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Abstract

Let G be a connected reductive p-adic group with compact center and let C' be the set
of regular elliptic conjugacy classes. There is a unique measure dc on C such that for
any f € H(G) = C®(G) with support in the set G° of regular elliptic elements G, we
have [ f(g9)dg = [ f(c)dc where f is the function on C given by f(z) = Jo f(gzg—1)dg
for z € G¢. Kazhdan conjectured that for representations 7 and 7 of G of finite length,
Jo ©+(¢)Ox(c™1)dc is equal to the Euler-Poincaré chracteristics of = and 7, where @, (and
0. ) is the character of 7 (and 7). On G¢, O, is a finite linear combination of characters @,
of irreducible tempered representations 7;. Each 7; is a direct summand of the representa-
tion induced from an irreducible square-integrable representation o; of a Levi subgroup. In
this paper we prove the conjecture when all o; are cuspidal.
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1 Introduction

Let F be a nonarchimedean local field of characteristic zero and let G be a connected reductive
F-group with compact center. If 7 is a representation of G of finite length, then it is known that
the distributional character ®, is a locally integrable function on G' which is locally constant on
the set of regular elements [10]. Let C be the set of regular elliptic conjugacy classes and let H be
the Hecke algebra of G. There is a unique measure dc on C such that for any f € H with support
in the set G¢ of regular elliptic elements of G, [ f(g9)dg = [, f(c)dc where f is the function on C
given by f(z) = [ f(gzg~')dg for z € G°. Let T be another representation of G of finite length.

Kazhdan conjectured that

-/C 0,(c)Ox(c71)de = i(—l)" dim Exti(x,7) (1)

=0

This is a generalization of the fact that irreducible characters of a finite (or compact) group are
orthonormal. Really, if G is compact, then G* = G and every G-module is projective since all
representations of G are completely reducible. So the above equation is a direct result of the
orthonormality of irreducible characters.

The lefthand side of the above equation is the scalar product which Kazhdan has defined in

[11]. He showed that

<mr>= [ 0,(c)0.(c)dg

defines a non-degenerate scalar product on RB(G) = R(G)/R[(G), the Grothendieck group of G-
modules of finite length modulo induced representations. (See §2.1 below for more precise defini-

tion.) Let A(G) be the set of f € H whose orbital integral over any non-elliptic regular conjugacy



class vanishes. He proved this by showing that there exists an isomorphism ¢ : R(G) = A(G) =
A(G)/[H,™M] which respects the action of the Bernstein center. Then < 7,7 > is just the natural
trace pairing between 7 and ¢(w). The map ¢ : R(G) — A(G) is an explicit realization of the
well-known but rather vague philosophy that there is a duality between representations and con-
jugacy classes. We prove Equation 1 by establishing a cohomological interpretation of this map
¢ : R(G) — A(G) as follows. If r is a G-module of finite length, then ¢(r) is the “rank” of its dual
nV. Here the “rank” means the rank of 7V as a module over H [4]. A precise definition of the rank
of a G-module and the implication of Equation 1 from this statement are given in §2.2.

From the Langlands classification theorem for p-adic groups, it follows that R(G) is spanned
by irreducible tempered representations. And it is not difficult to show that the righthand side of
Equation 1, which is the Euler-Poincaré characteristics, defines a bilinear form on R(G) x R(G).
So it is enough to prove Equation 1 when 7 and 7 are irreducible tempered representations. Any
irreducible tempered representation = of G is a direct summand of igp(oy), the representation
induced from an irreducible square-integrable representation o, of a standard Levi subgroup M.

We will prove the conjecture when o is cuspidal.

2 The scalar product

2.1 The scalar product

In this subsection we briefly review a part of [11]. Let G be a reductive p-adic group with compact
center as before and let H be the Hecke algebra of G (the space of locally constant functions on
G with compact support). Then the category of smooth representations of G is equivalent to the

category H(G)" of non-degenerate H-modules. Let C be the center of this category [4]. The center



of an abelian category is the ring of endomorphisms of the identity functor. For example, the center
of the category of modules over a ring with identity is just the center of the ring. In our case C is
the ring of endomorphisms of H which commute with both left and right actions of G on H. This
is the set of invariant distributions z on G such that zxH C H.

Let Rz(G) be the Grothendieck group of representations of G of finite length and let R(G) =
Rz(G) ® C. The natural bilinear form Irr (G) X H — C given by < 7, h >= trace 7(h*) (where
Irr(G) is the set of equivalence classes of irreducible representations of G and h*(g) = h(g™?))
induces a bilinear form <, >: R(G) X H — C which respects the action of C (i.e. < z-7,h >=<
w,z-h >,forz € C,m € R(G),h € H ). The kernel of this pairing in H is the set of f € H
whose orbital integral over any regular conjugacy class in G vanishes (11, Theorem 0], and is
equal to [H,H]. Let A(G) be the set of f € H such that the orbital integral of f over any non-
elliptic regular conjugacy class in G vanishes, and let R;(G) be the subspace of R(G) generated
by representations which are (parabolically) induced from representations of finite length of proper
Levi subgroups. Then A(G) = {f € H| < II, f >= 0,VII € R;(G)} and R(G) = {Il € R(G)| <
I, f >=0,Yf € A(G)} [11, Theorem A]. Since Ry(G) is an C -submodule of R(G), A(G) is also a
C -submodule of H. Let R(G) = R(G)/R(G), A = A(G)/[H,H), we get a non-degenerate bilinear
form <, >: R(G) x A(G) — C which respects the actions of C.

There exists an isomorphism of C -modules ¢ : R(G) — A(G) such that for any irreducible
representation 7 of G, [ ¢(7)(9zg~)dg = O.(z),Vz € G¢ [11, Theorem E]. (Caution: An element
f of A(G) is not a function, so the value of f at a point of G doesn’t make sense. But still its orbital
integrals over elliptic regular conjugacy classes are well-defined.) Hence < 71,72 >d§f< 71, d(w) >

defines a non-degenerate scalar product on R(G) such that < z-m,m3 >=< m,2-72 >, for z € C.



From the Weyl integration formula we can see easily that
< Wy, Ty >= /C(:),r1 (€)Or,(c"1)de

2.2 Ranks and Euler-Poincaré characteristics of G ~-modules

Let A be aring with an identity element and let P be a finitely generated projective (left) A-module.
We have a canonical isomorphism End4(P) X P* @4 P. fu= Y ;2! ® z; € Ends(P), Y z¥(z:) is
a well-defined element of A/[A, A], called the trace of u and denoted by rp(u) = »(P,u) [3]. The
rank of P, denoted by rp = r(P), is defined to be r(P,idp). The trace map rp : Endy(P) —
A/[A, A] satisfies 1)additivity; rpgq(u®v) = rp(u)+rg(v), 2)linearity; rp(u+v) = rp(u) +rp(v),
3)commutativity; rp(vu) = rg(uv) if u: P —» Q and v: Q — P, and 4) is universal with respect
to above properties in obvious sense. Let M be an A-module of type (FP) (i.e. it has a finite
resolution by finitely generated projective modules). Let 0 - P, — .- — Pp — M — 0 be such a
resolution. If u € End4(M), then it extends to an endomorphism (u;) of the complex. We define
ra(u) = r(M,u) to be 3% o(=1)r(P;,w;). r(M,u) is well-defined and satisfies the analogous
properties as 7p [3, Section 2]. (In this case, additivity means r(M,u) = r(M',u') + r(M",u")
for an exact sequence 0 — (M',u') —» (M,u) — (M",u") — 0 of modules of type (FP) with
endomorphisms.) Suppose A is an algebra over a field k and let N be an A-module which is a finite
dimensional k-vector space. For a € A, the multiplication by a defines a k-linear endomorphism
ay of N. a — Trace(ay) induces a k-linear map xn : A/[4, A] — k. If P is a finitely generated
projective A-module and u € End4(P), then Hom4(P, N) is a finite dimensional k-vector space

and xn(r(P,u)) = trace(Homy (P, N);u*) where u* is the map induced by u [3, Proposition 4.2].



This shows that if M is an A-module of type (FP), then all Ext’,(M, N) are finite dimensional and

xn(r(M,u)) = i(——l)itrace(Exti(M, N);u*)
1=0

In particular, xx(r(M)) = 1.820(~1)* dimy Ext’, (M, N).

If M is an A-module of type (FP), then any direct summand My of M is also of type (FP) and
r(M,) = (M, pm,), where ppg, : M — M is the projection onto Mp.

We fix a minimal parabolic subgroup Py of G, a maximal split torus Ao in P, and a good
maximal compact subgroup Ky of G once for all. Let K be a congruence subgroup of Ky,. Then
H(G)%, the category of G-modules which are generated by K-fixed vectors is a direct summand
of H(G)" and is equivalent to the category of modules over Hx(G), the Hecke algebra of G with
respect to K [4, Section 2].

Let © be a representation of G of finite length. Then 7 has a finite resolution by finitely
generated projective G-modules [14, Proposition 37]. Let 0 - P, —» --- — Py - ® — 0 be such a
resolution. Choose a small congruence subgroup K such that = and P; are generated by K-fixed
vectors. Then 0 — PX — ... - PK — 7K — 0 is a resolution of the Hx(G)-module =X by
finitely generated projecitive #x (G)-modules. We define the rank of =, denoted by r, = (), to
be the rank of 7% as an Hx(G)-module. The natural map Hg /[Hk,Hx] — H/[H,H] is injective

[12, Theorem B]. We will consider r(«) as an element of H/[H, H].
Proposition 1 r, does not depend on the choice of K.

Proof. Shown in the remarks following Proposition 38 in [14].

Proposition 2 Let  be a G-module of finite length. Then 1) rr € A(G) = A(G)/[H,H] and 2)

rx = 0 if ™ is a representation induced from a proper Levi subgroup of G.
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Proof. 1) Write (7, h] for tr(7(h)) where 7 is an admissible representation of G and h € H. By
[11, Theorem A], it’s enough to show [igar(c),r~] = 0 for all proper standard Levi subgroup M
of G and o € Irr M, where igy is the usual unitary induction functor [9]. Fix (M, o) and let
¥(M) be the group of unramified characters of M. ¥(M) has a natural structure of complex
algebraic torus and for Vh € H,9 — [ry,h] defines a regular function on ¥(M), where 7, =
igm (). On the other hand, from the properties of ranks of G-modules stated above [7y,7,] =
T20(—1)  dimExté(7, ) € Z. So ¥ + [7y, Ty is a constant function on ¥(M). We will show
that [ry, r,] = 0 for some v € ¥(M) and this will prove the first part of the proposition.

Each z € C acts on 7 by a scalar, say, z(7y) [4, Proposition 2.11]. Let h, be the function on
¥(M) given by h,(¢) = z(7y). Then z — h, defines a ring homomorphism from C to the ring of
regular functions on ¥(M). The image of this map, which is described in [4, Section 2], contains
a non-constant function. In particular, there exist z € C and ¢ € ¥(M) such that z(7) # z(7y).
Now from a general fact, the actions of z on Ext}(, ;) induced from the actions of z on the first
and the second variables are the same and equal to multiplications by z(7) and z(7y), respectively.
This is a contradiction unless Exty(m, 7y) = 0 . Hence tr(7y(rx)) = 0.

2) Now suppose 7 = ign(p) where N is a proper Levi subgroup of G and p € IrrN. To prove
rx = 0, it’s enough to show [r,7,] = 0 for any irreducible representaion 7 of G [11, Theorem 0]. Let
7y = ien(¢p) for ¢ € ¥(N). We claim that ¢ — [r,7(my)] is a regular function on ¥(N). Once
this is proven, the same argument as above shows [7,7(7y)] = 0.

In [5], Bernstein showed that igy is left adjoint to an exact functor 7yg, which is the re-
striction along the opposite parabolic subgroup (see Proposition 4 and the remark before it). From
this fact, we can see easily that Extk(ign(p),7) = Ext)(p,Fne(r)) for all j. So [r,r(ry)] =

Ti(-1YExtL(ian(¥p),7) = L;(-1)Exty(¥p,7na(7)) = [Fya(r), 7(¥p)N, Where r(1p) is the



rank of N-module 1p and [,]n is the trace pairing on N. We claim that r(¢p) = ¥~1r(p). It’s
enough to show that if p is a projective N-module then p is also projective and r(1p) = ¥~1r(p).
Clearly, Homy(v¥p,7) = Hompy(p,¥~17). So t¥p is projective. r(ip) is uniquely determined
by the property [7,r(¢p)] = dimHompy(vp, ) for all irreducible N-modules. dim Hom(p,T) =
dim Hom(p, ¥ ~*r) = [¢7 7, 7(p)] = [r, 7 7(p)]. So r(¢p) = ¢7'r(p) and ¢ - [Frg(7), ¥~ r(p)]N
is clearly a regular function on ¥(N). Q.E.D.

For w,r € IrrG, put xg(r,7) = ¥;(-1) dimExt’é(r, 7) the Euler-Poincaré characteristics of 7
and 7. It follows from the long exact sequence for Ext that xg(-,:) can be extended to a bilinear

form on R(G) x R(G).

Corollary 1 xg(7,7) = 0 if either T or = is induced from a representation of a proper Levi

subgroup.

Hence, xg(-,-) defines a bilinear form on R(G) x R(G). It follows from the Langlands classifi-
cation theorem for p-adic groups that B(G) is spanned by classes of tempered representations [11,
Proposition 1.1]. So to prove <, >= xg(, ) on R(G), it’s enough to show < 7,7 >= xg(7,7) when 7
and 7 are irreducible tempered representations. An irreducible tempered representation is a direct
summand of igp(c) where o is an irreducible square integrable representation of M. Let R(G)'
be the subspace of R(G) generated by irreducible tempered representations that are summands of
igm (o) where M and o run over all standard Levi subgroups and all irreducible unitary cuspidal

representations of them, respectively. In this paper we will prove the following theorem.
Theorem 1 Suppose G is connected, then < 1,7 >= xg(7,7) for T € R(G) and = € R(G)'.

On the other hand, from properties of ranks of G-modules, we can see the following
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Lemma 1 Let ¢ : R(G) — A(G) be the isomorphism stated in Section 2.1 and let 7 be a represen-

tation of finite length. If ¢(x) = r% then < 7,7 >= xg(7,7) for all r € R(G).

In the following we will show ¢(7) = r2 if # € R(G)'.

Remark. If 7 is cuspidal, then this is aleady known. Let v be in the space of 7 such that
(vyv) = 1 and let h(z) = d7}(x(27!)v,v) € H, where d, is the formal degree of 7. Then it is not
difficult to show that 1) < #’,h >= 8y, for any irreducible tempered representation =’ of G and
2) h(z) = 0,(z~1) for all z € G [11, Proposition 5.3]. Since 7 is a projective G-module (see the
remark following Proposition 3 below), 1) implies that & € A(G) and that its image k in A(G) is

the rank of «.

3 The local trace formula

In this section we review a part of [2]. From now on we assume that G is connected.

3.1 R-groups

Recall that we have fixed a minimal parabolic subgroup P of G and a maximal split torus A of
G in Py. Define standard Levi subgroups of G in the usual way. Let £ be the set of standard
Levi subgroups and let II(M) be the set of equivalence classes of irreducible square integrable
representations of M. Let M € £ and o € II;(M). Consider W, = {w € W¥|o¥ =~ o} where
WM = Ng(Apm)/M is the Weyl group of G with respect to Ay, the split component of the center
of M. For each w € W,, fix an isomorphism a,, : 6 = o. Then the normalized operator I(w,o):
icm(0) — igm(0) is given by I(w,0) = awA(w)Ry-1p,p(c) where R, —1p,p(7) : igp(o) —

iGw-1Pw(0) is the normalized intertwining operator given in [1] and A is the left translation.

11



Lemma 2 There ezist normalizing factors such that the normalized intertwining operators I(w, o)

satisfy the following conditions.

1. Let L be a standard Levi subgroup containing M and let w € W, N WM where WM =
Ni(Apm)/M is the Weyl group of L with respect to Ap.Then I(w,0) = igr(IL(w, o)) where

I (w, o) is the normalized intertwining operator of irp(o).
2. I(w,0") = (I(w,0)")"

Proof. This follows directly from (1, Theorem 2.1]

Let W2 = {w € W, |I(w,0) is a scalar.} then W2 is a normal subgroup of W, and R, = W, /W?
can be identified with a subgroup of W, so that W, is the semi-direct product of W2 by R,. R, is
called the R-group of 0. w — I(w,0) a projective representation of R,. And we can always find a
finite central extension 1 — Z, — R, — R, — 1, a fuction £, : R, — C* and a character x, of
Z, such that 1) &,(zw) = xo(2)é-(w), for z € Z,,w € R, and 2) w —~ I(w,0) = & (w)~"1(w,0)is
a representation of R, [2, Section 2]. There is a bijection p « 7, between the set II( R,, x,) of the
irreducible representations p of R, such that p|z, = x, and inequivalent irreducible components of
igm (o). More precisely, the natural representation R of R, x G on the space of iem(o) decomposes

as

R = @ (r¥ ® ™)

PEH(Rchv)
and each =, is irreducible and distinct [loc.cit.]. This shows in particular, for w € R, f € H we

have

tr(I(w,0)iem(o)()) = Y  tr(p"(w))tx(mo(f)) (2)

Pen(kchc)

12



3.2 Trace Paley-Wiener theorem

Consider the set of triplets r = (M, o,w) with M € L,0 € II;(M),w € R,. The Weyl group W =
W of G with respect to A acts on this set naturally. For each 7 = (M, o, w), we define a distribution
O(r) on G by O(r, f) = tr(I(w, o)igm(c)(f)). Clearly, these distributions are invariant under the
action of W and satisfy O(z7, f) = x-(2)"20O(r, f), z € Z, where zr = (M, 0, zw). Let T'(G) be
the set of triplets 7 = (M, o, w) such that x, = 1 on {z € Z,|zw and w are conjugated in R,}.
These triplets are said to be essential. (If T isn’t essential, then ©(7) = 0 by the above argument.)
Let a = Hom(X (A), R) be the real Lie algebra of A and let R,,,,.,g be the set of ¢ € R, such that
the subspace a® of a fixed under the action of w is (0). Define T(G) to be the set of W-orbits in
T'(G) and let Tey(G) = {1 = (M, 0,w) € T(G)|w € Roreg}

T'(G) has a natural structure of analytic manifold, whish is isomorphic to a disjoint union of
compact tori [2, Section 3. T(G) is then a quotient space of T'(G) and T.;(G) is the union of
connected components of the minimal dimension, which is zero in our case. Let ¢ be a fuction on
T'(G) such that 1) ¢ is supported on only finitely many components, 2) ¢(7*) = ¢(7),s € W, i.e.
¢ is a function on T(G), 3) ¢(27) = xr(2)"1¢(7), z € Z,, and 4) on each connected component of
T'(G), ¢ is a Paley-Wiener function. Then the trace Paley-Wiener theorem [7] says there exists
f € H such that ¢(7) = O(r, f) for all 7 € T'(G). Note that such an f is unique modulo [H, ]
and if ¢ is supported on T.y(G), then f € A(G) [11, Theorem 0 and A].

Remark. The trace Paley-Wiener theorem in [7] is not stated in this form and I could not find
a proof of the above statement which appears in [2, Section 3]. But the proof is quite simple if ¢ is
supported on T, (G) and this is the only case we need. Let R;(G) C R(G) be the subspace spannedd

by classes of tempered representations of G and let R, 1(G) be the subspace generated by igr(c), L €

13



L,L # G,0 € Hiemp(L). By inverting the formula 2 as ¢(7,) = |R,|"1 T, cp_tr(p(r))¢(7,) where
7. = (M,o,r), we get a linear form ¢ : R,(G) — C. If ¢ is supported on T;(G) then ¢ = 0
on R;(G). (See the arguments in the proof of Lemma 3 below.) So ¢ defines a linear form
on R(G) = R4(G)/R:1(G). Since the natural map R:(G)/R:1(G) — R(G) is an isomorphism
[11, Proposition 1.1], the linear form ¢ : R;(G) — C can be extended uniquely to a linear form
¢ : R(G) — C such that ¢ =0 on R-I(G’). Now the trace Paley-Wiener theorem in (7] says that ¢

comes from an element f of H.

3.3 The local trace formula

We define a measure on T.;(G) by

-/Teu(G) 6(r)dr = Z IRd,wrle(T)

=(M,0,w)€Te(G)

where R,,w is the centralizer of w in R,.

For 7 = (M,o,w) € T(G), let 7V = (M,oV,w). Let 0 be a ﬁmctiog on T(G) supported on
Teu(G) such that the function T — 6(7V) satisfies the conditions 1) - 4) in the previous subsection
(the fourth condition is empty in this case). To 6, we can associate a distribution ® on G by
o(f) = fT,u(G) 0(T)O(r, f)dr. O is a finite linear combination of tempered chracters, hence is a
locally integrable fuction on G. Let aps be the real Lie algebra of M and let ¢ be the function on
T(G) given by 0'(7) = |d(w)|8(7V) for 7 = (M, o,w), where d(w) = det(1 — w)|a,,- Then €' also

satisfies the conditions 1) - 4) above, hence there exists f € H such that O(r, f) = 6'(7) for all

14



T € T(G). Now it was shown in the proof of Theorem 6.1 in [2] that

/ flgzg~")dg = O(z), for all z € G°
G

4 Reduction of the theorem

We fix M € £ and o € II;(M) such that R,,., # 0. We also fix an irreducible representation

p € I(R,, x,) of R,. To p, there corresponds an irreducible component 7, of igp(o) as before.

4.1 Rank and character of 7,

Consider the decompositon R = @,\EH( Borxo) AV @) of the representation of R, X G on the space of
iem(c). The projection map onto the p¥-componentis p, = 3° 5 | R, dim(p)tr(p(w))I(w, o).

Since the multiplicity of 7, in igam(c) is dim(p), the rank of =, is

r(m,) = dim(p)~'r(icm(),p,)

= Z IRal—ltr(p(‘ID))”'(iGM(U), j(wa 0'))

w€Rs ’
Lemma 3 Ifw ¢ I;'!.,,ng, then r(igm(o), I(w, o)) = 0.

Proof. We need more facts about R-groups. Let a = Hom(X(A), R) be the real Lie algebra of A.
For each M € L, there is a natural embedding aps = Hom(X(An),R) — a [2, Section 1]. For any
w € R,, the fixed subspace ajyy of apr under w is of the form ay for some Levi subgroup L € £
containing M [2, Section 2]. Let RL = WM N R,,, where WM = Np(Ap)/M is the Weyl group of
L with respect to Aps. Then RZ is the R-group of o relative to L [loc.cit.]. Put RL be the inverse

image of RL in R,. Then as in the case of G, we have the decompositon Ry = L.\ VY XT,
: VGH(R, ,XU)

15



of the representation of RL x L on the space of iza(o). Since the normalization factors are chosen
such that for t € RL C R,,I(t,0) = igr(IL(t,0)) : ier(icm(o)) — ier(irm(o)), we see that
R = igr(RL), in other words we have the decompositon R|z., o = euen(éb,x,) v ®igr(m,). On

the other hand, it’s easy to prove the following

Lemma 4 Leta: S — GL(V) be a finite dimensional representation of a finite group S, and let

E be a module of type (FP) over a C-algebra. Then r(V @c E, a(s)) = tr(a(s))r(E).

If w ¢ Ryyreg then a¥y = ar # (0). So L # G,w € RL and we have r(icm(0), [(w,0)) =
Y Len(AL,x.) tr(vV(w))r(ier(m)) = 0 since the rank of an induced representation is zero by the
Proposition 2. Q.E.D.

We have seen that

r(m) = Y R TMr(p(w))r(icm(o), [(w, o))
WERs reg

= Z le,wl"ltr(P(’w))"'(iGM(U), j(w, o))
wE{Rareg} .

= 3> hy

wE{Rc,rcg}

where {R, .y} denotes the set of conjugacy classes in R, and we have put
by = | Ry |~ ttr(p(w™1))r(igm(c), [(w™, o)) for each w € {R,,req}-

For 7 = (N, é,t) € T(G), we have

O(r, hy) = tr(f(t, 6)ian(6)(hw))

Z tr(AY(¢))tr(ma(bw))

A€l Rs,xs)
= 2 a(AO) Rl Mr(p(w)) 3(~1)br (Bxt(iam (o), ma); (w ™ 0)*)
A€M(Rsxs) J
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On the other hand, it’s easy to see

S reni(yxe) TV () Ti(-1)3tr (Extd(icar(0), m); I(w, 0)7)

= T(-1)tr (Bxth(iam(o), ian(8)); I(w, o) 1(2,6).))

where [* (resp. I,) is the action on Ext induced by the action on the first (resp. the second)

variable. We have proven the following

Lemma 5 The rank r(m,) of 7, is equal to 3 ,ccp 1 hw and hy € H/[H,H] is determined

o, reg

uniquely by the following property. For any r = (N, §,t) € T(G),
07, ha) = | Rol ™ tr{p(w™)) S (<1 tr (Eethy (i (), ian(6)); H(w™, 0)" (t,8).)
j
By inverting the equation 2 we get

Or,(f) = IR ) tr(p(w))tr(I(w, o)icm(o)(f))

wEﬁ,

1B D tr(p(w))O(7, f)

weR,

Il

for all f € H, where 1, = (M,0,w). fw ¢ R,,,,.,g then O(ry) is a linear combination of induced

characters as shown in the proof of Lemma 3, hence O(7y)|ge = 0. So

Orlae = [R,|™1 ), tr(p(w))O(ry)
WER, reg

Y. |Rowl ™ tr(p(w))O(rw)

“’G{ﬁv,ﬂy}

= /T 0(T)0(7)dr

eu(G)
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where 8 is the function on T(G) defined by

o5, - tr(p(t)) if (N,6) = (M,0) and t € Rs req

0 otherwise

In other words, on G¢, @, is the distribution © corresponding to the function 6 as in the previous
section. Let 6’ be the fuction on T(G) associated to # as before and let f,, € M be such that
O(7, fx,) = 0'(7),Yr € T(G). Then we have seen that [ fr,(9297')dg = O, (2),Vz € G*, so

Jg fr (9297 1)dg = Oy, (271). We expect the image of fr, in A(G) to be the rank of =,.
4.2 Reduction of the theorem
Lemma 6 Let T = (N,4,t) € T(G) and h € H. Then O(r, h‘) = O(#, k), where ¥ = (N,§Y,t71)

Proof. We can choose normalizing factors, Zs and x5 in such a way that Bsv = Rj, xsv = x;l and
the representation R of Rsv X G on igpr(cV) is the contragradient of the representation R of Rs x G

on igp(c) [2, Section 3]. In other words, we have the decomposition RY = @, ey, x,) ¥ ® 7+ S0

O(r, h*)

Z tr(’uv(t))tl'(ﬂ'u(h'))

vell(Rs,xs)

Z tr(v(t)tr(wY (h))

It

= O(#h)

We have seen that f; is the function such that for r = (N, 4,t) € T(G)

T -1 s , = ,0) an 5 reg
o(r, f2) = d(t)|tr(p(t™1)) if (N,8) = (M,0) and t € R,

0 otherwise
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And such an f, is unique modulo [¥, #]. For each w € {f?.,,,.eg}, let Oy, be the Z,-orbit of w in

{I-Z,} and let f,, € H be such that

d(t)|tr(p(t™1)) if (N,4,t) € the Z,-orbit of (M, o, w) in T(G
o(r, ) = |d(¢)[txr(p(t71)) if ( ) ( ) in T(G)

0 otherwise

We know that f, € A(G) and is unique modulo [H, ). Clearly, f* = Ywe{k, ves}/Z, Jw and

Tp
r(m,) = Ewe{ft, reg} hw = Zwe{ﬁ, ves}/Zo |Ow|hy since h,,, = h,,. We want to show that for each
wE {Ra,,,g} /Zs, the image of f,, in A(G) is |Ow|hw. This will prove Theorem 1 for 7 = 7,. This

is equivalent to say that O(7, f,) = |0w|O(r, hy,) for all 7 € T(G). We have proved the following

Lemma 7 The following statement implies that ¢(x,) = r(x,)* where ¢ : R(G) — A(G) is the

map stated in §2.1. For VT = (N, 6,t) € T(G),

trlp(w™) 3(-1Ytr (Bety(iam(o), ian(8)); Hw™, 0)"1(2,6).) - ®)

) BoullOu| M d(0)ltnp(t7Y)) if (N,6) = (M, 0) and t € O, "

0 otherwise

From now on, we will assume o is cuspidal unless stated otherwise. First we have the following

Lemma 8 Let (M,0) be as before and let N € £ and § € O,(N). If (M,0) and (N,§) are not

conjugated (by an element of W), Then

Eztl(igm(o),ian(6)) = 0, forallj > 0
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Proof. There exists a standard Levi subgroup L contained in N and an irreducible cuspidal
representation = of L such that § is a subquotient of ixz(7). (L,7) is unique up to conjugation
and is called the infinitesimal character of § [7, Section 2.1]. We claim that (L,x) and (M, o) are
not conjugated. Suppose they are conjugated. Then replacing N by suitable conjugate of it, we
may assume that N contains M properly and § is a subquotient of ixar(o). But the Plancherel
formula says that ix (o) contains no square integrable irreducible component. (ixar(o) belongs
to the continuous spectrum.) The claim is proven. Any element of the center C acts by scalar on
igm (o) and ign(8) [4, Proposition 2.11). And since the infinitesimal character (L, 7) of ign(8) is not
conjugated to that of iga(o) (which is just (M, o)), there exists z € C such that z;;,,(;) # zlign(s)-
Now by the same argument as in the proof of Proposition 2, Ext‘é(iGM(a),iGN(J)) =0,Y5 > 0.
Q.E.D.

We have seen that to veryfy the equation 4, we only need to check the case (N,é) = (M, o).
Note if we replace ¢t by zt,z € Z, then the both sides of the equation 4 are changed by xs(z)~.
Hence if the equation 4 is true for 7 = (N, 4,t) then it’s true for zr = (N, 4, zt) also. We have

proven that the following proposition implies ¢(7,) = T, and hence Theorem 1 for the case 7 = 7.

Proposition 3 Let M € L and let o be an irreducible unitary cuspidal representation of M. Then

S (-1 tr (Esti(icu (o), icw(@))i Hw™,0)"F(w,0).) = d(w)| ol Oul™

2

and

Z(—l)jtr (Ezté(iGM(a),iGM(a));f(w"l,a)'f(t, a).) =0

if t is not cojugate to zw,z € Z,.
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Since the center of G is compact, each irreducible cuspidal representation of G splits the category
of G-modules [8, Theorem 2.44]. This means that such a representation is a projective G-module.
So if M = G in the above, then we have R, = (e) and Ext’é(a', o)is0if j >0and Cifj =0. So

the proposition is obviously true in this case. From now on we will assume M # G.

5 Proof of the proposition 3

5.1 A resolution of igy(0)

Recall we have fixed M € £L,M # G and an irreducible unitary cuspidal representation o of M.
Let M® = N, cx+(ar)kernel|x| where X*(M) is the set of F-rational characters of M. Then M°
is the subgroup generated by all compact subgroups of M and M/M? = Z" for some n > 0. Let
{t1,...,t,} be a basis for M/M®. Then B = C[M/M? = C[ti},...,tE!] is the ring of regular
functions on the algebraic torus ¥(M). Let Xy, : M — B be the natural representation of M on

B given by the translation.
Lemma 9 x., ® o is a projective M -module.

Proof. It’s easy to see xun = indM (1) = {f: M —> C|f(mem) = f(m) and support of f is
compact modulo M°} and Xun ® 0 = ind¥,(c|pp). Since the center of M? is compact, by the
same argument given at the end of last section, any cuspidal representation of M? is projective.
And ind¥,, being left adjoint to the restriction functor (-)|p0, maps projective M%-modules to
projective M-modules. So x,n ® o is projective. Q.E.D.

Let € : B — C be the ring homomorphism given by f — f(1). C can be viewed as a B-
module via € and the Koszul complex gives a resolution of C by free B-modules. More precisely, let

€1, -,€n be symbols and let /\’ B be the free B-module generated by e;, A---Ae;, (i1 < --- < 7).
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The boundary map d; : A't* B — A! B is the B-linear map given by

I+1
iy ArerAeg, o D (1Y 1 —ti)e Ao AEG A Aeyy,
=1

0> A"B—..-— A°B =B — C — (is a free resolution of the B-module C. Tensoring by o, we
get a projective resolution of o. And then applying igam we get a projective resolution of igar(o) by
the following proposition and its corollary. First, recall we have fixed a minimal parabolic subgroup
P, and igpm,rumc are defined relative to the parabolic subgroup P = M P, [9]. Let 7apg be the
Jacquet functor defined in the same way as rprg but this time relative to the opposite parabolic

subgroup P = MP,.

Proposition 4 ([5]) Fmq is ezact and right adjoint to the functor iy, i.e. for any G-module ©
and an M-module T,

Homg(igm(7), ©) = Hompm (7, Fma(7))

Corollary 2 igyr maps projective M-modules to projective G-modules.

For some technical reasons we must use the local riﬁg B,, instead of B, where m is the kernel of
the ring homomorphism € : B — C. This is justified by the following proposition and its corollary.

The M-module structure of B,, is induced from that of B.
Proposition 5 For any M-module T of finite length and j > 0,
Ezty(Bmn ®0,7) =0

Proof. Using induction on the length of 7 and the long exact sequence for Ext, we may assume

7 is irreducible. Since o splits the category M of M-modules, if 7 is not of the form o for some
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¥ € ¥(M) then Extfw(Bm ®o,7) = 0. More precisely, M is the direct sum of two full subcategories
M = M(Z) x M(Z)*+ where M(Z) is the category of M-modules whose irreducible subquotients
are of the form 1o and M(X)! is the category of M-modules none of their subquotients are of such
forms [9, Theorem 2.44]. If 7, € M(Z) and 7, € M(Z)* then Exti[(rl,xz) = Extf‘l(wz,rl) =0
for all j.

The Bernstein center Cps of the category M is the product Caqg) X Cpqz)r of centers of
subcategories M(XZ) and M(Z)t. Cpqx) can be identified with the ring of regular functions on
the algebraic variety ¥(M)/S, , where S, = {3 € ¥(M)|¢o = o} is a finite subgroup of ¥(M)
[4, Theorem 2.13]. B® o ( and By, ® ¢ ) is a B-module in a natural way and o has a B-module
structure via e ® 1 : B ® 0 — o. If we identify Cpq(x) with a subring D of B, then the action of
Cam(z) on B, ® o is the same as that of D on it. The same is. true for . Now suppose 7 = ¢o % 0.
Then we can choose z € D such that z(o) # z(y0o), so z — z(¢po)  m. Since z — z(po) is in the
center, the actions on Ext'l’;l(Bm ® 0, %0) induced from the actions of z — z(1po) on the first and the
second variables are the same. And this must be zero since z — z(o) acts by zero on %o. On the
other hand, multiplication by (z — z(¢0))~! defines an M-module endomorphism of B, ® o, hence
induces an endomorphism of Ext']’.w(Bm ® o, o) whiéh must be the inverse to the endomophism
induced from z — z(3o). This is impossible unless Ext‘l’.w(Bm ® o,%0) = 0.

Finally, assume T = o. Since S, is contained in T} = {z € ¥(M)|z! = 1} for some I, we have
D D C[tf,...,t¥Y]. As above E = Ext'é(Bm ® 0,0) has a natural B — B,, bimodule structure
induced from the actions of B,, and B on B,, ® ¢ and o respectively. (For simplicity, we consider
E as a left B-module and as a right B,,-module. Since these rings are commutative, we can write
in any way.) Since the action of D on E from both sides is the same, e — tiet;',i = 1,...,n

defines a representation of T; on E. Here we viewed T} as the quotient of the free abelian group
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with base {ti,...,t,} modulo the relations ¢, = ... =t} = 1. We have a canonical decomposition
of EasE=@ & E, where Tj is the set of irreducible representations of T; and E, is the subspace
on which 7} acts by x. We claim that E, = 0if x # 1. If x # 1, then x(¢;) = ¢ # 1 for some ¢;.
For e € E,, t;et;7* = x(t:)e = Ce. So (t; — 1)e = e({t; — 1). Since the B-module structure of E is
induced from that of o, we have (¢; — 1)e = 0. Since (t; — 1 is a unit in B,,, this implies e = 0 and
E, =0. |

Now we consider E; = E more carefully. Let 7 be an M-module in M(X). We say that nis a
(B, M)-module if n has a B-module structure which commutes with the action of M and the action
of the center D on 7 is the same as the action as the subring of B. Let M(B, X) be the subcategory
of M(X) whose objects are (B, M)-modules and morphisms are M-module morphisms which are
also B-linear. M(B, X) is equivalent to the category of modules over B ®p He,, where e, is the

idempotent in the center Cps of the category M such that e, = 1 on M(X) and e, = 0 on M(Z)*.

Lemma 10

EztjM(B,E)(Bm ® 0,0) = Ezt}y(Bm ® 0,0)

Proof. Let ---— Bh - Bl . B 0 be a free resolution of the B-module B,,. Tensoring by
oweget---— P o P B @0 — 0,(P = B® o), a projective resolution of the G-module
B, ® 0. Note the boundary maps are also B-linear. E is the j-th cohomology group of the complex
0— H® - HO) — ... where H*) = Homyps(P*,0). Like E, H*) is a B — B bimodule such that
the action of D from both sides is the same. Hence H(*) is a T;-module. Since the boundary maps
PLi+r  PL are B-linear, the maps H(®*) — H(k+1) are Tj-linear and the Tj-module structure of E
comes from that of H(). This means that E; = E is the j-th cohomology group of the complex

0— Hl(o) — Hl(l) — ++., where ka) is the subspace of H(*) on which T} acts trivially. Clearly,
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Hl(k) = Homyy(p,5)(P*, o). It remains to show that P = B ® o is a projective object in M(B, Z).
It’s enough to show that for an epimorphism 7' — n — 0 of (B, M)-modules, the induced map
Hom (g, x)(P;n') - Hompyp,s)(P,n) is surjective. This follow from the same argument as above.
Really, Homps(P,7') — Homps(P,n) is a surjective morphism of Tj-modules, and so is the map
Homps(P,n')1 — Homps(P,n);. The lemma is proven.

Let M(By,,X) be the subcategory of M(Z) of (B, M)-modules defined in the same way as
M(B,%). Let F : M(B,X) - M(Bp,Z) be the functor given by F(n) = B,, ®p 1. Here the
action of M on B,, ®p 7 is defined by m(b® v) = b ® mv. It’s easy to see that this is well defined
and the action of D as the center and as the subring of B is the same. Obviously, F is exact and is
left adjoint to an exact functor, the restriction-of-scalar functor. Since o is a (Bm, M)- module, we
have Ethw(B,z)(Bm ®0,0) = Extid(Bm’z)(F(B,,.@a'), o). It’s easy to see that F(B,,®0) = B,Q0c
and F(B®0) = By, ®0. Since B®o is projective inM(B, £), F(B ® o) is projective in M(B,, )

and Exti‘( B,,.,E)(F(B ® 0),0) = 0. By the above lemma, the proposition is now proven. Q.E.D.

Corollary 3 For any G-module = of finite length and j > 0,
Ezt,(igm(Bm ® 0),7) =0

Proof. By Proposition 4, Exté(iGM(Bm ®0o),7)= Exth(Bm ® o, Fua(7)) = 0.
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5.2 Extension of the intertwining operators

For each w € R, we have the normalized intertwining operator A(w, o) : igm(o) — igm(c®). We

want to extend this to a morphism of the complexes

0 - igm(m) — -+ — iGM(To) — iGM(a) — 0
! l l
0 — iGM(T:f’) e iGM(T(’,") — iGM(O"”) - 0

where 77 = A! B, ® 0. First, we have to prove the following

Proposition 8 Let T = 79 = B,, ® 0. For each w € R, there ezists an operator A, : iem(T) —
igm(T) such that the following diagram commutes and A,, intertwines the actions of both G and

By on igm(T) and igpm(TV).
iGM(T) ﬁ iGM(T"’)
le le?

o)

iem(o) A(E; igm(o™)

where we wrote € for igp(e ® 1).

Proof. For ¢ € ¥(M) , let 7y = igp(vo). It’s well known that all 7y act on the space V
of indﬁgn p(o|konm) where K is the good maximal compact subgroup chosen before. Similarly,
7y = igm((¥0)*) acts on the space V' of indggnp(awlxonM). Let K be a sufficiently small
congruence subgroup of Ky and let m = dimwf = dimVX. Then dim('lr:;j)x = dim V'K = m since
7y = my. Clearly, igy(7) = igym(Bm ® o) acts on the space B,, ® V and igy(7)X = B, ® VK isa
free By,-module of rank m. The normalized intertwining operator A(w,¥) = A(w,¥0o): VK - V'K

can be viewed as a linear map which intertwines the actions of the Hecke algebra Hx = H(G, K)
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on 7r5,{ and (73 )¥. It’s known that the matrix coefficients of A(w,%) are rational functions in
¥ € ¥(M) [1, Theorem 2.1]. In other words, by fixing bases for VK and V'X, A(w,) is given by
an m X m matrix whose matrix coefficients are in the field F of rational functions on the algebraic
variety ¥(M). Let A,, € Mpym(F) be this matrix. Let S be the multiplicatively closed subset of
B generated by denominators of entries of A,, and let S~1B be the localization of B with respect
to §. Since A(w,%) is holomorphic at 1 = 1, §~1B C B,, and 4, € Mpxm(S~1B). A, defines
a S~!B-linear map S~!B® VK — §-1B @ V'K, We claim this S~1B-linear map intertwines the
actions of Hx on S1B@ VX = igy(S-'B® o)X and S'BQ V'K = igy((S~1B ® 0)*)X. Let
h € Hgk. Since the action of $~1B on igam (S ~!B ® o) commutes with the action of G, h defines an
$~1B-linear map on §~'B®V X, hence is given by a matrix in M,,xm(S~1B) which is also denoted
by h. Similarly, the action of h on S~!B @ V'K gives a matrix in M xm(S~1B) which is denoted
by h'. Clearly, the action of h on wf (respectively, on (7r$)K ) is given by h(y) (respectively, by
h'(¢)). We know that for ¢ in a Zariski dense subset of ¥(M), A(w,¥)h(y) — A'($)A(w, ) = 0.
So A,h — h' A, = 0, as desired. So the same A,, defines a B,, -linear map B,, ® VK - B,, @ V'K
which intertwines the actions of H. Q.E.D.

Recall that we have fixed an isomorphism a, : o% 2 o for each w € R,. It induces an
isomorphism igy(0*’) S igm(o), which will be denoted by the same a,. We have I(w,q) =
ayA(w,) : igm(o) — iem(c). Define a C-linear map ¢, : B —» B by m — wmuw™! (recall
B = C[M/M°)]). Then ¢, gives an isomorphism of M-modules x¥, = x,n, which extends to an
isomorphism B% = B,,. Hence (t,) ® a,, is an isomorphism of M-modules (Bm®o)” S5 B,Q0c

and induces an isomorphism of G-modules igp(7%) = iga(7), which will be denoted by 3. Let
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I, = BuAy : iem(7) — iem(7). Then the following diagram is commutative

iGM(T) 5" iGM(T)
le le

iGM(U) I(ﬂa) iGM(U)

and for b € B,

I,b=b"1,, where b = ¢,,(b) .

(By some abuse of notations, we denoted by the same b, the endomorphism of igar(B, ® ¢) induced
from the multiplication by b.)

Define d}’ : /\l‘H B — /\IB in the same way as d; but using t’ = ¢,(t;) in place of ¢; (i =
1,...,n). To get an endomorphism of the complex 0 — i(7,) — -+ — i(7o) — i(0) — 0 extending
the endomorphism I(w, o) of igp (o), it turns out that we need to find B,,-module homomorphisms

¢1: AN B —» A'B,, (1=0,...,n) completing the following diagram.

0 > A"Bn & ... & A°B, &5 C - 0
| ¢n | ¢o=1d I
0 - A"Bn 5 ... & A°B., 5 C = 0

And we also need to know the alternating sum of traces of these ¢;. ( N B, is a free B,,-module of
finite rank, so the trace of ¢; is well-defined.) Both are more or less well known. (See for example

[13]) It’s easy to see that there exist b;; € B such that

-1 =3 bi(1-t;)

=1
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Define a B,,-linear map ¢, : /\1 B, — /\1 B bye;—3; b;je;. (Recall that ey,...,e, are symbols
forming a base for A\! B,,.) And let ¢; = ¢y A...Aé1 : A' B = A' Byn. Then ¢o = id, ¢1,...,¢n

complete the above diagram and

i(—l)jtr(daj) = det(1 — b), where b = (b;;) € Mpxm(B) .

=0

If tw = it ... thin l;; € Z), then
1 1 n J

E(bu) = bijlh:...: n=1 = % (E;:=1 bik(tk - 1)) |t1='"=tn=1
= %(t:" - 1)|t1='"=t,.=1 = I‘IJ

So e(det(1 — b)) = det(1 — ) where I = (l;;) € Maxn(Z) . We claim that det(1 — ) = det(1 —
w)a,, = d(w). Clearly, ! is the matrix of the endomorphism m +— m¥ of the lattice M/M?°
and ay = Hom(X*(M)r,R) = Hom(X*(Apm)r,R) = X(Am)Y ®z R where X(Aps)V is the dual
lattice. On the other hand, we have (M/M°)®z R = (Anm/A%)®z R and a canonical isomorphism
Am/AYy = X (Am)Y

By some abuse of notations, we write ¢; for the endomorphism of iGM(/\' B, ® o) = igm(n)
induced from the M-module homomorphism ¢;®1 : A! B,®c — A' B, ® 0. We have iem(N B ®
o) = Nigm(Bm ® 0) = igm(Bm ® 0) ® A! C , which means that elements of icM(\ B ® o) are
linear combinations of fe; A---Ae; with f € igy(Bm ® o). The G-module endomorphism I,
of igM(Bm ® o) induces an endomorphism of igar (A Bm ® 0) = igu(Bm ® o) ® A\' C which is

denoted by I.(ul ),
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Proposition 7 The following diagram commutes.

0 — iGM(Tn) — e — iGM(TO) — igM(O') — 0
| $aIY 1 goId) L I(w, o)
0 — igm(m) — -+ — ‘iGM(TO) - iem(o) - 0

Proof. This follows directly from the definition of ¢; and the following observations.
1. The boundary map @ : i(n+1) — i(n) is given by
e, Ao Neiy,, — E;";ll(—-l)j‘l(l —ti)fes N NEG N A ey,
2. I,b=>b"I, forallbe B .
3. diy = $11dyf’

For w € R,, we can define I,, (and f.(,,l)) in the same way as I(w, o) using the same &, : R, — C*.

5.3 Calculation of the trace

First, we need the following

Lemma 11

Hompy(B,, ® 0,0)=C

Proof. As in the proof of Proposition 5, Homp (B, ® 0,0) is a B — B, bimodule hence is a
T;-module. Also the arguments there show that T; acts trivially on this space. In other words,
any ¢ € Hompy(Bm @ 0,0) is B-linear hence is By,-linear. Homps(B ® 0,0) is spanned by ay :
B®c ) Yo = o for ¢ € §,. Among these, only a; = € is B-linear. So ¢|pg., is unique up to

scalar. And clearly, ¢ is determined by ¢|pg,. Q.E.D.

30



Proposition 8

dimc Homg(igm(Bm ® 7),icm(0)) = |Rs|

Proof. We have Homg(igy(Bm ® 0),iem(0)) = Hompr(Bm ® 0, Fmaiom(0)). Fucicm(o) has
a canonical filtration whose quotients are isomorphic to o¥,w € WM [9, Theorem 5.2]. Since
Ext};(Bm ® o, ) = 0 for any M-module 7 of finite length, from the long exact sequence for Ext we
have dim Homp (B ® 0, Fmaicm(0)) = ¥ pewn dim Homps (B, ®, ). The proof of Proposition
5 and the previous lemma show that dim Homps(Bn, ® 0,0%) is 0 if 0¥ 2 o and is 1 if 0% ~ 0.
So dimgc Homg(igm(Bm ® o), icm(0)) = [{w € WM|o¥ = g}| = |W,|. It is not difficult to show
that if R, ,eq # 0 then W2 = {e} and W, = R, (See the remarks following (2, Proposition 3.1]).
Q.E.D.

{I(w,o)|lw € R,} is a base for Endg(igm(c)). (See §3.1.) Since the canonical homomorphism
€:igM(Bm®0c) — igm(o) induced from €®1 : B,, ® — o is surjective, this combined with the last
proposition implies that {I(w, o)e = el,,|w € R,} is a base for Homg(igp(Bm ® 7), igm(c)). Let’s
calculate the trace of I*_, [(w, o), on Homg(igy(Bm ® o),igm(0)) given by a — I(w,a)al, -
. Since el,, = I(w,0)e, this is the same as the trace of I(w=')*I(w), on Endg(iga(c)) where
we wrote [(w) for I(w,o0). Fort € R,, let f be the its image in R, under R, — R,. Recall
that I(w) = & (w)~'I(@) for a function £, : R, — C* such that & (22) = xo(2)€(2) for z €
Z,. Let s € R, and let t € R, such that £ = s. I(w)I(s)[(w™!) = & ()f(w)(t)f(w1) =
& () (wtw™1) = £, (t)é,(wtw) " I(wsw~1). So if Bsw~! # s then I(s) does not contribute to the
trace of I';:,_1 I(w, o), on Homg(igar(Bm ®0),0). If wsw~! = s, then wtw=! = 2t for some z € Z,.
z preserves the conjugacy class of w in R, since zw = t~wt. Recall the triplete (M, o, w) is assumed

to be essential in the sense that x, is trivial on {z € Z,| z preserves the conjugacy class of w }.
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So &, (t)é,(wtw™1) "t = &, (¢)xo(2) "€, (t)~! = 1. We have shown that
tr (Ende(iom(0)); H(w ™) H(w).) = |{s € Roldsw™! = s}| = |Ro,a|

It’s easy to show |R, | = |Ryw||Ow|™? (recall that O, is the Z,-orbit of w in {R,}, the set of
conjugacy classes in R,).

If u € R, isn’t conjugated to any of zw with z € Z,, then there is no s € R, such that
usw~! = s. Above argument shows tr(End(igm(c)); I(w=1)*T(u),) = 0. We have proven the

following lemma.
Lemma 12 1. tr (Homg(iGM('r),iGM(a));f;_lI.(w, 0)‘) = |Ra,w”0w]—1
2. tr (Homg(iGM(-r),iGM(a'));f;_lf(u, a).) =0 if u € R, isn’t conjugated to any of zw with
z€ Z,.

Homeg(igm(n),igm(c)) is a direct sum of copies of Homg(i(7), i(c)). Considering the actions
of 47, (I:Efll )* and f(w). on Homg(i(n),%(c)), it’s easy to see that the trace of (¢1fgzl)‘f(w), is

the product of the trace of I*_, I(w), on Homg(i(7),%(c)) and e(trace(¢;)). So we have

Z( —1)tr (Ext'g(iGM(a), iem(2)); f(w"l)‘f(w).)

= Y (-1)tr (Home(i(ry), i(0)); (419 ) F(w).)

(1Y e(tr(¢;))tr (Home(i(r), i(0)); 31 K(w, 0).)

= d(w)|Roul|0u|™*

And if we replace (w), in the above equation by (t)« where t € R, is not conjugated to any

of Z,w then we see that the left hand side of the equation equals to zero. Since ayy =0, wisa
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rotation of the Euclidean space. So d(w) = det(1 — w)|a,, > 0 and |d(w)| = d(w). The Proposition

3 is now proven.
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