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Abstract

Thermal noise will be a fundamental limit to the sensitivity of the Laser Interferometer
Gravitational Wave Observatory (LIGO) in the frequency band where astrophysical
sources should be detected. A study of thermal noise in mechanical systems helps to
predict the noise floor of high sensitivity experiments such as LIGO and also gives insight
to the loss mechanisms in macroscopic systems. This thesis investigates the thermal noise
in wires that support the test masses of a gravity wave detector and in the internal normal
modes of the test masses themselves.

The thermal noise of a pendulum is calculated by considering the losses in the
flexure of the thin fibres that support the pendulum mass. An experimental investigation
of thermoelastic damping was done by measuring the Q's of thin fibres made of tungsten,
sapphire, silicon and fused quartz. Tungsten had the highest losses with Q's on the order
of 1(3 . Fused quartz had the lowest losses with Q's between 10 - 106 . The results
indicate that thermoelastic damping is at best only an upper limit for the Q of a wire.

The internal thermal noise of the gravity wave detector test masses depends upon
the frequency dependence of the loss mechanism in the test mass material (in this case,
fused quartz-SiO2). The design and noise sources of a high sensitivity special purpose
interferometer to measure the thermally excited motions in a thin disk of fused quartz are
presented. The RMS thermally driven motion of the mechanical resonances from normal
modes between kHz and 20 kHz was 4 x 10-13 cm and the typical Q between x 103

and 105 . The measured mechanical noise of the system was 2 x 10-15C771/ vTT between
I kHz and 20 kHz which was too large to be attributed to the off-resonance thermal
noise from one of the measured mechanical modes of the plate. Various candidates for
this noise are presented. Future experiments that would lead to a better understanding
of the measured noise are discussed.

A possible microscopic model for the loss mechanisms in fused quartz is presented.
Finally, a method to monitor the internal thermal noise directly in future advanced

gravity wave detectors is discussed. The optical experiment performed in this thesis is
a prototype for such a technique.

Thesis Supervisor: Dr. Rainer Weiss

Title: Professor of Physics
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Chapter Introduction

1.1 Gravitational Wave Detection

The research described in this thesis was undertaken as part of the Laser Interferom-
eter Gravitational Wave Observatory (LIGO) project. The fundamental goal of the LIGO
project is to detect gravitational radiation from astrophysical sources. Since a great deal
has already been written about this subject (see for example [1]) a brief description of
the expected magnitude of a gravity wave signal and of the typical detector noise gives
an adequate impetus for the study of thermal noise that was undertaken in this thesis.

Einstein's Theory of General Relativity is a very successful theory of classical
gravitation that has been verified experimentally in many ways. One of the most
interesting physical phenomena that it predicts is the existence of space-time disturbances
that travel as plane waves at the speed of light. The metric is

gliv -_ 71j, + httv

where 71,,, is the Minkowski metric and h,,, is the gravity wave disturbance that satisfies
the wave equation

17 h1t = C2 19t2

The gravity wave has two polarizations that produce tidal disturbances in the space-time
metric.

While there are some similarities between classical electromagnetic wave theory and
that of gravity, the most important difference between the two theories to be considered in
this thesis is the inherent weakness of gravity with respect to electromagnetism. Because
linear momentum and angular momentum must be conserved, both the electric dipole
and magnetic dipole radiation of electromagnetic theory cannot occur in gravity theory.
Instead, the lowest order term is a quadrupole. The common way to describe the strength
of a gravitational wave is in terms of the strain h = l/I. The amount of power in
gravity waves emitted by a time varying quadrupole is:

P - G d3Qkl d3Qkl
T5 0 dt3 dt3

where Qk1 is the mass quadrupole moment

k1 k I 261 P(TQ Ox k ),13 X

The strain is

h 2G d2Qk1

TR 0 dt2
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where G is the gravitational constant and R is the distance to the source. This is enough
information to obtain an order of magnitude estimate of the gravity wave amplitude. 
For a more complete discussion of gravitational wave sources see for example Smarr 2]).

The gravity wave amplitude will be on the order

G(kinetic energy)
h - (1.1.6)

C4R

The kinetic energy in this case is the non-spherical component of the kinetic energy in the
source. In order to make a rough estimate, the kinetic energy will be explicitly defined
as Mv 2 where M is the mass of the source. This gives a simpler expression for the

gravity wave amplitude

GAI V 8 M 10kpc V2
h- lo-,

C2R A10 R C

lo-21 M 10AIPC (V)2
A10 R C

where M is the solar mass. The first result shows the scale of h for an event at the
centre of our own galaxy. The probability of astrophysical events such as supernovae
occurring, however, is much greater if one goes to distances where there are rich clusters
of galaxies such as the Virgo cluster. It is clear that a gravitational wave detector must
be able to achieve a sensitivity of h - 10-21 if it is to find something.

There are at least two detection schemes to study gravity waves. The earlier technique
involves looking for the excitation of the fundamental mode of a cylindrical bar of
aluminum by a gravity wave. The typical resonant frequency of the bar is about I
kHz with a bandwidth of order 10 Hz. One significant improvement in these detectors
is the reduction of thermal noise by cooling them to milliKelvin temperatures. Other
improvements in seismic isolation and transducer sensitivity have also enhanced the
performance of these detectors 3]. A drawback is that the sensitivity is limited to a

narrow band around the resonant frequency.

The other approach to the detection of gravity waves is to use a sensitive interfer-
ometer 4] to measure the distortion of space-time due to the passage of a gravity wave.
The gravity wave effect on the detector can be described as a tidal force that moves test
masses which are the end mirrors of the interferometer. Alternatively, in the rest frame
of the test masses, the gravity wave distorts the space-time in the interferometer arms
and thus produces an effective phase change in the light. The length of each interferorn-
eter arm in LIGO will be 4 km. This sets the length change that must be measured as
4 x 10-16CM for a gravity wave signal with a strain of 10-21.

Figure 1.1.1 shows a schematic diagram of an interferometric gravity wave detector.
The test masses are mirrors that are suspended as pendula. This allows the masses to be
free falling in the direction of the optic axis. A gravity wave acts to change the effective
length of the interferometer arms as shown. For half of the gravity wave period, one
arm of the interferometer lengthens while the other contracts. For the other half of the
gravity wave period, this is reversed.

10



Figure 11.1 Schematic of an interferometric gravity wave detector with Fabry-Perot cavity arms.

test mass

test mass

n- ------------
beamsplitter

1.2 Noise Sources in nterferometric
Gravitational Wave Detectors

There are many different noise sources besides thermal noise that must be considered
to determine the sensitivity of interferometric gravitational wave detectors. These include
the seismic noise of the gravity wave site, the photon shot noise, residual gas fluctuations,
scattered light, laser frequency noise and many others (see [5]). The seismic noise is
filtered by vibration isolation and the test mass suspension. The photon shot noise can
be improved by increasing the power of the laser until the radiation pressure and its
fluctuations become important. The other noise sources can be reduced by improvements
in technology.

In the case of LIGO, the sensitivity of the detector is so high that thermal noise is a
significant noise source. The interferometer is designed so that the mechanical resonant
frequencies of the system are outside the gravitational wave detection band. In this
way, only the off-resonance thermal noise must be considered (see section 14). The
magnitude and shape of the off-resonance spectrum depends on the loss mechanisms
of the mechanical system. There are two sets of thermal noise sources and frequency
regimes that must be considered.

The suspension of the test masses is a pendulum with a resonant frequency on the
order of I Hz. Since the best sensitivity of LIGO will be at I 0 Hz where the photon shot
noise and the radiation pressure noise are approximately equal, the regime of �O >> '�Oo is
important. In this case, one would want the loss mechanism to have a structure damping
rather than viscous damping frequency dependence (see the section .4 for an explanation
of these terms) since it has a steeper slope and will have lower thermal noise above the
resonant frequency.

The other ajor thermal noise source comes from the internal modes of the test
masses that have resonant frequencies larger than 10 kHz. The frequency regime of
interest here is for u) << ��O. A loss mechanism with a structure damping frequency de-
pendence would not be desirable in this case since the noise increases at low frequencies.
For example, if the resonant frequency of an internal mode is 10 kHz, the thermal noise
will be a factor of 10 worse at 100 Hz if the loss mechanism has a structure damping
rather than a viscous damping frequency dependence.

I I



The initial parameters for LIGO used a viscous damping model for the loss mecha-
nism in both the suspensions and the test mass substrate. Figures 12.1 and 12.2 show the
spectra of noise sources for both an early LIGO detector and an advanced one. Assuming
a viscous damping mechanism, the early LIGO detector is limited by the capabilities of
existing technology. The detector noise is dominated by seismic noise below 100 Hz,
by suspension thermal noise in the frequency range of a few 100 Hz and by photon
shot noise above a few 100 Hz. By improving the seismic isolation and the suspension
design and by increasing the laser power, their contribution to the noise decreases and
thermal noise from internal modes of the test masses becomes a significant noise source
for an advanced detector.

Figure 12.1 Noise sources for an early LIGO detector [5]. The parameters used to make these predictions are:
Laser Power=5 Watts, mirror losses=50 ppm, recycling factor=30, test masses=10kg, suspension Q=107' internal

mirror Q= 04, vacuum H2=1 0-6 torr, H20=1 0-7 torr. The stippled area shows the range where the thermal noise
may appear depending on the loss mechanisms in both the suspension and the test mass substrate.

1 1 0 100 1000 10000
frequency (Hz)
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Figure 12.2 Noise sources for an advanced LIGO detector [5]. The parameters used to make these predictions are:
Laser Power-60 Watts, mirror losses=20 ppm, recycling factor--100, test masses=l ton, suspension Q=109, internal
mirror Q= 04, vacuum H2=10-9 torr, H20=10-10 torr. The stippled area shows the range where the thermal noise

may appear depending on the loss mechanisms in both the suspension and the test mass substrate

1�
_r
r7

a
(n
C

Struct

Visc

The noise plots in figures 12.1 and 12.2 show the difference in the off-resonance
thermal noise spectrum between the two loss mechanisms. If the dominant loss mecha-
nism in the test mass substrate has a structure damping frequency dependence, the thermal
noise becomes a very significant problem. It is now clear that a better understanding of
the loss mechanism frequency dependence is needed. This thesis will attempt to measure
the off resonance noise spectrum of fused quartz and hence, determine the frequency
dependence of the loss mechanisms.

1.3 Brownian Motion and the Fluctuation-Dissipation Theorem

The important physical concept in thermal noise is the relation between the frictional
force that dissipates energy in a system and the fluctuating forces that excite the same
system about equilibrium. A useful model for this phenomenon is the Brownian motion
of a particle in one dimension. (For some useful discussions, see the papers collected in
[6]. The approach here follows that of Reif 7 ). It is interesting to note that once again
this is a problem that was studied by Einstein.

Since it is difficult to describe the interaction of a particle with all of the degrees of
freedom for every other particle in the system, they will be regarded as a heat reservoir
with a temperature T and an interaction that can be lumped into some net force F(t).
This force varies ith a rate that is characterized by a correlation time 7 that measures
the relaxation time for the system to return to equilibrium after a sudden disturbance away

13



from equilibrium. The response of a free particle to such an interaction would have a
characteristic time on the order of the mean intermolecular separation divided by the mean
molecular velocity. For a particle bound with a linear restoring force such as a harmonic
oscillator, the characteristic time is on the order of the period of the oscillator multiplied
by its Q. If there is another external force F(t), the particle's motion can be written as

dv -
M dt = F(t) + F(i)

where is the mass of the particle.

By integrating this equation of motion over a time interval 7- >> T* that is still small
on a macroscopic time scale, one receives

t 7-

M[V(t +T) - vt) = Tt),r + F (t') dt' (1.3.2)
t

By expanding the fluctuating force into its slowly varying part F(t) and rapidly fluctuating
part P(t) and doing the same to the velocity, one can expand the force in a linear
fashion as

F(t = -a7 (1.3.3)

where a is a friction constant. This leads to the Langevin equation

dv -
m dt = F(t - av + P(t) (1.3.4)

In the absence of an external force, a particle will follow the equation of motion

dv
rnT = -av + Y(t) (1.3.5)

& d 2
MXT = Ml -(X�) - -ax;� + xF1(t)t dt

By taking ensemble averages and noting that xP(t) = x) �P(t)) 0 and I n, _2)
2

kBT where kB is Boltzmann's constant gives

dM-(x,� = kBT - a(xi) (1.3.6)
dt

Solving this equation with initial conditions x(O) 0 gives

�X2 9kBT t I (I (1.3.7)
rn-y ly

where and -�-' denotes the characteristic time of the system.Ml

For a time interval t <<

IX2 =kBT t2 (1.3.8)
M

14



and the particle behaves as if it were moving with a constant thermal velocity v = VI

For a time interval >>

2) 2kBT- � �t (1.3.9)
rn -�

and the particle behaves as if it were executing a random walk.

For a harmonically bound particle, the equation of motion is

dv 1 2
rn dt = -av F t - mWO (1.3.10)

where wo = V/T-/,m is the resonant frequency of the oscillator. The solution to this
equation is a more complicated problem than that of the free particle (see for example
Uhlenbeck in 6 The important result is that with initial conditions x(O) and
V (0) -- 0

U -(2mw'1a)t)
�X 2 = �1) 0

MW6

In this case, the, characteristic time constant of the system is m2lo or Qlwo where0

Q MWola.
A more general approach to this problem takes into account the thermodynamic

properties of the heat reservoir and how the equilibrium is disturbed and reestablished.
Assume there is a small subsystem A described by x and the other degrees of freedom
with which this coordinate interacts through the force F. All the other degrees of freedom
are described by a large heat bath B. The ensemble average of equation 13.2 is

1+ 

M ([V (t + - V P(t) T + F (t') ) dt' (1.3.12)

If at some time the particle has a velocity v(t), then the system A is at equilibrium to

first degree with F - and the probability of A being in state r as R(0). In the next
approximation, at time t = + T1, the particle has velocity v(t 7. If 7' is sufficiently
small, the particle's velocity changes and the internal equilibrium is disturbed. After a
time of order T*, the equilibrium is reestablished and is consistent with vt 7. The
heat bath B will be found with equal likelihood in any one of its accessible states. If
the change in velocity is Av(,r'), then the energy of B changes by AE'(7'). This energy
change must equal the work done by the force on the particle

ti tl

AE' v t 11) F(t")&' -- -v(t) F (t 11) dt it (1.3.13)

t

In equilibrium, the probability of the occurrence of a state r of A is proportional to the
corresponding number of states accessible to the heat bath B. Comparing the probability
of the occurrence of the same configuration r at times t and 71 gives

11'r (t T Q(E + AEI) (1.3.14)
(0) Q(EI)

14 7r

15



where '9 " �2 The mean value of F at a later time t = is19T, -

(F) IV, (t + 71) F, + f) Fr
r r (1.3.15)

(I + OAE')F)o

Since (F) = ,
ti

F(t')v(t) F (t") dt if

tf t 0 (1.3.16)

OT(t) dtlf (F (tf) F (t")

t

and the equation of motion becomes for s = t1l P

i,+-r 0

M(17,(t + 0 v01) - p(Or - OF(t) dtl ds(F(t')F(t' + S))O (1.3.17)
t t-V

The ensemble average in equation 13.17 is the correlation function of F(1) defined as

K(s = (F(t')F(t + s)O (1.3.18)
= (F(t)F(t + s))

If s becomes sufficiently large, then F(t) and F(t + s) become uncorrelated and one has
a general form for K(s) (see figure 13.1)

K(O = F 2(t) > 

K (F (t)) (F (t + s)), s -- o (1.3.19)

K --+ 0, if (F = 0, s -+ oc

The characteristic time * is the interaction time of the force and is very small on a
macroscopic time scale.

Figure 13.1 Plot of the correlation function K(s) for a random force F(t)

K(s)

0 S
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From the properties of this correlation function one can obtain a new form of equation
1.3.17

7-n([V( + 7) - V(t)] = Pt)7 - aT(t)7 (1.3.20)
where

00

a (F (0) F (s)) ds (1.3.21)
2kBT_

00

This is a form of the fluctuation dissipation teorem that has an explicit term for the
friction force a in terms of the correlation function of the fluctuating force F(t) It
shows that the same forces that cause the system to fluctuate are those that cause it to
dissipate energy.

The Brownian motion of a particle in the absence of external forces can be char-
acterized as a Markoff process so that the probability P(vt)dv that the velocity of the
particle is between v and v + dv is not determined by its entire past history, but only from
its velocity at a specific time. The probability can be written as conditional probability
which depends on the values vo to

P dv = P (v, I v, t ) dv (1.3.22)

Since the actual tirne origin is not important, the probability can be written in term of
the time difference s = t - to

P (v, t I v, t o) dv = P (v, s I v,) dv (1.3.23)

For very short times, the probability that the velocity is known becomes a delta function

P(v I v to) --+ 6v v, S --+ (1.3.24)

For ery long periods of time, the particle must come to equilibrium with the surrounding
medium at temperature T and the probability reduces to the canonical distribution

M I �Mv 2
P (Z! t to) -7 (1.3.25)

27r

The general condition that the probability must satisfy is that in any small time interval
7 the [increase in probability that the particle has a velocity between v and v + dv]
must be equal to the [decrease in this probability given that the particle has a probability
P(vj 7 1 v&,j of changing its velocity to any other value between vj and v + dvj ] plus
the [increase in this probability given that the particle, now with velocity between vj
and I,,, + dv, has a probability PZ'. 71 1 vI)dv, of changing its velocity back to between
v and v + dv or

ap dV7 P(ZI, I V)dZ'P(Vj 7 1 v)dvi
Os

VI (1.3.26)

+ P(,ul I v)dvjP(V.7 I ,,)dv

VI

7



Since P(v I vo) does depend upon vi and P(V71 I v) is properly normalized, the above
equation becomes

+00

OP 7 = -P(V s I vo) + P(v - , s I vo)P(v,,r v - )d� (1.3.27)
_�_s

-00

where v - vi

This can be expanded in terms of a Taylor series about such that

OP(V, s VO)
'98 n! O n M.P(V s I v)]

n=1
+00 (1.3.28)

Mn d��'P(V + � 7 1 V) V(_r)]n)
7

-00

If is small, this reduces to the Fokker-Planck equation

ap -- a Ol I a I 1' P1p) + 5T�( -
as av 2 (1.3.29)

OP U a2p
57ZT+ rn, a 2

The solution of this equation is

M 2 m, (v - 7o e
P(v' I VO = 27rkT(I - 2-ys exp 2kT(I - -2-y,) (1.3.30)

and it approaches the limits of equations 13.24 and 13.25.

In experimental physics, it is often more useful to consider the frequency components
of the noise sources using Fourier analysis. The correlation function can be expressed
as a Fourier integral

+00

this
K (s) J(W)C dw

-00 (1.3.31)
+00

J W) K (s) e ds

-00

where J(w) is defined as the spectral density of F(t). Since the K(s) is real and
symmetric, then J(L,.7) is also real and symmetric so that both functions satisfy

K*(s) K(s) K(s = K(-s) (1.3.32)
J*(W) J(W) JLO = J-w)
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A very important result is that the mean square of F(t) is equal to the integral of the
spectral density for positive frequencies

+00 +00

(F 2 = K(O = J(w)dw -- J+(w)dw
(1.3.33)

-00 0
J+(w = 2J(w)

One interesting example of the spectral density is that of the voltage fluctuations
across a resistor that was studied by Nyquist. The mean square voltage noise in a resistor
is

00

(V2 = j+(W)dW

0

and the resistance, from the fluctuation dissipation theorem, is
00

I
R (V(0)11'(s))0ds

2kBT -00

7r
= -j(0)

kBT

(1.3.34)

(1.3.35)

If the correlation time7* of the force is small and thus the correlation function is peaked
near 0, then or co < < 7-

J(�o = J 0 =IkBTR
7r

(1.3.36)

This produces a spectral density that is independent of frequency and is called white noise.

Figure 3.2 The spectral density for a random force with a small correlation time.

J (0)

0 (O1' *

In a simple electrical circuit (see figure I
to the fluctuations in the ernf. The equation

LdI + RI I
dt C

.3.3), the fluctuations in the current are due
for the current is

Idt -- V(t) (1.3.37)
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If the voltage and current are decomposed into their frequency components Vo(w)e
and Io(w)e the complex impedance of the circuit is obtained

Io -V (W)
Z(W) (1.3.38)

Z(w = R + i L-
WC

The fluctuations in the current then come from the fluctuations in the voltage divided
by the impedance

00 00 2

0I6(Lu I dw I V P I dw (1.3.39)
1 Z 2

-00 -00

The spectral density of the current is

(W = 1,� (w)
16 R2 + (wL - 2

(1.3.40)
.t.kBTR
7r in am,

R2 + (,L - 1 Ps Arad'anslscc.)
�,,, C

Figure 13.3 An electric circuit with resistance R, capacitance C and Inductance L.

R

L
V(t)

C

The spectral density calculated in equation 13.40 can be done for any system. This
treatment of thermal noise in the frequency domain was generalized by Callen [8 9 and
is the approach that will be used in this thesis. The following section introduces the
language that is used in the experimental field of gravitational wave detection.

1.4 Thermal Noise in a Harmonic Oscillator

A mathematically useful form to describe the loss associated with time-dependent
strain in materials is to substitute a purely real Young's modulus with one that has both
real and imaginary value (see for example Nowick [10]). If a stress

a = 0100,�,)t (1.4.1)
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is imposed on a dissipative system, then the linearity of the stress-strain relationship
causes the strain, E, to be periodic with the same frequency

(1.4.2)

where is the loss angle by which the strain lags behind the stress. Similarly, if the
strain is given, then the stress can be regarded as leading the strain by an angle . One
can then define a complex modulus of the material as

(1.4.3)

Since O(w) << 1, the modulus can be written

AI(W = UI = M(w)(1 + io(w)) (1.4.4)

The maximum energy stored per unit volume is

7r/2

All c2d = 2 0 (1.4.5)

Wt=0

while the amount of energy dissipated in a cycle is

2All' 7AJOE0 (1.4.6)

The ratio of the energy dissipated by a cycle of motion to the stored energy is

A 17 1V 2 7, 0 (1.4.7)

so that is called the internal friction of the material. The thermal noise spectrum for

such a loss can be calculated using the Callen formulation of the Fluctuation-Dissipation
Theorem.

A useful form of the Fluctuation-Dissipation theorem gives an expression for the
thermal noise in a simple linear system (see Saulson [I I] for a thorough review):

F 2thermal(Lo) 4kBTR(L,-,) (1.4.8)

or
X 2 4kBTo,(Lo) (1.4.9)

thermal 2

where Force

Z Velocity

R(Lo) _ RZ) (1.4.10)
,7(L,_� = Rc(Z-1)

In this formulation, the power spectral density is expressed for the customary bandwidth
of I Hz.
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The damping term for internal friction is defined in terms of a loss angle 0(�o) where:

Fdamping = -k(io(w))x

F + k(l + io(w))x
kz

(k - nW2)2 + 002(W)

and the thermal noise spectrum is:

F 2 W) = 4kBTMW2
0

4kBT LO2 (1.4.12)X2 (W) O(W) 0

M LIJ P 2 2 2 2 4
0 L100

In many instances, the loss in certain materials is dominated by a single relaxation
process of characteristic timeT and a dimensionless relaxation strength (see for example
[10]). A is defined as the ratio of two quantities that can be measured in the creep of a
bulk material after the application of a step function stress co and is given by

'A = U (1.4.13)
JU

where
J = = E(t 0) (1.4.14)

90

is the instantaneous compliance upon application of a unit stress and measures the
deformation when no time is allowed for relaxation. 6 = JR - J is the relaxation of
the compliance and is a measure of the total additional compliance that occurs after the
application of the stress. JR = J(t -- oc) is the relaxed compliance and measures the
final equilibrium value for the compliance.

The Young's modulus becomes

LU7-)2 _,7-)2

E = Eo I A (W7) 2 + + (W7

(1.4.15)

= Eo I i A W7 A <<

I + (W7)

The internal friction in this case has an explicit frequency dependence

A L4J 7 (1.4.16)
1 + P7 )2

and is called the Debye model for a single relaxation process.
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The losses in solids can be due to many different relaxation mechanisms. The
relaxation time 7- often obeys the Arrhenius equation

T_ 1 vo C -AEIkBT (1.4.17)

where AE is an activation energy in the relaxation process and vo is a constant relating
rate at which the activation barrier crossing is attempted. If one loss mechanism is
dominant, but has a spread of activation energies, the loss angle is constant over a
wide frequency band and is called structure damping 12]. If the fraction of activation
energy Q between Q and Q + dQ is given by f (Q)dQ, then the internal friction will be

00

A dQf (Q) 'T

I W T
0 (1.4.18)
00 QlkBi

A dQf (Q) W706

0 + (�.70CQ1kBt)'

The integrand is sharply peaked about

Q,, kBT In (ow) (1.4.19)

with a corresponding

TM, Toe Q-IkBT (1.4.20)

determined by 7�,,, _- 1. If f (Q) varies little over a range of kBT, equation 4.18
becomes

00

Af (Qm) dQ W7 9 (1.4.21)

0 + (W7)-

By making the replacement -- TIT, the above integral becomes

00

I I
O(w) A.f(Qm)kBT dz I 2 (1.4.22)

where
-Q.IkBT (1.4.23)

Since Q, >> kBT, the integral in equation 14.22 becomes

7r
O(w) = AkBTf [-kBTIn (7ow)] (1.4.24)

2

For a frequency independent internal friction between I Hz and 107 Hz, the spread in
energy of Q must be

kBT In (I ) = 16. 1 kB T _- 0. 4 V (1.4.25)
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Another well known model for the damping term in a simple harmonic oscillator is
velocity or viscous damping. Viscous damping has a force that is proportional to velocity:

Fdamping : -0.�

F m.� + 0.� + kx

21 (1.4.26)

Ow2

02W2 + MW2 Yk)

and a thermal noise spectrum:

F'(w) 4kBTO

4kBTX2 (W = � � rn (1.4.27)

M (W2 - W2)2
0 M

It is clear that viscous damping is a form of internal friction where has a frequency
dependence of the form:

OvISCOUS (L-1) OW (1.4.28)
MW2

0

The frequency dependence of the thermal noise for different sides of the resonant
frequency has interesting characteristics depending on the model (see table 14.1). The
Q (quality factor) which is defined as the number of radians through which the system
oscillates before its energy decays by a factor of I/e also has a different frequency
dependence for each model. All the systems being considered have low losses and
consequently Q>>I.

Table 14.1 Frequency dependence and Q for viscous and structure damping

Property viscous structure

Q MWO

wo

MW2
0

Lo < < LOO X2(L,,) C Cll'St. X2(w) , I
LU

> > X2 W) C X2 W) C I
L04 LO

There are several interesting results to discuss when attempting to find the best way to
minimize the thermally driven displacement noise in a mechanical system. While there is
always kBT of energy in each mode, the distribution of this energy in frequency depends
upon the resonant frequency and the Q of the material. The most obvious prescription is
to choose the mass of the system to be as large as possible while at the same time insuring
that the resonant frequency is not in the frequency band of experimental interest. In most
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cases, since the frequency decreases with increased mass, this is mutually incompatible
for one structure and some compromise must be made.

The next step is to use as high a Q material as possible. This puts as much of the kBT
energy as possible in a very narrow band around the resonant frequency. This feature can
be removed in the data processing with the appropriate use of a notch filter. Cooling the
system is problematic since the amplitude of the noise is proportional to the square root
of temperature and the only way to achieve any significant difference is to go to very
low temperatures on the order of microKelvin. This requires an elaborate experimental
set up. In interferometers, this is especially problematic since the light power lost in the
mirrors must also be removed.

1.5 Previous Measurements of Thermal Noise

Thermal noise has been seen in many different types of systems. A well known
example is the Johnson noise of a resistor where the voltage noise spectral density across
a resistor is:

4kBTR (1.5.1)

Another example is the Brownian motion of small particles. In macroscopic mechanical
systems, the effect of thermal noise has never been seen except at some resonant frequency
of the system.

Some of the earliest precision mechanical measurements were made using quartz
torsion fibre balances. They include the Roll, Krotkov and Dicke [ 3 repeat of the tv6s
experiment and various LaCoste gravimeter experiments to measure normal modes of the
Earth 4 14]. In all of these experiments, noise sources other than thermal dominated
and limited the sensitivity of these instruments.

Another obvious high precision measurement where thermal noise could be seen is
the detection of gravity waves. Acoustic gravity wave detectors are limited by the on-
resonance thermal noise with their current sensitivities. In interferometric detectors, the
Garching group [151, the 1.5 m MIT prototype 16] and the LIGO 40m prototype [17]
have seen the thermal noise at the resonant peaks.

1.6 Thesis Outline

This thesis will study the thermal noise in gravity wave detectors due to the suspension
of the test masses and the internal normal modes of the test masses.

Chapter 2 discusses the thermal noise from the mechanical losses in the fibers that
suspend the test masses. It includes a discussion of the thermoelastic damping model,
experimental results from measuring the Q's of wires made from different materials and
predictions for the thermal noise in LIGO test mass suspensions.

The rest of the thesis describes an experiment to measure the off resonance thermal
noise spectrum in fused quartz. Chapter 3 studies the thermal noise in a thin plate of
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fused quartz. Chapter 4 gives a detailed description of the optical interferometer design.
Chapter presents the results of the experiment. Chapters 6 and 7 discuss the possible
experimental and mechanical sources for the measured noise. Chapter describes future
experiments to gain a better understanding of the measured noise.

Chapter 9 gives a microscopic model of how the loss mechanisms in a bulk piece
of fused quartz produce thermal noise. There is a description of an experiment that tests
this model.

Finally, chapter 10 presents methods to measure the thermal noise in test masses
directly.
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Chapter 2 Mechanical Loss in Fibres

2.1 Thermal Noise in a Pendulum Supported by a Thin Fibre

The mass that holds a mirror of the gravity wave interferometer is suspended from
a thin fibre to produce a pendulum. The transfer function of the pendulum provides a
filter for seismic noise above the pendulum frequency:

Xout(f) f6 f > > A
Xi .(f) f"

This combined with a typical seismic spectrum of:

10-5CM / N/-Hz
x8cis,'Of) f1) f > 1OH" (2.1.2)

offers some isolation from seismic noise. Unfortunately, the fibres are flexural members
and any mechanical loss from bending will not only degrade the Q of the pendulum, but
also introduce thermal noise.

The equation (see for example [ 1 8]) for a member that is clamped at one end to a
fixed object and on the other end to a free mass is (see figure 21.1):

X
Y(X = ax - XO + aOC-XO

I
n EAK 2 2

X =
mg

E = Young's modulus
2A= 7 a =cross section of mmber (2.1.3)

r = radius of gyration of mmber
2 1 a2

K - dA
A 4

n of fibers spporting 7-nass
m -- pendulum, mass
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Figure 21.1 Pendulum supported by a thin flexural member

I
I

\ R

maS.
y

9

In order to use the fluctuation-dissipation theorem as expressed by Callen, one must
obtain the real part of the impedance of the fibre. First, the Young's modulus must be
expressed with a complex component

E = E( + (2.1.4)
so that

The shearing force is

1) 1
U 7r 77, E2 Omat (W)

X = I +Z
2 mg 2

7ra 4 3 y

F= -E aX3
4
4r a

= E TX2 e e X 00

7-ng= a
n

(2.1.5)

(2.1.6)

(2.1.7)

The velocity of a fibre with length I is
dy

dt
The impedance of the string is then

F mgz - = _ i
V nco(l - 2xo)
M'y XO)

I 2
n-W1 ( I

mg a2 7rn-E
+ 

I Mg

2xO)a

(2.1.8)
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(ZI-Ilass + strzng)

F(w)
O.. (W)

z 2 ) ) )

M z W2-W 2 (I + 2 L" 1)) ,2 IT I .. a, 1)
0 1 0 n1 2

The resonant frequency of the pendulum is
2 9

WO 

Omat (��)
_,I_2 2 �,O 12 02

0 -a� (-)
)O 4n,212

Omat (�O)
9 4 1 2 ", ,O)

((�02 - -� 2 - �111 a 2 12 (,,,,E ) )
0 16n M-g

1
2 Om at W)

� / 1) \ 2 w� O 2_ _ IV) - v � �

The equation of motion for a pendulum is

F(w)
v (�"' =

Z.ass + Zstring
F (co)

V(W =

(2.1.9)

(ZWM

(2.1.10)
2 9

WO = - I 2 xO'
1 1

2
-- 411,10

The real part of Z-1 is

�O2 X0
'7 0

2774m,

2�oa 2 71 nE
0

4 n 1777, 7-n g

The thermal noise will be

2(�O) 4kBT
�C2

kBT �u 2 a 2 7r72E
0 -

W nine, mg

(2.1.11)

��W' - 0
; - , --L

16n212 M-g

I

(2.1.12)

4 2 1 1
kB T,,o a 7 2E2 Om at (C-0

3 1

Ong 2n F LO ( W2
2 LO8a' E7,-62

- L4)2 + 0 11 -a,(-)
0 ) 16g nm

Another way to obtain the loss in the pendulum and hence, its thermal noise is to
compare the power dissipated in the flexure to the power dissipated in the pendulum and
to compare the energy stored in the flexure and the energy stored in the pendulum.

The energy stored in the flexure is:

Eclastic -- I AEK 2
2

(2.1.13)I- I rng EAK 2 2a1)

4 n
2 1

a 777,g 2 2
= 7 E) a

8 ( 71
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Y dx
aX2
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The gravitational energy stored in the pendulum is:

E I"IgIce2 (2.1.14)'Iat'onal -::::-grave 2 2

The pendulum is a harmonic oscillator that follows the equation

a(t = ac (2.1.15)

The power lost in each member due to flexure is

P (F x v)

E7ra4 4

- P.at (w)) x iwoydx
4 0 (9 (2.1.16)

a2 7rmgE 2

WOQ 2Omat (W)
8 n

The power lost by the pendulum is

P (F x v)

(-k(Z'Op,.d(W))Y X V)
2 (, z' z 1 (2.1.17)(-MWO i0pnd(w))aIC ' X WOa16 "Ot)

3 212
777,��10 aOpend(W)

2

Since the loss in the pendulum is entirely due to the loss of the flexure (the gravitational
field that stores most of the pendulum's energy is lossless), the internal friction of the
pendulum is

2
3 212open. a 7rrngE 2

-MWOa d G,10 WOa Omat(�-)

2 n 1 (2.1.18)
7r 2a -

Opend(w = - Omat (W)
41 7 mg

Alternatively, one can equate the losses of the pendulum to the ratio of the energy stored
in the flexure (which losses an amount proportional to /Qmat in each cycle) to that
stored in the gravitational field and obtain the same result

Epend Emat

Qpend Qmat (2.1.19)
41 t 11,11ty2

Qpend --::: Qmat a- 7E

The thermal noise due to the loss in the flexure for one member can be obtained by
putting the pendulum loss in equation 14.12. It gives the same answer as that obtained
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in equation 21.12.

X2 Ope.d(LI)) 0

thcrrnal(L�,, = M W P2 - L;2)2 + 2,
0 P nd(W)L"O'

(2.1.20)2 4 1
- kBT a L4) 0 E2 72 O(LL)material

(Mg) 3 
2nT W

I
2 + (02(,)w 8a4E7r

Li-) 2 -02 ) 0
0 16 g-n m )

For L� >> wo, the expression is:

2 4 1 1
- kB T a LIJ E 77 0 LU) I

(Mg) 3 1 material 5
2 n! W

kB T L;4 E 1 10
1 1 3 O(L-0malerial 5
2 Mg 2 n Sm a x W

X 2
I he rmal L,-�)

(2.1.21)

I

where S,,.x is the
is just Vn times
member added in

yield strength of the wire. The total thermal noise from all members
the thermal noise from each member or the thermal noise of each
quadrature.

O(L,-�) - A LJ IF

I L,�T ) 2

where A is the relaxation strength and T is the relaxation time.

One such process is thermoelastic damping as described by
the parameters are

Ea 2 T
A = Cv

(2.2.1)

Zener [ 1 9, 20] where

d2
7 (circular bearn)

27r 216D
a2��2-D -n thickness = a)(rectangular bea?

D -- K,
CJ,-

E Young's modulus
z z 07

liear coeff'66nt of thermal expans'
CY = (C?.f?'c hca pr unit volu7ne

K thermal conductivity
T temperature

(2.2.2)

3 

2.2 Loss Mechanisms in Fibres: Thermoelastic Damping
There are many ways to model the mechanisms that contribute to mechanical loss

in a solid. The Debye model for single relaxation processes has an explicit frequency
dependence and has the form (see for example Nowick [10]):



The physical interpretation of this model involves heat transfer across a thin fiber. The
heat transfer depends upon the thermal conductivity of the material while the compression
and expansion of the fibre (which generates the work) depends upon the frequency of
oscillation. If the period of oscillation matches the heat transfer period, the dissipation
is maximized.

Figure 22.1 X2 ";) for different frequency limits.
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It is of pedagogical interest to relate this loss to the motions induced in the fibre by
statistical temperature fluctuations inducing small changes in the length of the fibre about
the neutral line and hence, stresses in the fibre.

Figure 22.2 Sketch of how a temperature fluctuation causes a motion of the fibre.

T-AT T+AT

I-Al P
I+Al

The differential of the Gibbs free energy per unit volume is (see for example Nowick

1101)
dg = -sdT - ��da

From this equation one can obtain the cross relationship

(2.2.3)

O s

ag T

OE
= T =01

01

(2.2.4)

where a is the coefficient of linear expansion. The relationship between temperature
and entropy is

as -CV

aT 0T (2.2.5)
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and the relationship between temperature and strain is

aT "s T - Ce TO
ao, S aTq 01 cli- (2.2.6)

where C is the specific heat per unit volume. The strain can be expanded about
0; T = To

T) -- + aE (T - To)
aa T 9 T O' (2.2.7)

JRa + aAT
where JR is the relaxed compliance (see equation 14.14 for a definition of both the
relaxed and unrelaxed compliance J). The differential form of the enthalpy is

dh -Eda + Tds (2.2.8)

which gives

'9'�7 aT aTo (2.2.9)
,Os '7 A7 S Cv

The strain can then be written

= Jua + a To (2.2.10)
CT,-

The temperature cn be expanded in terms of s and 

AT TO (As ao')
Cv (2.2.11)

TO (AS 
CT,,

where Aq is the equilibrium value of the entropy for AT -- .

The heat flow across the neutral line will follow a diffusion equation

dq = V2 T (2.2.12)
dt

Using equation 22.12 and

dq
dt T dt (2.2.13)

gives a new diffusion equation in terms of the entropy

D V (As - �s (2.2.14)
dt

where D -- ICT,, and is called the thermal diffusivity.
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The entropy can be written in terms of time dependent and spatially dependent
orthonormal functions

As = EAs,,(t)U,,(XYZ) (2.2.15)
n

The spatial eigenfunctions are solutions to the equation

'71 + w = (2.2.16)

For a rectangular ribbon with thickness a, the boundary condition is that there is no heat
flow out of the ribbon or

dU 0 x = ±a/2 (2.2.17)
dx

The solution of this equation is

2 2

(In - sin [(2n + 1) H
a a (2.2.18)

(2n +1)7 2

a

The time dependent equation for the entropy can be written

(ASn - ASn)

dt 7n (2.2.19)
-1

,rn = D�

This is the same time constant from the Zener thermoelastic damping model. The solution
of the above equation is

t t
A-s, Ae-In + ]� T 

7n (2.2.20)
t

7n

The entropy thus increases linearly with time. The stress is due to the length change
caused by the temperature fluctuation

a = EAl EaAT (2.2.21)T=
The change in energy that takes place is then the heat flow that causes the temperature

difference AEncrgy = T + AT)A-, - (T - AT)A-,;

= 2ATAs
t= 2ao, - (2.2.22)

Tn

2a2 E(AT)2

Tn
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The temperature fluctuations are (see Landau[21])

(AT)') kBT' (2.2.23)
Cv

The energy fluctuations are

2kBTa2ET
AEnergy = - -t (2.2.24)

'r.Cv
The fluctuation dissipation theorem gives the energy fluctuations as

AEnergy = kB t
7correlation (2.2.25)

7correlation Q

Relating equations 22.24 and 22.25 gives the internal friction as

Ea 2T
(2.2.26)

Gw7n.

which is the same as that predicted by Zener's thermoelastic damping for �.17 >> 

This result is a very clear example of the fluctuation dissipation theorem. In one case,
bending of the fibre produces temperature changes in the fibre that dissipate due to
thermal diffusion and hence, cause a loss. In the other case, temperature fluctuations
cause fluctuations in length which in turn produce flexure in the fibre.

2.3 Experiment

An experiment to investigate the loss in fibres that might be suitable for the suspension
of the test masses of LIGO was performed 22]. The materials studied included: tungsten,
silicon, sapphire ad fused quartz.

Table 23.2 A and D values for the materials considered

Material A D in cmls 2

Tungsten 7.8 x10-4 0.61

Sapphire 9 I X 1-4 0.13

Silicon I I X 0-4 0.79

Fused Quartz 3.1 x 10-' 0.16

The top of the fibre was clamped in various ways to an aluminum block. The bottom
was left free. An electrostatic plate excited the bottom of the fibre by applying a sinusoidal
potential of up to a kilovolt over a DC signal of up to a kilovolt at a resonant frequency
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Figure 23.1 Sketch of apparatus used to measure losses in fibres.

clamp,----*'

electro,-
F

oscillate

amp.

)de

of a transverse mode of the fibre. An optical shadow detection system consisting of
the fibre blocking the light from an LED shining onto a split photodiode measured the
motion of the fibre (see figure 23.1).

The Q was measured in two ways: either by driving the fibre at its resonance
frequency and looking at the FWHM of the resonance in the frequency domain with
an FFT spectrum analyzer or by determining the envelope to the damped sinusoidal
amplitude of the fibre's vibration during a free decay after the drive was turned off.
The electrostatic drive could easily excite the fibre to an order of magnitude above the
level at which it was driven by background vibrations. The envelope of the free decay
was regularly checked for its exponential character to guard against non-linearities in the
measurement process or the mechanical system.

The resonant frequencies of the fibres follow that of a stiff string (see for example
Morse 23])

n 2 E7,, a2K2 7727r2 Er a2K2
I + + 4 12 (2.3.1)

21 7ra- I T 2 T
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The resonant frequency of the first mode of the fibre reduces to that of a wire hanging
vertically by its own weight or a "chain" that neglects the stiffness of the wire

A = 1.2 (2.3.2)
27r 1

where is the length of the wire. The frequencies of the higher modes reduce to that
for a clamped beam that neglects gravity:

A? [E1
fi 27r12 n

2A. = 1.875,4.694,7.855,10.996.14.923 (2.3.3)
7ra4

4

Most of these modes were split from ellipticity in the fibre. Since most of the restoring
force for the higher order modes comes from the flexure in the fibre, the Q measured
is the actual Q of the material.

Gas damping was made negligible by placing the experiment inside a bell jar vacuumCI

system that reached pressures below 1 0-5 torr. The supporting structure was much greater

in mass than the fibre which made external damping from recoil negligible.

There was concern that friction due to rubbing in the clamp would be the dominant
loss mechanisms. A number of steps were taken to reduce this possibility. The best
strategy was to use a fibre drawn from a thick piece; the thick piece is easier to clamp
than the thin fibre.
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Figure 23.2 Q values for tungsten. The square boxes indicate the measurements for a wire 0009" in diameter and
10" long that was clamped between two aluminum plates with the edges rounded in an attempt to reduce friction due
to rubbing between the wire and the aluminum surface. The hexagonal and pentagonal boxes show the values for a
0.005" diameter wire with a length of 10" and 4 respectively. The wire was spot welded to a thicker tungsten rod

(0.126" in diameter) that was clamped inside a tightly fitting hole in an aluminum block. The triangles are the results
from a 0059' tungsten rod that was electrochemically etched to a wire with a thickness between

0.005" and 0.010" and length of 4. The curves represent the theoretical values from thermoelastic
damping (the pentagons represent 0.005" diameter, square boxes 0009" and the triangles 0.015").
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Figure 2.3.2 shows the results of measuring various tungsten wires. The square boxes
indicate the measurements for a wire 0009" in diameter and 10" long that was clamped
between two aluminum plates with the edges rounded in an attempt to reduce friction due
to rubbing between the wire and the aluminum surface. The hexagonal and pentagonal
boxes show the values for a 0.005" diameter wire with a length of 10" and 4 respectively.
The wire was spot welded to a thicker tungsten rod (0. 1 26" in diameter) that was clamped
inside a tightly fitting hole in an aluminum block. The triangles are the results from a
0.059" tungsten rod that was electrochemically etched to a wire with a thickness between
0.005" and 0.010" and length of 4". The curves represent the theoretical values from
thermoelastic damping (the pentagons represent 0.005" diameter, square boxes 0009"
and the triangles 0.015").

Figure 23.3 shows the Q of various sapphire samples. The squares are from a fibre
0.020" in diameter and 10" long that was clamped between two aluminum plates. The
triangles are from a piece 0009" in diameter and 4 long also held in an aluminum plate
clamp. Finally, the pentagons comes from a fibre 0.0055" thick and 3 long that was
welded to a thicker sapphire rod 0030" in diameter. The thick piece was press fitted into
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a tightly fitting hole in an aluminum block. The curves represent the values expected
from thermoelastic damping.

Figure 23.3 Q values for sapphire. The squares are from a fibre 0020" in diameter and 10" long that was clamped
between two aluminum plates. The triangles are from a piece 0009" in diameter and 4 long also held in an

aluminum plate clamp. Finally, the pentagons comes from a fibre 0.0055" thick and 3 long that

was welded to a thicker sapphire rod 0030" in diameter. The thick piece was press fitted into a
tightly fitting hole in an aluminum block. The curves represent the values expected from thermoelastic
damping (the pentagons represent 0.0055" diameter, the triangles 0009" and the square boxes 0020").
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Figure 23.4 shows the results from a sample of silicon. A rod with a diameter 0 125"
was chemically etched to a fibre with thickness between 0027" and 0035" and a length
of 4 The rod end was clamped into an aluminum block. The curve represents the
thermoelastic values for a piece 0030" in diameter.
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Figure 23.4 Q values for silicon. A rod with a diameter 0125" was chemically etched to a fibre
with thickness between 0027" and 0035" and a length of 4. The rod end was clamped into an
aluminum block. The curve represents the thermoelastic values for a piece 0030" in diameter.
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The last material measured, fused quartz, can be seen in figure 23.5. A series of
0.125" fused quartz rods were pulled to make a fibre 3 long and thicknesses of 0009"
(pentagons), 0.015"(triangles) and 0.020"(squares). In each case, the rod end was clamped
into an aluminum block. Again, the curves represent the predicted thermoelastic damping

for each respective thickness.
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Figure 23.5 Q values for fused quartz. A series of 0125" fused quartz rods were pulled to make a fibre 3 long and
thicknesses of 0009" (pentagons), 0.015"(triangles) and 0.020"(squares). In each case, the rod end was clamped into
an aluminum block. Again, the curves represent the predicted thermoelastic damping for each respective thickness.
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2.4 Discussion

With such a limited number of samples, it is only really possible to say that
thermoelastic damping does give a good upper limit for the possible Q of the materials.
By using thermoelastic damping as an estimate of the loss in fibres, one can determine a
noise spectrum for a typical LIGO suspension. Figure 24.1 shows the predicted noise for
a bifilar pendulum with m=10 kg and f=1 Hz. The square boxes are for tungsten with
the wire at its yield. strength (4x 1010 dyneS/CM2 ) and the crosses are for fused quartz at
its yield strength 4.8 x I 8 dynes/cM2). While the fused quartz does have a higher Q, it is
weaker than the tungsten and must have a larger thickness. This reduces the effectiveness
of the lower loss by making the Q improvement from equation 21.19 worse.

41



Figure 24.1 Thermal noise from thermoelastic damping in a LIGO suspension for a 2 wire pendulum. The mass is
lOkg and the resonant frequency I Hz 1=25 cm). The yield strength for tungsten (square boxes) was 4x 1010

dynes/cm 2(d= 0.005"). The yield strength for fused quartz (crosses) was 4.8x 108 dynes/cM2 (d=0.045").

lo-14

fused quartz

tungsten

X

0 X

- lo-16
N-r
r_ 10-17
C7
U)

E 1-18
C
t!�
X o-19

1 o20

lo-21

1 o-22

1000 1 4
1 10 100

Frequency (Hz)

42



Chapter 3 Thermal Noise in a Thin Plate

3.1 Internal Thermal Noise

An interferometric gravity wave detector measures extremely small distances by
reflecting laser beams from mirrors and comparing the phase accumulated by two beams
that travel orthogonal to one another (see figure 1.1.1). If these mirrors have their own
independent random motion, this will create a path change for the light that can look
like a gravity wave signal. One such motion is introduced by thermal noise from the
suspension system that holds the mirrors (see chapter 2 Another source of motion is
thermal noise driving the internal mechanical modes of the mirror substrate.

As discussed in section 14, the thermal noise contribution to the frequency band of
interest can be reduced by putting the resonant frequency out of the measurement band
and by using a system with a high Q. In a LIGO test mass, the Q should be limited by
the material properties of the mirror substrate. (In practice, this is a difficult goal since
the Q of the material can be degraded by clamps or other devices such as positioning
magnets that are attached to the mirror). Ideally, this substrate should be a material with
a very high Q. In LIGO, however, the mirror substrates must have optical properties that
include transparency to green light 5145 A) and low absorption losses. The substrate
must also be made from a material that can be polished to within very high tolerances.
At this point, fused quartz (SiO2) is the best material that satisfies these conditions. In
the future, other materials with better Q's and optical properties might be used.

The first design consideration for the mirror is that the mirror should be substantially
bigger than the bearn spot. (The radius of the mirror must be more than four times bigger
than the beam spot for a diffraction loss of 10-6.) Another important consideration is
the effect of the beam heating the mirror. Finally, given these constraints, the resonant
frequencies of the mirror normal modes should be as high as possible. This sets a
constraint on the aspect ratio of the mirror. If the mirror is too thin, it becomes a plate
and the resonant frequencies are too low. If it is too thick, the mirror becomes a cylinder
whose bending modes are too low in frequency. The good compromise is a mirror with
a diameter of 25 cm and a thickness of 10 cm.

The lowest resonant frequencies of this mirror are on the order of 10 kHz. Since
the gravitational wave band is near 100 Hz, the thermal noise from the internal modes
of the mirror is given by

2 4 kB T

MW W2
n n

For a certain aspect ratio, the quantity alc where a is the radius of the mirror and
c is the speed of sound is constant for a particular normal mode of the mirror. Since
.M x a3, then u2 C,( A-2/3. The thermal noise then scales as Al-1/6. Changing then

mass of the mirror does not significantly change the off-resonance thermal noise in the
gravity wave detection band.
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The other important part of equation 3 .1 is the frequency dependence of the loss
mechanism O(w). Figures 12.1 and 12.2 clearly show that a structure damping loss
mechanism will make the off-resonance thermal noise a serious problem near 100 Hz. The
next few chapters describe an experiment that was undertaken to measure the frequency
dependence of the loss mechanism in fused quartz.

3.2 Motivation for a Thin Plate Geometry

An important consideration for an experiment to measure the off-resonance thermal
noise spectrum is the design of the mechanical system studied. The material is fused
quartz since it is the most likely one used in the gravity wave detector test mass. The
mass is made as small as possible in order to make the thermal noise as large as possible.
The resonant frequency is on the order of I kHz so that seismic and acoustic noise are
no longer significant noise terms. The normal mode that is measured is anti-symmetric
in its shape so that common mode noise terms in the sensing system are cancelled by
an interferometric measurement technique.

A geometry that takes all these considerations into account is a thin plate. While
a thin plate does not have the same aspect ratio as a gravity wave detector test mass,
the loss mechanisms in the plate should be due to the inherent material properties of
the fused quartz and should give a good indication of the loss mechanisms in any other
fused quartz mechanical system.

3.3 Normal Mode Analysis of a Thin Plate

For a thin circular plate, the general form of the normal modes is (see for example
Blevins 24]):

Z k (r, 0 = A k A An k r + bnk Ik cos (kO) (3.3.1)
ro ro

where Ank is the amplitude of the displacement for a particular mode, ro is the radius
of the plate, Ank is an eigenvalue that depends upon the boundary conditions, k is the
number of radial nodes and n is the number of circular nodes. Jk are Bessel functions
of the first kind and Ik are modified Bessel functions of the first kind. The thin plate
approximation is valid when the thickness, h, is much smaller than the radius (h/ro << 
and the displacements are much smaller than the thickness (Ank/h << 1). The coordinate
system has its origin on the neutral surface of the plate and the z axis is normal to the
neutral surface. znk is the vertical displacement of a point on the neutral surface (see
figure 33.1). The components of displacement in the xy plane are second order relative
to Z, k and are set equal to 
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Figure 33.1 Sketch of the coordinate system for a thin, circular plate
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The boundary conditions for a rigidly clamped edge are:

Zn k (7 = r') 0

19Z,,k 0

,or

Solving these equations give the following:

Jk(A,,k) k+l(Ank) + Ik(A.k) Jk+,(A,,k = 

bnK - -Jk.(Ank)
Ik(A.k)

The roots of these equations for some values of k and n are given in table 33.3.

Table 33.3 Ak and bk for clamped edge

(3.3.2)

(3.3.3)

k=l k=2 k=3n k=O

0 3.19622
0.0557128

4.6109
0.0152162

7.79927
-0.000608146

10.9581
0.0000254845

5.90568
0.00523458

9.19688
-0.0017531

7.14353
0.00201321

1 6.30644

-0.0023015

2 9.4395
0.00110987

10.5367
-0.0000565

A23

42 3

12.4022
0.0000675364
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The shape of the second lowest mode is displayed in figure 33.2. This is the mode
that is measured.

Figure 33.2 Second lowest order mode (n=O, k=])

0. 5

-C

The frequencies of these modes are given by the solutions to the equation (see for
example Landau [18])

19 2znk Eh2
P A2- k --5t2 + 2(-I- 0,2)

(3.3.4)

where A is the two dimensional Laplacian (A = 92 92 in rectangular coordinatesay

and A = a r 9 + 1 92 in spherical coordinates). The frequencies arer ar ar T2 a92

W2 Eh2 (A.k )4

nk = 12(l - 0,2)p r4
0

E = 72 x 1011 dyn CS/C?7�2

a = 016
p = 22 g/crn 3

= 2 6 104 (A.k )2h z r, h fnk .6 2 H in cn
ro

f C h
r2

0

(3.3.5)
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For the second lowest order mode, the frequency is:

fol = 566 x 10 5 h Hz r, h i cm
r "I

(3.3.6)

ro 2r
I 1

p(r, )h-Znk-znlktrdrdO bnkn'k'
ank anlkl

0 0

a2 = h7i p r2n k 0 Al. k (3.4.1)
A,,�k

[Jk-(u) + bnklk (U,)]2 udu

0

Mnk = I
A2

nk

The plate is assumed to be uniform in density for these calculations. Table 34.4 gives
some values for 111k

2
f (A (-) + bk Ik 0) u du
0

k=2

Table 34.4 11,k = 
A'k

k= In k=O k=3

0.0394756

0.0287584

0 0.10887

1 0.0506907

0.067164

0.0404892

0.0498746

0.0336565

2 0.211237 0.0289387 0.124823

The normal mode expansion of a displacement at a certain point on the plate is

I 
w(rOt) E I�Ink(r, )qnk(t)

L ank
(3.4.2)

where qk(O is the generalized coordinate of mode nk. The e
the form

+ �_ 2
4nk(t) nk( + Onk(�o))qnk(O = Qnk(O

C.",2+ W2nk(l + Onk(w))]qnk(t) = Q.k(O

Since the Young's modulus has a loss term of the form

E(I + io(w))

�quation of motion has

(3.4.3)

(3.4.4)
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3.4 Displacement Thermal Noise in a Plate Normal Mode

The next step is to calculate the actual displacement thermal noise of the plate as a
function of position on the plate. In order to use the formalism of Callen, the impedance
of the plate must be calculated.

The normal modes of the plate must be normalized according to the relation (Saulson
[I I] does a similar, derivation for a one dimensional system)



1Fe I't - Znk
a,,k

2 Z 2Wnk W + 'O.k(W)Wnk

and the resonant frequency

2
Wnk x E + *4 (3.4.5)

an explicit damping term in the form of an internal friction, O(W), is included in equation
3.4.3.

Q. k (0

is the generalized force that is given by

ro 2r
I

Qnk(t) = f (r, 0 )- Znk (r, 0) rdrdO
ank

0 0

(3.4.6)

(3.4.7)

where f (r, 0, t) is the force density that is applied to the system. If a force Fe" is
applied at r, 0, the generalized force is

I
Qnk M = Fe"' - -nk (r, 0)

ank

Putting this force in equation 3.4.3 gives

(3.4.8)

qnk = (3.4.9)

Substituting this result into equation 34.2 gives

F e Z't-I Z2
a7-

0, O nk
nk -Onk(�O)LIO

n, k LJO + Z nk

The admittance Y velocitylF is

-2
a7-"'nkX

(3.4.10)

-1 - / W2 - W2 + 70.k(�4� 2
nk nk nk

2 1 -2
Onk (W)WWnk 7� 4nk

Re(Y) Y 2 2 2 2

nk (Wnk W nk(W)Wn-k

U(W =

The thermal noise can be found by using equation 14.9

2 1 Z 2
�nk(W)Ll'nk -a nk

n,IV-12
zthermal(r, 0, L, = 4kBT

Z-I �U ( (L,, 2 - 2 2 2 ,�)L,,4
n, k nk n k nk )

2
Cos2 (H)A (A-' r) + bnk Ik (A-' r) ]I ro ro- 4kBT

7rphr2�0 �7,
0 nk

(3.4.12)

-AJ',n k

2
On k (I;) n k

X
(W2 2) 9+ 2 4

nk W 9nk(L:)Wnk
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The thermal noise contribution of a specific mode is

[Jk A-' r) + b.k Ik A-' r) COS2 (kO)
-2 4kBT ro TO

0, f 7rphr2w Mk
0

2
X O.k(w)wnk

2 2 2 o2 4
(Wnk W + nk W)Wnk

[Jk A-k r) + bnk Ik (A-' r) 2 Cos 2 (kO) (3.4.13)3.8 X lo-,, ro

hf Mnk

Onk (W)

hA2k 2f2 2 101002 2A11.7 x 101 n 2.4 10-4 ro (W) h n K,�- 28hA k nk r4
-1-F 0

in, cm/v"Hz f or ro, r, h 'n cm, f n Hz

3.5 Mirror Parameters
As discussed in section 32, the parameters that determine the size of the mirror for

this experiment are chosen to give a resonant frequency near 10 kHz for the = k = I
mode. There are two ways to achieve a resonant frequency in this range and each has a
problem associated with it. The mirror can be made thin which causes problems in the
manufacturing process since a certain aspect ratio is necessary in order to obtain a good
surface figure. The surface figure is constrained by two different factors. The mirror will
be optically contacted which requires a minimum surface figure error. Also, the high
finesse of the optical cavities demands a very small loss in the mirror which constrains
the surface figure. The other dimension that can be changed is the diameter. Practical
considerations limit this size.

Standard industry practice uses a 91 aspect ratio for a mirror to have a surface figure
of A/10. For a frequency of 10 kHz, the diameter of the mirror will be 10". This is too
large for table top sized experiment. A reasonable size for the diameter is about 4. Since
the surface figure is only important over the area that is optically contacted and over the
beam spot (which are both small compared to the area of the entire plate), the aspect ratio
and surface figure can be relaxed somewhat. The parameters used in this experiment are
a diameter of 4 (actually 475" including the surface that is optically contacted) and a
thickness of 14". This has a resonance frequency of 14 kHz for the second lowest mode.
If the predicted sensitivity of this experiment does reach the conservative calculated value
of -17 C,771VHZ, then the off resonance thermal noise should be seen.

One of the goals of this experiment is to determine the shape of the off resonance
thermal noise curve. Figure 35.1 shows four different curves that describe:

lo-,, lo-, f lo-, f io-6 (3.5.1)
(14 x 103 Hz)' 14 x 103 Hz)

The first two expressions represent structure damping with Q 101, 10' and the last
two expressions represent a viscous damping with Q 106C� at 14 kHz. The spot
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on the mirror is chosen to be at the maximum displacement point or at r 0.38r, for
the n = ) k = I mode. It is clear that there are substantial differences between the two
damping models at frequencies above and below the resonance. An instrument sensitivity
Of 1-17CM/V/H-Z is sufficient to distinguish between the two damping models for a Q

of W.

Figure 35.1 Plot of the thermal noise from the second lowest mode. The top curve is
10-5 the next is OP) 10 , then W = 10-6; the bottom curve

14X103 H)

is O(W) f 0-6 Of 1-17C
(14 X 103 Hz) The horizontal line represents a predicted sensitivitymHz
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The thin plate must be mounted in a way that neither degrades its Q nor adds any
other significant losses. A first guess at the best clamp is an optically contacted joint.
A good optical contact joint should be the same as if the material is continuous across
the joint and hence, have the same losses as the material. The other part of the clamp
that must be considered is how it can form an optical interferometer. The final design
that was used can be seen in figure 36.1.

By making the two spherical mirrors and the fused quartz plate on which they are
mounted thick, the resonant frequencies and mass will be high so that their contribution to
the thermal noise of the system will be negligible. The normal modes of the cylindrical
shell should primarily be common mode in nature. By making the walls sufficiently
thick, the frequencies of these modes are also high so that their contribution to the
thermal noise is negligible. Since this optical assembly is the most important single part
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of the experiment and cannot be changed easily, it is referred to as the "jewel". It also
happens to be the most expensive part of the experiment.

Figure 36.1 Sketch of experimental optical assembly or jewel. The flat, thin mirror on
the left is the one that will be measured. The two small spherical mirrors are optically

contacted to a flat piece of fused quartz. Both the thin, flat mirror and the thick plate of fused
quartz are optically contacted to a fused quartz cylinder that holds the assembly together.
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The two spherical mirrors and the plate upon which they are attached do contribute to
the thermal noise being measured, but not significantly. A spherical mirror I" in diameter
and 12" thick has its lowest order mode at 214 kHz. Each spherical mirror contributes
uncorrelated noise from this mode. Since the plate is much thicker than the thin mirror,
it has a much higher resonant frequency 56 kHz for a thickness of I and diameter of
4") for the mode that will contribute to the thermal noise. Figure 36.2 shows a plot of
the thermal noise contribution from different parts of the jewel.
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Figure 36.2 Plot of thermal noise from different parts of the optical system. The bottom curve is the contribution from
a spherical mirror. The next one up is the contribution from the thick plate. The horizontal line represents the predicted
sensitivity of 1-17 CM I-,IHz. Finally, the top curve is the signal that will be measured. In all cases, 0(u; = 10-5.
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The resonant frequencies of a thin, cylindrical shell are (see for example Leissa 25])

2 E _Q2
pR( - ,2)

f = 8kHz x 
(3.6.1)

where R is the inner radius of the shell. Q is a solution to the equation

Q6 - (K2 + kAK2 )Q4 + (KI + kAK, )Q2 - (KO + kAKo) = 0

K2 = 1 + 1 (3 - o,) (n2+ A2) + k(n2+ A2)2
2

K = I ( -a) 2 + 3 + 2a) A2 + "'2 2)2 + 3 - u k(n2
2 1 U

KO - I(I 7 [( _ 2),\4 + k(n 2 2)4]
2

(3.6.2)

k - "'
12R2
m7k

A = ��
L

where h is the thickness of the shell and L its length. The integers 7 and 77 refer to the
number of axial and circumferential nodes respectively (see figure 3.6.3).
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Figure 36.3 Sketch of a normal mode for n=2, m=3.

?ntial Node

The first approximation in this model assumes the AK terms are very small since k
is small for a cylinder with a thin shell. There are three solutions to equation 36.2 for
a given n, rn which are associated with radial, longitudinal and circumferential modes.
The lowest frequency for a given n, 772 is usually associated with a radial mode.

Table 36.5 The solutions to equation 36.2 for a cylinder with h=0.375", L--4" and R=2".

2 3 4Im

n

0 0.988
1.02
1.58

1.12
2.04
3.15

1.05
2.18
3.31

0.988
2.50
3.75

1.10
2.90
4.38

1.41

3.37
5.14

1.55
3.05
4.72

1.56
3.14
4.82

1.62
3.36
5.13

1.79
3.68
5.60

2.10
4.07
6.21

2.35
4.07
6.29

2.39
4.13
6.37

2.50
4.30
6.60

2.71
4.56
6.97

3.04
4.89
7.46

I 0.648
1.37
1.92

2 0.463
1.76
2.65

3 0.619
2.26
3.49

4 0.973
2.82
4.39

The lowest order mode that contributes an
differential mode motion of the plate is a n = ,
in fioure 36.4.

effective length change that mimics a
in - I mode that looks like that shown
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Figure 36.4 Sketch of a cylinder normal mode that produces a differential path length between the two cavities.

Unfortunately, the resonant frequency of this mode is about 12 kHz. However, since
the mass of the entire jewel is about ten times that of the thin plate alone, the amplitude
of the thermal noise from one of these modes is a factor -O- smaller than the thermal
noise of the thin plate alone. Also, the motion of the cylinder ends is common mode to
some extent (one of the cavity length moves more than the other, but they both move)
(see figure 36.5). This also reduces the effective motion of this mode by a factor

Ax = AX - AX1

A0
- -(ro + 0.38ro -

2ro
= 0.38Axo

(ro - 0.38ro)) (3.6.3)

Figure 36.5

,-a AX0 .

,\' Ax,

\\4 P
I

r
0

0.38ro

The off resonance thermal noise from this mode is on the order

(3.6.4)
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At kHz, the off-resonance thermal noise from this mode of the cylinder will be
I x 10-1'crn/vrHz. This is well below the off-resonance thermal noise from the plate
which is approximately 2 x 10-17CM/ VHz at kHz. Although the thermal noise at the

resonant frequency of the cylinder can be seen, the mode has a high Q and simply sticks
out above the off-resonance thermal noise from the thin plate. The motion of the plate
should be the dominant motion detected.
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Chapter 4 Experimental Optical Design

4.1 Introduction to the Experiment

The experimental goal is to measure the off-resonance thermal noise spectrum from
a normal mode of a bulk piece of fused quartz. The numbers calculated in chapter 3
show that an experimental sensitivity of at least 10-17 crnlvfHz is necessary. Since this
is the same sensitivity that should be achieved by the initial LIGO interferometer, this
experiment uses many of the same techniques that a gravity detector does in order to
obtain such a high sensitivity.

There are many different noise sources that must be considered when designing an
interferometer. Two important noise sources are amplitude noise and frequency noise.
The amplitude noise of lasers is quite large between I kHz and 20 kHz due to 1f noise.
This problem is avoided by performing the fringe interrogation at a sufficiently high
frequency where the laser amplitude noise is dominated by shot noise (see section 46).
The frequency noise from the laser is a common mode noise source that is cancelled by
the interferometry. By using a laser that has an inherent frequency stability and carefully
controlling the common mode rejection in the interferometer beam recombination, the
frequency noise can be eliminated as a significant noise source (see section 48).

A simple calculation for the shot noise limited sensitivity of a Michelson interfer-

orneter with a perfect contrast gives

I J�h Ac

7b 21

x 10-1'crn/v"Hz
b

A I
X X �� X

5 1.06prn 40m,1V

where b is the number of bounces the light beam makes against a mirror. The number of
bounces must be greater than 10000 in order to achieve a sensitivity of 1-17 Cm / v"rHz.

This can be accomplished by making the interferometer arms resonant Fabry-Perot
cavities where the equivalent number of bounces for mirrors with transmission T and

loss L is

b (4.1.2)
L + T

Current mirror technologies can achieve losses as low as a few parts per million. If the
transmission of the mirrors is set equal to the loss to maximize the light throughput,
the equivalent number of bounces can easily reach 100000 (see section 47 for an exact
calculation of the instrument sensitivity).
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4.2 Optical Layout

The optical system is a Mach-Zender interferometer with Fabry-Perot cavities in the
phase sensitive optical paths (see figures 42.2 and 42.3). The finesse of the cavities is
high to increase the phase changes due the motion of the cavity ends. The thermal noise
that will be measured comes from the mechanical mode of a thin, common test mirror
that produces an anti-symmetric length change between the two cavities (see figure 42. 1).

Figure 42.1 Motion of mirror and Fabry-Perot cavities inside the jewel.

I I I

1, 11
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\ I I., mode of thin Dlate

I

Fabry-Perot cavitiies

The optics contain all the necessary components to keep two Fabry-Perot cavities on
resonance, modulate their output and recombine the beams (see figures 42.2 and 42.3).
The laser is a Lightwave Model 120-03A MISER. A diode laser pumps a non-planar
Nd:YAG crystal to produce 40 mW of 106 ym light.

The foreoptics has a Faraday isolator to keep reflections from reentering the laser,
a lens and A/2 plate that direct the light onto a GRIN lens. The GRIN lens focuses
the light into a polarization preserving single mode optical fibre. This fibre serves two
purposes. It allows the light to enter the vacuum system and also takes the elliptical light
from the MISER and converts it into the fibre's HE, I mode which is nearly the same
as a TEMOO gaussian beam mode.

The experiment is done in a vacuum to reduce acoustic noise and index of refraction
phase fluctuations. A pressure of 10-5 mbar was routinely achieved which set the
equivalent displacement noise due to index of refraction phase fluctuations at x
10-21ICrn/ "_v Hz. The 24" vacuum chamber sits on a 4000 kg granite optical table that is
supported by pneumatic legs that give the table a resonant frequency of I Hz to vertical
harmonic motion and to rocking motions. Since the experiment is designed to provide
data at frequencies above I kHz, this provides the necessary seismic isolation.

The light coming out of the fibre is collimated with a GRIN lens and then mode
matched to the cavity with another lens. The beam goes through a Pockels cell that
impresses a phase modulation on the light. The beam is then split by a K6ster prism
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which is a beam splitter that takes a p-polarized light beam and splits it into two parallel
beams that each have the same phase (see figure 42.4).

Figure 42.4 K6ster prism.

Multi-layer dielectric bearnsplitter coating

p-polarized light ------------

-----------------------
-----------

Brewster's
angle

Each separate beam then goes through a polarizing bearnsplitter and A/4 plate. This
produces a reflection lock signal (see section 43) for each cavity. The laser frequency is
locked to one cavity. The other cavity is heated by a thin metallic strip until it also is in
resonance (see sections 43 and 44 for cavity locking schemes). After leaving the cavity,
the light is made linearly polarized again and modulated by another set of Pockels cells.
Finally, the light is recombined by another KOster prism and then deflected by steering
mirrors through a window out of the vacuum system and onto a R photodetector.

4.3 Reflection Lcking of MISER to One Cavity

There are three controls on the laser. The first is a power control on the pump diode
that is usually left at the maximum position for best performance. The two other controls
regulate the frequency of the laser. A heater on the Nd:Yag crystal acts as a coarse
frequency control with a large dynamic range (about 45 GHz) and a control bandwidth
of approximately I Hz that is limited by the thermal mass of the crystal.

A finer adjustment with a much higher control bandwidth comes from a PZT mounted
on the crystal. Applying a voltage to the PZT squeezes the crystal and changes the
effective path length taken by the light. By removing a varistor on the control circuit,
one can apply a reasonably high voltage (in this case it never exceeded 100V, although
higher voltages should not damage the PZT) to the PZT which gives this adjustment a
dynamic range of a few hundred MHz (the calibration of this control was measured to be
4 MHzN). The bandwidth of this control is limited by the lowest mechanical resonance
of the PZT and Nd:YAG crystal system at 190 kHz.

The laser was frequency locked to one cavity by using the Pound-Drever reflection
lock technique 26]. The light reflected from a cavity is extracted using a circulator /4
plate and polarizing bearnsplitter). The electric field of the phase modulated beam before
reflection is (see appendix )

E(t = JO(F)e EOJJ(I')C + EJIMC (4.3.1)
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After reflection from the cavity, the electric field becomes (see appendix A for an
explanation of Fabry-Perot cavity properties)

Eref M 2wl ' 2wl),-
- Jo F) A

C

2 (w + w)l
- J,(F)A C (4.3.2)

C

2( - I
+ J (F)A C 2(w

C

where A(x) is the reflected amplitude. Since the cavities have a small bandwidth, the

sidebands are rejected by the cavity when it is resonant with the carrier. This simplifies
the above expression somewhat by making the following approximations

2(w + co,,)l 2(� - )l
A A

C C (4.3.3)

2(w + u�,)I 2( -
IP Irl

C C

The intensity of the reflected field will be

IrCfI 2 Icl j2
Jo (F)A - 2 1 (F)

Z 711 C C

Vo(F)JI(F)A Iol sin p Iol sin (w,,t + A) (4.3.4)
C C

2j 2(F) cos (2wt + 2 A)1

One can then demodulate the intensity of the light by multiplying the signal by
sin + ) and low pass filter terms with a dependence on 2w, and its higher or-
der multiples. For small perturbations around the resonance condition, the amplitude and
phase can be written

A (I - L - T)L
L + T (4.3.5)

T 2

L(L + T) c

where L is the fraction of power lost upon reflection from a mirror and T is the fraction
of power transmitted through a mirror. This gives an error signal that is proportional to
a change in either the cavity length or frequency of the laser

error gnal = 4Jo(F)J,(F) (I - L - T)T Awl) (4.3.6)
(L + T) 2 C

The actual transfer function for the reflection lock servo loop has its lowest pole at
3.2 Hz from a low pass filter. There is also lead-lag compensation with a pole-zero pair
at 23.4 kHz-459 kHz. This is necessary to overcome phase discontinuities that start to
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occur near 50 kHz. The unity gain point occurs at 20 kHz. The phase margin here
is only a few degrees from 180 degrees. Figures 43.1 and 43.2 show the magnitude
and phase of the closed loop transfer function for the reflection lock servo loop. The
coherence is poor below I kHz, but the magnitude does have a Ilf slope. The phase
plot shows that there is still some phase margin at 2 kHz.

Figure 43.1 The magnitude of the closed loop transfer function for the reflection lock servo loop.
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Figure 43.2 The phase of the closed loop transfer function for the reflection lock servo loop.
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4.4 Thermal Tuning of One Cavity to Another

The difference in length between the two cavities is changed by differentially heating
the quartz cylinder. Since the radiative cooling from the surface of the cylinder is
larger than the heat flow due to conduction across the circumference of the cylinder,
a temperature gradient between the heated side and unheated side occurs. Assume the
length of one cavity is 11 and the other 12 where 12 > , and the frequency of the laser
is locked to

12 = (4.4.1)
2

where n is an integer. If one wants to lock the other cavity on resonance, then its length
must be changed by an amount such that

1 + 6 =: (4.4.2)

2

A = 1.064itrn< � � (4.4.3)
4

The differential heating of the cylinder can be approximated as a one dimensional
problem. In thermal equilibrium and at steady state

[J(O - J + d)]h-ocT4(0)dO(R + (R - h))+ocT,'(O)dO(R + (R - h)) 0 44.4)
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-dJ(O) + oE (2R - h) (T,4- T4(0)) - 0 (4.4.5)
dO h

Using the Fourier heat conduction law

dT dT
T = 'RdO (4.4.6)

V -K d 2 T

dO R d2

gives the equation

d 2T,(O) 7cR(2R - h) T4
d02 Kh T4 (0) = (4.4.7)

Since the temperature of the cylinder is not raised much higher than room temperature

Figure 44.1 One dimensional cylinder heating problem

T,

(otherwise various elements in the vacuum system could start to outgas and ruin the
rniffor coatings), one can linearize the above equation

T = T, + AT, AT << T,
T 4- T' -- -4T'(T - T)

'r C r (4.4.8)
d2T, 4roR(2R - h)Tr' 4,EoR(2R - h)T,4
-�02 - ' TC , h Kh

The solution to this equation is

4,aR 2R-h)
T(O = T)e-( h TI-I + T (4.4.9)

= T)e-o Tr

Using typical values for fused quartz gives

T = 300 K
C = 07 Jouleslg K

= .01 Uatts/cm K (4.4.10)
c(A = 161t7n) -- 

a = 21 radians-i

which reduces to the differential equation
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Cos = 4R(d + R - wVw2+ 4d�(d+ �2R)
W 2 + 4(d + R2

w -- 0635 cm

1/81, "

4.5"

The heat input comes from a thin ribbon of platinum that is placed very close to one
side of the fused quartz cylinder. The angle

Figure 44.2 Heater element and fused quartz cylinder

(4.4.11)

d ;t 0. 3 cm

0 -- 049 radians

determines how much radiated energy is subtended by the ribbon onto the cylinder. The

Figure 44.3 Platinum heater element

-1/10001,
All

power
supply

power going into the cylinder is

20 C ( Ti b
27,

4
T,pin = (rIbI7( w) (4.4.12)

The power that is conducting away from the heated part to the unheated part of the
cylinder is

dT
P"Ut = 2K.-h I

RdO
- 2fza h T(O)

R

(4.4.13)

65



and the final expression for the temperature of the cylinder as a function of angle is

T(O = T(O) CO' Tr

crew Roc (T4 4)
T(O = 2rah7r - rib Tr

Cr �� 05
(4.4.14)

T(O = 43 x 1-11 (Trib T4 )

If the maximum differential cavity length is 266 x 10-5 C? -a, then the temperature

difference between the two parts of the cylinder will be

2.6 6 x10-5 = 6K
8.89 x 5 x 10-7

AlAT=-=
lath

(4.4.15)

where aTH is the linear thermal expansion coefficient. Since

AT T(O) IC-01 e02I (4.4.16)

then the temperature of the ribbon must be Tr1b = 990K

Figure 44.4 The angle between the two cavities 01 = 1.2rad and 02 = 1.9rad

T,

The power dissipated by the ribbon comes from its electrical resistance

p = 2 4 4)
z R = OEZbW1(Trib - Tr

21p
R = = 0.57 ohms

a w)2

p(1200K = 2 x 10-'ohms cm,

P = 43 watts

(4.4.17)

z = 87 amps

By placing a reflective heat shield on one side of the heater (in this case, a piece of
sheet aluminum), the amount of power from the heater that is directed towards the jewel

/4is essentially doubled. This reduces the temperature of the heater by about 21 
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The thermal lock procedure starts by placing a DC offset on the voltage across the
heater. This voltage is determined by increasing the voltage on the heater by small
amounts and waiting for the temperature to equilibrate. By sweeping the frequency of
the MISER, the difference in distance between the TEMOO modes of each cavity can be
determined. When the heater reaches the right temperature, each cavity will lock in a
TEMOO mode for the same frequency of the MISER. This is the operating point of the
heater.

Figure 44.5 Plot of the difference in length between the two optical cavities vs. time while heating one side of
cylinder with a thin ribbon element. The time constant for heating this thermal mass is 23.8 minutes.
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Once the thermally tuned cavity is near resonance, the error signal from its reflected
light becomes available. This error signal is fedback into the heater control and acts as
the servo to keep this cavity locked on resonance. The first two poles in the servo loop
come from the jewel that has a time constant of 23.8 minutes and the heater strip that
has a time constant of 12.4 seconds. The servo loop has some lead-lag compensation
with a pole-zero pair at 10.6 mHz-120 mHz to gain some phase margin over the second
pole. There were no other filters added to the loop. The gain was set to stop the loop
from oscillating. The typical forward DC gain was 30.

The error signal from the thermally tuned cavity does give the heater an adequate
control to keep the cavity locked on resonance. In this experiment, however, the important
consideration is the amount of common mode rejection obtained by interferometrically
combining the outputs of two cavities. Since the losses of the cavity mirrors do not
necessarily match exactly, the finesse or optical gain of each cavity can be slightly
different. This problem is overcome by holding the poorer cavity on resonance and
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the better cavity off-resonance. In this case, the feedback signal for thermal tuning
comes from adding a frequency modulation to the MISER and then mixing it with
the interferometer output. This produces a signal that minimizes the transmission of
frequency noise through the interferometer (see section 48 on residual frequency noise).

4.5 Mode Matching and Cavity Alignment

The mode matching of the light beam to the cavity input is achieved by using a
single mode fibre, a GRIN lens and a regular lens. The light is coupled into the fibre
by focusing the MISER output beam onto a GRIN lens and then aligning the fibre with
the output from the GRIN to achieve a typical coupling efficiency of about 50%. The
fibre is then epoxied in place. This set up remains stable over time with no change in
the coupling efficiency detectable.

The fibre is threaded through a small hole in a flange to the vacuum system. The
plastic jacket is carefully removed and the hole is sealed with epoxy.

Inside the vacuum system, the output from the fibre is coupled through another GRIN
lens. This takes a quickly diverging beam from the fibre output and collimates it. The
output from the GRIN is checked using a CCD wavefront analyzer. When it looks
sufficiently gaussian, it is epoxied in place. The CCD wavefront analyzer is then used to
make a series of measurements of the beam waist as a function of distance.

Once the beam waist and its position are characterized, a one lens solution to the
cavity mode matching is attempted. If this is possible, the lens is installed at the
appropriate distance from the fibre and the CCD wavefront analyzer is again used to
make a series of measurements of the beam waist as a function of distance. Small
adjustments are made if necessary. Finally, the fibre-GRIN combination and lens is
placed at the appropriate distance from the cavity to achieve the proper mode matching.

If the one lens solution does not give reasonable possibilities for distances between
components or lens focal length, a two lens solution can be used. In this experiment,
a one lens solution was used.

The alignment of the two cavities simultaneously is tricky, but is really just a process
of finding a position for the jewel whereby each beam hits a spot on its respective curved
mirror that is normal to the flat, thin mirror. The biggest problem initially is to find a
place that is close enough to alignment so that the different spatial modes of the light
are visible. Since the transmission of the mirrors is very small 22 parts per million or
ppm.), there is almost no light coming through the mirrors unless the cavity is aligned
and resonant. Also, since the light is at 106 prn, one must use CCD cameras to see
the light beam.

The first step is to dead reckon the alignment as much as possible. The two beams
from the K6ster prism should be parallel and aimed to the centre of each spherical. Then,
the frequency of the MISER should be swept through a few spectral ranges. Since the
time constant for the thermal tuning is about I second, the sweep rate must be about
1/10 Hz for the frequency to change smoothly. By placing a CCD camera directly at
the output of each cavity, light whose frequency is resonant with an optical mode of
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the cavity can be seen. The positioning knobs of the stages that hold the jewel are then
adjusted until a TEMOO mode is seen as one of the optical modes of each cavity. This
involves turning the adjustment knobs in a way that symmetrizes the high order spatial
modes coming out of the cavities.

Once a TEMO( mode is visible in each cavity, a frequency modulation is impressed
on the MISER PZT (at about I 0 Hz) and the MISER is tuned thermally until a TEMOO
mode is resonant inside a cavity. This output then can be maximized visually by looking
at the CCD television screen output.

The final part of the alignment involves locking each cavity independently and making
adjustments until there is a maximum output (or some compromise) from each cavity.

The actual movement of the beams and the jewel is done by various means. The
parallelism of the input beams is controlled by the input angle to the Koster prism and
their separation by translating the ster prism. The jewel sits on a flexure mount that

allows translation in the two dimensions perpendicular to the light beam and tilt in all
three, degrees of freedom. This allows enough control to align both cavities.

Finally, the output Koster prism must be aligned so that the cavity output beams
overlap in position and angle. This is done by locking each cavity independently and
measuring the position of its beam on the wavefront analysis camera at two widely
separated distances. The ster prism is moved until each beam is in the same spot at
the near and far measurement position. The best contrast achieved in this way was 09.
This was limited by the angular difference between the two interfering beams.

4.6 Output Signal Extraction

Since the MISER intensity is not shot noise limited until about 10 MHz, the phase
of the light must be interrogated at a sufficiently high frequency so that excess amplitude
noise is not added to the signal. Also, the Fabry-Perot cavities have a bandwidth on the
order of tens of kHz so that the amplitude noise is not filtered in the measurement band
(from to 20 kHz), but is filtered at the fringe interrogation frequency 7 MHz).

The output from each cavity is modulated anti-symmetrically by a Pockels cell. The
electric field at the cavity output is

El r1l,)Ale X E0
(4.6.1)

'F2 2 67 '(�P 2 V,- ) 0t lr,),4

where rlJl and r2,t,) are the reflection and transmission coefficients of the first and
second ster prism beamsplitter and A,A-2 are the transmission amplitudes of each
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cavity. The dark fringe output of the interferometer is
I (�02 -�Pm)Eantz = EoA2tlr2 e EoAlrit2e

(p = r sin (wnt)

Iant = trans X

[ - K[Jo(2r) COS (�02 - oj - 2Jl (2r) Sill (�02 �01 Sin ant)]] (4.6.2)

itrans = 2 [(tir2A2 )2 + (rit2AI )20

K 2rltlr2t2AlA2
(tlr2A2 )2 + rlt2A, )2

2The term, , in the output intensity, Itrans, depends upon the output power of the MISER
and the transmission or throughput of the optics

2'E0 = throughput x output power (4.6.3)

This signal is then demodulated at ,

The dependence of this signal on length is

dI dY�2 d�ol
dl = 2rtEjE'2Jl(2r)[AlA2 COS ((P2 - (PI) dx dx

dA2 dA 1 2w (4.6.4)
+ sin (P2 + y�,l) Al dx + A2 dx c

For both cavities on resonance, this reduces to

dI = 2ritir-)t2E 2j,(2F)AIA2 d(P2 deal 2w
dl 0 dx dx c

&P2 d(pl 2w (4.6.5)
= Itrans x KJI (21) dx dx c

If both cavities are not exactly matched, then one cavity is locked on resonance (x 0)
and the other is held slightly off-resonance. This changes the above equation to

dI = 21 I r2t2,E) J1 (2F [Al A2 COS ((P2) d�02 d(Pl
dl dx dx

dA2 2w (4.6.6)
+ sin (P2) Al - I

dx c

4.7 Shot Noise Limit
Assuming the system sensitivity is shot noise limited, the calculation for the sensi-

tivity goes as follows. The measured throughput of the optics is:

throughput = (Faraday isolator = 0.7)(lens = 096 )2X

(fibre k GRIN = 0.5)(lens 096) 2 (Pockels cell = 086 )2X
(mode inatch = 0.9)(Koster prism, = 0.9)2 X (4.7.1)

(polarizing beamsplitter = 0.98)x
(Pockels cell = 086 ) 2 11'r indow = 096 )2

= 0.11
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The shot noise intensity is

IshO V C (4.7.2)

The detector efficiency is 043. For both cavities on resonance, the DC intensity is

IDC = [I - KJO(2F)]Itans (4.7.3)

The position noise is then the result of this intensity noise

equivalent displacernent noisl- - Ishotdl
T1

v'hAc (21) 1
d�02 &pj (4.7.4)47,-JI (2F)A 77 rans -- -
dx dx

1.76 x 0-" (217) I

i (2 F) K rans d�02 dealJ-X - 77
where It,,,, is the transmitted intensity as defined in equations 46.2 and 46.3. Since
the signal is antisymmetric, the derivative of the phase is also antisymmetric

d�02 &�2 - 2 d�o 1X=0 (4.7.5)
dx dx dx

The best possible sensitivity occurs when both cavities are on resonance and each
cavity is exactly the same. If one also assumes a perfect contrast (K=I) and a modulation
index that approaches 0 (F<<]), the above expression simplifies to

1.76 x 10-"

equn displ. noIS6 -- V1j �,a , �c r gs �/-s c 7 ( 2d") (4.7.6)
dx

The transmitted intensity in terms of mirror losses and transmissions for both cavities
on resonance is

Itrami throughput X IMISER X [tr2A,) ) 2 rjt2AI) 2]

ri = t ri = t = 11V2
T

AI (0) A2 (0) 
L + T (4.7.7)

1 T 2
itrans -- loss I,, X - Xiser L + T

T 2

2.2 x I ' L T

The derivative of the phase is

d �r 1X=0 L T) (4.7.8)
dx L + T
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Putting all of this together gives the sensitivity as a function of mirror transmission and
loss

(L + T) 2
equiv. displ. nois = 59 x io-14 T(l - L - T) cm / V,_HZ (4.7.9)

For L<<I, the maximum sensitivity occurs when T=L.

Current multi-layer dielectric coating technologies allow mirror losses on the order
of a few parts per million. Since some degradation of the mirror can occur from the
accumulation of dirt on the surface, the transmission is chosen to be more than the
expected loss. It is clear from figure 47.1 that a sensitivity of 1-17 cm/V'Hz is a
reasonable goal.

Figure 47.1 Plot of sensitivity vs. Transmission for different losses
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4.8 Residual Frequency Noise

The MISER is an inherently stable laser. Its frequency noise at a few kHz is
typically less than 10 Hzlv'Hz and falls as 1,\/7 (6v'(f) cc 11f). However, it still
adds a significant noise term unless it is cancelled exactly by the interferometer through
common mode re' jection.



If one cavity is held on resonance and the other off-resonance, the dependence of the
interferometer output noise on frequency noise is

dl Af
df

nozse dl
dl

dl 2 j, d�02 d(Pi
df 2rltlr2t2E0 (2F)[AIA2 COS (�02) dx dx

+ sin (�02) Al dA2 1471
dx C

dl d(P2 + d(p,
dl 2rltlr2t21-_6Jl(2F)[AlA2 COS (�02) dx dx

dA2 1u
+ sin (,�2) Al dX C

equlv. displ. no' x Af
Ise = Efreq. noise

10-14equiv. displ. ois = 315 x X Ef req. noise X Af C?7VVHZ

Al A2 COS (Y'�2) d(P2 deal + sn (�02 (Al dA:?
( dx d ) dx

Ef rcq. nolse -_ Al A2 COS d�12 + d��j + sin ((P2 (Al dA2
( dx dx ) dx

(Note that the phases for the two cavities are subtracted by the interferometer. Since the
position displacement is anti-symmetric for the motions measured in this experiment, its
signal will add while the frequency noise which is symmetric will subtract).
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Figure 48.1 A Plot Of (freq. noise vs. x for a transmission of 22 ppm a loss of 20 ppm per mirror for one cavity and
a loss of 10 ppm per mirror for the better cavity. The offset parameter 6x is x 61 where 61 is the distance the

cavity is off-resonance. Since the RMS noise is the important consideration, the I f eq. toi--e I is the relevant
parameter. The FWHM for a cavity with a transmission of 22 ppm and a loss of 10 ppm per mirror is 17.2 kHz or

6.4x 10-5 in units of bx. The better cavity is thus detuned to a point that is still well within its bandwidth.
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Of 1-17C?71/V,,-H--To achieve a sensitivity Z' the factor efrq. noise must be on the order
of -5. Since this requires the offset to be held to approximately one part in 104 (see

figure 48.2) an additional servo that matches the two cavities and nulls the frequency

noise is necessary.
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Figure 48.2 A plot of I ffreq. nois, I vs. x for the same parameters as figure.4.8.1 The
offset must be held to within one part in 104 to achieve sufficient frequency noise rejection.
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A single tone (in this case, 50 kHz) of FM is added to the frequency of the MISER
by putting a signal into the PZT frequency control. The optimum operating condition for
the system is one where any frequency noise on the MISER, including this deliberate FM,
is cancelled by the interfering the two output beams. By taking the interferometer output
and mixing it with the FM signal in a lock-in amplifier, an error signal that minimizes
the frequency noise transmission of the interferometer is obtained. The reflection lock
error signal is disabled and this new error signal is then connected to the heater control.
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Chapter Experimental Results

5.1 Measured Optical Properties

Very small losses on the order of a few pprn. are necessary to obtain the desired
sensitivity for this experiment. Since even a small amount of contamination can increase
the losses by a few hundred ppm a great deal of care is required to insure that the
mirrors remain clean. Also, since the amount of light transmitted through the cavities
decreases with increased mirror losses (see figure AA in appendix A), the experiment
becomes more difficult to perform both from a practical viewpoint (one must be able to
see the transmitted light beams readily on a CCD camera) and because the transmitted
light intensity should be larger than the dark noise of the photodetector and its electronics.

Table 51.6 gives a list of the expected and measured values for various cavity
properties. The history of the mirrors requires some explanation. The mirrors originally
had a specified transmission of 22 ppm and a loss of less than pprn. Unfortunately,
during the initial optical contacting process, the mirrors were contaminated by an improper
cleaning technique that was used despite a work order that explicitly gave instructions to
do otherwise. After this was thoroughly investigated, the jewel was uncontacted, cleaned
and recontacted. The measured losses then more closely approached their predicted
values. Unfortunately, contaminations from the vacuum system and the dry nitrogen
back fill process slowly increased the losses of the mirror over time.

Table 51.6 Properties of one of the Fabry-Perot cavities. The predicted values come from the mirror
specifications. The measured values were the those measured initially when the optics were delivered. The

cleaned values are after the optics were disassembled, cleaned and reassembled. Finally, the actual

values are those of the cavity from when the data presented in the subsequent sections was taken.

predicted measured cleaned actual

Transmission 22 ppm 22 ppm 22 ppm 22 ppm

Loss 5 ppm 440 ppm 9 ppm 106 ppm

Bandwidth 15 kHz 250 kHz 17 kHz 69 kHz

Finesse 1.2 x 105 6.7 x IO' 9.9X 104 2.4 x 104

The linewidths of the cavities were measured by sweeping the frequency of the
MISER and then measuring the FWHM of the output intensity. This was checked against
the cavity transmission and the cavity reflection to insure consistency.

Figure 51.1 shows a typical transmission intensity spectrum for each cavity as the
MISER frequency is swept across a few spectral ranges. One cavity is well aligned
(only the TEMOO mode is visible) while the other is slightly misaligned (both the TEM01
and TEM10 modes are visible). Since the cavity losses were not well matched, the
better cavity was slightly misaligned so that its output intensity was closer to that of the
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Figure 51.2 shows the transmitted intensity and the reflection lock error signal as
the frequency of the MISER is swept through the cavity resonance. The blow up along
the frequency axis of the error signal shows its change in slope as the frequency moves
off of the resonance.

worse cavity. This was fortunate since the alignment of both cavities simultaneously was
difficult to achieve. The varying heights of each transmitted peak comes from the time
sampling window limitations of the storage oscilloscope for the given sweep rate.

Figure 5. 1.1 The output intensity of each cavity as the frequency

of the MISER is swept across several free spectral ranges.
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Figure 51.2 The transmitted intensity and reflection lock error signal
as the frequency of the MISER is swept through a cavity resonance.

2 - cos (2wt)a v C + VDC VAC Sill Wt) + AC
D 2

oc VDc11AC sin (wt) + D.C term VAC cos (Iot)
VDC

(5.2.1)
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5.2 Measured Q's of the Plate

Once the optical system properties are understood sufficiently, the actual thermal
noise experiment can begin. The first data was a measurement of both the frequencies
and Q's of the various normal modes of the plate in air.

The electrostatic driver was used to excite the normal modes of the plate. The
electrostatic driver is a 0750 stainless steel ball that is placed as close to the fused
quartz plate as possible without actually touching it (usually less than 0.050"). A dielectric
placed near the ball will feel a force acting upon it since the ball produces an electric field
with a gradient. The force is proportional to the square of the voltage applied to the ball.
The SS ball is biased to between 500 V and 800 V with a DC potential. An AC voltage
of about 100 V is superposed on the DC potential. This produces a linear force at the
frequency of the AC voltage that is proportional to the bias voltage times the AC voltage.

F 1,,,2

(VD + VAC sin (Wt))2



The first series of measurements in air showed that all of the modes except the
fundamental one

(n = , k = ) (5.2.2)

were split in frequency by about 10%. These frequencies were, in turn, split by another
0.5%. Since the frequency of a mode is

f Oc Alh (5.2.3)
r2

then f/A2 must give some constant that determines the ratio h1r2. Figure 52.1 shows
such a plot. Both the 10% and 0.5% splittings in frequency must be due to some
irregularity in the shape or clamping condition. The fabrication specifications for the
optical components required tolerances of less than 0.005". This seems like the most
likely explanation for the 0.5% splittings. The 10% splittings are too large to be explained
by a shape irregularity. It seems most likely that there is some asymmetry in the clamping
from the optical contact between the thin plate and the cylinder end. By assigning a
clamping radius to each set of frequencies, one finds that the plate is clamped at diameter
of 45" and 475". Curiously, the lowest order mode is not visible for the 45" set of
frequencies.

Figure 52.1 A plot of the constant f /A2vs. A for normal modes of the plate. The numbers in the parentheses

represent the (n, k) of the mode. The triangles represent a set of frequencies that correspond to a clamp diameter
of 45". The squares represent a set of frequencies that correspond to a clamp diameter of 475".
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The electrostatic driver was used to map out the sensitivity of different modes to
excitation as a function of position on the plate. The results confirmed that the frequencies
were properly identified with their respective normal modes. It was also clear that most
of the resonances seen were not due to the plate, but to other parts of the jewel including
the cylinder and the thick plate on the opposite end of the cylinder.

The Q's of modes were measured by using the electrostatic driver to perform a swept
sine transfer function. The FWHM of the peak gives the Q. The first measurements were
performed in air and gave Q's on the order of 500 which was unexpectedly low. A quick
calculation of losses from frictional air damping shows that it would give a Q of about
500000. Another loss mechanism in air is from friction of the column of air inside the
holes in the side of the cylinder against the walls of the hole. A quick calculation here
gives a Q on the order of 80000.

Since the Q's in air were rather low, an attempt to understand the frequency
dependence of the damping mechanism in air was undertaken by measuring the phase
angle between the applied force and the response of the normal mode and fitting the
phase for each model. For a viscous damping model, the phase angle is:

tan = (5.2.4)
�C - 2

0

and for structure damping model, the phase angle is:

2o
tan wo (5.2.5)

W - 2
0

Since the bandwidth of the peak is wlQ and the electrostatic drive only has enough
force to excite the resonance itself, one can only measure a reasonable transfer function
a factor of lQ outside the resonance. The viscous damping phase angle is then

tan O(W + WMIM
W - 2

0
(11Q + IQ2)W2

0 (5.2.6)
W - 2

0
+ 1/Q2)w2

0
2 2W _ 0

The difference between the two models will be only a factor of 1Q2 or 4x 10-6. The
signal to noise was such that the two models were indistinguishable when fit to the
measured phase and no conclusions could be made.

When the system is under vacuum (10-5 rnbar), the resonant frequencies do not
change, but the Q's increase to between 7000 and 100000 (see figure5.2.2). Again, a Q
of 7000 does seem low for fused quartz.
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Figure 52.2 A plot of measured Q vs. frequency for the normal modes of the plate. The
triangles represent a set of frequencies that correspond to a clamp diameter of 45". The

squares represent a set of frequencies that correspond to a clamp diameter of 475".
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There were many other resonances besides those of the thin plate. Most of these
can be attributed to either the cylinder of the jewel or the I" thick plate where the small
mirrors are optically contacted. They all have Q's on the same order as those of the
thin plate (see figure 52.3).
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Figure 52.3 Plot of the measured Q vs. frequency for every resonance
that could be seen. Most of the resonances are not from the plate.
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Since the bandwidth of the frequency control servo is under 2 kHz, it is safe to use this
open-loop calibration at frequencies above 2 kHz when the loop is closed.

The calibration for the interferometer output is obtained by relating the phase
dependence of the output signal to the finesse of the Fabry-Perot cavity. The Pockels
cell is calibrated by measuring the amount of voltage necessary to go from the bright to
the dark fringe or a change in phase of T. Then, the Pockels cell phase is changed by
putting a known voltage on it. The interferometer output signal is measured to obtain
its dependence on this induced phase change. Finally, the linewidth of the cavity is
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5.3 Measured Noise Spectrum
The noise spectrum was measured on a HP3562A Dynamic Signal Analyzer and is

displayed for different frequency spans. The noise signal from the reflection lock control
was calibrated by measuring its slope. The frequency of the MISER was swept and
an error signal was recorded as in figure 51.2. The x axis was converted into units of
frequency by measuring the distance between the two 5.18 MHz sidebands that were
impressed on the light. The frequency of the sidebands could be easily measured on the
oscilloscope. This gives a calibration in terms of volts/Hz. Since the length of the cavity
is known, this can be converted into a signal of volts/cm by using the relation



measured. This gives a measure of the amount of phase accumulated by storage in the
cavity and relates the phase dependence of the light in the cavity to changes of length
of the cavity.

d(p I 2w

dl T+L c
+ (5.3.2)
7r 21

d�o 2c

T Af 1A

The power spectra have a steep Ilf noise dependence below about IOHz. There
are some low frequency and low Q resonances up to about 500 Hz that correspond to
normal modes of the mechanical structure that holds the jewel. The spectrum above
I kHz is dominated by a broadband white noise with a magnitude on the order of
2 x 10-15 c7nlVHz. The roll off in the background noise comes from two sources. First,

the Fabry-Perot cavities themselves have a bandwidth on the order of 80 kHz when these
measurements were taken. The second comes from the tuned resonant R circuit in the
photodetector that had a narrow bandwidth (in this case, also 80 kHz) in order to reduce
the noise contribution from the equivalent detector dark photocurrent. The impedance
of the circuit at the modulation frequency is increased to make the signal larger. This
comes at the expense of a narrower bandwidth.
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Figure 53.1 A 00 kHz spectrum of the displacement noise output from the interferometer. The large signal at 0
kHz is from the FM applied to the MISER in order to obtain a control signal to reduce frequency noise.
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The narrow spectral features are from resonances of the plate and the jewel. The
plate anti-symmetric mode of interest here is split and is seen at a frequency of 964 kHz
and 10.98 kHz. The lowest order mode is at 536 kHz and is suppressed with respect
to the antisymmetric mode. The next two resonant peaks at 12 kHz are the resonant
modes of the cylinder



Figure 53.2 A 20 kHz spectrum of the displacement noise output from the interferometer.
The 10% splitting between the two antisymmetric (0,I) modes is clearly visible.
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Figure 53.3 A I kHz spectrum of the displacement noise output from the
interferometer. The x's represent multiples of the 60 Hz line frequency.
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O(w = 154 x 10-4
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It is clear that the background noise cannot be due to the off-resonance noise. The
resonance shown in this case has a Q of 6500, yet the peak is only a factor of 150 above
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Figure 53.4 shows a I kHz narrow band spectrum centered at an anti-symmetric
resonance. Figure 53.5 shows a 25 kHz spectrum of the left most peak from the 0.5%
splitting in frequency. Both figures are fit to a curve that follows equation 34.13 with

parameters h = 0635 cm

ro = 572 cm



the background. The peak height, however, does correspond to a thermally driven process
in the plate for that, frequency and Q. The usual noise sources in laser interferometry need
to be considered in order to determine whether the background is a real signal or simply
instrument noise.

Figure 53.4 A I kHz spectrum of the displacement noise output from the interferometer centered at
10.975 kHz where a peak from the anti-symmetric mode is located. The 0.5% splitting of this mode

is clearly visible. A fit of the thermal noise spectrum for one of these modes to the data
shows that the off-resonance data is not due to the off-resonance thermal noise spectrum.
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Figure 53.5 A 25 Hz spectrum of the displacement noise output from the interferometer
centered at 10.975 kHz where a peak from the anti-symmetric mode is located, The Q of

this resonance is 6500. The fit to the data shows that it is the thermal noise from a resonant mode.
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Chapter 6 Instrument Noise

6.1 Electronic Noise

The detector dark current noise had a shot noise equivalent of 21 amps. By the
time most measurements were taken, the losses in the mirrors had increased to the point
that there was not very much transmitted light intensity through the cavities. The typical
dark fringe intensity at the photodetector was 0.15 amps with a contrast of 090. The
measured noise signal, however, does comfortably exceed the detector dark noise as can
be seen in figures 61.1, 61.2 and 61.3.

Figure 61.1 A 00 kHz spectrum of the displacement noise output from the
interferometer and of the electronic noise when the photodetector is covered.



Figure 61.2 A 20 kHz spectrum of the displacement noise output from the
interferometer and of the electronic noise when the photodetector is covered.
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Figure 61.3 A I kHz spectrum of the displacement noise output from the interferometer.
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6.2 Amplitude Noise

The amplitude noise of the MISER is dominated by a relaxation oscillation at 282
kHz and reaches the shot noise limit at 30 MHz at 40 mW of output power. In this
experiment, there was no attempt to stabilize the amplitude of the MISER. The light was
phase modulated at 751 MHz where the amplitude noise of the MISER which is only
1 I times as large as the shot noise limit is further filtered by the 80 kHz bandwidth of
the Fabry-Perot cavities.

The contribution of amplitude noise to the output signal can easily be obtained by
looking at both the dark and the bright fringe output. If the signal is spectrum is dominated
by amplitude noise, then the ratio of the noise in the bright fringe to the noise in the dark
fringe will scale as the ratio of the DC intensity in the bright fringe to the DC intensity
in the dark fringe. If the signal is dominated by shot noise, then the ratio of the noise
in the bright fringe to the noise in the dark fringe will scale as the square root of the
ratio of the DC intensity in the bright fringe to the DC intensity in the dark fringe. It
is clear from figure 62.1 that neither amplitude nor shot noise come close to accounting
for the noise spectrum in the dark fringe.

Figure 62.1 The output spectrum for both the dark and the bright fringe is plotted. The contrast was 090. The
amount of noise on the dark fringe is plotted assuming the bright fringe is either shot noise (the ratio of the noise

in the bright fringe to the dark fringe is the square root of the ratio of the intensity) or amplitude

noise limited (the ratio of the noise in the bright fringe to the dark fringe is linear in the intensity).
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Figure 6.3.2 shows the noise spectrum of the reflection lock signal. Since the unity
gain point of the frequency servo is at 2.0 kHz, the spectrum from the cavity locked on
resonance is clearly dominated by the frequency noise of the MISER. The linear frequency
scale obscures the 1V7(6v2(f O 11f) spectrum of the MISER frequency noise.
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6.3 Residual Frequency Noise

The dependence of the output noise on residual frequency noise is discussed in
detail in section 48. A great deal of effort was placed into understanding and solving
this problem. Figure 63.1 shows the transmission of frequency noise through the
interferometer as function of the offset from resonance of one cavity with respect to
the other. It is clear that the frequency noise transmitted through the interferometer can
be reduced arbitrarily with adequate tuning.

Figure 63.1 A plot of the frequency noise transmitted through the interferometer vs. the offset from resonance of

one cavity. on the x axis corresponds to the cavity on resonance. The FWHM of the cavity is 83 kHz.



Figure 63.2 The noise spectrum of the reflection lock signal on the frequency of the MISER. The frequency
noise spectrum comes directly from the error signal when the cavity is locked on resonance. The

amplitude spectrum comes from measuring the noise spectrum of the reflection lock signal with the
cavity off-resonance and the same DC intensity on the photodetector as the cavity on resonance.

The electronic noise is the noise spectrum obtained when the photodetector is covered.
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Figure 63.3 is the residual amount of frequency noise from the MISER that is
transmitted through the interferometer. It is obtained by driving the MISER PZT input
with broadband white noise. This impresses extra frequency noise on the MISER. The
background noise is subtracted from this extra noisy signal (in quadrature). The ratio
of the amount of signal transmitted through the interferometer over the amount seen in
the reflected signal gives frequency noise rejection of the interferometer. This is then
multiplied by the reflection lock signal which is the frequency noise of the MISER. The
result is the amount of MISER frequency noise that is transmitted by the interferometer.
The linearity of this technique was verified by changing the drive level of the broadband
white noise.

'dual no's = ref I. out) xres2 7.

(interf er. out f req. noise) 2 - in t -: r f e r. OUt)2
2(rcf 1. out f req. noise) - ref 1. out)2

(6.3.1)

The frequency noise rejection is good down to a few hundred Hertz.
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Figure 63.3 The noise spectrum from both reflected signals is plotted. They are dominated by frequency
noise in the MISER. The bottom curve shows the residual amount of frequency noise from

the MISER that is transmitted through the interferometer. The boxes represent the residual noise
using the reflection signal from the thermal loop which is disconnected at this point. It is essentially

the same as the residual noise obtained from the MISER reflection frequency lock signal.

10

N
X

0-
Cn
N 1
2:
C
0)
Cn.0
C
>1
Q
C
(D
:3
0- 0.1
2

n M
0 5000

residual frequency noise 11--O 'O' 1.5X10'frequency (Hz)
2X10'

(L + T) I sin' No

94

6.4 Input Beam Jitter Noise

Input beam jitter causes the effective cavity length to change and hence, looks like a
noise term that is indistinguishable from the MISER frequency noise or plate displacement
noise. Any beam jitter noise would be coloured by the various mechanical resonances
in the various support structures. The noise spectrum below I kHz does have this
characteristic. Above I kHz, however, the noise does appear quite broadband which
makes it unlikely that input beam jitter is the cause of the background noise.

One way to place a limit on this noise term is to assume that the noise in the reflection
lock signal is dominated by beam jitter noise. From figure 63.2, the beam jitter noise
is less than 3 x 0-13crn/V"-Hz. The fraction of incident light power transmitted by the
Fabry-Perot cavity is (see for example Rudiger 27])

T2
tr A 

- " , T 171� k-.-. /



where

2 Z1N arctan arctan -
zo zo

7 2
8.89 crn + 6z, z, = 0, zo = wo = 17 crn

A (6.4.2)

N arctan 8.89 crn + 6z
17

62 is the displacement caused by the beam jitter and N is the sum of the mode indices
mn. For N=O or the TEMOO mode, this is just the transmission of the cavity. For N=l

(TEMOI), the intensity is suppressed by a factor

I - (L + T2 (4-76 + .866z) (6.4.3)
1 + 4(1 -L-T) sin 2 V) 4(1 - L - T)

(L+T)2

with respect to the TEMOO mode.

If T=22 ppm. and L=106 ppm., the beam jitter in terms of a displacement noise
will be suppressed by a factor of 3 x 108 on the cavity output with respect to the cavity
input. The amount of beam jitter contribution to the interferometer output noise then
can be no greater than

I)cam Jitter nois < 3 x 10-"cm/v 'Hz13 x 10' (6.4.4)
< I X 1-21Crn,1,\/Hz

6.5 Pockels Cell Phase Noise

Another possibility for the background noise spectrum is phase noise introduced by
the output Pockels cells. If the electro-optic medium adds extra phase or amplitude
noise to the light, then it will appear as an additional noise that is indistinguishable from
displacement noise of the plate. It can be measured by looking at the output noise of
the interferometer with the jewel removed. If the phase noise is coming after the Fabry-
Perot cavities, then phase gain of the cavities is not contributing to the noise. Figure
6.5.1 shows such a measurement.
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Figure 65.1 Noise spectrum with Fabry-Perot cavities and noise spectrum of simple
Mach-Zender interferometer assun-fing oise is phase oise from the Pockels cells.
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The ewel was removed and the beams realigned slightly to produce a suitable
contrast. A spectrum of the dark fringe output was obtained. It was then calibrated
in terms of phase by measuring the DC response of interferometer output signal to a
known voltage, hence phase, applied to the Pockels cells.

The Pockels cells are clearly not introducing a phase noise that accounts for the
background noise spectrum. It is important to note that the noise of the simple Mach-
Zender interferometer is not limited by Pockels cell phase noise, but rather MISER
amplitude noise and detector noise. The curve in figure 65.1 therefore only sets an
upper limit on the phase noise of the Pockels cell.

6.6 Scattered Light Noise

Scattered light can introduce an effective phase noise. The scattered light must be
examined in two different places: outside and inside the cavities.

There are two ways light scattered outside the cavity can produce extra phase noise.
Light can scatter after the phase modulation and it will be seen in the demodulated signal.
The previous section on Pockels cell phase noise eliminates this as a significant noise
source since this noise would be the same irrespective of whether the cavities are present.

Another possible source of scattered light phase noise is light scattering outside the
modulation recombining with the beam. If this light has a delay with respect to the main
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beam that its recombines with, there will be some phase noise

2

(P 2(f = CV X (12 - 1) (6.6.1)
C

where a is the overlap between the scattered beam and main beam (it has the form of the
integral in equation 66.3), bv(f) is the frequency noise and 12 - 1 is the path difference
between the scattered beam and the main beam. The largest distance the beams will travel
will be on the order of I metre. Using a frequency noise of IOHzlv"-Hz gives a phase
noise of 2 x 10-7 rad/vTT x Va. Since the scattered light beam will have an intensity
that is much less than the main beam, Va << I and y(f) << 2 x 10-7 rad/vTz. The
measured phase noise is 4 x 10-6 radlVHz (see figure 65.1). It is safe to assume that
light scattering outside the cavities is not an important noise source.

Another possible instrument noise source is light scattering from one Fabry-Perot
cavity into the other cavity. This is a more significant problem because the scattered
light gets amplified by the finesse of the cavities. Since the losses on the mirrors are
about 100 ppm., it sets an upper limit for the total amount of light that is scattered. If
the light scatters isotropically at site A (see figure 66.1), then only the light that falls
onto an area within the beam spot at scatter site is important. This gives the power
of the scattered light as

2

scattered power -- rbeam x 10OPPM,
(9.69 )2 /2 (6.6.2)

I x lo-,

The amount of light that is initially scattered can be no greater than this. This scattered
light must then be scattered back into the main beam at B. A first order assumption
would be to allow all of the light scattered at B back into the main beam. The phase
from this scatter will be

1P2W - [Irecomb] 19PIcal (0) dQdA
OQ 1.1n beam

paths
27rxscaf(f) 2 1 2 (6.6.3)

x A x i - R

104 2 X 2
Vlx 10-9 5.9 x (7.8 x 10') 8cat(f)

In this case the overlap integral between the scattered beam and the main beam was
done by equating it to the amount of electric field scattered onto the beam waist at B
multiplied by the main beam electric field. This sets

= 26 x 10'X,,att(,f) (6.6.4)
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Figure 66.1 Sketch of scattering path

Using a phase noise of 4 x 10-6 radl-\,IHz from figure 65.1 sets

Xscatf(f = I x 0-"crn/v"-Hz (6.6.5)

It is unlikely that there is anything in the jewel that is moving with a white spectrum
at that amplitude. The ground noise has a 1/f2 displacement spectrum so it cannot

be responsible for a spectrum that is flat from 500 Hz to 30 kHz. An even simpler
argument is that the scattering surface is assumed to be one of the small mirrors whose

displacement is limited by what was actually measured (2 x 10-"cm/ VI I 7-1Z The phase
noise contribution from scattered light inside the interferometer then is not responsible
for the background noise spectrum.
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Chapter 7 Mechanical Noise Other
than Plate Thermal Noise

7.1 Thermal Noise from Other Normal Modes

Since many different modes were seen, there is a possibility that they all add up to
produce a background much higher than that expected from a single mode. The simplest
model for the thermal noise from a mode can be obtained from equation 14.12. The
first assumption is that the mass of the oscillator is simply that of the plate or 113g.
This gives an overestimate of the thermal noise that is measured for each mode since a
proper calculation must take the geometry of the plate into account (see section 34). The
other assumption is that all of the measured resonant frequencies are from the thin plate.
This is not true because some of the resonances are from the thick plate or the cylinder.
Since both the cylinder and the thick plate have a higher mass than the thin plate, this
assumption again tends to overestimate the thermal noise. Finally, the thermal noise
from all of these resonant frequencies and their measured Q's are added in quadrature.
This is another overestimate because most of these resonant frequencies do not show
up in the actual measured noise spectrum; they can only be seen when the jewel is
driven electrostatically. Figure 71.1 shows the result of this calculation. The measured
background noise spectrum is still a factor of 10 too large.

Figure 71.1 Plot of the measured noise spectrum and a simple theoretical
model of the thermal noise from all of the frequencies and the Q's measured

. -1
l -

IO-13

FZ

r i o14

Cr
-Q
E0
C:
.:�� 10-11�

X

structure
10-1.

lo-11
0 5- 1 4 lo I

frequency (Hz)

99



A more complete addition of the noise from higher order modes must take into
account all of the modes until the beam spot size is the same as the distance between
the nodes in a mode. This assumption is valid because the phase of the beam averages
to zero when the beam size contains many different oscillations of the surface inside its
diameter. One way to model this effect is to give the surface the following equation to

describes its motions
X Y

= Ulm COS - COS sin wl,,,t)
I: al bm
1, n

(7.1-1)

where lm is the amplitude and al, bn are 27 x A of the surface wave. The electric field

at the surface will then be (assuming the beam is at its waist)

(X2 + y2)
E(x, y) = E0 x exp Zkz - (7.1.2)

W 2
0

In most thermal noise applications, the amplitude of the surface motion is very small. In
this experiment, the largest motion less than 10-12CM,. Since the light wavelength used
in this experiment is 106 ym, the phase change in the light will be very small (less than

10-7 ). The oscillatory part of the electric field can then be expanded.

X Y
Zkz exp Z k x E Ulm COS al COS bi sin P1.0

X Y
exp k x lm OS - COS - sin wlmt)

al bi

X YH Jo Zk x Ulm COS COS -

I'm al bi

X Y
+ 2J1 Zk x Ulm COS - COS - sin (wimt)

al bl

+ X Yik x Ulm COS - COS - sin (wimt)
l'M al bi

X Y
I + Zk X �7 Ulm COS - COS - sin (wl,,t)

I'm al bl

This must be weighted against the TEMOO gaussian beam shape to obtail

field of the entire beam
+Do +00

X Y
6 = 60 X 1 + ik x E Ulm COS - COS sin (wl,,,t)

-00 -00 I'm al b,

(X2 + Y 2)
x exp 9 dxdy

7 W2E0 + Zk x exp _W2 exp _W20 E Ulm sin (Wimt) 4a 2 4b2
1'm I M.

(7.1.3)

i the electric

(7.1.4)

100



This expression shows that for al, bj >> wo the amount of phase added to the field is
ikul, or the amount of phase that light travelling a distance equal to the amplitude of
the surface wave would accumulate. For al, bj << wo there is no phase added to the
electric field.

Since the plate diameter is 12.065 cm and the beam diameter is 0048 cm, all modes
up to those that have at least 251 nodal lines must be included. One way to place an
upper bound on the sum of the thermal noise from all of the higher order modes is to
look at the off resonance noise from a higher order mode and then scale it with the
resonant frequencies of even higher order modes. The thermal noise peak for a 40 kHz
mode (n = 2 k = 0 A20 = 94) with a Q greater than 104 is only a factor of 2 above
the background noise of 2 x 10-15Crn/ vITz (see figure 71.2). This means that the
off-resonance noise for this particular mode will be less than 4 x 10-'9cm,/,\,/Hz.

Figure 7.2 A plot of the displacement noise between 40 kHz and 60 kHz. The y-axis has a linear scale to show
the various resonance peaks. The signal at 50 kHz comes from the FM on the MISER that controls the frequency

noise minimization servo. The largest resonant peak is a factor of 2 above the noise (when it is resolved).
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cc 6

(Ank) Q

and A has an asymptotic value of 377 where n is the number of radial nodes. When
making the sum for the thermal noise from all the modes, a multiplicity of n, must be
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included for each mode since there are both radial and circumferential nodes. It is also
worthwhile to include another factor of n to take into account any splitting of the modes.
Finally, the density of states for the number of modes at a given n cannot grow faster
than n 2. This gives a sum

252 1 )6 4 X 10-37
X (3n)6 (3 x 3 x n x 1.6 cm/v"Hz

k=3 (7.1.6)
252

= 12 X 10-34 E 2

k=3 n

The sum is less than 1, even if the sum is extended to include an infinite number
of terms. The addition of thermal noise from higher order modes then is less than
I X 1-17 cm,/v"Hz and is not a likely explanation for the background noise.

Another approach to include the thermal noise from higher order modes is to use the
Debye model to obtain a density of states for the number of modes at a given frequency.
For a sound wave with wave vector and angular frequency = CK where c, is the
effective sound velocity, The number of wave modes with a frequency between and
w + dw, is (see for example Reif 7)

O' (w) dw = 3 V W 2 dW (7.1.7)
27rc28

where V is the volume. The total thermal noise form all the modes between WI and WD is

LOD

X2 W = 4kBT X 3V W2 dw
7-nw3Q

U I

= 6kBTV In wD
7r rn c3 Q WI (7.1.8)

S

6kBT x 73crn 3 In wD

ir x 160g x (5 x 15C"IISC 104 WI

3 x I 0 - 3 C?- IHz In D

WI

wD is the Debye frequency

2 A 3
wD = C 6 

V
(7.1.9)

= 5 X 105 cm/sec(6 7r2 x 2 x 1022Cra-3

- 1 o14,56C-I

Using a value for = 7r x IkH- gives

LOD
In 23 (7.1.10)

WI
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and the noise is x(f = 3 x 10-17 cm/Hz. A better integration has to include the phase
averaged over the beam size as shown in equation 7 Assuming the wavelength scale is

A C, C,
a = b = = - = - (7.1.11)

2r 27rv w

gives a thermal noise of

WD 2 2
4kBT 3V Wo(bearn)w

XI (W) 3 Q ( �r 2,3 ZV2exp 2 dwmw 2c,
LOI

WD 2
6kBTV I Wo(beamff-
- 3Q - exp 2 dw (7.1.12)
7rmcs LO 2c,

LVJ

6kBTII' x 7.8
7MC3Q

8
2 x 10-34Cm2 lHz

The noise in this case will be x(f = 2 x 10-17 c?-nlH..-. The noise background cannot
then be explained by using a Debye distribution for the acoustic modes.

Another source of broadband noise could be the low frequency tail of a mode from
some other part of the jewel that has a resonant frequency much greater than 100 kHz.
For a viscous damping model, the thermally driven displacement noise is

2 4kBT
X 3 Q

MWO

4.2 x 10-1' (7.1.13)2/
3Q cn H-

mf�

for w < < wo. Since the background noise is flat and has a magnitude of 2 x
10-1,5cm1VHz, the product of mass, resonant frequency and Q must be

3 - 14 3M X 6 Q -- . 7 X 10 9Hz (7.1.14)

The small, curved mirror that is optically contacted to the thick plate has a mass of 4 g
and should have resonant frequencies in the hundreds of kHz range. This suggests that
the Q of this resonance would have to be on the order of 10-2. While the measured Q's
of the thin plate, cylinder and thick plate were low 103 - 05 rather than 106) a Q of
10-2 for the I" mirror seems too small to be an acceptable explanation for the noise that
is measured. If one makes a model for the optical contact as a material that has a spring
constant and a large loss, one could possibly find a resonant frequency of a simple mass
with a spring attached to it that is much lower than the resonant frequency of an internal
mode of the small mirror and that has a much lower Q than the internal mode. This is
discussed in the optical contacting noise section.
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7.2 Optical Contacting Noise

The source of the noise could be related to the fact that all of the Q's are at least
an order of magnitude too low for what one would normally expect from fused quartz.
There are two likely explanations for the low Q's: the multi-layer dielectric coating or
the optical contacting.

One way to understand whether the coating degrades the Q is to compare the Q's
of the uncoated thicker plate to that of the coated thin plate in the jewel. Since the
frequency of a plate's normal mode is proportional to its thickness, the normal modes of
the thick plate should have resonant frequencies with resonant frequencies about 4 times
those of the thin plate. There are measured resonant frequencies that match this pattern,
but their Q's are within the same range as those from the thin plate. The coating then
is not responsible for the low Q's.

Since the jewel was disassembled, it is clear that the optical contact is not the
equivalent of the whole assembly being fused together. The resonant frequencies changed
by only a few per cent before and after the jewel was taken apart. The Q's remained the
same. It is very likely that this "lossy" clamp is responsible for the degradation of the
Q. The optical contacting force can then be viewed as a new driving term for the various
normal modes of the entire jewel. For example, the two small spherical mirrors could
have some displacement noise from their contact to the thick plate.

One way to model the optical contact is to give it the properties of a material with
a certain spring constant and loss (see figure 72.1). By comparing the energy stored in
the plate with that stored in this spring clamp, an estimate of the damping is obtained.
The amount of energy stored in the plate is (see for example [18])

Ehl 02Z a 2
Energy = - + +

24( - 2 aX2 a
area (7.2.1)

a2 2
- (9-Z,92Z dA

2(1 ) OXOY aX a 2

The energy stored in the spring clamp is

En ergy I Y Z2dA (7.2.2)
2

area, of contact

where Y is the spring constant per unit area. The shape of n 0, k I mode for a
disk with a 60325 cm radius is

Z(r, 0 = J (0.764r) + .015I1 (.0764r)] cos 0 (7.2.3)

Doing the integrals gives

Eplal = 21 x 10" x 2621 (7.2.4)
E,,,,,p = 022 x Y
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If the optical contact has a loss 0,j,,,,p(w) and it is the dominant loss mechanism of this

normal mode, it ill be related to the loss of the plate Oplt,(W = 9000)- by

Oclamp Oplat Eplate
-E, clamp

i . x loll (7.2.5)
9000 0.22Y
2.8 x 10'

y
Since the noise spectrum is flat, the damping mechanism is most likely a viscous one.
The loss must then be scaled in frequency

Odamp = 2.8 x I ' 9.76kHz (7.2.6)
y A

Figure 72.1 Model of optical contact force.

I

first guess for the optical contact spring constant Y would be the Young's modulus
of fused quartz divided by the separation between the two contacted pieces. The
separation length is bounded by the surface figure error of the contacted pieces that
is less than A = 6135,4/10 and sets

dynesIC7-0 2y I X 1017 - (7.2.7)
cm

The area of the contact could be no greater than that from the difference between the
outer and inner radius of the cylinder

area = 7, (6.032,5cm )2 _ 75.OSCM)2 (7.2.8)

= 33.3 on 2
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The next step is to take this spring model and apply a mass to it that is equal to
the plate mass (I 60g). This would show whether the measured noise spectrum was due
to the optical contact loss thermally driving the plate. The resonant frequency of such

a system is

x area
A = - (7.2.9)

27r M

23MHz

Using viscous damping model with a loss as described by equation 72.6 gives an off-
resonance noise spectrum for f << fo

X2 (W) 4kBTOcIa.p(w)
MW 3

0

4kBT x 27 x m, x 28 x 107 x 9760 (7.2.10)

y3 x (ontact area ) 2

x(w = 6 x 10-27 crn / N�Hz

This is much smaller than the measured noise spectrum.

Alternatively, Y and the contact area can be equated to the measured spectrum

X'(w = 4 x 10-31 cm'/Hz 45 (7.2.11)
area 2 X y3

I- dyneslcrn2 -11 2
Assumina Y = I x 10 '- produces a value for the contact area of 9 x 10 cmCI cm

2which seems much too small given the upper limit for the contacted area of 33.3cm
2 I 09 dynes/cm 2Assuming a contact area of 33.3cm gives a value for Y of 22 x cm -. This

implies a length scale for the optical contact separation of 330 cm. Again, this does
not seem reasonable.

Another way to find consistency in this model is to equate the measured noise
spectrum to optical contact spring driving the plate and assume this is the loss of the
optical contact. Then, by using equation 72.5, the loss of the plate can be derived.

x2p) 4 x 10-"crn'/v"Hz
4kBT Eplate 9.76kHz�

- 3 plate (LO) �� �
MWO Ecia,,p 23A/Hz

4kBTv/m-0p1,,f,, x 28 x 107 X 4.2 x 10-4) (7.2.12)

5 3
Y2 x (ontact area)2

4.1 x 10-"Oplate

QPlat = (Oplatc) -1 = I X 1-23

Once again, the answer is inconsistent and very unreasonable.

A better place to search for optical contacting noise is from the joint between the
small mirrors and the thick plate. The thermally driven motions from the thin plate will
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primarily be a common mode displacement that is cancelled by the interferometry On
the other hand, the motion of one small mirror would be added incoherently with respect
to the motion of the other. The mass of a small mirror is l4g and the contact area is

2 -resonance noise given3.8cm Using the method in equation 72.10 to determine the off
the plate loss gives

x area
A (7.2.13)

27r M

26.AlHz

X 2(W) 4kBTOciamp(w)
MW 30

4kBT x 2 x m x 28 x 107 x 9 60 (7.2.14)

),,'3 x (ontact area )2

x(w = 17 x 10-26 cn7,/N/Hz
This number is much too small. Doing the reverse process as in equation 72.12 gives

X 2 W) 4 x j0-30C1-n21V/-H-Z

4kBT 9.76kHz
3Oplate (W) Eclamp 26AIHz (7.2.15)
0

2.8 x 10-12 Oplate

QPlat = (Oplate)- 7 x 10-23

The answer is completely inconsistent.

There is another clue in the data that suggests an explanation for the measure noise
spectrum. A close examination of the broadband noise shows that is grows slightly by a
factor of 14 between I kHz and 25 kHz. This is much easier to see on a linear plot of the
data with an expanded scale (see figure 72.2). Scaling the data from the simple Mach-
Zender interferometer (without cavities) and superposing it on the full interferometer (with
cavities) data shows that the Mach-Zender response is flat while the full interferometer
has this bump in it. This bump is then probably a real measurement rather than some
irregularity in the signal extraction. Above 50 kHz, the amplitude of the noise rolls
off due to various filters from the Fabry-Perot cavity bandwidth and the electronics
bandwidth. This broad peak could be due to a very low Q mode (on the order of one)
with a resonant frequency of about 30 kHz. If one fits this data to a viscous damping
model, the parameters obtained are

n = 7 Og

fo = 2 1 k HZ (7.2.16)

Q = 127

Surprisingly, the mass is almost exactly half that of one of the small mirrors (14g).

This result is only speculation. The data does not fit the curve for a resonance above
the resonant frequency. Moreover, the calculation done in equation 72.14 shows that
such a result is not consistent with the optical contact model.

107



There is another possible explanation for this low Q resonance and the measured
noise spectrum. It could be due to some environmental noise source other than internal
thermal noise such as acoustic noise driving a mode of the cylindrical part of the jewel.
This mode could be highly damped by the viton pieces upon which the jewel sits. These
modes, however, are clearly seen in the data and their Q's are between x 103 _ 105.

This hypothesis then is not correct.

Figure 72.2 Plot of the broadband noise with a linear scale. The fitted curve is the thermal noise
for a viscous damped harmonic oscillator with the parameters given in equation 72.16.
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7.3 Experimental Conclusions
This experiment has set an upper limit of x(f < 2 x 10-15CM/-.,/HZ for the off-

resonance thermal noise spectrum from a piece of fused quartz in the shape of a thin
disk. It has demonstrated the use of resonant Fabry-Perot cavities to increase the phase
changes of light due to small motions of the cavity end mirrors. It has also shown an
interferometric technique to reduce the transmission of common mode noise, especially
the frequency noise of a laser, through a Mach-Zender interferometer.

This experiment has successfully measured a noise displacement spectrum on the
order of 10-15 cm/v"Hz. As a relatively small, table top set up, it has achieved a
sensitivity comparable to that of early gravity wave detector prototypes which are larger,
more complicated and more expensive experiments. Since thermal noise will be an
important noise source in advanced gravity wave detectors, new experiments must be
undertaken to gain a better understanding of when the thermal noise limit will be reached.



The techniques developed in this thesis offer a way to measure thermal noise with the
same sensitivity as a full scale gravity wave detector. A particularly interesting application
of this type of measurement is the direct monitoring of thermal noise in a mirror substrate
in order to remove it from a gravity wave detector output signal. This could possibly
serve as means to avoid the thermal noise limit and is discussed in chapter I .
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Chapter Future Experiments

8.1 Other Experiments Using the Current Design

While the experiment performed in this thesis did not seem limited by instrument
noise, the desired experimental sensitivity of 1-17Crn/V,-HZ was not attained. This
happened because the mirrors became contaminated over time which reduced the output
intensity of the Fabry-Perot cavities and hence, the signal gain of the interferometer. One
interesting goal for a further experiment would be to clean the mirrors and try to achieve
a better experimental sensitivity. At this point, a few holes could be drilled into the
side of the cylinder. This would allow easy access to the mirrors if any further cleaning
were needed in the future.

While the jewel is disassembled, the mechanical Q's of its various components could
be measured. This would determine whether the optical contacts are responsible for the
relatively low Q's that were measured for the fused quartz in this experiment. The Q
measurement could be performed on the separate pieces with an optical detection scheme
such as an optical lever.

One way to study the Q would be to add extra damping to the jewel. Epoxy could
be placed on the plate to compromise its Q. In fact, epoxy could be used to glue the
jewel together. It would be interesting to measure the off-resonance thermal noise as a
function of the Q. Since the thermal noise resonant peak is xwo a /Q and the off-
resonance noise is x(w << wo a 1V4Q, the thermal noise peak will decrease while the
off-resonance noise will increase as the Q becomes smaller. In figure 53.5, the thermal
noise resonant peak has a value of 3 x 10-13 cm/v"_Hz and a Q of 6500. If the Q is
reduced to less than 10, then the off-resonance thermal noise might be greater than the
background noise of 2 x 10-15 crnj�\/Hz. While ruining the Q of fused quartz does not
offer any insight to the inherent loss mechanisms of fused quartz, it does give some
understanding of how adding components to a piece of fused quartz affects its Q.

8.2 Experiments to Understand Thermal Noise

There are many other ways to design an experiment that uses interferometry to
measure the off-resonance thermal noise displacement spectrum of a mechanical object.
One of the goals of this experiment was to take advantage of the inherent common
mode rejection of an interferometer. Unfortunately, the assembly that held the phase
sensitive parts of the experiment together was a fairly complicated mechanical system
with many resonances and with clamping conditions (from the optical contacts) that
were not understood very well. A future experiment should reduce the complexity of
the mechanical system to be measured. An important part of the new design would
include a clamp that does not reduce the Q of the material and that does not couple more
environmental noise into the system.
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There are essentially two ways to build such an experiment. Both techniques involve
hanging the mirrors that form the resonant cavities. The difference between the two
techniques involves whether the cavity is external to the mirror substrate or internal to
the mirror substrate.

If the cavity is external to the mirror substrate, the experiment is almost the same
as the one performed in this thesis except that all the mirrors are hung rather than
optically contacted to a bigger assembly (see figure 82.1). The servo schemes will also
be somewhat different. Since the length of each cavity can be controlled separately, there
is no longer a need for the thermal length control. There is a new complexity to the
entire servo control system since there will be a substantial motion of the mirrors at low
frequencies from the ground motion.

The advantage of this system is that there no longer are any optical contacts. One
disadvantage is an added set of mechanical resonances from the suspension wires.
Another potential problem is the type of actuator used to control the cavity lengths.
While the frequency of the laser is locked to one cavity, the other one needs an actuator
to control its length. This could be done with an electrostatic plate that would act upon

the thick mirror.

Figure 82.1 Top view of a hanging experiment design with external cavities. All the mirrors are suspended as pendula.
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Another way to do this experiment is to put the Fabry-Perot cavities inside the mirror
substrates themselves (see figure 82.2). This technique can achieve high sensitivities (see
chapter 0). The servo system is similar to the one used in the experiment performed
in this thesis. The frequency of the laser can be tuned to the length of one cavity while
the other cavity is thermally tuned so that it is also resonant with the laser frequency. If
both mirrors are the same size with the same mechanical Q, then the thermal noise from
each cavity should add in quadrature. Again, there is no added complexity of an optical
contact or an added mechanical system.

Unfortunately, as discussed in section 32, it is difficult to design a monolithic mass
that has a resonant frequency between I and 0 kHz and that has a large off-resonance
thermal noise spectrum. Also, since the centre of the mirror is being sampled, many
normal modes will contribute to the displacement that is measured. If the experiment
does achieve a very high sensitivity through the use of very low loss substrates and
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coatings, a measurement of the actual thermal noise spectrum from a LIGO type mirror
might be possible.

The problem with this design is that it assumes that the thermal noise in both mirrors
is the same. Since the noise in each mirror is not correlated, the measured noise should
be the quadrature sum of the noise in each mirror. There is no way to independently
measure the noise of each mirror.

Figure 82.2 Top view of a hanging experiment design with internal cavities.

Support Cavities

8.3 Experiments to Understand Optical Contacting Noise

Optical contacting is a convenient way to assemble fused quartz pieces. It is
important to rule out optical contacting noise as the source of the measured noise in
this experiment if optical contacting is to be used as an assembly technique in high
sensitivity measurements like gravity wave detection.

The first task would involve measuring the mechanical Q's of the various components
of the jewel before and after contacting as described in section 8.1.

The next part of the investigation would be somewhat more difficult. An experiment
similar to that described in figure 82.1 would be set up except that another thick mirror
would be made (see figure 83.1). It would consist of two pieces of fused quartz that
are optically contacted together. One of the pieces would be a coated mirror. The other
would have a hole in its centre. The assembled piece would have the same dimensions
and mass as the regular thick mirror. This compound mirror should have the same thermal
noise as the regular mirror. If the measured thermal noise spectrum was excessive when
the compound mirror replaces the regular mirror, the optical contact would be a very
likely source for that excess noise.
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Figure 83.1 Sketch of an experiment to measure optical contacting noise.
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Chapter 9 Microscopic Model for Understanding
Thermal Noise in a Bulk Piece of Fused Quartz

9.1 Theory

The most basic aspect of this model is the assumption that the loss mechanism in
fused quartz comes from a point like defect in the material. This defect can be an impurity
or any other kind of non-uniformity in the material (see for example Braginsky 281).
These defects are driven by thermal energy to produce impulses that kick the various
normal modes of the fused quartz. The two main assumptions are that these defects are
randomly distributed about the material and that the time distribution of the impulses
follow Poisson statistics.

9.2 Concept for Data Analysis

A simple implementation of this model in a thin disk of fused quartz looks at the
effect of an impulse in two different normal modes. The first consideration is the response
of a simple harmonic oscillator to an impulsive force of the form:

7 7
F(t = a, t, - < < 

2 2
= 0, ther (9.2.1)

lim --+ 0, a,7 const.

The oscillator will respond as follows:

2(1 + X F(t)
+ W, ?I

M (9.2.2)
x(t) an -owo(i-j,

MWO 2 sin wo (t - tn)
n

The next step involves determining how to weight each pulse relative to each normal
mode. The two lowest order normal modes have the form (see chapter 3)

Jo ko r) + bo ID ko r), = O (9.2.3)

[Jj (klr) + b, I, k, r)] cos 0, = ,

The effective amplitude of the pulse is weighted according to its position in each normal
mode. For example, if a pulse occurs at r=0=0, then the pulse has a maximum amplitude
for the first mode and zero amplitude for the second mode.

A simulation of this model was implemented by considering the first two normal
modes of the plate at 526 kHz and 957 kHz. In each time interval At there are four
random variables that specify all the pulse parameters. The amplitude of each pulse is
the same.
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variable I

variable 2

variable 3

variable 4

decide if pulse occurs

decide sign of pulse

decide where on radius pulse occurs

decide where on pulse occurs

Figures 92.1 and 92.2 show the simulation result for both the amplitude and phase
of the 526 kHz mode as a function of time. Figure 92.3 shows the phase for the other
mode. It is clear that the changes in phase are correlated in time.

Figure 92.1 Plot of the amplitude for the first mode vs. time. In this case, =5.26 kHzO=(l0000)-',
At=2x 10-5 sec, and the probability threshold for a pulse to occur in each time interval is 0.01.
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Figure 92.2 Plot of the phase for the first mode vs. time. In this case, wo=5.26 kHz, =(10000)-',
At=2x 10-5 sec, and the probability threshold for a pulse to occur in each time interval is 0.01.
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Figure 92.3 Plot of the phase for the second mode vs. time. In this case, wi=9.57kHz,,O=(l0000)-',
At=2x 10-5 sec, and the probability threshold for a pulse to occur in each time interval is 0.01.
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One must now find a method that can determine a change in phase. Once a suitable
indicator for a phase change is available, then the cross correlation between the phase
change for two different modes should have a maximum at time t=O. By taking the
derivative of the phase from one mode, one obtains pulses that can be correlated with
those obtained by taking the derivative of the phase from another mode.

Figure 92.4 This shows the derivative of the phase from figure 92.2
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If one then takes the cross correlation of the absolute value of the derivative of the
phase of one mode with the absolute value of the derivative of the phase of another mode,
one sees that there is a maximum at time t=O and that the data is correlated.
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Figure 92.5 This figure is the cross correlation of the absolute value of the derivative of the phase
from figure 92.2 with the absolute value of the derivative of the phase from figure 92.3.
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The method to extract the phase data from the amplitude signal that monitors the
excitation of the normal mode is to mix this signal with a stable oscillator at the same
frequency of the normal mode.
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9.3 Experiment

When working with real data, there will be noise that corrupts the signal. The effect
of the noise will depend upon the signal to noise ratio and the bandwidth of the filtering.
In the current thermal noise experiment, there are resonant peaks that are a factor of 20
to 40 dB above a white noise background.

If one integrates the signal under one peak (in this case the 0975 kHz mode),
the RMS is 3.6x 10- 3 CM. If one takes the background noise to have a magnitude of

10-152 x Cn7r/V'HZ, then a bandpass filter with a bandwidth of 300 Hz is necessary for
a signal to noise ratio of ten. A signal to noise ratio of 100 requires a bandwidth of 3
Hz. The resonant frequencies of interest are at about 10 kHz and the Q's are between
5000 and 7000. The inherent bandwidth of the resonance then is 2 Hz. This presents a
problem because the broadband noise exciting the electronic filter will be confused with
the termal noise exciting the mechanical filter of the normal mode.

Ideally, a high bandwidth time series of the interferometer output should contain
all the data necessary to see the correlations in the phase jumps of different modes.
The sampling frequency must meet the Nyquist criteria for the highest frequency mode



considered. The data is then analyzed digitally as shown in figure 93 I. This analysis is
done for two different resonant frequencies and is cross correlated.

Figure 93.1 Data analysis scheme used to search for changes in the phase of an oscillator.

t

A time series of the interferometer output was taken with a sampling rate of I 0
kHz. The data was low pass filtered at 25 kHz and high pass filtered at 7 kHz in order
to include plate resonances at 96 kHz, 10.9 kHz, 17.8 kHz, 18.2 kHz and 19.9 kHz and
to reduce aliasing from signals above the Nyquist frequency, Unfortunately, when doing
the data analysis, the background noise exciting the bandpass filter dominated the input
signal to the mixer. This means that any phase changes that occur are due response of the
bandpass filter to the noise. When the data analyzed about a resonant frequency is cross
correlated by that about another resonant frequency, it shows the same result as cross
correlating the data about a resonant frequency with data about a frequency where there
is no resonance. Since the background noise is the major component of the excitation,
it sets an upper limit on the product of the rate and amplitude of the point like impulses
that excite the normal modes.
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Figure 93.2 Plot of power vs. bandwidth for the data that was taken. The power
goes linearly with the bandwidth and the noise can be assumed to be Gaussian.
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If the point like impulses have a Poisson distribution with an average occurrence
rate R, exponential tail with time constant 7 and a displacement Ax, the power spectral
density of the displacement noise is (see for example 29])

I W 2
x2 C,_, =(AX), W2 172 W2 + 4R2 (9.3.1)

Assume -r-1 << since the impulse acts like some displacement that happens suddenly
and then takes a long time to settle. Using a noise of 2 x 10-15 cm/v"H--- at 500 Hz gives

2 (�O) �� (AX)2R

x W2 (9.3.2)

VR A x < 6 3 x 10-12 cm / -.,I-Hz

Another limit that can be set is that Ax < 36 x 10-13C,72 since the excitation could not
be seen and thus, could not be bigger than the RMS under the peak. Figure 93.3 shows
a plot of where the rate of impulses and their magnitude could be given these limit.
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Figure 93.3 Plot of the rai
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Chapter 1 0 Ideas for an nterferometer to
Measure the Thermal Noise of a Test Mass

10.1 Thermal Noise Limit

In later generation gravity wave detectors, thermal noise from the internal modes
of the test masses will become a limiting noise source. If LIGO is to meet the most
conservative estimates for the detection of gravity waves from astrophysical sources such
as coalescing binaries, then sensitivity of future detectors must approach a strain of
IO-11HZ-2 near 100 Hz 30]. Figure 12.2 shows that for a structure damped loss
mechanism, this goal is not attainable.

There are very few ways to avoid this problem except to make the arm lengths longer
or somehow to alter the test masses. The arm lengths are fixed by the initial design while
the design of the test masses should be optimized to keep thermal noise at a minimum.
The thermal noise can be reduced by significantly improving the Q of the mirror substrate
material. Since the off-resonance thermal noise is inversely proportional to the square
root of the Q, new materials with Q > 107 must be found.

Another possible way to avoid this noise limit is to measure the thermal noise from
the mirrors. In the interferometer, the gravity wave strain signal is directly related to
the motion of the test mass. The thermal noise in the test mass, on the other hand, is
a motion about its centre of mass and not an actual motion of the centre of mass. This
suggests that the test mass thermal noise can be removed from the gravity wave signal.

10.2 ntra-Test Mass nterferometer Noise

If one wants to remove this noise from the gravity wave signal, the sensor must have
a noise that is lower than 3 x 10-'8c7-n,/v"'Hz and hopefully less than 4 x 10-'9c?-n/N/Hz.
Figure 10.2.1 shows the shot noise limit of an interferometer with an effective optical
input power of 4 mW. If the input power is increased to I W, then the noise would go
down by a factor of 15. If the loss does not exceed 10 ppm, then a sensitivity of less
than 4 x 10-19cn/-,/Hz is possible.

The next thing to consider is whether an interferometer inside a test mass can achieve
the same sensitivity. A great deal of research has been performed to understand and
minimize the losses in fused quartz for the manufacturing of optical fibres. Current
specifications set a limit on the losses for 106 pm light at 2 dB/km or 16 ppm/cm At
longer wavelengths, the losses are even smaller. If a test mass has a length of 10cm,
then the loss due to absorption in the material will be 16 ppm. Losses in coating can
now be made less than ppm. Unfortunately, the test masses are coated for light with
a different wavelength and for different transmissions. If dichroic coatings can be made
with losses less than I ppm and the appropriate transmission to maximize the sensitivity,
then this should not be a problem.
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The calculation of the intra-test mass interferometer sensitivity is essentially the same
as that done in chapter 4 except the losses in the medium must be taken into account.
Assuming an input power of Watt to each pair of cavities, perfect contrast and a
modulation depth that approaches 0 (F<<I), the shot noise of the interferometer will be

15 [(I - ) + pL + T]2
nozs = 39 x 10- 2T(I - L - T)

P
c rn / v'Hz (10.2.1)

where y = a2 = I - material loss).

Figure 10.2.1 The sensitivity of an intra-test mass interferometer as a function
of loss in the cavity medium. The loss in the mirrors was set at I ppm.
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The bandwidth of an intra-test mass interferometer is greater than I kHz for even the
most optimistic losses for the cavity medium. Since the optimum detection frequency
for LIGO is at 100 Hz, the signal from an intra-test mass interferometer has an adequate
frequency response for the gravity wave detection band.
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Figure 10.2.2 The bandwidth of an intra-test mass interferometer as a function
of loss in the cavity medium. The loss in the mirrors was set at I ppm

1 6

Nr lo 

_0
3:
'O
C
co
co
>1

CIO 4

C)

1000
1 1 0 100

Transmission (ppm)
1000

n, I I
x - = const.

p2 +2 P
(10.3.1)

If a block has dimensions a x a x a and one of the sides decreases by a small amount
6, then the density of the material increases to

1 6P= I+ 
a

(10.3.2)
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10.3 Conceptual Model for Implementation

If such an interferometer does achieve the necessary sensitivity, then it must be
implemented in such a way that it measures the motion of the mirror where the laser
beam spot for the gravity wave signal is located. There is an assumption that the motions
of both sides of the mirror are correlated with each other. This is the same assumption
that the motions of the test mass can be decomposed into normal modes. The normal
mode is a rigid body and its motion is determined by the shape of that mode.

Since the optical path is inside the cavity, the index of refraction of the material
becomes important. If the mirror changes shape, its density will change slightly and so
will its index of refraction. The Lorentz-Lorenz formula for the index of refraction of a
material is (see for example Marion 31])



The index of refraction increases by an amount

I 6n n I ,A-
a (10.3.3)

n 4 + n 2- 2

6n

For fused quartz at A = 1.064pm, n 1.44963 and A = 052. Since the optical path
travelled by the light is proportional to the index of refraction, the actual displacement
measured by an internal interferometer is

Alloptical = nIa na
6

= n 1 - (a - na (10.3.4)
a

n6(l A)

The effective change in path length from the change in the refractive index then must

be taken into account.
The actual implementation of the interferometer in the test mass can be done

differently depending on whether the mirror must transmit light (as the mirror closest
to the beam splitter must) or whether the mirror can be opaque (as the end mirrors can
be). In fact, the end mirrors might be made of a material with a high Q that is completely
opaque to the laser light such as single crystal Silicon. This could serve as a means to
take care of the internal thermal noise from the end mirrors.

For the far mirrors, the interferometer beam spot can simply sample the area of the
mirror that the main laser beam does (see figure 10.3.1). The only problem in building
such a cavity and using it as a displacement transducer is that the frequency noise of the
laser must be smaller than the displacement noise of the cavity. The frequency of the
laser is stabilized by setting its frequency to the length of some reference cavity. The
reference cavity must be quieter than the mirror itself. If the mirror is designed properly,
it should have the smallest amount of thermal noise for a piece of fused quartz that is
possible. It is not clear then that a single cavity measuring device would work.

Figure 10.3.1 Model of an intra-test mass interferometer for an end mirror.
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One way to avoid the problem of frequency noise is to use the technique developed
in this thesis to remove common mode noise sources. At least two cavities would be set
up inside the mirror (see figure 10.3.2). They would sample two or more parts of the
mirror. The difficulty in this approach is how to reconstruct the motion of the mirror
where the main gravity wave detector beam samples it from the displacement of a few
discrete points on the mirror. The model described in chapter 9 assumes that all the
normal modes of the mirror are excited at the same time by the microscopic processes of
the loss mechanism. If enough points on the mirror are sampled, the measured motion can
be decomposed into some of the mirror normal modes. The amplitude of these normal
modes can then be extrapolated to obtain the amplitude of the other normal modes. The
motion of the entire surface of the mirror can then be reconstructed.

Figure 10.3.2 Model of an intra-test mass interferometer for the mirror nearest the beam splitter.
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Another way to remove the motion of the mirror about its centre of mass is to coat
both sides of the mirror and have the light reflect from both sides (see figure 10.3.3) If
the phase change of the light due to motion of the far side is equal and opposite to the
phase change produced from motion of the near side, then the total phase change of light
reflected from the mirror will be insensitive to thermally excited normal modes of the
mirror. If the cavity formed inside the mirror is resonant for a length 1, then the phase
for the reflected electric field (see appendix A) will be

�0 = 

A I ri - ce 2r2 H + t2 %X
(P2 = Arg 0 x � � l 1)

I - a2rlr2e- (10.3.5)

4wnAl( + A)
X

C

where A is defined in equation 10.3.3. For small changes in length << 1), theC

phase for E2 will be

r2 + t2 ri
1 + 4n( + A),a2 r2 I I (10.3.6)

2 2+ t2C ri a H 1) a2rr,,
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By setting equation 10.3.6 equal to 0, the appropriate reflectivity and transmission (r2, t2)

can be found to satisfy the condition that the reflected light is insensitive to a symmetric
mirror motion about its centre of mass. Putting in typical values for rl, t shows that
this technique is very dependent on having all the reflectivities and transmissions very
precisely determined. In general, this is not a good way to design an experiment so that
this technique does not look very promising.

Figure 10.3.3 Sketch of the mirror and the light path for a motion of the mirror
about its centre of mass. Each side of the mirror moves an amount Al.
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Chapter 1 1 Conclusions

The detection of gravitational waves from astrophysical sources will be a great
triumph for Einstein's Theory of General Relativity and will open a new window to
the universe outside of the electromagnetic spectrum. The inherent weakness of a
gravitational wave makes this experiment a challenging task and requires a very detailed
understanding of all possible noise sources in the detection apparatus.

This thesis discusses thermal noise which could ultimately be the limiting noise
source for an interferometric gravitational wave detector. Thermal noise arises when
a system is disturbed from its equilibrium state by the statistical fluctuations inherent
in a heat bath. In mechanical systems, there are processes which cause the system to
dissipate energy over time. This introduces heat into the thermal reservoir and raises its
temperature. These same processes are driven by statistical thermal fluctuations and in
turn, excite the mechanical system.

In the particular case of a gravity wave detector, there are two mechanical systems
where the thermal noise can be a significant problem: the suspensions that hold the
interferometer mirrors and the internal normal modes of the mirrors. In both cases, the
distribution of the thermal noise in the frequency domain is important. The principal
methods to reduce the thermal noise is to put the mechanical resonant frequency of the
system out of the detection band and to use a high Q design. This ensures that most of
the thermal noise is not in the frequency regime of interest. An actual prediction of the
thermal noise floor of a gravity wave detector is a detailed calculation that involves a
good understanding of the mechanical systems and their loss mechanisms.

The thermal noise of a pendulum was calculated by considering the losses in the
flexure of the thin fibres that support the pendulum mass. The thermal noise from the
suspension depends upon the loss mechanism in the thin fibres. One such mechanism
is thermoelastic damping. An experimental investigation of thermoelastic damping was
performed by measuring the Q's of thin fibres made of tungsten, sapphire, silicon and
fused quartz. Tungsten had the highest losses with Q's on the order of 03 that were
relatively frequency independent. Fused quartz had the lowest losses with Q's between
10 _ 106 that again were relatively frequency independent. The results indicated that
thermoelastic damping is at best only an upper limit for the Q of a wire. A calculation
of the thermal noise for a pendulum using thermoelastic damping as a lower limit for
the loss shows that both fused quartz and tungsten produce about the same amount of
thermal noise. While tungsten has a higher loss than fused quartz, it also has a higher
yield strength. These two effects tends to cancel each other.

In the interferometer mirrors, there is thermal noise due to the inherent mechanical
losses in the substrate material. The two models that are commonly used in describing
the loss mechanisms in bulk solids have different frequency dependences and are called
structure damping and viscous damping. The ratio of the thermal noise from structure
damping over the thermal noise from viscous damping for frequencies less than the
resonant frequency is proportional to Tf-olf. Since the lowest resonant frequency for a
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LIGO mirror is on the order of 10 kHz, the noise from the two different loss mechanisms
is a factor of 10 different at 100 Hz which is the optimum detection frequency band for
LIGO. An experiment was built to measure the off-resonance thermal noise in a test piece
of fused quartz and thus, determine the frequency dependence of the loss mechanisms.

Some interesting techniques using interferometry to perform high sensitivity mea-
surements were developed. Since mirrors with very low losses on the order of a few
ppm. can now be manufactured, it is possible to make a Fabry-Perot cavity with a very
high finesse (> 105) . The phase of the light inside such a cavity is very sensitive to small

displacements of the cavity mirrors. By building two Fabry-Perot cavities each with a
common mirror, a very sensitive measurement of an anti-symmetric motion of the com-
mon mirror is possible < 10-17CMIV-Hz for a 40 mW laser operating at A = 1.06pm).
The output of each cavity can be combined in a Mach-Zender interferometer where sym-
metric noise sources cancel. The interferometer in this thesis clearly demonstrated that
the frequency noise of a laser can be precisely cancelled by carefully controlling the
lengths of the Fabry-Perot cavity arms.

The actual measurement of the thermal noise was inconclusive. The typical Q's
measured for the piece of fused quartz in this experiment was between 104 - 05 for
resonant frequencies between and 75 kHz. The thermal noise at the mechanical
resonance was accurately measured 4 X 1-13 cm, RMS for an I I kHz resonance). The
off-resonance thermal noise was 2 x 10-15 c7-nIVHz which was too high to be the low

frequency tail of the thermal noise from any of the mechanical resonances. A careful study
of the various possible experimental noise sources including electronic noise, frequency
noise, amplitude noise and others could not find one that was responsible for the measured
noise. An investigation of other possible displacement noise sources included the off-
resonance thermal noise from higher frequency normal modes and a model for optical
contacting noise. Again, these two possibilities could not explain the noise adequately.
A series of experiments to gain a better understanding of the measured noise is proposed
in chapter 

A model to understand the interaction between the loss mechanisms in the form of
Poisson distributed impulses and their excitation of normal modes was presented. The
model attempts to understand the correlation of thermal noise in different normal modes
of the mirror. An experiment to test this hypothesis could only set an upper limit to the
strength and rate of these impulses.

Finally, some conceptual designs to measure the thermal noise directly in a gravity
wave detector test mass were discussed. If this becomes possible, the thermal noise
could be subtracted from the gravity wave signal and would no longer be a limit for the
sensitivity of a gravity wave detector. The optical experiment performed in this thesis
is a prototype for such a technique.
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Appendix A The Fabry-Perot Cavity

A light beam incident upon a Fabry-Perot cavity is partially reflected and partially
transmitted through an incident mirror, partially reflected and partially transmitted through
an end mirror whereupon the process repeats itself until all the light either escapes from
the cavity or is attenuated by losses in the mirror. The interesting properties of this
cavity occur when the light is resonant inside.

Figure A. Fabry-Perot cavity. a is the electric field transmission of

the cavity medium or V1 - material loss. In general, it is set to 
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The equation for the reflected electric field is:

��ref 1 (t)

Einc(t)

W (t_ 2 'W(t_ 4 
z 2 2 ' 4 2 2 = 'r1e - a r2tie C a r1r2ile C _ ...

2 r2 + t2 tX= e zWt rl a r I De-,
I a2 rlr2P-2'X

= twt x Arefl(x) X e i'Prf I X)

Similarly, the equation for the transmitted field is:

2wl= -
C

(A.1)

Etrans Twt Cet 1 t2
C 2 zX

Einc I a rl'r2C-
= %vt x Atrans (X) X 6,1ran--(X)

(A.2)

If the reflectivity of the mirror is R, transmission T and loss L, then r = VR, t = VT
and R + T + L = . Also, a is set to 1. In this experiment, both mirrors have the
same coatings with T=22ppm and a L< 5ppm. Figures A.2-A,5 show the intensity
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(I(x = E(x)E*(x)) and phase (�o(x = arg [E(x)]) of the reflected and transmitted light
for the loss and transmission given above.

Figure A.2 Reflected intensity of a Fabry-Perot cavity (T=22 ppm, L--5 pprn).
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Figure A.3 Reflected phase of a Fabry-Perot Cavity (T=22 pprn, L=5 ppm).
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Figure A.4 Transmitted intensity of a Fabry-Perot cavity (T=22 ppm, L--5 ppm),
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Figure A.5 Transmitted phase of a Fabry-Perot cavity (T=22 ppm, L--5 ppm).
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Figure A.6 shows the dependence of the transmitted light intensity through the
cavity as a function of mirror loss for the cavity at resonance. For mirrors with low
transmissions, it is important to keep the losses low in order to insure that the transmitted
light does not become too small.

Figure A.6 The intensity of light transmitted through the Fabry-Perot cavity as a function of
mirror loss for the cavity at resonance and a fixed mirror transn-dssion of 22 ppm
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Figure A.7 shows the dependence of the reflected light intensity from the cavity as a
function of mirror loss for the cavity at resonance. For mirrors with low transmissions,
it is important to keep the losses low in order to insure that the reflected light does not
become too large.
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Figure A.7 The intensity of light reflected from a Fabry-Perot cavity as a function of
mirror loss for the cavity at resonance and a fixed mirror transmission of 22 ppm
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Figure A.8 shows the cavity bandwidth as a function mirror loss and transmission.
The cavity bandwidth should not be narrower than that of the signal to be measured.
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Figure A.8 Cavity bandwidth as a function of mirror loss and transmission.
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Appendix Phase Modulation
The laser light was phase modulated by passing it through a rectangular LiTaO3

crystal Pockels cell 7mmx7mm wide by 30mm long. Unfortunately, the faces were cut
square which meant relatively high reflection losses 14% for each face) since n=2.2 for
LiTaO3. The electro-optic axis z' was perpendicular to the optic axis z and parallel to
the polarization of the linearly polarized light beam (see figure B.9).

Figure B.9 LiTaO3 Pockels cell

An R voltage was applied through a tuned transformer circuit to the crystal (see
figure B.10).

Figure B.10 Tuned transformer circuit for Pockels cell

transformer
i

i

RFi
-� signal

i

i
I
I i
i

I
i

C C-. .variable . pOC s ce
i
i

tensor[32] for LiTaO3 is that of a 3m symmetry group crystal andThe electro-optic
has the form:

0 r12 r13

0 -rI2 r13

0 0 'r33

0 r42 0

r42 0 0

r12 0 0

By applying an electric field E,, along the z' axis, one

(B.3)

creates an index ellipsoid:

I + Ez"rI3 X 12+ 1
7712 In2xi Y/

Y12+ 1 + Ezr33 Z 12 1
2,n I,

(B.4)
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Since the light is linearly polarized along the z' axis, only the index of refraction along
this axis is important.

3nZ = nz - -Ezr33nzt (B.5)
2

The electric field of the ight becomes:

i(Lot-'n"OEZ = e C, Z (B.6)
Eoe 2.(Wt-!!L (n 1 Ezi r3n 3, 1

C 2

where I is the length of the crystal.

if Ez, has the form

EZI 1,70 in (wt) (B.7)
d

where d is the width of the crystal, then

v 3,
(nz,+ 0 sin(wt)r33n0 C 2d z (B.8)

where
3Loll'Or3377,z 'I X 1-12 M

r3 30
2cd (B.9)

3 rad
4 x 10- J/'

and is called the odulation index. Using the relations

00

cos r sin (0)) jo r) 2 1: J2k r) cos 2 kO)

k=1 (B. I 0)
00

sin rsin (0)) 2 1: J2k+1 r) cos ((2k + IO)
k=O

where A are Bessel's function of the first kind and the limit wherer < , then

C-1 r Sin u), t = cos r sin (w,,,t)) - isin rsin (w,,t))

= jo r) 72Jl (r) sin (Lo, t) + (B. I )

= o(r - ji(r)(c c-zwt

and the liaht electric field (neglecting constant phase terms) will be

EZ, C-06 [jo(r - n(e
(13.12)

+
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This produces two sidebands at frequencies w±Lo,,, around the carrier at frequency L".

Figure B. II Carrier and sidebands for phase modulated light

frequency
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