete ordinary Bell polynomials B° are given by
n

B° = Bncu Bo = 1.Bn=ZB~,k, Bo=1.
k=1

As with the exponential Bell polynomials, we will often be interested in Bn(t) =
Bo(tx,tx 2 ,...), and will discuss the case where Bn(t) is non-negative for t > 0.
We will adopt the convention that the term "Bell polynomial" always refers to the
complete Bell polynomial.

1. Properties

We now derive some basic properties of the ordinary Bell polynomials analogous
to those of the exponential Bell polynomials. Our first result is:
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PROPOSITION 12. If B,k(xl,x 2,... ) are the partial ordinary Bell polynomials,
then

n Xn
exp lE xmzm -= E EBnk(Xl,X2, .) ) .

m>l0 n>Ok=O

PROOF. Multiplying 30 by l/k! and summing over k > 0, we obtain the desired
result. See also [10, p. 136]. 0

As a consequence we have the following simple relations between partial ordinary and
complete exponential polynomials:

n Zn Zn

Bnk(X, X2 , ) k = E Yn(!xi1, 2!x2 , 3!x3 , .)t.
n>O k=O n>O n

For the partial exponential Bell polynomials, there is a refinement of the convolution
property in Proposition (2) (see [10, p. 136]):

PROPOSITION 13.

Yn,k(x Y1 + y , ± y v ) = iY ( -)Yi,j(XlX 2, . )Yn-i,k-j(yl,y2,... )
i<n,j<k

The corresponding property for the partial ordinary Bell polynomials is the follow-
ing:

PROPOSITION 14. For F(t) = En>i fn zn and G(t) = En>lgn Zn, define H(t) =

En>l hnZn = F o G(t). Then
oo 00 n

E Bn,k(hl, h2,...)z n = E 0 Bn,e(glg2 , )Bkl(ffi f2, )zn
n=k n=O =k

PROOF. The above is a special case of a proposition which will be proved in chapter
III, Proposition 23. 

Finally we note:

PROPOSITION 15. The partial ordinary Bell polynomials Bn,k are given explicitly
by

k] 

Zn,k(Xi X2,..)= y] ii ... 
ilB+2i2+..+nin=n i!i 2! . i

il +i2 +'"+in=k

Note that the quantity k!/(il!i2!... in!) is the number of k-letter words with iv
letters equal to x, (1 < v < n). This gives a rapid way to compute the ordinary Bell
polynomials. For example, to compute B40 we the write monomials in the variables
xi associated with the partitions of 4:

x 4, 3 x 1, X2, X2x1, X4 .

There is only one way to write the monomial 4; hence its coefficient is 1. The same
holds for x. There are two ways to write x 3x1, namely x 3xl and x l x 3; hence we add
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in 2x3 x1 . There is only one way to write x2. Finally, there are three ways to write the
x 2x 2 term, namely Xlx1 x 2, x1x 2x1, and x2 x1 Xl. Hence we add in 3x2 x1. The sum of
these five terms is B4 = x 4 + 2x3 x1 + x2 + 3X2~2 + x 4. Here is a list of the first few
polynomials Bo(xi, x2,. .. )

B 1
Bo = B = x2

B2= x2 + X2

B3= x3 + 22X1 + xl

4 x4 + 2X3X1 + 2 1 + X 4

B5 = X5 + 2x 4 X1 + 2x 3 x2 + 3X 3 X2 + 3x2X 1 + 4x 2X3 + x5

B6= x6 + 2x5 x1 + x2 + 2x 4x2 + 3x 4X + 6x 3x2x1 + x3 + 4X3X20 , n, 3 2 2Xl
+ 6X2X + 5X24+ X1

2. Recurrent events and the renewal equation

As noted in the last section, the coefficients of the ordinary Bell polynomials Bn
can be interpreted as the number of ways of writing the monomials associated to each
partition of n. This can be thought of as a process on a chain of length n in which
we want to count the total number of ways of jumping from the minimal element to
the maximal element. Consider for example a chain of length 3:

3

'2

1

To get to 3 from 0 we can make a direct jump of 3, which gives the term 3. Alter-
natively we could make a jump of 1, then a jump of 2, or a jump of 2, then a jump
of 1; this gives the term 2 2x1. Finally, we can jump one unit three times; this gives
the term x1. We interpret this as a probability model by considering the event En
that we travel through an interval of length n one or more jumps. The events En are
clearly recurrent, since each element is minimal with respect to the elements above
it. In fact, the entire poset above that element looks like the original poset; hence
once the event En has occurred, the process starts over again and so the event E is
recurrent. We define g = Pr(En) and we know from prior discussion that En is the
disjoint union of products of the events Jk, where Jk is the event of making a direct
jump of k. Letting fn = Pr(Jk), we have:
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THEOREM 9 (RENEWAL EQUATION). For a recurrent event E, let fk = Pr(E first
occurs at time n) and g, = Pr(E occurs at time n). Then

n-1
gn = S gJnf-k + 6n,o,

k=O

where ,o is the Kronecker delta.

A proof of this result can be found in [14]. In a more compact form, we see that if
F(z) = n>o f" Zn and G(z) = En>0 g Yzn, then the above relation between fn and gn
can be written in the form

G(z) = F(z)G(z) + 1.

Now we are prepared for the following result:

PROPOSITION 16. If G(z) = F(z)G(z)+l with F(z) as above, then gn = Bn(f, f 2, . ).

PROOF.

k
1

( G(z) -1-F(z)

- Bok(flOf2,.
k>O n>k

F(z)k = (k
k>O k>O n>l

fnzn

n

*)z%= ZS B, k(fI, f2 ,.
n>O k=O

= B°(fi 2, )Zn
n>O

Note that Bk := O for k > n. E]

3. Shift polynomials, Hankel mean-independence

We now prove a very useful property of the ordinary Bell polynomials, which we
call the 2-shift theorem.

THEOREM 10. The ordinary Bell polynomials Bn(xl, x2, X3 ,... ) satisfy

det[B+ j]j= o = det [x+j+2] 7Io.

PROOF. Put B = [Bij]inj=o,

1

0

0

0

0 0

X 2 X3

X3 X4

Xn Xn+l

0

. . X

... Xn+i

... X2n
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A = [ai,j] =

Note that

Clearly ABAT = S if and only if
product AB, then

1 0

B1 1

O BO

B° Bo

B = A- 1S

0 ... 0
O ... 0
1 ... O

BT_2 .. 1

(AT) . If (AB)i, is the i, j entry of the

n i-1
(AB)i,j = E ai,kB+j = -xi-kBk+j + Bi'+j = B+j -

k=O k=O

i+j-1

h=j

Now
n-1 j-1 i+j-1

Xn = B - Bk = 1 B- Bxjk + E Bm-i-j -
k=1 k=l mj

Hence,
j-1

xi+; + C B0Xj+k = (AB)ij.
k=l

Multiplying AB by AT subtracts B times the j'th column from
That is,

(AB)i,j

(ABAT)ij = (AB),j
0

1

- Ek- 1 BxZj_- = i+j

-B = O

the i'th column.

i=O, j O
i >0, j = 0
i= 0, j=O,

which is the desired conclusion. El

By the above theorem, the Hankel determinants of the ordinary Bell polynomials are
obtained from the Hankel determinants of xl, x2,... by replacing xi by xi+2. Noting
that X1 is thereby shifted out, we have our first application of the 2-shift theorem:

COROLLARY 8. The ordinary Bell polynomials Bn(xi, 2 ,...) are Hankel mean-
independent.

Trivially we also have:
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aij= 
-xi-.
0

1

i>j
z <j
i = j

1

-- X1

-X 2

-xn

0

1

-21

-Xn-1

0

0

1

-Xn-2

0

0

0
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COROLLARY 9. If f, = ZkoI fkg,-k + an,0, then det[fi+j] j=0 = det[gi+j+2]I-o.k=0 ig - + o t i,j=o -1

Thus if 6b = det[B°+j]3j=0, the first few values of Sn are:

5g = 1

61 = 2

o = X2

= X2 X4 X6 - + 2x3 4x 5 -x.4'

We can use the 2-shift theorem to study cumulants by considering the exponential shift
polynomials Sn defined by Sn = n- _k=l Ykn-k The 2-shift theorem states that
det[Yi+jI]rj=o = det[Si+j]ij=1 . Since the Yn(x1, x 2,... ) are Hankel mean-independent,
we can set xl = 0 in Yn. Here are a few values of the resulting polynomials Sn:

So = 1

S1 = 0

S2 = X2

S3 = X3

S4 = x4 + 2x 2

S5 = x5 + 8x2 x 3

S6 = X6 + 13x2x4 +9x + 10

There are other results similar to
use of the following result which we

the 2-shift theorem, however
call the 1-shift theorem:

we will make good

THEOREM 11. The ordinary Bell polynomials Bo(xi,x2, X3 ,...), satisfy

det [Bi+j+ ] ,j=0 = det[xi+j+l j= Ai

PROOF. Put B = [B+j+l] j=0, and S = [i+j+l]ij=0. Take A as defined in the
proof of Theorem 10, and by similar reasoning as there we have S = ABA T . We omit
the details. 

4. Moment sequence preserving maps, ordinary cumulants

The ordinary Bell polynomials share many of the properties of their exponential
counterparts. For instance,

PROPOSITION 17.

Es(t) = det ([B+j]i)j=o) - A\(t) as t --, 0.

More importantly, the shift theorem easily gives

PROPOSITION 18. The ordinary Bell polynomials B°(x, x2, . ) are M-preserving.
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PROOF. What needs to be shown is that if (n) E M, then (B~) e M. Via the

Hamburger condition, this is true if An 0 implies 6° > 0 for all non-negative
integers n. By hypothesis the quadratic form with matrix

1 X1 ... xn

\n = Xl X2 ... Xn+l

Xn Xn+l ... X2n

is non-negative definite. Hence all its principal minors are non-negative. In particular
M1,1 > 0; by the shift theorem we have M1,1 = 6° > 0. a

COROLLARY 10. If An(t) > 0, then 56_1(t) > O.

A particular consequence of the above proposition implies a result obtained by

Kaluza [20] in 1928.

PROPOSITION 19. Let M+ be the set of all moment sequences whose terms are
non-negative. The sequence (xn) is in M+ if and only if (Bn) is in M+.

Note that the moment sequence preserving property of the ordinary Bell polynomi-

als gives a stronger result than the above in one direction, as there is no non-negativity
restriction. As in the exponential case, (B ° ) E M does not always imply (xn) E M.

Consider for example xl = c and xn = 0 for n > 2. Then Bn = Cn and so as before,
(BO) is a moment sequence whereas (n) is not. This disproves an earlier claim by
Liggett [23] in which he asserts that (Bn) E M if and only if (xn) E M.

As further application of the shift theorems, we present new proofs of some related

work by Horn in [18]). Our approach will be fully algebraic, whereas Horn relied
on analysis. For this purpose we extend our consideration of probability moment

sequences to general moment sequences in which the zero'th moment may take on
values other than 1. This is reasonable as we can always normalize any general moment

sequence to a probability moment sequence by dividing each moment by the zero'th

moment. The following theorem is presented as Theorem 1 in [18] which we now

re-prove.

THEOREM 12. The sequence (xn+l) is a Hamburger moment sequence if and only

if (B+,) is a Hamburger moment sequence.

PROOF. We have by the 1-shift theorem that det[xi+j+l] = det[B°+j+1] and hence
the result follows by Hamburgers theorem. 

Recall that a Stieltjes moment sequence is a moment sequence whose distribution has
support on R+. Horn presents the following theorem:
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THEOREM 13. The sequence (x~+l ) is a Stieltjes moment sequence if and only if
(BO) is a Stieltjes moment sequence.

PROOF. The Stieltjes condition as presented in [33, p.5] states that (n) is a Stielt-
jes moment sequence if and only if det[/i+j] > 0 and det[/ti+j+l] > 0. Suppose that
(xn+1) is a Stieltjes moment sequence, so det[xi+j +l] > 0 and det[xi+j+2] > 0. By the
1-shift theorem det[x~+j +i] = det[B°+j+1], so det[B°+j+1] > 0. By the 2-shift theorem
det[xi+j+2] = det[B°+j], hence det[B4°+j] > 0 and the result follows. [1

Several other of Horns results follow just as easily.

In contrast with the exponential Bell polynomials, the total non-negativity property
is discussed here in the context of renewal theory (see Theorem 1 of [23]). However

the proof is essentially the same as the one presented earlier in consideration of the
results of Horn above.

PROPOSITION 20. An, and [Xi+j+l]inj=o are non-negative if and only if [Xi+j]inj=o

and [Bi+j]ij=o are totally non-negative.

There is an as yet unresolved philosophical matter concerning how we arrived at
this point. We found that the exponential Bell polynomials are M-preserving by
finding a random variable of which they are the moments. For the ordinary Bell
polynomials we have only shown the existence of a random variable, without finding
it explicitly. As a partial step to find such a random variable, set F(z) = E[ZX] =

n>l Pr(X = n)z n = En>l XnZ n where Pr(X = 0) = 0, and let X1,X2,... be iid
copies of X. We have:

PROPOSITION 21. If S = X1 + X2 + ... + X, So = 1, then

E[zY ] = E Bn(x1, x2,... ))Zn = E[E zSk].
n>O k>l

PROOF. Putting x0o = 0 and summing equation (15) over k, we obtain

(..../ klk
E | EXnZn =E E Bn Zn = E B VZn = E BZn = E[zY]
k>l n>O k>ln>k n>Ok=l n>O

for a new random variable Y. Now set F(z) = E[zX] = ]n>o xnzz, where Pr(X
n) = xn. Then F(z)k = E[zSk] by convolution of probabilities (see [14]), so

E[z ] = Z E[zsk] = E[ zsk]
k>l k>l

by linearity of expectations. 1

Earlier we saw that the cumulant space K is the inverse image of M under the
exponential Bell map. Similarly, we can define the ordinary cumulant space as the
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inverse image of M under the ordinary Bell map. Here are the first few ordinary
cumulants as functions of the moment sequence (tt):

=
o 2

2K = 12 2-IL1

K3 = 3 -212 + /11

: 404 4-2p1 3- 2 + 3212 --414
C5 = it5 - 2/1/14 - 2/12tt3 + 3p/2 P3 + 3/l - 4#t 12 + /15

It is natural to ask if the ordinary cumulants have an invariance property analogous
to that given by Proposition 4. Specifically, what (if any) transformation on a random
variable X leaves all ordinary cumulants but the first invariant? It can be shown that
any such transformation must be non-linear. We submit this as an open problem:

OPEN PROBLEM 5. Do the ordinary cumulants have an invariance property?
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CHAPTER III

Comtet polynomials and binomial posets

Up to this point we have studied two polynomial maps, the exponential and ordinary
Bell maps, which have analogous properties. We now embed these two maps into

in a much broader class. Following Comtet [10, p. 137], we define the partial Bell

polynomials with respect to a sequence (n) by

(31) Qk a XmZm ) Bn,kQnz .
m>l n>k

We assume here that Qo = Q1 = 1 and Qn 0 for all n. However, we continue to write

Q 1 instead of 1 when this more clearly indicates the pattern of some of our formulas.
We call the polynomials Bnk partial Comtet polynomials with respect to (n). Note
that Qn = 1/n! and Qn = 1 give the partial exponential and partial ordinary Bell
polynomials respectively. We define the complete Comtet polynomials B by

n

yn = E Bnk.-
k=O

1. Properties

Here are some examples of partial Comtet polynomials:

B"n - 1

Bk = n
Bn,n= x

Bnn_l =- (n- -1)X2n lX2Xn-2,_=- - (n n )x

n,n -3 -- I 2 n - -l
-Bo

4 (n-2 = Qn 1 x 4 (( 2)QX2 + (n - 2)Q3X3X1

Bnn3 = n1 2%QnI 6 (( 3 )Q2X + Q3X3X2X1 + (n -3) 4x4xl)
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In general, each B, k consists of terms xi whose indices form a partition of n into
exactly k parts, say n = rl + 2r2 +*' + nrn, and whose coefficient is (Tl 2 k ) times

Qk(Q1lxl)r (Q2x2 )r2 . . Thus:

PROPOSITION 22.

(3 QnB" f 1 2 n 1 2 B
rl+r2+r3+ ..+rn=k (=r, r2 ,*... vF nr 2...n

rl +2r2+3r3 +...+nrn =n

A fundamental property of Comtet polynomials is the following convolutional for-
mula:

PROPOSITION 23. If h = fog where f = En>l Qnfnzn and g = Zn>l Qngnz n, then

Bk(hl, h2, ... )QnZn = B,(fi, f2, )Bk(g91, 2,..)2Qnn
n>k n>e>k

PROOF. See [10, p. 146]. [1

The first five complete Comtet polynomials are:

B" =1

Ba = Z1Xl
Bf2 = f2 X2 + 1x2

B = Q3X3 + 2 X1 2 + Q1X3

B 44 3~202 23 2 Q2 2Q1 22 3 x1x 3 + xB4- 1 X+ + + + 1X4.
4 Q4 S'4

2. Recurrent events and binomial posets

In previous sections we saw how the ordinary Bell polynomials arise from the
renewal equation as probabilities for a recurrent event. Here we introduce a more
general form of this concept and discuss its relation to the Comtet polynomials.

DEFINITION 11. A poset P is called a binomial poset if it satisfies the following
three conditions:

a: P is locally finite with a 0.

b: The intervals [x, y] of P are graded. If the length of the interval [x, y] is
t(x, y) = n, we call [x, y] an n-interval.

c: For all n 6 N, any two n-intervals have the same number B(n) of maximal
chains. We call B(n) the factorial function of P.

See [36, p. 140] for more details. The basic convolutional property of binomial
posets is the following theorem found in [36, p. 144]:
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THEOREM 14. Let P be a binomial poset with factorial function B(n) and incidence
algebra I(P) over C. Define

R(P) = {f E I(P): f(x, y) = f(x', y') if e(x, y) = (x', y')}

If f E R(P), write f(n) for f(x, y) when t(x, y) = n. Then R(P) is a subalgebra of
I(P), and there is an algebra isomorphism S: R(P) -+ C[[z]] given by

q(f) = E f(n)zn/B(n).
n>O

As in [36, p. 143], we denote the number of elements z of rank i in an n-interval

[x, Y] by

[ n I - B(n)
i B()B(n-i)'

This is easily extended to

n B(n)
il,i2,. ] B(il)B(i 2) 

which counts the number of sequences of elements of rank il, i2 ,... (where il + i2 +

·.. = n) in an n-interval.

We are now in a position to see how binomial posets give rise to Comtet polynomi-
als. As a start, consider ck(n), the number of chains x = wo < W1 < ... < wk = y of
length k in any n-interval [x, y] of a binomial poset P. We have ck(n) = ( - 1)k(x, y),

where ( - 1)k is the k-fold convolution of ( - 1) in I(P); here E I(P) is the
zetafunction on P defined by C(x,y) = 1, for all x < y in P, and 1(x,y) = 1 or 0
according as x = y or x $ y. We have

ck((n)zn/B(n) = ( zn/B(n))
n>O n>l

If we consider Comtet polynomials where xn = 1 for all n and Qn = 1/B(n), the
above relation becomes equation (31), where ck(n) = Bnk/Qk This suggests that we
replace - 1 by the function

0(x,) = fxn x<yand (x,y)=n
0 otherwise.

Then consider dk(n) = Ok(x,y)B(k) ; this gives the partial Comtet polynomials as
defined in equation (31). The difficulty with this approach lies in interpreting this
function. To accomplish this, we consider the case for x, E [0, 1]. Define a stochastic
process on P, by putting x, as the probability of jumping directly to a particular
rank n element in a maximal chain. Then derive the reciprocal probability f that
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the process ever arrives at a particular element of rank n in a maximal chain, but
perhaps through other elements first. Clearly

fn = Z Pr(choose the maximal chain for c)Pr(jump through elements of c).
I

Now if we assume each path is equally likely to be traversed, then

Pr(choose the maximal chain for c) = 1/B(n),

z is of rank n and B(n) is the number of maximal chains in the interval [0, z]. Under
these circumstances, if c is a maximal chain that jumps through elements of ranks

ii, il + i2,... , ii + + ik then

Pr(jump through the elements in path c) = xixi 2 ... Xik.

Since this is invariant under permutations of i, i2 ,..., ik, we obtain:

THEOREM 15. If x, is the probability of jumping directly to a particular rank n
element in a maximal chain in a binomial poset P, and f is the probability of ever
arriving at a particular rank n element in a maximal chain, then f = Yn, where

n = 1/B(n).

PROOF. Consider the interpretation of Bnk given at the beginning of this chap-
ter. [

Example 1. P = N and B(n) = 1. We compute f3, the probability of ever reaching
3. There are four ways in which we can arrive at 3. One, by jumping directly to 3 with
probability x3 Two, jumping to 1, then to 3, with probability x1x2. Third, jumping
to 2, then to 3, with probability 2x1. Fourth, jumping to 1, then 2, then 3, with
probability xl3. Hence

3

2

1

f3 -x3 /1 + X2 x1l/ + XlX2 /+1 X1 /1
= X3 + 2x2x1 + x 3 = Y3j(x 1 ,x2 ,X3 ).

In general this leads to f = YnQ(x1, X 2,... , x,), where Qn = 1/B(n) = 1, the ordinary
Bell polynomials.

Example 2. P = B, the Boolean lattice of subsets of {1, 2,... , n} under inclusion.
Here B(n) = n! and we find f3, the probability of ever jumping from 0 to {1, 2, 3}.
There are four types of paths which arrive at {1,2,3}. One, by jumping directly
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to {1,2,3}; this has probability 3. Two, jumping a rank of 1 with probability xl,
then a rank of 2 with probability x2 . There are three paths to a rank 1 element, then
only one path from there to {1, 2, 3}, giving three possible routes. Third, jumping to
a rank 2 element (of which there are three), then jumping to the top, giving three
possible paths. Fourth, jumping by 1 three times; there are three ways for the first
jump, two for the second, one for the third, so six paths in all. Hence

1,3

2

f3 = x3/1! + 3xx 2/2! + 3x2x1/2! + 6x3/3!

= X3 + 3x2 xl -+ x = Y3 (X1, x2 , x3),

where Q = 1/B(n) = l/n! for all n. This gives the exponential Bell polynomials.

Example 3. P = {S x T C N x NIISI = ITI} (the cubical lattice). We have
B(n) = (n!)2 , so:

f3 = 3 /1!2 + 9x1 x2 /2!2 + 9x2 x1 /2!2 + 36x3/3!2

= X3 + X2 X1 + x = Y3 (1, X2, X3 )

where Qn = 1/B(n) = 1/(n!)2 for all n. This gives the double exponential Bell poly-
nomials.

3. Characterization of Hankel mean-independence

The Comtet polynomials form a broad class of transformations with useful compo-
sitional properties and application to the enumeration of natural objects. We have

seen that the Hankel mean-independence property for the exponential and ordinary
Bell polynomials is closely related to their moment sequence preserving properties.
Superficially it might seem that there should be a great many Comtet polynomial
sequences which are Hankel mean-independent. However in this section we show
that there are only two. This fact will be called the characterization theorem; it has
obvious implications for the question of what makes the exponential and ordinary
generating functions so special. We require the following technical lemma:
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LEMMA 4. The recurrence c - (n - 1)cn-l + (n - 2)c, = 0, (n > 2) has the general
solution

(33) cn = (n - 1)c2 + (n - 2)cl,

where c2 can be arbitrarily prescribed.

PROOF. Clearly (33) holds if n = 2. Assume it holds for some n > 2. From 4 we
have cl - ncn + (n - 1)cn+l = 0, so

ncn + Cl
Cn+l = n-1

Substituting (33) into this, we get
n clCn+l 1- [(n- 1)c 2 -(n - 2)ci]- nc2 -(n - 1)cl,n-i n-i

completing the induction. []

Before proving the characterization theorem, we first observe that if Q = (n) is a
Comtet sequence, then the sequence (an-1Qn), where a Z 0, gives rise to the same
Comtet polynomials. In view of this, we sometimes find it convenient to normalize Q
so that Q2 is a given constant. The general case then results by scaling.

THEOREM 16. 6n = det[Y/ .j]Inj=0 is independent of x I if and only if Qn = 1 or
Qn = l/n! after the normalizations Q2 = 1 and Q2 = 1/2 respectively.

PROOF. From previous sections we know that the Comtet polynomials with fQ = 1
or QL, = l/n! are Hankel mean-independent. For necessity we will show that the term
in XlXn_lXn- 2 X2n Of S has coefficient

(34) - (n -) n-+ (n - 2)

For 5na to be independent of xl, this coefficient must be zero. Setting cn = fn/Qn+l,

we obtain the recurrence

(35) cl - (n - )Cn-1 + (n - 2)Cn = 0.

It is easily verified that the term x2 2x6 in 3 has coefficient

_3Q5 - 4 34 + 2 3 12 ' 3

The vanishing of this coefficient translates to the condition

-3c2 - 4C2 + 4c2cl + 3clc3 = 0.

Combining this with the equation c3 = 2c2 - c1, we obtain

(c 2 - c1)(2C2 - c1) = 0.

If c2 = cl, then c = cl for all n, while if 2c2 - 3cl = 0, then Cn = cl(n + 1)/2.
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To show that xl-independence of S6 implies the recurrence (35), we set xi = 0 for
i 1, n-1, n, 2n and determine the coefficient of XlXnlXn-2x2n in 6. This term has
the factor x2n which occurs only in Y2"n (the bottom right element of 6). Hence by
expanding V6 on its last row, we see that we need only determine the coefficient of
2xx1ixZn-2 in I The first occurrence of Xn_l in ;n is on the main anti-diagonal.

This term must accumulate n- 1 of the xn factors; these can only be acquired from the
anti-diagonal just below the main anti-diagonal. We can ignore any higher powers of

l1 , xn_- and powers of ,n greater than the (n-2)'nd as they clearly do not contribute.

We then obtain the following reduction of 6_1:

(36) A=

1 d O ... O O O0 a

d O O ... O O O a b

0 O O ... O 0 a b c

O O O ... O a b c 0

O a b ... O O O 0

a b c ... O O O 0

where a = Qlx,_l, b = lxn + 2f 1Q2Qn-1 /Qnlxn-1, C = 2QlQ2n/ln+lXlXn and
d = Qlxl. To compute a we note that Yn 1 can only contribute factors of xn_l, which
occurs in B_ 1 For b we note that Y' can contribute xn and xlxn_ 1, which occur in
B, . and Bn 2 respectively. For c we note that Yn+1 can contribute an xlx, factor.
For d we note that B1 = lXl.

Since we must avoid picking up any higher powers of xl and xn-1, we can ignore
any term of A in a2, c2, d2, cd and more generally, any term ailbi2ci3di3 with i > 1,

i2 > n -1, i3 > 1, i4 > 1, i3 + i4 > 1, il + i2 > n - 1, i + i2 + i3 > n - 1. The only
three surviving terms in A are 2abn-2d, (n - 2)abn-3c, and bn- l . For bn- l we are only
interested in the term which gives xlxn, 1x- 2 , namely

(-12)(1n)- (2l2nlnlXlxn-1) 2 (n l) Q22 n- lx lx lxn- 2(n - 2Q 1n- 2(1n-

This term has the opposite sign from the other two surviving terms due to its po-
sition under the main anti-diagonal. Similarly, for bn- l we must take only the xn - 2

term, which has coefficient Q7n-2 . Hence 2abn-2d contributes a term xlxn_lxn- 2 with

coefficient 2ln+l. Lastly, in b- 3 we need the xn-3 term, which is Qn-3. Thus the
XlXnlX n -2 term of (n - 2)abn-3c has coefficient

2(n -2)Q n-1 2Q

Qn+1
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In all, the coefficient of Xl Xn_lxn 2 in A is

(37) 2 _n+l 2(n - )Q- Q2Qn-lFln-1Xn-2 2(n -2 1 Q2Qn
1n+ Qn+1

This must vanish if 6n is to be independent of xl, and its vanishing is equivalent to
(35). 1

4. Moment sequence preserving maps

As in previous sections, we would like to know which Comtet polynomials are

M-preserving. Since

Yn (t) = Qlxnt + O(t2 )

and Q1 = 1, it is clear that 6n(t) An(t) as t -- 0. From this we have the following
simple proposition:

PROPOSITION 24. If 5f(t) is non-negative for sufficiently small t, then Azn(t) is
non-negative for sufficiently small t.

We have seen that the above fails if t is fixed. In general Comtet polynomials are
not moment sequence preserving, even for Qn = 1/B(n), where B(n) is the factorial
function for a binomial poset. For example, consider xn = pn (n > 0) for 0 < p < 1;
these are the moments of a degenerate random variable. Clearly An = 0 for n > 1.
Applying the Comtet transformation, we get

= 6 3 Jr3Q4 1 2 4~2 1 2 2 2012 3 152Q3)
2 3 - 6'3 + 4 + 4 - 4

If B(n) = A(1)A(2) ... A(n) = 2n- 2 (as is the case for the butterfly binomial poset),
we have

cn = A(n + 1) = { 2 oerwise

This gives b2 = -4p 6, and hence this Comtet map is not M-preserving. Note that
if Qn2 = 1 (a chain), then b6 = 0 for n > 1 by the shift theorem (since two rows are
equal). If Qn = /n! (the Boolean algebra), then

~ = det [0i+j(P)]i,j=0 k!) p(n2) > 0.

See [21] for details.

OPEN PROBLEM 6. What are the conditions on n so that the resulting Comtet
map is M-preserving?
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Up to this point we have only encountered M-preserving Comtet maps which
are also Hankel mean-independent. It is natural to inquire whether Hankel mean-
independence is necessary for preservation of moment sequences. A solution to the
following conjecture would be some progress in this direction:

CONJECTURE 3. The Comtet map with Q, = l/n! 2 is M-preserving but not Hankel
mean-independent.

It is not difficult to verify that the Comtet map with Q = 1/n!2 above is not
Hankel mean-independent. It appears difficult to prove that it is M-preserving.

Many questions that can be asked about binomial posets, which are beyond the
scope of the present work. For example, we may ask for a characterization of the
factorial functions B(n) for binomial posets. In particular, is B(n) always a moment
sequence? Can every finite binomial poset be extended to an infinite binomial poset?
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CHAPTER IV

Compound polynomials

1. Properties

We saw in the last chapter that some Comtet maps are M-preserving and some are

not. In this chapter we study a different class of polynomial maps which are always

M-preserving and are easily interpreted probabilistically. Let A be a non-negative,
integer-valued random variable with Pr(A = i) = pi . Furthermore, let X be any

random variable with moments E[X i] = xi and put Y = SA = X 1 + X2 + + XA.
The first few moments of Y are:

E[1] =1
E[Y] = px + 2p2x2 + 3p3 3 +

E[Y2] = pls 2 + 2p2 x2 2p2x2 + 3p3x2 + 6p2x2 +-'--

E[Y] = plX3 + 2p2X3 + 3X2X1 + 3p3X3 + 6X2X1+ 2x3 + 

Let E[Yn] = Cn,(x, X2,... Xn). If ai and fi are the i'th moment and i'th factorial

moment of A respectively, then C,(xl,x 2,... , x,) can be expressed as a polynomial

in either the ai and xi, or in the fi and xi. The first few values are as follows:

Co = 1
C1 = alxl = fxl

C2 = alx2 + (a2 - al)x2 = f2 + f 2x2

C3 = alx3 + (a2 - al)X2 Xl + (a3 - 3a2 - 2a)x = fix3 + 3f2x2x1 + f3x.

By construction the map (Cn) is M-preserving; we call the polynomials Cn compound
polynomials.

They agree with the exponential Bell polynomials when expressed in terms of the

factorial moments, except that each term in C, has a further factor of fd, where d is

the total degree of the term. To prove this, we first require the following lemma:

LEMMA 5. If A is a Poisson variable with parameter t, then A has i 'th factorial

moment fi = ti.
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PROOF. First note from previous work that E[An] = On (t), where qn(t) is the n'th
exponential polynomial. Thus

n

E[An] = On (t) = E S(n, k)tk,
k=O

where S(n, k) is the Stirling number of the second kind. The factorial moments of A
are

n n

n = E[(A)n] = E s(n, k)E[Ak] = Z s(n, k)qk(t),
k=O k=O

where s(n, k) is the Stirling number of the first kind. Inverting the above gives
n n

)n (t) = Ad S(n, k)fk = Z, S(n, k)tk.
k=O k=O

An easy induction shows from this that fi = ti as desired. 1

The following proposition relates the compound polynomials to the exponential Bell
polynomials:

PROPOSITION 25. If fi = t then Cn(x,2, ... .,x n) = Yn(tx, tx 2,... , txn).

PROOF. From previous work we know that if the xi are the moments of a variable
X, then Yn(txl, tx 2,... , tn) are the moments of the compound Poisson variable SN,
where N is a Poisson random variable with parameter t. Thus fi = t by lemma 5,
and the result follows from the definition of the compound polynomials. [

Since the compound polynomials are always M-preserving and superficially resem-
ble Comtet polynomials, it is natural to investigate the intersection of the two classes.
The following theorem shows settles this problem:

THEOREM 17. If Cn(x1,x2 ,... ,xI) = Yn(xl, 2,... ,xn), then Qn = 1/n!.

PROOF. Matching coefficients of xn in Cn and Yf yields Qn = fn. By Proposition
25 this gives C(xl,x 2,... ,xn)= Yn( llQlX2,, . l. ,%x7 n). El

The question of when the compound polynomials are Hankel mean-independent is
settled by the following:

THEOREM 18. The matrix [Ci+j]i!j=o is Hankel mean-independent if and only if
fi = t for t a constant.

PROOF. We have Cn(x, 0, 0,... ,0) = fxn. Therefore det[fi+j],j=o as the coeffi-
cient of x~(n+l) in the expansion of det[Ci+j]ij=0. Hence if [ci+J]i;j=0 is Hankel mean-
independent, then det[fj+j]?,j=o _ 0 . By Proposition 9 this holds if and only if fi = ti
for some constant t. l
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Wle can interpret the above theorem as saying that the only Hankel mean-independent
compound map is the intersection of the compound maps with the Comtet polyno-
mials, that is, the exponential Bell map.
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CHAPTER V

Multidimensional extensions

We have seen that the Comtet polynomials have a number of interesting properties
and applications. Thus far these were essentially one-dimensional. In this chapter we
investigate the extent to which they carry over to higher-dimensional analogs of the
Comtet polynomials. We consider a variety of such analogs and study their properties
and applications. We find that many analogous properties hold, but some do not. For
example, the determinantal conditions for the one-dimensional Hamburger moment
problem are not sufficient in general. Earlier we applied this sufficiency condition
to prove that the one-dimensional ordinary Bell map is M-preserving. In higher
dimensions this condition is no longer sufficient.

1. Properties

As with many generalizations, there are several choices for how to extend the
definition of the Comtet polynomials to higher dimensions. Before selecting one of
these, we require some definitions.

DEFINITION 12. A composition of a non-negative integer n is a sequence of non-
negative integers A = (A1, 2, ... .,), such that n = Al + A2 + --...

DEFINITION 13. A d-composition of a non-negative integer n is a composition

A= ( 1,A 2,..- , d,O0,,...) of n.

Given a sequence of variables X = (xl, x2,... ) and compositions A = ( 1, 2, . ., )

and = ( 1,I2, · · ) we define

A! = A1!A2!... , A = Al + A2 + , (), = (1)p1(2) **

XA = .X1\X2 Al ( ) ( < A iff i < Ai for all i
Let T=tb1 e2 v < A if < A and A

Let T = (tx) be a d-dimensional vector where A runs through all d-compositions,
and similarly for X(1 ),... , X(e). Fix two vectors (x) and (w,), of dimension d and e
respectively.
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DEFINITION 14. The multidimensional partial Comtet polynomials
Bn, (X(1),... , X() ) are defined by

W (Z( )%T) ) ( X(... e) QATA) = B'1(X(),... ,X(e))QAT.

DEFINITION 15. The multidimensional Comtet polynomials

B 'w(X(),... ,X(e)) are defined by

B w(X( 1) ''. X (e)) = ,(X(1),... , x(e)).

In this chapter we restrict attention to the case e = 1. We can then write wn instead

of w,. In general, it should be clear how to extend results for d = 2 to arbitrary d;

hence for most of the discussion we will take d = 2.

A useful check is to note that the d-dimensional Comtet polynomials B~W(X)

subsume the (d - 1)-dimensional polynomials by putting some x equal to 0. For
example, Bo, 3(X) = B ', (X).

Particular forms of the multidimensional Comtet polynomials have been considered

previously. For example W. Chen [9] considers polynomials of compositional type

pA(X) which have generating function

TA

E pA(X) AT = egl(T)+X292(T)+-,.
A>o

where the gi(T) are power series with no constant term. These are generalizations of

sequences of binomial type. The multidimensional analog YA(X) of the exponential

Bell polynomials arises when e = 1, Qx = 1/A!, w, = 1. Thus

TA Tl

E Y (X) = l

In analogy with Proposition 1, an easy calculation shows:

PROPOSITION 26.

YA(X) = A!Z I (,,)C

where the sum is taken over A = ZEo<.<A c,au.

A short list for d = 2 is given below. We list Y,,a (X, 0, ,,, 1, ... ) only for al >
a2; clearly Ya,a (Xi,o, Xo,, l,, ,,. · · ) results from Ya2,al (Xl,O, Xo,1 Xl,,...) by replacing
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xij by xj,i.

Yo,o = 1
Y,o = Xlo

Yl,1 = x0z,Xl,o + Xl,1

(38) Y2,o = x2,0 + x 2,0

Y2,1 , 1XlX, 0 + 2Xl,o0 l,1 + XO, lX2,0 + X2,1
Y2,2 X0,1 xl, 0 + X0,2 X1,0 + 4Xo,,1 x,ox1 ,1 + 2x,1 ± 2x 1,0 X, 12 + XlX2l,0

+Xo, 2 X2 ,0 + 2x o,lX 2,1 + X2,2

Similarly, we can define the multi-dimensional ordinary Bell polynomials by setting
e = 1, Qux = 1 and w, = 1. Here is a short list for d = 2 of the ordinary Bell

polynomials:

B ° = 1
0,0= 1 0

B,1 = 2Xol,xlo + 1Xl1
(39) B 0 = 2 + 

2,0 - 1,0 X2, 0

- X2 2 2B o2 - Xo, 3 Xo, 2X 1 , 0 + 6Xo,lX1 l2 ,0 + 2,1B,2 2= xo ,1 o,0 + 3; 0, 2a 0 + 6XOaL;1a,0 aL1 +,1 2Xl, OX1,2 + 3X2, 1 X2,0
+2X0, 2 X2,0 + 2xo,1l 2,1 + X2 ,2

The following convolutional property of the multidimensional exponential Bell poly-
nomials holds:

PROPOSITION 27.

Y(U + V) = Y(U)Y\_(V).

PROOF. The proof is a straightforward generalization of the one given earlier for
Proposition 2. El

2. Moments and Hankel mean-independence

Let X be a random variable taking values in R C Rd with a d-dimensional prob-
ability distribution function Pr(Z). If A is a d-composition, the A 'th moment of X
is

mx = E[X x] = J| ZA dPr(Z).

For example, if X = (U, V) is a 2-dimensional random vector, then mi,j = E[UiVj].

We define the moment sequence of X to be (mx)x>o (thus ignoring the zero'th
moment mo,o,... = 1), and denote the set of all moment sequences in Rd by Md. With
the above definitions it should be clear what is meant by the d-dimensional moment
problem on R. The concept of moment generating function extends in the expected
way:
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DEFINITION 16. The moment generating function G(T) for a d-dimensional ran-
dom vector X is

G(T) = E +E[X ]T.
A>O

PROPOSITION 28. If X = (U, V) is a 2-dimensional random vector with moment

generating function G(T) with T = (tl , t2), then

G(T) = E[eTX] = E[etU+t2V].

PROOF.

E[eTX] = E[etlU+t2V] =E [a ! (tlU + t2V)n]

1 / jln 0 li i
= E . Ef )tlU t 2V = Z -iE[UiV3]tt 2 = G(T).

n=O i ' i,j=oZ

E

We now extend the idea of Hankel mean-independence to higher dimensions. It is not

immediately clear how to define a Hankel matrix for d-dimensional moments; however

by looking in more detail at the one-dimensional case we are led to a meaningful

definition.

In previous chapters we exploited the fact the non-negativity of the Hankel deter-

minants is necessary and sufficient for solvability of the moment problem on IR. This

criterion is an application of the following theorem found in [33]:

THEOREM 19. A necessary and sufficient condition for the d-dimensional moment
problem on R C Rd defined by a sequence (mA) to have a solution is that the functional

L(p) = Z cmA

be non-negative whenever

p(U) = EcAUA

is any a polynomial with P(U) > 0 for all U E R.

COROLLARY 11. The moment space Md is closed under the weak topology.

In one dimension, the Hamburger Theorem follows by from the fact that every

polynomial p(u) non-negative on 1R is a sum of squares. If p(u) = (co + clu +... +

cnun)2, the resulting functional L is the Hankel quadratic form
n

E mi+jcicj,
i,j=o

It is well known from the theory of quadratic forms that this is non-negative for all
ci E IR if and only if the principal minors of the matrix [mi+j]ij=0 are non-negative.
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This suggests that we try to find an analog of the Hamburger Theorem by considering

the resulting functional L applied to p(U) = q(U)2 . For simplicity, from here on we

consider only the case d = 2, with obvious extensions to arbitrary d. Consider the

non-negative polynomial
2

p(U) = l cAUj.

For definiteness, we order the coefficients cA in the same manner as with a two-variable
Taylor series expansion, first in increasing order of At, then in increasing order of A2

for fixed AI. The resulting matrix is symmetric. By the theory of quadratic forms,

the functional L is non-negative if and only if the principal minors of the matrix

=H. = [M A IAl,.=o

are all non-negative. Technically, we should not refer to Hn as a Hankel matrix, since

mx+,u does not depend solely on A + tI. Nevertheless, we will make a slight abuse of

terminology by referring to

An = det Hn

as the n'th Hankel determinant. For example, consider the square of a linear polyno-
mial:

p(ul,u 2) = (a + bul + cu 2)2 = a2 + 2abul + b2u2 + 2aCu2 + 2bculu 2 + Cu2.( 1 2'CCU2tLC;U1C2tC

We have

L(p) = a2 mo,o0 + 2abml,o + b2m2,o + 2acnmo, + 2bcml,1 + c2mo,2,

and thus labeling the rows and columns a, b, c, we get

a b c
a mlo mrn,0 n 0, 1

H2 = b n1 ,0 m 2,0 m 1 ,1

L mo, 1 m 1, 1 m0, 2

For the square of a quadratic polynomial the determinant is

(40) H3 =

1 ml, 0 mo, 1 m 2,0 m 1 ,1 mo, 2

ml, 0 m 2,0 m 1, 1 m 3,0 m 2,1 M1,2

mo, 1 m 1, 1 mo0 , 2 m 2,1 m 1, 2 m 0,3

m2,0 rn 3 ,0 m2,1 rn4 ,0 m3,1 m2,2

ml, 1 rn2,1 rn1 ,2 rn3 ,1 rn2 ,2 rn1 ,3

rn0 ,2 m1 ,2 m0, 3 m2, 2 m1 ,3 0 ,4

We note that the non-negativity of all the principal minors of H, is not sufficient

for the solvability of the d-dimensional moment problem when d 2. This is because
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for d > 2 there exist non-negative polynomials which cannot be expressed as a sum
of squares, as noted by Hilbert [17]. In particular, the Motzkin polynomial

(U2 + U2 - 3)ul u 2 + 1

is such a polynomial on IR2 (see [24]). Recall that we used the sufficiency of the
Hamburger Theorem to prove the remarkable fact that the one-dimensional ordinary
Bell polynomials are M-preserving. Such methods will not apply in the higher-

dimensional case, and we must resort to other means.

If V = (p,(X)) is any 2-dimensional vector with polynomial coordinates, we can
define the Hankel matrix Hn(V) and A,(V) by replacing XA by vA in H, and An.

We can now present an analog of Hankel mean-independence.

DEFINITION 17. Let V = (p,(X)) be a 2-dimensional vector with polynomial coor-

dinates. If the Hankel determinants for A(p,(U)) are independent of x,, for Iy = 1,
we say that (pA(U)) is Hankel mean-independent.

THEOREM 20. The sequence (Y(X)) is Hankel mean-independent.

PROOF. Let X = (xi-,i2). Define

X' = (x1,0, xo,1,0, ... ), and X" = (0,0, x2,0, 1,1, xl, 2, .. ). It is easily seen that
Ax(X') = ,o1 "'i. By Proposition 27 we have

Y(X) = (A)Y(X')YA((X) = E () (X')Y-(X").

Inverting the above gives

(41) Y(X")= : ()(--X)Yy(X) = ()(-10) (-Xol)"2Y_,(X) .

We now replace the A'th row RA of H by

where R, is the 'th row in the Hankel matrix. Similarly, we replace the A'th column
Dby

(-X')C>"cA

where C, represents the /i'th column. Such elementary row and column operations
do not change the value of the determinant An, and hence the result follows from
equation (41). 
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Note that the above proof shows that the other principal minors of H are also
independent of x, for all 41 = 1.

By applying the functional L to the Motzkin polynomial we get

(42) m4,2 + m 2,4 - 3m 2 ,2 + mo,0 .

If mi,j = Yi,j(X), equation (42) is not independent of x1,o and x0 ,l, as Y4 ,2(X) contains
the term x2 x4 , 1 which can only be eliminated by a term in Y2,2(X) which clearly does

not exist. This implies that Hankel mean-independence is not merely a consequence
of shifting the random variable so that its first moments x1,o and x0,1 are zero.

The following proposition is of note:

PROPOSITION 29. The Bx(X) are not Hankel mean-independent.

PROOF. An easy calculation using 39 shows that

1 B, 0 Bo,1
(43) A2(B°) = B °,o B, 0 Bo,, 2 x2, 2 x2 , - 2xox 0oxj X 2

1 0 2,0 1,1 X0,2X2,0 - 1,1 - 2Xo1l2lO2 ,1 -X0, 1, 0 .

B o, B o, Bo,2

3. Moment sequence preserving maps

We now look at some of the Md-preserving properties of the multi-dimensional
Comtet polynomials. To start off, it is remarkable that the ordinary d-dimensional
Bell polynomials are no longer moment sequence preserving for d > 2:

PROPOSITION 30. The (BO(X)) are not Md-preserving for d > 2.

PROOF. Since each d-dimensional polynomial vector B (X) contains the previous

(d - 1)-dimensional vector, derived by putting some xxA equal to 0, we need only
prove the proposition for d = 2. Consider a 2-dimensional random vector where each

component is an independent Bernoulli process with probability of success p. It is
easily seen that the moments are

{p2 if i# 0 and j 0,
Pj = if i = O or j = 0,

Substituting the above values into equation (43) gives p2 - 4p4. This is negative for
p > 1/2, and thus the map is not moment preserving. O

We now prove an extension of Theorem 2:
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THEOREM 21. Let X = (S, T) be a 2-dimensional random vector with moments

E[XA] = E[SA1TA2] = XA.

Then there exists a 2-dimensional random vector Z = (U(p),V(p)) such that if
Z1, Z2,... are iid copies of Z, then

E[(Z 1 + -- + Zm)\] = E[(U 1 + + Um)' (Vi + - + Vm)\ 2]

tends to YA(tX) as m - oo, p -- 0 and mp -- t, where t is a scalar.

PROOF. By an obvious extension of Lemma 2, if p E [0, 1] there is a 2-dimensional
random vector Z(p) with E[ZA] = pE[XA] for all A > 0. Let Z1,..., Zm be iid copies
of Z. Then

E[(Z + + Zm)] = =E[(U + + Um

il+i2+...=m ili2"
jl +j2 + =m

By independence of the Zi, this gives

)l (V1 +... + V)A2]

( )A2 E[Ut1 Vl U22i2 .2 .]

E[(U1 + .. + Um)'(Vi + + Vm)X\]

m! , !pE C,,cz: ArpZjP HE[S4T1 T2].
=Y0<~<X C (m - E, C,)! -, !(u!) ' 1·

We have

(m - p )! 0 (mP)EZC
Hence

E[(U 1 + ..- + Um)'A(Vl + ' ' ' + Vm)A2] XA! E c nH (t)C = YA (t),C,'O <p<H, c crig (,!)
by Proposition 26. 

We now have that Yx(X) are moments by the closure of Md.

As in Theorem 3, we can also interpret the multi-dimensional exponential Bell
polynomials as moments of multidimensional compound Poisson process.

DEFINITION 18. Given a multidimensional random variable U and independent
identically distributed copies U1,U2,... of it, the compound Poisson random vari-
able SN(U, t) is defined by SN(U, t) = kN=l Uk, where N is Poisson distributed with
parameter t.

THEOREM 22. If U is a random variable with moments X = (x), then Y(tX) are
the moments of the compound Poisson random variable SN(U, t).
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PROOF. Let F(z) = 1 + El, xxZX/A! be the exponential moment generating func-
tion of U. Put , = U1 + --- + Us, where the Ui are iid copies of U. It is easy to see
that as in the one-dimensional case, the moment generating function for the sum of
iid random vectors is the product of their individual moment generating functions.
Hence by independence we have

F(Z)- = ZE[SNIN = n] v!
V

The exponential moment generating function for SN(U, t) is

ZAZ _ F(Z) n et+F(Z)
E[eZSN] = y] Pr(N = n) E[SNIN = n] = e-

n>O ] n>O

= etEA>o XAZA/M = E Y(X)- 

COROLLARY 12. The Yx(X) are M-preserving.

4. Concluding remarks

We have only touched on the vast number of possible extensions to multiple vari-
ables in this last chapter. For example we could easily have developed a theory for the
multi-dimensional Comtet polynomials using multi-dimensional binomial posets along
the lines suggested by algebras of Dirichlet type found in [12], extended the results on
circular processes and generalizations of the Stirling numbers, examined relations to
polynomials of compositional and plethystic type, derived a multi-dimensional char-
acterization theorem, and much more.

Further sacrifices had to be made even in the one-dimensional work. Topics such as
extension of finite binomial posets, orthogonality (as described by Touchard in [39]),
higher invariance of cumulants, species, Schur functions, exponential structures [35],
and such will have to be dealt with in later works.

It is hoped that this work will inspire new approaches to the investigation into the
interplay of combinatorics and probability. In particular, we hope to have brought
some new light into the area of research of polynomials derived from compositions,
as expounded by Rota [31], Comtet [10], Touchard [38], Bell [4], Stanley [37] and
more.
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