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Abstract
Let G be a connected reductive p-adic group with compact center and let C be the set
of regular elliptic conjugacy classes. There is a unique measure dc on C such that for
any f E H(G) C"O(G) with support in the set G6 of regular elliptic elements G we
have fG f (g)dg fc I(c)dc where is the function on C given by 1(x = fG f (gxg-')dg
for x E G. Kazhdan con ectured that for representations and of G of finite length,
fc E,(c)O,(c-')dc is equal to the Euler-Poincare' chracteristics of 7r and r, where 0, (and
�,) is the character of r (and r). On Ge, 0, is a finite linear combination of characters i
of irreducible tempered representations 7ri. Each 7ri is a direct smmand of the representa-
tion induced from an irreducible square-integrable representation ai of a Levi subgroup. In
this paper we prove the conjecture when all ai are cuspidal.
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1 Introduction

Let F be a nonarchimedean local field of characteristic zero and let G be a connected reductive

F-group with compact center. If 7r is a representation of G of finite length, then it is known that

the distributional character E, is a locally integrable function on G wch is locally constant on

the set of regular elements [10]. Let C be the set of regular elliptic conjugacy classes and let be

the Hecke algebra of G. There is a unique measure de on C such that for any f E H with support

in the set Ge of regular eiptic elements of G, fG f (g)dg = fc f(c)dc where is the function on C

given by (gxg-I)dg for x E Ge. Let be another representation of G of finite length.AX = f

Kazhdan conjectured that

E),(c)�,(c-')dc = E(-l)j dim. Exti (7r, r)
fC Gj=0

This is a generalization of the fact that irreducible characters of a finite (or compact) group are

orthonormal. Really, if G is compact, then Ge = G and every G-module is projective since al

representations of G are completely reducible. So the above equation is a direct result of the

orthonormality of irreducible characters.

The lefthand side of the above equation is the scalar product which Kazhdan has defined in

[11]. He showed that

< rr >= fC O'(c)�'(C-1)dg

defines a non-degenerate scalar product on A(G = R(G)IRI(G), the Grothendieck group of G-

modules of finite length modulo induced representations. (See 2.1 below for more precise defini-

tion.) Let A(G) be the set of f E H whose orbital integral over any non-elliptic regular conjugacy
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class vanishes. He proved this by showing that there exists an isomorphism : A(G) _-4 A(G =

A(G)/['H,'H] which respects the action of the Bernstein center. Then < r, > is just the natural

trace pairing between and 0(r). The map : A(G) --+ A(G) is an explicit realization of the

well-known but rather vague philosophy that there is a duality between representations and con-

jugacy classes. We prove Equation by establishing a cohomological interpretation of tis map

: A(G) --+ A(G) as follows. If r is a G-module of finite length, then 0(r) is the 'rank' of its dual

rv. Here the "rank" means the rank of7rv as a module over 4 A precise definition of the rank

of a G-module and the implication of Equation from this statement are given in 2.2.

From the Langlands classification theorem for p-adic groups, it follows that A(G) is spanned

by irreducible tempered representations. And it is not difficult to show that the righthand side of

Equation 1, which is the Euler-Poincari characteristics, defines a bilinear form on F?(G) x R(G).

So it is enough to prove Equation when and are irreducible tempered representations. Any

irreducible tempered representation of G is a direct summand0f iGM(o,,), the representation

induced from an irreducible square-integrable representation of a standard Levi subgroup M.

We will prove the conjecture when or is cuspidal.

2 The scalar product

2.1 The scalar product

In this subsection we briefly review a part of [11]. Let G be a reductive p-adic group with compact

center as before and let be the Hecke algebra of G (the space of locally constant functions on

G with compact support). Then the category of smooth representations of G is equivalent to the

category H(G)A of non-degenerate modules. Let C be the center of this category 4]. The center
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of an abelian category is the ring of endomorphisms of the identity functor. For example, the center

of the category of modules over a ring with identity is just the center of the ring. In our case C is

the ring of endomorphisms of R which conunute with both left and right actions of G on 'H. Tis

is the set of invariant distributions z on G such that z *H C 'H.

Let Rz(G) be the Grothendieck group of representations of G of finite length and let R(G)

Rz(G) 9 C. The natural bilinear form Irr (G) x 'H C given by < r, h >= trace r(h*) (where

Irr(G) is the set of equivalence classes of irreducible representations of G and h*(g = h(g-1))

induces a billnear form < > R(G) x 'H C which respects the action of C (i.e. < z r, h > = <

7, z h > for z E C, r E R(G), h E 'H The kernel of this pairing in 'H is the set of f E 'H

whose orbital integral over any regular conjugacy class in G vanishes [11, Theorem 0], and is

equal to [HR]. Let A(G) be the set of f E ?i such that the orbital integral of f over any non-

elliptic regular conjugacy class in G vanishes, and let R(G) be the subspace of R(G) generated

by representations which axe (parabolically) induced from representations of finite length of proper

Levi subgroups. Then A(G = If E 'HI < III, f >= 0, VH E RI(G)J and RI(G = III E R(G)I <

H, f >= 0,Vf E A(G)J [11, Theorem A]. Since RI(G) is an C submodule of R(G), A(G) is also a

C -submodule of 'H. Let A(G = R(G)IRI(G),. = A(G)I['H, R], we get a non-degenerate bilinear

form < > A(G) x A(G) -- C which respects the actions of C.

There exists an isomorphism of C -modules : A(G) --+ A(G) such that for any irreducible

representation r of G, fG 0(r)(gzg-1)dg = 0,(X), V E GI 11, Theorem El. (Caution: A element

of A(G) is not a function, so the value of f at a point of G doesn't make sense. But still its orbital

integrals over eliptic regular conjugacy classes are well-defined.) Hence < rl, r >Lef < 71, 072 >

defines a non-degenerate scalar product on A(G) such that < z 7ri, r2 >=< 7r,, z r > for z E C 

6



From the Weyl integration formula we can see easily that

< irl, 7 > fc 01� (OBW2 C-1)dc

2.2 Ranks and Euler-Poincare' characteristics of G -modules

Let A be a ring with an identity element and let P be a nitely generated projective (left) A-module.

We have a canonical isomorphism EndA(P) P* OA R If u Ei xt xi E EndA(P), E 4( is

a well-defined element of A/[A, A], called the trace of u and denoted by rp(u = r(P, u 3 The

rank of P, denoted by rp = r(P), is defined to be r(Pidp). The trace map rp : EndA(P) 4

A/[A, A] satisfies 1additivity; rpcDQ(u(D v = rp(u) + rQ(v), 21inearity; rp(u+ v = rp(u) + rp(v),

3)commutativity; rp(vu = rQ(uv) if u : P --+ Q and v : Q - P, and 4 is universal with respect

to above properties in obvious sense. Let M be an A-module of type (FP) (i.e. it has a finite

resolution by fitely generated projective modules). Let -+ Pn --+ - - - --+ Po --+ M - be such a

resolution. If u E EndA(Mb then it extends to an endomorphism (ui) of the complex. We define

rm(u = r(Mu) to be 0(-1)ir(Piui). r(Mu) is well-defined and satisfies the analogous

properties as rp 3 Section 2 (In this case, additivity means r(M, u = r(MI, u') + r(M", U")

for an exact sequence 0 --+ (M', u') --+ (M, u) --+ (M", u") --+ of modules of type (FP) with

endomorphisms.) Suppose A is an algebra over a field k and let N be an A-module which is a finite

dimensional k-vector space. For a E A, the multiplication by a defines a k-linear endomorphism

aN of N. a Trace(aN) induces a k-linear map XN A/[A, A] � k. If P is a finitely generated

projective A-module and u E EndA (P), then HomA(P, N) is a finite dimensional k-vector space

and XN(r(P, u) = trace(HomA (P, N); u*) where u* is the map induced by u 3 Proposition 4.21.
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This shows that if M is an A-module of type (FP), then a Ext (M, N) are finite dimensional andA

00

XN(r(M, u)) 1)'trace(Ext (M, N); u*)
i=O

In particular XN (r (M)) o (- 1)' dimk Ext (M, N).

If M is an A-module of type (FP), then any direct summand MO Of M is also of type (FP) and

r(M.) = r(MpM0), where pM0 : M - M is the projection onto Mo.

We fix a minimal parabolic subgroup Po of G, a maximal split torus Ao in Po and a good

maximal compact subgroup Ko of G once for all. Let K be a congruence subgroup of K0. Then

'H(G)A, the category of G-modules which are generated by K-fixed vectors is a direct summandK

of 'H(G)A and is equivalent to the category of modules over'7JK(G), the Hecke algebra of G with

respect to K [4, Section 2].

Let 7r be a representation of G of finite length. Then 7r has a finite resolution by finitely

generated projective G-modules 14, Proposition 37]. Let 0 --+ P,, --* - - - -+ Po --+ 7r --+ 0 be such a

resolution. Choose a small congruence subgroup K such that 7r and Pi are generated by K-fixed

vectors. Then 0 , pl� 0 _ 7rK -+ 0 is a resolution of the 'HK(G)-module rK by

finitely generated projecitive 'HK (G)-modules. We define the rank of r, denoted by r, = r(r) to

be the rank of 7rK as an RK(G)-module. The natural map HK/[HKHKI --+H/[HH] is injective

[12, Theorem B]. We will consider r(7r) as an element of H/[H,,Hl.

Proposition 1 r, does not depend on the choice of K.

Proof. Shown in the remarks following Proposition 38 in 14].

Proposition 2 Let r be a G-module of finite length. Then 1) r, E A(G = A(G)I['HH] and 2)

r = if 7r is a representation induced from a proper Levi subgroup of G.
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Proof. 1) Write 11r, h] for tr(-r(h)) where is an admissible representation of G and h E H. By

[1 1, Theorem A], it's enough to show [iGM(O'), r, = for all proper standard Levi subgroup M

of G and 0 E Irr M, where iGM i the usual unitary induction functor 9 Fix M, o-) and let

T(M) be the group of unramified characters of M. (M) has a natural structure of complex

algebraic torus and for Vh E H,,o [,rp, h] defines a regular function on T(M), where r =

igM(,0o,). On the other hand, from the properties of ranks of G-modules stated above [ro, r, =

E?'O(-l)idimExt' 7,70 E Z So is a constant function on T(M). We will show

that [ro, r, = for some E l (M) and this will prove the first part of the proposition.

Each z E C acts on rp by a scalar, say, z(-rV, 4 Proposition 211]. Let h, be the function on

T(M) given by hO = z(,nk). Then z -+ h,, defines a ring homomorphism from C to the ring of

regular functions on %F(M). The image of this map, which is described in 4, Section 2 contains

a non-constant function. In particular, there exist z E C and E (M) such that z(r) 54 z(,ro).

Now from a general fact, the actions of z on Ext'G(7, ro) induced from the actions of z on the first

and the second variables are the same and equal to multiplications by z(7r) and z(-ro), respectively.

This is a contradiction unless Ext (, ro = 0 . Hence tr(ro(r,) = .

2) Now suppose r = iGN(P) where N is a proper Levi subgroup of G and p E IrrN. To prove

r, 0, it's enough to show [r, r = for any irreducible representaion of G 11, Theorem 0]. Let

7r.0 iGN (OP) for E IP (N). We claim that " [r, r (7ro)] is a regular function on T (N). Once

this is proven, the same argument as above shows [r, r(7r.0) = .

In [5], Bernstein showed that iGN is left adjoint to an exact functor which is the re-

striction along the opposite parabolic subgroup (see Proposition 4 and the remark before it). From

this fact, we can see easily that Ext.7 (iGN(P),r = Ext- (P0;NG(-r)) for a j. So [rr(ro)]G N

Ej(-l)jExti (iGN(OP),T = -l)jExti (0P0;NG(7_) = fNg(-r),r(OP)IN, where r(op) is theG N
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rank of N-module top and [IN is the trace pairing on N. We claim that r(Op = tk-lr(p). It's

enough to show that if p is a projective N-module then Op is also projective and rtkp = klr(p).

Clearly, HOMNNPr = Hom.N(p,0-1,r). So Op is projective. r(op) is uniquely determined

by the property r, r(op) = dim HomN(Op, r) for a irreducible N-modules. dim Hom(?Pp, =

dimHom(p,,0-1r = 0-1-r, r(p) = [r, tk-lr(p)]. So rtkp =V;-lr(p) and ik -+ [fNG(r),,0-1r(P)IN

is clearly a regular function on %P(N). Q.E.D.

-r E IrrG, put XG (T r) 1)j dim Extj (r, r) the Euler-Poincar6 characteristics of r

and r. It follows from the long exact sequence for Ext that XG(., -) can be extended to a billnear

form on R(G) x R(G).

Corollary I XG (T, r = if either or is induced from a representation of a proper Levi

subgroup.

Hence7 XG(., -) defines a bilinear form on A(G) x A(G). It follows from the Langlands classifi-

cation theorem for p-adic groups that A(G) is spanned by classes of tempered representations [11,

Proposition 1. 1]. So to prove < > = XG (, ) on A(G), it's enough to show < r, > = XG (, ) when 

and r are irreducible tempered representations. Am irreducible tempered representation is a direct

summand Of iGM(O') where is an irreducible square integrable representation of M. Let R(G)'

be the subspace of A(G) generated by irreducible tempered representations that are summands of

iGM(a) where M and run over all standard Levi subgroups and all irreducible unitary cuspidal

representations of them, respectively. In this paper we win prove the following theorem.

Theorem I Suppose G is connected, then < , r > = XG (, ) for r E A(G) and r E RG)'.

On the other hand, from properties of ranks of G-modules, we can see the following
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Lemma I Let : A(G) - A(G) be the isomorphism stated in Section 21 and let be a represen-

tation of finite length. If 0(r = r * then < r, r > XG (r, r) for all r E A (G).Ir

In the following we will show 0(r = r* if E A(G)'.ir

Remark. If r is cuspidal, then this is aleady known. Let v be in the space of such that

(V, = and let h(x = d I w (x - 1) v, v) E H, where d, is the formal degree of ir. Then it is not

difficult to show that 1 < r', h >= 6,,, for any irreducible tempered representation r' of G and

2) h(x = 0x-1) for a x E Ge [11, Proposition 53]. Since r is a projective G-module (see the

remark following Proposition 3 below), 1) implies that h E A(G) and that its image h in A(G is

the rank of 7r.

3 The local trace formula

In tis section we review a part of 2]. From now on we assume that G is connected.

3.1 R-groups

Recall that we have fixed a minimal parabolic subgroup Po of G and a maximal split torus A of

G in Po. Define standard Levi subgroups of G in the usual way. Let C be the set of standard

Levi subgroups and let FI2(M) be the set of equivalence classes of irreducible square integrable

representations of M. Let M E C and E I2(M)- Consider W = w E WMIa- _- oJ where

Wm = NG(Am)IM is the Weyl group of G with respect to Am, the split component of the center

of M. For each w E W, fix an isomorphism aw : o- o,. Then the normalized operator I(w, o)

iGM(O') --+ iGM(a) is given by I(wo, = rwA(w)Rw_.p.Ip(cr) where R-1PWJP(O') iGP(O')

iGw_,pw(o,) is the normalized intertwining operator given in [1] and A is the left translation.
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Lemma 2 There exist normalizing factors such that the normalized intertwining operators I(W' 0')

satisfy the following conditions.

1. Let L be a standard Levi subgroup containing M and let w E W, n WLM where WLM

NL (AM) IM is the Weyl group of L with respect to Am. Then I(w, 0' = iGL (IL (W, 0')) where

IL w, o) is the normalized intertwining operator Of iLM 0')

2. I(w, av = (I(w, o)-l)v

Proof. This follows directly from [1, Theorem 21]

Let W,o = w E W, I(w, o) is a scalar.1 then WO is a normal subgroup of W, and R = W, IWO

can be identified with a subgroup of W, so that W, is the semi-direct product of W"O by R,. R is

called the R-group of o. w 4 I(w, a) a projective representation of R,. Ad we can always find a

finite central extension 1 --+ Z, --+ A, --+ R, - 1 a fuction � : A, --+ C* and a character X of

Z, such that 1) Gzw = X,(z)�,(w), for z E Z,, E A, and 2 w 4 f(w, o = �,(w)-'I(w, a) is

a representation of A, 2 Section 2 There is a bijection p -+ r, between the set H(A,, x,) of the

irreducible representations p of such that p1Z = X, and ineqi:dvalent irreducible components of

iGM(O')- More precisely, the natural representations of A ?, x G on the space Of iGM(o,) decomposes

as

R (P' & 7r.)

and each rp is irreducible and distinct [loc.cit.]. This shows in particular, for w E A011 f we

have

tr(AW, 0)iGM(O' (f tr(pv(w))tr(7rp(f)) (2)

12



3.2 Trace Paley-Wiener theorem

Consider the set of triplets = M, o, w) with M E L, 0 E I2 (M), E A. The Weyl group W =

WG of G with respect to A acts on this set naturally. For each = (M, o, w), we define a distribution

�(-r) on G by r, f = tr(f(w, 0)iGM(O')(f))- Clearly, these distributions are invariant under the

action of W and satisfy (z7-, f = X, (z) - 1 0 (r, f ), E Z, where z = M, o, zw). Let V(G) b e

the set of triplets = M, a, w) such that X, =_ on Iz E Z, I zw and w are conjugated in �, 1.

These triplets are said to be essential. (If r isn't essential, then r) =_ by the above argument.)

Let a = Hom(X(A), R) be the real Lie algebra of A and let reg be the set of t E A, such that

the subspace aw of a fixed under the action of w is (0). Define T(G) to be the set of W-orbits in

V(G) and let T,1 (G = J-r = M, o, w) E T(G I w E AOIreg

V(G) has a natural structure of analytic manifold, whish is isomorphic to a disjoint union of

compact tori 2 Section 3 T(G) is then a quotient space of T(G) and Tell(G) is the union of

connected components of the minimal dimension, which is zero in our case. Let be a fuction on

TI(G) such that 1) is supported on only finitely many components, 2 s = 0(r), s E W, i.e.

is a function on T(G) 3 O(z-r = X,(z)-10(7-), z E Z, and 4 on each connected component of

T'(G), is a Paley-Wiener fimction. Then the trace Paley-Wiener theorem 7 says there exists

f E such that 0(r = (r, f ) for all E T(G). Note that such an f is unique modulo [HH]

and if is supported on T(G), then f E A(G) [11, Theorem and A].

Remark. The trace Paley-Wiener theorem in 7] is not stated in this form and I could not find

a proof of the above statement which appears in 2, Section 3 But the proof is quite simple if is

supported on Tell G) and this is the only case we need. Let Rt(G) C R(G) be the subspace spannedd

by classes of tempered representations of G and let RtI(G) be the subspace generated by iGL (a), L E
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,C, L 54 G 0 E Ht,,,,,p(L). By inverting the formula 2 as 0(r,, = A,1-1 tr(p(r))O(-r,) where

T = A o, r), we get a linear form : Rt(G) - C. If is supported on T1(G) then = 

on RtI(G). (See the arguments in the proof of Lemma 3 below.) So defines a linear form

on At(G = Rt(G)1Rtj(G). Since the natural map Rt(G)1Rtj(G) - AG) is an isomorpl-dsm

[11, Proposition 1.1], the linear form Rt(G) --+ C can be extended uniquely to a linear form

R(G) -- C such that 0 on RI(G). Now the trace Paley-Wiener theorem in 7] says that

comes from an element f of 'H.

3.3 The local trace formula

We define a measure on T11(G by

0(,r)dr
T=(MOIW)ET.jj(G)

where !,,w is the centralizer of w in A.

For = M, 0, w) E T(G), let rv = M, av, w). Let be a unction on T(G) supported on

T,11(G) such that the function r -- 0rv) satisfies the 'conditions 1 - 4 in the previous subsection

(the fourth condition is empty in this case). To 0, we can associate a distribution on G by

E) (f fT.,,(G) 0-r) 0 (r, f )dr. is a finite lineax combination of tempered chracters, hence is a

locally integrable fuction on G. Let am be the real Lie algebra of M and let be the function on

T(G) given by 0-r = d(w)j0(-rv) for = Maw), where d(w = det(l - w.m. Then O' also

satisfies the conditions 1 - 4 above, hence there exists f E 7Y such that 19(-r, f = 0r) for all

14



E T(G). Now it was shown in the proof of Theorem 61 in 2] that

IG f (gxg-')dg = Ex), for a x E G'

4 Reduction of the theorem

We fix M E C and a E H2(M) such that R01,reg 4 0. We also fix an irreducible representation

E H(A ?,, X,) of A, To p, there corresponds an irreducible component T. Of iGM(O') as before.

4.1 Rank and character of rp

Consider the decompositon 7 = EDAErl(,q.,,X.,) Av 9 rx of the representation of A, x G on the space of

iGM(o,). The projection map onto the pv-component is p = -EA., 1-�,J-l dim(p)tr(p(w))f(w, o).

Since the multiplicity of 7r, in iGM(O') is dim(p), the rank of rp is

r(irp) dim(p)-'r(iGM(0'),Pp)

E if?,I-'tr(p(w))r(iGM(O'),f(Wa))
wEA,

Lemma 3 If W then r(iGM(O'), !(W, 0) = -

Proof. We need more facts about R-groups. Let a = Hom(X(A), R) be the real Lie algebra of A.

For each M C there is a natural embedding am = Hom(X(Am), R) -- a 2 Section 1]. For any

w E A , the fixed subspace a of am under w is of the form aL for some Levi subgroup L E r

containing M 2 Section 2 Let RL = Wm n R, where WLM = N(Am)IM is the Weyl group of
with respect to Am. Then RL is the R-group of relative to L [locxit.] pt L be the inverse

01 A0,

ima e of RL in f,. Then as in the case of G, we have the decompositon R = D "EII(,qLX.,) VV X ,

15



of the representation of fL x L on the space Of iLM(O')- Since the normalization factors are chosen01

such that for t E R L C RaI(to, = iGL(IL(ta)) iGL(iLM(O')) --+ iGL(iLM(O')), we see that

R = iGL(7ZL), in other words we have the decompositon RIAL)(G = D,,Erl(.qLX.,) VV 9 iGL(7,) On

the other hand, it's easy to prove the following

Lemma 4 Let a 5 --+ GL(V) be a finite dimensional representation of a finite group S, and let

E be a module of type (FP) over a Calgebra. Then r(V &C E, a(s) = t(a(s))r(E).

f? LIf W 0 Rolreg� then aw = aL �6 (0). So L 5 G, E and we have r(iGM(O'), 1(W, 0'))M 01

tr(vv(w))r(iGL(7r,) = since the rank of an induced representation is zero by the

Proposition 2 Q.E.D.

We have seen that

r (7r.) IAI-'tr(p(w))r(iGM(c'r),!(WO'))
WEAo,,reg

E I f?.,,w I - 1tr(p(w))r(iGM(0'b AW, Or))

WE{Jqrregj

E hw
-EfAcregl

where f?0Iregj denotes the set of conjugacy classes in and we have put

hw Ra'W -Itr(p(w-1))P(iGM(0'b f(W-1, a)) for each w E A,,,,gj-

For -r = (N, 6, t) E T(G), we have

G(7-, hw) tr(f(t, OiGN(6)(hw))

E tr(Av(t))tr(7rx(hw))
,XErI(A.FXo)

tr(Av(t))If?,7,wl-'tr(p(w-1))E(-l)jtr Extj(iGM(0'b7,X);!(W-1,a)*E G
AErI(Aftsxi) j
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On the other hand, it's easy to see

tr(Av(t))Ej(-l)jtr Extj(iGM(0'),7rA)J(W,0,)*EAErI(AjXs) G

Ej(-l)jtr Extj(iGM(O'),iGN(6));!(WO')*I(t,6)*)

where P (resp. is the action on Ext induced by the action on the first (resp. the second)

variable. We have proven the following

Lemma 5 The rank r(7rp) of irp is equal to EwEfX,,..j h. and hw E H/[HH] is determined

uniquely by the following property. For any -r = (N, 6, t) E T(G),

19(-r, h.) = J!.,,wj-1 tr(p(w-')) E(-l)jtr (E--tG(iGM(Cr), iGN(6)); f(W-1, 01)*f(t, 6)*)

By inverting the equation 2 we get

0,,,(f) jI,j-' 1: tr(p(w))tr(f(wO')iGM(O')(f))
WEA,

If?,I-l E tr(p(w�)0(,rf)
wEA,

for all f E R, where rw = (Mg O'i W), If W 0 &,,reg then 19 (rw) is a linear combination of induced

characters as shown in the proof of Lemma 3, hence 0('rw)IG- = 0- SO

1: tr(P(W))�(Tw)
WEA."reg

JI?.,,wj-1tr(p(w))0(-rw)
WEf fta,,regl

0(,r)O(-r)dr
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where is the function on T(G) defined by

tr(p(t)) if N, b (M, o) and t E A6,,,eg
O(N, b, t =

0 otherwise

In other words, on Ge, 19,, is the distribution 9 corresponding to the function as in the previous

section. Let O' be the fuction on T(G) associated to as before and let f, E be such that

(-r, f, = 0-r), V-r E T(G). Then we have seen that fG f-., (gxg -')dg = E),,,, (x), Vx E G so

*,(gxg-I)dg = E,(x-1). We expect the image of f*, in.A(G) to be the rank of r..fG A,

4.2 Reduction of the theorem

Lemma 6 Let = (N, b, t) E T(G) and h E 'H. Then 19(r, h* = O(f, h), where = N, V, t-1)

Proof. We can choose normalizing factors, Z6 and X6 in such a way that v = , Xbv = X-1 and

the representation IV of A,6v x G on iGM(O'V i the contragradient of the representation of A6 x G

on iGM(O' 2 Section 3 In other words, we have the decomposition IV V T�V' So

19(r, h*) tr(,Vv(t))tr(7r.(h*))

vEII(AjXF)

tr(z,(t-')tr(7rv(h))

O(f, h)

We have seen that f*, is the function such that for = N, , t) E T(G)

E)(-r, jd(t)jtr(p(t-1)) if(N,6)=(Mo,)andtER,6,,,,g

0 otherwise

18



And such an f, is unique modulo [HH]. For each E let be the Z-orbit of w in

I?,} and let fw E be such that

O(r, f) Jd(t)Jtr(p(t-1)) if(N,8,t)EtheZ,-orbitof(Mo,,w)inT(G)

0 otherwise

We know that fw E A(G) and is unique modulo Clearly, f,
= I:wEf 'gI1z,, fw and

r(7rp) = Efftaregl hw = E{Jk,,,.gI/z . 10wlhw since hw = hw. We want to show that for each

w E the image of fw in A(G) is 10wlhw. This will prove Theorem for = Tis

is equivalent to say that O(r, fw = wJ�(r, hw) for allr E T(G). We have proved the following

Lemma 7 The following statement implies that rp = r(7rp)* where : A(G) - A(G) is the

map stated in 2 For V = N, , t) E T(G),

tr(p(w-1))I:(-l)jtr(E--tG(iGM(O'),iGN(6));f(W 0')*f(t,6)* (3)
i

A.,,w Ow d(t I tr(p(t- 1)) if (N, = M, o) and t E Ow
(4)

0 otherwise

From now on, we will assume is cuspidal unless stated otherwise. First we have the following

Lemma Let M, o) be as before and let N E C and E I2 (N). If M, a) and (N, are not

conjugated (by an element of W), Then

ExtG(iGM(a), iGN(6) = 0, for all j > 
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Proof. There exists a standard Levi subgroup L contained in N and an irreducible cuspidal

representation ir of L such that is a subquotient Of iNL(T)- (Lr) is unique up to conjugation

and is called the infinitesimal character of 7, Section 21]. We claim that (L, r) and M, o) are

not conjugated. Suppose they are conjugated. Then replacing N by suitable conjugate of it, we

may assume that N contains M properly and is a subquotient Of iNM(o,). But the Plancherel

formula says that iNM(o,) contains no square integrable irreducible component. (iNM(a) belongs

to the continuous spectrum.) The claim is proven. Any element of the center C acts by scalar on

iGM(O') and iGN(b) 4, Proposition 211]. And since the infinitesimal character (L, r) Of iGN(S) is not

conjugated to that Of iGM(O') (which is just M, o)), there exists z E C such that zli,.(, 5 ZIiGN(6)-

Now by the same argument as in the proof of Proposition 2 Exti (iGM(O'), iGN(6)) = 0 Vi 0.G

Q.E.D.

We have seen that to veryfy the equation 4 we only need to check the case (N, = M,

Note if we replace t by zt, z E Z, then the both sides of the equation 4 are changed by X6 W

Hence if the equation 4 is true for = N, , t) then it's true for z = N, 6, zt) also. We have

proven that the following proposition implies r*r, and hence Theorem for the case 7 = r,,.

Proposition 3 Let M E C and let o, be an irreducible unitary cuspidal representation of M. Then

Y,(-l)jtr(EXtG(iGM(a),iGM(O'));!(W-',O')*f(Wa).) = d(w)JJ.&.,,.JJ0WJ-I

and

1:(-l)jtr(ExtG(iGM(a),iGM(cr));I(w-',o,)*f(t,o,)* 0
i

if t is not cojugate to zw, z E Z,
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Since the center of G is compact, each irreducible cuspidal representation of G splits the category

of G-modules [8, Theorem 244]. This means that such a representation is a projective G-module.

So if M = G in the above, then we have R = e) and Ext (, ) is if j > and C if j = SoG

the proposition is obviously true in tis case. From now on we will assume M 5 G.

5 Proof of the proposition 3

5.1 A resolution Of iGM(O')

Recall we have fixed M E L, M �6 G and an irreducible unitary cuspidal representation of M.

Let MO= nXEX.(M)kernelJXJ where X*(M) is the set of F-rational characters of M. Then MO

is the subgroup generated by all compact subgroups of M and MIMO Z' for some n > . Let

Itl tnJ be a basis for MIMO. Then = C[MIMO = C[t1l,..., t-1-1] is the ring of regular

functions on the algebraic torus (M). Let Xun M B be the natural representation of M on

B given by the translation.

Lemnia 9 Xun 9 O' is a projective M-module.

Proof. It's easy to see x, -_ indmo(l = If M Clf(mom = f(m) and support of f isM

compact modulo MO} and X, a indm.(almo). Since the center of MO is compact, by theM

same argument given at the end of last section, any cuspidal representation of MO is projective.

And indmo, being left adjoint to the restriction functor (.)Imo, maps projective MO-modules toM

projective M-modules. So X,n a is projective. Q.E.D.

Let c : B --+ C be the ring homomorphism given by f + f (1). C can be viewed as a -

module via and the Koszul complex gives a resolution of C by free B-modules. More precisely, let

el, en be symbols and let Al B be the free B-module generated by ei, A ... A ei, (i < < i).
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The boundary map d A" B I AB is the Blinear map given by

1+1

ej, A ... A e+1 tij)ei, A ... A i�g- A ... A ei.+1
j=1

0 - A' B AO = -- C -+ is a free resolution of the B-module C. Tensoring by o- we

get a projective resolution of o. And then applying iGM we get a projective resolution Of iGM (a) by

the following proposition and its corollary. First, recall we have fixed a minimal parabolic subgroup

Po and iGM, rMG are defined relative to the parabolic subgroup P = MP 9 Let fMG be the

Jacquet functor defined in the same way as rMG but this tme relative to the opposite parabolic

subgroup P = Wo.

Proposition 4 Q51) fMG i exact and right adjoint to the functor iGM, i.e. for any G-module 7r

and an M-module ,

Homo (iGM (r), r = Homm (r, FMG (7r))

Corollary 2 iGM maps projective M-modules to projective G-modules.

For some technical reasons we must use the local rng Bn instead of B, where m is the kernel of

the ring homomorphisme : B --+ C. This is justified by the following proposition and its corollary.

The M-module structure of Bn is induced from that of B.

Proposition For any M-moduler of finite length and j > Oy

Ext-M' (Bn o, r = 

Proof. Using induction on the length of r and the long exact sequence for Ext, we may assume

r is irreducible. Since splits the category M of M-modules, if is not of the form Oo, for some
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E T (M) then Extj (B,,, 0 o,, r = 0. More precisely, M is the direct sum of two full subcategoriesM

M = M(E) x M(E)I where M(E) is the category of M-modules whose irreducible subquotients

are of the form ?Po, and M(E)-L is the category of M-modules none of their subquotients are of such

forms 9, Theorem 244]. If 7r E M (E) and 7r E M (E)-L then Extj (1, r2 = Extj (7r2, rl = M M

for all j.

The Bernstein center Cm of the category M is the product C(E x C(E)-L of centers of

subcategories M(E) and M(E)-L C(E) can be identified with the ring of regular fimctions on

the algebraic variety T(M)IS, , where S, = lip E T(M)liko, -- oj is a finite subgroup of %P(M)

[4, Theorem 2.13]. B o and 9 o is a B-module in a natural way and has a B-module

structure via 1 : B o --+ o. If we identify C(E) with a subring D of B, then the action of

Cm(E) on is the same as that of D on it. The same is true for o. Now suppose = o, ?t o.

Then we can choose z E D such that *,) :� z(oo,), so z - z(Oo,) � m. Since z - zOo,) is in the

center, the actions on Extj (B,,, 0 o,,Oo,) induced from the actions of z - z(oo,) on the first and theM

second variables are the same. And this must be zero since z - z(oa) acts by zero on Oo,. On the

other hand, multiplication by (z - z(V;o,))-1 defines an M-module endomorphism of Bm 9 o, hence

induces an endomorphism of Extj (B,,. 9 o,,Oa wich must be the inverse to the endomophismM

induced from z - zOa). This is ipossible unless Extj (B, a,,Oa = .M

Finally, assume = a. Since S, is contained in T = E �(M)Ix = 1 for some 1, we have
C[t--',. .. , t±']. As above E = Ext- (Bm a, ) has a natural - Bn bimodule structure

1 n G

induced from the actions of B,,, and on Bn a and a respectively. (For simplicity, we consider

E as a left B-module and as a right Bn-module. Since these rings are commutative, we can write

in any way.) Since the action of D on E from both sides is the same, e �-4 tet-1, i ni

defines a representation of T on E. Here we viewed T as the quotient of the free abelian group
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with base t,,. t,,J modulo the relations ti t = . We have a canonical decompositionI n

of E as E = DxEf Ex where is the set of irreducible representations of T1 and Ex is the subspace

on wch T acts by X. We claim that Ex = if X / 1. If X 1, then X(ti) 54 for some ti.

For e E Ex, tiet-1 = Xti)e = Ce. So (t - 1e = e(Ct - 1). Since the B-module structure of E is

induced from that of o, we have (t - 1e = 0. Since (t - is a unit in Bn, this implies e = and

Ex = .

Now we consider El = E more carefully. Let be an M-module in M (E). We say that 7 is a

(B, M)-module if 77 has a B-module structure wich commutes with the action of M and the action

of the center D on 77 is the same as the action as the subring of B. Let M(B, Z) be the subcategory

of M(Z) whose objects are (B, M)-modules and morphisms are M-module morphisms which ae

also B-linear. M(B, E) is equivalent to the category of modules over B OD 'e,, where e, is the

idempotent in the center Cm of the category M such that e, =_ on M(E) and e, =_ on M(E)J-.

Lemma 10

Exem(B,,) (Bn 9 c, c = Extim (Bn a, )

Proof. Let BI, --+ BIO --+ Bn -- 0 be a free resolution of the B-modUle Bm. Tensoring by

o, we get PI' --+ PIO --+ Bn a -+ 0, (P = B o) a projective resolution of the G-module

B, 0 o. Note the boundary maps are also B-linear. E is the j-th cohomology group of the complex

0 , H(O) -, H(l) , -- , where H (k) = Homm(PIA-, o). Like E, H(k) is a B - B bimodule such that

the action of D from both sides is the same. Hence H (k) is a T-module. Since the boundary maps

PIi+1 -+ Ph are B-linear, the maps H(") - H (k+l) are T-linear and the T-module structure of E

comes from that of HU). This means that El = E is the j-th cohomology group of the complex

0 , H(O) , H(l) where H (k) is the subspace of H (k) on wich T acts trivially. Clearly,1 1 1
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1 (k) = Homm(BE)(PIA, 09- It remains to show that P B is a projective object in M(B, E).

It's enough to show that for an epimorphism q --+ q 0 of (B, M)-modules, the induced map

Homm(BE)(PO' - Homm(BE)(P, 7 i surjective. This follow from the same argument as above.

Really, Hom.M(P,,q') --+ Homm(P,,q) is a surjective morphism of T-modules, and so is the map

Homm (P, 7') 1 --+ Homm (P,,q) 1. The lemma is proven.

Let M(B,,,, E) be the subcategory of M(E) of (B,.,,, M)-modules defined in the same way as

M(B, E). Let F : M(B, E) --+ M(B,,,, E) be the functor given by F(77 = Bm (& 7 Here the

action of M on B, (&B 7 is defined by m(b 9 v = b 9 mv. It's easy to see that this is well defined

and the action of D as the center and as the subring of is the same. Obviously, F is exact and is

left adjoint to an exact functor, the restriction-of-scalar functor. Since a is a B,.,,, M)- module, we
have Ext. a) = Ext-

M(BE)(B-00,7 M(B,., E) (F(B. 0a), ). It's easy to see that F(Bm o = B (a

and F(B a) = Bm a. Since a is projective inM(B, E), F(B a) is projective in M(Bm, E)
and Ext- -na, the proposition is now proven. Q.E.D.

M(B,.,E)(F(B a), a) = 0. By the above lenu

Corollary 3 For any G-module 7r of finite length and j > ,

EXtG'(iGM(Bn 9 '), 7 = 

Proof. By Proposition 4 Exti (iGM(Bn 9 a), r = Exti An 0 a, MG(7r) = O-G m
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5.2 Extension of the intertwining operators

For each w E R, we have the normalized intertwining operator A(w, o) : iGM(o,) --+ iGM (ow We

want to extend tis to a morphism of the complexes

0 - iGM(T.) iGM('rO - iGM(O') - 0

1 1 1

0 iGm(.rw) iGM(ro) - iGM(O'w) - 0

where Al , & o. First, we have to prove the following

Proposition 6 Let = o = Bn a. For each w E R,, there exists an operator Aw iGM(7-)

iGM(-rw) such that the following diagram commutes and Aw intertwines the actions of both G and

Bn on iGM(T-) and iGM(-rw).

iGM('r) 4:3� iGM(TW)

je jew

iGM(O) A(W�,O') iGM(OW)

where we wrotec for iGM(f

Proof. For E T(M) let O = iGM(OOr)- It's well known that all k act on the space V

of indKOnP(O'1Konm) where Ko is the good maximal compact subgroup chosen before. Similarly,

,w = iGM((Oo,)w) acts on the space V of indKOVI Konp(olwlKonm). Let K be a sufficiently small

congruence subgroup of K and let m = dim K dim VK. Then C]iM(7r;)K = dim VK = m since

7W ro. Clearly, iGM(7- = iGM(Bn 9 o) acts on the space B,, 9 V and iGM(,r)K = Bn 9 VK is a

free B -module of rank m. The normalized intertwining operator A(w, -0 = A(w, 700r) : VK -- VK

can be viewed as a linear map which intertwines the actions of the Hecke algebra HK = H(G, K)
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on rK and 7w)K. It's known that the matrix coefficients of A(w, ) are rational functions in0 0

E �P(M) [1, Theorem 21]. In other words, by fixing bases for VK and VK, A(w, 0) is given by

an m x m matrix whose matrix coefficients are in the field F of rational functions on the algebraic

variety T(M). Let Aw E Mx,.,,(F) be this matrix. Let be the multiplicatively closed subset of

B generated by denominators of entries of Aw and let 1B be the localization of with respect

to S. Since A(w,,O) is holomorphic at = S1B c B and Aw E Mxm(S-1B). Aw defines

a S1B-linear map 1B 9 VK , S-1B g VK. We claim this S1B-finear map intertwines the

actions of HK on 1B & VK = iGM(S-'B & )K and 1B 9 VK = igm((S-1B g )w)K. Let

h E HK- Since the action of 1B on iGM(S-'B a) commutes with the action of G h defines an

S-'B-linear map on 1B & VK, hence is given by a matrix in MmxM(S-1B) which is also denoted

by h. Similarly, the action of h on 1B g VK gives a matrix in Mmxm(S-lB) which is denoted

Kby h'. Clearly, the action of h on ro (respectively, on (7rw)K i given by h(O) (respectively, by

h'(0)). We know that for in a Zariski dense subset of %P(M), A(w,,O)h(o - hO)A(w, = .

So Awh - h'Aw = , as desired. So the same Aw defines a B. -linear map B. & VK --+ Bm g VK

which intertwines the actions of 'H. Q.E.D.

Recall that we have fixed an isomorphism aw : o ___* o for each E R,. It induces an

isomorphism iGM(OrW) __+ iGM(a), which will be denoted by the same We have I(w, o =

awA(wo,) iGM(O') --* iGM(O'). Define a C-linear map tw B -- B by m - w'w-1 recall

B = C[MIMO]). Then tw gives an isomorphism of M-modules X- ---+ which extends to anun Xun

isomorphism Bw ---+ Bm. Hence (tw) 9 aw is an isomorphism of M-modules (B )w __4 Bm
tn n 9 ' (9 '

and induces an isomorphism of G-modules igm(-rw) ___+ iGm(7-), which will be denoted by w. Let
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I = .A. iGM(T) - iGM(,r). Then the following diagram is commutative

iGM(T) �4 iGM(T)

I(WO')
iGM(09 iGM(09

and for b E B,

Iwb = bwIw, where b = ,,(b)

(By some abuse of notations, we denoted by the same b, the endomorphism of iGM (B (o,) induced

from the multiplication by b.)

Define el Al+' - Al in the same way as di but -using ty = tw(tj) in place of t (i

1 ... n). To get an endomorphism of the complex 0 --+ i(-rn) i(-ro) --+ i(cr) -- 0 extending

the endomorphism I(w, o) of igm(o,), it turns out that we need to find B-module homomorphisms

Oi : Al+' Bm - Al Bm (1 0,..., n) completing the following diagram.

CIW
0 An Bm AO Bm C 0

I 00 = id 11

n Bm d d
0 A + -4 AO Bm C 0

And we also need to know the alternating sum of traces of these 01. (Al Bm is a free Bm-module of

finite rank, so the trace of 1 is well-defined.) Both are more or less well known. (See for example

[13]) It's easy to see that there exist bij E such that

n
bij(1 - t)

j=1
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Define a B-Iinear map 1 : Al - Al by ei �--* j bjej. (Recall that el, ... 7 enare symbols

forming a base for Al B,.) And let = 1 A ... A 1 : A' B, I A' B,. Then 0 = id, 1 On

complete the above iagram and

n
E(-l)jtr(oj) det(l - b), where b = (bij) E Mnxn(B)
j=O

if ty, -- t1ii ... tli"(Ii E Z), thenn

e(bij) bijltl= ... =t,,=, (En 1 bil.(tk =t.,,=l,9ti k=

So c(det(l - b) = det(l - ) where I (Iij) E Mnx,(Z) We claim that det(l - = det(l -

w).,,, = d(w). Clearly I is the matrix of the endomorphism m -+ mw of the lattice MIMO

and am = Hom(X*(M)F, R = Hom(X*(AM)F, R = X(Am)v ft R where XAM)v is the dual

lattice. On the other hand, we have MIMO) ft R = AmIAO ) 9Z R and a canonical isomorphismm

AmIAO �- X(Am)vm -

By some abuse of notations, we write 1 for the endomorphism Of iGM(A' Bn 0 o = iGM('n)

induced from the M-module homomorphism 1 9 1 : Al Bn a - Al Bn o. We have iGM (Al ' (&

0' = Al iGM(Bn 9 o) = iGM(Bn 0 ) 9 Al C which means that elements Of iGM(A' B, 9 o) axe

linear combinations of fei, A ... A ei, with f E iGM(Bn 9 o). The G-module endomorphism Iw

Of iGM(B,,, 0 o) induces an endomorphism Of iGM(A Bn 9 o = iGM(Bn a) Al C which is

denoted by
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Proposition 7 The following diagram commutes.

0 - iGM('rn) - - - iGM(7-0)

I OnIwn' I 0401

0 - iGM(rn) - - - iGM(70)

--+ iGM(0')

I Iw, 0')

--+ iGM(O') --+ 0

Proof. Ts follows directly from the definition of 01 and the following observations.

1. The boundary map : i(-n+,) i(-n) is given by

feil A ... A e,!, �-4 �+,(-1)3-1(1 - tij)fei, A ... A e-i, A ... A ei,+,.+1 ? =

2. Iwb bwIw for a b E B

3. di 01 01 - 1 dw,

For w E ,, we can define fw (and 41)) in the same way as f(w, o,) using the same A ?, C*.

5.3 Calculation of the trace

First, we need the following

Lernrna 11

Homm(B,,, 0 o, o,) C

Proof. As in the proof of Proposition 5, Homm(B,,, o,, o,) is a - bimodule hence is a

T-module. Also the arguments there show that T acts trivially on this space. In other words,

any E Hom.M(B, 9 o, o-) is B-Iinear hence is B-Iinear. HomM(B � o, o) is spanned by aV, :

B 9 aqo) Oo, --- o for E S. Among these, only a, = is B-Iinear. SO 01BO, is unique up to

scalar. And clearly, is determined by OIB,&,- Q.E.D.
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Proposition 

dimc HomG (iGM (B,.,, 9 0), iGM(O')) I R I

Proof. We have Honi(-(iGM(B,. � O, iGM(O') = Homm(B,,, 0 , i;MGiGM(O'))- iMGiGM(a) has

a canonical filtration whose quotients are isomorphic to , w C Wm 9 Theorem 52]. Since

Ext' (B, 9 o, r = for any M-module 7r of finite length, from the long exact sequence for Ext we

have dimHomm(B,,,, 90, fMGiGM(O') = EWEWM dimHomm(B,-,,(&a, ow). The proof of Proposition

5 and the previous lemma show that dim Homm (B, a, ow) is if aw I- o and is if ow '- a.

So imc HoniG(iGM(B. 9 O, iGM(O') = 1w E WI01w �--- ol = WI. It is not difficult to show

that if !,,,,g 54 then WO = ej and W = R, (See the remarks following 2 Proposition 31]).

Q.E.D.

JI(w, 0 I E R, I is a base for EnCIG (iGM ()) (See 3. 1.) Since the canonical homomorphism

C: iGM(B .. 9 o,) --+ iGM 0') induced frome & 1 : B, & o, -- o is surjective, this combined with the last

proposition implies that I(w, 01) = dw I w E R, I is a base for HomG (iGM (B,,, 0 a), iGM 0)). Let's

calculate the trace of i-, f(w, o). on HomG(iGM(B,, 0 O, iGM(O')) given by a f(w, o)afw-i

Since dw = (wo,),E, this is the same as the trace of 1(w-1)*f(w)* on EndG(iGM(O')) where

we wrote f(w) for f(w, o). For t E A let be the its image in R, under R,. Recall

that f(w = �,(w)-1I(fv-) for a fimction � : A, --+ C* such that �,(zz = X,(z)�,(z) for z E

Z,. Let E R, and let t E A, such that = f(w)I(s)f(w-1 = �,(t)f(w)f(t)f(w-l =

�,(t)f (WtW-1 = �,(t)�,(WtW-1)-1I(iV3fV--1). So if v-sfv--1 j then I(s) does not contribute to the

trace of k-1f(Wo,)* on HomG(iGM(B,,,Oa),a). If fv-siv--l = s, then wtw-1 = zt for some z E Z,-

z preserves the conjugacy class of w in R, since zw = tlwt. Recall the triplete (M, o,, w) is assumed

to be essential in the sense that X, is trivial on 1z E Z I z preserves the conjugacy class of w }.
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So �,(t)�,(wtw')` = ,(t)x,(z)-'�,(t)-l = 1. We have shown that

tr (EndG(iGM(a));1(W-')*f(W)* = 13 E RJiv-st7v-1 = s}1 = R,,,,,ol

It's easy to show I.R,,,O = f,,,wJJOwJ-1 (recall that Ow is the Z-orbit of w in

conjugacy classes in A,).

If u E A , isn't conjugated to any of zw, with z E Z." then there is no s

iist7v` = s. Above agument shows tr(End(iGM(O'));1(W-1)*f(U)* = We

following lemma.

the set of

E R, such that

have proven the

Lemma 12 1. tr (HOMG(iGM('r),iGM(O'));Iw-�f(W,17)* =

2. tr (HOMG(iGM(7-),iGM(O'));f*-.f(UO')* = if u E A, isn't conjugated to any of zw with

z E Z,.

HomG(iGM(-n), iGM(O')) is a direct sum of copies of HomG(i(-r), i(a)). Considering the actions

of O*, !W('-)l)* and,!(w)* on HomG(i(,n),i(o,)), it's easy to see that the trace of (OJfW(,-),)*I-(w) is

the product of the trace of f(w)* on HomG (i(r), i(o,)) and E(trace(01)). So we have

1)jtr (Exti (iGM(O'), iGM(O')); fW-1)*f(W)*

E(-l)jtr (HomG(i(,rj), i(o,)); W-

E(-1)jE(tr(Oj))tr (HomG W-0, 409); fw - fw, 0')*
i

d(w)J1Z,,,wJJOwJ-1

And if we replace f(w)* in the above equation by f(t)* where t E A, is not conjugated to any

of Zw, then we see that the left hand side of the equation equals to zero. Since aw 0, w, is aM
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rotation of the Euclidean space. So d(w = det(l - w)l., > and jd(w)j = d(w). The Proposition

3 is now proven.
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