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Introduction

The goal of this paper is to determine all the natural relations that occur in
the homotopy groups of a simplicial abelian Hopf algebra over I, the field of two
elements. Here Hopf algebra means a unitary algebra and a counitary coalgebra
for which certain diagrams commute (see (2.3.1)). An abelian Hopf algebra then
is one which is commutative as an algebra and cocommutative as a coalgebra.

It is well-known that over IF, the homotopy groups of a simplicial commuta-
tive algebra possesses, in addition to an algebra structure, a compatible action
of a certain operator ring. These operations are viewed as higher-order versions
of divided squares. Dually, the homotopy groups of a simplicial cocommutative
coalgebra possesses an operational action which extends the coalgebra structure.
In fact these are just the Steenrod operations viewed as the dual of higher-order
squaring operations. In each case, the higher-order structure exists because of
the (co)commutativity. Thus the homotopy groups of a simplicial abelian Hopf
algebra possesses both of these structures and the additional properties will pro-
duce relations between them.

These relations contribute to the understanding of the cohomology of iterated
loop spaces with [Fa-coefficients. In particular, the cohomology of a cosimplicial
iterated loop space is a simplicial abelian Hopf algebra. The Ej-term of the
generalized Eilenberg-Moore spectral sequence (see, for example, [3]) associated
to this cosimplicial space, is the homotopy groups of this particular simplicial
algebra. Thus the relations assist in making computations. Further, theses
operations play a role in understanding the action of the Steenrod and Dyer-
Lashoff operations on the abutment of the spectral sequence (see [10], [18], [19],
and [20]).

This paper is organized as follows. Chapter 1 is a review of relevant simplicial
homotopy and symmetric group actions. Chapter 2 sets up the background for
and makes the statement of the Main Theorem. In particular, section 2.1 reviews
simplicial commutative algebras and the properties of their homotopy groups, as
presented in [9]. Section 2.2 does a similar summary for simplicial cocommutative
coalgebras following [12]. Finally, section 2.3 reviews Hopf algebras, establishes
an abelian version of the Hopf condition, and states the Main Theorem which
portrays the natural relations that occur in the homotopy of a simplicial abelian
Hopf algebra.

Chapter 3 is devoted to proving the Main Theorem. We begin, section 3.1,
by stating the Reduction. This is a theorem which computes the homotopy
groups of a functor on simplicial commutative algebras. We immediately reduce
the proof of this Reduction to computing the effect of a natural map, between
two functors on simplicial vector spaces, in homotopy. This natural map arises
from the abelian Hopf condition, established in section 2.3. In section 3.2, we
use the Reduction to prove the Main Theorem. In section 3.3, we begin the
proof of the computation for the natural map of section 3.1. We first fit this
map into two commuting diagrams. This reduces our efforts further by allowing
us to divide the computations between two new natural maps, each possessing
properties amenable to calculations. In particular, in section 3.4, we recall a
method developed in [9] which allows us to convert our simplicial calculations to

9



ones in the cohomology of groups. Finally, in section 3.5, we make these group
cohomological calculations, completing the proof of the Reduction.

10




Conventions

All groups throughout are finite.

Let R be a ring, G a group, and V a left R-module. Then V is a G-module if
V is a left R[G]-module. On the category of G-modules there are two functors.
The first functor

(=)¢: (G-modules) — (R-modules)
called the G-invariant functor, is defined by
Ve={zeV:gz=z forallgeG}.
The second functor
(=)e: (G-modules) — (R-modules)
called the G-coinvariant functor, is defined by
Ve=V/[{(l-g)z:z€V, g€G}.

Further, given a subgroup H < G, the inclusion induces a natural transforma-
tion, called restriction,

r(G,H): V¢ - VH,

Also, if g1,...,9m are coset representatives of G/H, where m = (H : G), then
the action of the element g; + - - - + gm € R[G] on V¥ induces a natural trans-
formation, called transfer,

t(h,G): VH - V6.
The two transformations are related by
t(H,G)r(G,H)z=(H : G)z

for any z € V€.
For a fixed group G, we denote by i the inclusion

Ve v
and by p the projection
V—-Ve

Next we call V a graded R-module if V = {V,}n30 where each V;, is an R-
module. If W is another graded R-module we define the graded tensor product
VoW by

(VeWh= @ vieow,
i+j=n
for alln > 0.
On the category of graded R-modules we have a functor

& graded - graded
* \ R-modules R-modules

11



called the doubling, defined by

(®V)n = {(; n odd '
3 neven

For an element z € V we denote its associated element in ®V by Z.

Finally, for n € Z and k € N define :

expansion of (1 + z)". These numbers satisfy the general Pascal relation
f n n\ _(n+1
(:20)+()=C1):
n\ _(-n+k-1
k)~ k )
AL ¥
Gi=("49).

For the rest of this work R = I3, the field of two elements.

) as the coefficient of z* in the Taylor

Further, we have

Also we define for i,5 > 0

12




CHAPTER 1

Preliminaries

1. Simplicial Fo-modules

Define a simplicial Fp-module V to be a graded Fz-module together with maps
of modules
dj: Vo = Voot
called face maps, and
8i: Vo = Van
called degeneracies, for 0 < j < n, satisfying standard identities (See [14]). A
map f: V — W of simplicial F-modules is a map of graded modules which com-
mutes with the face and degeneracy maps. We denote the category of simplicial
[F3-modules by sfFs.
Next given two simplicial Fa-modules V and W we define the simplicial tensor
product V @ W by
(V®W)n =mhew,

such that for z®@ y € (V @ W),, then

di(z®y) =djz Q@ djy s5i(z @ y) = s;z ® sy
0<j<n.
Now, define the normalization functor
N:sFy — ( [Fa-chain )
complexes

as follows: For V in sF; define, for each n > 0, the submodule D,V C V,, by
D,V =imsg+ ---+ims,_;.
From this define
N,V =V, / D,V.
Further, define
0: N,V = N1V
by
O0=do+- - +dy.

13
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As shown in [14], (NV, 0) is a well-defined chain complex.
Moreover, N has a left adjoint

S: ( IFz-chain ) N SIF'.?-

complexes

As shown in [6], the adjoint pair (S, N) determine an equivalence of categories.
We are now in a position to define, for V in sF, the homotopy groups 7.V by

TV = Ha(NV, 8).
This defines a functor
. graded
7o i sy — (IFz-modules) ’

Moreover, this functor is corepresentable as follows:
For V and W in sFFp define its homotopy set of maps to be

[V, W] = homr, (V, W)/~
where f ~ g if f is homotopic to g (see [15]) for f,g € homsp,(V, W). Now,

define, for n > 0, K(n) in sF2 by SC(n) where C(n) is the chain complex such
that

C(n)q={h o

0 otherwise.

From the equivalence of categories we have

(1.1.1) o K(n) = {152 z;e:'wise.
" Moreover, the correspondence
(1.1.2) [K(n), V] - 7,V
given by
(] = £o(0)

where ¢ € 7, K(n) is the generator, is a bijection (see [15]).

REMARK. An equivalent definition of K(n) is given as follows:
Let A[n] be the standard n-simplex and A[n] the simplicial set generated by
d;t, where ¢, € A[n],. Then K(n) = free Fo-module on A[n]/Al[n].
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2. Eilenberg-Zilber Theorem.

We begin by summarizing the Eilenberg-Zilber theorem as given in [14] and

[9].

THEOREM 1.2.1. Let V and W be two simplicial Fo-modules. Then there
exists a unique natural chain map

D: N(V)® N(W) = N(V @ W)

which is the identity in dimension 0.
Moreover, there exists a natural chain map

E: N(V®W) = N(V)® N(W)

such that
ED=1 DE ~ 1.

In [9] it was noticed that since D is necessarily the shuffile map (see [14]) thus
D possesses a symmetry. This symmetry was exploited by Dwyer to construct
higher order versions of D which we now describe.

DEFINITION 1.2.2. For each k > 0, let
$: N(V)ON(W) >NV eW)
be the chain map such that for z € N(V) and y € N(W)

weon= 3o LM
¢ is called an admissible map.
Let T' denote the switching map for either
N(V)®@N(W)—- N(W)@ N(V)
or

N(Ve W) - NWeV).

THEOREM 1.2.3. Let V and W be simplicial F,-modules. For each k > 0
there exists a natural chain map

D*: [N(V)Q@ N(W)lm — N(V Q@ W)m—:

defined for m > 2k and satisfying
1. D°+TD°T +¢o=D
2. DF+! 4 TD¥IT 4 ¢4 4y = OD* + D0

REMARK. Dwyer showed in [9] that each D* is unique in a certain sense.
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3. Group Actions on Tensor Products.

Let V be an Fs-module and define
Vem=-ve...QV.

m-times

Then X,,, the symmetric group on m letters, acts on V®™ by permutation.
Thus for any subgroup G < ¥,,, V®™ is a G-module. With this we define the
G-symmetric invariant functor

(1.3.1) S¢: mFy; — mPF,

by
S6(v) = (vem)¢

and the G-symmetric coinvariant functor
(1.3.2) SG: m]Fz bnd m]Fz

by
Se(V) = (V&™)g.

If G = Em then we denote (1.3.1) by S™ and (1.3.2) by Sm.
Now, let N € F2[G] be defined by

(1.3.3) N=>Yg¢

9€G
Then the action of N on V®™ defines a map which factors

yem — X, yom
(1.3.4) \ /

but since, for any ¢ € V®™, r(gz) = 7(z) for any g € G then we have a further
factorization.

vem Sév

(1.3.5) \‘ /

SeV

defining the norm map N.
Because of its importance later, we analyze the norm map N in the case
G = I,. First, we define the diagonal map

d: 8V — V%2
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by dZ = z ® z. This is not a homomorphism, nonetheless we have a commuting
diagram

(1.3.6) oy —2— yo2

A~

SV

o is not a homomorphism, but ¢ is one. From this we define the exterior square
functor E3 by E;V = coker:. We now have the following commutative diagram

(1.3.7)

oV
al X
0 BV —— SV N SV = coker N —— 0
X /
E,V

from which we have that E;V = im N = ker 7. Note that 7o is a linear isomor-
phism.
As an application of (1.3.7) we have

PROPOSITION 1.3.8. For any w € S?V there exists a € E;V and z € V,
uniquely determined by w, such that

w = v(a) + o(T).
PROOF. Let &: coker N — S?V be the composite o - (m0)~! so that 75 = 1.
Then the self-map
1457 S’V — S’V
satisfies 7(1 4+ &) = 0. Thus since v is injective, there exists o € E;V such that
v(a) = w + om(w).
Finally, let z € V be the element which satisfies
T = (o)} (mw).

Conclusion follows. [
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CHAPTER 1II

Simplicial Abelian Hopf Algebras

1. Simplicial Algebras and D-algebras.

Recall that a (graded) algebra is a triple (A, m,n) consisting of a (graded)
vector space A and maps of (graded) vector spaces

(2.1.1) m:A@A—A,
called multiplication, and

(2.1.2) n:Fy — A,
called the unit, such that the two diagrams

AQARA 28, AgA

(2.1.3) 1om | |
A®A —— A

and

FoA~A~AQF, —-19;"—>A®A

(2.1.4) n®lJ \ |m

A@A ————— A

commute.
We further call our algebra commutative if (2.1.1) factors as

AQA —— A

(2.1.5) N
S2A

NoTaTIiON. For brevity, we denote an algebra (A, m,n) by A. Also, for z,y €
A we denote the image of z @ y € A® A under m by z - y.

19
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Next, given algebras A and A’, a linear map f: A — A’ is a map of algebras
if the diagrams

AoA LBl agp
(2.1.6) mJ lml
'Y |
A 7 A
and
A
V
(2.1.7) Fy !
DN
AI
commute.

Note that if A and A’ are commutative then (2.1.6) can be replaced by

SA 20, g p

(2.1.8) u o

—_ A
A 7 A
We denote the category of commutative algebras (respectively commutative
graded algebras) by A (respectively A,).
Given a graded algebra A, let I,(A) C A s > 0 denote the ideal of elements z
in A such that |z| > s.

DEFINITION 2.1.9. A TI'-algebra is a commutative graded algebra A together
with a map

Y2: ¢I2 — A
such that
1. I, is exterior under the product of A,
2. forz,y€l,

72E9) =7E@E) +n@) +z-v
3. forz,y€ Asuchthat z-y € I,
0 z,yel

(TP = (z-2) 727 lz|=0
72(Z)-(y-y) |yl =0.

We now make the following, as given in [12].
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DEFINITION 2.1.10. A D-algebra A is a I'-algebra together with maps
6i: An = Anyi

for all 2 < i < n such that
1. 4; is a homomorphism, for i < n, and §, = v,
2. for z,y € A such that ¢ -y € A, then

(z-2)-6i(y) |l =
6i(z-y)=46(z)-(y-y) lyl=
. 0 otherwise,

3. for z € A, and j < 2i then

i—j+s—-1
djbiz = LFE_P ( '1._ s ) Oj4i-s0sz.
<s<t

A map of D-algebras is a map in .4, that commutes with the ;. We denote the
category of D-algebras by AD.

We now define a simplicial algebra (A, m, 1) so that (2.1.1)-(2.1.4) are satisfied
with the caveat that (2.1.1) and (2.1.2) are now maps of simplicial modules (F
is replaced with its constant simplicial alias). Further (2.1.5) is satisfied for
simplicial commutative algebras with the factorization occurring in sF;. We
denote the category of simplicial commutative algebras by sA.

The following was proved in [9] and [13].

THEOREM 2.1.11. Let A be a simplicial commutative algebra. Then w.A is
naturally a D-algebra i.e. we have a functor

m.: SA — AD.

REMARK. The operations §; in (2.1.10) were first discovered in [4]. Their
properties were subsequently derived in [2] and [9]. In the latter, they were
called higher divided squares.

We conclude this section by indicating why Theorem 2.1.11 completely deter-
mines the homotopy of a simplicial commutative algebra.

In light of (2.1.5), a computation of the homotopy of S2V, for a simplicial
module V, in terms of 7,V would give a complete picture of the primary operator
algebra for the homotopy of a simplicial commutative algebra. Such a description
is known to exist by [8]. We now proceed to make this description explicit.

Fix a simplicial module V. For each 0 < i < n define

(2.1.12) ©;: N,V = Np4iSaV
by
(2.1.13) 6i(a) = pD"*(a ® a) + pD" "' (a ® Ja)

where the D* are from Theorem 1.2.3.
A computation gives us that

00; = 6;0.



22 II. SIMPLICIAL ABELIAN HOPF ALGEBRAS

Thus, for 2 < i < n, ©; induces a natural map

(2.1.14) 0i: TV — Tn4iSaV.

Also, the chain map
pDZ N,V@ NgV hand N,.HSzV

induces a homomorphism
(2115) m: 7F,V®1T¢V—+W,+¢SZV
Combining the results of [4], [2], and [9] we are led to

ProprosITION 2.1.16. Let V be a fixed simplicial module. Define W to be the
graded module with basis

bi(z) forremVand2<i<n,
z-y forzen,VandyemV.

Define a submodule B in W with basis

0 2<i<n forz,yemV
z-y i=n,

bi(z +y) + bi(x) + &(y)+ {

z-y+y-z forremnV andyemnV,
z-(y+z)+z-y+z-z forzren,Vandy,z €V,
z-x forze€mn,V andn > 0.

Then the map W — m.S2V given by
z-y—mz®y)
biz — b;z
is natural and induces a linear isomorphism
W/B ~ m.S,V.

NoTE 2.1.17. Given (graded) algebras A and A’ then A ® A’ is a (graded)
algebra under the product

A®A)® (A®A) 2878, (A®A)® (A @A) 227, AQ A’
Further, if A and A’ are [-algebras then we define
Y2: ¥ - AQ A
by demanding that the diagrams

(3¢ !
BI,(A) ~ BL,(A®F;) —20%"), $1(A® A)
Y2 Y2
A~AQF, AN

100’
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and
[-J¢
®L(A') ~ OL(F; @ A') 2laneh) | SL(A®A)
Y2 Y2
AN~F, @A = AN

commute and then extending using 3. of Definition 2.1.9. Similarly, we define a
D-algebra structure on A ® A’, when A and A’ are D-algebras, by demanding
that

6i:(A®A ) = (A® A )nyi
for 2 < i < n, fits in the commuting diagrams

An=(A®F), —2  , (A®A"),

5 8

An+i = (A ®F, )n+|’ ——187, (A ® A’)n-{-i

and

A~ (F @A) — 22, (AQ A,

8 &

Anyi = (F2 @ M)ni —or— (A® A)nys

and then extending using 2. of (2.1.10).

2. Simplicial Coalgebras and A-coalgebras.

Recall that a (graded) coalgebra is a triple (II, A, €) consisting of a (graded)
module II and maps of (graded) modules

(2.2.1) A:T-0OQI,
called comultiplication, and
(2.2.2) e: I — Ty,

called the counit, such that the diagrams

o0 —2., nen

(2.2.3) a| |ae

nen 124, neuel
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and

(2.2.4) Al \

nell —e®—1+1F2®II=II:II®]F2

commute.
We further call our coalgebra cocommutative if (2.2.1) factors as

0 —2—nel

(2.2.5) oS~ A
5’1

NoTaTIoN. For brevity, we denote a coalgebra (I, A,¢) by I .
For two (graded) coalgebras I and I, a map f: Il — Il of (graded) modules
is a map of (graded) coalgebras if the two diagrams

!

qo——-I
(2.2.6) Al lA'
1 !
nen Sor Iel
and
1
N
(2.2.7) 7 FFp
/.
III
commute.

Note that for II and II' cocommutative, (2.2.6) can be replaced by
0 21— w

(2.2.8) -ﬁl lw'

5 —— S
53(f)

We denote the category of cocommutative coalgebras (resp. cocommutative graded
coalgebras) by CA (resp. CA.).
Next, given a cocommutative graded coalgebra II we define the coalgebra map

(2.2.9) v: I — @I
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called the verschiebung, as follows: Fix z € II. Then ¢z € S?II. By Proposi-
tion 1.3.8 there exists unique a € E3II and @ € II such that

¥z = v(a) + o(B).
From this we let v(z) = 3.

DEFINITION 2.2.10. An A-coalgebra is a cocommutative graded coalgebra I
together with homomorphisms

Sqi : Hn ind Hn—i

for ¢ > 0 such that for z € I, we have
1. zSq' =0 for 2i > n and zSq% = v(z),
2. if Az =Xz’ ®z then

A(zSe) = Y Y («'Se’) ® (="5¢"),

s+t=i

3. for j < 2i we have

z'quSq" - Z (l J—_S2—'-sl) wsqi+j—squ'
25<;

We define a map of A-coalgebras to be a map in CA. which commutes with
the S¢*. Denote by K* the category of A-coalgebras.

NOTE. A clearly denotes the Steenrod algebra.

We now define a simplicial coalgebra to be a triple (II, A, ¢) where II is a
simplicial module and satisfies (2.2.1)-(2.2.4) with the exception that all maps
are maps of simplicial modules. Further, a simplicial cocommutative coalgebra
also satisfies (2.2.5). (2.2.6)—(2.2.8) also define maps with the requirement that
they be maps of simplicial modules.

We denote the category of simplicial cocommutative coalgebras by sCA. A
consequence of [7] (see also [12]) is the following

THEOREM 2.2.11. Let II be a simplicial cocommutative coalgebra. Then m, Il
is naturally an A-coalgebra. That is, we have a functor

me: SCA — K*.

We close this section by indicating why Theorem 2.2.11 completely determines
the homotopy of a simplicial cocommutative coalgebra.

As in the algebra case, (2.2.5) indicates that it is sufficient to determine
7,52V, for a simplicial module V, in terms of 7,V. This description exists
by [8]. We now proceed to make this explicit.

Fix a simplicial module V. Consider the composite

(2.2.12) NV 25 NpyiSaV 25 N,y S2V

of chain maps. Here ©; is from (2.1.12) and N is the norm map (1.3.7). This
induces a natural map

(2.2.13) i TV — 1r,,+.-.5'2V
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for each 0 < i < n. Also, the composite

(2.214) N,V @ NV 2 Nppo(V O V) I N, 1SV 25 N, 40 S2V
induces the homomorphism

(2.2.15) T mVemV — 1r,+¢S2V

The following is given in [12].

PROPOSITION 2.2.16. Let V be a simplicial module. Let T be the graded
vector space with basis

oi(z) forzem,V and0<i<n,
[z,y] forzen,V andy€rmV, n,m>0.

Let R be the submodule of T with basis
[z,9]+ [y,2] forze€emV,y€ErmV, n,m>0,
[z,y+ 2]+ [z,y] +[z,2] forzE€mV,y,2€EmmV, n,m>0,

0 0<i<n

oi(z +y) +0i(z) +oi(y) + {[,,,y] i=n forz,y€m,V,
[z,2] forzemV,n>0.

Then the map T — 7.5%V defined by
0i(2) — (=)
[z,9] > 1(z®Y)
induces a natural linear isomorphism
T/R =~ 7. SV.

Moreover, if we let
e: SV »mVerV

be induced by the composition of chain maps
NSV i NV eV)ENVeNV
(see Theorem 1.2.1) then for z € 1,V y E 7V n,m > 0
e([z,U) =z®y+yQ®=z
andforz€mm,VO0<Li<n

e(oi(2)) = {

0 0<i<n
z®z i=n.

We take a moment to note a corollary given in [12].
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COROLLARY 2.2.17. The effect of the homomorphism
N.: 1SV - 1,5V

is given by

z-y— [z,
forzren,V,y€n,V,n,m>0, and

bi(z) — oi(z)

for z € 7,V, 2 < i < n. Moreover, under the homomorphism (1.3.6)
te: O,V — 7SV

we have
im¢, = ker N,.

Finally, given II in sCA, then for z € 7, II Proposition 2.2.16 tells us that
(2.2.18) Yz = L[z, 2"] + Toi(zSq')

which defines the action of the Steenrod operations. From this and Corol-
lary 2.2.17 we conclude 1. of (2.2.10). Also, we define the coproduct

(2.2.19) Arr - 7lerd
by e, from Proposition 2.2.16.

3. Simplicial Hopf Algebras and Hopf D-algebras.

Recall that a (graded) Hopf algebra (in the sense of [16]) is a (graded) module
H which is both a (graded) algebra and a (graded) coalgebra for which the two
diagrams

HoH 225 HoHRH®H
11@7’@1
2.3.1) m HOH®H®H
-
H Y H®H
and
F; —— H
(2.3.2) \ le

o

commute. A map of Hopf algebras is simply a map of algebras and a map of
coalgebras. We further define a Hopf algebra to be abelian if it is commutative
as an algebra and cocommutative as a coalgebra. Given an abelian Hopf algebra
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the diagram (2.3.1) possesses a modification. To describe it, we need some
preliminaries. :

LEMMA 2.3.3. Let V be a (graded) module. Then there exist maps ¢’, ¢” of
modules such that the following diagram commutes

VRSV 2L veVeVeV —2— S(VeV)

¢,l 18T®1 1 l W

S(VeV) —— VeVeVeV - SV ® SaV
i P@p

PROOF. Define T: V® - V® by T(a®b®c®d) = c®d®a®b. Then on
V@4 we have the identity

(1TRI)TRT)=T1RT®1).
From this, the two composites
S?V @ 52V &, yee 18781, yes

and
ves 18181 yet 282, 5y @ SV

factors to give us the maps ¢’ and ¢” respectively. [

LEMMA 2.3.4. For a module V there exists a map ¢ of modules such that the
following cube commutes

i®

S2v @ Sv » @4
) )
19TQ®1
! 2 » S2(VRV
¢ S8V 20 2VeV)
¢ J
SE(vVev) : et ¢"
\ l P00
§2(p)
S2S,V - > SoV @S2V

PROOF. The identity (19 TQ® 1)(T®T) = ’f"(l ® T ® 1) from the proof of
Lemma 2.3.3 tells us that the composite

U 2
SV @ S?V £ s2(v o V) =&, 525,V

factors to give us the desired map ¢. The commutativity of the cube now follows
from Lemma 2.3.3, the surjectivity of p, and the injectivity of i. [
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ProPosITION 2.3.5. For an abelian Hopf algebra H, the following diagram
commutes '

S
SH 2, g5ty . s26,H

“[ lsz(u)

H Y S’H
ProoF. The diagram (2.3.1) can be expanded to give
H®H cea HeH®H®H
Yoy
/ﬁ/ 11®T®1
p S’H®S’H HOHRHQ®H
19
SoH 2(¥) $,87H QP
m 1¢
5252H _ SoH ® SoH m@®m
g |52
2 ulp
H
¥ S - i
¥
H HoH

A
which commutes by (2.1.5), (2.2.5), Lemma 2.3.4, the surjectivity of p, and the
injectivity of &. [

We now pause to give a useful reinterpretation of Proposition 2.3.5.
Let A be a commutative algebra. Then S%A is a commutative algebra with
product

2
(2.3.6) 55?4 & 25,4 =), g2
and unit
(2.3.7) Fy ~ S?(Fy) ™, 527

COROLLARY 2.3.8. For an abelian Hopf algebra H, the coproduct
v: H— S?H
is a map of commutative algebras.

Also, if A is a I'-algebra then by (2.1.17) A® A is a ['-algebra. Moreover, from
its definition we have

(2.3.9) YoT = Ts.

Thus S?A is also a I'-algebra.
We denote by H (resp. H.) the category of abelian Hopf algebras (resp. abelian
graded Hopf algebras).
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DEFINITION 2.3.10. A Hopf I'-algebra is a pair (H, v2) consisting of an abelian
graded Hopf algebra H together with a map

v2: 9, - H

satisfying 1. through 3. of Definition 2.1.9 along with the additional condition 4.
forzel,

Ay T = 72(5).
A map of Hopf I'-algebras is just a map in H, which is also a map of I-algebras.

We pause here to record a basic relation on a Hopf I'-algebra H. Our objective
is to give a description of the composite

¢,  H 2 oH.
To do so we define a map
(2.3.11) h:I—-H

which fits in the following expansion of (1.3.7)

®H

SRR

0 » ®8H —— S,H N » S2H = coker N —— 0
N
B E;H =—— E3H v
N
H « I < — H

h

Here o is the natural map determined by Proposition 1.3.8 and the dotted arrow
exists in positive degrees by 1. of Definition 2.3.10.

ProPoSITION 2.3.12. For a Hopf I'-algebra H the diagram

oL, 2> H

N

To prove this, we note that since i: S?H — H ® H is a map of I'-algebras then
%: H — S2H is a map of I'-algebras, by Corollary 2.3.8 and Definition 2.3.10.
In light of this and Proposition 1.3.8 we are reduced to proving

commutes.




3. SIMPLICIAL HOPF ALGEBRAS AND HOPF D-ALGEBRAS. 31

LEMMA 2.3.13. Let A be a [-algebra and w € S?A. Write w = v(a) + o(B)
as in Proposition 1.3.8. Then
m(12w) = 7o (u(@))
where @ € S>A satisfies £(@) = a.
SKETCH OF PROOF. Since 73 is quadratic, we have
Yow = 12v(a) + 120(B) + v(a) - o(B).
Using the I-algebra map i: S°A — A ® A we can compute 7(v(e) o(B)) = 0.
Also, since w € I3, 720(8) = 0. We are thus left with computing y2v(a). Choose
z € A® A such that it maps to o under A® A — E>A and let @ be its image in
SoA. Thenin A® A
w(e)=(1+7T)z
so that a computation using (2.1.5), (2.1.17), and (2.3.9) gives us
irov(a) = eiwv(a) =(1+ T)yvez +2-T2
= w(y) + io(u(@))
for some y € E3A (in fact y is the image of v22). O
DEFINITION 2.3.14. A Hopf D-algebra is a Hopf I'-algebra H together with
maps
6;: Hp — Hn+i
for all 2 < i < n, satisfying conditions 1.-3. of Definition 2.1.10, and with maps
Sqi :Hp — Hy

for all 7 > 0, satisfying conditions 1.-3. of Definition 2.2.10, such that the fol-
lowing relations are satisfied for a fixed z € H,
1. foreach2<i<n
A(S,':L' = 6,-A:r:
and foranyye H,j >0

(z-y)S¢ = ) (=5¢°)- (¥Sq')

s4t=j
2. foreach2<j<nandi>0
(S°(G — 5,5 — 2i + 25 — 1), _i4,(2S¢°) i>j
. i~ Juyr+ 6,(zSq* i=j
(6;z)Sq' = { V12 2,2;,- +(z5¢°) j
do(i—25,5— 2i+ 25 — 1)8;_it,(zSq*) 1< j
\ 3
(0 i>n
. vy i=n
(0n2)S¢" =\ ¥ (25¢°) - (25¢~*)
2s<i
+Y (i—25,n—2i4+2s — 1)bp_i4s(2Sq®) i< n.
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A map of Hopf D-algebras is simply a map of D-algebras and a map of A-
coalgebras. We denote the category of Hopf D-algebras by HD.

We now define a simplicial Hopf algebra to be both a simplicial algebra and a
simplicial coalgebra which satisfies (2.3.1) and (2.3.2). Clearly, Proposition 2.3.5
applies to a simplicial abelian Hopf algebra. We denote by sM the category of
simplicial abelian Hopf algebras.

We now come to the main theorem of this work, whose proof is postponed to
Chapter 3.

THEOREM 2.3.15. Let-H be a simplicial abelian Hopf algebra. Then w.H is
naturally a Hopf D-algebra. That is we have a functor

Ta: SH — HD.
On the proof: Consider the simplicial map (2.2.5)
v: H— S’H.
In light of Corollary 2.3.8, if =,y € m. H then we have the equations
Yo(z - ) = (Yuz) - (¥01)

and

Yu(b52) = 6j(¥u2).
Thus by (2.2.18), we are reduced to understanding 7,S2H as a D-algebra. This
is the main focus of Chapter 3.




CHAPTER III

Proof of the Main Theorem

1. The Reduction

As we noted at the end of Chapter 2, the key to proving the main theorem
(Theorem 2.3.15) is a complete understanding of the D-algebra 7, S?A, where A
is a simplicial commutative algebra. This is achieved in the following

THEOREM 3.1.1. Let A be a simplicial commutative algebra. Then for the

associated simplicial commutative algebra S?A the following relations hold in
the D-algebra m,S%A

a. ForremA,0<i<n,2<j<n+1

o) = ¥ (30 %Y ounini)

2s<j

o

.Forzem A, yemmA,2<j<n+m

oi(z-y)+[z-z,6y] ifn=0
bile,y)= S oj(z-y) + [6jz,y-y] fm=0
oi(z-y) otherwise

c. ForremA,yemnA,0<i<n,0<j<m
oi(z) - 0j(y) = oiyj(z - y)

d. Forz€mA, y,2€mmA 0<i<n

. _Jz-yz-2] ifi=n
oi(z) - [y, 2] = {0 otherwise

e. Forz,y,z,we mA
[x,y]-[z,w]:[x-z,y-w]+[:z-w,y-z].

33
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To prove this theorem, we note that the algebra structure on S2A is completely
determined from the one on A through the map of (2.3.4)

é: S252A — S2S,A

by (2.3.6). Thus, we are reduced to computing this map in homotopy when A is
an arbitrary simplicial module.

First, if we combine Proposition 2.1.16 and Proposition 2.2.16 then for V a
simplicial module we have

PROPOSITION 3.1.2. The following are generators for 7,552V :

oib;(z) forzem,V,0<i<n,0<j<n+i
HERY! forremV,yem,V,0<i<n+m
oi(z)-oi(y) forzen,V,yemmV,0<i<n,0<j<m
oi(z):[y,z] forzemV,y,zenV,0<i<n

[z,9] - [z2,w] forz,y,z,weEmV

o o T

PRoPOSITION 3.1.3. The following are generators for 7.S2S,;V :

gibi(z) forzem,V,2<j<n,0<i<n+j

gi(z - y) forzen,V,y€m,V,0<i<n+m
[6i(z),y-2] forzemV,y,z€mV,2<i<n
[6i(z),6;(y)] forzemV,y€mmV,2<i<n,2<j<m
[z-y,z-w] forzyz,wemV

o & o oo

We now arrive at the following which clearly implies Theorem 3.1.1.

PROPOSITION 3.1.4. Let V be a simplicial module. Then the effect of the
map

é: 5,5%V — S2S,v
in homotopy is given by the following
a. Forzen,V,0<i<n,2<j<n+1t

$ubjoi(z) = Z (288—_;—_1]) Oitj—s05(2)
2s<§

b. Forzen,V,yer,V,2<i<n+m

oi(z-y)+[z-z,6iz) forn=0
¢-6"[Iry]= Ui(z'y)+[6l'zry'y] form=0
oi(z-y) otherwise

c. ForzemV,yemnV,0<i<n,0<j<m

¢u(0i(2) - 05 (y)) = 0ij(z - )
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d. Forzen,V,y,2€nV,0<i<n

bu(0i(z) - [1,2]) = {([)x el it—_};er:'wise

e. Forz,y,z,wern,V

¢ullz, 4] [z, w]) =[z-2,y-w]+ [z v,y 7]

We end this section by taking a closer look at the map ¢. Let V be a module.
Then we have

Generators of S;52V:

[z, y] : [Z, w]
o(z) - [y, 2]
o(z) - o(y)
for any z,y,2,we V.
Generators of 525,V
[z Yz w]
o(z-y)

for any z,y,z,w e V.
Here o is the map of (1.3.6).

The effect of
¢: S5V — S5,V

is given by

[z,4] [z w] = [z 2,y -w]+[z-w,y-2]

o(z)-[y2l = [z-y.2-7]

o(z) - o(y) — o(z - y).
We can use this to compute the kernel and cokernel of ¢. First, we have a map
a: V8 5 5,8V

given by

a®b®c®d— [a,b][c,d]+[a,c]-[b,d]+ [a,d]- [b,¢c].
It is easy to see that
¢a=0.

Further, we have a factorization

yet ——— 5,5V

~N A
EgV

4
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Here E,4V is the 4'h exterior power of V i.e. the cokernel of the composite
(@V)o ve? 2L yes gy
where d is from (1.3.6).
CLAIM. The induced map
b: E4V — ker¢
is a linear isomorphism.
PROOF. By naturality of b and simplicity of the functor E4, b is injective,

since it is nontrivial. To see surjectivity, we note that b is onto when dimV < 4.
Thus, since Ej is a polynomial functor of degree < 4 the result follows. [

Now, an easy calculation shows
(S:V)* = S?v*
and
(S2V)* = S,V .
From this and Lemma 2.3.4 we have
¢ =9

Further (E4V)* = E4V* so that the claim gives us an exact sequence

0— BV — 5,8V 5§28,V — BV — 0
which is natural as functors of modules. This defines a map
F; — Ext%(E4, Eq)

where F is the category of endofunctors on the category of modules. L. Schwartz
has shown (private communication) that this map is an injection.

2. Proof of Theorem 2.3.15.

First, by Theorem 2.1.11 and Theorem 2.2.11 7, H is both a D-algebra and
an A-coalgebra. Moreover, A is a map of simplicial commutative algebras
by (2.1.17), (2.1.5), (2.1.8), and Lemma 2.3.3. By Theorem 1.2.1 and Theo-
rem 2.1.11 we conclude 7, H is a Hopf I'-algebra.

We now proceed to establish 1. and 2. of Definition 2.3.14. For the remainder
of this section we fix z € 7, H and write

bz =Y Iz, 2l]+ 3 0u(25¢")
k s

as in (2.2.18).
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1. The first part is an easy consequence of the fact that A is a map of sim-
plicial commutative algebras. For the second part let y € 7, H and write

boy= Y v1+ X ou(=Se).
£ t

By Theorem 3.1.1 we have

(Yaz) - (%av) = D 04(zSq*) - o+(ySq*)

=Y 3" oi(«Sq’ - yS¢)

i>0 st=i

=Y oi( Y 25¢" -yS¢')

i>0 s4t=i

where, here and throughout, “=” means “equal modulo [, ]’s”. By (2.2.18) we
have

Yu(z-9) = Y oil(z - y)ST).

i>0

The conclusion follows from Corollary 2.3.7. O

2. Fix 2 < j < n. By (2.2.18) we have

¥abi(2) = ) 0((62)Sd’)-
Next, Theorem 3.1.1 gives us

itz = Y 0j(zh - 2L) + Y 6;0,(2Sq")
k s

£—s-1 s
= ZUj(zg ‘zE) + E E (2£ _sj _ 1) Oj4s—t6e(2Sq°)
k

s UG
j—1—1 s
= Z”f(z;c =)+ Z 2 (j —J2i+ 9s 1) 0ib;_it+s(2Sq°)
k s 2i-j<s
— / " ] —-1-1 s
= za’j(zk -.’Bk)-f- EO’,’( Z (j_ 21+28— 1) 6j_;+,(xSq ))
k i 2i~j<s

When ¢ < j we immediately get the third equation. When ¢ > j the expression

m (-m+r-1
r) - r
gives us the first equation. When i = j we just need to verify

vYyx = E z) - zy
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which is just a consequence of Proposition 2.3.12. Finally, combining Theo-
rem 3.1.1 and Definition 2.1.9 we get

Onthuz = Z on(z} - z}) + Z bnos(2Sq°) + Z 0,(2Sq°) - 0+(zSq*)
k

s<t
=Y onlzh-2) + Z 6204(250°) + ) Y 0i(zSq’ - 2S¢"~*)
k 20 2s<i
= Z on(z) - zi) + Z Onos(2Sq°) + Z ”'(Z £Sq’ - 2S¢'?)
k 120 2s<4

and so proceeding as before gives us the remaining equations. The conclusion
follows from Corollary 2.3.7. This completes the proof of Theorem 2.3.15. O

3. A Detection Scheme
In this section, we begin our assault upon the map
ba: TS2S?V — 7,528,V

with the objective of proving Proposition 3.1.4. Our method will be to divide
and conquer. The key is that there exists a map

S5,V — (SzV)82 ® S25%v

which is injective in homotopy.
We start by recalling from §3. of Ch. 1, that we have the norm map

Ny: S,V — S?v

whose effect is
z-y— [z,
Consider now the maps
Ns:v : 3232V hand stzV
and
Ssz H stzv - 52521/.

It is well known that S252V = Sz’f L3/ where I, f X, is the wreath product
of X3 and X i.e. the subgroup of ¥4 which fits into the split extension

(3.3.1) 1—*23X22—>22f22—'22—>1
where, in terms of transpositions, we have

Yax = ((1:2):(3’4))
Z2 ={(1,3)(2,9)-

Moreover, it is well-known that X, f ¥y ~ Dg; the dihedral group of order 8.
We thus have the identity

(3.3.2) S2S5%V ~ SPev.
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LEMMA 3.3.3. There exists a natural idempotent map
a: §Pev — gDy

such that the diagram

Nsav

S,8%y —=—, §hsy
T
§28,V —— SPey
S3Ny
commutes. Explicitly
a=1+ 7‘(24, Ds)t(Dg, 24).
The proof will follow from the next lemma.
LEMMA 3.3.4. There exists a natural map
a - S2(V®2) — (52v)®2
such that the diagram

52(V®2) ff.‘i?i_, 52(V®?)

<#ll lall

(52V)®? (s?v)®?

(Nv)®?
commutes. Here ¢” is the map of Lemma 2.3.3. Indeed, we can take
o = Gt(zg, Y9 X Ez)

where the transfer is associated to the diagonal ¥ — ¥, x X5 and € is the
isomorphism induced by 1@ T® 1: V&4 — V84,

Proor oF LEMMA 3.3.4. First, we have commuting diagrams
1+(1,3)(2,4)

V®4 V®4
Pyve3 iy®2
®2 2 ®2
$2(V®?) ——g—— SU(V®Y)
and
V®4 (1+(1)2))'(1+(3|4)) V®4
$? i®?
(SzV)®2 T (52V)®2.
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An easy computation shows that the diagram
14(1,3)(2.4)

V®4 V®4
(2,3)[ 1(2.3)(1+(1.3))
o (1+(1,2))(1+(3,9)) . o

commutes. Consider now the map
52(v®?) v, yes
In the group ring F;[X4), we have the identity
(2.3)(1+(1,3))(1,3)(2,4) = (1 +(1,2))(2,3)(1,3)(2,4)

=(1+(1, 2))(1,2)(, 4)(2s 3)
=((1,2)3,4) + (3,4))(2,3).

This shows that the image of the above map is invariant under the action of
((1,2),(3.4)). We thus have a commuting diagram
S(ve?) 2, yes
a| |ema+as
(S?V)®2 —, ve4
:®3

‘v

defining a”.
Combining these four diagrams and Lemma 2.3.3 gives us a cube

V®4 —_— V®4

N

S2(V®?) S (ve?)

ye4 l — 84

. | N

(52V)®? ————— (5?V)®?

from which our desired commutative diagram results. The identification of o'
follows from our construction and the definition of transfer. [J
PrOOF oF LEMMA 3.3.3. Consider the composite
5252y 3269, gayery o, (qayye2,
From Lemma 3.3.4 and a computation we have
a”(1,2)(3,4) = €(1,2)(3,4)t(Z2, T2 x T3) = (1,3)(2,4)a”.
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Thus (1, 3)(2,4)a"S?(iv) = a”S?(iv). Hence we have a diagram

stz(v) i:_(‘L), 52(V®2)

‘| Jor

S28%(V) —— (S2V)82.

isay

By Lemma 2.3.4 and Lemma 3.3.4 our desired diagram commutes. From this
and the identity (2, 3)(1,3) = (1,3)(1,2) we arrive at the commuting diagram

S2S2(V) ——s VO
al 1(1,3)+(2,3)
§28%(V) —— V@t

Clearly 1,(2,3),(1,3) are coset representatives for Dg in X4. Also ((2,3) +
(1,3))% = (1,3)(1,2) + (2, 3)(1, 2) from the above and the identity (1,3)(2,3) =
(2,3)(1,2). Hence a> = . O

CoROLLARY 3.3.5. The following cube commutes

S, SV s2s%y
N . \
é Sz(V®2) SZ(v®2)
¢Il
S8,V l S282y a”
(S2V)®? (S*v)®?

ProokF. This easily follows from Lemma 2.3.4, Lemma 3.3.3, Lémma 3.3.4,
and naturality. O

NoTE. The effect of the map
a: SPey — §Dey
on elements is

[["'iy],{z’ w]] - [[zszlr[y: w]] + [[3)'”]:[% z]]
[o(2), [y, 2]] = [[=, ], [, 2]]
[o(z), o(y)] — oz, ]
o(z,4] — olz, 4]

from which we easily verify idempotence. We further note that the module of

natural maps
()P = ()P
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on the category of X4-modules has as basis the set {1,a}. In light of this,
Lemma 3.3.3 should not be surprising.

Now, by Proposition 2.2.16 we have

PROPOSITION 3.3.6. The following are generators of 7,S2S?V :

ojoi(z) forzen,V,0<i<n,0<j<n+i
ai[z,y] ' forz€m,V,y€mnV,0<i<n+m
[0i(),0i(y)] forz€mV,y€mmV,0<i<n, 0<j<m
[a.-(z), (v, z]] forzemn,V,y,z€mV,0<i<n
[z, 4], [z,w]] forz,y,z,wemnV.

® & o T

By Corollary 2.2.17, the effect of the map
(Nsav)e: 7828V — 1,825,V
is given by

§joi(z) — ojoi(z)
8i[z,y) — ojlz, 4]
0i(z) - 05 (y) — [0i(2), o ()]
oi() - [y, 2] — [o3(2), [v, 2]]
2,9 [z, 0] = [[=, 4], [z, w]].

Also, the effect of the map
(S%Ny).: 1.52S,V — 7,528V
is given by

0:6j(z) — 0io;(z)
oi(z -y) — oi[z, Y]
[6i(2), 8; (¥)] — [o:(=), o3()]
[6i(=),y - 2] = [oi(2), v 2]
[z y,2-w] - [[z,4)[z,v]).

Further, by Proposition 2.2.16, the effect of the map

(S2iv )e : 15252V — 1. Sa(VE?)
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is given by

5i(z®zx) i=|z|
sioi(z) =’
i9:(®) {0 otherwise
Silz,y] = §j(z@y+y® )

, , (z®z) - (y®y) i=|z] j=lyl
oi(2) - 7i(y) {0 otherwise

oi(z) - [y, 2] — otherwise

(2@2)- (y@z+20y) i=]a|
0

[x,y][Z,w]—*($®y+y®x)(z®w+w®z)
Also, the effect of the map

(is,v )t TuS2SV — m,(S2V)®2

is given by
0:6;(z) — bi(z)®6i(z) i=|z|+j
H 0 otherwise
oilzy) — (z-y)®(z-y) i=|z|+ ]yl
' 0 otherwise

[6i(2), 6;(v)] — bi(x) @ 6 (v) + 6;(z) ® bi(x)
[bi(2),y- 2] = 6i(z) ® (y - 2) + (y - 2) ® bi()
[-yz-w]—=(yY)Q(z-w+(z-w)(z-y).
From this we conclude that the map
(SN )u @ (isyy )e: MS2S2V — 1 S2S%V @ m.(S, V)92

is injective. We are thus reduced, by Corollary 3.3.5, to computing, in homotopy,
the maps induced by a and ¢”. For this we have

ProrosiTioN 3.3.7. Let V be a simplicial module. Then the effect of
a,: 1SSV — 71,5252V
is given by
a. Forzenm,V,0<i<n,0<j<n+1

a.0j0i(z) = Z (283_—111‘__11) Oitj—s0s(x)

232§
b. Forzen,V,y€rmn,V,0<i<n+m
a.oilz, Y} = oz, 4]
c. Forren,V,yem,V,0<i<n,0<j<m

a.[0i(z), 05(y)] = oij[z, Y]
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d. Forzen,V,y,2€mV,0<i<n

a.[oi(z), [y, 2]] = {[[Z,y],[z’z]] i=n

0 otherwise
e. For z,y,z,we r.V
o [lz, 9], [z, w]] = [z, 2), [y, w]] + [[z, w], [y, 2]].
ProPOSITION 3.3.8. Let V be a simplicial module. Then the effect of
¢l 153 (VO?) — m(5:V)®?
is given by
a. ForzemV,yemV,y€mnV,2<j<n+m

biz®y-y m=0
6.0i(zQ@y)=<z-z®6;y n=0
0 otherwise

b. For z,y,z,w € 7.V
$(z®y)-(z@uw)]=(z-2)®(y-w)

We will actually prove a much more general result then Proposition 3.3.8. To
state it we first need the following set up.
Let V and W be modules. Then the map

ITRL:VOWRVIW - VRVRIWRW

induces
7' S (VW) — SV ® SaW.

Following the proof of Lemma 3.3.4 verbatim gives us
LEMMA 3.3.9. There exists a map
@’ SH(VeW)—SVeStw
such that the diagram

Sy(Vew) X%, sV ew)

| E

SaV @ SaW SV @ S*wW

Ny@®Nw

commutes. Indeed we can take
o' = ft(zz, Y2 x Xy)

as in Lemma 3.3 4.




4. DWYER'S DETECTION MAP AND THE COHOMOLOGY OF GROUPS 45

PROPOSITION 3.3.10. Let V and W be simplicial modules. Then the effect of
3 S (VW) = 1.5V @ SsW
is given by
a. Forzen,V,yen,V,2<j<n+m
bz®@y-y m=0
$.5(z@y)={z 288y n=0
0 otherwise

b. Forz,z e n.V,y,w e m.W

Pl(z®y)-(z0w)]=(z-2)® (v w).

Clearly Proposition 3.3.10 implies Proposition 3.3.8. Finally, Proposition 3.1.4
follows from Lemma 3.3.3, Lemma 3.3.4, Proposition 3.3.7, and Proposition 3.3.8.
The proof of Proposition 3.3.7 and Proposition 3.3.10 will be given in §5.

4. Dwyer’s detection map and the cohomology of groups

In this section, we gather the tools necessary for proving Propositions 3.3.7
and 3.3.10. The key is the following theorem found in [9].

THEOREM 3.4.1. Given a simplicial module V and a subgroup G < X, there
exists a natural homomorphism

4G msGv - @H”(G; TipkVO™)
o<k
such that for a subgroup H < G

(G, H)WC =i H) t(H G)VH =vCGyH,0).

We summarize the proof of this theorem. Let G < T, and Cg; the category
of G-modules. Let
F:Cc—B

be an additive functor to some abelian category. This induces a functor
F: chCq — chB

of bounded above chain complexes over these categories. For a fixed C in chCg,
there exists an injective resolution C' — I i.e. an object I in chCe; which is
degree-wise injective, together with a quasi-isomorphism from C. Such an object
is unique up to chain homotopy. Define, as in [17], the total right derived functor
of F to be

RF(C)=F(I)

which comes equipped with a natural map
F(C) - RF(C).

At this point, we should remark that given C in chC; we can construct an
injective resolution C — I as follows: for each k € Z we have an injective
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resolution Cx — Ii. in C; by homological algebra. The chain maps for C
extend to give us a bichain complex ... Upon letting I = Tot IL,., the total
chain complex, we immediately get a quasi-isomorphism

C—-1I

which serves as an injective resolution. The advantage of this construction is
that it gives us a spectral sequence

(3.4.2) E}; = R'F(H_;C) = R** F(C)

where R¥*F(C) = H_;RF(C) and R*F(-) is the k*! derived functor of F on
C- This spectral sequence is constructed in ch. 17 of [5]. As an application, if
C is a G-chain complex with trivial differential then (3.4.2) collapses to give us

(3.4.3) P R*F(Ci-m) 2 R™F(C)
k>0
in B. To define our desired map WG let F be the G-fixed point functor i.e. for
M in Cq
(3.4.4) F(M) = MG = H(G; M).

Now, let V be a simplicial module such that NV is bounded above. Then the
Eilenberg-Zilber map provides us with a G-equivariant chain equivalence

(NV)®™ = N(VO™).
Moreover, since we are over a field, there is a chain equivalence
NV —-mnV

where 7,V has trivial differential, which induces a G-equivariant chain equiva-
lence

(NV)®™ — (., V)®™.
By (3.4.2), we have quasi-isomorphisms
RF(N(V®™)) — RF(NV)®™) - RF((x.V)®™).
By (3.4.3) and (3.4.4) we obtain
RUF(N(Ve™)) = €D H*(G; #n 41 V™).
k20

Now, H,F(N(V®™)) ~ H.NF(V®™) ~ 7.SCV by functoriality. Combining
the above, we have a natural homomorphism

7SOV = HiF(N(V®™)) » R-F(N(VO™)) =~ P H*(G; 7142 V®™)
k>0

which is what we call ¥G. The case of a general simplicial module V' follows
from a limit argument.

The relations involving restriction and transfer follow immediately from the
naturality and equivariance of all maps involved.
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The usefulness of the map of Theorem 3.4.1 is now made precise by the fol-
lowing

PROPOSITION 3.4.5. For any simplicial module V, the natural homomorphism
of Theorem 3.4.1 is injective for the group E,.

ProoOF. We first prove the result for V = K(n). From chapter 1 §1 we have

0 s<n
N,(K(n) ® K(n)) = ¢ nonzero n<s<2n
0 2n < s.

Let C be the ¥5-chain complex such that
1}?2[22](.’6,) n<s< 2n
Cs =  Fao(y) n=s
0 otherwise.

If we write £, = {1, T}, then the differential 8 on C is given by

8zs41 = (1 4+ Tz, n<s<?n
0ty =y.
Write m, K(n) = Fz(a) and define a map
f:C — N(K(n)® K(n))
by
z, = D™ *(a®a)
y— ¢n(a®a).

By Theorem 1.2.3 this is a map of ¥s-chain complexes. Moreover, it is a quasi-
isomorphism. Let F' be the functor H%(Xy;—). We wish to compute

H,F(C)— R "F(C).
To do so define the complex C by

6' _ Fz[zg](is) 85271
7o otherwise

with differential & given by 5i,+1 = (1 4+ T)z,. This is clearly a free X3-chain
complex and the map

-~

c-C
given by
T, — I,
y— (1 + T)En
is clearly a quasi-isomorphism. Thus RF(C) = F(C) and an easy calculation
gives that
H,F(C) — R™*F(C)
is an injection for all s.
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To obtain the general case, we first take V' so that NV is bounded above.
Then we have a weak equivalence :

P K(na) - V.

Thus it suffices to show that if W2 is injective for W, and W then it is injective
for W, @ Ws. First, we have a decomposition of

N((Wr© W2) ® (W1 @ W2))
as
N(W, @ W1) & N(W, @ W2) & N((W1 @ W3) ® (W2 ® Wh)).
Since the last summand is Ts-free and since WZ2 respects this decomposition,
injectivity follows. A limit argument completes the proof. []

We now pause to record a useful property of total derived functors.

LEMMA 3.4.6. Let G, H be finite groups and B an abelian category. Let
Fi:Cqg — Cy and Fp: Cy — B be additive functors such that F preserves
injectives. Then R(F3 o Fy) is chain homotopic to RF; o RFy. Moreover, the
natural map

Fz (] Fl - R(Fz o Fl)
is chain homotopic to the composite
Fo F1 - ('R,Fg) o F1 band RFQ ORF1.
As an application, we give a Corollary to Proposition 3.4.4.

COROLLARY 3.4.7. For any simplicial module V, WG s injective for G =
EzXZz MdG:Eszz.

PROOF. Let F; = H%(Z3; —) and F; = H%(Z3 x £3; —). A Kunneth theorem
argument shows that
Fz band RF2

is equivalent to
FLF, -RF, @RF:.
Thus injectivity follows from Proposition 3.4.5. Now F} and F; can be viewed
as functors
Fz: cEzfnz hand CE,

and

F: Cg, — (modules).
Since F, preserves injectives then using the fact that Fy o F; = H%(Z3 [ Za; )
our desired result follows from Proposition 3.4.5, Lemma 3.4.6, and the result
for £3 x a. See [9] for details. O

We now proceed to recall some useful tools in group cohomology. See [11] or
chapter 12 of [5] for details.
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Lyndon-Serre-Hochschild Spectral Sequence. Consider the extension
of finite groups

K—G—»Q.

Let M be a G-module. Then we have a first quadrant spectral sequence

(3.4.8) E}" = H*(Q; H*(K; M)) = H*(G; M).

Here H*(K; M) is a Q-module since we have the functor
HY(K,-):Cqg— Co-

To make this spectral sequence useful we have

LEMMA 3.4.9. Given a diagram

K> G » Q
K' - > GI Q’

whose rows are extensions then the induced map
H*(Q'; H*(K'; M)) — H*(Q; H"(K; M))

is a map of spectral sequences for a Q-module M. Moreover, the induced map
on Ey is compatible with

H*(G'; M) — H*(G; M).
Further, if the vertical maps are injective, then the map
H*(Q; H*(K; M)) — H*(Q'; H*(K'; M))

induced from the associated transfers, becomes a map of spectral sequences.
Again, the induced map on E® is compatible with the associated transfer,

H*(G; M) — H*(G'; M).

Double Coset Formula. Let H, K be subgroups of a finite group G. A
double coset representation of G with respect to H and K is a subset S C G
such that

G=|J Hok
g€S
and is minimal among all such subsets. Next, if # € G and J < G define the
conjugation map
cg:J - zJz!

by ¢z (u) = zuz~1.
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PROPOSITION 3.4.10. Let S be a double coset representation of G with respect
to H and K and let M be a G-module. Then for a € H*(K; M)

r(G, H)t(K,G)(e) = Z t(HNzKz™', Hyr(zKz™!, H N zKz" " )c,(a)
TES

= Z t(HNzKz™ !, H)eor(K, 2" 'Hz N K)(a)
z€S

holds in H*(H; M).

5. Proof of the Detection Scheme

In this section, we prove Proposition 3.3.7 and Proposition 3.3.10 using the
methods of the previous section. First, we need some basic results to facilitate
our computations.

Let K(n) be the Eilenberg-MacLane module so that 7,K(n) = Fz(a) where
|a} = n > 0. Then by Proposition 2.2.16
Fa{oi(a)) *=n+i 0<i<n
0 otherwise.

T S2K(n) =~ {

Also H*(Z;F3) = Fa[w] where w is dual to the generator Hy(X3;Fz) ~ F,. We
then have ’

ProposITION 3.5.1. Under the homomorphism
¥ 1, 52K (n) —» H*(Z2;F2)
of Theorem 3.4.1
¥520;(a) = win
forall0 <i<n.
ProorF. This follows easily from Proposition 3.4.5. 0O
Now, take K(m) so that x, K(m) ~ F3(b) where || =m > 0.
PROPOSITION 3.5.2. Let M be the Ey-submodule of m,(K(n) x K(m))®’

generated by a ® b. Then
; 0 i>0
HY (X, M) = .
(B2; M) {]Fg(\lfz’[a, B) i=0

PRrooF. For i > 0 this just follows from the fact that M is a free T,-module.
For i = 0 we note that under the projections

S%(K(n) x K(m)) — S*K(n)
S%(K(n) x K(m)) — S*K(m)

[a, b] projects to 0 in homotopy. Hence by naturality and Proposition 3.4.5 the
result follows. [0
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ProposITION 3.5.3. Consider the extension
Yo X g — Dg —» Xg.
Then for a simplicial module V
H*(Dg; 7. V®%) ~ H*(Zq; H*(Z2; 7. V®2)82),
Moreover, we have a factorization

wPs

.S v » H*(Dg; 7. V®)

7.525%V

¥=3

H*(E2; 7.(S?V)®?%)

s (5o (5 . 782182
wEaenen 1 (G (En V) )

PRrRoOF. Define functors
F1: CD. g CE,
and
F: Cg, — (modules)
by F1 = H%(Z; x £3;—) and F; = H%(Z3; —). Then F; preserves injectives and
Fy0 Fy = H%(Ds; —). So by Lemma 3.4.6,

R(Fg OFl) ZRFz ORF1.

Thus it suffices to compute H,(RF; o RF;) for NV®4. Since we have an equiv-
ariant equivalence
NVe S (7, V)8
and since RF; is Xy-equivalent to RF; @ RF, we conclude that we have a ¥o-
equivalence _
RF(NV®*) - H*(Zy; 7. V®?%)82
so by (3.4.3)
H.(RF; o RFi(NV®?Y)) = H*(Zy; H*(Z2; 7. V®%)82),
The identification of ¥P* follows from the 2" part of Lemma 3.4.6. O

NoTE. The identification in Proposition 3.5.3 can also be worded to say that
the spectral sequence (3.4.8) collapses at the E2-term. We also note that this
identification gives us a choice of representatives for the generators for the co-
homology of Dg, but we will see that in most cases the spectral sequence (3.4.8)
has only one nontrivial column or row at E2, forcing our hand.

Before proving Proposition 3.3.7, we note that by Lemma 3.3.3 and Proposi-
tion 3.4.1 we have

(3.5.4) ., U0 = ¥Peq,

Also, combining Lemma 3.3.3 and Proposition 3.4.10, we have
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PROPOSITION 3.5.5. Let A < Dg be the subgroup (2,3)Dg(2,3) N Dg. Then

the map

a.: H*(Ds; 7r..V®4) - H"(Dg;1r.V®4)

satisfies the identity

ay = (A, Dg)ca,3yr(Ds, A).

Now, we proceed to prove Proposition 3.3.7. To do so we exploit naturality
using (1.1.2) and reduce to universal examples. To this end we fix the following

throughout
T.K(m)=Fya) [a|=m
mnK(n)=F(b) |b|=n
mK(p)=F(d) |d|=p
mK(g) =Fae) le|=4¢

where m,n,p,q > 0.

Proof of Proposition 3.3.7 part a: First, since A = £y x X2, H*(A;F;) ~
Fa[v1, v3] where vy,v2 € H!(A;F2) is dual to the elements of Hy(A;F,) associ-
ated to the generators of A. We now summarize a result in [9].

PROPOSITION 3.5.6. There exist elements z,y € H(Ds;F2) and z € H?(Ds; F3)
such that

1. H*(Dg;F3) = Fa[z,y, z]/(zy)
2. T(Ds, A)Z = vy
T(Ds, A)y =0

T(Ds, A)Z = ‘01(1)1 + vz)
3. (A, Dspof* = )
0<2¢<m

m=—L£—=1\ -2
( : ) 22,
#(A, De)v] = 0.

PROOF. 1. follows from Proposition 3.5.3 plus a determination of extensions
which is performed in [1].

2. Is another calculation done in [1].

3. Is a computation performed in [9]. O

PRrorosITION 3.5.7. Under the homomorphism
¥P0s : 1,80 K(m) — H*(Ds;F2),
¥Peg;0i(a) = g™ H—im=t,
PROOF. Asshown in [9], under the identification of Proposition 3.5.3, z" is the
element w" in H" (2, H(Z2; 72m K (m)®2?)®2) and 2" is the element w" @ w" in

HO%(Z3; H™(Z2; 72m K (m)®2)®2). The result now follows from Proposition 3.5.1
and 3.5.3. O
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Before getting to our main computation, we need

LEMMA 3.5.8. Let N€ Z anda > r > 0. Then

ost;r (;) (slfe) = (N:').

ProoF. This follows from an easy induction on r using the general Pascal’s
identity. [

Now, combining (3.5.4), Propositions 3.5.5, 3.5.6, and 3.5.1 we have
¥Psq,0;0i(a) = a.(z™H—i M)
=t(A, Dg)c(2,3)r(Ds, A)(z*2%)
= t(A, Ds)e(z,3)(v3vi (v1 + v2)°)
(3:5.9) = H(A, Dg)(v}vh(v1 +2)")

t\ st
= t(A, Ds) Z (k) ‘Ul+t k'l)?—k .
0<k<t

Here we have the identity S = m+i—j and t = m — i. We have also slipped in

6(2,3)’01 = V2.
Now, by p. 257 of [5] and Proposition 3.5.6 (3.5.9) becomes

(3.5.10)
> (ltc) t(A, Dg)uit~*
0<k<t

Z t) t+k (S+t—k—£— 1) stt-k—2L L

= F 1 z r4

0<k<t (k (052£§n:+t—k ¢

- Z z (t) (3+t—k—£— 1) gH2t=2t L
0<2¢<s+t \0<k<s+t-2¢ k t

- Z (;) (s+t—§—t— l) e
0<2¢ \0<k<t
where the last equality follows since k < s + ¢t — 2. Now, for each k
s+t—k—£€—-1\_ [s+t—k—£-1) _ —£-1
£ T\s+t—k—-20-1) " \s+t-20—-k-1)"
Applying Lemma 3.5.8, we obtain

S EHC )=t

0<k<t
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Thus (3.5.10) becomes

t—£-1 s4t—2L ¢ __ s—i—1 n—i-j42s _n—s
2 (s+t—2e—1)‘ z‘_z 25-j-1)% z
0<2¢<s+1 j<2s
upon letting £ = n — s.
Combining Proposition 3.4.1, (3.5.4), Propositions 3.5.5, and 3.5.7 we arrive
at our desired result.

Proof of Proposition 3.3.7 parts b and c: As before, it is sufficient to
prove it for the case V = K(m) x K(n).

Let N be the £4-submodule of 7, (K(m) x K(n))®* generated by a®a®b®b.
As such N is a direct summand of 7, (K(m) x K(n))®* as a £4-module. Further,
as a Dg-module

N=NQN;
where N is generated by a@ a® b® b and N» is generated by a ® b @ a ® b.
Now, writing the extension of (3.3.1) as

B Dg - X,

where B = ((1,2),(3,4)) ~ X3 x X, then N is a direct sum of two trivial
B-modules. Thus by the Kunneth theorem

H*(B; N1) = H*(B,F;) ® H*(B; F2) ~ Fa[(], (3] @ Fa[(y, (3]
Here X3 acts by exchanging summands, which is a free £z-action. Hence (3.4.8)
tells us that
H*(Dg; Ny) ~ H(Zq; H*(B; N1)) =~ F2[(1, (2}
where (; corresponds to ¢{ & ¢{’ and (2 corresponds to {3 & (Y, |(1]| =1 = |(2|.
Next, N, is a free B-module so by (3.4.8)
H*(Dg; N3) ~ H*(Z2; H'(B; N»)) ~ F,[¢]

with |¢] = 1.
Now, we have an extension

Yo A=y

so that
H*(A; M) > HY(S2; H*(S2; 1)) = Fa[n]  Inl=1

since N; is a direct sum of two trivial ¥3-modules with respect to the inner

X,-action and so proceed as above. Now, N; factors into N3 @ Ny as A-modules

where N} is generated by a® b® a ® b and NY' is generated by a® b® b ® a.
Thus

H'(A;Nz) o~ Fg[z\ﬂ $]F2[/\2] I/\." =1 i=1,2

by a computation as above.
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ProPoOSITION 3.5.11. 1. Under the mapr(Dg,A): H*(Dg; N) — H*(A; N)
G—mn
G2—1
E—= A0
2. Under the map c(2.3): H*(A; N) = H*(A; N)
n— A
/\2 - Az.
3. Under the map t(A, Dg): H*(A; N) — H*(Dg; N)
7 =0
1—¢
F— g
for all r > 0.

ProoF. 1. Consider the diagram of extensions

Yo > A » Yo
B > Dg )73

where § is the diagonal map. This induces
H®(Zy; H*(B; M) — H'(Z3; H* (Z2; M)
and
H*(Z2; H'(B; N3)) — H*(Z2; H(Z3; N2)).
These are the restriction maps
H*(Ds; N;) — H*(A; V)

for i = 1,2, by our above computations and Lemma 3.4.9. The first restriction
is an easy computation. For the second restriction we have H°(B; N;) ~ FF, and
HO(Z2; N2) ~ F; & F; so that the induced map F, — F; @ F; is the diagonal
map.

2. This is an easy consequence of the fact that

c2,3N = N;
0(2’3)N” = N;’

3. First, N is a free B-module so that r(Ds, B) is trivial on H*(Ds; N3) in
positive degrees. Next, N; is a direct sum of two trivial B-modules thus

H*(B; N3) =~ Fa[11,72] ® F2[p1, p2]
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where |vi| = 1 = |p;i| i = 1,2. From the diagram of extensions

B~ B » 1
B~ Dg -+ g

and Lemma 3.4.9, the restriction map r(Dg, B) on H*(Dsg; N1) is equal to the
inclusion
H°(Z3; H*(B; N1)) — H*(B; Ny).
Thus
r(Ds; B)(1( = 1175 © ¢1ph-
We now pause to bring in the transfer

CLAIM.
r(Ds, B)t(A,Dg) = 0

PROOF. By Proposition 3.4.10
r(Ds, B)t(A, Ds) = t(I, B)r(A, I)

where

I=ANB.
Since I is a factor of B, r(B, I) is onto, but ¢(I, B)r(B,I) = 0 so that t(I, B) =
0. O

From this claim and our computations, we conclude that
t(A, Dg)A] = ci€"
¢; € Fa, i = 1,2. From Proposition 3.4.10, we have
r(Dg, AYt(A, Dg) = 1+ ¢(1,3).

Since
(L2JN =M

(L,2)N] = Ny
we get that under r(Ds, A)t(A, Dg)
Al = A1 @ AL
So ¢; = 1 for i = 1,2. Finally, (A, Dg)y" = 0 since 1" is in the image of
r(Ds,A). O
Now, the relevance of the module N comes from
PROPOSITION 3.5.12. 1. For0<i<m,0<j<n
¥P[0;(a), (b)) = (" ~*¢3 ™7 € H*(Ds; N1)
2. For0<i<m+n
¥Peg;[a,b] = £"t™F € H*(Ds; N3).
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ProoF. These follow from Propositions 3.5.1, 3.5.2, and 3.5.3. O

Combining Corollary 3.4.7, (3.5.4), Propositions 3.5.5, 3.5.11, and 3.5.12 gives
us our desired result.

Proof of Proposition 3.3.7 part d: Again it is sufficient to prove the result
for V = K(m) x K(n) x K(p). Let N be the £4-submodule of 7, V®* generated
by a @ a® b @ d. As such it is a summand of the £4-module =,V ®4,

PropPosITION 3.5.13. Forall0<i<m
¥P*[0:(a), [b,d)] € H™*(Dg; N).

ProOF. Again, this is a computation utilizing Propositions 3.5.1, 3.5.2, and
353. O

Now, since N is a free A-module, then by (3.5.4) and Proposition 3.5.5 the re-
sult follows from a computation utilizing Proposition 2.2.16 and Corollary 3.3.5.

Proof of Proposition 3.3.7 part e: Let V = K(m) x K(m) x K(p) x K(q)
and N the X4-submodule of 7.V®* generated by a ® b @ dQ e.

ProrosiTION 3.5.14.
¥P* [[a,b), [d, e]] € H*(Ds; N).
ProorF. Combine Proposition 3.5.2 and 3.5.3. [

N is X4-free so another computation using Proposition 2.2.16 and Corol-
lary 3.3.5 gives us our result.
This completes the proof of Proposition 3.3.7.

PROOF OF PrROPOSITION 3.3.10. a. It is sufficient to prove the result for
V = K(n) and W = K(n). Suppose n,m > 0. Then

(Nv ® Nw)s: mS2V ® $eW — 1,52V ® S*W

is injective. Thus it suffices to compute @”. By Theorem 3.4.1 and Lemma 3.3.9
our conclusion follows from (X2, X2 x £3) = 0 since r(E3 x X2,X,) is onto
H*(Zq; m(V ® W)®2). Suppose n = 0. Define ‘

i1: (S2V)QW — S(VR W)
as the unique simplicial map such that

(zy) ®b— (z®b)(y® D).

Also define
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as 1 ® ¢ (see (1.3.6)). Then the diagram
S:(Vew)

(S:V)o W r
SzV ® S2W

commutes. A computation gives the result. The case of m = 0 is the same.
b. This is an easy computation using the diagram

(Veaw)®?2 —— S (Vew)

1®T®11 l;”

(V8% @ (W) —— S,V @S, W
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