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Generalized Dickson Invariants
by

Dan Arnon

Abstract

The action of the GL(n,2) on an n-dimensional vector space induces an action
on the symmetric algebra over this vector space. The invariants of this action were
computed by L.E. Dickson (see [Dk]|). The Steenrod Algebra acts on the Dickson
Invariants. This thesis is an attempt to shed light on this action by embedding the
Dickson Algebra in a larger algebra, namely the invariants of a root algebra which is
an extension of the polynomial algebra where the Frobenius homomorphism z — z2
is invertible. The generalized Dickson Algebras have a left action of a generalized
Steenrod Algebra. Working in this expanded context not only simplifies the analysis
of the action of the Steenrod Algebra but also sheds light on the structure of the
Dickson Algebras themselves. In particular one can form an inverse limit of these
algebras which is itself an algebra of invariants. Most of this thesis is dedicated to
the study of this limit algebra. Being an inverse limit this algebra is complete with
respect to a metric. It turns out that its dual algebra can be identified, through a
certain pairing, with a subalgebra carrying a finer topology than the one induced
by the metric. The finer structure comes from a norm with values in the positive
integers. This norm induces a filtration on the dual algebra which is dual to the
filtration of the primal algebra induced by the inverse limit. In particular there is a
direct correlation, through the pairing, between the Dickson Algebra on k variables
and the subalgebra of elements of norm & in the dual algebra. The pairing induces a
Hopf Algebra structure on both the primal and the dual algebra and a right action
of the generalized Steenrod algebra on both. Those new structures are studied in
detail.

The basic ingredient needed for the investigation of the structure of the infinite
Dickson Algebra and its dual is a sequence of polynomials recently defined by Frank
Peterson. These polynomials turn out to form a cyclic module over the Steenrod
Algebra and are the basic building blocks for all the constructions in this work.
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Title: Professor of Mathematics



Acknowledgements

I wish to thank my advisor Professor Mike Hopkins for his guidance and support
and for giving me a glimpse into the far recesses of Mathematics.

I would like to express my appreciation for Professor Haynes Miller for the many
hours of conversation, helpful ideas and keen interest in my work. It is also a pleasure
to express my gratitude to Professor Frank Peterson whose ideas gave rise to this
thesis. He has been a constant source of encouragement for me throughout my stay

at MIT.

Special thanks go to Professor Dan Kan, who is both a teacher and a friend. Our
early morning conversations during my first term at MIT helped me get through that
difficult time.

Of the many people who enriched my stay at MIT I would like to mention two
who were especially close both as friends and colleagues. Brooke Shipley for many
enjoyable hours of mathematical discussion and for her friendship. Phil Hirschhorn
for helping me through the rocky terrain of simplicial topology and especially the
Yellow Monster which he managed to tame somehow.

To Phyllis Ruby thanks for her seemingly boundless resourcefulness. Without her
this thesis and probably the rest of the math department would not be here today.

Thanks to the Alfred P. Sloan Foundation for their financial support during my
last year at MIT.

Last, but not least, many thanks to my longtime companion, Tao Kai, for his love
and support.



In memory of my dear grandfather

Dr. Noach Benninga



1. THE COMPLETE STEENROD ALGEBRA

Definition 1.1. A Z[%]-gmded algebra A (resp. ring, module etc.) is an algebra of
the form A = @nez[%] A, where multiplication is defined by maps A,, ® A, — Amin.

The doubling of a Z[}]-graded object M, denoted 2M, is a Z[}]-graded object with
(2M)y, = M%k. More generally one can define an object 2*M for all k € Z.

Definition 1.2. The halving homomorphism on the Steenrod Algebra is the surjec-
tive map D : A; - A, induced by

D(Sq™) =Sq"

D(Sq2n+1) =0
The halving homomorphism is an algebra homomorphism, but it is not degree pre-
serving. However, viewing A; as a Z[}]-graded algebra which is zero in fractional

degrees, one gets a degree preserving homomorphism D : 3 4; - Az. The complete
Steenrod Algebra is the inverse limit of Z{}]-graded algebras

Ay =lim {2 s D s D @y B - )
Remark. It might seem arbitrary to complete the Steenrod Algebra using the par-

D - .
ticular epimorphism %Az — A,. However, it can be shown that it is the unique
epimorphism respecting the algebra structure. It also preserves the coalgebra struc-
ture, and so the completed Steenrod Algebra is a completed Hopf algebra.

We filter A, by an increasing sequence of ideals

a

CclychchLic--C A,

where )
I, = ker(A; — 2" A4,)

Notice that one can define an isomorphism D : %/ig — Jiz induced from the halving
homomorphism, and that D(I,,) = I,_;.

Definition 1.3. A root algebra A is a Z[3]-graded commutative algebra over Z/2

where the degree preserving homomorphism D : 24 — A defined byD(z) = z? is an
isomorphism. In other words, one can take square roots in A.
Denote by R[zi,...,xx] the free root algebra over Z/2 generated by symbols
xy,...,Z, with some prescribed degrees. Notice that
Rlzy,... 2] = lim 5; Play, ... , k]
D
where P[zq,...,zk] is the usual polynomial algebra over Z/2 and D is the algebra

homomorphism D(z;) = z?.



Define R[z;,zs,...] to be the inverse limit

R[l‘l,l‘g,...] = L@R[l‘l,... ,l'k}

k

where the map R[z1,...,2x41] — R[®1....,24] is the evaluation at x4y = 0. Let
R(n),n < oc denote R[z1,...,2,) or R[x1,2q,...] where |z;| =1 for all ¢.

R(n) and R(oco) have a continuous action of Aj; defined on generators by
Sq(x;) = z; + :Lf

which commutes with the squaring isomorphism D. Sq is the total Square defined as

Sq=)_ Sq?

i€z
R(n) and R(o0) also have an action of GL(n.2) (resp. GL(o0,2)).

Notice that for & < oo there is a natural filtration on R(k) by 5 P[zy,... , k]
which is invariant under the action of 4. The filtration stage 5 Pz1,...,zx] is

annihilated by the ideal I_, C .,[lz. In particular, P[zy,...,z,] has an action of ./ig
which is annihilated by I,. But /12/.[0 = A, and the action is the usual action of the
Steenrod Algebra. Therefore all the subsequent results that we will get on the action
of .212 on elements in R(k) will remain valid when restricted to the action of A; on
the polynomial algebra.

2. THE GENERALIZED DICKSON ALGEBRA

Definition 2.1. For £ < oo define the generalized Dickson Algebra Dy to be the
invariance R(k)CL(k2),

Notice that the actions of A, and GL(k,2) commute, and so Dy is a A;-module.
Also notice that D, has a natural topology induced from the one on R(oc0). We will
refer to this topology as the filtration topology in the sequel. The structure of Dy is
very similar to that of the usual Dickson Algebra. Before we make that statement
precise, we need to define some elements in D, which are going to play a central role.
These elements were first defined by Franklin P. Peterson for the integral Dickson
Algebras. This is their first appearance in the literature.

Definition 2.2 (Peterson). Fix k < co. For each n € N[1] define

Wn = Z TPk
.91+---+sk=n
si=0or 2" ,r, €7
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This sum seems to be potentially infinite even if % is finite, but this is not so. In
fact, one can give a precise lower bound on r; which depends on % and n.

Definition 2.3. For a nonzero n € N[3] define the weight a(n) to be the numbers of
1’s in the dyadic expansion of n. Define v(n) to be the highest power of 2 dividing n

(this can be negative, of course). Define o(n) = a(n) + v(n).

Proposition 2.4.

(a) Firk < oo. If n = Y% 2% where r; € Z, then r; > o(n) — k. In particular,
kwrn 15 a finite polynomial when k < oo, while w, contains a finite number of
monomials of any fized length. Therefore, yw, € R(k).

(b) xwn is GL(k,2)-invariant.

Proof.

(a) If @(n) > k then n cannot be expressed as the sum of k powers of 2, and so
a(n) < k. We may assume that ry is the minimal r. Notice that r, < v(n).
In this case, a(n — 2*) = a(n) + v(n) — 1 — . Since n — 2™ = Yk7197 we
know that a(n — 2™%) < k — 1. comparison now gives the result.

(b) xwn is obviously symmetric, so it is enough to show that it is invariant under
the linear transformation T that sends z; to 1 + x2 and z; to itself for z > 1.
Being lax on notation to avoid cumbersome formulas, rewrite w, as

o= X (apad +apap)ed ol + (8 +od + afed)ey oo
0<s1 <52 0<s
Since all the powers of z; in sight are of the form 2" we have T'(z}) = z§ + 3.
Applying T to the above identity now easily gives the result.

a

The following corollary will become handy in Section 4.

Corollary 2.5. Letn € N[}] and suppose n = Y5, r; where r; € N[}] and o(r;) < s.
Then v(r;) > o(n) — ks. In particular, there is only a finite number of ways to write
n as such a sum when k and s are fived.

Proof. Break each r; into at most s powers of 2, then use part (a) of the proposi-
tion. O



Proposition 2.6.

(a)
Dkzlil;.z%[)k Fork < oo
D

Do = lim D

k

Where Dy, is the usual Dickson Algebra viewed as a Z[3]-graded algebra, and
D is the squaring homomorphism induced from the polynomial algebra. In
particular, Dy, embeds in Dy.

(b) Let k € N, n € N[3], with a(n) < k. Then tw, will have no fractional
ezponents if and only if k < o(n), and will therefore reside in Dy in that case.
If a(n) >k, yw, =0.

(c) By [DK], Dy is the free symmetric algebra on generators {Q;}5=l, where Q;
has degree 28 — 2'. The embedding in (a) sends Q; to rwok_qi.

(d) Dy is the free root algebra generated by {iwa_,}_,. Do includes the free root
algebra generated by {cowqr—1}72; as a dense subset.

(€) kw2 = kwan, and therefore {kwyrt1_y bocj—ick s a simple basis for Dy, i.e.,
every element can be written uniquely as a square-free polynomial in terms of
these.

Proof.

(a) Given any polynomial in Dy when k < oo, one can apply D! to it a number of
times to make all the powers integral. The second part follows since the action
of GL(00,2) is compatible with the actions of GL(k,2) under the projections.

(b) If k£ < o(n), the integrality follows directly from Proposition 2.4. The other
direction follows from the observation that the bound in the proposition is
tight. Specifically, for n with a(n) < k one has a(n — 2°(=%) = k — 1 and
therefore n can always be written as a sum of & powers of 2 the smallest
of which is 2°(™~*. Therefore jw, will not be integral unless k < o(n). If
a(n) > k, it is obvious that n cannot be written as a sum of k powers of 2,
and so zw, = 0. )

(c) (2% — 2') = k and so by (b) swok_p: € Di. But the only nonzero element in
Dy in that degree is Q; and the claim follows.

(d) For k& < oo, this follows from (a) and (c) and from the observation that
gw2 = jwan. For D, this follows from noting that the projections Do, — Dy
send wy, tO fwy.

(e) Follows directly from Definition 2.2 and the linearity of the squaring operator.

a



We now compute the action of /12 on D. By the remark at the end of Section 1,
this computation will be valid in D, as well. We first need a definition and a lemma.

Definition 2.7. Given k,n € N[3], define the binomial coefficient (Z) to be the
residue mod 2 of (gi:) where NV is big enough to make both terms integral. This

definition makes sense since for nonnegative integers n,k one has (’;) = (g:) (mod
2).

A convenient way to interpret this function is the following. :) = 1 exactly when

the positions of the 1’s in the dyadic expansion of k are a subset of the positions of
the 1’s in the dyadic expansion of n

Lemma 2.8. Let R = (r1,... ,r%) be a vector of integers, and define |R| = ¥F_, 2.
Fork € Z[%] let Gr(k) be the number of ways to express k as a partial sum of the terms
2. In other words, Gr(k) is the number of solutions to the equation k = Y%, X;27
where X; € {0,1}. Then

Gr(k) = (Ifl) (mod 2)

Proof. 1t is enough to prove the lemma for nonnegative vectors. Define
fr(z) = > Gr(k)a*
keN[d]
Notice that this sum is finite. It is not difficult to show that given two vectors R, S
one has frs = frfs where RS is the concatenation. It is also clear that
Joolw) = L +a7
Therefore
k k

fr(z) = H(l + %) mgd 2 H(l +2)""=(1 +:L')22r‘ =(1+z)"

=1 =1
And the claim follows from binomial expansion. O

Theorem 2.9. given t,n € N[3], the following holds

n+t
Sqt kWn = < 24 )k“"n+t

Proof. All the monomials in yw, have powers of 2 as exponents. Qur first step will be
to prove that when a Square acts on such a monomial, the result is a combination of
such monomials, and so the monomials in Sq' jw, all come from w,4:. The second
step would be to compute how many times each monomial is to be taken.

9



For the first step, recall that A, acts on products through its diagonal map. There-
fore we have

Sq'(apar---aif) = 3. Sq"(21')Sq*(27) - Sq™(a}t)
ti i+ Hip=t

In the monomials we are considering, s; is a power of 2 and therefore

l‘fi t,' =0
Sq"(z) =1 @i ti=s
0 otherwise
which proves the first part. For the second part, consider a monomial :zc2 ‘z? T :c? i

of ywn4:. By the first part, this monomial can be obtained from a monomlal of kWn by
choosing a subset of the variables with exponents adding up to ¢ and doubling them.
To retrace the possible origins of this monomial, then, we have to find all subsets
of its variables with exponents adding up to 2¢, and then half them. According to

Lemma 2.8 the number of ways to do that is congruent modulo 2 to (",;t). O

Cprollary. 2.10. Let Qf € Ag bf: the element defined by induction as Q: = qui and
QIt! = [Qf,Squ] (note that Q) is not primitive in A;). Then

J n -+ 2j+1 - Qi
Qi kWn = 9j+1 kWn421+1 — g8

Proof. We only have to consider the case ¢ = 0 since all the other cases follow by
applying the doubling isomorphism or its inverse an appropriate number of times.
We use induction on j. The case j = 0 follows directly from Theorem 2.9. For the

inductive step write
n+ 22 1
2i+2

+2 _
A=("+f 1) C
n+ 20+ 1
2i+1
Then we have

25+1
927+1
B=(”f“ ) D
Qi kwn = [@3,5¢% " lkwn = Q3 Sq*" 1w + 5% Qf s
= (AB + CD)jwnya+2y

2i+2
We have to show that AB + CD = C (mod 2). We do that by considering the
possible values of the residue of n modulo 27+2. Denote the residue by N. Notice
that A and D depend only on N. If 0 < N < 27*! one readily sees that A = 0 and
D =1, and the result follows for this case. If N > 2/¥1 or N = 0 then A =1 and
D = 0. So in this case we have to show B = C. Suppose B # C. That means that

10



the j+2 bit of the number n+2/*2 —1 is different than that of n+2/*!. This happens
exactly when 0 < N < 27*! which is not the case here, and the result follows. O

We now turn to the question of expressing a general yw, in terms of the generators.
This question is important since the rw, play a central role in investigating the
structure of Dy, as we will see in Sections 3 and 4.

From now on we will shorten w, to wy, and write ws for wp, wm, . ..wn, where
m = (my,ma,... ,mg).

Theorem 2.11. Let n € Z[}] and write n = 2N —y{_ 2™ wherer; < --- <ry < N.

Then
Wp = Z Woi_of

241 292N
$i—=1,20 for all 1

kwn = Z k(&‘23_21'

2%1 4. 42%¢=2N
k>s;=r,20 for all ¢

where wy, when it occurs, is just the unit. Notice that the right hand expression is
finite and contains generators only.

Proof. Let V! denote the vector space over Z/2 generated by the symbols {z;}!_,,,,
and write V, = Vi*. In [Dk] Dickson proves that

fk(X)z H ¥+U Z}‘U)Zk 2-4 2
veEV) ]

Notice that only X?' has non zero coefficients. Therefore fx defines a linear operator,

Le. fi( X+Y) = fi(X)+ fe(Y), and we get
friee(X)= J] X+0o)= ] [[(X+w+u) =

vEVi4e weVE u€Vi
, [T AlX +w) = TT (elX) + fulw)) =
(Hl) wEVk‘ weVf
¢ .
Y waep (felrsn), - o fel@iad)) fi( X)F
1=0

For the last identity we used the linearity of fi to express fi(w) as a combination of
Sre(@hti)-
Given n € N[%] with a(n) < k we now use the above formula to compute yw, in

terms of generators. Write n = 2V — ZZ 2" where ry < -+ < rp < N. Recall
that by Proposmon 2.6, wwn € Dy if and only if ¥ < o(n). In our case o(n) =
o2V — 5,2y = N+ 1 —( and so we need N > k + ¢ — 1. If that condition is

11



not met we may enlarge N by considering rwse, for a suitable power e. Once we
compute the expansion for this case, we would be able to retrieve the expansion for
the original term by taking square roots e times. Notice that we can do the same
even when N > k + ¢ — 1, using e negative, to force N = k + £ — 1. This is not
necessary, of course, but will simplify the formulas below.

All said, we may now write n = 2k+(-1 _ £=1 2" where ry < rg < - <1y <
k+ ¢ —1. Notice that we’re now working inside Dy, so everything in sight is integral.
Looking at equation 2.1, and comparing the coefficients of X we get

¢
k4 eWok+t—1 = gWoe—1 (fk($k+l)a e ,fk($k+£)) + kW§k—1

Now compare the coefficients of z%}, ...x7 [, on both sides of the above formula.
From Definition 2.2 it is easy to see that the comparison gives

¢
— 20 —
kWn = Z kWok _gri—si =

291 42922261 0=
k>ri—s5;> 0 for all ¢

4
(2.2) Z 1 kWok+si _gri =

291 4 g29e =281 i=
k>r;—3;>0 for all ¢

4
Z H k23 27

291 4428 =2k + -1 =1
k>s,—r;> 0 forall :

This identity only holds in the case N = k + ¢ — 1. However, if we rewrite

4
(2-3) kWn = Z H kWi 27

281 4.4 23%¢=2N =1
k>s,~r;> 0 for all ¢

then the identity will hold for all n, where n = 2V — f=1 2% withry < ---<rp, <N,
which follows by taking the appropriate positive or negative power of 2 of equation 2.2.

Now observe that the identity for D, claimed at the statement of the theorem
projects to equation 2.3 in Dy, since the elements wy:_5r where s — r > k project to
0 by Proposition 2.6, so the theorem follows by passing to limits. O

Corollary 2.12. The dense subalgebra of D., generated by {wqx_,}32, tncludes all
the elements {w, }neN[g]’ and therefore all finite w-polynomials (finite sums and prod-

ucts of wyp’s).
Definition 2.13. The algebra of finite w-polynomials will be denoted Fin(D,,).

12



3. THE SCcALAR ProbpucTt

In this section we define a norm in Do, and a scalar product B(De) ® Do — Z /2
where B(Dy,) is the subspace of bounded polynomials. Giving B(Ds) a suitable
topology makes the scalar product continuous in the product topology. We show
that the product is nondegenerate, and symmetric when restricted to Fin(Do).

Definition 3.1. The norm of a monomial M = z'...z}* is defined to be
|M] = max a(r)

The norm of a polynomial is defined to be the supremum of the norms of its mono-
mials. A polynomial P is said to be bounded if |P| < oo.

Remark. We shall use the term “polynomial” as in the above definition to mean any
element in R(o0).

Definition 3.2. For P € R(o0) denote by px(P) its filtration stage, i.e. the lowest k
such that P project to a nonzero element in R(k). The norm topology on R(0o) is
given by the following basis for open sets at zero. For each nondecreasing, unbounded

function f : N — N there is an open set {P € R(o0)||P| < f(u(P))}. Define
B(R(00)) to be the subspace of bounded polynomials, with the induced topology.
Define a Cauchy sequence in B(R(00)) to be a Cauchy sequence with respect to the
metric 1/u which has a global bound on the norm of its terms. Define

B(Ds) = B(R(c0)) N Da
Notice that by Definition 2.2 |w,| =1 and so w, € B(Dx).
The converging sequences in B(R(o0)) in this topology are exactly the Cauchy

sequences, and in so in some sense this space is complete. B(D4,) is a closed subspace,
and therefore is likewise complete.

Proposition 3.3.
(a) GL(00,2) acts on B(R(00)), and therefore
B(Dx) = B(R(c0))H>?
(b) For P,Q € B(R(x)), |PQ| < |P|+|Q|. and so B(R(c0)) and B(Dy) are
algebras. Fin(Dy) C B(Dy).

Proof. (a) GL(o0,2) is generated by the infinite symmetric group and the transvec-
tion T defined by
T(x1) =1 + 22
T(x;) = x; for: > 1

13



It is obvious that for any permutation ¢ and any P € B(R(00)), we have
|P| = |o(P)]|, so the symmetric group acts on B(R(00)). As for T, given any
monomial z{* ... z}* of P, the action of T is

T(a...a)= S (S?) P eptips o
J€[0.s1]

Where the sum is taken over an interval in N[1]. The only nonzero terms
in the sum are those where the 1's in the expansion of j are a subset of
the 1’s in the expansion of s;. In this case, a(s1 — j) < a(s1) < |P| and
a(sz+j) < a(s2)+a(j) < a(s2) +a(s1) < 2|P|, so [T(P)| < 2|P|, and T acts
on B(R(c0)) as well.

(b) The claim that |PQ| < |P| + |Q] follows directly from the subadditivity of
a. Since |w,| = 1 it follows that |w,, ...w,, | < k and therefore any finite
w-polynomial has a bounded norm. Hence Fin(Dy) C B(Dw).

(]
Definition 3.4. Given two homogeneous elements P € B(D,,) and Q € D, write

= ! 2Tl Tk
pP= ZC(T] ..... re) Ty e Ly

There is a unique expansion of @ in the simple basis {war_2s},5s,

Q = Z DF‘g(A)?F_zs‘

>

Define the scalar product of P and Q to be
< PQ>= Z Dz Cor_ss
>§
Proposition 3.5.

(a) The scalar product is well defined for any pair P € B(Dy,) and Q € Do.

(b) The scalar product is continuous.

(c) The scalar product is continuous in the left variable in the filtration topology
when the right hand side is in Fin(D..).

Proof.  (a) Let px : Do — Dy be the projection and let i : Dy — D, be the map
defined on generators by ix(xw,) = wy. Let 7y = ix 0 pr. Let Qi = pi(Q). Q&
has the expansion

Qk = Z D;,;wy_z;
>§
|73l <k
Since Q € Dy, only a finite number of the above coefficients can be nonzero.
For all the other coefficients of @, the vector 27— 2¢ has at least one entry with

14



more than £ 1’s in its dyadic expansion. Therefore the proposition follows by
taking & > |P|.

(b) Let P, ~ P and @; ~ @ be two converging sequences in the respective
topologies. Let k be a global bound on the norms |P;|. Let N be such that for
n> N, p(@ —Qr) > k. For such n, < P,,Qn >=< P,,Q >=< P;,,1¢(Q) >
for all 2. r+(Q) has a finite w-expansion, so let M be the length of the longest
monomial. Let M’ be such that for m > M', u(P — P,) > M. For such
m, the shortest z-monomial in P — P,, must have length bigger than M, the
reason being that P— P, is a symmetric polynomial and so a shorter monomial
would imply the existence of a monomial in the variables 1, ...,z and hence
p(P — Pp) < M, a contradiction. By the definition of the scalar product,
< P~ P,,m(Q) >=0 and so

< Pms Qn >=< PrruQ >=< anrk(Q) >=< quk(Q) >=< P?Q >

(c) The proof proceeds along the same lines as the second part of part (b). @
has a finite w-expansion. Let M be the length of the longest monomial in
Q. Let P, ~ P be a sequence converging in the filtration topology. There
exists some M’ such that for m > Al’ one has u(P, — P) > M. For such m,
the shortest x-monomial in P — P,, has length bigger than M, and hence, as
above, < P,,Q >=< P, >, so the scalar product is continuous in the left
hand variable.

ad

So far the scalar product looks mostly pointless. The following proposition shows
that it has very interesting properties inside Fin(D,,). In particular, we show that
it’s symmetric. We will later show that Fin(D,,) is dense in B(Dy) in the norm
topology, so those properties will hold throughout B(D,) by continuity.

Proposition 3.6. For any two monomicls wz and wiz < wg,ws > is the coefficient
of the monomial z7' 232 ...x," in wz where n = (ny,ng,...,n). The form <,> is
symmetric and nondegenerate in Fin(D,.).

Proof. Use the above identity as a definition of a new scalar product, defined over
Fin(De), then show that the two forms coincide. A priori this form does not look
well defined. It is clear, at least, that the value of the form does not depend on
the representative on the left hand side, since the form was defined in terms of the
underlying polynomial in R(o0). Therefore, to show that it is well defined it is enough
to show that it is symmetric.

In order to compute the coefficient of x7*23? ... 2} In Wm, W, . .. wm, We have to

find how many ways are there to construct this monomial by multiplying monomials
of the individual wy,,’s. Any such construction can be represented in a unique way

15



by a k x ¢ matrix whose entries are either zero or powers of 2 (positive or negative),
such that the columns add up to the vector n and the rows add up to the vector 7.
Transposing those matrices now shows the claimed symmetry.

The nondegeneracy is obvious since any nonzero element of Fin(Dy) has at least
one monomial with a nonzero coefficient.

We have to show that this new scalar product is really the old one. From Defini-
tion 3.4 it is clear that the two definitions coincide when the right hand side is an
monomial in the simple basis and the left hand side is in Fin(Ds ). But these mono-
mials span Fin(D,,), and so the two definitions coincide throughout Fin(Ds). O
Corollary 3.7. Let P € Fin(Dy,). Then z¥*z3 ...z}* is a monomial of P if and
only if 2¥a¥xy® ... x}k is. In other words, any two variables in a monomial of P that
have the same exponent can be “squeezed” to one variable and any variable can be
split into two.

Proof. The first coefficient is computed by < P,wy,wy, ...w,, >. The second by

< P,w?w,, ...w,, >. The claim follows since w? = wy,. O

Corollary 3.8. For any P € D, (resp. P € B(Dy)) and any monomial M =
Wmy - - Wm,, the scalar product < M,P > (resp. < P,M >) is the coefficient of
oozt i P

Proof. We will prove the second claim. The first one is proved the same way since
norms are not used in the proof. P can be approached from Fin(D) in the filtration
topology. If P’ € Fin(D,,) is such that u(P — P') > k, then P and P’ have the same
monomials in zq,...,zx. Since M € Fin(D,,) Proposition 3.5 implies that there is
an £ such that if u(P — Q) > ¢ then < P — Q,M >= 0. Choosing P’ such that
(P — P') > max(k, ) we have < P,M >=< P’/ M >. By Proposition 3.6 the right
hand side is the coefficient of 21" ... 2** in P’ which is the same as the coefficient in
P. O

4. THE DUALITY RELATION AND ITS CONSEQUENCES

In this section we investigate the topological structure of Dy, and B(D,). We show
that the scalar product turns Do, and B(D.,) into dual topological Hopf Algebras
carrying both a left and a right action of A,. We compute the right action and the
coproduct explicitly. The main technical difficulty is showing that Fin(D,) is dense
in B(Ds) in the norm topology. The proof of this fact constitutes the bulk of this
section.

We start with a remark about bases. The root algebra basis and the simple basis
defined in Proposition 2.6 give vector space bases for Dy and Fin(Dy), the first by
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taking monomials in the algebra basis and the second by taking square-free monomials
in the simple basis. What Proposition 2.6 says is that those two monomial bases are
identical, and we will think of them as one basis where each element has two different
representations. To pass from one representation to another, take each term wj,_,,
expand r dyadically r = 3~ 2% and use the identity wli_; = [Twyk+t, _ot.

Definition 4.1. An admissible monomial is an w-monomial w,, wy,_, ...wr, where
r; 2> 2riy1. A basic w-monomial is a square-free monomial in the simple basis defined
in Proposition 2.6. The complerity vector of a basic w-monomial M = [T, wysi_a¢
is the vector (rg,7k-1,...,71), where k = max(s; — ¢;) and

r; = Z oh

3¢=t|+.j
When M is written in the root algebra generators, it has the form M = [T&, wyi_,.
Notice that ¢ = 35 | a(r;).

A basic z-monomial is a monomial M = 22"~ ..7;3"'2" for some integers s; >
t;, such that s;y; — tiy1 < 8; — t; and in case of equality, s;41 < s;. The complezity
vector of a basic z-monomial M is the vector (r,...,r;) where k = s; — t; and

r; = Z 2t
si=t,+J

Notice also that a basic z-monomial can be reconstructed from its complexity, so there
is exactly one basic monomial for each complexity. The same is true for w-monomials.

A vector (rk,...,r1) is higher than a vector (s¢,...,sy) if it is larger than the
second vector in the left lexicographical ordering, where vectors of different length
are compared by padding the shorter vector with zeros on the left.

Theorem 4.2.

(a) Let M = wy wr,_, ...wr, be an admissible monomial. The highest complezity
of a basic z-monomial in M is (ri,r4—1 — 2rg, ..., 71 — 2r3).

(b) For any k,t and d there is a finite set of complexity vectors of length t such
that any homogeneous P € B(D,,) of degree d with |P| < t which has no
basic z-monomials of those complevities has filtration higher than k, that is
w(P) > k.

(c) Fin(Dw) is dense in B(Dy,). Moreover, if P € B(Dy) has norm t, it can be
approzimated by a sum of admissible w-monomials of length at most t, so in
particular it can be approximated by elements of norm at most t.

Proof.  (a) The monomial M has length k, and therefore |M| < k, so all the
basic z-monomials in M have norm & or less and therefore complexity vectors
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of length k or less. Given any basic z-monomial N with complexity vector
(Sky...,81) write

N = N,fk_lg\rgill_l A
where

alsk)+-+als,)

Ni = I1 7 X =s >ty
j=o(sk)++oa(sisr)+1 J

N is an z-monomial in A and is therefore
N S LkLk—l e L1

Where L; is an z-monomial in w,,. Since |w,,| = 1, each monomial contributes
just one digit to the exponent of each variable. But the variables xy,..., Za(s,)
have k digits in their exponent, so each one comes from a different L; and they
all contribute. In particular L; contributes a digit to each of these variables,
and the amount it contributes to each x; is at least 2%s. Therefore

O(Sk)
re2 ) 2 =
J=1

If r, > si we're done. Otherwise r; = s, which can only happen in case Ly
contributed all of its exponents to the first a(sx) variables, and only if the
digit contributed to z; was 2%, In that case Ly = Ni. Set N' = N/N,. N’
is an z-monomial in the product w,,_, ...w,,, specifically N' = Ly_;...L;.
N’ is not necessarily basic, since it might have repeated powers. However
by Corollary 3.7 there is a basic a-monomial in w,,_, ...w,, having the same
complexity. Since this is the only parameter of N’ we are interested in, we
can work with N’ as if it were basic. Writing N’ the same way N was written
above, we get

N=N_¥""1 N
- c—1 oo 1
where N/ = N; fort <k —1 and N|_, = N} Ny_,.

The complexity vector of N’ is (sx—y + 27k.Sk—2,...,81). By induction we
have (sk-1 + 27k, Sk—2,...,81) < (Pk=1,Tk=2 — 2rk_1,...,71 — 2r3) and so
(Sk=1:Sk=25--++81) < (Tk=1 — 274, ..., 71 — 2ry) and since s = ry we get

(Sky---381) < (TkyTho1 — 27k, ..., — 2r3) . The proof also demonstrates how
to pick L; in order to achieve the maximum complexity. Namely

— O\ A2 k=1
L= N;N{,...N;

As it is clear from the proof that this is the unique way to produce the mono-
mial of maximal complexity, it necessarily has coefficient 1, i.e. the maximal
complexity is achieved in M.
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(b) By Corollary 2.5 there is a finite number of ways to express d as a sum of k
numbers in N[1] of weight ¢ or less. Write any such sum as a k-vector, and
let A be the set of all such vectors. By Theorem 2.11 for each m € A the
w-monomial wy; has a finite expansion in basic w-monomials. Let B be the
set of all basic w-monomials that appear in any of these expansions. Sup-
pose P € B(Ds) has degree d and |P| < t. Let M € B and suppose P
has no basic z-monomial with a complexity vector equal to the complexity
vector of M. Then by Corollary 3.8 we have < P,M >= 0. If P misses
all the complexity vectors of monomials in B, then it is orthogonal to B
and therefore orthogonal to all w; for m € A. Suppose P has filtration k
or less. Then P has a monomial 2" ...2*. Since |P| < t we get that
a(m;) < t, and of course Y5, m; = d. Therefore (my,...,m;) € A and
therefore < P, wp, ...wn, >= 0 contradicting Corollary 3.8.

Some of the complexity vectors that we got might be longer than t. However,
since P cannot include monomials with complexity vectors longer than its
norm, we can discard such vectors should they occur.

(c) Let P € B(Dy) be homogeneous of degree d and norm t. To approximate
P in the norm topology is to approximate it in the filtration topology by a
sequence of bounded norm. We show that this can actually be done at norm
t. Fix k. By part (b) there is a finite set B of complexity vectors of length
t or less such that yg(P) > k when By does not occur in P. The complexity
vectors in By, are ordered by height, and by part (a) for each ¢ € By there is an
admissible word K. of length ¢ (and hence of norm at most t) whose highest
complexity is ¢. Let ¢; be the highest complexity in By which appears in P,
and define by induction c;4; to be the highest complexity in By appearing in
P+ K, +- -+ K. Stop the process when no such complexity exists, and
suppose ¢, was the last to be defined. Then by part (b) the polynomial %, K;
is an approximation of P up to filtration k, and | Y%, K;| < max®, |K;| < t.

ad

Corollary 4.3. The scalar product is symmetric in B(Dy), and continuous in the
left variable with respect to the filtration topology.

Theorem 4.4. Let B(D)" be the graded vector space of norm-continuous Z /2-valued
homogeneous functionals on B(Dy,). Let D7, be the graded vector space of Z [2-valued
homogeneous functionals on Dy, continuous in the filtration topology. Then the maps
¢ : B(Dy) — D, and ¢ : Doy — B(Dx)™ defined by o(P) =< P,— > (resp.
< —, P >) are vector space isomorphisms.

Proof. The maps are injective by the nondegeneracy of the scalar product. The main
problem is to show surjectivity. Let f € B(Dx )™ be a continuous functional of degree
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d. Define
P = Z f(wml --.ka)l'rlnl...lek

mi+-+mp=d

We claim that ¢(P) = f. This seems to follow directly from Corollary 3.8 by com-
puting ¢(P) on w-monomials. There is a problem, however, which is that it is not at
all clear why P € D, in the first place. To show that it is, observe that a polynomial
) € R(oo) with expansion

Q = Z Cm1 ..... ka:;nl PN :l?;cnk

is invariant if and only if it is symmetric and for each sequence (n,...,n) the

following holds

n+J
Z < 1 J)Cm+].n2—jﬂa~---‘"l =0

. n
JE(Ovn2] 1

The above condition insures that ) is invariant under the transvection T. Notice
that the above sum is always finite for ) € R(>0). In the case of P, it is obviously
symmetric and we have to show that

ny + 7
Z ( 1 J) J(@n 4j@ng—jWny - .. wn,) =0
j€Omg) \ T
For each ny + -+ - + ny, = d. The series
ny + )
Z ( )wnx+j‘°‘)n2-1wna oo Wy
J€(0,n2] ™

converges in the norm topology since it has a norm bounded by ¢ and for all but a
finite values of j either wy, 4+; or wy,—; has a high filtration. We claim that the series
converges to 0. To show that, take any w-monomial Q. Write

—_— ST Mk
Q= E O I
[hen

ny+J
< Q’ Z ( )wn1+jwn2_jwn3 . "‘"‘ne >

ny+J
= > ( ) < Q) Wny+jWnpmjWny « -« Wy, >

. n
JE(Ov"&] 1
= Mt e =0
= Z n N1+ N2 =] e e
J€(0,n9) 1
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Where the last equality follows since @ € B(Dy,). From the continuity of f we get

ny+ )
Z ( ' J).f(wnn‘l—jwnz—jwna ---Wn,) =0

]'E(OJEQ] m
and therefore P € D.

Supposing now that f € D%, we can construct P the same way as before. Since f is
continuous in the coarse filtration topology, its restriction to B(Des) is automatically
continuous in the finer norm topology. Since P was constructed using only values
of f evaluated in B(Ds), we get for free that P € D, using the previous case.
We only have to show that P has a bounded norm. Since f is continuous in the
filtration topology, there exists a t such that for P € Dy with u(P) > t one has
f(P)=0. If |21 ...2*| > t then p(wm, ...wn,) >t and therefore the coefficient
of this monomial in P is zero, and so |P| <t. O

Corollary 4.5. B(D.,) has a right action of A, defined by
< PSq',Q >=< P,S¢*Q >
Corollary 4.6. B(D.,) has a completed Hopf Algebra structure with diagonal ¢ de-
fined by
<YP(P),Q®R>=< P,QR >

Corollary 4.7. B(Ds) has a basis dual to the basic w-monomials. We shall denote
elements of this basis by M* where M is a basic w-monomial.

Definition 4.8. For n € N[1] and ¢ > 0 an integer. Let n = 3,5 Ci2' be the dyadic
expansion of n where C; € {0,1}. Define the t-modular weight vector a;(n) to be the
vector (g, ...,0:—1) where

Qr = Z Cligr

i€’
Define

S
Wt = z R SEN
S1++sp=n
3, =0 or o¢(s;)=(1.1,...,1)
Notice that jwn, = rwn 1.
Theorem 4.9.
E 3

Wnt = (U);t_l)

In particular, w, = (w})*
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Proof. The dual of wi._; represents the functional f which assigns one to this mono-
mial and zero to all other basic monomials. To compute the dual, we have to compute
this functional on all w-monomials. Given a monomial wy, ...wn,, we first have to
expand each w,, in terms of the basic monomials using Theorem 2.11. Since the set of
basic monomials is closed under products, those expansions will multiply to give an
expansion of the whole monomial. This expansion will contain a monomial of the form
wit_y (where m = 57= ¥ n;) if and only if for each i the expansion of wy,; contains the
monomial wy;' ; where m; = 5*5. So we have reduced the problem to determining for
which values of n the expansion of w, contains a basic monomial of the form wj;_;.
Write n = 2V — °¢_, 2™ where r; < -+ < 7, < N. Looking at Theorem 2.11 one can
see that this situation occurs when we can arrange that for each ¢ either s; = r; or
s;i = r; +t. If there are three different indices 7y, 9,73 for which s;, = s;, = s;, then
two of r;,, i, i, are equal, which is impossible since they were defined to be distinct.
So the vector § has at most double values, and since it adds up to 2V one can show
that the elements of 5" are necessarily N - 1,N —-2,.... N—¢+1,N —{+1, not
necessarily in that order. For N — ¢+ 1 </ < N — 1 denote by r(z) the value of the
entry in 7 corresponding to the value ¢ in §. Then () is either 7 or ¢ —¢. In particular
r(1) =i (mod t). Given a residue class 0 < j < ¢t such that j Z N — £+ 1 (mod t),
the set {r(z)|¢ = j} covers all the residue class of j in the range [N —¢—t+1, N —1]
except for one omitted value. That is because the variable ¢ covers the residue class
of j in the interval [N — ¢ + 1, N — 1] which is one element smaller than the same
residue class in the larger interval, and because the r(i)’s are known to be distinct.
As for the residue class of N — ¢ + 1, the value N — ¢ + 1 appears twice in § and
therefore necessarily corresponds to both values N —¢+1, N—{—t+1 in the vector 7.
Therefore 7 contains the set {r(:)|i =j and i > N—(+1}U{N—¢+1,N—£{—t+1}
of representatives of the residue class j which is exactly the size of that residue class
in [N—{¢—1t+4+1,N —1] and so no value in this class is omitted. Denote by s(j) the
omitted value in the residue class of j for j Z N — ¢+ 1. For j = N — £+ 1 write
s(j)=N—-{¢—t+1. Then

4 N-1 t—1

ns2VoYr= s Y v ¥ 20-T a0
=1 1=N—Ff—t+1 Jj=0,1,...,t-1 1=0
JEN-t+1

The numbers s(0),...,s(t — 1) are all distinct mod ¢ and so ay(n) = (1,1,...,1).

We have established that the monomials wy, ... w,, for which f(wp, ...wp,) =1
are exactly those in which a4(n;) = (1,1....,1). Therefore the dual of wj._, is as
stated. [

Theorem 4.10.
 —
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The action on products is through the diagonal map of A,.

Proof. Let m and § be vectors with |3] — |m| =t > 0. Let k be the length of 3§ and
¢ the length of m. For any vector 7 of length £ and total degree t let Ay be the set
of all ¢ x k matrices with power 2 or zero entries whose column sum is m and whose
row sum is § — 7. For any vector ) of length ¢ and total degree t let By be the set of
all ¢ x k matrices with power 2 or zero entries whose column sum is 7 + J and whose
row sum is §.

Define a marked matrix to be a matrix in which a subset of the nonzero entries has
been singled out or “marked”. For each M € A; let Cps be the set of all markings of
M where the row sum of the marked entries is 7. For each N € Bjlet Dy be the set
of all markings of N where the column sum of the marked entries is 27.

One readily sees that there is a bijection, namely doubling of the marked entries
ZH H C/\[—>H H DN

7 AIEA,’ f IVEBJ‘

And therefore

22 ICul=3" > IDn

T MeA; 7 NeB;
By Lemma 2.8 we have

ICAJI = <

where the binomial coefficient of two vectors is the product of the coordinatewise
binomial coefficients. Therefore

§—1 m+J
Z( Z~)|Ar|52( 5= |1B7l  (mod 2)
by T

2y

s ; t4) (mod 2) and |Dn| = (m{)—t] (mod 2)
J

~

By the proof of Proposition 3.6 we have
IA;' =< Wa-p, Wi > (mod 2) and |B]" =< Wz, Wi 47 > (mod 2)
so we have
§—1 _ m+j
<z{; ( i, A)w;_;, w,ﬁ> = <w§,Z ( Qj, >Wm+;> (mod 2)

By the Cartan formula, the right hand side is < ws, Sq* w;z >, and therefore

t S —1
wsSq =Z( 7 )w;_r

i
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Theorem 4.11. The coproduct is given by
Pwn) = Y, wi@uw;

i+j=n

In particular ¢ s cocommutative.

Proof. Set
d)(wn) = Z PNI QM

M a basic w-monomial

Recall that w, = (w})*. Let @ be any basic w-monomial. Then
< Py, Q >=< Py®@M™,QOM >=< tp(wn), QOM >=< w,, QM >=< (w)",QM >

So Py = 0 unless M = w! for some 7, and in that case Py is orthogonal to all the basic

monomials except Q@ = w}™*. Therefore Pyy = (w™")* = wae; and M* = (w})* = w;
and the theorem follows. O
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