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Abstract

In this paper, we analyze the structure possessed by the homotopy groups of
a simplicial abelian Hopf algebra over the field IF2 . Specifically, we review the
higher-order structure that the homotopy groups of a simplicial commutative
algebra and simplicial cocommutative coalgebra possess. We then demonstrate
how these structures interact under the added assumptions present in a Hopf
algebra.
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Introduction

The goal of this paper is to determine all the natural relations that occur in
the homotopy groups of a simplicial abelian Hopf algebra over F2, the field of two
elements. Here Hopf algebra means a unitary algebra and a counitary coalgebra
for which certain diagrams commute (see (2.3.1)). An abelian Hopf algebra then
is one which is commutative as an algebra and cocommutative as a coalgebra.

It is well-known that over F2, the homotopy groups of a simplicial commuta-
tive algebra possesses, in addition to an algebra structure, a compatible action
of a certain operator ring. These operations are viewed as higher-order versions
of divided squares. Dually, the homotopy groups of a simplicial cocommutative
coalgebra possesses an operational action which extends the coalgebra structure.
In fact these are just the Steenrod operations viewed as the dual of higher-order
squaring operations. In each case, the higher-order structure exists because of
the (co)commutativity. Thus the homotopy groups of a simplicial abelian Hopf
algebra possesses both of these structures and the additional properties will pro-
duce relations between them.

These relations contribute to the understanding of the cohomology of iterated
loop spaces with F2-coefficients. In particular, the cohomology of a cosimplicial
iterated loop space is a simplicial abelian Hopf algebra. The E 2-term of the
generalized Eilenberg-Moore spectral sequence (see, for example, [3]) associated
to this cosimplicial space, is the homotopy groups of this particular simplicial
algebra. Thus the relations assist in making computations. Further, theses
operations play a role in understanding the action of the Steenrod and Dyer-
Lashoff operations on the abutment of the spectral sequence (see [10], [18], [19],
and [20]).

This paper is organized as follows. Chapter 1 is a review of relevant simplicial
homotopy and symmetric group actions. Chapter 2 sets up the background for
and makes the statement of the Main Theorem. In particular, section 2.1 reviews
simplicial commutative algebras and the properties of their homotopy groups, as
presented in [9]. Section 2.2 does a similar summary for simplicial cocommutative
coalgebras following [12]. Finally, section 2.3 reviews Hopf algebras, establishes
an abelian version of the Hopf condition, and states the Main Theorem which
portrays the natural relations that occur in the homotopy of a simplicial abelian
Hopf algebra.

Chapter 3 is devoted to proving the Main Theorem. We begin, section 3.1,
by stating the Reduction. This is a theorem which computes the homotopy
groups of a functor on simplicial commutative algebras. We immediately reduce
the proof of this Reduction to computing the effect of a natural map, between
two functors on simplicial vector spaces, in homotopy. This natural map arises
from the abelian Hopf condition, established in section 2.3. In section 3.2, we
use the Reduction to prove the Main Theorem. In section 3.3, we begin the
proof of the computation for the natural map of section 3.1. We first fit this
map into two commuting diagrams. This reduces our efforts further by allowing
us to divide the computations between two new natural maps, each possessing
properties amenable to calculations. In particular, in section 3.4, we recall a
method developed in [9] which allows us to convert our simplicial calculations to
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ones in the cohomology of groups. Finally, in section 3.5, we make these group
cohomological calculations, completing the proof of the Reduction.
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Conventions

All groups throughout are finite.
Let R be a ring, G a group, and V a left R-module. Then V is a G-module if

V is a left R[G]-module. On the category of G-modules there are two functors.
The first functor

(_)G: (G-modules) -- (R-modules)

called the G-invariant functor, is defined by

VG={zEV:gz=x forallgEG}.

The second functor

(-)G: (G-modules) (R-modules)

called the G-coinvariant functor, is defined by

VG = V/{(1 - g)z z E V, g E G}.

Further, given a subgroup H < G, the inclusion induces a natural transforma-
tion, called restriction,

r(G, H): VG . VH.

Also, if gl,... , g, are coset representatives of G/H, where m = (H : G), then
the action of the element g + ' " + gm E R[G] on V H induces a natural trans-
formation, called transfer,

t(h, G): VH - VG.

The two transformations are related by

t(H, G)r(G, H)x = (H : G)z

for any z E VG.
For a fixed group0 G, we denote by i the inclusion

VG . V

and by p the projection
V - VG

Next we call V a graded R-module if V = {V},>o where each Vn is an R-
module. If W is another graded R-module we define the graded tensor product
V®W by

(V W) = V®i Wj
i+j=n

for all n > 0.
On the category of graded R-modules we have a functor

graded \ ( graded
: R-modulesJ ,R-modules)
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called the doubling, defined by

(tV)n =( n odd
n even

For an element z E V we denote its associated element in TV by .

Finally, for n E Z and k E N define (n) as the coefficient of in the Taylor

expansion of (1 + x)n . These numbers satisfy the general Pascal relation

Further, we have
(n) =(-n+k-1)

Also we define for i, j O0

For the rest of this work R , the fied of two elements.

For the rest of this work R = F2 , the field of two elements.
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CHAPTER I

Preliminaries

1. Simplicial F2 -modules

Define a simplicial 1F2 -module V to be a graded ]F2 -module together with maps
of modules

dj: Vn " Vn-

called face maps, and
sj: Vn -- Vn+l

called degeneracies, for 0 < j < n, satisfying standard identities (See [14]). A
map f: V --, W of simplicial F2-modules is a map of graded modules which com-
mutes with the face and degeneracy maps. We denote the category of simplicial
F2-modules by sF2.

Next given two simplicial F2 -modules V and W we define the simplicial tensor
product V ® W by

(V ® w)n = Vn Wn,
such that for xz y E (V W)n then

dj(x ® y) = dx djy sj(x ) = jX sjy
< j < n.
Now, define the normalization functor

N: sF2 - f F2-chain 
N'F2 -s* (complexes

as follows: For V in sF2 define, for each n > 0, the submodule DnV C Vn by

DnV = imso + * + imsn-l.
From this define

NnV = Vn/DV.
Further, define

8: NnV -- N_V
by

13
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As shown in [14], (NV, 0) is a well-defined chain complex.
Moreover, N has a left adjoint

S: ( F2-chain E
complexesj sI 2.

As shown in [6], the adjoint pair (S, N) determine an equivalence of categories.
We are now in a position to define, for V in sF2, the homotopy groups 7r.V by

v = Hn(NV, a).

This defines a functor

r*: Sy ( graded's2 - 2-modulesj '

Moreover, this functor is corepresentable as follows:
For V and W in sF2 define its homotopy set of maps to be

[V, W] = hom, 2(V, W)/~

where f g if f is homotopic to g (see [15]) for f,g E hom,sr(V, W). Now,
define, for n > O, K(n) in s 2 by SC(n) where C(n) is the chain complex such
that

C(n), = F2 q=n{ 0 otherwise.

From the equivalence of categories we have

(1.1.1) qrqK(n)= {2 q=n
otherwise.

Moreover, the correspondence

(1.1.2) [K(n), V] - irnV

given by

where l E xrK(n) is the generator, is a bijection (see [15]).

REMARK. An equivalent definition of K(n) is given as follows:
Let A[n] be the standard n-simplex and [in] the simplicial set generated by

djl, where n E A[n]n. Then K(n) = free F2-module on A[n]/A/[n].



2. EILENBERG-ZILBER THEOREM.

2. Eilenberg-Zilber Theorem.

We begin by summarizing the Eilenberg-Zilber theorem as given in [14] and
[9].

THEOREM 1.2.1. Let V and W be two simplicial F2 -modules. Then there
exists a unique natural chain map

D: N(V) N(W) -, N(V W)

which is the identity in dimension 0.
Moreover, there exists a natural chain map

E: N(V W) - N(V) N(W)

such that
ED = 1 DE 1.

In [9] it was noticed that since D is necessarily the shuffle map (see [14]) thus
D possesses a symmetry. This symmetry was exploited by Dwyer to construct
higher order versions of D which we now describe.

DEFINITION 1.2.2. For each k > 0, let

4 k: N(V) ® N(W) - N(V W)

be the chain map such that for z E N(V) and y E N(W)

Ok(X ® Y) To y I- = = l yl
o otherwise

'k is called an admissible map.

Let T denote the switching map for either

N(V) N(W) -D N(W) X N(V)

or

N(V ® W) - N(W V).

THEOREM 1.2.3. Let V and W be simplicial F2 -modules. For each k > 0
there exists a natural chain map

Dk: [N(V) ® N(W)]m -* N(V ® W)m-k

defined for m > 2k and satisfying
1. D + TD° T + o = D

2. Dk+l + TDk+lT + 4bk+l = ODk + DkO

REMARK. Dwyer showed in [9] that each Dk is unique in a certain sense.
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3. Group Actions on Tensor Products.

Let V be an F2 -module and define

V®m = V ®...® V.
m-times

Then Em, the symmetric group on m letters, acts on V'm by permutation.
Thus for any subgroup G < Em, VIm is a G-module. With this we define the
G-symmetric invariant functor

(1.3.1) SG: mF2 mF 2

by

SG(V) = (V@m)G

and the G-symmetric coinvariant functor

(1.3.2) SG: mF 2 - mlF2

by

SG(V) = (m)G.

If G = Em then we denote (1.3.1) by Sm and (1.3.2) by Sm.
Now, let N E F2 [G] be defined by

(1.3.3) N= E9
9EG

Then the action of N on vOm defines a map which factors

VOm N - VOm

(1.3.4) T

/i
SGV

but since, for any z E V®m, r(gz) = r(z) for any g E G then we have a further
factorization.

VOm -,f SGV

(1.3.5)
p-\ ,N

SGV

defining the norm map N.
Because of its importance later, we analyze the norm map N in the case

G = E2. First, we define the diagonal map

d: (V - V®2



3. GROUP ACTIONS ON TENSOR PRODUCTS.

by d:= x 0 x. This is not a homomorphism, nonetheless we have a commuting
diagram

S 2V

/ 1i

(1.3.6) (DV - VO2

P

S2V

a is not a homomorphism, but t is one. From this we define the exterior square
functor E2 by E2 V = coker t. We now have the following commutative diagram

(1.3.7)

0 -- V V- S2V N
S2V '- cokerN -- 0

E2 V

from which we have that E2V = im N = ker r. Note that ra is a linear isomor-
phism.

As an application of (1.3.7) we have

PROPOSITION 1.3.8. For any w E S2 V there exists a E E 2V and E V,
uniquely determined by w, such that

w = (X) + (2).

PROOF. Let a: cokerN -+ S2V be the composite a (ra) - ' so that ra = 1.
Then the self-map

1 + r: S2V S2V
satisfies ir(1 + ar) = 0. Thus since v is injective, there exists a E E2V such that

v(a) = w + air(w).

Finally, let x E V be the element which satisfies

Conclusion follows. 
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CHAPTER II

Simplicial Abelian Hopf Algebras

1. Simplicial Algebras and D-algebras.

Recall that a (graded) algebra is a triple (A, m, a7) consisting of a (graded)
vector space A and maps of (graded) vector spaces

(2.1.1)

called multiplication, and

(2.1.2)

m: AA A,

77: IF2 A,

called the unit, such that the two diagrams

A®A®A ml A®A

(2.1.3) i&ml Im

A®A X A

and

IF2®AA -
(2.1.4) elfA

A®A

\A®F2 I A0A

m A

commute.
We further call our algebra commutative if (2.1.1) factors as

mA®AA
(2.1.5)

S 2 A

NOTATION. For brevity, we denote an algebra (A, m, 11) by A. Also, for x, y e
A we denote the image of x 0 y E A ® A under m by x · y.
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II. SIMPLICIAL ABELIAN HOPF ALGEBRAS

Next, given algebras A and A', a linear map f:
if the diagrams

A®A 0 A' A'

A -- A' is a map of algebras

AI j Am'
A f A'

A

IF2 f

A' 
A'

commute.
Note that if A and A' are

(2.1.8)

commutative then (2.1.6) can be replaced by

A 2(f)
S2A I S2A'

I pl

A - A'

We denote the category of commutative algebras (respectively commutative
graded algebras) by A (respectively A).

Given a graded algebra A, let I,(A) C A s > 0 denote the ideal of elements x

in A such that Il > s.

DEFINITION 2.1.9. A r-algebra is a commutative graded algebra A together
with a map

72: I2 - A
such that

1. I is exterior under the product of A,
2. for x,yE I2

72( 1y) = 72 (x) + 72() + x -y,

3. for x, y E A such that x ·y E I2

0

Y2(e nY) = (m t f) 72(1)
72(z) (Y Y)

We now make the following, as given in [12].

(2.1.6)

and

(2.1.7)

z, yE I

Il = .

20



1. SIMPLICIAL ALGEBRAS AND D-ALGEBRAS.

DEFINITION 2.1.10. A D-algebra A is a r-algebra together with maps

6i: An - An+i

for all 2 < i < n such that
1. 6i is a homomorphism, for i < n, and 6, = 72,

2. for z, y E A such that xz y E An then

(Z a·) i(y) 1z = 0

i(z .y)= i(Z) ( ) IY=°
0 otherwise,

3. for z E An and j < 2i then

6j6ix = (i- j + s-1) 6+

A map of D-algebras is a map in A. that commutes with the i. We denote the
category of D-algebras by AD).

We now define a simplicial algebra (A, m, r) so that (2.1.1)-(2.1.4) are satisfied
with the caveat that (2.1.1) and (2.1.2) are now maps of simplicial modules (F2
is replaced with its constant simplicial alias). Further (2.1.5) is satisfied for
simplicial commutative algebras with the factorization occurring in sF2. We
denote the category of simplicial commutative algebras by sA.

The following was proved in [9] and [13].

THEOREM 2.1.11. Let A be a simplicial commutative algebra. Then r.A is
naturally a D-algebra i.e. we have a functor

r,: sA -D AD.

REMARK. The operations 6i in (2.1.10) were first discovered in [4]. Their
properties were subsequently derived in [2] and [9]. In the latter, they were
called higher divided squares.

We conclude this section by indicating why Theorem 2.1.11 completely deter-
mines the homotopy of a simplicial commutative algebra.

In light of (2.1.5), a computation of the homotopy of S2 V, for a simplicial
module V, in terms of r. V would give a complete picture of the primary operator
algebra for the homotopy of a simplicial commutative algebra. Such a description
is known to exist by [8]. We now proceed to make this description explicit.

Fix a simplicial module V. For each 0 < i < n define

(2.1.12) Eo: NnV - N+iS 2V

by

(2.1.13) Ei(a) = pDn-i(a ® a) + pDn'-i-l(a ® Oa)

where the DI are from Theorem 1.2.3.
A computation gives us that

XOi = eia.
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II. SIMPLICIAL ABELIAN HOPF ALGEBRAS

Thus, for 2 < i < n, Oi induces a natural map

(2.1.14) 6i: 7irnV -- 7r,+iS2 V.

Also, the chain map
pD: NV NtV -- N,+tS2V

induces a homomorphism

(2.1.15) m: r,V rtV -* r,+tS2V.

Combining the results of [4], [2], and [9] we are led to

PROPOSITION 2.1.16. Let V be a fixed simplicial module. Define W to be the
graded module with basis

bi(x) for E 7rnV and 2 < i < n,
.-y forzE7rsVandyE7rtV.

Define a submodule B in W with basis

O 2<i< n for , y E rVbi(x + ) + i(z) + i(Y)+{ n for , yrV
- y i = n,

z y+y *z for E ,V and y E rtV,

x (y+z) + y+ + z forz E r,V and y,z E rtV,
* xz for E 7rnV and n > O.

Then the map W --, r*S2V given by

xz y - m(xz 0 y)

bix z bi

is natural and induces a linear isomorphism

W/B _ rS 2V.

NOTE 2.1.17. Given (graded) algebras A and A' then A 0 A' is a (graded)
algebra under the product

(A A') (A A') 1®T®1 (A A) (A' A') m2m' A A'.

Further, if A and A' are r-algebras then we define

72: I2 -- A A'

by demanding that the diagrams

4I 2(A) I 2(A F2 ) (') 1 2(A A')

2 , A A'
A A IF2 Ao A'
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2. SIMPLICIAL COALGEBRAS AND A-COALGEBRAS.

and

PI (A') $I 2(F 2 ® A') ( (A A')

721 172

A' F2 ® A' A A'

commute and then extending using 3. of Definition 2.1.9. Similarly, we define a
D-algebra structure on A ® A', when A and A' are D-algebras, by demanding
that

bi: (A A n') - (An A'),+,i

for 2 < i < n, fits in the commuting diagrams

An (A ® IF2 )n 1 1' (A X A)n+

ni(A 2nandi (A ni

Al + (IF2 ® A')n+i (A ® A'),,+i

and then extending using 2. of (2.1.10).

2. Simplicial Coalgebras and A-coalgebras.

Recall that a (graded) coalgebra is a triple (II, A, e) consisting of a (graded)
module II and maps of (graded) modules

(2.2.1) A: H - II II,

called comultiplication, and

(2.2.2) ': I - F2 ,

called the counit, such that the diagrams

(2.2.3) IA1

I nI 1A II ® ®II

23



II. SIMPLICIAL ABELIAN HOPF ALGEBRAS

and

(2.2.4) A le

commute.
We further call our coalgebra cocommutative if (2.2.1) factors as

(2.2.5) ,

s2n

NOTATION. For brevity, we denote a coalgebra (II, A, e) by II .

For two (graded) coalgebras II and II', a map f: II -. II' of (graded) modules

is a map of (graded) coalgebras if the two diagrams

(2.2.6) 1A
lff

and

(2.2.7) f F2

commute.
Note that for II and II' cocommutative, (2.2.6) can be replaced by

(2.2.8) ,1 to

S2 I - S 211'
S2(f)

We denote the category of cocommutative coalgebras (resp. cocommutative graded

coalgebras) by CA (resp. CA.).
Next, given a cocommutative graded coalgebra II we define the coalgebra map

24
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2. SIMPLICIAL COALGEBRAS AND A-COALGEBRAS.

called the verschiebung, as follows: Fix z E II. Then bx E S2II. By Proposi-
tion 1.3.8 there exists unique a E E2II and /3 E II such that

o = v(a) + U(3).

From this we let v(x) = 3.

DEFINITION 2.2.10. An A-coalgebra is a cocommutative graded coalgebra II
together with homomorphisms

Sq': II , - II,_i

for i > 0 such that for z E in we have
1. xSq i = 0 for 2i > n and xSqI = v(x),
2. if Az = Ex'® then

A(xSqi) = I ('Sq') ® (x"Sq'),
s+t=i

3. for j < 2i we have

xSq Sq' = (i j - 2s 1xSqi+j- SqS.

We define a map of A-coalgebras to be a map in CA. which commutes with
the Sqi . Denote by A;* the category of A-coalgebras.

NOTE. A clearly denotes the Steenrod algebra.
We now define a simplicial coalgebra to be a triple (II, A, e) where II is a

simplicial module and satisfies (2.2.1)-(2.2.4) with the exception that all maps
are maps of simplicial modules. Further, a simplicial cocommutative coalgebra
also satisfies (2.2.5). (2.2.6)-(2.2.8) also define maps with the requirement that
they be maps of simplicial modules.

We denote the category of simplicial cocommutative coalgebras by sCA. A
consequence of [7] (see also [12]) is the following

THEOREM 2.2.11. Let II be a simplicial cocommutative coalgebra. Then 7r.IH
is naturally an A-coalgebra. That is, we have a functor

r: sCA -- K*.

We close this section by indicating why Theorem 2.2.11 completely determines
the homotopy of a simplicial cocommutative coalgebra.

As in the algebra case, (2.2.5) indicates that it is sufficient to determine
r,*S2V, for a simplicial module V, in terms of r*V. This description exists

by [8]. We now proceed to make this explicit.
Fix a simplicial module V. Consider the composite

(2.2.12) NnV e, N+iS2V N. N-- + 2V

of chain maps. Here i is from (2.1.12) and N is the norm map (1.3.7). This
induces a natural map

ai : r,,V _ 7r,.+iS2V

25

(2.2.13)



II. SIMPLICIAL ABELIAN HOPF ALGEBRAS

for each 0 < i < n. Also, the composite

(2.2.14) N,V NtV - N,+t(V ® V) - N,+tS2V N N,+tS2V

induces the homomorphism

(2.2.15) r: rV 7rtV 1r,+tS2V

The following is given in [12].

PROPOSITION 2.2.16. Let V be a simplicial module. Let T be the graded
vector space with basis

ai(z) for z E rnV and 0 < i < n,
[z,y] for x E rnV and y E rmV, n,m > O.

Let R be the submodule of T with basis

[,y] + [y, ] for E nV, E rmV, n, m > O,

[z,Y+z]+[z, I+[V,z] for zE nV,y,z V, n, m >O,

(z + Y) + (-z) + ()+ (0 O<i<n
[,y] i=n forz,yE rnV,

[z, x] for zE rnV, n O.

Then the map T - r.S 2 V defined by

ai(Z) -- ai(z)

[z, y] -* r(z ® y)

induces a natural linear isomorphism

T/R W rS 2V.

Moreover, if we let
e: rS 2V .rV 7r V

be induced by the composition of chain maps

Ns2v _ N(V V) E NV NV

(see Theorem 1.2.1) then for z E rnV y E rmV n, m > 0

e([z, y]) =Z®y+y®

and for z E rnV 0 < i < n

(,(z)) {= < in.< 

We take a moment to note a corollary given in [12].

_·
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3. SIMPLICIAL HOPF ALGEBRAS AND HOPF D-ALGEBRAS.

COROLLARY 2.2.17. The effect of the homomorphism

N*: rS 2V - irS2V
is given by

z y [zx, y]

for z E 7rn, V, y E 7irmV, n, m > 0, and

-i(z) -a (z)

for z E r,V, 2 < i < n. Moreover, under the homomorphism (1.3.6)

t*: I rV - rS 2V

we have
imL = ker N,.

Finally, given II in sCA, then for z E r,In Proposition 2.2.16 tells us that

(2.2.18) O,2z = E[z', z"] + Eo'i(xSq')

which defines the action of the Steenrod operations. From this and Corol-
lary 2.2.17 we conclude 1. of (2.2.10). Also, we define the coproduct

(2.2.19) A: rfII -- , r I® rII

by e from Proposition 2.2.16.

3. Simplicial Hopf Algebras and Hopf D-algebras.

Recall that a (graded) Hopf algebra (in the sense of [16]) is a (graded) module
H which is both a (graded) algebra and a (graded) coalgebra for which the two
diagrams

H®H -- , H®H®H®H

(2.3.1) m H®H®H®H

mOm

H --- H®H
and

F2 'l H

(2.3.2) 

F2

commute. A map of Hopf algebras is simply a map of algebras and a map of
coalgebras. We further define a Hopf algebra to be abelian if it is commutative
as an algebra and cocommutative as a coalgebra. Given an abelian Hopf algebra
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II. SIMPLICIAL ABELIAN HOPF ALGEBRAS

the diagram (2.3.1) possesses a modification. To describe it, we need some
preliminaries.

LEMMA 2.3.3. Let V be a (graded) module. Then there exist maps 9', " of
modules such that the following diagram commutes

S2V S2V ii V® V ® V - P S2(V V)

S2 (V V) - V, V V V --- S2VOS2 V
i p®p

PROOF. Define T: V®4 -- V®4 by T(a®b®c®d) = c®d®a®b. Then on
V® 4, we have the identity

(1 T 1)(T T) = T(1 T ® 1).

From this, the two composites

S2V ® S2V ii V®4 1®T®1 V4

and
V4 1T®1_ V®4 P1P S2V ® S2 V

factors to give us the maps 9' and 9" respectively. 

LEMMA 2.3.4. For a module V there exists a map 0 of modules such that the
following cube commutes

S2 V S 2V S4

®T®1

of S2 S2 V s"m

I .
S2(V s V) 

S2 (p)

V® 4 o

\P@ "

S2 V S2V SVS2V

PROOF. The identity (1 ® T 0 1)(T 0 T) = T(1 0 T ® 1) from the proof of
Lemma 2.3.3 tells us that the composite

S2V ® S2V .S2(V ® V) S2(p) S2S2V

factors to give us the desired map b. The commutativity of the cube now follows
from Lemma 2.3.3, the surjectivity of p, and the injectivity of i. O

, S2 (V V)
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3. SIMPLICIAL HOPF ALGEBRAS AND HOPF D-ALGEBRAS.

PROPOSITION 2.3.5. For an abelian Hopf algebra H, the following diagram
commutes

S2H ) S2S2H S2S2H

H
152(p)sm(,)r

PROOF. The diagram (2.3.1) can be expanded to give

r rr
11 x .1 H®H®H®H

S2H S2H H H H
IP

S2H S2() I S2S2H

S2S2H --- S2H ® S 2H m&

S2H

H a H®HA

r®i

r® H

m

which commutes by (2.1.5), (2.2.5), Lemma 2.3.4, the surjectivity of p, and the
injectivity of i. 

We now pause to give a useful reinterpretation of Proposition 2.3.5.
Let A be a commutative algebra. Then S2 A is a commutative algebra with

product

(2.3.6)

and unit

(2.3.7)

S2S2 A S2S2 A s ("), S 2A

F2 S2(IF 2 ) S A(2) S2 A

COROLLARY 2.3.8. For an abelian Hopf algebra H, the coproduct

Vb: H S2H

is a map of commutative algebras.

Also, if A is a r-algebra then by (2.1.17) A A is a r-algebra. Moreover, from
its definition we have

(2.3.9) 72T = TY2.

Thus S2 A is also a r-algebra.
We denote by 7t (resp. 'H.) the category of abelian Hopf algebras (resp. abelian

graded Hopf algebras).
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II. SIMPLICIAL ABELIAN HOPF ALGEBRAS

DEFINITION 2.3.10. A Hopf r-algebra is a pair (H, 72) consisting of an abelian
graded Hopf algebra H together with a map

72: I12 -- H

satisfying 1. through 3. of Definition 2.1.9 along with the additional condition 4.
for z E I2

/A2W = 72(Ax).

A map of Hopf r-algebras is just a map in 'H. which is also a map of r-algebras.

We pause here to record a basic relation on a Hopf r-algebra H. Our objective
is to give a description of the composite

$I2 +' H - $H.

To do so we define a map

(2.3.11) h: I2 - H

which fits in the following expansion of (1.3.7)

0 - AH i S2H -

H hh

S2 H ',r cokerN ~ 0
N

I,

E 2H E2H

- I2

'J

H

Here a is the natural map determined by Proposition 1.3.8 and the dotted arrow
exists in positive degrees by 1. of Definition 2.3.10.

PROPOSITION 2.3.12. For a Hopf r-algebra H the diagram

$12 7 H

c mH

commutes.

To prove this, we note that since i: S2H --, H®H is a map of r-algebras then
4': H S 2H is a map of r-algebras, by Corollary 2.3.8 and Definition 2.3.10.
In light of this and Proposition 1.3.8 we are reduced to proving

, t
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3. SIMPLICIAL HOPF ALGEBRAS AND HOPF D-ALGEBRAS.

LEMMA 2.3.13. Let A be a F-algebra and w E S2 A. Write w = v(c) + a(o)
as in Proposition 1.3.8. Then

lr(Y2w) = a(A(&))

where i E S2A satisfies 5(Z) = a.

SKETCH OF PROOF. Since 72 is quadratic, we have72W = y2v(a) + 720{6) + V(2() + ((a).
Using the F-algebra map i: S2A - A 0 A we can compute r(v(a) a(3)) = 0.
Also, since w E I2, 72a()' = 0. We are thus left with computing 72v(a). Choose
z E A 0 A such that it maps to a under A 0 A -- E2A and let be its image in
S2A. Then in A A

iv(a) = (1 + T)z
so that, a computation using (2.1.5), (2.1.17), and (2.3.9) gives us

i72v(a) = 72iv(a) = (1 + T)72z + z. Tz
= iv(y) + ir(p())

for some y E E2 A (in fact y is the image of y2z). 

DEFINITION 2.3.14. A Hopf D-algebra is a Hopf r-algebra H together with
maps

bi: Hn Hn+i
for all 2 < i < n, satisfying conditions 1.-3. of Definition 2.1.10, and with maps

Sq': H - Hn-i

for all i > 0, satisfying conditions 1.-3. of Definition 2.2.10, such that the fol-
lowing relations are satisfied for a fixed z E H,

1. for each 2 < i < n
ASi = 6iAx

and for any y E H, j > 0

(x . y)Sqj = E (xSq') (ySqt )
s+t=j

2. for each 2 <j<nandi>0

E(i - j, j - 2i + 2s - 1)bj -i+,(xSq-) i > j
(6j z)Sq i = V72 X + e5(zxSq) i = j

2s>j

E(i - 2s, j - 2i + 2s - 1)bj_i+,(xSq) i < j

0 i >n
v72 X i = n

(6.x)Sq' = (xSq) (SSq'-')
2s<i

+ E(i - 2s, n - 2i + 2s - 1)6,_i+,(zSq') i < n.
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II. SIMPLICIAL ABELIAN HOPF ALGEBRAS

A map of Hopf D-algebras is simply a map of D-algebras and a map of A-
coalgebras. We denote the category of Hopf D-algebras by lD.

We now define a simplicial Hopf algebra to be both a simplicial algebra and a
simplicial coalgebra which satisfies (2.3.1) and (2.3.2). Clearly, Proposition 2.3.5
applies to a simplicial abelian Hopf algebra. We denote by s the category of
simplicial abelian Hopf algebras.

We now come to the main theorem of this work, whose proof is postponed to
Chapter 3.

THEOREM 2.3.15. Let. H be a simplicial abelian Hopf algebra. Then rH is
naturally a Hopf D-algebra. That is we have a functor

7r*: s -- 7V.

On the proof: Consider the simplicial map (2.2.5)

b: H - S2H.

In light of Corollary 2.3.8, if x, y E rH then we have the equations

+( ) = (jY)

and
0 (i z) = j ) -

Thus by (2.2.18), we are reduced to understanding rS 2 H as a D-algebra. This
is the main focus of Chapter 3.

·__ ~ ~ ~ ~ ~ ~ ~~ ~ ~~ ~ ~~ ~ ~~ ~ ~~ ~ ~~ ~ ~~ ~ ~~ ~ ~~ ~ ~~ ~~~ ~~~ ~~ ~~~ ~~ ~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
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CHAPTER III

Proof of the Main Theorem

1. The Reduction

As we noted at the end of Chapter 2, the key to proving the main theorem
(Theorem 2.3.15) is a complete understanding of the D-algebra r.S 2A, where A
is a simplicial commutative algebra. This is achieved in the following

THEOREM 3.1.1. Let A be a simplicial commutative algebra. Then for the
associated simplicial commutative algebra S2 A the following relations hold in
the D-algebra r.S 2A

a. For x E rnA, O < i < n, 2 j < n + i

j·i() = (2s- j 1)i+j-.(.(x)
2s<j

b. For x E 7r,A, y E rmA, 2 < j < n + m

[i( x. Y) + [Ix. ,6jy] ifn = O

6j[x,y]= oaj(z y)+[6jx, y.y] ifm=O
0'j (x y) otherwise

c. For x E rnA, y E rmA, O < i < n, O < j < m

i(Z) j (y) = ai+j (x y)

d. For z E r,,A, y,z E r.A, 0 < i < n

i(z) [yz] =l[.y,x.z] ifi=n
O otherwise

e. For , y,z,w E r.A

[x, y] [z, w] = [x z, y w] + [ . w, y. z].
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III. PROOF OF THE MAIN THEOREM

To prove this theorem, we note that the algebra structure on S 2A is completely
determined from the one on A through the map of (2.3.4)

q: S2 S2 A S 2 S 2A

by (2.3.6). Thus, we are reduced to computing this map in homotopy when A is
an arbitrary simplicial module.

First, if we combine Proposition 2.1.16 and Proposition 2.2.16 then for V a
simplicial module we have

PROPOSITION 3.1.2. The following are generators for r, S2S 2V:

a. ij ()
b. i6,[,Y]

c. i(X) 'j(Y)

d. ai(:) [y, z]

e. [z, y] [z, w]

for z ErnV, 0< i< n, O<j <n+i
for z E 7rnV, y E rmV, 0 i < n + m

for E rnV, y E rmV, 0 < i < n, O < j < m

forz E TIrnV, y, z E r.V, 0 < i < n

for X, y, z, w E 7rV

PROPOSITION 3.1.3. The following are generators for ir.S2S2 V:

a. oai ()

b. ai( y)

c. [6 i(z), Y y Z]

d. [6i(z), ej(y)]

e. [ x. y, z w]

for E r,nV, z < j n, 0 < i n+j
for z E7rV, y E rmV, 0 < i < n+m
for E rnV, y,z E rV, 2 < i < n
for E 7rnV, yE rmV, 2<i < n, 2<j< m
for X, y, , w E 7r.V

We now arrive at the following which clearly implies Theorem 3.1.1.

PROPOSITION 3.1.4. Let V be a simplicial module. Then the effect of the
map

0: S2S2 V -. S2S2V

in homotopy is given by the following
a. For E7rnV, O<i<n,2<j<n+i

0*6ji(X) = x (s28- j- 1 ri+j-,6,(z)
2s<j

b. ForxErnV, yErmV, 2<i<n+m

i(: Y) + [ X6iz]

0*i[z, Y] = ti(: . Y) + [6iZ, Y Y]

ai(x * y)

c. For z E rnV, y E 7rmV, 0< i < n, O < j < m

for n = 0
for m = 0
otherwise

.(oi(z). =)) = i+j (z Y)
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d. For zE rV, y, zE r.V, 0<i<n

O.(,(z). * [Y z]) = [Y, xz]
"(·(·,L~ ll. I 

i2= n
otherwise

e. For , y, z, w E r.V

+([X, y] [z, w]) = [ . z, y . w] + [. w, y. z]

We end this section by taking a closer look at the map S. Let V be a module.
Then we have

Generators of S2S 2V:
[, y] [z, w]

o(z) .[y,z]

6(2). b(Y)

for any , y, z, w E V.

Generators of S2S2V:
[x y, z w]

o'(, . y)

for any , y, z, w E V.

Here is the map of (1.3.6).

The effect of
o: S2S2 V -, S2S2V

is given by

[z y] [z, w] [Z z, y w] + [ w, y. z]

0(z) [y, z] -- [z .y, Z Z]

a(z) * a() -. a( .y).
We can use this to compute the kernel and cokernel of q. First, we have a map

a: V® 4 - S2S 2V

given by

a b c d - [a, b] [c, d] + [a, c] [b, d] + [a, d] [b, c].

It is easy to see that
a = O.

Further, we have a factorization

v64 a S2S 2V

E4V
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III. PROOF OF THE MAIN THEOREM

Here E4 V is the 4 th exterior power of V i.e. the cokernel of the composite

(,tV) V 2 d V®4 . S4V

where d is from (1.3.6).

CLAIM. The induced map

b: E4 V - ker4

is a linear isomorphism.

PROOF. By naturality of b and simplicity of the functor E4, b is injective,
since it is nontrivial. To see surjectivity, we note that b is onto when dimV < 4.
Thus, since E4 is a polynomial functor of degree 4 the result follows. l

Now, an easy calculation shows

(S2 V)* = S 2V'

and

(S2 V)* = S2V.

From this and Lemma 2.3.4 we have

O' = .

Further (E4 V)* = E4 V* so that the claim gives us an exact sequence

0 - E4V - S2S2V S2S2V -- E4V 

which is natural as functors of modules. This defines a map

F2 -. Ext,(E4, E4)

where ' is the category of endofunctors on the category of modules. L. Schwartz
has shown (private communication) that this map is an injection.

2. Proof of Theorem 2.3.15.

First, by Theorem 2.1.11 and Theorem 2.2.11 r*H is both a D-algebra and
an A-coalgebra. Moreover, A is a map of simplicial commutative algebras
by (2.1.17), (2.1.5), (2.1.8), and Lemma 2.3.3. By Theorem 1.2.1 and Theo-
rem 2.1.11 we conclude r.*H is a Hopf r-algebra.

We now proceed to establish 1. and 2. of Definition 2.3.14. For the remainder
of this section we fix z E r,,H and write

A.z = [k, Ok] + E uo(rSq')

as in (2.2.18).
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1. The first part is an easy consequence of the fact that A is a map of sim-
plicial commutative algebras. For the second part let y E rmH and write

k*y = Z[yl, yt'] + E at(xSq t ).
£ t

By Theorem 3.1.1 we have

(bZx) (Vy) as(xSq ) ' t(ySqt)
s,t

-Z Z °i(ZSq ySqt)
i>O s+t=i

-- ( Z Sq'. yq t )
i>O s+t=i

where, here and throughout, "=" means "equal modulo [,]'s". By (2.2.18) we
have

(x y) -y) ai((z ' y)Sqi).
i>o

The conclusion follows from Corollary 2.3.7. 0

2. Fix 2 < j < n. By (2.2.18) we have

Nxbj(z) r .i((j g)Sqi).

Next, Theorem 3.1.1 gives us

bj V*z x- j (x4 x) + E 6j (Sq')

- Z j(3k .4) + Z 2 -j_1) -j+8]-t6(xSqs)
k s 2<j

-E aj (x .x ) + ( -1 6 (Sqj-i-1))
k-Z j - 2i -

k s 2i-j<s

_ aj(k * ( ) X)+ EOi( ( j -2i + 2s -1) bji+,(xSq ))-
k i 2i-j< s

When i < j we immediately get the third equation. When i > j the expression

(m) = (m+r- 1)

gives us the first equation. When i = j we just need to verify

V72Z = E ZXk k
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III. PROOF OF THE MAIN THEOREM

which is just a consequence of Proposition 2.3.12. Finally, combining Theo-
rem 3.1.1 and Definition 2.1;9 we get

6nl*Z Z n(. 4' z)+ 6n a,.(xSq') + u, (Sq') ot(xSqt)
ik a a<t

o(. * 2') + E 6on,.(xSq8) + E E i(xSq' . zSqt')
k J i>O 2<i

a (4 * z) + 6,an a (xSq) + A hi xSq' *zSq' )
k c i>O 2s<i

and so proceeding as before gives us the remaining equations. The conclusion
follows from Corollary 2.3.7. This completes the proof of Theorem 2.3.15. 

3. A Detection Scheme

In this section, we begin our assault upon the map

O.: 7r,S2S2V -, r.S2S2V

with the objective of proving Proposition 3.1.4. Our method will be to divide
and conquer. The key is that there exists a map

S2S2V -, (S2V)®2 D S2S V

which is injective in homotopy.
We start by recalling from §3. of Ch. 1, that we have the norm map

Nv: S2V - S2V

whose effect is

z Y .- [,Y].
Consider now the maps

Ns2v : S2S2V S2S2V

and
S2 Nv: S2S 2V - S2S 2V.

It is well known that S2S2V = SZ2fZ2V where 21 f E2 is the wreath product
of E2 and E2 i.e. the subgroup of E4 which fits into the split extension

(3.3.1) 1 E 2 x E - SE2fE 2 -- E 2 1

where, in terms of transpositions, we have

E2 X E2 = ((1, 2), (3,4))
E2 = ((1, 3)(2,4)).

Moreover, it is well-known that E2 f E2 - Dg; the dihedral group of order 8.
We thus have the identity

S2S2V , SDsV.(3.3.2)
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LEMMA 3.3.3. There exists a natural idempotent map

a: SD8 V SDs V

such that the diagram

S 2 S 2 V NS2 v SD.V

S2S2V , S°DV
S2Nv

commutes. Explicitly

a = 1 + r(, 4, D8)t(D8 , 14)-

The proof will follow from the next lemma.

LEMMA 3.3.4. There exists a natural map

a" : S2(V®2) - (S2 V)®2

such that the diagram

S2 (V®2) NV~, S2 (V®2 )

(S2 V)®2
- (S2 V)®2

(Nv)®'

commutes. Here " is the map of Lemma 2.3.3. Indeed, we can take

a" = et( 2, 2 x 12)

where the transfer is associated to the diagonal E2 - 12 X 2 and c is the
isomorphism induced by 1 ® T ® 1: V®4 -+ V®4.

PROOF OF LEMMA 3.3.4. First, we have commuting diagrams

V®&4 1+(1,3)(2,4) V 4

Pv@2l vePV®2 Jiv®2

S2 (V®2) Nv®2 S2 (V®2)

and
(1+(1,2))-(1+(3,4))

V 04 V 04

(S2 v)® 2 N (S2v)® 2 .

Nv
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III. PROOF OF THE MAIN THEOREM

An easy computation shows that the diagram

1+(1,3)(2.4)
V®4 - V®4

(2,3)1 I(2,3)(1+(1,3))

V4 (1+(1,2))(1+(3,4)) 4

commutes. Consider now the map

s2(V®2 ) iV2 v®4.

In the group ring F2 [4], we have the identity

(2.3)(1 + (1, 3))(1, 3)(2,4) = (1 + (1, 2))(2,3)(1,3)(2,4)

= (1 + (1, 2))(1,2)(3,4)(2, 3)

= ((1, 2)(3, 4) + (3, 4))(2, 3).

This shows that the image of the above map is invariant under the action of
((1, 2), (3.4)). We thus have a commuting diagram

S2(Vo2 ) 'V02 3 V4

a"1 1(2,3)(1+(1,3))

(S2V)0 2 , Vo4
iv 2

defining a".
Combining these four diagrams and Lemma 2.3.3 gives us a cube

V®4 V 4

V

V®4

Ij2)

(S2 V)0 2 -- (s 2 v )02

from which our desired commutative diagram results. The identification of ca"
follows from our construction and the definition of transfer. 

PROOF OF LEMMA 3.3.3. Consider the composite

s2 2v s2'iv) 2 (V0 2 ) o, (S2V)0 2 .S S V ---- ). S (V ) -(+V)

From Lemma 3.3.4 and a computation we have

a"(1, 2)(3, 4) = e(1, 2)(3, 4)t(E2 , E2 x E 2) = (1, 3)(2, 4)cv".
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Thus (1, 3)(2, 4)0a"S2 (iv) = a"lS2 (iv). Hence we have a diagram

S 2S 2(V) S2(i) S2(vO2)

1 1·

S2S2(V) - (S2V) 2.
IS2V

By Lemma 2.3.4 and Lemma 3.3.4 our desired diagram commutes. From this
and the identity (2, 3)(1, 3) = (1, 3)(1, 2) we arrive at the commuting diagram

S 2S 2(V) - V04

a l 1(1,3)+ (2,3)

S2S2(V) V4

Clearly 1, (2,3),(1,3) are coset representatives for Ds in 4 . Also ((2, 3) +
(1,3))2 = (1, 3)(1, 2) + (2, 3)(1, 2) from the above and the identity (1, 3)(2, 3)=

(2,3)(1,2). Hence c2 = a. 

COROLLARY 3.3.5. The following cube commutes

S2S 2V S2S2V

(S2V) e 2 (S2V)02

PROOF. This easily follows from Lemma 2.3.4, Lemma 3.3.3, Lemma 3.3.4,
and naturality. 

NOTE. The effect of the map

C: SD V . SDa V

on elements is

[[Z, y], [z, WI] - [[, z], [y, w]] + [[z, w], [y, z]]

[o(), [y, z]] [[z, y], [, z]]

[(z), a(y)] - ao[x, y]

E[{, Y] -- , [Z, Y]

from which we easily verify idempotence. We further note that the module of
natural maps

(_)D. _ (_)D
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on the category of E4 -modules has as basis the set {1, c). In light of this,
Lemma 3.3.3 should not be surprising.

Now, by Proposition 2.2.16 we have

PROPOSITION 3.3.6. The following are generators of 7rS 2S 2V:

a. r oji(z)

b. oi[z, 

c. [oi(z), i(Y)]

d. [i()y, yz]]
e. [[xy], [z, ]]

for E rnV, O< i < n, O <j < n+i
for z E 7rnV, y E 7rmV, 0 < i < n + m

for x E irnV, y E 7rmV, 0 < i < n, 0 < j < m

for z E nrV, y, z E r.V, 0 < i < n

for , y, z, w E 7r.V.

By Corollary 2.2.17, the effect of the map

(Ns2v)*: 7r$S2S2V 7rS2S2 V

is given by

bj( . (z) -

0% (-) - 0bj(Y) -

Oai(.T) [y, ]ZI -

[x, YI [z, w] -

o [Zx, y]

[i(z), J j()]
[ai(2)[y, ]]

[[, y], [Z. W]].

Also, the effect of the map

(S2Nv ),: r.S 2S2V _ r1.S2S2 V

is given by

fi j (·) - i - (4 )
'i(z- y) - ai[z, ]

[ai(), sj(Y)] - [ai(z), j(y)]

[ai(z), Y *4 -iz] [(), [y, ]

[ y, z w] - [[ , , , w].

Further, by Proposition 2.2.16, the effect of the map

(S2iv)*: rS 2S2 V -* ,*S 2(V@2)

YI�I
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is given by

- s fj (x x9 )
0O

- j (2 e9y + 

i = xI
otherwise

yIx2)

(x0z)(0y ) i= 121 J Ij=l
O0 otherwise

( {! (9 , . I Z _ Z 21 A1 i - kI

[, y] . [z, w] - ( 0 y + Y 0 X) (z 0 w + w

Also, the effect of the map

(iS2V).: r.TS2 2V - r,(S2V)9 2

o - 11

otherwise

I z)

is given by

i bj(x) b{5j(x) j(z) i = lI +j
O otherwise

aei(z y) _ (:-Y)®(z-Y ) i= IXzI+[y
0itx.y)-4 O otherwise

[6i(x), 6j(Y)] - 6bi(x) 0 6j(y) + ej(x) 0 6i(Z)

[6i(x), y. Z] -+ bi() (Y Z) + (y. Z) 0 bi()

[x .y, z w] . (x . y) 0 (z -) + (. w)0 (x- y).

From this we conclude that the map

(S2 N V), (is2v)*: rS 2 S2 V --+ rS 2S2 V 7r (S2V)e2

is injective. We are thus reduced, by Corollary 3.3.5, to computing, in homotopy,
the maps induced by a and q'. For this we have

PROPOSITION 3.3.7. Let V be a simplicial module. Then the effect of

a,: 7r S2S2V - r S2S2V

is given by

a. For 

b. For x

c. For x

E rnV, O < i < n, 0< j n+ 1

a*aji(x) = (2 - ji - 1 i j) a+ 3s(x)
2sxj

E rnV, y E rmV, 0 i < n + m

C.*ai[x, y] = Ji[X, Y]

E rV, y E 7rmV, 0 < i < n, 0 < j < m

t.[(0i(x), aj(y)] = i+j [, y]

6j fi (x)

bij [Zx, Y]

7i(x) * aj (y)
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d. ForzE 7rnV, y, z E r.V, O<i<n

. [i(). [Y. Z]] = [[z, ], [z, 1] i =n
0=,··l otherwise

e. For z, y, z, w E r. V

a. [[z, y], [z, ]] = [[, z], [y, w]] + [[x, w], [l, z]].

PROPOSITION 3.3.8. Let V be a simplicial module. Then the effect of

'': r.S 2(V82) -- 7r,(S2V)®2

is given by

a. For : E 7rnV, y E 7rnV, yE rm V, 2 < j < n+m{ jz®.y m=O

'.6j(x®y)= O.x®,6jy n=O
O otherwise

b. For z, y, z, w E rV

''I[(x ® y) (z ® w)] = (. z) (y w).

We will actually prove a much more general result then Proposition 3.3.8. To
state it we first need the following set up.

Let V and W be modules. Then the map

1T® 1: V®W®V®W- V®V®W®W
induces

": S2(V ®W) - S2V S 2W.

Following the proof of Lemma 3.3.4 verbatim gives us

LEMMA 3.3.9. There exists a map

"': S 2(V W) S2V S2W

such that the diagram

S2(V ® W) NVow S2(V W)

S2V ® S2 W S2V ® S2W
Nv®Nw

commutes. Indeed we can take

"' = ct(E 2 , E2 X E2 )

as in Lemma 3.3.4.

44



4. DWYER'S DETECTION MAP AND THE COHOMOLOGY OF GROUPS 45

PROPOSITION 3.3.10. Let V and W be simplicialmodules. Then the effect of

": .S 2(V W) - 7r.S2V X S2 W

is given by
a. For z E rnV, y E rmV, 2< j<n+m

bjxy-.y m=O
.6j(x(&{y) = z x.x jy n=O

0 otherwise

b. For x, z E r.V, y, w E r.W

RX[( ® Dy) . (z ® w)] = ( . yZ) (y .w).
Clearly Proposition 3.3.10 implies Proposition 3.3.8. Finally, Proposition 3.1.4

follows from Lemma 3.3.3, Lemma 3.3.4, Proposition 3.3.7, and Proposition 3.3.8.
The proof of Proposition 3.3.7 and Proposition 3.3.10 will be given in §5.

4. Dwyer's detection map and the cohomology of groups

In this section, we gather the tools necessary for proving Propositions 3.3.7
and 3.3.10. The key is the following theorem found in [9].

THEOREM 3.4.1. Given a simplicial module V and a subgroup G < Em there
exists a natural homomorphism

QG: riSG V -, E Hk (G; ri+kV® )
O<k

such that for a subgroup H < G

r(G, H)TG = itHr(G, H) t(H, G)pH = fGt(H, G).

We summarize the proof of this theorem. Let G < Em and CG the category
of G-modules. Let

F: CG -- B
be an additive functor to some abelian category. This induces a functor

F: ChCG -- chB

of bounded above chain complexes over these categories. For a fixed C in chCG,
there exists an injective resolution C -- I i.e. an object I in chCG which is
degree-wise injective, together with a quasi-isomorphism from C. Such an object
is unique up to chain homotopy. Define, as in [17], the total right derived functor
of F to be

7ZF(C) = F(I)
which comes equipped with a natural map

F(C) - %F(C).
At this point, we should remark that given C in chCG we can construct an
injective resolution C -- I as follows: for each k E Z we have an injective
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resolution Ck -* Ik,, in CG by homological algebra. The chain maps for C
extend to give us a bichain complex I**. Upon letting I = Tot I**, the total
chain complex, we immediately get a quasi-isomorphism

C -- I
which serves as an injective resolution. The advantage of this construction is
that it gives us a spectral sequence

(3.4.2) E?,j = RF(HjC) 7 Ri+F(C)

where RkF(C) = Hk7F(C) and RkF(-) is the k th derived functor of F on
CG. This spectral sequence is constructed in ch. 17 of [5]. As an application, if
C is a G-chain complex with trivial differential then (3.4.2) collapses to give us

(3.4.3) ) RkF(Ck-m) -7mF(C)
k>O

in B. To define our desired map %G let F be the G-fixed point functor i.e. for
M in CG

(3.4.4) F(M) = MG = H°(G; M).

Now, let V be a simplicial module such that NV is bounded above. Then the
Eilenberg-Zilber map provides us with a G-equivariant chain equivalence

(NV)®m -, N(V@m).

Moreover, since we are over a field, there is a chain equivalence

NV - 7rV
where r V has trivial differential, which induces a G-equivariant chain equiva-
lence

(NV)®m - (irV)m
By (3.4.2), we have quasi-isomorphisms

RZF(N(Vem)) - IZF(NV)m)- IZF((z'V)').
By (3.4.3) and (3.4.4) we obtain

R'F(N(V")) eH(G; n+kV@m).
k>O

Now, H,F(N(V®m)) - H.NF(V®m ) - wS G V by functoriality. Combining
the above, we have a natural homomorphism

7risG V HiF(N(Vom)) -- 2-iF(N(Vm)) - Hk(G; ri+kV@m)
k>O

which is what we call %G. The case of a general simplicial module V follows
from a limit argument.

The relations involving restriction and transfer follow immediately from the
naturality and equivariance of all maps involved.
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The usefulness of the map of Theorem 3.4.1 is now made precise by the fol-
lowing

PROPOSITION 3.4.5. For any simplicial module V, the natural homomorphism
of Theorem 3.4.1 is injective for the group E2.

PROOF. We first prove the result for V = K(n). From chapter 1 §1 we have

0O s<n
N,(K(n) K(n)) = nonzero n<s<2n

0 2n < s.

Let C be the E2-chain complex such that

IF 2 [ 2 ]() < s < s<2n

Cs = IF2(y) n = s
0 otherwise.

If we write E2 = (1, T), then the differential a on C is given by

x&+l = (1 + T)x, n < s < 2n

Oxn+l = y.

Write r,n KI(n) = IF2 (a) and define a map

f: C -+ N(K(n) 0 K(n))
by

x- D2n-'(a 0 a)

Y - n(a a).

By Theorem 1.2.3 this is a map of E2-chain complexes. Moreover, it is a quasi-
isomorphism. Let F be the functor H°(2; -). We wish to compute

HnF(C) - R-"F(C).

To do so define the complex C by

C, = {|[IF2](i,) s < 2n
0 O otherwise

with differential 0 given by j3,+l = (1 + T)2,. This is clearly a free E2-chain
complex and the map

C C
given by

ZXs -- X

y - (1 + T)2n

is clearly a quasi-isomorphism. Thus RF(C) = F(C) and an easy calculation
gives that

HF(C) -, R-F(C)
is an injection for all s.
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To obtain the general case, we first take V so that NV is bounded above.
Then we have a weak equivalence

( K(n,) V.

Thus it suffices to show that if E2% is injective for W1 and W2 then it is injective
for W1 E W2. First, we have a decomposition of

N((Wi @ W2) ® (W1 W2 ))

as
N(W1 ® W) e N(W2 ® W2) @ N((W1 ® W2) (W2 ® W1)).

Since the last summand is E2-free and since E2% respects this decomposition,
injectivity follows. A limit argument completes the proof. 

We now pause to record a useful property of total derived functors.

LEMMA 3.4.6. Let G, H be finite groups and B an abelian category. Let
F1: CG CH and F2: CH -* B be additive functors such that F1 preserves
injectives. Then R1(F2 o F1) is chain homotopic to 'RF2 o RF1. Moreover, the
natural map

F2 o F1 - R(F 2 o F)

is chain homotopic to the composite

F o F1 -+ (11F2) o F - F2 o F1.

As an application, we give a Corollary to Proposition 3.4.4.

COROLLARY 3.4.7. For any simplicial module V, %G is injective for G =
C2 x E2 and G = 2 f E2.

PROOF. Let F1 = H°(E2; -) and F2 = H°(E 2 x E2; -). A Kunneth theorem
argument shows that

F2 - 1F2

is equivalent to
Fi F1 - F1 ® 'RZF1.

Thus injectivity follows from Proposition 3.4.5. Now F1 and F2 can be viewed
as functors

F2 : CES, -*2 CE2

and
F1 : CE2 - (modules).

Since F2 preserves injectives then using the fact that F1 o F2 = H°(I 2 f E 2; -)

our desired result follows from Proposition 3.4.5, Lemma 3.4.6, and the result
for E2 x E2. See [9] for details. 0

We now proceed to recall some useful tools in group cohomology. See [11] or
chapter 12 of [5] for details.
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Lyndon-Serre-Hochschild Spectral Sequence. Consider the extension
of finite groups

K - G- Q.

Let M be a G-module. Then we have a first quadrant spectral sequence

(3.4.8) E`' = H*(Q; H*(K; M)) = H*(G; M).

Here H*(K; M) is a Q-module since we have the functor

H°(K;-): CG -- CQ.

To make this spectral sequence useful we have

LEMMA 3.4.9. Given a diagram

K G 0 Q

I I l
K' G' ---- Q'

whose rows are extensions then the induced map

H*(Q'; H*(K'; M)) - H*(Q; H*(K; M))

is a map of spectral sequences for a Q-module M. Moreover, the induced map
on Eoo is compatible with

H*(G'; M) -- H*(G; M).

Further, if the vertical maps are injective, then the map

H*(Q; H'(K; M)) - H*(Q'; H*(K'; M))

induced from the associated transfers, becomes a map of spectral sequences.
Again, the induced map on E ° is compatible with the associated transfer,

H*(G; M) -- H*(G'; M).

Double Coset Formula. Let H, K be subgroups of a finite group G. A
double coset representation of G with respect to H and K is a subset S C G
such that

G= U HaK
VES

and is minimal among all such subsets. Next, if z E G and J < G define the
conjugation map

c.: J zJz - 1

by c(u) = zux- .
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PROPOSITION 3.4.10. Let S be a double coset representation of G with respect
to H and K and let M be a G-module. Then for a E H*(K; M)

r(G, H)t(K, G)(a) = £ t(H n zKa-', H)r(xKz', H n zK-')c,(a)
xES

= E t(H n zKx-l, H)cr(K, -'Hz n K)(a)
CES

holds in H*(H; M).

5. Proof of the Detection Scheme

In this section, we prove Proposition 3.3.7 and Proposition 3.3.10 using the
methods of the previous section. First, we need some basic results to facilitate
our computations.

Let K(n) be the Eilenberg-MacLane module so that r.K(n) = F2 (a) where
lal = n > 0. Then by Proposition 2.2.16

r*S2K(n) F2(a(a)) = n+i O < i < n
SK(n) otherwise.

Also H*(E 2;1F2 ) = F2 [w] where w is dual to the generator Hi(E 2; F2 ) - IF2. We
then have

PROPOSITION 3.5.1. Under the homomorphism

22: Hr*S2K(n) ; H*(E2; F2)

of Theorem 3.4.1
2 ai(a)= W2n-i

for all O < i < n.

PROOF. This follows easily from Proposition 3.4.5. 

Now, take K(m) so that r*K(m) ~ F2(b) where bli = m > 0.

PROPOSITION 3.5.2. Let M be the E2-submodule of r*(K(n) x K(m))02
generated by a ® b. Then

0 i > 0
Hi(E2; M) = {F2(,tf2[a, b]) i=0

PROOF. For i > 0 this just follows from the fact that M is a free E2-module.
For i = 0 we note that under the projections

S2 (K(n) x K(m)) - S 2K(n)

S2 (K(n) x K(m)) -, S2K(m)

[a, b] projects to 0 in homotopy. Hence by naturality and Proposition 3.4.5 the
result follows. 
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PROPOSITION 3.5.3. Consider the extension

E2 X E2 - D8 -* E2.

Then for a simplicial module V

H*(Ds; r*,V®4) = H*(E2 ; H*(E 2; r*V®2 )®2 ).

Moreover, we have a factorization

, SD. V DS H*(Ds; *V 4)

7r*S2 S 2 V

H*(E 2; r*(S2 V)®2 ) H *(E2; H*( 2; rV® 2 )0 2)

PROOF. Define functors
F1 : CD, CE2

and
F2: C 2 -- (modules)

by F1 = H°(2 x E2 ; -) and F2 = H°(E 2 ; -). Then F1 preserves injectives and
F2 o F1 = H°(Ds; -). So by Lemma 3.4.6,

J%(F2 o F1 ) - 7F 2 o ZF 1.

Thus it suffices to compute H*(RF 2 o1F 1,) for NVO4 . Since we have an equiv-
ariant equivalence

NV 4 - (r,*V)®4

and since RF1 is E2 -equivalent to RF 2 'RF 2 we conclude that we have a E2-
equivalence

1F(NV® 4 ) -" H*(E2; w*V®2)e 2

so by (3.4.3)

H,(RZF2 o RF(NV® 4)) ~ H*(E2; H*(E2; r,*V®2)®2).

The identification of ~Do follows from the 2nd part of Lemma 3.4.6. 

NOTE. The identification in Proposition 3.5.3 can also be worded to say that
the spectral sequence (3.4.8) collapses at the E2 -term. We also note that this
identification gives us a choice of representatives for the generators for the co-
homology of Ds, but we will see that in most cases the spectral sequence (3.4.8)
has only one nontrivial column or row at E2 , forcing our hand.

Before proving Proposition 3.3.7, we note that by Lemma 3.3.3 and Proposi-
tion 3.4.1 we have

(3.5.4) aC iD' = %D'Ca

Also, combining Lemma 3.3.3 and Proposition 3.4.10, we have
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PROPOSITION 3.5.5. Let A < Ds be the subgroup (2, 3)Ds(2, 3) n Ds. Then
the map

c,: H* (Ds; *,V4 ) - H* (Ds; 7rV®4)
satisfies the identity

a. = t(A, Ds)c(2,3)r(Ds, A).

Now, we proceed to prove Proposition 3.3.7. To do so we exploit naturality
using (1.1.2) and reduce to universal examples. To this end we fix the following
throughout

n7rK(m) = F2(a) lal = m
r*K(n) = 72 (b) Ibl = n

7r*K(p) = 72(d) Idl = p
r*K(q) = F2(e) lel = q

where m, n, p, q > 0.

Proof of Proposition 3.3.7 part a: First, since A = E2 x 2 , H*(A; F2)
F2 [vI, v2] where vl, v2 E Hl(A; I 2) is dual to the elements of Hi(A;1F2 ) associ-
ated to the generators of A. We now summarize a result in [9].

PROPOSITION 3.5.6. There exist elements z, E H'(Ds; F2 ) and z E H2(Ds; F2)
such that

1. H'(Ds; F2) F [, y, z]/(xY)

2. r(Ds, A)z = V2

r(D, A)y = 0

r(Ds, A)z = v1(v1 + V2)

3. t(A, Ds)v- = E (m - -1) Xm-2tzt
0<21<m

t(, D)v =0.

PROOF. 1. follows from Proposition 3.5.3 plus a determination of extensions
which is performed in [1].

2. Is another calculation done in [1].
3. Is a computation performed in [9]. 0

PROPOSITION 3.5.7. Under the homomorphism

elD": ir.SD'K(m) -. H'(Ds;F2),

lDstrjoi (a) = zm+i-jm-i.

PROOF. As shown in [9], under the identification of Proposition 3.5.3, z r is the
element tv in Hr(E 2, H°(12; 7r2mK(m)® 2 ), 2 ) and Zr is the element Wr ® W in
H ° (1 2 ; Hr(E 2; 7r2 mK(mn ) 2)®2 ). The result now follows from Proposition 3.5.1
and 3.5.3. 
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Before getting to our main computation, we need

LEMMA 3.5.8. Let N E Z and a > r > O. Then

r( (N-e)(N+r)

PROOF. This follows from an easy induction on r using the general Pascal's
identity. 

Now, combining (3.5.4), Propositions 3.5.5, 3.5.6, and 3.5.1 we have

DaC,a joQ(a) = a,(2xm+i-jzm ')

= t(A, D8)c(2,3)r(D, A)(Xz't)

= t(A, Ds)c(2,3)(v2vl(vl + v2)t)
(3.5.9) = t(A, Ds)(v v(vi + v2 )t)

= t, D8) ( (k) v+t-k vt+k

Here we have the identity S = m + i - j and t = m - i. We have also slipped in
C( 2, 3 )Vl = V2-

Now, by p. 257 of [5] and Proposition 3.5.6 (3.5.9) becomes

(3.5.10)

(k) t(/, D8)vs+t-k
0<k<t

(xt+ ( + (st - k-Ii) )+t-k-2z)
o<k<t 0<21<s+t-k

whr e ( (k) (s+t. 2 Q) s+t -k-I- 1)) xz+2t-2Lz
o<2t<s+t o k<s+t-21

where the last equality follows since k < s + t - 21. Now, for each k

(s+t- ke-l ) fs+t-k- -l1) - -e-1 )

Applying Lemma 3.5.8, we obtain

o<k <t (s+t-k-l- 1) ( t-e-1 )
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Thus (3.5.10) becomes

(8 + t-2£-1) 2 =E(8-j-1 o_2/<s+t j<2s

upon letting = n - s.
Combining Proposition 3.4.1, (3.5.4), Propositions 3.5.5, and 3.5.7 we arrive

at our desired result.

Proof of Proposition 3.3.7 parts b and c: As before, it is sufficient to
prove it for the case V = K(m) x K(n).

Let N be the E4 -submodule of vr,(K(m) x K(n))@ 4 generated by a®a®b®b.
As such N is a direct summand of 7r. (K(m) x K(n))0 4 as a E4 -module. Further,
as a Ds-module

N = N N2

where N1 is generated by a a b b and N 2 is generated by a b a b.
Now, writing the extension of (3.3.1) as

where B = ((1,2),(3,4)) _ 2 x 2 , then N is a direct sum of two trivial
B-modules. Thus by the Kunneth theorem

H*(B; N ) H(B,72) H*(B;1F2) 72 [C¢, ¢(2] · 2[, ¢2].

Here E2 acts by exchanging summands, which is a free E2-action. Hence (3.4.8)
tells us that

H*(Ds; N1) = H°(E 2 ; H*(B; N 1)) _ F2[1, 2]

where (1 corresponds to $@ (' and (2 corresponds to (2 $ C (2, 1( = 1 = 1(2 .
Next, N2 is a free B-module so by (3.4.8)

H*(Ds; N2) - H'(E 2; H°(B; N2)) - F2[ ]

with 11 = 1.
Now, we have an extension

]2 > A - 2

so that
H'(A; N1) H°(E2; H*(E2; N1)) [F2[] I11 = 1

since N1 is a direct sum of two trivial E2-modules with respect to the inner
]2-action and so proceed as above. Now, N2 factors into N2 $ N2' as A-modules

where N2 is generated by a b ® a ® b and N2' is generated by a b ® b ® a.
Thus

H'(A; N2) IF2[A] 1F2[A2 ] [I 1 = 1 i= 1,2

by a computation as above.
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5. PROOF OF THE DETECTION SCHEME

PROPOSITION 3.5.11. 1. Under the map r(Ds, A): H*(Ds; N) - H*(A; N)

(1 -- 77

(2 -- 77

2. Under the map c(2, 3 ): H*(A; N) -* H*(A; N)

77 -+ A1

A2 - A2 -

3. Under the map t(A, Ds): H*(A; N) - H*(Ds; N)

r -- 0

A2 -_ 

for all r > 0.

PROOF. 1. Consider the diagram of extensions
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B ~ Ds ---

E2 > >A -

I

where 6 is the diagonal map. This induces

H °(E2; H*(B; N1)) -. H°(E2 ; H*(E 2; N 1))

and
H*(E2; H°(B; N2)) - H*(E 2; H°(E 2 ; N2 )).

These are the restriction maps

H*(Ds; Ni) - H'(A; Ni)

for i = 1, 2, by our above computations and Lemma 3.4.9. The first restriction
is an easy computation. For the second restriction we have H°(B; N 2 ) - F2 and
H ° (E2 ; N 2 ) - F2 IF2 so that the induced map F2 -- F2 F2 is the diagonal
map.

2. This is an easy consequence of the fact that

c(2,3)Nl = N2

c(2,3)N2 = N2'.

3. First, N2 is a free B-module so that r(D8, B) is trivial on H*(D8; N2) in
positive degrees. Next, N1 is a direct sum of two trivial B-modules thus

H*(B; N2) - F2[ 1, Y] F [ 1, 2]
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III. PROOF OF THE MAIN THEOREM

where [yi[ = 1 = [%il i = 1, 2. From the diagram of extensions

B -- B -' 1

II I 1

B ~' Ds8 '- 2

and Lemma 3.4.9, the restriction map r(Ds, B) on H*(Ds; N1) is equal to the
inclusion

H°(.2; H'(B; N )) - H(B; NI).
Thus

r(Ds; B)(2C = 'Y112t EP$fpt2
We now pause to bring in the transfer

CLAIM.

r(Ds, B)t(A, Ds) = 0

PROOF. By Proposition 3.4.10

r(Ds, B)t(A, Ds) = t(I, B)r(A, I)

where
I= AB.

Since I is a factor of B, r(B, I) is onto, but t(I, B)r(B, I) = 0 so that t(I, B) =
0. 

From this claim and our computations, we conclude that

t(A, D)Ar = cit'

ci E F2 , i = 1, 2. From Proposition 3.4.10, we have

r(Ds, A)t(A, Ds) = 1 + c(1,2).

Since
(1, 2)N = N1

(1, 2)Nl = N'
we get that under r(Ds, A)t(A, Ds)

a[ __ Ar r.r

So ci = 1 for i = 1,2. Finally, t(A, Ds)r = 0 since ¥r' is in the image of
r(Ds, A). 

Now, the relevance of the module N comes from

PROPOSITION 3.5.12. 1. For 0 < i < m, 0 < j < n

D'['i(a), oj(b)] =- C-iC2nj E H'(Ds;N1)

2. ForO<i<m+n

Doi [a, b] = en+m-i E H*(Ds; N2 ).
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5. PROOF OF THE DETECTION SCHEME

PROOF. These follow from Propositions 3.5.1, 3.5.2, and 3.5.3. 

Combining Corollary 3.4.7, (3.5.4), Propositions 3.5.5, 3.5.11, and 3.5.12 gives
us our desired result.

Proof of Proposition 3.3.7 part d: Again it is sufficient to prove the result
for V = K(m) x K(n) x K(p). Let N be the E4 -submodule of 7r.V®4 generated
by a 0 a ® b ® d. As such it is a summand of the E4-module r. V®4 .

PROPOSITION 3.5.13. For all 0 < i < m

*TDa [oi(a), [b, d]] E Hm-'(Ds; N).

PROOF. Again, this is a computation utilizing Propositions 3.5.1, 3.5.2, and
3.5.3. 

Now, since N is a free A-module, then by (3.5.4) and Proposition 3.5.5 the re-
sult follows from a computation utilizing Proposition 2.2.16 and Corollary 3.3.5.

Proof of Proposition 3.3.7 part e: Let V = K(m) x K(m) x K(p) x K(q)
and N the E4-submodule of 7r V®4 generated by a b ® d ® e.

PROPOSITION 3.5.14.

%Ds [[a, b], [d, e]]E H*(Ds; N).

PROOF. Combine Proposition 3.5.2 and 3.5.3. 

N is 4-free so another computation using Proposition 2.2.16 and Corol-
lary 3.3.5 gives us our result.

This completes the proof of Proposition 3.3.7.

PROOF OF PROPOSITION 3.3.10. a. It is sufficient to prove the result for
V = K(n) and W = K(n). Suppose n, m > O. Then

(Nv Nw)*: r*S2V ® S2W 7r*S2V ® S2W

is injective. Thus it suffices to compute U,~. By Theorem 3.4.1 and Lemma 3.3.9
our conclusion follows from t(E 2 , E2 X E2 ) = 0 since r(E 2 x E2 , E2 ) is onto
H*(E 2 ; r*(V ® W)®2 ). Suppose n = 0. Define

il: (S2V) ® W - S2 (V W)

as the unique simplicial map such that

(Zy) b -, ( b)(y b).

Also define

i2 : (S2 V) ® W - (S2V) (S2W)
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58 III. PROOF OF THE MAIN THEOREM

as 1 ® (see (1.3.6)). Then the diagram

S2 (V ® W)

(S2V) W,,

S2V S2W

commutes. A computation gives the result. The case of m = 0 is the same.
b. This is an easy computation using the diagram

(V W) 2 , S2(V W)

1®T@11 1 '

(Ve2) (We2) , S2 V S 2W

[]
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