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Abstract
Let G be a semisimple Lie group and K be a maximal compact subgroup of G. The
Lie algebra of G (denoted by a) has a Cartan decomposition g = p. Let Kc denote
the complexification of K. This is a complex reductive group. Let Pc = p ®1 C and
set n = nilpotent elements in Pc C gc. Kc acts on n. It is a celebrated result of
Kostant that there is only a finite number of nilpotent Kc-orbits in n.

Let 0 be one such orbit. So O = Kc E, E E O C n, and is isomorphic to
Kc/K E , a homogeneous space. Here KcE is the stabilizer of E in Kc. So the regular
functions on the orbit can be realized as functions on the associated homogeneous
space. We are interested in those nilpotent orbits that give rise to multiplicity-free
representations. We formulate the problem as follows.

Let (r, V) be an irreducible representation of Kc. The multiplicity of r in func-
tions on the orbit O is equal to dim (VKE) < dimlr < oo (E E O).

In this dissertation we are interested in those orbits O such that the multiplicity
of every r is 0 or 1. We shall see that this problem is intimately related to the notion
of spherical homogeneous spaces.

Thesis Supervisor: David Vogan
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Chapter 1

Introduction

Let G be a semisimple Lie group and K be a maximal compact subgroup of G. The Lie

algebra of G (denoted by g) has a Cartan decomposition g = t p. Let Kc denote the

complexification of K. This is a complex reductive group. Let pc = p ®x C and set n =

nilpotent elements in Pc C gc. K acts on n. It is a celebrated result of Kostant that

there is only a finite number of nilpotent Kc-orbits in np.

Let 0 be one such orbit. So = Kc E, E E O C , and is isomorphic to Kc/K E ,

a homogeneous space. Here KcE is the stabilizer of E in Kc. So the regular functions

on the orbit can be realized as functions on the associated homogeneous space. We are

interested in those nilpotent orbits that give rise to multiplicity-free representations. We

formulate the problem as follows.

Let (r, V) be an irreducible representation of Kc. The multiplicity of r in functions

on the orbit 0 is equal to dim (VK ) < dim7r < oo (E E O).

In this dissertation we are interested in those orbits O such that the multiplicity of

every r is 0 or 1. We shall see that this problem is intimately related to the notion of

spherical homogeneous spaces introduced by Brion, Luna and Vust in [B1]. We say that

the subgroup KCE or the orbit 0 is spherical if 0 is a spherical homogeneous space. This

definition will be recalled later.

We will now give an outline for the whole thesis. First we show that KcE spher-
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ical implies R (Kc/K E) is multiplicity-free. E embeds into a i(2)-triple H, E,F}

(H E t, F E p) and this gives rise to g = 9iEz gi; gi is the i-eigenspace of adH and is 0-

stable. We show that if ti = E for i > 1 and when I is spherical in to, then R (Kc/K E )

is multiplicity-free. (Here ti is the compact part of gi = i pi). We will then show that

the irreducible s[(2)-representations that can occur in ad(g)l,(2) must be of dimension 1,

2, 3. The 5-dimensional representation can occur only if its highest weight is in t.

Using the above criteria we compute H explicitly for the real forms of Sp(n, C) as an

illustration.
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Chapter 2

Sphericality and Multiplicity-free

Representations

In this chapter, let G be complex and all subgroups be algebraic.

Let M be a closed subgroup of a reductive group G. Then G/M is a homogeneous

space.

Theorem. If there exists a Borel subgroup B of G such that B has an open orbit on

G/M, then the functions on G/M (denote by R(GIM)) are multiplicity-free.

Proof. Let V, be any irreducible highest weight module of R(G/M) with highest

weight . Let v E V be a highest weight vector. Thus b v = (b)v, b E B. But

(b. v)(z) = v(b - . z), z E GIM.

v(b z) (b - v)(z)

= (bi) v(z).

On the open orbit B x, v(b x) = (b - ) v(x). So VlopenorbitB. is only determined by

v(x) which is one-dimensional. Therefore R(G/M) is multiplicity-free. 0

Definition. Let G/M be a homogeneous space. We say M is spherical in G or G/M is

8



spherical if there exists a Borel subgroup B of G such that B has an open orbit on GIM.

We are especially interested in the case when G = Kc and M = K E where E is a

nilpotent element in c.

Given a general nilpotent E in g and with M = GE, by the Jacobson-Morozov theorem

there exists a 5[(2)-triple {H, E, F} containing E. By the representation theory of s((2),

g=a gi gi= {X Eg[H,X] =iX}.
iEZ

We have the following theorem relating the sphericality of goE in go and the sphericality

of gE in g.

Theorem. goE is spherical on go and gE = gi, i > 0 = gE is spherical in g.

Proof. Choose bo C go Borel subalgebra such that bo + gE = go; this is possible since

goE is spherical in go. Define b = bo + Ei<o g. This is a Borel subalgebra in g, since

go + ,i<o gi is a parabolic subalgebra in g. So,

b + g = bo+ gi) + d gif)
i<o i>o

i<o i>o

= go + egBi + gi
i<O i>O

- g.

Thus gE is spherical in g. O

Theorem. gE spherical in g * goE spherical in go.

Proof. We shall prove the following equivalent statement: Go not spherical in Go =$ GE

not spherical in G. By a result of Brion in [B1], GoE not spherical in Go implies that

there exists 1-dimensional character A : Go - Cx and an irreducible representation Z

of Go such that Z appears more than once in IndGa (Ao) (i.e., Ao appears more than once
G0
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in ZIG). Now Go U is parabolic in G, so

-+ Go via V-+VU.

Case 1: Z is in the image of this map.

Then we have a representation V of G such that VU = Z. Define a character A0

of GE = GE UE by a trivial extension, namely by making UE act trivially on A0.

Then

HomGE (C)o, V) = HomGE (CA, VUE), since UE acts trivially.

D Homz (C 0, VU)

= Homo (CAo, Z),

and this space has dimension > 2.

Case 2: Z is not in the image.

In this case we choose a 1-dimensional character & of Go such that (, a) is suffi-

ciently large for all roots a of a fixed Cartan subalgebra in u = Lie(U). Replace A0

in Case 1 by Ao ® IGEL and Z by Z X q. The & thus chosen ensures that the highest

weight of Z X is G-dominant. Now proceed as in Case 1 to complete the proof.

Proposition. gi = BE, i > 1 X only irreducible ) .(2)-representations of dimensions 1, 2,

3 can occur in ad(g)l.1(2).

Proof. gi = gE = gi n gE, i > 1 X gi C E, i > 1. It is clear that such representations

can occur. We show that these are the only ones. Recall that an irreducible representation

of [(2) of dimension n has weights n- , n -3,..., -(n -3), -(n - i). For representations

of dimension n > 4, adE: gn-3 n-1 0. Thus n-3 {E. 0
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Lemma. If the irreducible sl(2)-representations are 1, 2 or 3 dimensional, then goE is a

symmetric subalgebra of go (i.e., goE is the centralizer of an involution of go).

Proof. We will construct one such involution. Let : SL(2) -+ G be the homomor-

phism such that d (~o') = H. Consider = Ad [ (°1 )]. Then

82= Ad[( 1 e0 Ad ) 1)

= Ad ( 1 0 ) (-1 0

= Ad[e( 1 )]

(oO 1)

= Ad, [exp (io irO )]

= Ad exp(iirH)

= exp ad(i7rH)

=1 on go since [H, X] = O for X E go.

Thus 0 is an involution on go. We need to show goE = fixed points of 0 in go. Now (° o)

acts by 1 on the trivial representation. There is no O-weight space for the 2-dimensional

representation. ( °x o) acts by -1 on O-weight space of the 3-dimensional representation.

We are done. O

Corollary. If the irreducible sl(2)-representations are 1, 2 or 3 dimensional, then Bo has

an open orbit on Go/GoE .

Proof. Bo has open orbit on Go/GoE X GOE has open orbit on Go/Bo. Thus it suffices

to show that GE is the set of fixed points of an involution of Go. But this is precisely

the preceding lemma. O
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We will now summarize our results in the following theorem.

Theorem. Consider the following conditions on E.

(1) The sl(2)-representations occurring in ad(g)1,1(2) have dimensions 1, 2 or 3.

(2) goE spherical in go and gE = gi, i > 1.

(3) gE spherical in g.

(4) R (GIGE) is multiplicity-free.

Then (1) X (2) = (3) X (4).

Remarks. The implication (4) = (3) comes from the theorem of Brion stated below.

The orbit closure G E is an affine algebraic variety (closed in the vector space g), so

G E is quasiaffine (open in an affine variety).

Theorem. If G/M is quasi-affine, then m is spherical in g if and only if R(G/M) is

multiplicity-free.

Proof. [B2]. 0

Remarks. D. Panyushev in [P] explicitly classified all spherical nilpotent orbits in sM(V),

sp(V) and so(V) for complex finite dimensional vector spaces V. However, his method

does not carry over for real V. Our method applies to real V as well. This is the subject

of the next chapter.
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Chapter 3

Main Results and Illustrations

Now fix a Cartan involution 0 of c. Let gc = c ED pc be the corresponding Cartan

decomposition.

Let E E pc be a nilpotent element. By Kostant-Rallis [K-R] we can find a standard

51(2)-triple {H,E,F} with H E c and F E Pc. This triple is determined by E up

to conjugation by KcE . By the representation theory of z[(2), = @iEZ i, where i =

{X E adHX = [H, X] = iX}.

Set ei = gi n t and pi = gi p. Since OH = H, 0 preserves each eigenspace gi of ad(H);

so g = DiEz ti pi. Note that

ad(E): -t , pi+

ad(E) :pi ti+2-

Recall that we are interested in the multiplicity-free Kc nilpotent orbits on Pc.

The following analogous theorem holds.

Theorem. Consider the following conditions on E.

1. The irreducible s[(2)-representations coming from the ,((2)-triple {H, E, F} have

dimensions 1, 2, 3 or 5. The 5-dimensional representation can appear only if its

highest weight is in t and only if t is spherical in to.
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2. There exists a Borel subgroup B of Kc such that Bo = B n (Kc)o has an open orbit

on (Kc)o / (K) and = tiE for i > 1.

3. B has an open orbit on Kc/K E.

4. R (Kc/Kc E ) is multiplicity-free.

Then (1) X (2) = (3) (4).

Remarks. Only the equivalence of (1) and (2) needs comment as the others follow from

a previous theorem.

Proof. Let {H, E, F} be a standard z[(2)-triple and be a Cartan involution, so that

OE = -E, F = -F and OH = H.

Let G' be the group generated by Gc and (i.e., Gi = (Gc, 0) = Gc z/2z; here Z/2Z =

{1, 0}). Let us look at representation of SL(2, C)0 on B. The irreducible representations

differ very little from SL(2, C), namely it has exactly 2 irreducible representations for

each fixed positive dimension n. (The highest weight of each representation is in t or in

p. In t 0 = +1 and in p = -1.) Recall that we want t C tE, i 1. Now

adE : i Pi+2

:Pi ti+2,

since [p, t C p, [p,p] C C. It is easy to see that when the dimensions of the irreducible

representations of SL(2, C)° are 1, 2, 3, ti is killed by E for i 1.

When dim n = 4:

Case 1: Highest weight = 3 is in :

[ 3, E| = 0.

Next smaller t-weight < 3 is -1. So ti is killed by E for i > 1.

14



Case 2: Highest weight = 3 is in p:

[E, ti] C P3 $ 0-

So this case is not allowed by hypothesis (2).

At a first glance Case 1 seems to be admissible. A closer look suggests otherwise. Let

V4
± be the four-dimensional irreducible representation of SL(2, C)@ in which 0 acts by +1

on the top weight space. Then () V4.

Since g - 9* by the Killing form, a representation occurs in if and only if its dual

occurs in g. Since V4- is ruled out by Case 2, so is V4+. Therefore t C t(i > 1) * there

is no 4-dimensional representation of SL(2) in ad(g),lr(2).

When dimension n = 5:

Case 1: Highest weight is in t:

[t4,E] = 0.

Next lower t-weight is 0. Therefore i C tE for i > 1. So this case is admissible.

Case 2: Highest weight is in p:

adE: t2 - p4 0.

So this case is inadmissible. Thus there is no 5-dimensional irreducible representa-

tion of SL(2) when the highest weight is in p.

When dimension n > 6:

Case 1: Highest weight (n - 1) is in t:

tn-5 0 and adE: t,-5 - Pn-3 0 .

Case 2: Highest weight (n - 1) is in p:

adE : tn- 3 - Pn-1 : 0.
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Hence-there are no SL(2)-representations with dimensions > 6.

To summarize, ti C E (i > 1) if and only if the SL(2) representations have dimensions

1, 2, 3 or 5. The 5-dimensional representation occurs only if its highest weight is in t. 

To help us visualize the theorem consider the following example.

Example. G = SL(2, R), K = SO(2), Kc = SO(2, C) r Cx

p = symmetric 2 x 2 trace zero matrices.

Nilpotent elements in p are {((b ) a2 + b2 =0, a, b E C}.

There are 3 nilpotent classes: 0, ( il) ' ( li- )

Case 1: E = 0

KCE = Kc - CX. Therefore,

KcKE { }

R(Kc/KCE) C.

Only the trivial representation occurs, and it has multiplicity 1.

Case 2: E = (l ) or ('i-)

KC/KE CX/{±1}

R(Kc/KC) ) R(C /{±1}) [z 2 , - 2]

= nEZ (Cz2n

ad(e(2)) z s(2), the 3 dimensional representation of 51(2).

Let us now examine how we can make use of this theorem in concrete cases.

Let t C t be a Cartan subalgebra in t. Set

g = g t

= (e P)t

16



= t p'

0 is a Cartan subalgebra in g.

Let H E t. Choose a -stable system of positive roots A+(g, 0) which makes H

dominant. Let II = {l,...,C am} be a set of simple roots in this root system. Then

a(H) > 0 for any a E A+(g, I). The integer mi = ai(H), ai E II are known as the

numerical labels of H. This labeling of the Dynkin diagram is known as the weighted

Dynkin diagram of H (or of a s[(2)-triple {H, E, F} or of the nilpotent orbit associated

to E.) All these are independent of the choice of triples (see [S.S]) modulo the choice of

A+(g, 0).

Since the simple roots {al,..., ,am} form a base of the root system, we can write the

highest root /3 = =l niai. Since the s(2)-representations we need have dimensions 1,

2, 3, or 5,

/(H) < 4, P(H) 3.

In terms of the numerical labels of H, the condition is

mini < 4, mini 3.
i=l i=l

This is the first condition we need to check.

Recall that we also require the 4-eigenspace of H to be contained in t. Write

Cent(H) = [1 [2 E ·... r (, E center,

where i's are the simple factors of Cent(H).

Lemma. Suppose /3(H) = 4. The 4-eigenspace of H is in if and only if the highest

weight vector X0 is in and those i's in Cent(H) not commuting with X# are in t.

Proof. It is obvious that Xp has to be in . We now prove the equivalent statement
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that if [4 n p 0o, then [, X,] = 0. Now [[i n p, X,3] 4-eigenspace of H C e.

i n p C p and X E p =[ n p, x C p.

Therefore [ n p, Xp] = 0. But since (i is simple and il n p 0 0, 1i is generated by i n p

under [, ]. Hence [i, X,] = 0. o

As an illustration to the theory, let us consider the real groups G such that its com-

plexification is G = Sp(n, C). We will classify the multiplicity-free nilpotent Kc-orbits

by specifying H in the s(2)-triple ({H, E, F}). This suffices because of the conjugacy

theorems of Kostant and Malcev (see [C-MI). 0

Recall that Sp(p, q) = {9 E Aut(lH'+)lg preserves E? 1zi12 - '41 zi12}

Consider an n-dimensional representation of SL(2, R) over HL As in the representation

theory of SL(2, R) over R or C, there is precisely one irreducible representation having

quaternionic dimension n for each n E Z+.

Let HI be a IHE-representation of SL(2, R).

Proposition. is isomorphic to E)l Rm at HomSL(2) (Rm, r) as a right HI-vector

space.

Proof. Let T E HomsL(2,l) (m, r") and v E "R. Consider the map v ® T + T(v).

The two spaces are isomorphic as real vector spaces by the SL(2, ) representation theory

over i. A routine verification will show that this map respects the H-action. 0

It is a classical fact that for m even Rm carries an SL(2, 1R)-invariant symplectic form;

for m odd (say m = 2j + 1) R"tm carries a SL(2, IR)-invariant quadratic form with signature

(j + 1,j).
We will now decompose the n dimensional representation of SL(2, R) over Hl] into

irreducibles. Write IHr = R ® He, (t R 2 H® I 2 @ , where Hli = HomsL(2,l) (R', IEH) and
iR' = i-dimensional irreducible representation of SL(2, R) and n = al + 2a2 + 3a3 + * - .

The form on Hr and the form on ii' together induce an H-valued form (, )a, on Itfi,
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characterized by

(T(v),S(w))= (v,w)(T,S)ai v,w ERi, T,S E HomsL(2,x) (1Rir).

It follows that

(T, S), = (-1)' + ' (S, T),ai

So (, )a2,+1 has a well defined signature (pj, q), and R2j+1 ® Ha2,+1 has signature

((j + 1)pj + jqj, jpj + (j + 1)qj).

Similarly 1R2j 1 H 2 has signature (ja 2j,ja2,). The form on Hi2, is uniquely determined

up to isomorphism. Therefore we see that the form on Er has signature

E [( + 1)pj + qj,(j + 1)qj p + ] + (a2, ja2,).
2j+l 2j

Thus E [(j + l)pj + jqj] + Eja2j = p and E [(j + )qj + jpj] + E ja2, = q. With this

information on hand we are able to write down the semisimple elements H that can occur

as s[(2)-triples {H, E, F} satisfying our main theorem.

To this end let us go back to our case when Gc = Sp(n, C). We first consider a simple

case when 1W = R" m® 1.

Case 1: m is even.

H has eigenvalues m - 1, m - 3,..., -(m - 3), -(m - 1) on li and the form on Er

has signature m, M). So H = (m- 1, m-3,..., 1)(m - 1, m-3, .. 1). The l(2)-

triple defined by this H corresponds to the homomorphism ': s1(2, 11) --. p (, m)

with (l°l) = H.

Case 2: m is odd, say m = 2j + 1.

For simplicity and to see things more clearly, consider m = 3. Then 2,10 1 H = H2'1

is a representation of SL(2,1 R). Here 11R2,1 denotes the 3-dimensional irreducible
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representation of SL(2,2) and superscript (2, 1) denotes the signature. Then we

have
SL(2,2) ) Sp(2, 1)

U U

S0(2) , Sp(2) x Sp(l).

We have a SO(2)-invariant decomposition of 22 1 - (2, 2) with the Killing form.

So 22'1 t E PP (SO(2)-invariant decomposition). Form is negative-definite on and

positive-definite on p. Hence S0(2) has a 2-dimensional action on pc, with weights

2 and -2. On tc S0(2) acts with weight 0. Since the weight -2 can be conjugated

to weight 2 (by an element of Sp(2)), the possible H are (2,2)(0) or (0)(2,2). Their

corresponding homomorphisms are

:s[(2) - sp(2,1) and -:r(2) -+p(1,2),

mapping 0(1 o) to the corresponding H.

We are now ready to see the general picture. The highest root = (2, 0,..., 0) with

respect to the standard roots for Sp(2n, C). Since we need (H) < 4, the largest coordi-

nate of H must be at most 2. Thus irreducible representations of SL(2, I) over H having

dimensions greater than 3 do not occur in the decomposition of IH into irreducibles.

Therefore H = 1 ® HH, ( 212R ,2 e 23 ® R a , with n = al + 2a2 + 3a3.

Case 1: HI,a has positive definite form and a3s O.

Therefore possible H = (2,2)(0) (0...0(0...0) (1, 1).
a3 pairs a+ a - a2 pir

Dominant H = (2...1...12 ... 0)(1 ... 1... 0), a, a + a.
2a3 a2 a+ G2 a3+aSince (H) 3 (recall that the 4-dimensional (2) representation does not occur)

Since/#(H) 3 (recall that the 4-dimensional [(2) representation does not occur)
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and a $ 0, therefore a2 = 0 (i.e., no l's).

Therefore possible dominant H = (2 ... 2... )(0 ... 0).
2a3 a+ a3+a

These are elements in sp (2a3 + a+, a3 + a-).

Case 2: HlI, has negative definite form and a3 ¢ 0.

Possible dominant H = (... 0)(2... 0)
a3+a+ 2a3 al

which are in sp (a3 + a +, 2a3 + a-).

Case 3: a3 = 0.

In this case the l's can appear since there is no danger that P(H) = 3.

Therefore dominant H = (... 10.. 0)( 1... 0),
a2 a+ a2 a1 01

which are in sp (a2 + a +, a2 + a).

Case 4: HI,, has an indefinite form of signature (a +, a-), with a +a 0.

In this case, H = (2.... 0)(2...20... 0). Therefore, H has eigenvalue 4 on
2a+ a+ 2a- al

the noncompact root (1, 0,..., 0)(1, 0,... .,0) and this case is never admissible.

Remarks. Recall that if the 5-dimensional s(2)-representation occurs in ad(g)W.2 ),

Ko/K E is not symmetric in general, which implies that KoE is not spherical in general.

Only in Case 1 and 2 can P(H) equal 4. In these cases, the dominant H has the form

(2... 2... 0)(... 0). So
2a3 a+ a3+a1

Ko -- U(2a3) x Sp(a+) x Sp(a3 + a-)I~o V\LI~3~ EI I 1~
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and KE Sp(a 3) x Sp(a +) x Sp(a-), which imbeds diagonally into K0 . Hence K E is

spherical in Ko if and only if Sp(a3 ) x Sp(a-) is spherical in U(2a3) x Sp(a3 + a-).

Proposition. Let m = a3 and n = a-. Then K E is not spherical when m2 - n2 + 2mn -

2m-n > 0.

Proof.

dimSp(m) x Sp(n) = 2m2 + m + 2n2 + n

dimU(2m) x Sp(m + n) = 4m2 + 2m2 + 2n2 + 4mn + m + n

dim Bo for U(2m) x Sp(m + n) = 2m2 + m + (m + n)2 + (m + n).

Therefore,

dim (U(2m) x Sp(m + n))/Bo = 3m2 + n2 + 2mn - m

> dimSp(m) x Sp(n)

when m2 n2 + 2mn - 2m- n > O.

For such cases, KoE is not spherical. O

Remarks. When the above inequality does not hold, refer to [B2] to check if KoE is

spherical.

We summarize our results in the following theorem.

Theorem. All admissible H are of the form

(2..20 )(0 .0) or (... 0)(2._ 0.. 0)
2a3 a+ a3+al a3+a+ 2a3 a

or ( .. a 1... )(1... 10..0), a, + 2a2 + 3a3 = n.
a2 a+ a2 a

1 1

The first element does not appear if a2 - (a') 2 + 2a3al - 2a3 - a > 0 and the second

element does not appear if a - (a+)2 + 2a3a+ - 2a3 - a+ > 0.CIC111II CUVC 11I, ~Yr ~ 3 1 1 1Cl
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