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Abstract

In the first part of this work we present a study of the stability of soliton and polaron
excitations in a single strand of trans-polyacetylene. We proceed by first solving
exactly the continuum version of the SSH Hamiltonian for the single particle states
that arise when n-doped electrons are added to a single polymer chain. The role of
on-site (U), nearest-neighbor (V), and bond repulsion (W) Coulomb interactions are
obtained from a first-order perturbative calculation with the exact single-particle
states. By minimizing the total energy we show that, at a fixed doping level,
a polaron lattice is favored over a soliton configuration provided that U and V
exceed critical. values. However, as the doping level is increased, we show that
these critical values increase beyond experimentally-accepted estimates. Our work
then supports the view of a soliton lattice that persists into the metallic phase
of polyacetylene. In addition, we show that the bound state soliton levels merge
to fill the gap sufficiently that the magnetic susceptibility becomes non-zero and
comparable to the corresponding experimental values. This picture also accounts
for the onset of a Pauli susceptibility at a doping level of 6% in terms of the rate of
closure of the gap.

In the second part, the transport properties in the highly doped regime are
analyzed considering the density of states of an impurity in the chain. It is calcu-
lated as a function of the atomic impurity level and the hybridization energy. The
inclusion of a gap in the spectrum of the chain takes into account the remaining
charge alternation pattern observed in this high doping regime. It is shown that a
Kondo-like resonance exists at the top of the gap and that a logT behavior should
be exhibited i the resistivity of the sample, as experiments have revealed. It is
shown that in order to observe the Kondo resonance, the gap must be smaller than
the Kondo Temperature of the system without the gap.

Thesis Supervisor: Philip Phillips
Title: Professor of Physics
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Chapter 

Introduction.

The doping dependence of the electronic and magnetic properties of trans Poly-

acetylene (PA' have challenged experimentalists and theoreticians for quite some

times. At the heart of the PA story are the onset of a Pauli susceptibility at a

doping level of 6%, and the nature of the logT behavior in the resistivity of heavily

doped samples. It is precisely these two problems that we focus on here in this

thesis. As a consequence, this work will help illuminate a key outstanding problem

regarding PA, namely, the nature of the charge carriers in the system in the highly

doped regime.

The interest in PA stems from the fact that its conductivity as a function of

doping ranges from o - 10-' to - I'S/cm [1]. In addition to the high con-

ductivity, PA is useful technologically because it can be reversibly doped 2 Also,

the lack of metallic temperature behavior in the conductivity at the highly doped

regime (p - 0%) indicates that perhaps the measured properties are not intrin-

sic and still higher values of could be attained 3 Theoretically, this activated

behavior in the conductivity is problematic because such high conductivity is gen-

erally not associated with activated transport. This discrepancy poses questions

as to the origin of its high conductivity in the highly doped regime. In addition,

the magnetic properties exhibit an onset of a metallic magnetic susceptibility at

around a doping level of p - 6 4 At this doping level the conductivity is on the
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order of 100S/cm. At low doping, charged soliton excitations have been shown to

be the predominant species that dominate the physics and chemistry [5]. However,

because charged solitons are spinless, the onset of the magnetic susceptibility at

P - 6 would be difficult to be attributed to such charge carriers. A key result

that is established in the present work is that the soliton level distribution can lead

to an emergence of a Pauli susceptibility as a function of doping.

In this chapter a brief account of the basic experimental and theoretical aspects

of PA is given. The four sections deal with the most important aspects that are

relevant and of interest in PA. The four topics are the morphology of the system and

its relevance to the physical properties, the excitations that dominate the physics,

magnetic properties as studied by measurements of the magnetic susceptibility, and

the conductivity.

1.1. Morphology.

A key to the nderstanding of the physical phenomena involved in PA is its mor-

phology. PA a planar molecule with carbon atoms in an SP2 hybridization consti-

tuting its backbone. This type of hybridization gives rise to one dangling p,,-bond

per atomic site that associate in pairs to form -7r-bonds. The o-electrons, forming

tighter bonds than the -7r-electrons, are responsible for the strong intrachain forces

that maintain the integrity of the chains even as doping is achieved (figure 1.1). The

distribution of these two alternating and different lengths (arising from the alterna-

tion. of o- and 7r-bonds) creates an insulator of what otherwise would have been a

1-d half-filled metal. In most samples, PA strands tend to arrange in a crystalline

structure depicted in figure 1.2(a 6 The interchain spaces will play a major role

in the doping dynamics and overall properties of the doped material because the im-

purities will gather and diffuse through them. The crystalline phases are themselves

encompased in. superstructural fibrils of about - 200A in diameter (figure 1.2(b)).
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This complex arrangement locks the system with an open morphology (high surface

area) while weak interchain forces permit a reversible doping mechanism at room

temperature. Because dopants have to travel at most 100A to get to any chain, this

also yields fast doping dynamics. Regarding the role of the impurities in PA, studies

show that there is complete charge transfer between the dopant atom and the PA

chains and that charge carriers reside on the chains 7 However, the role of the

dopant atoms do not end there, adding point sources of Coulombic electrical fields

to the system. In the light of this hierarchy of structures then one concludes that

in order to account for the macroscopic transport properties, interfibrilar transport,

interchain hoping, and breaks in single chains should be taken into account [5].

The alternating distribution of the two inter-site distances described previously

renders the pristine or undoped system an insulator with a gap. This undoped 7-

electron band can be very simply accounted for by considering a simple tight-binding

model of the backbone containing two different hopping electron probabilities tj and

t2 Usual values for these are t _- 3.65eV and t2 2.75eV. This alternating ar-

rangement can be mapped into a uniformly periodic atomic chain with site energies

(t2 + t2 )1E and intersite hopping V = t1t21E. Solving the eigenvalue equation1 2

(E - E)C = V(C.+i + C�'-1)

where C are the electronic amplitudes at site n, we get for the energy as a function

of wavenumber
E(k) =c + 2V cos(2ka)

�t2 + t2 + 2tlt2cos(2ka). (1.2)
1 2

This spectrum is depicted in figure 13. Usual values for the size of the band and

gap are W = 1.2.8eV (4t,,) and 2A, = 1.8eV. The gap of 2A,, renders the undoped

phase of PA a insulator.



Introduction. 13

E

2to

AO

0

-AO

- 2to

k

Figure 13. One-dimensional tight-binding band structure. The total gap 2,, arises

from the electron-phonon interaction. t is the electron hopping term and a the

lattice constant.
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1.2. Excitations.

In addition t electrons and holes as elementary excitations in PA, there are also

polarons and solitons A polaron consists basically of a self localized charge distri-

bution. This charge is distributed over a series of adjacent sites. Solitons can also

exist as stable excitations forming the domain wall separating the two degenerate

ground states of PA [8]. In the same way as polarons, solitons have a charge density

that extends over a series of neighboring sites. On the other hand, only odd or even

numbered sites will actually have some of this charge density aocated to them.

A point of further distinction is the fact that solitons exhibit opposite charge-spin

relations to the ones exhibited by normal charges. These points will be made clearer

in what follows.

Consider the two degenerate phases A and where each one corresponds to

having the 7r-electons in one of the two sides of the backbone (figure 1.1). These

two phases can be joined together by a domain wall which can be considered as

a topological efect, or soliton. To this defect there is associated a width 2 that

is of the order of - 7a, where a is the lattice constant [8]. An order parameter

can also be defined as being the relative distance from site to site. If site n is

displaced a distance Un from euilibrium, let us define then the order parameter

- _I)nby An = Un. This makes the order parameter a measure of the displacement

away from equillibrium of the set of sites in the chain. For a uniformly dimerized

PA chain Jun --- Un+1 I = 2u,,. This prompts us to define un = _l)nU,, which results

in an order parameter n ± for phase A and - for phase B). In this way

the order parameter for a chain of a single phase is given by a constant value of

magnitude Ju,,J. Because An = ,, then having the two phases in a chain implies

figure 1.4(a), where 2 is the region of "transition" between each phase. Studies

show that A(x) _- Atanh(kx) where A(x) is the continuum version of the order

parameter. The parameter k is the wavenumber associated to the soliton.

To every domain wall or soliton there can be assigned a midgap state. There
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Figure 14- (a) Order parameter for the soliton of width �. At large values of x away

from the domain wall the order parameter asumes the constant value corresponding

to the relevant phase. (b) hows the three possible soliton configurations with their

respective occupation numbers and the molecular analog for each.
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are three basic possibilities for a soliton, as is depicted in figure 1.4(b). The inverse

charge-spin relations make this excitation a very interesting one. The neutral soliton

can be realized in practice by considering an odd-numbered chain. Because chains

prefer to end with a double bond at both ends, an odd-numbered chain will have

by definition wo distinct phases at each extreme. Somewhere in the middle they

have to join, thus forming the neutral soliton. It is neutral because no charge has

been added to it, but possesses spin 12 which belongs to the "extra" 7r orbital

(net spin 12) of net charge zero. The two other realizations are possible by either

adding (negative soliton) or taking (positive soliton) a charge from the chain already

containing a neutral soliton, for example. In the case of adding one electron, the

extra electron would pair with the existing 7r-electron thus cancelling out the spin,

but adding a charge -e. The same argument applies as well for the case of extracting

a charge -e. The creation energy for a soliton is calculated to be E, -_ 2A,,/7 9.

Consider now the case of polarons. Because a polaron is simply a localized

charge with a width, there will be a local distortion of the distribution of bonds

around the polaron. Because the charge spreads over a region without causing any

phase change, the polarons are non-topological excitations. Therefore, they can

exists in chains that are in a single phase. The order parameter for a polaron is

represented in the same way as in the soliton case (figure 1.5(a)). The distortion

of the 7r-electron cloud is seen only locally. The lack of any topological constraint

makes the polaron formation in a chain the preferred one when a single electron is

introduced into the chain. The energy levels for a polaron are a distance /V/2

from the center of the gap (figure 1.5(b)). The creation energy for a polaron is

calculated to be Ep 2v/-2,A,/7r [10, 11].

Experiments can confirm the existence of polarons. This comes from the fact

that the charge transferred from the impurity to the chains is pinned to the im-

purity. This is the situation to be expected if one considers the charge transfer

to be localized in polaron excitations. Further doping indicates a "de-pinning" of

the charges in the chain. This "de-pinning" is closely related to the formation of



(b)

Figure 1.5. (a) Order parameter and (b) band diagram for a polaron. An electron

is missing from the upper state for an electron polaron, and only a single electron

occupies the lower state for a hole polaron.
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solitons. It is remarkable that present experimental techniques support the subse-

quent formation of solitons with as much certainty as in the polaronic case. Solitons

may be generated by photoexcitation 12] and doping experiments 13]. As exper-

imental proof of the existence of solitons is the midgap absorption upon doping

as iustrated in figure 16 14]. In photoexcitation experiments charge carriers are

generated with h < eV. Quantum fluctuations can be shown to supply the other

.8eV to create an electron-hole pair across the gap. This two-particle complex in

turn decays into a soliton-antisoliton pair and some other "breathers" ( neutral

solitons). The small decay time 7 - 10-3S confims the small calculated effective

mass (m* - 6m,) and the strong short range repulsion between equally charged

solitons. This has been simulated by molecular dynamics calculations. The mech-

anism of decay- of an electron-hole pair into soliton-antisoliton is confirmed by the

infrared active vibrational (IRAV) modes, the midgap absorption, and electron spin

resonance (ESR) experiments during photogeneration [5]. Perhaps the strongest ex-

perimental support for solitons in PA is the fact that PA exhibits photoconductivity

but not photoluminescence. This is due to the mobile character of the solitons that

diffuse the charge away from the hole, therefore suppresing the photoluminescence

that would occur if the electron and hole were to recombine again. In general,

photoluminescence (but not photoconductivity) can be observed in polymers with

non-degenerate ground state [5]. This comes about because polymers without a de-

generate ground state cannot exhibit the domain wall between the two degenerate

phases, thus precluding the existence of solitons. As evidence to the delocalization

of the spin, electron spin resonance (ESR), nuclear magnetic resonance (NMR), and

electron-nuclear double resonance (ENDOR) experiments can be used to estimate

that the spins for neutral solitons are spread over 15-20 lattices.
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1.3. Magnetic Susceptibility.

Experiments concerned with the magnetic susceptibility have been performed that

show perhaps the most interesting property of PA [15]. The most dramatic results

are presented in figure 1.7(a 4 The results appear to characterize three regions

in the magnetic susceptibility as a function of doping; the very low doping regime

(p << 1%) where a decrease of localized spins is observed, the intermediate doping

regime 1%< p < 6) where there is roughly a constant number of about 12 spins

per chain, and the highly doped regime (p > 6) where there is the appearance of

a temperature independent magnetic susceptibility (figure 1.7(b)). Initially, ESR

measurements indicate that in the p -_ (no doping) region there is roughly one

spin per chain.

The low doping region can be explained in a consistent fashion with a soliton

picture. First, consider a sample of undoped PA. Experiments indicate roughly

one spin per chain. This fact can be explained by observing that a macroscopic

sample is expected to contain approximately equal amounts of even-numbered and

odd-numbered chains. Because odd chains intrinsically possess the two degenerate

phases, there is automatically a neutral soliton formed in them. This means that

there is going o be at least spin per every odd-chain as a result of the spin-charge

relations for solitons. Then , the decay in spins at the very light doping regime

(p <1%) can be explained considering that the neutral solitons already existing in

the chains get charged. Thus, the population of neutral solitons with spin decreases

giving rise to charged solitons with no spin.

The intermediate doping region 1< p < 6), where experiments show a

constant 12 spins per chain, poses other conceptual problems. If we were to ex-

plain the existence of this 12 spin per chain by merely charging up the neutral

solitons we would face the problem that we should have ran out of these neutral

solitons at p - 0'. However, the appearance of the dopant induced IRAV modes

(but dopant independent) seems to indicate that charged solitons are present in this
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doping regime. IRAV modes are the signature of charged localized structural distor-

tions with localized phonons (breathers). Also, the midgap transition at - ,,

and the fact that NINh << 1 ( N is the number of spins obtained from ESR

experiments and Nh i the number of charges obtained from the intensity of the

IRAV modes), which is a key signature of reverse spin-charge numbers, truly point

to solitons as the key players in the susceptibility. The explanation comes from the

long range attraction between polarons indicated by the reaction P + P + S +

[16]. This means that as we dope the system, the number of polarons in the chains

increases, but that their long range attraction will recombine them into charged

soliton-antisoliton pairs. This reaction limits the number of polarons in a chain to

at most one, thus accounting for the observed spins per chain in the intermediate

region. Furthermore, because the system can be reversibly doped, experiments can

determine that, the doping occurs through the formation of polarons and that the

undoping is realized through the uncharging of solitons.

The highly doped region (p > 6) exhibits the rapid onset of the magnetic

susceptibility A, to a T-independent one. Its value is roughly what one could expect

for a metal. The form of the transition is dopant dependent (Na shows a very

sharp transition). X-ray data suppport some kind of structural order that could be

interpreted as a lattice or a highly correlated soliton liquid [5]. In chapter 2 we give

a simple account to the possible origin or this magnetic susceptibility.

1.4. Conductivity.

The results presented in section 1.1 regarding the decrease of the conductivity a

as the temperature is increased at high doping levels (p - 0%), suggest that

PA is not an itrinsic material. A contributing factor to not having an intrinsic

material is the interfibrillar contacts that act as "series resistances". However,

charge carriers can be shown to have relatively long mean free paths (several hundred
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angstroms) because by sghtly increasing the precentage Of SP3 defects lowers a

by an order of magnitude. Also, the highest value of a at this level (o - 1.5 x

105(f2CM)-1) 171 indicates that the intrinsic properties of PA should be better than

simple metals. In contradistinction to simple metals, however, transport seems to be

highly anisotropic hinting that the main mechanisms involved in the physics are of

one-dimensional character 18,19]. Also, the pressure dependence of O' is anisotropic

yielding for example o-1 lo, t - 0 at .7kbar [5]. The fact that 0,11 increases with the

pressure while o i remains constant confirms the small overlap of neighboring chains.

Another aspect of utmost importance is the high value that the conductivity

can achieve as a function of doping (figure 1.7(a)). It has two main doping regions

that are of interest. In the dilute doping Emit (p < 0-5) the conductivity exhibits

a behavior o(T - T' (n - 13). This causes a rapid onset of condutivity that seems

to slow down at approximately p - %. Variable Range Hopping theory does not

quite account for this behavior nor the pressure dependence 20]. By electrochemical

voltage spectroscopy (EVS) measurements it is known that the charge transport is

carried out through a narrow band about midgap at this low doping 21]. This

result automatically rules out any model on hopping from states near the edges of

the bands. The model that correctly accounts for this is the intersoliton hopping

model (ISM) that indicates that the transport is intrinsic for p - % and does not

depend on the complex morphology 22]. The ISM considers hopping at midgap

at equal energies. That is, the hopping is realized between pinned charged solitons

to neutral mobile solitons. This model of transport by mobile charged solitons

is consistent with the susceptibility measurements as well as with the absorption

measurements. It is also consistent with the Infrared modes, which indicate charge

in spinless gap states.

The highly doped regime (metallic state) exhibits a very high value for the con-

ductivity (101 __ 15S/cm) but in contrast with metals, it decreases with tempera-

ture. The nature of the charge carriers is still the topic of debate. The highly doped

regime is strongly correlated and hence cannot be described by non-interacting mod-
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els. Xp is what roughly one might expect from a nearly half-filled 7-band in the

absence of any Peierl's distortion, nontheless there is evidence of bond alternation

even at this doping level 23]. Suggestions as to the consideration of other in-

teractions may be important, such as electron-electron interactions and interchain

couplings 241. Recently developed Highly Conducting PA (HCPA) exhibits such

high value for the conductivity even at very low temperatures (mK region) 25].

One of the interesting properties addressed in chapter 3 will be the logT behavior

at the very low T region of the conductivity measurements (figure 1.8).
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intermediate aging. The logT characteristics are shown by the strai ht lines.
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Chapter 2

Properties as a Function of Doping.

2.1. Statement of the Problem.

Because the ground state of trans-polyacetylene is two-fold degenerate, polyacety-

lene is a Peierls band gap insulator at half filling. The degeneracy arises from

the periodic arrangement of alternating double and single bonds (which constitute

a commensurate charge density wave) along the polymer backbone. Su, Schrieffer,

and Heeger (SSH) have shown that the dimerization of the ground state of this poly-

mer can be accounted for by a one-electron phonon model with a periodic lattice

distortion [1]. On physical grounds, one would suspect that because an on-site Hub-

bard U favors a uniform charge density, the tendency to dimerization at half-filling

would desist if Hubbard-type of interactions were turned on. A curious feature of

trans-polyacetylene, however, is that electron correlations enhance dimerization at

half-filling [Ref. 2 and references therein]. This result, first established within the

context of the extended Peierls-Hubbard models [see for example Ref 3 certainly

hinted that the phonon SSH model can only partially account for the ground as

well as conducting states of this polymer. Subsequent perturbative calculations

[4,5], Monte Carlo 26], selfconsistent numerical 7 and exact studies [8] on finite

systems have substantiated the finding that short-range electron correlations most
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likely dominate the dimerization process in the ground state.

Away from half-filling, there have been relatively few studies on the role of

electron correlations in trans-polyacetylene. Such studies are of utmost importance

if the precise mechanism of the insulator-metal transition in polyacetylene is to be

understood. In this chapter, we address two questions: 1) what are the stable exci-

tations as single strands of polyacetylene are doped into the metallic regime? and

2) can the resultant excitations explain the onset of a Pauli susceptibilty at the

insulator-metal transition (IMT)? This work is motivated by the lack of concen-

sus on the operative mechanism for the IMT in trans-polyacetylene 910,11,12,13,

141151.

A key experimental feature that a successful mechanism for the IMT in poly-

acetylene must explain is the onset of the Pauli susceptibility at a doping level of 6%

[16]. Below this doping level only a residual Curie susceptiblilty is observed. The

virtual lack of spins below the IMT supports the view that charged solitonic rather

than electron or hole-like excitations form in the lightly-doped form of the polymer.

Charged solitonic excitations populate the mid-gap states and are spinless. One of

the early suggestions for the IMT in polyacetylene is the polaron model of Kivelson

and Heeger 9 Although this model would account for the Pauli susceptibility, it

is inconsistent with the intense IRAV modes observed in the experiments of Kim

and Heeger 17]. Kim and Heeger have observed that the intensity of the IRAV

mode (a signature of solitonic excitations) increases as the doping level is increased.

Nonetheless, a transition to some kind of polaron lattice must obtain if itinerant

spins are to form in the metallic state of trans-polyacetylene. Within the SSH one-

electron phonon model, only soliton excitations are stable, however at all doping

levels. Consequently, recent work on the metal transition in polyacetylene has fo-

cused on extensions of the SSH model that support polaron formation 10,18,191.

For example, Mizes and Conwell 19] have shown that interchain coupling as wel as

chain breaks stabilize polaron formation in trans-polyacetylene. These results were

established for short chains containing at most one polaron. Attempts to explore the
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stability of polarons in single strands of polyacetylnene have focused on perturba-

tive studies of the SSH model 520] appended with an on-site Hubbard U 21]. For

values of U as large as 4.2eV it was found that solitons were favored over polarons

regardless of the doping level. However, such studies treated the interactions at the

Hartree level and hence could not definitively answer the question as to the fate of

polarons in single strands of trans-polyacetylene. Other studies that point to this

solitonic characteristic are those on optical data 22], vibrational features 23,24],

crystal orbital calculations 25], and transport properties[26]. An alternative scheme

which skirts te IRAV mode problem, as wen as some of the other features, is the

polson model of Tanaka, et. al. [11, 12]. In this model it is argued that a hybrid

polaron-soliton excitation exists in the metal state of polyacetylene[llj. As a hy-

brid excitation, a polson can explain both the soliton characteristics of the metallic

phase as well as the Pauli susceptibility.

Given the obvious variety of proposals for the stable excitations in polyacety-

lene, we begin our investigation addressing the issue of the role of short-range cor-

relations along single strands of trans-polyacetylene as a function of doping. In

this way we will determine precisely whether solitons, polarons or some hybrid

state exists in the metallic phase of polyacetylene. To this end, the starting point

of our analysis is a Hamiltonian which incorporates both phonon interactions as

well as electron correlations 27]. The phonon interactions win be described by the

Takayama, Lin-Liu and Maki (TLM) 28] continuum version of the Su, Schrieffer,

and Heeger Hamiltonian [11, which is known to support both, polarons and soli-

tons as stable excitations 29]. Short-range electron correlations will be modeled

with an on-site Hubbard U a nearest neighbor repulsion V and a bond-repulsion

W. Although it-, is well accepted 2 34,5,6,7 830] that electron correlations play a

significant role in the ground-state properties of polyacetylene, few studies of their

influence away from half-filling have been conducted [5, 20,21,31]. In fact, what

studies have been completed have been confined to at most two extra electrons

[20,21,31] in a single polymer chain.
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In this chapter it will be shown that even in isolated chains a transition towards

a polaron lattice can be achieved as the interaction strength increases. We find

moreover, that doping appears to favor a soliton state. In addition, we consider the

role of a bond-charge Coulomb repulsion term, W. It has been suggested 4 that

W stabilizes a polaron lattice. Exact numerical calculations of the ground state of

short chains using this term at half filling have demonstrated a transition from a

dimerized to a ferromagnetic phase 32]. We have performed calculations including

this term in te total Hamiltonian and show that contrary to accepted wisdom W

favors a soliton lattice over a polaron lattice as a function of its strength and doping

level in the chain.

In the first part of this chapter we present a formalism 33] we have developed

recently that aows for a systematic study of electron correlations in so far as

they influence the stability of polaron and soliton configurations that result when

a single polymer strand is doped. The doping dependence will be determined by

calculating the energy levels of localized excitations that form in the mid gap region

when electrons are added to a single strand. The energy levels and wavefunctions for

these states will be obtained by using an Inverse Scattering Theory for reflectionless

bound states 31]. Because the resulting wavefunctions extrapolate smoothly from

soliton to polaron excitations when the position of the bound state energies in

the gap is tuned, we will minimize the total energy (which will include the short-

range Coulomb repulsion terms) with respect to these discrete energies in order to

determine the stable configuration of solitons or polarons. First order perturbation

theory on the full Hamiltonian will then be used to determine the role of correlations

[34,35].

The key results from this study are as follows. At a particular doping level, a

transition to a polaron lattice in an isolated chain certainly occurs provided that

U and V exceed critical values. However, as the doping level is increased, a soliton

lattice is favored. This conclusion is shown to be valid well into the metallic phase.

Within a soliton model for the metallic phase, we show that a Pauli susceptiblity
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can arise simply from the spreading of the bound state soliton levels across the gap.

The resultant Pauli susceptibility is shown to be consistent with the experimental

values.

2.2. Model Hamiltonian.

Before we present our model Hamiltonian, let us explain what happens when one and

two electrons are added to a single polyacetylene chain in the absence of electron

correlations. Consider first the addition of a single electron. The particle-hole

symmetry in the ground state of polyacetylene guarantees that each electron added

will produce two states symmetrically located around the Fermi energy, = 

The lower states are donated from the valence band and the upper states emerge

as bound states just above mid-gap. For a single electron 2 the energy levels

are located at, where ,, is the order parameter for the ground state. The

lower level will be doubly-occupied while the upper level win be singly occupied

and hence it will carry a spin of s = ±1/2 and a charge of Q-e. The resultant

2 2 Aexcitation is then an electron-polaron with a creation energy of Ep = "/, where
7r

A" Consider ow the case of two electrons. In this case four levels form with

energies ±A, and 0. The two extra electrons can either doubly occupy the bound

state at or they can singly occupy the ,, and energy states. The former case

corresponds to the formation of a soliton-antisoliton pair with a creation energy of

E. = 2(2A- ). The singly-occupied case corresponds to the creation of two polarons.
7r

The difference in energy between the soliton and polaron configurations is E
.4 (v/2 - 1) A,,2EP - Es = . 7r > 0. Consequently, in the case of two extra electrons,

the soliton-antisoliton pair is more stable than two polarons. The formation of

two sofitons from a polaron and an electron is mediated by the formation of and

subsequent dissociation of two polarons. This is an indication that the long-range

interaction between two polarons is sufficiently attractive and ultimately renders the
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two-soliton configuration as the lowest energy state 31]. It stands to reason then

that if on-site correlations are included, polarons could become stabilized relative

to the corresponding soliton-antisoliton configurations. It is precisely this issue that

we now address.

To this end, we start our analysis by considering the extended Peierls-Hubbard

model

'H =HTLM +HU HV HW (2.1)

where HTLM is the continuum TLM hamiltonian 20]

)2'HTLM dxA(x + dx1Ft[-iVf0_20x+A(X)0'1jXF- (2.2)
2-7r,\vf

In equation 2.2), = uv) is the two-component spinor, vf the fermi velocity,

A(x) the order parameter, and o-i are the Pauli matrices. The parameter denotes

the elastic energy coupling constant and the convention h = has been used. The

numerical values for the parameters are taken from Ref. 1. With our use Of 0,2

instead of the conventional 03, u and v correspond directly to the amplitudes for

the even and odd sites of the chain, respectively 31]. On-site and nearest-neighbor

electron correlations are described by

'Hu U njTnjj (2.3)

and

'Hv V njnj+,, (2.4)

where nj, -_ ct Cj is the number of electrons with spin s on site j, is the319 8 Cn

annihilation electron operator, and nj = nT + nji. The inclusion of off-diagonal

terms has been restricted in our calculations to the bond-charge repulsion term

'Hw = W (B,,,+, )2 (2.5)

where t C + Ct C,,,). We have ignored the other usually consid-1,1+ = E.,(C1 I 1+ 1 "S

ered "mixed" term involving both on-site and bond-charge effects primarily because
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W appears to play a more relevant role than the mixed term [4]. However, the main

conclusions of this article will be based primarily on on-site and nearest-neighbor

interactions. The W term will only introduce minor corrections.

Consider the generalized Hartree-Fock wavefunction for the valence band IV) -

fj et et 10) where I and rn refer to the continuum states. The total state containing

n polarons or solitons can be represented simply as 'D = fj et LIV) where a and01 T )3

refer to the bound states inside the gap. The expectation value of equation 21)

with respect to 14�), according to the atomic orbital representation used in obtaining

(2.2), is given by

(X)2 +
('HTLM) 27rAvf dxA nks dxTt 'VfO`2ax + A(X)0-1]XF, 26)

k a

('Hu) = ("Ta dx [ZIO ZTO + Z3 ZT31 (2-7)

(Z8 + Zio) _ Z21 _ 2('Hv) = I'a dx [Z80 82 - Z83(4,3 + g3)], (2.8)

('Hw) = 2Wa dx [_Z2 +Z21+Z2 + Z82(Z82 + 2�2)] + 2WN, (2.9)
80 a s3

where Zi Ek nk,,TtUiTk with the identity matrix, nk,. the occupation num-

ber for state (k, s), N the total number of electrons in the chain, and a the intersite

distance. The intermediate steps in the calculations leading to equations 27)

through 29) are given in Appendix F.

For a chain of arbitrary length, we must find u and v. Inverse scattering is

ideally suited for calculating u and v for a chain ofinfinite length. This procedure

determines the wavefunctions for an arbitrary number of excitations as well as the

distortion in the wavefunctions of the electrons forming the valence band. Results

for finite chains will be obtained by imposing appropriate boundary conditions on

the order parameter A(x) at the chain ends. The primary hurdle in obtaining the

non- interacting states is in determining the gap energy levels as the filling is varied.

These energies will be obtained uniquely by demanding that when n electrons are

added to a single chain, the gap energy levels variationally yield a minimum in the
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total energy. Note that because the total energy contains the Coulomb repulsion

terms, the subsequent energies of the bound states will depend on U, V and W in

a non-trivial ay. As will be seen, to incorporate the electron correlations into the

single particle levels will have a profound effect on the subsequent Pauh suscepti-

bility. We also note that there have been other attempts to implement the Inverse

Scattering procedure to obtain the single particle states for the TLM Hamiltonian.

In all previous works, however, a particular choice was made for the order param-

eter that favored either soliton or polaron states 13,14]. No such restrictions will

be imposed here.

We now outline briefly how the exact solution can be obtained for the non-

interacting part of the Hamiltonian. The eigenvalue equation for the TLM Hamil-

tonian
-Vfa,,Vk(X) + A(X)Vk(X) - EkUk(X)

(2.10)
Vfa,,Uk(X) + A(X)Uk(X) CkVk(X)

involves the site amplitudes for the even and odd-numbered sites, respectively. The

energies Ek /A2 + k2V2 refer to the conduction and valence band states. Elec-
V 0 f

trons added to the system will occupy states which he in the gap region. Electron-

hole symmetry guarantees that each electron added will produce two states sym-

metrically located with respect to 0. These discrete states also satisfy 2.10)

but with their espective energies wn A - k2V2 . For all cases, u and v satisfy0 n f

the normalization constraint,

dx [IU12 + IV12] (2.11)

The expectation value of HTLM can now be written as,

ETLM = 1 dxA(x )2 E nks6k (2.12)
27rAvf k' 8

The sum has to be carried out over continuum as well as discrete states of the chain.

For a chain of length L, periodic boundary conditions 36] are imposed such that

U _ 27 + Ok, where Ok = En 2 tan- I k for n excitations in the chain. Detailsi ki
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on the derivation of this boundary condition are given in Appendix B. In order to

calculate equation 212) for the n-excitation state we need the order parameter

A(x). The following development leads to the solution. Equation 210) can be

decoupled straightforwardly as

_a2
,Vn(X) + U(X)Vn(X) AnVn(X)

(2.13)
-'9'Un(X) + U(X)Un(X) AnUn(X)

where
U. I aA (X) + I [,A(X) _ A2]

Vf ax V2 0
f (2.14)

U� - 1 aA(X) + I [A(X)2 _ A2]
Vf ax V2 0f

the parameter An '2 ILV2 'A2], and e, o stand for even and odd, respectively.
Vf n 0

These 1-dimensional Schrodinger equations can be solved by the Inverse Scattering

technique 37,38]. In this account, the Uo,, are determined in terms of the set Of An

defined in equation 2.13). Then we can proceed to find the minimum of ETL by

,OETLM
= 07 (2.15)

acz�

where c� W1, LOn 1. The minimizing set of f Wi Lnin will be used to calculate

the minimum energy of the stable configuration of electronic excitations. The order

parameter is given then by inverting equation 2.14),

aA(x) Vf
ax 2 U,, U�1)

2 (2.16)
A(X)2 A2 + V� (U + U,).

0 2

For very long chains Inverse Scattering Theory yields 37]

d 2
U0 "I, 2 ln det(A + 1) (2.17)

dX2

eo e. 0 (kn +k-)-where Amn = en- ec)" ' k,, + k_ Because a requisite of equation 217) is that

the potentials U0,, vanish at the ends of the chain, long chains are required. On

physical grounds, Uo,, are the potentials that confine the excitation states. Con-

sequently, they vanish at distances larger than the width of the excitations. Thus,
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the solution in 2.17) is valid as long as the chain is longer than the combined width

of a the excitations in it. A relation between the set of f an,,j and the set of0,

fwil is developed in Appendix C. Once this is achieved the fwil will be the only

undetermined set of parameters which are subsequently fixed by applying equation

(2.1.5). The determinant in equation 217) has been evaluated explicitly for the

n-excitation case. The expression is given in Appendix C where we have defined

Wo,, - det (A + ).

With the order parameter in hand, we can now solve explicitly for ETLM We

are particularly interested in the creation energies for excitations introduced into

the gap. Let E be the energy of a uniformly dimerized undoped chain. TheTLM

creation energy for an arbitrary number of excitations in the gap is

4vf 4
bE + E witan + E(n+ n)Wi (2.18)

Ir 7r kivf
i

where bE - ETLM E0 /A2

TLMI P Ej ki, and kivf 0 where wi are the

energies of the levels in the gap. The notation nt denotes the occupation number

for the negative and positive ith level in the gap. The energy E is calculatedTLM

from equation 212) using A(x = ,, and carrying out the summation over k

with the corresponding boundary condition kL -- 2m7r. In this way the quantity in

equation 2.18) is the creation energy for the excitations introduced in the gap.

Let us analyze expression 218) in the case of a single electron. When an

extra electron is added, two levels form in the band gap. One is donated from the

conduction band and the other from the valence band. The electronic occupations

correspond to n = 2 n - for the lower and upper levels, respectively. InI 

this case a minimization of the energy with respect to this single parameter (both

levels are symmetrically located at ±wl " = = 'tan-' -1 + nl - n yieldsawl 7r klvf +

W1 When substituted into equation (2.18) we obtain that bE 2-,.2A_
7r

the well-known polaron creation energy for trans-polyacetylene 39]. Similarly, for

two electrons, four levels form with energies W2 -_ ,, and = and occupation

numbers n 2 = 2 n = 2 n = 2 and n 2 = 0. Using these values for I and W2,
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we find that the total creation energy is bE = 2(-2-A-) which is the creation energyir

for two solitons. The formation of two solitons from a polaron and an electron is

mediated by the formation of and subsequent dissociation of two polarons. This is

an indication that the long-range interaction between two polarons is sufficiently

attractive and ultimately renders the two-soliton configuration as the lowest energy

state 31]. Note that by choosing n n2 = instead, we would have forced the

system into a two-polaron state thereby suppresing dissociation. The corresponding

energy would be equivalent to the energy of two isolated polarons. This fact win

be important because then we have a way of constructing both soliton and polaron

states with the same amount of electrons in the chain.

Due to electron-hole symmetry only negative type excitations will be consid-

ered. The distinction between polaron and soliton excitations will be introduced, as

outlined in the above development, by noting that polarons carry singly occupied

levels above te center of the gap meanwhile solitons are obtained by doubly occu-

pying those same states. These fillings may be verified by carrying out 2.15) and

further examining the corresponding order parameters and charge densities of each

excitation. By calculating the energy of each configuration then, we will be able

to choose that configuration that has the lowest energy, or equivalently the stable

configuration.

In order to calculate the energy of the full interacting Hamiltonian 21 we

now have to determine the amplitudes u and v that describe the bound states in

the gap region.. To this end, we must solve the eigenvalue equations 2.10) for the

bound state energies instead of the continuum energies Ck- In analogy with Inverse

Scattering for reflectionless potentials 38], the wavefunctions of the bound states

in the gap are given by

2a' k, xU"'(X = e kx 2k,,e It U,(x)e- (2.19)
k, + knn

where vn(x) = sign(wn)(-1)-+1un(-x). The distorted valence and conduction



2.2. Model Hamiltonian 39

band states are given by

2,,n2kne It Un(X)e- knikx
Uk(x = e kn - k (2.20)

n

A useful approximation that much facilitates calculations is given by inserting 2.20)

in the second equation of 2.10) and considering that the wave functions are slowly

varying functions of the distance. I this Emit

V - sign'Ek ikvf + A(x)k(X) Uk(x). (2.21)
'Ek I

The above expressions define the amplitudes for the wavefunctions up to a normal-

ization factor that is subsequently determined by applying equation 2.11). The

amplitudes of the wavefunctions in the continuum as well as those in the gap are

now solely determined by solving the system given by 2.19). Details of the calcula-

tion and explicit expressions for Un in the n-excitation case are given in Appendix

C.

We have provided thus far a means for calculating variationally the interacting

creation energies of the -excitation system for infinite chains. To consider finite

chains, we proceed as follows. The condition for the vanishing of the potentials

U,,,, at the boundaries of the system imply that A(x = ±A, as can be

checked by equation 214). This means physically that at and near the bound-

aries, the system. returns to the alternating bond configuration corresponding to

the uniformly dimerized chain. In order then to be able to consider smaller chain

lengths and still be able to use Inverse Scattering Theory we only need to impose

liM,,±L/2 A(X) __ ±A, which is exactly the same condition but now L enters ex-

plicitly in the calculation of the order parameter. Imposing this boundary condition

on the second equation of 2.16) and using the fact that U, = 2 d2 In W,,, we

obtain

A(X)2 - A' = G(x) + D(L) (2.22)0

where G(x = v 2 d2 ln(WoW,). The quantity D(L) has to satisfy the conditions

D(L = -G(± L) and iML-±,, D(L = 0. The first condition defines D and the2



second condition follows directly from the properties of W,,,, as outlined in Appendix

C. Now applying the boundary condition on the first equation of 2.16) we obtain

the relation

A (x) dx (U. - U,.) f (x) C L) (2.23)
2

where f (x = Vf [ W - W! ]. Again, from the boundary conditions it follows that
W. W!

C(L) ,, - f(±L). A relation can be found between D and C using the above2

)2 _ 2equations, namely D(L = C(L 0.

Because our objective in this chapter is to determine to what extent polarons

are stable given their intrinsic attractive long-range interactions, we concern our-

selves with an even number of extra electrons in the chain. Also, for simplicity we

will only consider even numbered chains. Thus, having even number of excitations

and sites in a chain restrict further the boundary condition to A(± L) Ao. Incor-2

porating the modifications on the order parameter given by equations 2.22) and

(2.23) into equation 2.12) we obtain for the energy of the non-interacting part of

the full Hamiltonian
I L 

2 L I6E--Vf + *&L2)] + (C2 _ A2) + 2vf 2 ) E ki
7rA LWO(L) We(L) 27rAvf 0 7r A

2 2

+ 4 E uJitan-I Lvi + 1ni - ni Wi.
7r . kivf i + -

z
(2.24)
I I

Details of the calculation leading to equation 2.24) are given in Appendix E. Note

that from the limiting properties of the W,,,, as outlined and shown in Appendix

C, liML-oo[ W.(L) + W.(L) 2 Ei ki, reducing to equation 218) as expected.
2 2

The energy of the full interacting Hamiltonian 21) as a function of the length

of the chain can now be calculated (Appendix F) by inserting the wavefunctions

described above into equations 2.7) through 2.9) and adding the contribution from

the non-interacting part as given by 2.24). The configuration of the energy levels

that render the energy a minimum will be given by equation 215) using the total

interacting energy instead of ETLM. The nature of the final state, either a polaron

or soliton state,, will be determined by the lowest energy of the two configurations.

2.2. Model Hamiltonian 40
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A comment on equation 222) is in order. Because the Inverse Scattering

Formalism requires that U,,(LI2) 0 then the vanishing of the potential at the

boundaries is true as long as A(x) A,, and OA(') --+ 0 at x = L. By adding the
'9X 2

parameter D(L) in equation 2.22) we are effectively adding the parameter D /V2f
to the potentials U,,, as can be checked by direct substitution of equation 2.22)

into equation 2.14). This means that the parameter D has to be a small number.

Because D(L) is a decreasing function of the length of the chain L, in order to main-

tain D small, L cannot be taken to be arbitrarily small. As a consequence of this,

the calculations presented here cannot be applied to arbitrarily high concentrations

(small L). A criterion that gives good numerical results is that the minimum value

of L should not. be smaller than the combined widths of the excitations in the chain.

That is, if there are n polarons of width d each in a chain, L should satisfy L > nd.

This condition puts a lower bound on L and can be related to the width of the

polarons or solitons in the chain. The relation between the lower bound on L and

the width of the excitation in the chain can be rationalized in the following way. As

we make the chain shorter the excitations will tend to get closer to each other. This

shortening will also bring the excitations closer to the ends of the chains. By doing

this the derivative of the order parameter in the neighborhood of the boundaries

will deviate from the value of the dimerized chain ,,.

2.3. Phase Diagram.

Because of the complexity of the expressions for the functions W,, and the wave-

functions for both continuum and bound states, the minimization calculations as

well as the calculations for the energy were carried out numerically. In the doping

process, each added electron will introduce a new bound-state energy parameter Wi.

This means that for n added electrons there will be an n-dimensional set of wi's

on which the energy must be minimized. Such a multidimensional minimization
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is far from straightforward numerically. We have chosen to use algorithms that

make use of the derivatives of the function to be minimized. Though time consum-

ing, this procedure exceeds the efficiency of convergence reached by interpolation

methods. Also, because we are concerned with doping of two electrons at a time

for each chain, the computational time for the minimizations in each subsequent

doping step more than doubles. Results will be presented for two, four, and six

added electrons to a chain. For comparison purposes, a results will be presented

in terms of the concentration n/N, where N is the number of sites in the chain. We

will only consider in the doping process the addition of extra electrons to the chain.

Electron-hole symmetry guarantees that hole doping will yield identical results. As

is well known, the occupations of the soliton and polaron states differ. This fact win

prove to be relevant because the interactions will contribute in each case according

to their occupations. For negative doping, the polaron state possesses a half fined

uppermost state while the soliton state has a doubly-filled state.

For comparison purposes we define AE _= Ep - E where Ep and E are the

corresponding interacting creation energies for a polaron and soliton configurations,

as described at the end of the previous section. The point at which AE = marks

the transition from one to the other configuration. In figure 21 we present AE as

a function of U for the cases of two, four, and six extra electrons in an N 200

chain. It is calculated for the case of V _- W = . The value for U at which AE -- 

indicates a point beyond which a polaron state has lower creation energy than a

soliton one. We call this critical value for U . The fact that the soliton state

reaches a point at which its creation energy surpasses that of the corresponding

polaron state can be undestood in the sense that an on-site repulsion term win

be most costly for those configurations containing double occupancy of the same

site, or in our case to the same state. Thus, after the interaction strength increases

beyond U, the polaron configuration of singly occupied states has lower total energy

than the doubly occupied one for the solitons. An alternative way of thinking about

these results is that electronic repulsions are needed in order to stabilize a polaron
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lattice because the interaction between polarons is intrinsically attractive and long-

range. One point to note is that U, increases as the number of added electrons

increases. This is the same as saying that for increasing concentration (from 1 to

3%) the on-site repulsion needed to drive a transition increases. One might expect

the contrary by noting that the slope of AE for greater numbers of electrons seems

to increase. The crucial relationship, however, is that the value of AE at U -- 

increases much faster as the doping increases.

The values of U, can be collected and plotted as a function of decreasing N,

as in figure 22 where the x-axis is n/N (-- %). Nearest neighbor interactions have

been included in this figure for values of V = 02 and 0.4eV. The results presented

are only for the case of two electrons in the chain, but the general trend is true

for any amount of doping. The upper region marked I and the one marked 1

correspond to regions where polarons and solitons are favored, respectively. The

trend of increasing U, as a function of concentration is clear demonstrating that

given some value of U at 0% in phase II the soliton phase will persist. If one were

to start in phaseI, there will be a concentration beyond which solitons are favored,

however. The result that V shifts the curves downward, therefore favoring polarons,

can be explained in terms of charge distributions. Because the charge distribution

for a soliton is more localized than in polarons and is only distributed in either even

or odd sites, a overlaping soliton-antisoliton pair will gain more interaction energy

from the V term than the corresponding polaron system. Thus V as wen as U favor

the polaron systems as a function of their strength.

In figure 23 we have considered the case of V = W = for two, four, and six

electrons in the chain. The pattern shown in figure 23 as the number of electrons

is increased suggests that there is a limiting boundary for large n and N (but

fixed n1N). We have extrapolated this behavior and presented a imiting curve as

a dashed line. The limiting curve seems to exhibit the same behavior as do the

others. This means that increasing concentration will not yield a polaron phase, if

we had started in the soliton phase. We conclude then that it is unlikely that on-site
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repulsion is responsible for the metal transition as a function of doping, although

it does yields a transition as a function of its strength. Also, from figure 22 we

see that for increasing nearest neighbor repulsion V a smaller U can be achieved.

However, nearest-neighbor repulsions ultimately stabilize the soliton phase once the

doping is considered.

The non-diagonal term W has been considered in figure 24 where we present

a phase diagram of W, vs V at a value of U = eV for N = 200. The values for W,

have been calculated in the same way as was done for the values of U At a fixed

value of U and V, the value of W at which E -_ is W. The bond-charge W

term is seen to give a different behavior from the other two terms. As a function of

its strength the system if in phase I, is driven into phase II, that is, it breaks the

polaron state into a soliton phase. On the other hand, W follows the same behavior

as a function of the number of electrons in the chain, as do V and U. That is, it

moves the boundary towards higher V thereby destabilizing the polaron phase as

a function of doping.

To further establish the robustness of the soliton phase, we can investigate if

this phase is destroyed simply by increasing U but retaining the soliton occupation

numbers of the bound states. In order to answer this question the order parameter

is calculated as a function of U. In figure 2.5(a) we plot the order parameter of

a chain containing two electrons in a solitonic level occupation. The length of the

chain is N _- 600. The corresponding charge density distributions are plotted in

figures 2.5(b) and (c) for U = and U -- 5eV, respectively. In the plots of the

charge densities the solid line and dashed line correspond to the charge densities in

odd and even site numbers, respectively. This is accounted by the fact that solitons

only reside on sites of a given parity. The corresponding antisoliton will be on

the opposite parity as that of the soliton. The only apparent effect of the on-site

repulsion on the order parameter seems to be the fact that the relative distance

between the soliton-antisoliton pair gets smaller. The graphs of the corresponding

charge density distributions indicate that no apparent change is observed between
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Figure 25. (a) Order parameter for a chain with two ele ctrons in a solitonic config-

uration. The length of the chain is of N = 600. The solid line corresponds to A(x)

with U = , and the dashed line corresponds to U = e V. Note that the solitons in

the U = case get as far as necessary for their interaction energy to be zero, which

is measured by the slope of the order parameter between them. (b) and (c) are the

corresponding charge densities at odd (dotted) and even (solid) sites as a function

of the position in the chain for the two U cases of 2.5(a). Case (b) is for U = 

and (c) for U = eV.
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the two cases. Figure 26 corresponds to the same situation as presented in figure

2.5, but now for the case of a polaronic occupation number. The effect of the on-site

repulsion is dramatically different in this polaronic case. The case for U = (2.6(a)

solid) shows te normal appearance of the two-polaron order parameter in the

absence of any interactions. The dashed line shows how the on-site energy spreads

the electronic charge throughout the chain in order to achieve a lower energy. That

is, because double occupancy of a site costs energy, the system will try to spread

as much as it can in order to get in average the least charge density per site. The

plots of the charge densities (figures 2.6(b),(c) iustrate this point. Figure 2.6(b)

shows the normal equal distribution of the charge among both the odd and even

numbered sites. igure 2.6(c) explicitly iustrates how this same charge density is

spread for U _ 5eV. The fact that this arrangement is possible for the polarons

but not for the solitons (figure 25) is the one responsible for the increase of the

solitonic energy as a function of on-site energy repulsion. In general, the inability of

the solitons to spread their charge distributions throught the chain, in contrast to

the polarons, will drive the transition from a solitonic to a polaronic configuration

as a function of U. This statement was already shown in figures 21 to 24.

To asses the influence that the length of the chain (the doping percent) has on

the order parameter we again examine the above two cases, but for a much shorter

chain. The cases presented in figure 25 and figure 26 correspond to a doping

percent of about .3%. In the following we examine the highest doping allowed in

our calculations which is of about 3%. In figure 27 the results are presented for two

electrons in a solitonic configuration in a chain of N _- 70. The order parameter in

figure 2.7(a) shows a big difference from the behavior displayed in figure 25. Now

the trend of the soliton-antisoliton pair to get closer has ceased. They attained a

minimum distance and the greatest change is now in the form of the order parameter.

For the values of U shown (U = dashed-dotted, U = dotted, U = dashed,

and U = 1 solid) the trend looks like we start from a solitonic order parameter

and end up with a polaronic-like order parameter. This would imply that we are
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the charge densities corresponding to U = and U = e V, respectively. The line
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and U = leV, respectively. The line types indicate odd (dotted) and even (solid)
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reversing the reaction P + P --+ S + and transforming the solitons into polarons.

This conjecture is refuted immediately by examining figures 2.7(b) and (c). Here

the charge densities show no apparent change as a function of the on-site energy.

The solitonic configuration of U = 11eV is as robust as that for U = . This graph

clearly shows that the solitonic character is preserved even at high electron-electron

interactions. Now we look at the effect of the on-site repulsion on the corresponding

polaronic configuration. In figure 28 results for U = and U = 11eV are shown for

the case of the polaronic excitations. The main conclusion to be drawn from figure

2.8 is that the order parameter, as well as the charge densities show no significant

change as a function of the on-site energy U. This is clearly in contrast to the case

shown in figure 26 where the polarons spread throughout the chain in the presence

of LT. Now this is not possible due to the shortness of the chain. As a consequence,

the average charge density per site will be more or less the same and the energy gain

as a function of U will be large. That is, the polarons get much more expensive for

higher dopings. This is precisely the trend obtained in figure 23 where for higher

doping levels the U, needed to break the solitons was much greater than that for

smaller doping levels.

It is also an interesting question whether the above described effects are visible

also for a higher number of electrons in the chain. In figure 29 we plot the order

parameter of a chain with 6 electrons in a solitonic configuration for several values of

the on-site energy. Figures 2.9(b) and (c) show their corresponding charge density

distributions. The general trend is that the order parameter retains a solitonic

characteristic, keeping both positive and negative values for A(x) for the values of

U ranging from U -- to U = 9eV. The charge densities in (b) and (c) clearly show

that the solitonic odd-even separation also persists.

Because one of the most important questions in the transition exhibited by

PA has been whether a closing of the gap is obtained, we briefly comment on that

respect in the following. By examining the set of f wi I that minimizes the energy for

the non-interacting as well as the interacting cases the expected general trend that
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the levels start to form bands is observed. There are bands in the middle of the gap

and at the symmetrically located levels for the soliton and polaron configurations,

respectively. Up to the doping levels achieved in this work (around 3) the levels

seem to reduce the gap down to a value of the order of .3eV. The widening of the

bands as a function of doping seem to obey a power law. On the next section we

consider the magnetic susceptibility making use of a more detailed analysis of the

rate of closure of the gap as a function of doping.

In conclusion, in this section we have shown how a transition from solitons to

polarons in trans-polyacetylene can be achieved as a function of U alone, or U and

V. W seems to break or dissociate polarons into solitons. This is related to other

findings at half filling in which W increases dimerization 32]. In all the cases shown

above an increase in concentration, via the decrease of the length of the chain or by

increasing the umber of electrons in the chain, ultimately favors solitons up to the

concentration of 3%. However, we have no reason to believe that this trend will not

continue to doping levels beyond 3 and into the metallic regime. We are then faced

with the original question: what drives the onset of spins in polyacetylene? It has

been proposed by several authors that interchain coupling effects must be included

to describe the onset of the metal state in polyacetylene. Current estimates of the

interchain hopping matrix element are around.15eV 19]. Based on our calculations,

we can now estimate if an effect of this magnitude is sufficient to destabilize the

soliton lattice at 5%. At a doping level of 5%, U4eV, and V=.4eV, we estimate

that a soliton lattice is more stable than the corresponding polaron one by .6eV.

Interchain coupling effects of .6eV or higher would certainly then be sufficient to

break up solitons on single chains. However, based on the estimates in the literature

of t I it is unlikely if such effects are ultimately responsible for the transition from a

soliton to a polaron lattice in trans-polyacetylene at the metal-insulator transition.
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2.4. Pauli Susceptibility.

Given that we have established the robustness of the soliton lattice and its persis-

tence at metallic concentrations (see figure 22), it is appropriate to investigate if

a Pauli susceptibility emerges. Because charged solitons are spinless, it seems as

if such an endeavor is doomed at the outset. However, reflection on the definition

of the Pauli susceptibility indicates otherwise. Physically the Pauli susceptibility is

proportional to the number of electrons within kBT of the Fermi temperature. It

is the electrons occupying these states that can flip their spins and align with an

external magnetic field. For a set of overlapping states the ratio LUZ is proportional
TF

to the density of states. Because the Fermi level in polyacetylene lies at midgap, the

Pauli susceptibility is expected to vanish. However, as the doping level increases,

the bound state soliton levels spread out in the gap and ultimately could provide

a finite density of states at the Fermi level. Hence, we simply need to investigate

how the single particle levels we have calculated fill the gap region.

Shown in figures 210 and 211 are the resultant soliton levels for U = and

U -_ 4eV, respectively, as a function of the doping level. The corresponding chain

lengths used to compute the bound state energies are indicated on each respective

curve. The lower curves shown in these figures (closest to the lower axis) are bound

soliton states that originate at mid-gap. The upper states (at the top of the graph)

arise from the conduction band. As is evident in both cases, these levels merge to

fill the energy gap. In the =O case, the soliton levels merge as p 5 whereas when

on-site repulsions are turned on (figure 211 a slower rise of p2 is observed, where

p is the doping level. The slower rate of filling the mid-gap states when U is

consistent with the observations that U enhances dimerization in the ground state

[10,11,13,14,16,17,28,34,35]. Because we perforned calculations only up to a doping

level of 33 w cannot predict definitively whether the gap closes at a doping level

of 6. Based on our calculations, however, we do not suspect the trend of gap

closing to desist as the dopant level increases further. Hence, we extrapolate the
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Figure 210. Soliton levels as a function of doping for several lengths of chains

indicated in each case. The value of the on-site energy is taken a U = . The

region in energy shown corresponds to the upper half of the gap (from = to

= 7e V). The trend of the levels to close the gap is shown.
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Figure 2.11. Soliton levels as a function of doping for two values of the lengths of

the chains. The value of the on-site energy is taken as U = 4e V. The region in

energy shown corresponds to the upper half of the gap (from e = 0 to e = .7e V).

The rate of closing of the gap is smailer than that one shown in figure 2.10.
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trends shown in figures 210 and 211 to arbitrary concentrations keeping in mind

that we cannot conclude based on our results that the gap ultimately closes. We

find that the upper and lower levels are best described by a function of the form

Ejh = mpx + C, where I and h refer to the lower and upper soliton levels, m is the

rate at which the gap closes and C is a constant. For the lower level C _- IIN and

in the upper level C -_ ,. These values were obtained from figures 210 and 211.

In figure 212 we plot the form of Ejh for a chain of N = 600 and with U = 4eV.

A residual gap of .08eV is seen to persist from p > 65% on. The Fermi level is

depicted as the solid and dashed lines that lie between the upper and lower levels.

The solid (100K) and dashed (300K) show the temperature dependence and relative

position of the Fermi level, it.

With the scaling function for Eh in hand, we can now calculate the resultant

magnetic susceptibility. We first must calculate the magnetization

M-IL'Bo dEg(,E)f(,E)[1-f(c)j, (2.25)

where g(,E) is the density of states and f (,E) is the Fermi distribution function.

There are two contributions to g(c), one from the continuum (valence) states and

the other from the bound states in the gap. Because the continuum states are

far away from the Fermi level, their contribution to the resultant magnetization

is negligible. Also, we take the density of states for the bound levels, g(c), as a

delta-function located at the bound state energies, wi. Performing the integral in

equation 2.25) and further taking the derivative with respect to the B-field, we win

obtain the magnetic susceptibility

- 2 nb 213 2 
X �tB'3� j:[cosh- -(w + y) + cosh- -(w - (2.26)

2N 2 2

In equation 226) the parameter nb corresponds to the number of bound states

and the Fermi level is obtained by demanding that the integrated product of the

density of states and the Fermi distribution function yield the number of added

electrons. The complete derivation of equation 2.26) is given in Appendix G.
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Figure 212. Plot of the levels El (lower) and Eh (higher) given by fitting the data

from figures 2 0 and 2 1. The calculation is for N = 600 U = 4 e V, and residual

gap of .08e V. The energy axis represents the upper half portion of the gap. The

upper solid line and the lower one represent Eh and El, respectively. The middle

solid and dashed lines are the position of the fermi level for the temperatures of a

100K and 300K, respectively.
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We have plotted equation 2.26) in figure 213 with U = for chain lengths

varying from N400 to N=800. The residual gap is .05eV. The sudden rise in the

calculated susceptibility arises from the form of equation 226). The hyperbolic

functions cause there to be an exponential increase in the magnitude of X as the

levels get closer to each other. The apparent leveling of the curves at p - % comes

from the fact that at that point the residual gap is the one ruling the position of

the levels. Therefore, because the levels do not get any closer than this residual

gap, the susceptibility retains a constant value. The fact that the curves depend on

the length L of the chain may seem surprising since a the quantities appear to be

parametrized y the concentration and not by the length. However, we believe that

these results are correct and in Appendix H we give a brief explanation of why there

should be an L dependence on the percentage at which the on-set is realized In

figure 214 results for the same parameters but using U = eV are presented. The

effect of the on-site interaction on the on-set of the susceptibility is clearly distinct

from the one epicted in figure 213. From figure 211 we know that the rate of

closure of the gap diminishes with U. This is reflected now in a much later on-set

of the magnetic susceptibility as a function of doping. This means that the effect of

the interaction U is to move the point of on-set towards higher values of doping. In

figures 215 and 216 we present the results for the same chain lengths and values

of U. The only variation is in the size of the residual gap, that now is .08eV. This

translates into a smaller value for the saturation of the susceptibility. Figure 26

shows for N = 600 and residual gap of .08eV the best fit to the experimental values.

Of great iportance is also the temperature dependence of the magnetic sus-

ceptibility. Experiments show that the susceptibility changes from a Curie-like

T-dependence to a T-independent region in the high doping regime. In order to

asses the correctness of our calculations we plot in figure 217 the temperature de-

pendence of the susceptibility at three different doping percents. The calculations

are for a chain of N 600 U = 4eV, and a residual gap of .08eV (best fit). The

solid (p -_ 467%) and dashed lines (p, 567%) show a strong temperature depen-
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Figure 213. Magnetic susceptibility as a function of doping percent. The lines are

from equation 2.26) with a residual gap of .05e V and a U = . The olid line

corresponds to N = 400, the dashed to N = 00, the dotted to N = 600, and the

dash-dotted to N = 00. The experimental data (big dots) are taken from ref. 16.
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Figure 2.14- Magnetic susceptibility as a function of doping percent. The lines are

from equation (2.26) with a residual gap of .05e V and a U = e V. The solid line

corresponds to N = 400, the dashed to N = 00, the dotted to N = 600, and the

dash-dotted to N = 00. The experimental data (big dots) are taken from ref. 16.
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Figure 215. Magnetic susceptibility as a function of doping percent. The lines are

from equation 226) with a residual gap of .08e V and a U = Oe V. The solid line

corresponds to N = 400, the dashed to N = 00, the dotted to N = 600, and the

dash-dotted to N = 00. The experimental data (big dots) are taken from ref. 16.
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Figure 216. Magnetic susceptibility as a function of doping percent. The lines are

from equation (2.26) with a residual gap of 08eV and a U = 4e V. The solid line

corresponds to N = 400, the dashed to N = 00, the dotted to N = 600, and the

dash-dotted to N = 00. The experimental data (big dots) are taken from ref. 16.
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levels. The solid line corresponds to p = 4.677o, the dashed to p = 5.6776, and the

dotted to = 6.671o. Of the three, only the dotted one is above the transition

indicating that above the rapid onset the susceptibility is basicaly T-indenpendent.

The calculations are for N = 600 U = e V, and a residual gap of .08e V.
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dence. On the other hand, the dotted line (p = 667%), above the transition, shows

a T-independent behavior for the temperature range shown. The fact that the sus-

ceptibility decreases for low temperatures in the low doping cases is due to the fact

that it is more difficult to flip the electrons close to the Fermi level. Although at

a doping of p = 667% there is still a residual gap of .08eV (larger than kBT), the

probability of flipping, measured by the susceptibility, is considerably higher than

for the other two cases and agrees remarkably well with experiments.

We now comment on the dependence of the on-set of the magnetic suscepti-

bility to the length of the chain, as iustrated in figures 213 through 216. Our

calculations propose that as the chains increase in length the on-set of a Pauli

Susceptibility is delayed to higher values of the doping percent. This could be con-

firmed experimentally if for cleaner and more ordered systems (containing longer

uninterrupted chains) the susceptibility exhibited this behavior. Exactly along this

lines newly developed materials 40] when iodine doped exhibit higher conductiv-

ities which can e atributed to highly ordered structures. Also, measurements of

the magnetic susceptibility have resulted in an on-set at a higher percent of approx-

imately 10% 41'. Doubts could be raised as to the relation between the ordered

structure and the conjugation lengths in these systems 42], arguing that definite

experimental results are still missing. However, we strongly feel that the evidence

is cear in showing a chain-length dependence in the magnetic properties. A brief

and simple explanation to the rate of closure of the gap, which is the one giving

rise to the length dependence, as a function of the length L of the chain is given in

Appendix H.

2.5. Conclusions.

In conclusion, the dramatic rise in the susceptibility is a result of the soliton levels

spreading to fill the gap. The susceptibility ceases to rise precipitously until the gap
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has reached its minimum value, . In the region where the upper and lower energy

levels are separated by a residual gap of F the susceptibility becomes independent

of temperature. We then interpret the Pauli susceptibility in polyacetylene as a

result of a closing of the upper and lower soliton levels to a narrow gap of width IF.

The function of the residual gap is two-fold. First it is responsible for the turn on of

the Pauh susceptibility and secondly, it results in the vanishing of the temperature

dependence of the susceptibility. We conclude then that a soliton lattice is stable

in the metallic phase and consistent with a turn on of a Pauli susceptibility at a

doping level of 6% in polyacetylene.
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Chapter 3

Conductivity at low Temperatures.

3.1. Statement of the Problem.

By far the most impressive and important property of doped Polyacetylene (PA)

is its electrical conductivity [1]. As experimental methods have improved, conduc-

tivities comparable to copper are attained 23,4,5]. Metallic properties are also

observed in quantities such as the thermoelectric power (linear T dependence) and

the magnetic susceptibility (independent of temperature) at very high doping lev-

els. However, te temperature dependence of the conductivity of these highly doped

samples shows a disappointing nonmetallic behavior as the temperature decreases

[6]. Because PA is not a single crystal, various kinds of disorder are present ranging

from local imperfections in conjugation bonds to higher order structures such as

fibril configurations. These inhomogeneities can generally account for the decreas-

ing T behavior in the conductivity. Within the framework of the Sheng model, for

example, the conductivity 7 displays a good fit to the experimental data 6 In

the Sheng model it is assumed that there are ideal metallic parts with no resistivity

and nonmetallic barriers separating them, therefore accounting for the observed

activated-type behavior in the conductivity. This thermally activated behavior is

also supported by other experimental observations at high doping that sustain the
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view that PA has a gap. In particular, IRAV modes in the highly doped phase

confirm the existence of a remnant bond-charge alternation and a subsistent gap of

at least 0.2eV [8'. Other studies based on optical data 910], vibrational features.1

[11, 12,13], and crystal orbital calculations 14, 151 also support this view.

Recently, a highly conducting polyacetylene (HCPA) has been developed 16]

whose dc electrical transport at low temperature surprisingly exhibits metallic be-

havior under certain conditions 17,18]. One important aspect of the properties

shown in these new samples is that disorder has proven to yield a wide range of

temperature variations in the samples 18,19]. Thermally activated behavior is

found for the strongly disordered state, while a weak T-dependence down to the

mK region is ound for the weakly disordered state. An immediate explanation

that comes to mind is transport carried out by a variable-range hopping mecha-

nism. However, we can safely rule this mechanism out after considering the high

value of the conductivity and the lack of thermally-activated behavior in the weakly

disordered cases 1'20]. The other alternative would be the Sheng model, but it does

not fit well to the conductivity measurements of the more ordered samples of HCPA.

This lack of agreement arises because the Sheng model fails to consider temperature

effects that should be important at low temperatures 617,21]. An explanation for

the fan-like display of the different conductivities as a function of disorder is con-

tained in a model that takes into account the complex fibrilar structure and the

degree of disorder as parameters 22]. In this model, it is shown how the interfibri-

lar connections i PA are responsible for the apparent metal-insulator transition as

a function of aging. This is shown even under the consideration that the individual

chains forming the fibrils are taken as containing localized non-conducting states.

As a conclusion of this model the conducting state of the whole sample is presented

to be more sensitive to the disorder than to the strength of the interfibril coupling.

In this chapter we concern ourselves with the other curious feature exhibited

in tese iodine-doped HCPA samples. This feature is the anomalous logT behav-

ior in the conductivity at low temperatures [181. Structural studies of the HCPA
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samples show that, although they are better ordered compared to conventional ma-

terials, they are still far from being ideal crystals. The exact nature of the defects

contributing to te logT dependence is not known. Suggestions on this respect

have proposed that these defects are due to chemical reactions between the chains

and the impurities [18]. This interplay between the impurities and the chain then

puts more relevance to the defects arising from the presence of the dopants, for

example, over other scattering mechanisms that may come from chain breaks at the

polymer ends. This conclusion is clearly illustrated in the fan-like spreading of the

conductivity for different amounts of disorder that arise solely from aging at room

temperature and not by changing the morphology of the chains. The natural con-

clusion is then that the sources of scattering in PA should come from local carbonyl

(>C=O) defects that are naturally present in PA exposed to air 231. Kondo-like

behavior, the signature of which is a logT dependence of the conductivity of nor-

mal metal (Appendix J), has been proposed to appear in HCPA 24]. However,

as a result of the absence of localized moments in conducting polymers, a Kondo

Hamiltonian where degenerate conduction electrons couple to localized spins 251,

is unapplicable.. A more realistic model would be the Anderson model in which

the local spin is treated just as another electron. The scattering arises from the

local spin becoming a conduction state and another conduction electron taking its

place 26]. The on-site Coulombic repulsion establishes a correlation between the

first electron exiting the local level and another electron occupying the vacancy.

Of importance to the current problem is the existence of a localized level, arising

from the coupling of the impurity to the chain. Impurity levels have been proven to

exist in PA. The starting point for such calculations has been the SSH Hamiltonian

[27] and its continuum version, the TLM Hamiltonian 28]. These calculations were

carried out in the absence of an on-site interaction term 23] and with the on-site

U plus a soliton 291. In all cases the localized level persists for all values of the

relevant parameter space reinforcing the assertion that our starting point should

contain an Anderson-type of interaction.



3.2. Equations of Motion 75

In order then to asses the nature of the logT behavior, we consider the TLM

Hamiltonian supplemented with an Anderson-type Hamiltonian that will take into

account the presence of disorder as a single impurity in the chain. Because PA

retains a bond.-charge alternating pattern even at high doping, we will take into

account a gap 2A, (,, = 7eV for undoped PA) in the density of states of the

chain. Notice that by treating ,, as a constant rather than the usual global order

parameter A(x), we are assuming a uniform bond-charge alternating pattern. The

fact that ,, will be smaller than the value for pristine PA determines both the

remaining alternation and the smallness of the gap. The main objective will be to

explore to what extent the Kondo resonance is affected by the presence of a gap

that contains the Fermi level. The path that we will follow in order to establish

this objective will be to calculate the density of states at the impurity site. Then

we will explore t what extent this density of states changes as a function of the

size of the gap and other parameters like the hybridization energy between the

conduction electrons and a localized electron. We anticipate the appearance of a

Kondo resonance for a range of values of the gap in the system. We note that work

on systems with magnetic impurities in non-magnetic hosts with a pseudogap 30]

and with actual gaps in heavy fermion systems 31,32] have obtained a transition

from a magnetic multiplet to a Kondo singlet state using renormalization, 11N,

and Monte Carlo methods. Experiments on fluctuating-valence materials confirm

existence of a gap in these types of systems 33].

3.2. Equations of Motion for the Green functions.

We start from the continuum Hamiltonian for Polyacetylene (PA) 28]

'HTLM = 1 dxA(x )2 dxo t (x) [ -ZVf O3 O., A X) Ol ]'O. X) (3.1)
27rvf A

where 0,(x) is the two-component spinor for the 7r-electrons with spin s, A(x) the
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order parameter, vf the fermi velocity, oi the Pauli matrices, and A the elastic

coupling constant. The units are taken such that h 1. We consider impurities in

the chain to be f an Anderson type in the form 34]

'H EdEdtd,+V'J:(dtc1,.+c.c.)+Udtd
,A Tdtdl (3.2)T I

where d, is the annihilation operator of a localized electron at the impurity site 

Ed i the atomic level, V is the mixing matrix element between the localized level

and the r-electron orbital at the 1th site, and U is the on-site Coulomb interaction

at the atom at 1. This type of Hamiltonian has been used previously proposed

in ref. 35 (with no U interaction) to describe carbonyl (>C=O) defects in PA.

Carbonyl defects that are naturally present in PA exposed to air, as well as atomic

side groups that strongly interact with the chain are examples of cases where the

Anderson model would be useful. The 'HA will be incorporated with HTL by

considering its continuum version (see for example ref. 23) given by

V = Ed nd. + V�aV'J:[dtXtO,(x1) + Ot(x1)X1d.,J + UndTndJ (3-3)A

where nd, = dtd,7 x1 = la where a is the lattice constant of the undimerized system,

and
ii7r/2

XI = ei(1+1)-.,/2- (3.4)

There are two main assumptions in our considerations that we win explain and

justify in what follows. First, we take as a starting point that the total Hamil-

tonian is - HTLM + Hc which is expected to exhibit the logT behavior of theA

conductivity, as is the case of normal metals. When PA is in its highly doped region

(HDR), p > 10%, the conductivity is metal-like, as well as the T-behavior of the

magnetic susceptibility. There have been many arguments why this is so 36] It

is believed, however, that even in the HDR there exists a small gap [8], which at

first sight might rule out any logT arising from a kondo-like mechanism. Thus, the

second assumption is that we consider a small gap containing the Fermi level. We

intend to show that even with this small gap, there is a strong modification in the
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impurity density of states close to the fermi level (taken to be at the middle of the

gap). The size of this small gap is taken in this work to be in the neighborhood

of 0.04eV. As we have shown in the previous chapter along with other calculations

concerning the magnetic susceptibility, the sudden rise in X(T) as a function of

doping can be shown to exist with gaps of this size 37, 38]. Related work has been

performed using a pseudogap 30] and on materials with a BCS-type of gap 32] in a

Kondo Hamiltonian. Also, other calculations have been carried out on an Anderson

Hamiltonian using a 1N expansion exploring the magnetic transition 311.

Having proposed the existence of this small gap, 2A,,, and positioning the

Fermi level right at the center, we picture the density of states (DOS) for PA in

the form depicted in figure 31 where (a) and (c) are the valence and conduction

bands, respectively. Band (b) can be taken to belong either to polarons or solitons

that form during doping, and that at this HDR its exact nature do not concern us.

We will take those excitations as modifying the 7r-electon wavefunction uniformly

throughout the chain, thus just adding another periodic modulation. This periodic

modulation is the one giving rise to the actual (b) band. We have reasons to believe

that, this middle and corresponds to soliton-like excitations 39). Because our main

interest is on transport properties, we will consider a simplified DOS as depicted in

figure 32 where we keep the relevant parameters around the Fermi level. Thus, the

DOS to be considered is

L IE >
X0 Vf7r (3.5)

0 < ,,

where L is the length of an unbroken chain, usually taken to be of a few thou-

sand sites. To get equation 3.5) we have used Ck k2V2 + A2 for the electronf 0

dispersion relation, the boundary condition = 40), and the simplification

,A(x = Ao justified in the HDR from the arguments of the preceding paragraph. A

factor of 2 for spin degeneracy has been taken into account. Equation 3.5) might

be compared with the one in ref. 27, where we have taken the large bandwidth

limit.
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Figure 31. Density of states for the chain at the High ly Doped Reg'me (HDR).

Bands (a) and c are the valence and conduction bands, respectively. Band (b)

forms in the gap of the undoped polymer and as doping progresses diminishes the

effective gap, r denotes the with of band (b), 2A,, the sze of the remnant gap, and

the dashed line ndicates the position of the Fermi level.

U)00

-20 -10 0 10 20
Energy

Figure 32. Simplified density of states for the chain in the HDR. The width of the

remnant gap is parametrized by 2A,,. The dashed line indicates the position of the

Fermi level.
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The density of states at the impurity -ImGd(W)17r will indicate, as a function

of temperature and Ed, to what extent a Kondo resonance is realized close to the

Fermi level. Here Gd(W) is the Fourier transform of the temperature Green function

for the d electrons defined by

G(d,,dt;-r) <Td,,(r)d,(0)t> (3-6)

where d,(-r = exp(H-r)d, exp(-H-r), and is the "temperature" variable. is

given in k-space by

W + Ot. [vf kO'3 + A,0'1 0ks
27rvf A k

sk (3.7)
Ed Favi 1: [dt Aks + Atd + UndTndj

nd, + Is
ask

where

ikxiAk = Xt'Okse (3.8)

In order to get 3.7) we have used

I eikx 'Ok. (3.9)0. = T E
k

and

dxei(k'-k)x = Lbkk' (3-10)

To simplify the notation we define V =- V�IW and Ot.13k0k, Dk,, where 13kk

vf k'3 + Ao,,. Then 3.7) becomes

'H = E Dk, + L A,2 + Ed 1: nd, V E[dtAk, + AtA + UndTndj- (3-11)
2irvf A Is k

sk .9k

For simplicity of expressions from now on we wiH omit the labels -r and U., in all of

the arguments of the relevant quantities. The context of the expression wil1 dictate

if we are dealing with either the temperature or energy variable. Therefore, when

we refer to G(d., dt L) or to G(d,,, dt; -r) both will be denoted by simply G(d,,).

Only for ambiguous cases we will specify the complete set of arguments.
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Our goal will be to find G(d,) using the equations of motion (EOM) formal-

ism for Green functions 41,42]. In the EOM, derivatives of the Green function

are obtained with respect to temperature thereby generating higher order Green

functions. These higher order functions are then approximated in order to close the

system of equations. We will use the same decouplings as those presented in ref. 42.

These decouplings prove to yield a the features at low and intermediate T for the

kondo case in metals 43]. The kondo temperature obtained through this method,

though, is only approximate, relative to the exact one in metals 441. Therefore,

result's on that respect will only be considered qualitatively.

In the following derivations only the necessary equations of motion win be

stated. A complete list of all the commutators and equations of motion used is

given in Appendix I. The equation of motion for the impurity Green function in

equation 3.7 is

d G(d, = 8(r - EdG(d, - V E G(A,, - UG(n,d,) (3.12)
dr

k

which on Fourier transforming yields

(3.13)
I I

where Uv stands for co + ia. On getting 3.13) we used G(-r) = Ene- i"�in 'r G(aTn),

(0 = E n e - izzT" r, and Wn stands for Matsubara's frequency. Also, we used

d d = Edd, - Und-d,. (3-14)dr I: Ak,
k

To find G(Ak,) we calculate its respective equation of motion

d G Ak, = -G(Pk, - VG(d,) (3-15)
dr

where Pk, XtJ�k'Okeikz , and further

d
G(Pk,) 2G(Ak,) (3-16)dr k



[( 'W)2 _ 2z k]G(Ak.) = ZwVG(d,)

(i - Ed - U)G(nd-d, = <nd-,> V E G(nd-Akl,)

k/

I + E G(AAkI-jd, - V 1: G(At,-d7d,,).a k s
k/ k'
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in 3.15) yields

(3-17)

where we have used

d Ak = -Pk, - Vd.
d-r

d Pk. = -'E2Ak..
dr k

(3.18)

and.

(3.19)

Upon taking the derivative of the last term of 3.13) we obtain

d G(nd-d,) ::= - 6(r) <nd->
d-r

+V E G(At,-,d7d, -k V Y G(d-tAk,,d,)a
k' (3.20)

- EdG(nd-d, - VI: G(nd,Ak's - UG(n"d,)

where

d V [At-jd - dytAk-il -d-r n ds k a
k

On Fourier transforming of equation 3.20) we get

(3.21)

(3.22)

Now we proceed to set up the equations of motion for the Green functions

appearing in the r.h.s. of 3.22) and apply the decoupling scheme so as to close the

set of equations. On the second term of the r.h.s. of 3.22) we get

d G(ndjAk s) =V E G(At-d7Akl, - VI: G(dtAk-jAkI,)dr ks 8
(3.23)k k

- G(nd-Pk,, - VG(nd-d,)

and

d 2
G(nd-, Pk,.) = V Y G(At-,dTPk,. - V 1: G(dtAkjPk,,,) - C G(nr Ak,,) 3.24)dr k 8 k

k k
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where we have used 3.16), 3-18), and 3.21). Upon transforming again and sub-

stituting 3.24) in 3.23) we get

[(iW)2 _ 2, ] G(,nd-Akl,) V [ G (dt Ak-i Pk I )- G(Atjd7Pkl,)k I: 3 k I
k

iW 1: [G(dlAk-Akl,)8 8
k

+ iW V G (nr d,,).

It can be shown that this reduces to

(3.25)

[( 'W)2 _ 2,I IG(nd- Akls) = iwVG(nd-k ,d,,)
(3.26)

For the third term in 3.22) we have

d G(dtAk,-d, = -
dr 8

8(-r <7tAklS> V 1: G(At-jAk,-d, - G(d-tPk,-k a , j d,)
k (3.27)

VG(dtd7d, - V -jAk,)I: GdtAk'
k

and

d G(dlPk,-jd, = - (r) <jtPk,-j>T - +V E G(At-jPkjd.)k
k

- Ek, G(d, Akl-jd�,)

- V 1 Gdt Pk,-Ak,)
k

Again, combining 3.27) and 3.28) we get

1'(iW 2- d,]G(dtAkljd,) iW <d-tAkl-i> - <ctPk,-> -VG(nrk 8 8 , d,)iw

+ V E [G(AtjPk,-jd,) + iwG(AtjAk,-d,)k k
k

G(dtPk,-iAk, - wG(d-t VjAka)a a

The set of decouplings to be used are

G(AtjPk,-jd8) <AtPk,-j> G(d,)k k8

G(AtAk,-jd,, - <AtAkli> G(d.)k8 ka

G(dtPk,-jAk.) <djt.Pk,-> G(Ak,)a a

G(c�t-Akl-Ak,) <dt- V> G(Aks)

(3.28)

. 329)

(3-30)

- G(At-d7Akl,)ka I



so that 3.29) reduces to

[(iW)2 __ 2 ] G d-t Akl-d, = <d-t -> iwVG(nd-.d,,)k Fk.

V <At,-Fk-> G(d,)k
k

< dtFk-> G(AkI

where Fk = Pk, + iw Aks

Finally, for te last term in 3.22) we get

- 2EdG(At-jd7d, - V 1: [G(At.,A,,-d.) + G(At-d7Ak's)]k k 8 ka
k

- UG(At-,d7d,)k
(3.32)

where <ndi> + <nd,>= 1, and

d G(Pkt�d7d,,) 6(,r) <pk�_d7> ,E2G(At-d-j-d,, - 2EdG(Pk-d-j-d,,)k Ws

_VY k' d7Akl,)
[G(PkU -id,) G(Pkt� UG(Pt�d7d.).

k

(3.33)

Combining 3.32) and 3.33), and after considerable algebraic manipulations, we

obtain

[(iq)2 __ 2 ]G(At-jd7d,) =ViQG(nd- d,)- <Jt-d-j>k 8

- V E [G(d,,) <Jkt -j A,,, - >
k

+ G(Ak,,,) <Jkt-d7>

(3-34)

where A = Fk� + PEd + U)Aks and the parameter if = -iw + 2Ed + U-

Solving the system of equations given by 3-13), 3.17), 322), 326), 3-31),

and (3.34) we obtain for the impurity Green function,

a(w - V2 ak(W) + UN(Lo)V2 [,qklEk Ekk' k (LI;) - Vak'(W)A(LO)l
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(3.31)

d G(At-d-d,) - (,r) <At-jdT> G(Pk-.dTd.)d-r ka 8 k
+ VG(nd-jd,)

I + UN(w)[<nd-> VEkPk(W)lG(d.) - (3.35)



In the Emit of very large U, equation 335) reduces to

G(d�,)

I- <nd-> -V Ek [iW)2-.E2]

V2 <At,i - Ed - + Ek' -iFk-i> V Ek'k [iW)2-,E..] ('
k

3.2. Equations of Motion 84

where
I

U - Ed - U - V2 Ek(ak(W) + 7k(w))
N(w)

<dt-F,->AM =- - +[(iW)2 - 2]
k

a(w) =i - Ed
z Uj

ak (W = (iL,,)2 - 2 
k

<Jt d->ki 8
[(iQ)2 - fl

k

<At Fk->k'(W =-kls
77k [(iUj)2 - 21

k

iL';

-/k (W )-[(iL,,)2 - 2]
k

<Jt Ak,->k-i 8
[(ip)2 _,E2]

k

A2

[(if2)2 - 2] 
k

(3-36)

where the expectation values above are given by

<At,-jFk-j>=<ALjPkj> Zw <At,-jAk-i>k k k

< 4 Fk i > = < dOLP, -> + L, < t Aiff - z -J-3-k-i>a 8

(3.37)

and

(3-38)

and subsequently

I
7r

I
ir

<At,-iPk8>-- - f(L,,)ImG(Pk-j, At,-i; o)dwk (3-39)

f (w)ImG(Ak-i, At,-i; w)dwk

f (w)ImG(Pk-i, dt; w)&.o
8

(3.40)

(3.41)
I
Ir

1

7r

<A R-> =
8 - Is

<d-tAki>= f (w)ImG(Ak-j, d1t; Lo)dw.8 (3.42)
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The two Green functions appearing in 3.41) and 3.42) are defined by equations

(3.16) and 3.17). The other two new Green functions introduced in equations 3-39)

and 3.40) are solved in the following. We establish the equations of motion to be

d G (P,-, A t, E' G (A k-, A t, (3.43)dr k k k i

and

d G (A k-i, A t, b T) bk, k G (Pk-j, A t, -j - V G (d7, A t, (3.44)dr k k k

Using the identity G(d7, At,-j = G(Akls, A) _= G(Akl-i) and equation 317 ask

'W)2 _ 2']G(AkI8) = ivV'G(d7)/[(z k we obtain for the last one

-iLvG(Aki, AL) -4,1 - G(Pk-j, At,_i _ V2G(d7) iW (3.45)
k k [(iW)2 - E2,]

k

Solving 3.43) and 3.45) we get

G(Aki, At,-) bkki iLO - + v2 (iLO 2 G(d-) (3.46)[iU [(iU E2.,)2 _ 2] _,)2 62][(iU,)2
k k k1l

and
IE2 iW E2

G(Pk- At bkk' k _ +v2 k G(d7). (3.47)
87 ki-S [(iL,,)2 - 2] 'L,,)2 - l][( 'LV)2 ��7_,E2

k z k z k1l

Therefore, using equations 3.16), 3-17), (3.41), and 3.42) the expectation values

in equations 3.39) through 3.42) are determined.

The plan ow is to use the previous results to further simplify equation (3.36).

As the first step we substitute equations 339), 340), 346), and 347) into

(3.37) and change from k-space to energy space via Ek f dEp(,E), where p(,E is

the density of states, to obtain

<At,.wFk-> 16 2 + iU,,iU;
k 8 f ((.o)dLv dep(,E)
1)2 E2 [(iL,,1)2 - El][( 'LO)2 2]

kk' 1(iW k] 2i7r

f2 + iLO I iLV

[(i,01)2 - 2j[(iLO.)2 E2]

V2 f (w) dEdE'p(,E)p(,E') (3.48)
2i7r

F_ 2iL, + iWIiW2 I G (dT)
X

[(iL,01)2 - 2] [( 'L,,)2 - 2] [iU_,)2 _ ,2]

2iW* + 'WI(iW*)2z IG(dT)*
[(iLVI)2 - 2j[(iL,,*)2 - 2][(,jLO*)2 6j2
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where iw = w -- ia. As the second step we do the same with equations 316),

(3.17), 3.41), and 3-42) in equation 3.38) to get

d-t ->k,,
U471)2 - 2

k R, k]

and as the final step,
iW,I: [iW,)2 - 2 -

k k]

- v f (w)dw dEp(,E) I
2i,7r [(iWI)2 - 2]

2 + iWIiW 2 I
X 6 G (d7 - f ZW iW* G( )*

jW)2 - 2] IW*)2 - f2]
-R R 

dEp(,E) iw'
[(iW,)2 - 2] 

(3.49)

(3.50)

With equations 3.48) through 3.50), the impurity Green function is determined

by equation 3.36) in a self-consistent way. The only input now is the form of the

density of states for p(,E). Then, the density of states of the impurity is obtained by

-ImG('dT)/7r.

Incorporating the results presented for the system with a gap in Appendix K

into equations 3.48), 3.49), and 3.50) we obtain, after recombining and simplify-

ing,

<At _,Fk-,> 7rV2 A,,
ki

I: [iW,)2 - 2 62
kk' k] 0

a 
+ &, f 

A,,

D I
+ dw f (w)P I M[Xj + YM]

W Wo

W)'P I NY[J- N]
WI W

D I
+ dwf (w)P �� MWI-W

+ 7rMI2 f G1* 0(1 Lo' I - ,,) Zf 'N'Y'O(A, I ) (3-51)

I A 
IEO

- zrmyo(j W I AO)



- <nd> -A (WI )
G(L,)') -- 2

Lo' - Ed + iAl' + A C(wl) - iA [PA(w' + Bwl)]
L
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for the other,

< d-'Fk i> V A. D
[(jL01)2 - 21 + dwf (w)P [Yi' - MX]

k k

+ dw f (w) -P Y[J - N] (3.52)
Lo U.7

+ ixM'f'G'*O(l w I - ,,) ZI f rY1O(AO W,

and for the last,

iW' - 7 J (3-53)
[(iLL,1)2 2]

k - Ck 6,

where = vf IL, N(w) =- wg(w), M(w) jwjg(w), g(w) ICIA"2 -- W21.

We have used the shorthand notation M = M(w), M = M(w'), N = N(w),

N' -- N(w'), f f (w'), and G = G(w'). The parameter Z is defined by

z (W') A02 0
(AO2 12)3/2

Also, wherever convenient we have separated G into its real and imaginary parts as

G(w) -- X(w) + iY(w). We have also used the notation J(w') =- iM'O(l I -

Ao) + N(A,, - I l 1).

Finally, putting equations 3.51), 3.52), and 3.53) into 3.36) we obtain for

the Green function of the impurity in a one dimensional finite chain,

(3.54)

(3.55)

where

A Ao D I
A( = + dwf (w)P I [Yi' - MX]

7r LI; Wo

Ao I
+ &of w)P - Y[J - N]

Ao LO, W

+ i7rM'f'G"O(l w I - Ao) + Zf'Y'O(Ao - I 1)
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A. D I
+ dw f (w)P M[Xi + Y]

7r W LO

+ dw f (Lo)P -NY[J'- N] (3.56)

+ rM12 f1G1*8(j Lo' I - ,,) Zf'N'Y'O(,A. I Lo 1)

A. D 1
CGOI) + dw f (w)P I M - i7rM'f'0(1 LI" I A,,) (3.57)

and
2

<nd> f (W')ImG(d,, dt; w')dw
7r

We define also 1 = IJ' and A = 7rV2/,6".

3.3. Consequences.

In the previous section we developed expression 3.54) for the Green function of the

impurity starting from the HTLM Hamiltonian supplemented by an Anderson-type

Hamiltonian. The final expression 3.54) is dependent on the size of the gap, ,,

the off-diagonal matrix element connecting the chain with the impurity site, V, the

impurity level, Ed, the on-site repulsive energy, U, and the bare effective energy

per site, ,. The bandwidth, D, has no significant impact on G(d,) as long as it

is taken much larger than the other quantities with units of energy that enter into

the problem (e.g. , V, etc.).

The motivation for this type of Hamiltonian and formalism is to realistically

account for the logT behavior in the transport properties of PA 181. Before we

apply the results to PA, we analyze first the ,, -- limit. In this limit the DOS is

a constant. Therefore, all the features encountered in metals regarding the Kondo

effect should be exhibited. Because the DOS is given by the imaginary part of the

Green function, the resonances in the DOS will be dictated by the zeroes of the real
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part of the denominator of the Green function. If we denote by the denominator

of equation 3.54), its real part is

,A D
ReD(A,, _- 0 = - Ed - - &of W) -P WI

7r D (3.58)
2 D

2 (1Wf (W)-P 1 Y(w - 2A2f(W1)G(w')*
7 D WI 

that to order O(A is

I A D )'P
ReD = - Ed - 7r dwf (w WI (3-59)

D

We can show that the main conclusions to be drawn at this order of approximation

are also true even for A not small. We take the (A) approximation only for

simplicity of calculation.

The resonances are given by ReD 0, or that

D
W - Ed - dw f W)'P 0 (3-60)

7r D WI 

which at T = yields

7r D + w�.
-(W - Ed) In
A WI

(3.61)

We can get a feeling for the resonant solutions, WI, by analyzing 361) graphically,

as shown in figure 33. Curve I refers to the I.h.s. and curve II to the r.h.s of

equation 361), respectively. The intersection points give on the horizontal axis

the position of the resonant energies. For a given value of D and A, the value of

Ed can make 3.61) possess one or three solutions. That is, as Ed increases, the

curve denoted by I shifts downward, thus going from three energy solutions (a) to

one (b). Note that the specific solution in (a) marked by E' corresponds to thed

resonance close I-lo the impurity level. The prime indicates the possibility for this

resonance to be shifted. That is, if W - Ed, then

7 D_(Ed - Ed) -_ n
A Ed
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or that

(3-62)
I I

The other two solutions, when they exist, are close to zero, corresponding to the

Kondo resonance. Although there are two of them, their proximity yields a single

Kondo peak. By equation 362) the effect that has is also apparent. As 

increases, the level E' is pushed further away from W = 0. Smaller values of Ad

bring E' closer to the Kondo peak, and at a certain value, there is only one solutiond

to 3.61) and it is positive. This is seen by the fact that smaller A increases the

slope of curve 1 i figure 33

For non-zero (but small) temperatures, curve 11 shifts downward and becomes

finite at W = 0. his is shown by examining equation 3.59) in the following. We

approximate the integral in 3.59 by

D 0 1

dw f (W) 1P dw(l - e3-)-P
D WI D WI

D (3-63)
+ dwe- 3W (1 e/3-),p

WI

and plot the resultant integral in figure 34. The situation now arises that as T

increases, curve 1-1 keeps diminishing, thus creating the possibility that we cease to

see a Kondo resonance. We define the Kondo temperature as that highest temper-

ature at which the peak at Lo' = of curve II just touches the line 7r(w - Ed)/A

(curve I). In order to find a quantitative expression for Tk we proceed as follows.

Equation 3.63) can be rewritten as

D I W I- owdw f (w)P =2 cosh(ow') [1 - e- In -
D D

k3D) n n-1 2,3w'
2 nn! 12 e- cosh(,3w')]

n=1

Using this result in equation 3.60) and putting WI 0 we get

7r (-,3D )n n-1-1
-- Ed = 2 E 2

nn!n=1
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Ed' W I

(b)

A

I

11

WI

Figure 3.3. Graphs of the .h.j. (I) and r.h.s. (II) of equation 61). (a) has three

solutions for the resonances, indicated by the intersections of the two curves, where

Ed indicates the renormalized impurity level. (b) is for a greater value for Ed-
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Ed' we

Figure 3-4. Same as figure 33 but for T 54 0. T and T2 denote the temperatures

used to calculate each respective curve. T < T2.



Using the fact that
(-OD )n nj

ln(OD) [2 - 2 (3-64)
nn!

n=1

for large OD, then we get in 3-60)

7r-- Ed-- In(OD)

or that
Tk -- De'Ed /A

(3-65)

in accord with reference 42]. Note that the exact result for the Kondo temperature

given in reference 44] contains a factor of a 12 in the argument of the exponent.

Also, the result fr the impurity Green function lacks symmetry around the Fermi

level when the Kondo state is realized, as will be shown later. Nonetheless, the

principal characteristics of the presence of a Kondo peak is displayed as well as its

temperature dependence.

Now we proceed to analyze the system of concern in this work for which AO 7� 0.

First, we investigate to what extend there are resonances in the Green function at

T -- 0. Equating the real part of the denominator of equation 354) to zero we

have to calculate such that

7r PI
- W -Ed) dwP (3-66)
2i W W ,V/W 2 _ 2

Performing the integral and taking into account that D >> AO we get

7r 2D 1W 11 1 + gw' 7 AO)_(W' -- Ed) In(-) In -T
A A", V/W j2 A02 1 gW11 AO)

(3-67)

AO)where g(Lo I The energy solutions, u;', to equation

(3.67) correspond to the resonances in the impurity DOS at T =: 0. A graphical

analysis of both sides of equation 367) is shown in figure 35. Again, as the

parameter Ed increases, curve I shifts downward, and as A increases the slope of

3.3. Consequences 93
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Ed'

Figure 35. Graphical analysis of both sides of equation 3.67). The three intersec-

tions correspond to values of w that yield a resonance in the impurity density of

states. The value of R indicates the position of the renormalized impurity resonantd

level.
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I diminishes leading to the same arguments as in the p(c = case. In this case,

however, there is a gap of width 2A, that even at T = may impede resonances

close to the Fermi level. This means that unlike the normal system without the gap,

where a Kondo resonance is always realized at T 0, in the present case given an

appropriately chosen set of A, Ed, and A, we could preclude a Kondo resonance in

the impurity density of states even at T 0. Figure 36 iustrates this point. The

value of Ed used to obtain figure 3.6(a) is greater than the one used in figure 3.6(b).

This means that we could define a Ecri' below which there are no resonances closed

to the Fermi level.. To obtain this E ril we proceed to examine equation 3.67 atd

W' -- ,, �, where is a small number. After some approximations we get

(3.68)
I I

Again, values smaller than this E cril will impede the resonance at - ,,. Tod

parallel the development done above for the DOS constant, we calculate now E'd,

the renormalized impurity level. This is accomplished by considering - Ed and

also >> ,,, that yield in equation 3.67) the result

(3.69)
I I

which differs from. the normal metal result (see 3.62)) by the linear gap factor. The

first two terms in equation 3.69) have been obtained in the normal ,, = problem

[42,45].

Now we investigate the effect that the size of the gap has on the temperature

dependence of the resonance. At the beginning of this section, for the case of

A,, = 0, we found Tk by finding T for which equation 3.60) is true (using 0).

By doing the same analysis in the A,, :� case we will find a temperature .

This temperature T is smaller than Tk and gives the temperature at which the
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I
I

(a)

Figure 3.6. (a) shows the possibility of there being the three resonances, the one at

E' and the two close to the Fermi level. (b) shows a possibility in which there ared

no resonances close to the Fermi level.
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resonances dissapear. Carrying out the analysis with equation 3.66) we obtain the

result shown in figure 37. The two top figures in figure 37 indicate how Tk was

obtained by increasing T until the two graphs barely touched. The two bottom

figures now show how this looks in the present case for A, zh 0. The procedure is as

follows: start with a set of Ed, A, and A, that shows a Kondo resonance at T 01

increase T, T will be given when the two graphs barely touch at = ,. Because

the effective "height" by which the graph has to shift down is smaller in the case of

A, zh than in the case of ,, -_ 0, it is expected that T for the system with the

gap will be less than Tk.

Now we proceed to carry out the procedure described in the previous paragraph

in a formal way. The equation we have to solve in order to find T is given by

7r A. I
_(W - Ed) + dw f (w)P (3.70)

WI W VW2 A"2

where we will set = ,,. Rearranging terms this means that the equation leading

to T is

7r D 1 1 Lo
-(A - Ed) dw
A I + eO1,1 ,, LO -2 _ A020 VfL-)

D I I LO
+ dw

1 + O A - Lo _�I 2 _ �ATo+� 0
(3.71)

The parameter is a small number introduced to assure convergence. This param-

eter will not affect the results at the small temperatures that we win be looking at.

In figure 38 we graph both sides of equation 371) (solid lines) and both sides of

equation 3.61) (dashed lines). The four cases shown are meant to iustrate under

what conditions we get and do not get a resonant temperature. For the case of

the system without the gap (dashed lines) there will always be a T given by the

intersection of the two lines. Figure 3.8(a) shows T for the system with the gap

as the intersection between the two solid lines. This intersection yields a T that is

more than an order of magnitude smaller than that for the system without the gap.
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(a)

I

AO=O (b)

T=O T<Tk

Figure 3.7. (a) and (b) present the analysis to extract the Kondo temperature for

the system without the gap. (c) and (d) illustrate the same analysis from T = 0 to

T = Ti.
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Figure 38. Graphs of both sides of equations 361) (dashed) and 371) solid).

Dashed lines indicate the results for the normal system without gap. Solid lines are

for the system with the gap. The different sets of parameters are indicated for each

figure. (b), (c), and (d) are shown in order to demonstrate that for other choices of

parameters there is no intersection, therefore no resonance.
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Because as ,, ges to equation 3.71) leads smoothly to the system without the

gap, we conclude that T(A,, :� 0 < Tk(A, = 0) for the entire parameter space, as

we expected. Note that none of the other three (figures 3.8(b), (c), nor (d)) were

chosen to exhibit a resonance. This illustrates how sensitive the existence of the

resonance is to the other parameters of the problem. In figure 3.8(b) the impurity

level was diminished from -4eV to -5eV making Tk for the gapless system smaller,

but also elliminating T for the system with the gap. In figure 3.8(c) the value of A

was diminished from 2eV to 1.6eV also causing the same effect. Figure 3.8(d) shows

the effect of increasing the size of the gap from .04eV to .5eV. The dependence

of the existence of T for the system with the gap on the size of the gap has been

analyzed also in other systems in the cited references (e.g. ref.[32]).

3.4. Results.

Having done the T = analysis in the previous section, we now present the results

for T 0. Note that using this T = analysis we can now choose beforehand

a given set of parameters that either will or will not yield resonances. In the

present section we solve numerically equation 3.54). First, we present the results

for ,, = 0. Figure 39 shows the DOS by taking the imaginary part of 3.54) as a

function of energy. The parameters used are A = 3eV, D = 8eV, Ed -10eV,

and A, -- 0. Calculations for two temperatures, T 0025 and T .036eV,

are presented. 'Figure 3.9(a) shows the range of the spectrum where there are

resonances. The peak at -- Ed can clearly be seen. Also, the peak at Ef -- is

very much apparent. The height of the peak at Ef is 17 times the height of the

peak at Ed- In figure 3.9(b) we have blown up the range from -. 75eV to .75eV

to show detail. he dashed line corresponds to T = .036eV and the solid line to

T -- .0025eV. The Kondo temperature for this model is given by equation 365)

and is for this parameter set Tk = 0023eV. This puts the dashed line above Tk and
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Figure 39. Impurity density of states for the normal system with ,, = 0. The

resonance at = can clearly be seen being the Kondo resonance. The light and

dark line correspond to T = 036 and .0025eV, respectively. (b) is the same graph

blowing up the region around CF. The parameters ued are A = 3eV, D = 8eV,

and Ed = -10eV.
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the solid line very close to T. The model then shows all the features of the Kondo

effect regarding the density of states at the impurity including the resonance at Ed

and Ef, and the relative widths and heights of each one. The peak at Ef can be

shown to decrease as a function of T as logT (ref. 43). Then, the conductivity,

which is directly related to the imaginary part of the Green function, is also going

to reflect the log'T behavior.

In figure 310 we present our first ,, :� result. It is for the same parameters

as in figure 39 but now with A,, -- 0.04eV. In figure 3.10(b) we show the detail

around the gap. The solid line is again for T close to Tk, and the dashed line is for

T just above it. The most apparent feature, as compared to figure 39, is the lack of

T-dependence of the peaks around Ef. This fact alone is sufficient to indicate that

these parameters are not in "tune" with a Kondo resonance. In fact, an analysis

similar to the one carried out in the previous section shows that the denominator

of te Green function behaves as in figure 3.6(b). There are no "hard" resonances

in the Green function, although a little T-independent enhancement is observed at

= ,,. The conclusion at this point is that a small gap can suppress the Kondo

resonance (figure 39). GraphicaRy this can be thought of as a truncation of the

resonance at Ef by the gap.

Knowing, then, that we can tune the resonances, we graph the DOS in figure

3.11 with a new set of parameters. Now A .5eV, D = 8eV, Ed -1eV, and

A,, -- .04eV. An analysis of the same kind as that done in the previous section yields

figure 3.6(a), showing that there are resonances near = ,,. This is precisely what

is shown in figure 311. We have carried out the calculation and plotted a series

of temperatures. hey are T = .001,.1, 1, 10, and 0eV. The Kondo temperature

of this set of parameters is Tk = 15eV. This means that there should be at least

two temperatures whose graphs show a resonance at = ,. In figure 311, as the

temperature decreases, the resonance at = Ed shifts to the right. In figure 3.11(b)

the "growth" of the resonance at = ,, is shown as a function of temperature.

The lowest peak corresponds to T 100, and the highest to T = 001eV, well below
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Figure 310. Impurity density of states for the ytem with a gap of ,, = 0355e V.

Again, the light and dark lines correspond to T = 0025 and T = 036e V The other

parameters are as in figure 39.



3-4. Results 104

0.4
co
(D
M.O.-
(n 0.3I-0

0 0.2C0a
C"', 0.1

CL
E _

0
-3 -1 1 3

Energy

0.40
(D
M.f..

V) 0.3
0

0) 0.2a
4)0
r11 0.1
Ma
E

0
I-1 -0.5 0 0.5

Energy

Figure 311. Impurity density of states for the system with A = 0355eV. Shown

for various temperatures, the movement of the Ed peak is illustrated. Darkest linei

correspond to lower temperatures. The growth of the peak at = is also hown.

The other parameters are D = 8eV, Ed = -le V, and A = 5e V.
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the Tk. At this T .001, the resonances are at E - -. 21 (as given by equation

3.69) and at -- ,,. Their relative magnitudes are 2 and 35, respectively, showing

a predominance of the Kondo peak over the impurity peak. The T-dependence of

the peaks is apparent, thus showing a contrasting behavior to that of the system

depicted in figure 310. The appearance of the resonance above the gap indicates

the strong coupling that is developed between the impurity level and the conduction

electrons in the conduction band.

A point that; could be raised against figure 311 is that the resonance at = ,

looks as if the resonance from Ed shifted all the way up to ,,. Thus, making

the whole picture as if there is only one resonance that simply shifted in energy.

One might say then that there is no legitimate resonance close to Ef. In order to

clear this point out we plot in figure 312 the DOS for the set A = 5eV, D = 8eV,

Ed 10eV, at T = JeV (Tk .15eV). There are two graphs, as shown in figure

3.12(b), with ,, = and ,, 0.04eV. This comparison shows both resonances

at Ed and at Ef separately and discernibly different. Both show the resonance at

w --- -6.7eV (given by 3.69)) and at - and A" for each case. From this

figure we can conclude then, that the resonance at A,, is separate from the one

at -- Ed, and Kondo-like.

In order to establish the T-dependence of the resonant peak at = A, we show

in figure 313 a series of curves for different temperatures. The set of parameters is

A -- 2 D = 807 Ed = 4, and ,, = 0.04eV. In figure 314 we plot the height of the

peak close to == ,, versus the logarithm of the temperature. Three regions are

clearly discernible. The region for low T (figure 314) shows the points corresponding

to a saturation in the DOS. The region at high T well above Tk, shows the height of

the DOS, but there is no apparent resonance (refer to figure 313) associated with

them. The intermediate region (. < T < 2eV) very close to T = 5 shows a

linear log T behavior of the peaks. From figure 313 these temperatures are seen to

correspond to the peaks at = ,, whose heights are well above the heights of the

peaks at E'd'
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Figure 3.12. Comparison between the DOS of the system without the gap (light)

and a system with A,, = -0355eV (dark). (b) shows the region around the Fermi

level in more detail. Note that both resonances, at E' and at A, are distinct fromd

one another.
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Figure 313. Impurity density of states for the parameters D = 0e V A = e V,

Ed = -4e V, and a gap of ,, = 0355e V. The inset shows detail. Temperature

decreases for darker line types.
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Figure 314. Maximum DOS (filled squares) at w = A,, taken from more curves

of figure 313. The solid vertical line corresponds to the Kondo temperature of the

system. The dashed line corresponds to TI. The angled line is drawn to denote the

linear logT behavior of the resonant peak.
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Now we focus on the changes that other gap sizes might introduce in the results.

Because the gap Ao enters in the expression of the DOS in a nontrivial way, we

explore the dependence of the height of the DOS at - as a function of logT

and the size of te gap. We anticipate that increasing Ao from to a critical value

AO crit the value of the DOS will be affected. This fact comes because AO introduces

a cutoff below which a saturation is attained and no further growth is observed.

Figure 315 shows for six gaps = 0, 04, .08, .1 2 and AeV) the advertised

behavior. The parameters used are A = 2eV, Ed =-5.5eV, and D = 8eV. The

solid vertical line indicates the position of the Kondo temperature for this parameter

set. As the gap is increased, the point that separates the saturation region from the

logT region, TI, shifts towards higher temperatures. In fact, it can be shown that as

AO Aocrit , T ---+ Tk, where Tk is the Kondo temperature of the normal system.

AO Aocrit - A does not increases beyond aOnce , the maximum DOS at 

marginal residual value as a function of decreasing temperature. Thus, there is

a critical gap beyond which the resonance is not exhibited. Rewritting equation

(3.68) we can show that Aorit satisfies

critA 0
Ao"t Ed - A [In + 11. (3.72)

7r 2D

It is interesting to notice that equation 372) can be rewritten in terms of the
1+ AOKondo temperature as Aoe la < 2Tk, where the inequality assures a resonance.

This inequality shows that the value for Ao will always be less than the Kondo

temperature of te normal system. Also, this inequality is very similar to other

calculations with the same density of states 3.5) [32,311. In figure 315 the solution
crit ,to equation 3.72) yields A = .157eV. Using typical parameters for PA, vf -

2toal to = 2.5eV a -- 1.22AI D = 7.89eV (using the linearized dispersion relation

for the TLM model), we get for A = 01eV, the values of Ed = -. 02eV and

V = .28eV for Tk - AeV. For a bigger gap of A -- AeV, solution to 3.72) again

give Ed = -. 21eV and V 1.1eV if Tk - 5eV. Also, for AO .2eV we get

Ed = -. 9eV and V' = 2.27eV for Tk - 5eV.
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Figure 315. Plot of the maximum value of the DOS at = ,, for several values

of the gap. The solid vertical line indicates the position of the Kondo temperature.

Other parameters are A = e V, D = 0e V, and Ed = -5.5e V. The gaps are A = ,

.0355, 0755, .1 01 e V, 201 e V, and 401 e Vfor the solidsquares, solid diamonds, solid
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3.5. Conclusions.

Because of the close relationship between the DOS and the resistivity, we conclude

that the experimentally observed logT in PA could be explained in terms of the

model considered here. The saturation of the DOS at very low T indicates that the

occupancy of the impurity level is very close to one. From the point of view of the

resistivity, a saturation marks the end of the spin-flip scattering and the beginning

of the Kondo state. Therefore, we have shown how we can account for a Kondo-like

behavior in the resistance of systems that possess a gap containing the Fermi level.

Experimental results on the newly synthesized HCPA show a logT behavior at low

T. Taking into account then, that for heavily doped PA there are IRAV modes that

suggest the existence of a gap, our model explains the logT and further saturation

of the resistance. A Hamiltonian that is composed of the usual non-interacting part

of PA and complemented by an Anderson Hamiltonian is used in order to take into

account impurities in the system. A relation that puts an upper bound on the size

of the gap has been given in terms of other quantities such as the atomic level and

the magnitude of hybridization.
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Appendix A

In the first part of this Appendix we present the transformation used to change the

creation and annihilation operators from the real to the kspace representation. As

an illustration, te actual transformation is carried out for the SSH Hamiltonian.

The second part is concerned with the relationship between the wavefunctions used

in this work and tose conventionally used in the literature regarding the continuum

representation of the SSH Hamiltonian. Also, in this second part the repercussion

on the boundary conditions of the wavefunctions, brought about by this transfor-

mation, is derived.

A.1. Transformation of the Electron Operators.

In general, the first step in the calculations presented in this thesis has proceeded

by transforming the site SSH Hamiltonian into its k-space representation. The

procedure consists in decomposing the creation and destruction operators n"s for

the electrons at site n and spin s into operators that create and destroy electrons in

the valence and conduction band v, and cc, respectively. Using equations 3)

in ref I of chapter 2 as the starting point, we construct the following equality

1 -ikan _I)nCc,,I,
Cn" 72== E e Ick ", + i k (A.1)

k

where N is the number of carbon atoms in the chain. We prove this relation by
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showing that it works in deriving the expression for the energy given in ref.

chapter 2 for the non-interacting case.

First, we need the same relation but for the n + site

of

I - ikan - ika V
C n + 1, s __ E e e I ks

v'2N k

_ i_I)nC,,.l
k (A.2)

so that we can derive

t 1 ika t cc
en - e k,. k k,+1,sCns :--- 2 Y IC eV's CCta ,11

k

i+ eika e- iir et , CV +
I k M ka2I:

k

n
(A.3)

VtC ' Cck__ , 8 k , 41 1 -

Now, from the definition of the v,, and cc", operatorsk k

eV - I ikan
ks -�� I: e Cns

n

ic ikan(_l)n
Ck, = vTN I: e Cn,.

n

(A.4)

we can see that
Cc - - CV

k- a - k,8

Vk . , k, =ic' -

Substituting in (A.3), we have then that

Ct eika t VE n+l,8Cn, = E IC k,8 ks

(A.5)

- CO cc
k, 8 k 1

kn

so that

IC t t ,n- en Cn+1,s = 2 E cos(ka)[cvt cvI: �1,8 I n 8 ks ks
- CO CCks k]. (A.6)

kn

Now, upon using the identity (_1) n = ei7rn we obtain that

E (_l)n[,t ika[,,t ,,. + ct.Cv,.]
n+lsCn,,] = i E e ks k k, k (A.7)

(A.8)

kn

so that

E(_l)n[,t t " cc, CO C,,n+lsCns + C Cn+1,81 - 1: 2 sin(ka)[cvt + 'I.n ks k ks
kn
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Now we are ready to substitute into the site-representation Hamiltonian. Substi-

tuting (A.6) and (A-8) into the SSH non-interacting Hamiltonian we get
)7 t t

.,[t, + -I)'2au][ct C" + Cn+1'8 n n+1,81
ns
2i,, cos(ka)[c't.cc, CO CV (A.9)k, k ks k,"I

k,,s

+ 4au sin(ka) [c't CO c,kacks + ks k 1

which yields finally

t cc CVt CV ) + 4au sin(ka)(c' cc

k, ks k, ks k k, k'H= Eka[IEk(Cck,, 8 + cctsc"'J
(A. I 0)

where Ek-- 2t,, cos(ka). This is equation 3.6) in ref. 1 of chapter 2.

A.2. Boundary Conditions.

The convention adopted in this work regarding the continuum version of the SSH

Hamiltonian is the use Of 02 instead Of 03 (see equation 2.2)). This convention

permits us to directly identify the wavefunctions with the electronic site amplitudes

in the chain. We, can relate these wavefunctions to the ones normally used by

directly comparing the electronic parts of both the normal TLM Hamiltonian (ref.

28 of chapter 2 and the ones used here (ref. 31 of chapter 2 The following

relationship between both electronic amplitudes is obtained,

Utirn(x) =U(X) - v(x)
(A. I )

VtIM(x) iu(x + V(X)

up to a normalization constant. The transformation takes the amplitudes given by

the subscript TLM relating to the left and right-moving electrons to a represen-

tation where they stand for the amplitudes at odd and even sites. The boundary
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conditions that these new amplitudes have to satisfy are easily derived using the

same formalism as outlined in reference 36 of chapter 2 Using the periodicity in

the charge density,

Tt(x + L)T(x + L) - 't(x)T(x) (A.12)

and the periodicity in the current density,

IF t (x + L) O'2 XF (X + L) = X t (X) O'2 T (X) (A.13)

and defining T(x + L) = BT(x) we get that

even number of excitations
(A.14)

odd number of excitations

for the case of reference 36. For

conditions lead to

the case of reference 31 the same periodicity

even number of excitations
(A.15)

odd number of excitations.

The periodicity conditions given by equations (A.15) are the ones used throughout

this work which lead directly to the density of states.

e ick -

B 
e iCt2 0.3

eial I
=

eiCt2 O'2



Appendix 

This appendix is designed as an outline of how the Inverse Scattering Formalism

works. In the first part, the Inverse Scattering Formalism is used to obtain the order

parameter correponding to a single soliton and polaron, separately. The only input

parameters in the results are shown to be the energy of the bound state level and the

occupation number for that same level. In the second part of this appendix, explicit

formulas are derived for the case of two bound states and the boundary condition

for two and three levels is derived. The generalization to the nlevel system follows

in a straightforward way from this presentation.

B.1. Order parameter for single excitations.

Starting from the eigenvalue equation of the TLM Hamiltonian we obtain the two

coupled equations

[-Vfa + A(x)lv(x) =,EU(X)
(B.1)

1Vf'9 +A(x)ju(x) =,EV(X)

which on decoupling yield

--9.v(x) + U.(x)v(x =V(X)
_(92U(X + U,(X)U(X =U(X) (B.2)

X
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where

U" W a�' A (X +I IA(x)' - AO]
Vf V2f (B-3)

U�'(X) a- A W + 2 A 2]Vf Vf2 A(X 0

and A -- [,E2 - A21/V2
0 f,

Inverse Scattering Theory gives the solution of the potentials as

d 2
UW - -2�- + i) (B.4)

where
Anm = a 1/2 a1/2 e(k,,,+k-)x

n m (kn +km). (B.5)

A. Single soliton on odd sites. The occupation number of a negative soliton is N =

1, and energy te level lies at = 0. This means that A = -(A"lVf )2 and also

k = A,,Ivf. From equation (B.5) we get

e2lex

A a, 2k

putting this in (B-4) yields

d2 2kx
Uo(x) - 2 X2 ln(1 a, (B 6)

- 2k 2 sech2(kx - 1)

where 1 is defined by e6 v��/a�,. By inverting equations (B.3) and solving for

A(x), and using Ue = we get for the order parameter,

A(x = -Aotanh(kx - 1) C.

Upon using the boundary condition that A(oo = -,A,, we obtain that C = . Also,

because the order parameter is translationally invariant, we can freely choose 1 to

be 0. Then the order parameter for the single soliton becomes,

A(x = -A,,tanh(kx)
(n

I )
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B. Single soliton, on even sites. Following the same reasoning and calculations as

above for the case of even sites leads to U(x = -2k2 sech2(kX - b2) and UO(x = .

The order parameter turns out to be

A(x = Atanh(kx).
(B.8)

C. Single polaron. Because the polaron has equal charge distribution on even and

odd sites, both cases are equal and the same. Then the occupation number is N

the energy level lies at _- -wO, and A = k2. The potentials are given by

Ui(x) 2k d tanh(kx b)
dx (B.9)

2k2sech2(kX _ ,)

thus A(x = -vf k [tanh(kx - O) - tanh(kx - ,)] C where e, o mean even and

odd, respectively. Applying the boundary condition that A(±oo = AO, and the

translational symmetry b, -_ -b,, - -b we get

A(X = AO f k [tanh(kx - ) - tanh(kx + 6)]
(B.10)

where kvf V/A2 - wo. For a chain of infinite length the value of wo is given by0

WO - Ao/v/2.

B.2. Two level wavefunctions and treatment of boundary
conditions.

From the system of equations given by equation 2.19) consider two levels denoted

by k, and k2, where kivf = \//,AO w?. Then the system to solve is given by

C2 Ur(x)e-klx C2 Ur(X)e-k2 X

u'(x)ekiz -le 2 2

2k, ki + k2
2 rX)e-klx 2 rX)e-k2 X (B. I )

Ur(X)ek2X Cleul c2eU2
2

k, + k2 2k2



a k2 x-i5j, -k2 X -52e
U'1(x) = 2We(x) (e + e

O' kj x -51, -kX+62eU'(X =
2 2 W (x) (e e

The electron amplitude for the odd sites are

V'(X = 01 k2X-i5l,, k2X-b2O
1 2 Wo (x) (e + e-

01' kj X 61" -klX+620V'(X = - e
2 2 Wo (x) (e

where
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where Ur (x) and Ur (x) are the unnormalized electron amplitudes for even sites. The

first solution to (B.11) is given by

(B.12)

where

C2e I = -62e 2 \1'k 1 k2 p -61.
Cie k2 - e and C1eC2e O' - e

Also, the efinitions p -= ki + k2 an o =- k - 2 have been made. The term in the

denominator is defined as

W,(x) pcosh(o-x - 2e) + o-cosh(px - le)-

The other solution to (B.11 is

(B.13)

W,,(x = pcosh(ox - 2o) + o-cosh(px - ic,).

From the boundary conditions on the electronic amplitudes it can be shown that

bo - be. From tis fact we can easily see that u(-x) = v(x) and that We(x =

W,,(-x) for the present case of two levels. In Appendix D a more general relation

between the odd and even site amplitudes will be presented.

(B.14)
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Using expressions (B.12), (B.13), and (B.14) into the expressions for the con-

tinuum electronic amplitudes, as given in equation 2.20), we can show that for the

system of two levels, the amplitudes in the continuum are,

U'k W == e ikx 1 P ki (e-01 X+62 + e-px+51 )
I W,(x) k, - ik

+ k2 (eo'X-62 _ PX+6'
k2 - ik )II

ikx p k, ( O'X-62 + e-PX-61
v'(x) =ze I e-k l WJx) ki - ik

- I

+ k2 (eOIX+152 - e-PX-61
k2 - ik I I 

(B.15)
I I

The boundary condition to be verified is the one given by the equation in the

paragraph just before equation 2.13). Namely,

u(x + L) eiO U(x) (B.16)
v(x + L) V(X)

as given in appendix A for an even number of excitations. The phase is a multiple

of7r, (see ref. 36 of chapter 2. Now, on taking the length of the chain L large, or

by taking k-I L > > 2, bl, we approximate the following quantities. The first one

W,,(x + L) -_ Pea(x+L)-62 + O'ep(x+L)-61 (B. 7)
2 2

and the wavefunctions

'(x + L) -_ e ik(x+L) 1_ p k2 o,(x+L)-62 (B.18)
Uk W, k 'k

2

Because p > , we finally get

u'(x + L) --e ik(x+L)
k

ik(x+L) (B. 19)V'(x + L) --ek

For the electronic amplitudes at x, after approximating, we get

u'(x) --e ikx + 2ikp
k (ki ik)(k2 - ik)

2ikp (B.20)V'(X) --e ikx +
k (ki zk)(k2 - ik)
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where we have taken x big, but kept it such that Ix < L and used the fact

that We(x) lle-P'+61 and W(x) 'e-P"-61. After inserting the previous2 2

approximations into equation (B.16) the condition now stands as

ikL + 2ikp
e e - ik)(k ik)

(ki 2

or that
e i(kL-0) (ki + ik)(k2 + ik)

(ki ik)(k2 - ik)
2i tan- 1 k/k, 2i tan- 1 k/k,=e e

Therefore,

U - =2 tan-1 k + 2tan-l k
ki k2.

(B.21)

A shortcut t get to the same result, that will be used to verify the boundary

condition for three levels, is to note that conditon (B.16) is true for any x, so we

take x to be a big negative number, but less than L. Then the system given by

equation 2.19)

.2 -/elm 2ekiz + c,,,e -2.e-k2- Ur(X) 1
2k, kl+k2 1 (B.22)

C2"e-klm k2X C2'e-k2w Ur(X)
e + 2 2

kl+k2 2k2

for x a large negative number yields

U r( X) - e klx
C2ale (B.23)

r(X) - k2X
U2 2 e

C2eO'

so that

Uk(x) eikx + 2pk
(ki Zk)(k2 - ik)

as in equation (B.20).

The same system for x x + L and L oo yields

ekl(x+L) 0 ur(x +L) 1
0 ek2(x+L) Ur(X L)

) 2
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that results in Ur (x + L) -- e -ki(x+L) and Ur(X + L) -- e- k,(x+L) , as obtained inl 2

(B. 1 9).

Now we can use the same trick for three levels. The system is now given by
2 - k .1 .e ki + C1 ', e

2k,
C1', e - k .a

k, +k2
Je jo
k,+k3

C2 - k2-
2e e

kl+k2
e k2X + C 2, e - 2 

2k2
c2, e- A2-

k2+k3

� UrI(x)
r(X)

U2
Ur(X)

3

I

I

(B.24)

First we consider the system for x large and negative. This results in

Ur(X) ==2kjP12P13 eklx
1 C2

IeO'12913

Ur(X = _ 2k2P12P23 k2X
2 2 e

C2eO'230'12
(B.25)

Ur(X) _2k3PI3P23 e ks z
3 C2

3eO'230'13

where pij =- ki + kj and o-ij = ki - kj. The continuum wavefunction is given, on

using (13.25),
- ik. (ki + ik)(k2 + ik)(k3 + ik)

(ki ik)(k2 - k)(k3 - k)
Ur X =

k

(B.26)3 k 
= - e ikz exp 2i tan-1 -(E ki

1

Now putting x -+ x + L and taking L --- * oo in system (B.24), get that

Ur(X + L) -- eik(x+L).
k (B.27)

Equations (B.26) and (B.27) in the boundary condition (B.16) yield

7r 3 k
ikL io - -1e = e - Z- + 2iE tan -

2 1 ki

or that

(B.28)

Following the same arguments, it is easy to generalize the previous result for the case

of n levels in the system. Taking into account the phase of e i2m-m , we get for the n

level case (up to a constant) the boundary condition U = 2m-7r + E- 2tan-1 klki).i

This is the condition used throughout chapters 2 and 3.

C2 -k3-"�

kl+k3
c 2, e - 3 

k2 + ks
k3z C 2, e-k3.e + 3 2ks
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Before deriving the exact expression for the wavefunctions, we define some of the

notation to be used in this appendix. We will define objects with an arrow overhead

to indicate the vector form of that set e.g. = ki, k2, . .) and = ) b2'. .)

whose dimension (number of elements) is given by the number s of levels (electrons)

introduced into the gap. Subscripts on these objects indicate the same vector but

with the subscript element omited. For example, k = (k2, k3, -),so that this new

vector has dimension s - A matrix L of dimension 2-' x s whose elements are

either I or -1 will be used. Its row-vectors will be denoted for convenience

by two indices. The first index n denotes how many -1 elements it has and the

second m denotes which row-vector it is. The definition of this L matrix is given

below. By the dot product for example, we denote the dot product of the

specified L,,,,, row-vector with If a superscript is included such as L' - the dot

product is carried between the vector, whose s element has been omited, with the

Lnn row-vectorl whose element number has been omited also. A matrix P will

be used and it is constructed in the same way as the L matrix, but with dimension

2s-2 x (s - ) instead. In both cases Pnn or Lnm refer to the element j of the

row-vector of the respective matrix. The rules for the construction of the L matrix,

and so for the P matrix, are given below.

The wavefunctions that solve the system 2.19) were derived by induction and
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are given for any number s of levels (s > 1 by

I 8 1

Uq- W H qje- 2
ej>q

( - 2)
a-2 11.1

q-1 Cq [,3qnX pnnnm nma F 2
n=O =1

for q and

S]b,)I+ [2n +I - (C.1)

( - 2 s-2 n1 q-1
Uq =- ]I O'jq

WI' 

8

-17sq I (C. 2)
2 nm

-1 (6, 1 -61) q-1 Cqq0Iqj e 2 a Fq [�3 x11 E I: nm n nm
I<q I>q n=O m=1

for q > 1, where F[ =- sinh[ ],cosh I for q even or odd respectively.

Oqm ,n - kq Pnm, O'ij = ki - kj and

Also

q-1
Sq - a i i-I

TM =anm + E anmanm (6j-1 6)
j=2

8-1
9 =nm Pna, 6a + E 6 + [2(n - ) + 5]bs.

i=2
Other symbols used above are defined as follows;

(C-3)

(C.4)

(C-5)

(C-6)

and

where ao - a-' = and bi>j = 0(i - is the normal step function. Note that

the wavefunctions (C.1) and (C.2) are given in terms of a set f bj instead of the set

f al introduced i equation 219). The transformation was done for convenience

and is given by

(C.7)

for q = , and
q-1 8

2cxq - Pqj e(6q I . )e _ 1 Pjq fj
j=2 O'jq j=q+l O'qj

(C.8)

Cq = 11 (k, - k,[Pnm(7 - >s)Pnm(V -n
-,7<-Oq

q
aq = 1 Pnm(')

n 3
j=1

1 8 - bi -(s-2)6,

e2a! Pli e I Ei=� IH (jjj=2
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for q > 1, where pj = ki + kj. The term W, in the denominator of theUq, which

is the determinant of the matrix (A + 1), as defined in the paragraph containing

equation 2.17'), is given by

n

D8 cosh [(L-nm k)x - -L'm .6 - 6 - n + 2 - s)6,] (C-9)w'(X) E nm 2 n 2
n=O m=:1

where we have used the short-hand notation

128

(C.10)

the only wavefunction is just ul = e-81/2W,. The amplitude

can be obtained from the relation vq (X) = sign(Wq )(_l)q+l

also satisfies a relation similar to equation 2.19)

Note that for s = I

for the odd sites vq

uq(--x), and since it

2a' k,, x
-kqx 2k,,e, . V,(X)C-

Vq(X) = e 11 - 1: . k, + kq I
n

(C.11)

it can be shown that W,(x = Wo(-x).

The L matrix is defined as follows. The first column of this matrix is composed

of +1 elements only, and the rest of the matrix follows an ordering that exhausts

all the combinations of +1 and -1. The form used in this article for a given , n,

and m is as follows. Let the indices i, j, k, . . . I denote the individual L row-vector

element positions whose values are equal to -1, where i < j < k < ... < t < I and

D8 = 1(k - kj[Ln.(i)Ln.(i)J)-n
i<j
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there are n of tem. Then

L'M = I, if S < < S I
n n

L""'U = I, if S < M S < + j
n - n n -

Lm(k) 1, if s - k <M_ S-i S-j < s I - k
n - 2 n n n - 2 (C.12)

Lmn(l) 1, if S < s - s -j
n 2 n n - I n - 2

(S t S I

2 1

All other elements that do not satisfy these conditions are equal to 1. Note that

for a given m ad n the first line of equation (C.12) completely determines the

position of the first -1 in the row-vector, Z'. Once this position is determined, it is

used in the second line to determine the next position and so on. The matrix P

is constructed in exactly the same way as the L matrix but using s - , instead of

S.

From equations (C.7) and (C.8) we have a relation between the set of nje

and a set of f �jj, which turn out to be convenient in our case. Now we present

the relation between the fbil and the fwil, therefore establishing the dependence

of the uq on the energy levels. Let us define the quantity Qi = k where C(L)C(L)

as defined in the text following equation 223). Also defining the2

vector (RI, R2, R,,) where its individual elements are further defined by

Ri -- tanhQj, wehave

2 (C. 3)

for q = s, and

bq _L(s-2),q (C.14)
2
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for q < . Thus, starting from a given set of fwil, by equations (C.13) and (C.14)

we obtain the corresponding it. The f kil are determined by kivf _ A2 - W So0 z

that a the o-ij and pij are determined. In conclusion, by the above developments

the wavefunctions (C.1) and (C.2) depend solely on the parameters f wi , the energy

levels of the bound states.

Now we proceed to show how equation 2.18) can be obtained from equation

(2.24). The sufficient relation comes from examining equation (C.9) in the limit

of L -+ ±oo. Note that for x very big we obtain W(x) Dal cosh[(Lo, �)X]

since the biggest term in the sum is the one in which all the f kil are summed.

For its derivative we obtain thenW,(x) (Lo, �)Dj cosh[(Lo, �)x]. Then the

condition follows that lim r -±c)o W Ej ki. Thus equation 2.18) is obtained

by considering also that in this limit the quantity C(L - A, vanishes.
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In this appendix several relations and results regarding the wavefunctions from the

Inverse Scattering Formalism will be given. Approximations usefull in calculating

the expectation -values of the interacting Hamiltonian will also be given.

The relation between the odd and even bound state wavefunctions is given by

v'(x, (-I)'+'u'(-x, b)sgn(c,,) (D. )
n n

where Vr and Ur refer to the unnormalized odd and even-site wavefunctions belong-n n

ing to level n. Depending upon the sign of the energy of the level, if it lies above or

below _- 0, there will be an extra negative sign given by the sgnEn. The relation

between the continuum odd and even wavefunctions is given by

)Vr X, 'kvf + A(x)Ur X,sgn( Ek k k
I Ek I

ikz 2a' k,,xe 2kne '! Ur X, Vr X,

__ I: lk j(knVf +,A(X)) n n b)fn
+ 116k I n kn -

ikvf + A(x) rX b)
I Ek I Uk (D.2)

Equation (D.2) can be derived in a straightforward way using equations 2.10). The

last step in equation (D.2) is taken for simplicity and was verified for several explicit

wavefunctions. For future use we state the relation

r(Xb)Vr(X, b)*sgn('Ek) A(x) - ikvf Ur(X b 12. (D.3)
Uk k I Ek I k
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Another set of expressions that are useful are given starting from equation 2.20)

and taking the square,

U,(X)12 -1 __ 1 j3Ur(X)e-kjx 2k-i - - ClUr(X)2 e- 2kix I -
l k Z Z (k? + k2) Z t (k? + k2 I

Z Z 2

kikj + k 2+2y C3C�Ur(X)U7(X)e-(kj+ki)x
i, ' Z Z 3 1(k? + 0)(V + k2)].

I Z 3

(D.4)

Upon defining c/�\/2k = ei we get

(D.5)

where the following has been defined,

fi(ki, x) =4k3u'(x)e- ki x+2ai [1 - 7(x)e- ki x+2cti
i i Z I (D-6)

and

gij(kikjx) =8kjkju�(x)u�(x)e- (ki+kj)x+2(ai+aj)
Z 3 (D.7)

The normalization of the continuum wavefunctions is taken to be Ak -- I/v/2L-.

This approximation is derived starting from equation 2.11).



nb

E = I: nks6k + Y(ni+ - ni-)U;i
k i=1

where nk,, is the, occupation number of state k with spin s, ni±

number of the bound state level i that is above ) or below (-)

The u;i is the corresponding energy of the bound state, and 

that we have explicitly taken out of the sum the bound states.

the boundary condition U = nr + Ok we get,

(E.1)

is the occupation

the energy = .

/A2 + k2V2 . Note
0 f

Now, considering

nb

E=E,1+2 dk'Ek dOk + 1:(ni+ - nj_)Wj
7 dk

where E, is the nergy of the undoped system. The electronic contribution

creation energy of the excitations is then defined as E, = E - E and given

4 - nb k 4 nb 0 d6k 1 k
Ee :=: �jA2'+ k 2V2 tan-' Al - - E - tan- -) dk

7r 0 f f ki 7r kf dk ki

nb

+ 1:(ni+ - ni-)Wi
i=1

(E.2)

to the

by

(E-3)

On taking the approximation kf >> ki we use then that tan- , kf - '. Also,
'C- 2

kf dEk 1 k Ak kf Witan- -)dk= A2+k 2V2 tan- f ujitan-1
dk ki 0 f f ki ki A2+k 2V2

- 0 f f-

Appendix E

Here we present the derivation of equation 224) for the creation energy of the

non-interacting system for finite chain lengths. Lets calculate first the electronic

contribution to the energy. From equation 2.12) the electronic part is given by



F-
nb

Ee =2vf (2 I)1: ki +
i 7r A i=1

nb

+ 1(ni+ - ni-)wi
i=1
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A2 +k 2V2 -

- vf ki In kf + � 0 f f + vf ki I- A,
- Vf - Vf

+ k 2V2 t -1 k -�A2 an ( 11� )- wi tan kivf0 f f ki I Wi )

vf ki
2A

(E.4)

and using
vf kf7r 7rA'O� � + - vf ki

2 4kf vf
A2 + k 2V2 1 kf _

� 0 f f tan- ki = (E-5)

and A2 + k2 V 2 lVf -- kf + A2 /2kf V we� 0 f f 0 f
creation energy

get for the electronic contribution to the

4 nb-E wi tan- i ( Wi )
7r i=1 kivf

(E.6)

The elastic contribution to the creation energy is given by integrating over equation

(2.22) with finite Emits. This can be shown to give

I
1

2 L (C2
Vf I WO(L) _ 2

E,61 = - rA WO(L) + W, (L I + 2rAvf 0 )
2 2 

(F-7)
I

where the prime indicates the derivative with respect to x evaluated at L. The
2

creation energy for the excitations in the chain is given by E E, + Ej.
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In this appendix we present the calculations leading to the results given in equations

(2.7) through 2.9). In the first part the general outline of the procedure is presented.

In the second part the on-site interaction term is treated, and in the third and fourth

the nearest-neighbor and Bond-Charge repulsion terms are derived, respectively.

F.1. General Scheme.

The interaction terms will be transformed from a site to an energy representation.

Once on the energy representation the expectation values are carried out using the

generalized Hartree-Fock wavefunctions, as described in chapter 2 The destruction

operators on site j and spin s are related to the operators for the valence and

conduction band as follows (see appendix A),

Cns C_ ikan ,,., + i_j)nC,',]. (F.1)I k k

k

Once equation (F.1) is incorporated in the Hamiltonian, the valence and conduction

band operators will be expressed in terms of the particle fields using,

V ikan 2
Cks e On, s

n (F.2)
C ikan,01Cks N L e ns.

n
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Finally, the particle fields will be elliminated in favor of the electronic amplitudes

at the even and odd sites using the relations,

'O , (R.) _1)nV�a Cksfk(Rn)n
k (F.3)

,02 (_I)nV/an,, (Rn) I: Ck,,sgk(Rn)
k

where fk(x) =- uk(x) - ivk(x) and gk(x) Uk(X) + ivk(x). At this point an quati-

ties can be evaluated using the expression for the electronic amplitudes given in

Appendix C.

F.2. On-Site Interaction.

Starting from the on-site interaction term given by

'Hu = U nj,,,nj,,, (F.4)

we substitute in equations (F.1) and (A.5) to get the expression

'Hu = I L (F.5)2N
k,1,11

where

tAjj,,kk1,,61,s a akk ss' + bt 81 bkklssl

and
k CV, I -cc

akklssl Cv,, k ,8 k,8ckl,.ql

bkkl,,.' -=Cck,,Ckv,,,, + cv'iscC
k klsl

Using now equation (F.2) we get for equation (F.5)

'Hu = E [t
nna8l Cnn8s' + Dt (F.6)2 nnaslDnna8l]

n

where
Cnnlssl - n n n n' 181

-7kl,8021,81 o2,sol (F. 7)
Dnn'8s' = n n + n ni'st



Finally, using equation (F.3) in equation (F.6) we get

'H u-- U a 2 Ct , C t CksCkls [9*9* + ffl*,)(gkgk + fkfkl)
2 E It's 1" I

n kk1II1 (F.8)
(f1*91*1 + *fl*l )(fkgk + kfkl

where the g(Rn) and the f(Rn) have been defined in the previous section in terms

of the electronic amplitudes in the odd and even sites. On taking the expectation

value of equation (F.8) we obtain

<'Hu>= 2aU dx E nITnkj [ Uk I' IUI12 + Vk I' IV, 12].

ki 17 0)
-1 . )

This is equation 27) in a slightly different form. To explicitly account for this

result in terms of the wavefunctions found in Appendix C we integrate first over k,

0 1 d1k ] Uk(x)I
12 = 2 1 U, X 12nk,8 Uk(X) dk [' + nis (F.10)

k kf 7r -7r dk

where we separated the contribution due to the bound states from the continuum

states, and used the boundary condition kL n7r+ Ok. The wavefunctions Uk(X)

and ui(x) are the normalized wavefunctions. The second term in equation (F.10 is

dropped because the normalized wavefunctions of the continuum are proportional

to 1/v�f. Using the expression given in equation (D.5), we get,

2 .-, k f 1 Y 1nksIUk(X)I - - - f(ki, x) [ ' - -I: 2r 27r 2ki kf
k i

+ 1 E gij (ki, kj, x + n js I U, X 12

2-7r i>j (k + kj) kf
(F. 1 1)

where the approximations

7r

kf dk (k? + k2 ) 1-1 -2ki k f

and
0 kikj + k2 7

dk
kf (k + 0)(P + P ) (k + kj kf71 .7
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niTnjjA.2 A2 [r(X'b)2U�(X'b)2<'Hu> - <Hu>,-2Ua f dx Y k k Z 3i ij

I + Ur (-X7 6)lUr(_X b2]
i Z 3

+ dx [(G + f )P, + (H + kf )P + E]
27r 27r I
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have been taken. Substituting equation (F.11) in equation (F.9) and subtracting

the contribution from the undoped system

k2L
<'Hu>,= Ua 2

7

we get

(F.12)

where

7r
G fi(ki, x)( 7r + gij (ki, kj, x)

27r 2ki kf 2r (k + kj) kfi>j

P, =G + A 2i IU7(X 612
k (niT + nil)

H Mi(ki, )( + Nij(ki, kj, x) 7r

27r 2ki kf 27r (k + kj) kfi>j

P, =H + A 2i IU7(_X 612 (niT + nil)k

E kf [G + H]
27r

and
2U,(X, ki x+2ai ki x+2a'x) =4k b)e- u�(x, b)e-i i 11 I

2U,(X, ki x+2ai +2,']x) =4k -b)e- [I - u7(x, -b)e-k'

(ki +kj)x+2(a'+aj)x) =8kjkju7(xb)u7(xb)e-

(ki +kj)x+2(a'+aj).x) =8kikju'(x, -b)u7(x, -b)e-i 3

gij(ki, kj,

Nij (ki, kj,

The normalization factors Aki for the bound states are determined using equation

(2.11). For the actual calculations these normalization factors were found without

approximations by numerically integrating each individual wavefunction in 2.11).



<'Hv>=4aV' ')�rdxE [lUk(X)I'Ivl(x)l'(nlT + nj)(nkT + nkj)
kl

- k I
,R(Vk(X)U* (x)ul(x)v*(x))(nlTnkT + ninki)].
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i
=V E E C�+1'.ql48Cj"ffCj+1'8'

3 1
.7 8,81

(F.13)

becomes upon using (F.1) and (A.5),

, =V eia(k-')Al,,,HV E , : jkj1+ll-kssl2N
,5,81 kill

(F.14)

where

- tAlllkklssl -all, 6,91 akk 881 + bt ,, bkklssl

and

akklsgl =-Cvk,, CV"' + CC'8CCk k kl,81

V - CV CC- k C , ,bkklasl --=:Cc,$ k,8 k "S k"81

Substituting (F.2) and (F.3) we get

V 2

'HV Y- a
2

88, n

t tCl',, C" Ck,,YCkl,,g [9*9* - ffl*,)(gkgklI: I 1 11
Will

- fkfkl)
(F.15)

+ fl*g* - g*fl*,)(fkgk - gkfkl)] 

Taking the expectation value yields

(F.16)

F.3. Nearest-Neighbor Interaction.

The nearest-neighbor repulsive interaction can similarly be expressed in terms of

the electronic odd and even amplitudes. Thus,

'HV V Y njnj+l
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Equation (F.16) is the same as equation 28). To put equation (F.16) in a form

containing the explicit form of the wavefunctions we first calculate, using equation

(D.3), the term given by Ekl R(VkU*UlV*)(niTnkT + nlinki). But first we dok I

1: 3?(VkUk*UlV*)nlnk8 - 1: Vku*nks )7, UIVI ni,

140

ki k I

and

E UkV*nks = I 0
k 27r kf

k

dkUkVk* + Euivinis
are considered. Using (D.3) it can be shown that

kf

IIn AO + 40 V2I
f f

uk(X,6)v*(x,6)dk -(X)
k Vf

+ A(X)PF
(F.17)

A2
- [kf +0

2kf v2f
- AO I - iVf PG

Vf

where
P, = - 1: f(ki, xF + 1: [XijF + YjFj]

i i>j

PG = - E fi(ki, x)Gi + 1: [XijGi + YjGjl
i

F = 1 os-1 kivf
ki I'E I AO

i>j

G = 1
-16il

- tanh-1 IE I
- A2 + k2V2

0 f f-
tanh-1 ( 'Ili, AO

_ gijki
X'.7 -(k + kj)

Y� � -- gij kj
(ki + kj)'

The fi and gij where defined in Appendix D. Now, putting together all the previous

results we get

E R(vku*ulv*)(nlTnkT+ nlinki = I [A2 + A 21
-- k I 27r2 1 2
ki

(F.18)
-Al E uivi(ni + nil) 1: uivi(niTnj + nijnjj

7r
i ij



<'Hv-> -- <Hv>,=4aVf dxf di(xb)+d2(X,8 +d3(X,6)1

Appendix F 141

where
Al =A(X)[Cl + P1

A2 =C2 + VfPG

2kf vf
A"

(F.19)C, =kfIIn

A2 A,,
C2 =kf - 2

2kfv f Vf

Subtracting from the total contribution the one coming from the undoped system

<'Hv>o= 4aV - I (,A2C2 + C2)]
27r2 O 1 2

we finally get for the contribution to the creation energy from the nearest-neighbor

repulsive energy

(F.20)

where

di (x, b) = kf
W

E(Te X) +To X)) +ETe X To X)

8 1

+ B2(X) + Al
7r

- I [B (x)
27r2

E ui(x)vi(x)(ni + nil)
Z

d2 (X, ) 

- 1: ui(x)vi(x)uj(x)vj(x) [niTnjT + njnjj]
ij

d3 (X, ) =

and subsequently

niqu 2 (X, 6)Te(x) =G + Y i
i

ni,9v 2 (X, b)TO(x) =H + E i
i

=C2[A(X)2 _ A2] + A(X)[A(X)ClpF + C + pF),A(X)pF]
B, 1 0

B2 -'vf PG(2C2 + Vf PG).

Further definitions are given in the previous section.

+ 4k 2V2 I
f f



<'Hw> = W dx E (JUk(X) 12 + lVk(X)I')(nkT + nkj
k

+ 8aW dx E [2!�- [Vk(x)u* (x)]!�s- [vi(x)u*(x)] (nkT + nkj(n1T + nil)k I
k1

+ f g? [17 k(X)U*(X)V,(X)U*(X) _ Uk(X)IIIVI(X)12
i k I I nkTnIT + nkinij
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'HW = W 1:(Bjj+l )2

j
(F.21)

where B,j+l = E,(C�,,Cj+1, + !+1,,Cj,-). Expanding the square we have,3 3 3

'H W-W E E [C�, , C�,8Cj+1,8Cj+1,8 + C�+1,81 +sciocio,3 3 3
i Sal

+ et C� C�3, cj,. + C�,s +1,8Cj,8Cj+1'."13+1,81 8 cj+ 1, (F.22)

+WEE [C.
i q

t tj'sei", + C+,,.Ci+i .]

Substituting from (F.1) through (F-3) for each one of the terms we have

E +1,8Cj+1, + C� C�-7 J 3+1,81 3+1'sciociodj.
=a2 E E

n kk1111

t tCki'sicksclocit's,

X [9*9* + f 1)(9191 + NO Yk fk *9*1 +9*fk1)(f191' + 91f0l (F.23)

-_ a2 E et" t, Qscil's,k a k a
n k111

[C�+1,.,4.Cj+1'-Cj's + 4,5,C�+1,8Cj",Cj+1',911
3 3 3 j3

[gk*gk*l - fk )(9191' NO Uk _q*1 _9k*fk1)(f191' 91f0l
C� et Cksl(gk*gk + fk*fkl)

I Si's + Ct+1,i9Cj+1,.9 = aj

(F.24)

(F.25)
.7 n kk'

Substituting equations (F.23) through (F.25) into equation (F.22) and upon taking

expectation values we get

(F.26)

FA. Bond-Charge Interaction.

The bond-charge repulsion term is given by



we get for the creation energy contribution from the bond-charge term

<'Hw> - <Hw>,,-2W [ J>iT + nij]
i

+ 8aW dx [hi x) + h2 (X)- d3 (X)]

where
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In the same way as was done in the previous sections we can show that

I (A 2- A 2 [vk(x)u * (x)vl (x)u * (x)] (nkTnIT+ nkj n 1 ) Y72k I 1 2
k1

Al
7r

I: ui(x)vi(x)(ni + nil) 1: ui(x)vi(x)uj(x)vj(x)(niTnj + ninji)
i tj

(F.27)

and also
A 2

I:a[Vk(X)U*k(X)]a[vi(x)u*(x)]nk,nis, ::--: 21 47r2 
ki

(F.28)

Subtracting the expectation value of equation (F.21) for the undoped system

2C2
<'Hw>o= 2WN + 8aWL . 2_

72
1 (A2c2

27r2 0 1
(F.29)

(F-30)

hi (x) Z= __ k, E Te (x) T x) _ : Te , (x)
2,7r , (x)T.

8

h2(X) -- I (B (x) + 3B2(X) - A' 1: ui(x)vi (x)(ni + nil)
272 7r

i

(F.31)

2 k f2
- C2 27r I



The calculation of the magnetic susceptibility starts assuming a shift in the density

of states of gf:) ---+ g(, ± jL.B B) in the presence of a magnetic field B. We can count

then the number of electrons with spin up and down. This is simply given by

I 00
N+ - dEf (c)g(, - iB B)

2 F+PB

1 00
deg(,E)f (,E + It,, B) (G. )

2 16F

1 co
N- =- dEf (,E)g(,E + pB B)

2 P- IAB

00

dEg(,E)f ( - j,. B) (G.2)
2 IEF

and the Magnetization is given by

M =B N - N)

AB 00 dEg(c) [f (E - YB B) f O + PB B)]. (G-3)
2 EF

Taking the Emit f kB T > > [LB B we approximate the magnetization as

A' Bo dEg (E) f (c) f (E) (G.4)
B

CP

and the magnetic susceptibility is given by X = MIa as
2 ep

X ILB dEg (E) f (E) f (e) (G-5)
NkB T 'EP

where L 324 x 0-' in order to get X in units of emu/mol. For the density ofB

states we will use

2 -w2] I'E 2vf VE2 - E b(, - w) (G.6)g(,E) = - 2 W?
7rVf 6 2 �- 2

0

Appendix G
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where the boundary condition = nr + Ok and Ok - 2 j tan-'(k/ki) were

used. Substituting then equation (G.6) into equation (G.5) we get for the magnetic

susceptibility

I

cosh -2 [O Pi - P] + cosh -2 (wi + P) I
X I

2N . 2 2
I

(O -7)

145

where we have dropped the contribution coming from the continuum states for being

too far from te Fermi level it.



Appendix H

The results presented in chapter 2 regarding the on-set of the magnetic susceptibil-

ity are clearly dependent on the particular length of the chain used. This fact does

not seem reasonable at first because all calculations are parametrized by the con-

centration and not by the length of the chain. However, the length of the chain L

enters into the problem in a particular way and here we account for this dependence

using a very simple description and qualitative arguments.

Suppose the solitons stay a distance d away from each other and the solitons

closest to the extremes of the chain stay a distance from each end of the chain.

The purpose now is to calculated d as a function of the length of the chain. It is

clear that if -- d/2, then for a given concentration p (100 x p = dopant percent)

there is no dependence of d on L.

The following relation can be written down for N solitons (N even)

(N - 1d + 2 = L. (H. )

These solitons would be paired in soliton-antisoliton pairs to satisfy the topological

constraints. If = d/2 then d = LIN = 1p, therefore resulting in a constant

d. However, from all the graphs of the order parameter presented in chapter 2

we can only conclude that is independent of d. Therefore, now we take as an

independent parameter from d. Solving (H.1) we get

d L - 2�
N 1 (H.2)
1 + 11p - 2�
p pL - I
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As long as 11p - 2 < then d is an increasing function of L, at fixed p. This

means that for longer chains, d gets bigger. This in turn means that the interaction

energy is lower (because the inter-soliton distance d is bigger) and the levels close

more slowly. Remember that the more the solitons interact with each other, the

farther the levels will be thus closing the gap more rapidly. The above condition,

namely

> (H-3)
2p

is easily met at p = 06 for the cases analyzed in chapter 2.

In conclusion, the rate of closure of the levels will be smaller for bigger lengths

of chains. This result comes directly from the fact that the inter-solitonic distances

are much more sensitive to L than the distances from the solitons to the ends of

the chain.



Ak = Xt'Oks eikxiI (I.1)

where x1 = la and Xt is defined by equation 3.4). Also,1

Bk = Vf kO-3 + A71 (I.2)

where 2 - I V2k 2 A2 defines the energy dispersion relation. A useful relationk = k = f 0

that can easily be checked is

xt(vf kO'3 + A,0-1)XI = 0- (1.3)

For the anticommutators we have

(1.4)

and all combinations of them and their conjugates. Also,

fd.,Ok =0

fV1k,,A,"' bss1bkk1k

fAks7At,',,J =bssbkk1k

(1.5)

and of course

f d, dt, = ,81 (1.6)

Appendix I

In the present appendix a list of commutators and derivatives of the operators used

in chapter 3 is given. For convenience we define the operator

f Ak,, d. = 
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with other combinations equal to zero. The following commutators are used,

149

__ b, 8, ds

- [dt, ndTndl]

- -nd- ds

= 0

= 

= -bssAkal

= b,,-jAtk1st

= - &j., dt, Ak Ia

= &,, At Ids,ks

= 0

= bas' bkk, dq,.

(1.7)

Between the A's and the individual spinors

fAk,,Ot,,t1 bsslbkk'X teikxlk

Ak., Okla' 0

and defining Dk, Otsbk'Ok, and Pk, xti3k'Ok, eik,, we get the followingk

[DkI.I, Ak,1 -b.slbkk'Pklsl
[DkII, At,] b,,' bkkI Pt I

k k's

Pk,-, At k1l 0.

(1.8)

(1.9)

[d8 , nd I I

[ndT ndj, d, ]

[Ak,, nd I

[At dda]ks

[dt, Ak,', d I8

[At, Ids, I Ak 8 I

[dt, Ak I nd-s8 I

[At Id., nd-alks I

[dt, At, st, Ak,1

[dsAtt Aklk 8
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Therefore, for the equations of motion of each individual operator we get

d
-- d -Edd - V E A,,, - Un,d,,
d-r

k

d At- + Undsdt4 Edd-t + Vy kdr - 8 8
k

d
-nd- V 1 [At -jd - A Akildr k

k

d -ikxl
d-r Ok. -BkOk - Vd.Xie

d Ott', Ott - rdt t ik'xidrk k 8Bk I sXle

dAk.= -Pk. - Vd,,
dr
dAt Pt,, Vdtdr' k8 k 8

d 2

dr Pk CkAk,

dpt E2
k' ks'dr . ks At



Appendix J

In the following appendix we give a brief account of the Kondo Hamiltonian, the

Kondo effect i normal metals, and the relation between the Kondo and Anderson

Hamiltonian.

Formally, the Kondo effect is a consequence of the fact that at low temperatures

(T < Tk, where Tk is the Kondo temperature), the local spin of a magnetic impurity

dissolved in a onmagnetic matrix does not have the same energy when its spin is

either in the up or down configuration (as it does at high temperatures). Physically,

at this low temperature each local spin becomes "locked" into a collective state with

the conduction band spins. This collective state has a binding energy which must be

overcome during a spin-flip process. For lower temperatures this spin-flip becomes

frozen out and the Kondo effect saturates. The collective state can be viewed as

a screening effect not from a single electron in the conduction band, but from a

linear combination of conduction states. It is a many particle entity. Its first formal

description comes from ref. 1. The collective state can be written as either a linear

combination of hole states or of electron states. It consists of putting one electron

above the Fernid level and leaving behind a hole.

The Kondo temperature, Tk, defined by kBTk == We-112g(O)IJI is similar to the

change in energy in the ground state due to the presence of the collective state. A

general definition is that the change in ground state energy defines an energy scale

that also defines a characteristic temperature. Tk is also very close to the T at

which the Kondo effect becomes important in the resistivity.
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Exact solutions to the Kondo Hamiltonian have been given in references 2 and

3. In the following we give a brief and "dirty" account of the Kondo effect using the

Kondo Ham1tonian. First we consider that the interaction between the conduction

electrons and the magnetic ion consists of a spin-dependent and a spin-independent

part. The latter can be represented by V(r) and may resemble a Coulomb potential.

The spin-dependent part is due to an exchange interaction of the form

- = -J(r),Y § (J.1)

where J(r) is the exchange parameter, is the conduction electron spin, and the

spin operator for the localized moment. J(r) has a range similar to the radius of the

ion and has an appreciable value only where the wavefunctions of the d- or f-electron

that give rise to the magnetic properties of the ion have significant amplitudes.

This exchange interaction between the electrons and ion is a consequence of the

electrostatic Coulomb interaction between the appropriate electrons; it depends

on the magnetic states of the electron and ion because these determine through

their symmetry properties and the Pauli exclusion principle the aowed spatial

configurations of the electrons. Typical values of the exchange coupling constant

for metals are of the order of .2eV.

The scattering of the conduction electrons by the localized moment can be

of an elastic or inelastic nature. Consider first the elastic collisions. Suppose the

ion is in a spin state m, and the electron has = then the total potential is

V(r - mJ(r). The Scattering probability is proportional to

0*,[V(r) -m.J(r)]Okd-r )2 = V2 + M2-j2 - 2tnliv (J.2)k 8

with no spin flip. V and are the corresponding Fourier transforms for the space-

dependent counterparts. For = equation (J.2) gives

)2 _ -2 M2720*,[V(r)-mJ(r)]Okd-r _V + 2mliv. (J-3)

Note that they depend on m, and that they are different for each spin configuration.
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Consider now inelastic scatterings between the conduction electrons and the

localized moment. Spin-flips are now allowed and for each conduction electron spin

flip there is a corresponding change in in order to conserve total spin angular

momentum in te z-axis. Then, for an electronic spin-flip of ±1/2 --+ ::F1/2 (with

an incurring energy change Of ±PBgH,,) there is a change in the localized moment

given by m�, --+ m ± (with an incurring energy change Of TYBgH,,). The field

H, is the field by which the ions interact with each other in a Weiss-like model.

H,, does not affect the conduction electrons. Note that the spin-up electron always

increases its energy and a spin-down electron always decreases it.

The matrix element of the transtion is

I - I = j [S M' (S + M + 1 1/2<S;m,,+I;- I-J'Y-SjS;M";-> (J.4)
2 2

and the other transition is

j[(S M + 1S + M,)]1/2 (j.5)

where again the different transitions have different probabilities.

In order to see the Kondo effect, it is enough to consider up to second order

in the scattering.. This second order consideration takes into account the process

where the electron is scattered into an intermediate state by the localized moment

which likewise makes a transition into its intermediate state. Then the impurity

is restored to its original state and the conduction electron is scattered to its final

state. Consider then the electronic wavefunction

Ok = Ok + E VkO. (J.6)
Ck - n

where Ok is the unperturbed wavefunction. We want the matrix element

I <0k1jVj0k> 12 = Vkk1 I' + (Vkkl E Vk n Vnk +,C.C.) (J.7)
n Ek - n

so that the probability of scattering from state a to state b is

Pab 27r [VabVa + Va b Vc Y a+ .C.]. (J.8)h I: Ca - ,
coa
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This probability is composed of the probability to go directly from a * b plus the

probability of going through all possible intermediate states c by a -+ c -* b. It can

be shown that the term VabVa i temperature independent. The scattering to c

may entail a spin flip of the conduction electron with the compensated spin change

of the ion. In addition, only processes in which a -+ c -- a prove to give appreciable

contribution.

For the sPin-flip process there are two possibilities. The first is to have an

electronic transition kT - q17 j --+ T with an accompanying ion transition of

M, - M+11 M,+1 -- 4 M where q, is an intermediate electronic state. The second

possibility is to 'have qj -� kT� T --+ qj with the accompanying , ----+ Ms 17

Ms 1 --+ m,. 'In the first process an electron is scattered by the impurity to 

and then back to a. In the second, an electron is scattered to its final state and

then another electron is scattered into the vacant state so created. Because the

probabilities
Pn,+l J'(S -rn,)(S +,rn, + 1)

(J.9)
p",._1 j2(S +,M�,)(S _ M, + 1)

are different, by using (J.4) and (J.5), the two processes will have different weights.

The total probability is given by

E A(l - f (q) P.,+1 Af (q) n. _J
q Ek - q q eq - ki

where the first process is weighed by I - f (q) because q must be empty, and the

second process is weighed by f (q) for it to be occupied. The constant A contains

the coupling constant J among other things. The minus sign comes from the

interchange in the wavefunctions of the k' and q states. Using k we get

AP., + (P,,,,,+ P., E Af (q) (J. 1 0)
q Ck - q q Ck 6q

For simplicity we now take the T limit and the dispersion relation k

h2k 2/2m to find

f (q) 3zN k' q2 dq
72 (J. II

q Ck - q k3h - 2f
where zN is the number of conduction electrons. Equation (J.11) yields
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3zN k
1 + In (J.12)

2ef 2kf I k + kf

For T �4 and kT << kTf, we approximate k - kf - kT)kf as the fraction of
Ef

thermally excited. electrons. Substituting, we get for the T-dependent part of the

scattering

3NzA (Pn, + -P.,-,) In kT
4e.f 2ef

where k - kf so that k + kf - 2kf. Including transition from ki to kj, ki to kT,

and kT to PI (all involve In T) we get for the resistivity

P Po - PK In T. (J. 3)

The negative in front of the In T term comes because we need J < in order to have

the collective state. For J > the collective state is supressed because the conduc-

tion electrons and the localized moment form a singlet state in an antiferromagnetic

spin configuration..

Another model used that yields equivalent results is the Anderson model (equa-

tion 32). The transformation given in reference 4 shows that the Anderson model

has some terms that are similar to the Kondo model. The Kondo model treats the

local spin as a separate entity while the Anderson model treats it as just another

electron. It can undergo exchange and other processes with the conduction elec-

trons. In the Anderson model, however, the spin localized in the impurity atom

does not get flipped. Because of the hybridization term, a local spin that is down

can become a conduction state with spin down, and wander away. Later, a different

conduction electron with spin up can come and reside in the local orbital. This

process appears as a local down to up spin flip, with a companion up to down spin

flip in the conduction electrons. Now one can see the important role of the electron-

electron interaction U. The spin-flip is carried out in two steps; the departure of

the old spin and te arrival of the new local electron. If U = these two steps are

totally independent and can occur in any order. However, once U > then the two

steps become correlated because it is energetically unfavorable to have up and down

spin electrons both on the local orbital. Then the two steps become sequential.
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The Anderson Model is sufficiently similar to the Kondo model that it also has

a characteristic energy which can be related to an effective temperature known as

the Kondo temperature Tk. The Kondo resonance is believed to be a Lorentzian

shape of width Tk7rlNf, where Nf is the number of f-orbitals in the impurity.

The total area under the Kondo resonance is TkINf A. In the Anderson model

D(O) -r/ANf, where D is the density of states.
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i 7r

2D
(K.1)

In order to get the quantities prescribed by equations 3.48) and 3.49) we calculate

first the quantity

iu;'Zw + 2
de [(iW,)2 - 2][(iW)2 - 2]

de (W + )(LO + 6) f-(iw + W)

(,E 4- W + ia)(, - W - ia)(e + w + ia)( - - ia)
where we have used the fact that iW'iw + 2 == (Lo + 6)(W + E _ fiW + Z'W) so that

de I
(6 -- WI - ia)( - - ia)

- (iw' + iw) de 6
(e + WI ia)( - WI - ia)(e + w + ia)( - - ia)

0 (K.2)

Appendix K

K.I. Constant Density of States.

In order to check equation 3.36) against the literature, we will take for iustration

p(e) -- 1/2D, i.e., a constant density of states, where D is the bandwidth. Using

this p(c) we get for equation 3.50), for large D

. I . I
zW 1W 1

[(iWI)2 2] -- de- ek 2D (f WI - ia)(,E Lo, ia)



- <nd> -A(W 1)
G(ds � dt; WI- - -2a ) . 1)

ZW - Ed + iA + A f dwf (w) - 2iAA(W
7r W-W, ict

I I
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Note that in the third step of equation (K.2) the first term vanishes because both

poles lie above the axis, and the second term has an odd integrand in 'E. Similarly

11 d- iW'iW* +,E
1 )I E2][(iW*)2 - 2]

R

dE
�'E__ WI ia)(, - + ia)

(iw + Zw*) de
(,E WI + ia)( - W - ia)( + w - ia)( - + ia)

i7r
(K-3)

Lot w + ia

where the second term at the second step above also vanishes.

Now equations 3.48) and 3.49) can be evaluated to be

<d_'Fk8> V dw f (w) G(dT)* (K.4)
[(iW,)2 - 2] I '

k 2D W W za

and
<At -jFki>k' f (W
[(iWI)2 - E2]

k1k' k 2D LO za

i7rV2 G (dT)
dwf (w) (K-5)4D2 IW W za

We will only consider here the non-magnetic case where G(dy = G(d,,) and take

<ndi>=<nd> /12. Defining A V2 and2D

A(W') V2 dwf (w) G (d-j) (K.6)
2D - WI a

we obtain using (K.1), KA), and (K.5) into 3.36) that

(K.7)

where
2 1<nd> = f (W')ImG(d., dt; . (K.8)
7r 8

Equation (K-7) is equation 16) in reference 42 of chapter 3 Thus, reducing to the

expression obtained for normal metals.



159Appendix K

K.2. Using the DOS from a 1-d chain with a Gap.

Now we will evaluate equation 3.36) using 3-5). First of all lets calculate 3.50).

zW

[(iW,)2 e2]
k k

de [(iWI)2 - 2] (K.9)7rvf A2

D f I
+ de fi �2- �A! W12 _ 2

o N 0

- 2
0

A _ W, 2
0

- 2Lw' I -1tan
-7rV fVA2 W,2

0

for I WI I< ,,.

D IE 1 1
+ de - 1P -

-V/62 - A2 WI - WI
0

Ao
I = W'L

7rVf

LWI
z

Vf 12 - 2
�W 0

D - AY- VU),2 A2V 0 --- - 0- .
zN/Y2 �-� ,A2 12 A2+ �w 0

W'L In

7rvf N,WI2- A20

W'L

Vf 12 _ 2
�W 0

for W > A,, where we have used

1 T I
- i,7rb(x).

- Ix -t ia X

I = W'L
7rVf

f 1 1de - -��'P ��V/,E2 A2 WI - WI
0

L)
+ de 6 I 1P 1

�7,E2 � WI
,A2 e WI

LV'L I N
In -

7rVf 12 _ 2
�Lll 0 + N

W1L I
+i-

Vf 12 _ 2
�W 0

- 2

/�72 + z_ A2
0

W'L

Vf 12 - 2
�W 0

W'L Ao

,Irvf-

And, finally,



[(iWl) - l][(iW)2 - 2]

iw'iw* + E2
[(jL01)2 - 2][(iLo*)2 - 21
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for W < -o. Also of importance will be the quantities

iL" I*

II =_ 1: iWP1*2 _ 2
k k

W'L

-7rVf
de I I 1VTC �2� A2 iLol*)2 - 2

iL"'iW + E2

(K.10)

(K.11)

(K.12)

III 

IV 

dep�,E)

dEp(,E)

I /

The details of the calculation follow the same procedure as done above for equation

(K.9). Thus, the results of all of these integrals will only be stated. The definitions

L 1

7rVf E,

D -1, G = tan
f, �/A 2 LO 2

0

VD �_ A 2 - VUj �2_�l
f2D(w) = In 0 AOV/�_�A2 + / 2 -A2

(K.13)

(K.15)

will be of use. The quantity E, has a significance of the bare effective energy per

site in the chain.

Thus, we proceed to enumerate them as follows:

2 WI
17 II:= f ID () I 

eo �A _ ,,12

1 WI il
17 II* __= D(W1)

f2 _ 
eo VW,2 A2 1E,

rj 2 1 W fjD (W)
. 7 IV::= ��

cow WI V/-A2 __ , � 2
- LO

jor I W I < o

T LoI

9 12 _ 2
�U' 0

; for WI > AO
Lot < -O

Ij

; for
W I D I

fI (Lo 
�A2 W 2

VD2 �_A-2. 12

D _ 12 LO
_ 2 1

IE0 A2 - L012
0

(K.14)

I WI 1 I Lo I < A.,

same sign,
and WI �4 w
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'A 2
+ 0 =flD(WI)

A _ W12
� 0

2 1 WIIII, IV - - �� D (WI) 
f-O WI f2

2 2

VW AO

; for I LO' 1 I �
and W =

W D

V/W �2 -A2 f 2 (LO)2 0

-)(+) LO
V1W 2 -A2

WI

_ �W,2 2

i7r 1

6, WI W

W D )
VEY--- fl, (La0 2

LoI D I

f2 (L" )2�� - 2
0

III IV __ - 2 1
1E0 WI W

; for L I> AO, I L I < AO
LO < -O, I I < AO

LO D L,, )
f2

2 V"W 2- �A20 -

i7r 1 LO I

co L'oI- W 12 _ 2
�L'_' 0

LoI D I

_ �A _ W12 fi Lo
0

2 1

1E W W I
IIIIIV =

i7r 1 LO

co Le I L,; 2 - A 2
0

2 1 LOI D IIII IV - - �� W 
f, WI W - f2

-2�W 2- 2
0

i7r 1 WI

co WI Lo _ W 2 - 2
0

(+)(-) LOV/L, 2 � ,A2 _
; for Lo' > AO) < -O

WI < AO' > AO

; for I WI 1 I Lo I > , WI = LoIII 0
27r2 LoI

IV := ± OEO 6(w' LO)
2

�Lll 1 �2 A 0

I 
jor wI7 > AO LO LIU

LOI7 Lo < AO1 WI - LO

For simplicity of expressions and calculations we will take the limit of large band-

width such that
7r

fillo (LO) = 
2

and f2(w = .

Using these results now we have

17 II = -'- N(w')
6,

I < ,,,

W

WI' w > AO
; for WI I LO < -O

both W 5 

; for Lo > AO, I I

Lo < -O, I Lo I

LO D
' (Lo- f2VfL a �_2 0 -

;for I W I < A,
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7r
z M(Lo')

7r
III IV [N(Lo - N(Lo')]P

7r
+

7r 1PIII = -[M(Lo') MMI

7r
IV = -Mu" + M(LO)IT

E, W LO

272
+

; for I Lo' I > ,,

for LO' I I LO I <
of same sign

for w" >
W <

WI � > A,
for WI

for w' > , <

for w > w' <

jor > < -,,
< A,,I > A,

7r I
-- [N(Lv - W (Lv')] I 

6, W W

7r 1
-- [N(Lv' - M(w)] I

6, W W

7r
i -IM( I 

6,

(-)(+)M(W)l I I
LO - W

III11 =

III11-V* 

III1117 

where N(w) =Lvg(w), M(w) w g(Lu), g (w) I/ N�j �A2 w2 Also,

2
z 010

(A2 _ 012)3/2
0

The inclusion of the previous results into equations 3.49) through 3.50) yields

the equations (3.151) through 3.53) that are used to further calculate the Green

function for the system with a gap.


