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Generalized Dickson Invariants
by

Dan Arnon

Abstract

The action of the GL(n 2 on an n-dimensional vector space induces an action
on the symmetric algebra over this vector space. The invariants of this action were
computed by L.E. Dickson (see [Dk]). The Steenrod Algebra acts on the Dickson
Invariants. This thesis is an attempt to shed light on this action by embedding the
Dickson Algebra in a larger algebra, namely the invariants of a root algebra which is
an extension of the polynomial algebra where the Frobenius hornornorphism x -+ x'
is invertible. The generalized Dickson Algebras have a left action of a generalized
Steenrod Algebra. Working in this expanded context not only simplifies the analysis
of the action of the Steenrod Algebra but also sheds light on the structure of the
Dickson Algebras themselves. In particular one can form an inverse limit of these
algebras which is itself an algebra of invariants. Most of this thesis is dedicated to
the study of this limit algebra. Being an inverse limit this algebra is complete with
respect to a metric. It turns out that its dual algebra can be identified, through a
certain pairing, with a subalgebra carrying a finer topology than the one induced
by the metric. The finer structure comes from a norm with values in the positive
integers. This norm induces a filtration on the dual algebra which is dual to the
filtration of the primal algebra induced by the inverse limit. In particular there is a
direct correlation, through the pairing, between the Dickson Algebra on k variables
and the subalgebra of elements of norm k in the dual algebra. The pairing induces a
Hopf Algebra structure on both the primal and the dual algebra and a right action
of the generalized Steenrod algebra on both. Those new structures are studied in
detail.

The basic ingredient needed for the investigation of the structure of the infinite
Dickson Algebra and its dual is a sequence of polynomials recently defined by Frank
Peterson. These polynomials turn out to form a cyclic module over the Steenrod
Algebra and are the basic building blocks for all the constructions in this work.

Thesis Supervisor: Michael J. Hopkins

Title: Professor of Mathematics



I wish to thank my advisor Professor ike Hopkins for his guidance and support
and for giving me a glimpse into the far recesses of Mathematics.

I would like to express my appreciation for Professor Haynes Miller for the many
hours of conversation, helpful ideas and keen interest in my work. It is also a pleasure
to express my gratitude to Professor Frank Peterson whose ideas gave rise to this
thesis. He has been a constant source of encouragement for me throughout my stay
at MIT.

Special thanks go to Professor Dan Kan, who is both a teacher and a friend. Our
early morning conversations during my first term at MIT helped me get through that
difficult time.

Of the many people who enriched my stay at MIT I would like to mention two
who were especially close both as friends and colleagues. Brooke Shipley for many
enjoyable hours of mathematical discussion and for her friendship. Phil Hirschhorn
for helping me through the rocky terrain of simplicial topology and especially the
Yellow Monster which he managed to tame somehow.

To Phyllis Ruby thanks for her seemingly oundless resourcefulness. Without her
this thesis ad probably the rest of the math department would not be here today.

Thanks to the Alfred P. Sloan Foundation for teir financial support during my
last year at MIT.

Last, but not least, many thanks to my longtime companion, Tao, Kai, for his love
and support.

3

Acknowledgements



In memory of my dear grandfather

Dr. Noach Benninga



1. THE COMPLETE STEENROD ALGEBRA

Definition 1.1 A Z[fl-graded agebra A resp. ring, module etc.) is an algebra of2
the form A A, where multiplication is defined by maps Am () An -+ Am+n-

2

The doubling of a Z [fl-graded object Al, denoted 2AI, is a [fl-graded object with
2 2

(2M)k = Ml k More generally one can define an object 2kM for all k E Z.i
Definition 12. The halving homomorphi8m on the Steenrod Algebra is the surjec-
tive map D: A2 -* A2 induced by

D(Sq 2, Sq'

D(Sq 2n11 0

The halving homomorphism is an algebra homomorphism, but it is not degree pre-
serving. However, viewing A2 as a [fl-graded algebra which is zero in fractional2
degrees, one gets a degree preserving homomorphism D : A2 A2- The complete2
Steenrod Algebra is the inverse limit of [fl-graded algebras2

D 1 D D D ...-4 -2r ---+ -��l __+A2 _'F_ A2In - - --+ 2 1 A22 1

Remark. It might seem arbitrary to complete the Steenrod Algebra using the par-
D

ticular epimorphism A2 ___0 A2. However, it can be shown that it is the unique2
epimorphism respecting the algebra structure. It also preserves the coalgebra struc-
ture, and so the completed Steenrod Algebra is a completed Hopf algebra.

We filter A2 by an increasing sequence of ideals

C I-, C Io C I, C ... C.A2
where

I,, = ker(-A2 --+ 2A2)

Notice that one can define an isomorphism D : A2 --+ A2 induced from the halving2
homomorphism, and that D(I,, = I,-,.

Definition 13 A root algebra A is a [fl-graded commutative algebra over Z/22 2
where the degree preserving homomorphism D : 2A -- A defined byD(x = x is an
isomorphism. In other words, one can take square roots in A.

Denote by R[xl,... Xk] the free root algebra over Z/2 generated by symbols
X1, Xk with some prescribed degrees. Notice that

R[xi, . . . , Xk = UW P[X1, Xk12t
D

where P[xl,... , Xk1 is the usual polynomial algebra over Z/2 and D is the algebra
2homomorphism D(xi = x..I
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Define R[x,,X2, -]to be the inverse limit

R[xiX2, �Lni R[xi, Xk1
k

where the map R[xl.... I Xk+1 - R[xl,... Xkl is the evaluation at Xk+1 = 0. Let
R(n),n < o: denote R[xl,... xn] or R[x,,X2.... I where 1xil = I for all i.

R(n) and R(oo) have a continuous action Of A2 defined on generators by

Sq(x X, + X2

which commutes with the squaring isomorphism D. Sq is the total Square defined as

Sq = E Sq 2'
?ES

R(n) and R(oo) also have an action of GL(n 2 (resp. GL(oo 2).

Notice that for k < oo there is a natural filtration on R(k) by P[X1, Xk12t

which is invariant under the action Of 1�2. The filtration stage 1 PIX1, Xk is2t

annihilated by the ideal 1-t C 2- In particular, P[xl,... Xkl has an action Of A2
which is annihilated by Io. But A2/10 = A2 and the action is the usual action of the
Steenrod Algebra. Therefore all the subsequent results that we will get on the action
of A2 on elements in R(k) will remain va-lid when restricted to the action of A on
the polynomial algebra.

2. THE GENERALIZED DicKSON ALGEBRA

Definition 21. For k < oo define the geiterall--ed Dickson Algebra Dk to be the
invariance R(k) IL(k,2).

Notice that the actions Of A2 and L(k 2 commute, and so Dk is a 2-module.
Also notice that D,, has a natural topology induced from the one on R(00). We will
refer to this topology as the filtration topology in the sequel. The structure of Di, is
very similar to that of the usual Dickson Algebra. Before we make that statement
precise, we need to define some elements in Dk which are going to play a central role.
These elements were first defined by Franklin P. Peterson for the integral Dickson
Algebras. Tis is their first appearance in the literature.

Definition 22 (Peterson). Fix k < oc. For each 7 E N[1] define
2

X$1XS2 Sk
kWn 2 X k

Sl+"'+Sk=n

si=O or 2',,rEZ
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This sum seems to be potentially infinite even if k is finite, but this is not so. In
fact, one can give a precise lower bound on ri which depends on k and n.

Definition 23. For a nonzero n E N[] define the weight a(n) to be the numbers of2
I's in the dyadic expansion of n. Define vn) to be the highest power of 2 dividing n
(this can be negative, of course). Define o(n = a(n) + v(n).

Proposition 24.
Fk ri, re r E Z, then ri u(n - k. In particular,

(a) Fx k < oo. If n _i=I 2 whe
kWn i a finite polynomial whe k < oo, while ,wn contains a finite number of
monomials of any fixed length. Therefore, kw, E R(k).

(b) kW, is GL(k, 2)-invariant.

Proof.

(a) If cz(n > k then n cannot be expressed as the sum of k powers of 2 and so
ce(n) k. We may assume that 7k is te minimal r. Notice that ri, < v(n).
In this case, a(n - 2rk) = a( 11) + 070 7-k- Since n - 2r, = Ek- 1 2r we
know that a(n - 2 rk ) k comparison now gives the result.

(b) kWn is obviously symmetric, so it is enough to show that it is invariant under
the linear transformation T that sends xi t XI X2 and xi to itself for i > .
Being lax on notation to avoid cumbersome formulas, rewrite k,, as

X31 X32 X12 X1 )X13 ... XSk + 2s 2a + XXI)X'3 ... X1
kWn = E 1 2 1 2 3 k E(x + 2 2 3 k

0<31 <S2 O<S

Since all the powers of x in sight are of the form 2 r we have T(x' = x + x'1 1 2'

Applying T to the aove identity now easily gives the result.

El

The following corollary will become handy in Section 4.

Corollary 25. Let n E N[] and suppose 7 = Ek 1ri here ri E N[ 1 ] and a(ri) s.2 i= 2
Then v(ri) �! o(n - ks. In particular, there is only a finite number of ways to write
n as such a sum when k and are fixed.

Proof. Break each ri into at most s powers of 2 then use part (a) of the proposi-
tion. El
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Proposition 26.

(a.)

Dk = Dk For k < o2"
D

D, = Lnj Dk
k

Where fk i the uual Dickson Algebra viewed as a [']-graded algebra, and2
D i the squaring homomorphism induced fom the polynomial algebra. In
particular, Dk embeds in Dk.

(b) Let k E N, n E N[1], with a(n) k. Then kn will have no fractional2

exponents if and only if k < (n), ai2d will therefore reside in bk in that case.
If a(n > k kn = -

(c) By [Dk], & is the fee !symmetric algebra on generators JQJk-1' where Qii=O
has degree 2 k - 2 e embedding i (a) sends Qi t kW2k-2i 

(d) Dk is the fee root algebra generated by IkL';-2--i 1�1 1. Dc,. includes the free root
algebra generated by as a dns sbset.

2 e.,(e) kLL'n kL')2n, and therefore IkW2J+l 21 10<3-i<k a simple basis for Dk,
every element can be ritten City as a qitare-free polynomial in terms of
these.

Proof.

(a) Given any polynomial in Dk when k < oo, one can apply D-' to it a number of
times to make all the powers integral. The second part follows since the action
of L(oo 2 is compatible with the actions of GL(k 2 under the projections.

(b) If k < (n), the integrality follows directly from Proposition 24. The other
direction follows from the observation that te bound in the proposition is
tight. Specifically, for n with a(??.) < k one has a(n - 2 n)-k) = k - and
therefore n can always e written as a sum of k powers of 2 the smallest
of which is 2 n)-k . Therefore kWn will not be integral unless k < (n) If
a(n > k, it is obvious that n cannot be written as a sum of k powers of 2,
and SO k, 0-

(c) o,(2k- 2 k and so by (b) kW2k-2 E bk. But the only nonzero element in
hk in that degree is Qi and the claim follows.

(d) For A < o, this follows from (a) ad (c) and from the observation that
2 =kWn kW2,. For D, this follows fom noting that the projections D -- Dk

send ,W t kWn 

(e) Follows directly from Definition 22 and the linearity of the squaring operator.
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We now compute the action Of A2 on Dk- By the remark at the end of Section ,
this computation will be valid in bk as well. We first need a definition and a lemma.

Definition 27. Given k, n E N[fl, define te binomial coefficient (n) to be the
2 k

residue mod 2 of 2Nn is big enough to make both terms integral. This(2Nk) where N
definition makes sense since for nonnegative integers 72, k one has (n) (2n) (mod

k 2k

2).

A convenient way to interpret this function is the following. (n) = exactly whenk
the positions of the I's in the dyadic expansion of k are a subset of the positions of
the 's in the dyadic expansion of n

Lemma 28. Let R = ri, rk) be a vectorof integers, and define I RI = -� 1 2i.
For k E Z let GR (k) be the numbe o ways to express k a a partial sum of the terms2 f
2 In other words, GR(k) is the nuinber of 8ohitioii8 to the equation k = Ek 1 X2 ri

tvh e re Xi E I 0 I . Th e n

GR(k) = JR1 (mod 2)
k

Proof. It is enough to prove the lemma, for nonnegative vectors. Define

fR(x = 1: GR(k )Xk

kEN[1]2

Notice that this sum is finite. It is not difficult to show that given two vectors R, S
one has AS = fRfs where RS is the concatenation. It is also clear that

f(r) + x 2r

Therefore
k mod 2 k ri11(l + X2 rj(I + 2 (I XF2 (1 + XJR1

And the clairn follows from binomial expansion. 

Theorem 29. given t, n E N[ 1 ], the followl ng holds2

t + t
Sq kWn .)t 0,�n+t

Proof. All the monomials in kWn have powers of 2 as exponents. Our first step will be
to prove that when a Square acts on such a, monomial, the result is a combination of
such monomials, and so the monomials in Sq tkWn all come from kW,,+t- The second
step would be to compute how many times each monomial is to be taken.
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For the first step, recall that 2 acts on products through its diagonal map. There-
fore we have

Sq (Xs, X32 ... Xsk Sq' (xs ) Sq 12 X12 ) ... Sq tk X1,1
1 2 k 1 2 k

tl+t2+"'+tk=t

In the monomials we are considering, i is a power of 2 and therefore

x3i t = 
i

ti Xs 2s-Sq N Xi ti = Si
0 otherwise

X r, X,, 2 rjwhich proves the first part. For the second part, consider a monomial .X.
" 12 tj

Of kWn+t- By the first part, this monomial can be obtained from a monomial Of kWn by
choosing a subset of the variables with exponents adding up to t and doubling them.
To retrace the possible origins of this monomial, then, we have to find all subsets
of its variables with exponents adding up to 2t, and then half them. According to
Lemma 28 the number of ways to do that is congruent modulo 2 to Nt 0

2t

2Corollary 210. Let Q E A2 be the elenient defined by induction as Q Sq andi
2j+']Qq+1 = Qj, Sq (note that Q is not punitive i A2). Then

n + 21 2'
Q�IkWn kWn+2J+l -2-

Proof. We only have to consider the case 0 since all the other cases follow by
applying the doubling isomorphism or its inverse an appropriate number of times.
We use induction on j. The case j = follows directly from Theorem 29. For the
inductive step write

n + 2 +2 _ I n + 2+2 _ I
A 21+1 C 2j+2

n 21 n + 2+1 - I
B 23+2 D ')3.+l

Then we have

Qj0+ kWn= [Qj, Sq 21+� IkWn = Q Sq 21 +' kWn+ Sq 21+ Q L,,n0 0 0

(AB CD)kW,+21+2-1

We have to show that AB CD = C (mod 2 We do that by considering the
J 2possible values of the residue of n modulo 2 Denote the residue by N. Notice

that A and D depend only on N. If < N < 21 one readily sees that A 0 and
D 1, and the result follows for this case. If N > 21 or N = then A 1 and
D 0. So in this case we have to show B = C. Suppose C. That means that
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the j 2 bit of the number n + 2J+ - is different than that of n + 2+'. This happens
exactly when < N < 21, which is not te case here, and the result follows. 

We now trn to the question of expressing a general kn in terms of the generators.
This question is important since the k, play a central role in investigating the
structure of Dk, as we will see i Sections 3 and 4.

From now on we will shorten w, to w,, and write wA for ,, L')M2 ... L'JM' where
7�1 = (M-1, M2, - I Mk)-

Theorem 211. Let n E Z[] and urrite n = 2 N - :t 9'i where ri < ... < r < N.
2

Then
LI)n W29-2f,

2,11+---+23t=2N
Si -r, 0 for a-II i

kWn 1: k��2;-2"
2-'I+--.+2't=2N

k>si -r, 0 for all i

where wo, when it occurs, is just the unit. iVotice that the right hand expression is
finite and contains generators only.

Proof. Let V denote the vector space over Z/2 generated by the symbols xi}� +J,
Vand write k Vk In [Dk] Dickson proves that0

kA ( X = rJ (X + V) E kW2k-2i X2'

VEVI, =0

Notice that only X2 ' has non zero coefficients. Therefore fk defines a linear operator,
i.e. fk(X + Y = fk(X) + fk(Y), and we get

fk-+t(X) 1 ( + v = 11 rJ ( + + )
vEVk+t WEVkt UEVk

(2.1) rJ A X + = 11 (fk M A M)
WEV't IvE I" k k

eW21-2 (fk-(Xk+l ...... fk-(Xk+t) ) fk (X 2'
i=O

For the last identity we used the linearity of fk to express fk(w) as a combination of
A (Xk+i) 

Given n E N[' with a(n) k we now use the above formula to compute k,, in2
terms of generators. Write n 2N 9', where ri < ... < r < N. Recall
that by Proposition 26 kn if and only if k < (n). In our case a(n)
a 2 _1=1 2i) Ff - and so we need N > k + e - 1. If that condition is

I 



not met we may enlarge N by considering kW2'In for a suitable power e. Once we
compute the expansion for this case, we would be able to retrieve the expansion for
the original term by taking square roots times. Notice that we can do the same
even when N > k - using e negative, to force N = k + - 1. This is not
necessary, of course, but will simplify the formulas below.

All said, we may now write = 2 k+t-1 2'i where r < r2 < ... < r <
k - Notice that we're now working inside Dk, so everything in sight is integral.
Looking at equation 21, and comparing the coefficients of X k+r ' we get

+ kW21
k+IW2k+t-l = W2t-I (fk (Xk+l), A (Xk+t)) 2k-I

Now compare the coefficients of x 2rl 1111.11 2rt e on oth sides of the above formula.k+ k+�
From Definition 22 it is easy to see that the comparison gives

21,
kW'n E rI0,02k-2'i-,, =

2-'I+---+2st=2t-1
k>r, -s, for all 

(2.2) kW2 k+si -2 ri =
2sl +---+2st=2t-1

k>ri-si',� 0 for all 

HkW21, 2 r,
2-91 +---+28t=2 k+t-I
k>a, -ri for all I

This identity only holds in the case N k - However, if we rewrite

(2-3) kWn rikW26i -2ri

281 +---+2-9t =2N
k>s, -ri for all I

N )ri ... < r < Nthen the identity will hold for all n, where n = 2 with r < I
which follows by taking the appropriate positive or negative power of 2 of equation 22.

Now observe that the identity for D,, claimed at the statement of the theorem
projects to equation 23 in Dk, since the elements W2,1-2r where - r > k project to
0 by Proposition 26, so the theorem follows y passing to limits. El

Corollary 212. The dense subalgebra of D, yeizerated by IW2k-1}k=1 includes all
the elements fWIInC-N[1] , and therefore all finite w-polynomials (finite sums and prod-

2

it ts of S).

Definition 213. The algebra of finite u�-polynornials will be denoted Fin(D,,.).
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3. THE SCALAR PRODUCT

In this section we define a norm in D and a scalar product B(D,,,,) D,,c, --+ Z/2
where B(D,,) is the subspace of bounded polynomials. Giving B(D".) a suitable
topology makes the scalar product continuous in the product topology. We show
that the product is nondegenerate, and symmetric when restricted to Fin(Dc'.).

Definition 31. The norm of a monomial ,I = Xr, Xrk is defined to be1 k

,All knax a(ri)
i=1

The norm of a polynomial is defined to be the suprernum of the norms of its mono-
mials A polynomial P is said to be bounded if I PI < oo.

Remark. We shall use the term "polvi-ion-iial" as i the aove definition to mean any
element in R(oo).

Definition 32. For P E R(oo) denote y p(P) its filtration stage, i.e. the lowest k
such that P project to a nonzero element i R(k). The norm topology on R(oo is
given by the following basis for open sets at zero. For each nondecreasing, unbounded
function f : N --+ N there is an open set f P E R(oc I P < f (IL(Pffl. Define
B(R(oo)) to be the subspace of ounded polynomials, with the induced topology.
Define a Cauchy sequence in B(R(oo)) to e a Cauchy sequence with respect to the
metric 1/y which has a global bound on the orm of its terms. Define

B(D,, = B(R(oo)) n D.,

Notice that by Definition 22 1w I = and so L�, E (D,

The converging sequences in B(R(oo)) in this topology are exactly the Cauchy
sequences, and in so in some sense this space is complete. B(D,,) is a closed subspace,
and therefore is likewise complete.

Proposition 33.

(a) GL(oo,2) acts on B(R(oo)), and therefore

B(D,, = B(R(oc) )GL(-,I)

(b) For P, Q E B(R(oo)), PQI < PI + QI, and so B(R(oo)) and B(D") are
algebras. Fin(D,,) C B(D,,).

Proof (a) GL(oo 2 is generated by the infinite symmetric group and the transvec-
tion T defined by

T(xi = xi X2

T(xi = xi fo r I >

13



It is bvious that for any permutation and any P E B(R(oo)), we have
JPJ = lo,(P)I, so the symmetric group acts on B(R(oo)). As for T, given any
monomial x ... x" of P, the action of T is

k SI X31-iX32+3,XS3 ... XskT(x" ... x 2 31 k E [0, 91 j 1 k

Where the sum is taken over an interval in N[1]. The only nonzero terms2
in the sum are those where the I's in the expansion of j are a subset of
the I's in the expansion of s. In this case, a(s, - j) a(si) JPJ and
Cf(S2 + ) a(S2) + Cf(i) < a(S2) + a(SO 21PI, so JT(P)J 21PI, and T acts
on B(R(oc)) as well.

(b) The claim that PQJ < JPJ + Q follows directly from the subadditivity of
a. Since w I = I it follows that , , , O'k I< k and therefore any finite
w-polynomial has a bounded norm. Hence Fin(D,,) C B(D,,.).

0
Definition 34. Given two homogeneous elements P E B(D,,.) and Q E D,,,,,, write

= E C7'1, - k) 4 I... X kk

There is a uique expansion of Q in the simple asis I W2r 2-1 } r>s

Q = E DFsW2"-2;'
Fl g,

Define the scalar product of P and Q to be

< P, Q > D,�-,g C2"-2"
r->

Proposition 35.

(a) The scalar product is well defined for any pair P E B(D,,,,) and Q E D.
(b) The salar product is continuous.
(c) The scalar poduct is continuous in the left variable in the filtration topology

when the right hand side is in Fin(D,,).

Proof. (a) LetPk : Dc, -- 4 Dk be the projection and let ik : Dk - D... be the map
defined on generators byik(kW, = w,. Let 7k = 'k 0 Pk. LetQk = Pk(Q) Qk

has the expansion
Qk

r
sl I., < k

SinceQk E Dk, only a finite number of the above coefficients can be nonzero.
For all the other coefficients of Q, the vector 2-2 has at least one entry with

14



more than k 1's in its dyadic expansion. Therefore the proposition follows by
taking k > PI.

(b) Let Pi -.-* P and Qj ---+ Q be two converging sequences in the respective
topologies. Let k be a global bound o the norms I Pi 1. Let N be such that for
n > N) Y(Q - Qn > k. For such it, < Pi, Q, >=< Pi, Q >=< Pi, r(Q >
for all i. rk(Q) has a finite w-expansion, so let M be the length of the longest
monomial. Let M be such that for n > M y(P - P > M. For such
M, the shortest x-monomial in P - P, must have length bigger than M, the
reason being that P - Pn is a symmetric polynomial and so a shorter monomial
would imply the existence of a monomial in the variables xj,..., xM and hence
y(P - n) M, a contradiction. By the definition of the scalar product,
< P -- P, rk(Q) >= and so

< P, Qn >=< P Q >=< Pm, Ik(Q) >=< P, rk(Q) >=< P, Q >

(c) The proof proceeds along the same lines as the second part of part (b) Q
has a finite w-expansion. Let e the length of the longest monomial in
Q. Let Pi P be a sequence converging in the filtration topology. There
exists some Al' such that for m > P one has y(P - P > M. For such M,
the shortest x-monomial in P - P, has length bigger than M, and hence, as
above, < P Q >=< P Q > so te scalar product is continuous in the left
hand variable.

El

So far the scalar product looks mostly pointless. The following proposition shows
that it has very interesting properties inside Fin(D,,). In particular, we show that
it's symmetric. We will later show that Fin(D,,) is dense in B(D,,.) in the norm
topology, so those properties will hold throughout B(D,) by continuity.

Proposition 36. For any two monoinials w-, and wi < A, w > is the coefficient
of the monomial xx" ... 4 n r, where n = n.1,n2.... , nt). The form < > is
symmetric and nondegenerate i Fin(D,,.,,).

Proof. Use the above identity as a definition of a new scalar product, defined over
Fin(D,,), then show that the two forms coincide. A priori this form does not look
well defined. It is clear, at least, that the value of the form does not depend on
the representative on the left hand side, since the form was defined in terms of the
underlying polynomial in R(oo). Therefore, to show that it is well defined it is enough
to show that it is symmetric.

In order to compute the coefficient Of X,, X,, X n, i n Ln we have to1 2 e I L;Ml ... WMk
find how many ways are there to construct t1lis monomial by multiplying monomials

Iof the individual w, s. Any such construction can be represented in a unique way

15



by a k x f matrix whose entries are either zero or powers of 2 (positive or negative),
such that the columns add up to the vector iil and the rows add up to the vector n-.
Transposing those matrices now shows the claimed symmetry.

The nondegeneracy is obvious since any nonzero element of Fin(D ... has at least
one monomial with a nonzero coefficient.

We have to show that this new scalar product is really the old one. From Defini-
tion 34 it is clear that the two definitions coincide when the right hand side is an
monomial in the simple basis and the left hand side is in Fin(D"."). But these mono-
mials span Fin(D,,), and so the two definitions coincide throughout Fin(D""). 

Corollary 37. Let P E Fin(D,,). en x 2wXr3 ... Xr " is a monomial P if and1 3 k f
only if XwXwXr3 rk In other uords ay to variables in a monomial of P that1 2 3 ... Xk 8
have the same exponent can be squee:ed" to one varliable and any variable can be
8plit into two.

Proof. The first coefficient is computed y < PW2wWr3 ... Wr > The second by
< P, W2 >. The cla-im follows since 2 = ElW Wr3 ... Wrk W W2u,-

Corollary 38. For any P E D (resp. P E B(D,)) and any monomial M
WMI ... Wm,,, the cala poduct < III P > resp. < P Al > is the coefficient of
XMI XMk in P.1 ... k

Proof. We will prove the second claim. The first one is proved the same way since
norms are not used in the proof. P can e approached from Fin(D,,,) in the filtration
topology. If P' E Fin(D,,) is such that p(P - P') > k, then P and P' have the same
monornials in Xi, - -, Xk- Since M E Fin(D,,) Proposition 35 implies that there is
an such that if p(P - Q > e then < P - Q, Al >= 0. Choosing P' such that
it (P - P') > max(k, t) we have < P, Al > = < P', l > By Proposition 36 the right
hand side is the coefficient of xm' ... X'k in P' which is the same as the coefficient in1 k

P. F�

4. THE DUALITY RELATION AND ITS CONSEQUENCES

In this section we investigate the topological structure of D". and B(D ... ). We show
that the scalar product turns D and B(D,) into dual topological Hopf Algebras
carrying both a left and a right action Of 42- We compute the right action and the
coproduct explicitly. The main technical difficulty is showing that Fin(D"") is dense
in B(D,,,,) in the norm topology. The proof of tis fact constitutes the bulk of this
section.

We start with a remark about bases. The root agebra basis and the simple basis
defined in Proposition 26 give vector space ases for Dk and Fin(D,,,,,), the first by

16



taking monomials in the algebra basis and te second by taking square-free monomials
in the simple basis. What Proposition 26 says is tat those two monomial bases are
identical, and we will think of them as one asis where each element has two different
representations. To pass from one representation to another, take each term Wr2k-11
expand r dyadically r 2'- and use the identity r,_l k+ti2 L02 -2ti

Definition 41. An admissible onomial is an w-monomial WrkWrk-I ... Wrl where
ri > 2ri+,. A basic w-mono-mial is a square-free monomial in the simple basis defined
in Proposition 26. The complexity vector of a basic w-monomial M r1ft=1 W20i-2ti

is the vector (rk, rk-1 .... rj), where kmax(si - ti) and

rj 2t'
+j

riWhen M is written in the root algebra generators, it has the form M W2i-l'
kNotice that a(ri).

'2 2t1 2$t-V1A basic x-mono-mial is a monomial III = x Xt for some integers si 
ti, such that sj+j - tj+j si - ti ad in case of equality, si+l < i. The complexity
vector of a basic x-monomial all is the vector (rk ...... rj) where k = s, - tj and

S' +j

Notice also that a basic x-monomial can be reconstructed from its complexity, so there
is exactly one basic monomial for each complexity. The same is true for W-monomials.

A vector (rk, rj) is higher than a vector (r,. sj) if it is larger than the
second vector in the left lexicographical ordering, here vectors of different length
are compared by padding the shorter vector with zeros on the left.

Theorem 42.

(a) Let Al = ... W', be an admissible onomial. The highest complexity
of a basic x--monomial in M Is (rk, 7k-I - 2rk,-..,r - 2r2 ) 

(b) For any k, t and d there is a finite set of complexity vectors of length t such
that any homogeneous P E B(D,::,) of degree d with PJ t which has no
basic x-monomials of those complexitles has filtration higher than k, that is
ft (P > k.

(c) Fin(D,,,) 's dense in B(D,,c,). Moreover, 'if P E B(D,,) has norm t, it can be
approximated by a sm of admissible w-monomials of length at most t, so in
particular it can be approximated by lements of norm at most t.

Proof. (a) The monomial M has length k, and therefore IMI k, so all the
basic x-monomials in Al have norm k or less and therefore complexity vectors
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of length k or less. Given ny basic xmonomial N with complexity vector
(Sk, 81) write

k-1 k-1-i
N Nk� -V�L 1 ... NI

where
-(Sk )+"'+-(3, tij

2Ni x 2'i, = Si tij > tj+I)

N is an x-monornial in and is therefore

N = LkLk-1 ... Li

Where Li is an x-monornial in u�, I Since 1w, I = 1, each monomial contributes
just one digit to the exponent of each variable Bt the variables x . . . Xl(sk)

have k digits in their exponent, so each one comes from a different Li and they
all contribute. In particular Lk contributes a, digit to each of these variables,
and the amount it contributes to eacl x is at least 2'ki. Therefore

1) (Sk )

'I'k 21k, k

If rk > Sk we're done. Otherwise 7k Sk, which can only happen in case Lk

contributed all of its exponents to the first a(Sk) variables, and only if the
tkidigit contributed to xi was 2 In that case Lk = Nk. Set N = NINk. N'

is an x-monomial in the product wr k-1 . . . W7. I I specifically N = Lk-1 ... Li.
N' is not necessarily basic, since it might have repeated powers. However
by Corollary 37 there is a basic xmonomial i Wrk-1 . . . , having the same
complexity. Since this is the only parameter of N' we are interested in, we
can work with N' as if it were basic. NVriting N' the same way N was written
above, we get

2k-1 -1N ... N,
where N = Ni for i < k - I and Ak- = Ak�Nk-,.
The complexity vector of N i (k-1 + 27'k, Sk-2, -, SI). By induction we
have (Sk-1 + 2rk, Sk-2, - , SI < (7-k-1, 1'k-2 - 2rk-1, - , ri - 2r2) and so
(Sk-1, Sk-2, . I S ) (rk-1 27-k, - - , �1-1 2r2 ) and since Sk = rk we get
(Sk . . . I SI) (rk, rk-1 - 2rk, - , I' - 22) The proof also demonstrates how
to pick L in order to achieve the maximum complexity. Namely

.V, IN 2 2k
Li = I +I ivk

As it is clear from the proof that this is te nique way to produce the mono-
mial of maximal complexity, it necessarily has coefficient 1, i.e. the maximal
complexity is achieved in M.
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(b) By Corollary 25 there is a finite number of ways to express d as a sum of k
numbers in N['] of weight t or less. Write any such sum as a k-vector, and2
let A be the set of all such vectors. By Theorem 211 for each M E A the
w-monomial wr has a finite expansion in basic w-monomials. Let be the
set of all basic w-monomials that appear in any of these expansions. Sup-
pose P E B(D,,,,) has degree d and PJ t. Let M E and suppose P
has no basic x-monomial with a complexity vector equal to the complexity
vector of M. Then by Corollary 3 we have < P M >= 0. If P misses
all the complexity vectors of monomials in B, then it is orthogonal to 
and therefore orthogonal to all w, for E A. Suppose P has filtration k
or less. Then P has a monomial x ... x". Since JPJ t we get that

j:ka(mi) t, and of course 1.=l n2l = d. Therefore (Ml, - , Mk) E A and
therefore < P l ... Wnik >= contradicting Corollary 38.
Some of the complexity vectors that e got might be longer than t. However,
since P cannot include monomials with complexity vectors longer than its
norm, we can discard such vectors should they occur.

(c) Let P E B(D,,.) be homogeneous of degree d and norm t. To approximate
P in the norm topology is to approximate it in the filtration topology by a
sequence of bounded norm. We show that this can actually be done at norm
t. Fix k. By part (b) there is a finite set Bk of complexity vectors of length
t or less such that P > k when Bk does not occur in P. The complexity
vectors in Bk are ordered by height, and y part (a) for each c E Bk there is an
admissible word K, of length t and hence of norm at most t) whose highest
complexity is c. Let cl e the highest complexity in Bk which appears in P,
and efine by induction cj+j to e the highest complexity in Bk appearing in
P K,, + - + Kj. Stop the process when no such complexity exists, and
suppose c, was the last to be defined. Then b part (b) the polynomial J:'� 1 Ki
is an approximation of P up to filtration k, and I ' 1 il max'� 1 lKil t.

F-1

Corollary 43. The scalar product is symmetric in, B(D"), and continuous in the
left variable with espect to the filtration topology.

Theorem 44. Let B(D,,,,)' be the gradedvector space of norm-continuous Z/2-valued
homogeneous functionals on B(D,,). Let D be the gaded vector space of Z/2-valued
homogeneous junctionals on A continuous M the filtration topology. Then the maps
�� : B(D,,�) -- D ad �o : D --+ B(D,,,)' defined by p(P) =< P, - > resp.
< - P > are vector space isomorphi8ms.

Proof. The maps are infective by the nondegeneracy of the scalar product. The main
problem is to show surjectivity. Let f E B(D,)' be a continuous functional of degree



d. Define

P f(L'�7711 ... C�Mk)Xmil ... X km
Ml+"'+Mk=d

We claim that cp(P) This seems to follow directly from Corollary 38 by com-
puting �o(P) on w-monornials. There is a problem, however, which is that it is not at
all clear why-P E D in the first place. To sow that it is, observe that a polynomial
Q E R(oo) with expansion

Q C"" Xm i ... Mk
1,---,Ink 1 k

is invariant if and only if it is symmetric and for each sequence n,.... , n) the
following holds

71 +JE C11j+J'.n2-j.n,�,._.,nt = 0
J.E(On2l 711

The above condition insures that Q is invariant under the transvection T. Notice
that the above sum is always finite for Q E R(oo). In the case of P, it is obviously
symmetric and we have to show that

72 + f(W'j Wn, = 
J.E (On2l ni

For each nj + + n = d. The series

ni + LUn I +J 1,Un2 -j ��n.3 ... Wnt

jE(On2l 711

converges in the norm topology since it has a norm bounded by and for all but a
finite values of J either L,,, J orWn, -- has a high filtration. We claim that the series
converges to 0. To show that, take any L.-monornial Q. Write

X"11 Mk
Q Cnl,---,Ink Xk

Then

nj j J Wn2 -3 �'Un' >< Q,. ni W', + 14;ne
JE(On2j

< Q 'U'j 3 Wn2 -J- Wn, Wn >
J.E(On2l

+ C111 +j,n2 -j .n3,...,nt = 0
jE(On2l 711
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Where the last equality follows since Q E B(D,.,,). From the continuity of f we get

+
f ( LOn i +J'��n-2 -'L1-n3 . . .Wnt0

3.E (On2l 711

and therefore P E D.

Supposing now that f E D* , we can construct P the same way as before. Since f is
continuous in the coarse filtration topology, its restriction to BD,,,) is automatically
continuous in the finer norm topology. Since P was constructed using only values
of f evaluated in B(D,,), we get for free that P E D,,., using the previous case.
We only have to show that P has a bounded norm. Since f is continuous in the
filtration topology, there exists a t such that for P E D,' with y(P) > t one has
f(P = . If XMI . . . XMk > t and therefore the coefficient1 k I > t t hen p (w,, ��07 k

of this monomial in P is zero, and so JPJ t El
Corollary 45. B(D, I

has a right act'on Of A2 defined by

< P Sq', Q >=< P, Sq'Q >

Corollary 46. B(D,,) has a completed Hop�f Algebra structure with diagonal de-
fined by

< O(P), Q R >=< P, QR >

Corollary 47. B(D,,,,) has a basis dual to te basic w-monomials. We $hall denote
elements of this basis by M* where AY is a basic molnomial.

Definition 48. For n E N[] and t > an integer. Let n = EiEZ Cj2' be the dyadic2
expansion of n where Ci E 0, 11. Define the t-modular eight vector at(n) to be the
vector (ao, at 1 ) where

ar Cti+r
E::

Define

kWnt XS1 ... Xkk

3'= or

Notice that kL';n kL,)nl 

Theorem 49.
W'nt (w2t _1

(,n)*In particular Wn 1
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Proof. The ual of Wn _ represents the functional f which assigns one to this mono-V 1

mial and zero to all other basic monornials. To compute the dual, we have to compute
this functional on all w-monomials. Given a monomialWni ... Wn I we first have to
expand eachWni in terms of the asic monomials using Theorem 211. Since the set of
basic monornials is closed under products, those expansions will multiply to give an
expansion of the whole monomial. This expansion will contain a monomial of the form
Wm_, (where m = 1 F_ n) if and only if for each the expansion0f LOni contains the2t 2t-1
monomial w" where mi So we have reduced the roblern to determining for2t-1 2t-1 p
which values of n the expansion of w, contains a basic monomial of the form Lam2t-l'
Write n = 2 - 9', where ri < ... < re < N. Looking at Theorem 211 one can
see that this situation occurs when we can arrange that for each i either si = ri or
s = r- + t. If there are three different indices il 2 3 for which si, = si, = si then
two of ril, ri2 , ri, are equal, which is impossible since they were defined to be distinct.
So the vector has at most double values, and since it adds up to 2 N one can show
that the elements of are necessarily N - , N - 2.., N - + 1, N - + 1, not
necessarily in that order. For N - I < I < N - I denote by r(O the value of the
entry in corresponding to the value in . Then 11') is either i or i - t. In particular
r(l) =- Z' (mod t). Given a residue class < J < t sch that j # N - + 1 (mod t),
the set r(i) ji = A covers all the residue class of J in the range [N - - t + 1, N - 1
except for one omitted value. That is ecause the ariable Z' covers the residue class
of in the interval [N - + 1, N - ] wch is one element smaller than the same
residue class in the larger interval, and ecause te r(O's are known to be distinct.
As for the residue class of N - + 1, the value N - I appears twice in and
therefore necessarily corresponds to both values N - C + 1, N - - t + in the vector r-
Therefore icontains the set I r(1)1'1' =- j and 'i > N - + Q U IN - 1, N- f- t + 11
of representatives of the residue class J wich is exactly the size of that residue class
in [N - - t + 1, N - ] and so no value in this class is omitted. Denote by s(j) the
omitted value in the residue class of J for N - + 1. For j = N - + 1 write
s( N - - t + 1. Then

N-1 t-1
n = 2 N 2r. = 2N E 2' + E 23(j)

1=N-e-t+1 O' t - 1 j=O
3AN-e+1

The numbers s(O),..., s(t - 1) are all distinct mod t and so at(n = (1, .... I 1).

We have established that the monornials W ... L�Unt for which f(Wn� ... Wn, = 
are exactly those in which at(n-) 1,... , 1). Therefore the dual of W n _ is as

t 2t

stated. El

Theorem 410.

Wn Sq' t LA�n - t
t
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The action on produ08 iS throtigh Me diagonal -map Of 1�2-

Froof. Let 7n and s- be vectors with 1;1 - I I = t > 0. Let k be the length of s- and
e the length of ?:n. For any vector of length k and total degree t let A be the set
of all x k matrices with power 2 or zero entries whose column sum is - and whose
row sum is - F. For any vector of length and total degree t let By be the set of
all x k matrices with power 2 or zero entries whose column sum is - + - and whose
row sum is .

Define a marked matrix to be a matrix in which a subset of the nonzero entries has
been singled out or "marked". For each M E A let Cm be the set of all markings of
M where the row sum of the marked entries is r. For each N E By let DN be the set
of all markings of N where the column sum of te marked entries is 2-.

One readily sees that there is a bisection amely doubling of the marked entries

2 11 LI Ci I Ij I D N
AIEA,- T NEBj-

And therefore
ICAII IDNI

MEAr N E BY

By Lemma 28 we have

- ; (mod 2 and +ICMI IDNI (mod 2)
2Y

where the binomial coefficient of to vectors is the product of the coordinatewise
binomial coefficients. Therefore

+
I B11 (mod 2)

By the proof of Proposition 3.6 we have

I A rl = < wj-- r, WA > (mod 2 and I B11 =- < Ws-, WA +j- > (mod 2)

so we have

+
r Wg-r, WA) 2Y (mod 2)

By the Cartan formula, the right hand side is < wj-,Sq'w > and therefore

t
Log Sq Wg-i
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Theorem 411. The coproduct is gven by

1: W3
1.+j=n

In particular, i cocommutative.

Proof. Set
PX1 0 M*

M a basic w-monornial

Recall that Wn = ,n)* . Let Q be any basic w-monomial. Then
(Wn)*, QM >

<PMQ>=<PM(DM*,Q(DM>=<'O(Wn),Q(Z)M>=<U;nQM>=< 1

So PM = unless M w' for some i, and in tat case Nl is orthogonal to all the basic
monornials except Q Wit-'. Therefore P�,jj = Ln-i), = L;n-i and M = L"i) = ;i1 1 1

and the theorem follows. 

REFERENCES

[Dk] Dickson L.E. A Fundamental System of Ivariants of the General Modular Linear Group
with a Solution of the Form Problem. Trans. Amer. ath. Soc. 12, 75-98 191 )

[Ma] Madsen I.: On the Action of the Dyer-Lashof Algebra H(G). Pacific Jr. of Math. 60,
235-275 1975)

[Mi] Miller H.R.: The Sullivan Conjecture on aps from Classifying Spaces. Ann. of Math. 120,
39-87 1984)

[Ng] Nguy�n Ht7u Vi6t Hting: The Action of the Steenrod Algebra on the Modular Invariants of
Linear Groups. Proc. Amer. Math. Soc. 113, 1097-1104 1991)

[NgPe] Nguy9n HtTu Vi6t Hdng, Peterson F.P.: A-Generators for the Dickson Algebra. To Appear.
[Sr] Serre J.-P.: Cohomologie Modulo 2 des Complexes d'Edenberg-MacLane. Comm. Math. Helv.

27, 198-231 1953)
[SmSw] Smith L., Switzer R.: Realizability ad Non-realizability of Dickson Algebras as Cohomology

Rings. Proc. Amer. Math. Soc. 89, 303-313 1983)
[WI] Wilkerson C.: A primer on the Dicksoii Invariants. Contemporary Mathematics, Amer.

Math. Soc. 19, 421-434 1983)

24


