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ABSTRACT

In this thesis, an systematic approach was taken to: (1) understand the fundamental

processes operative in welding alloy 908 and (2) development of appropriate filler wire

compositions based on (1).

Improvement of fracture toughness was achieved in two ways:

By reducing the concentration of niobium in weld filler wire,

By homogenizing the weld prior to aging heat treatment.

Both methods reduced or eliminated Laves phase and/or the size of surrounding brittle area.

Solidification characteristics of alloy 908 welds is that:

* During the weld solidification, niobium segregates into interdendritic zone and

precipitated in the formation of cubic MC carbides and hexagonal Laves phases.

i The area surrounding these secondary phases is enriched with niobium and become

brittle after aging heat treatment.

Fractography analysis of welds revealed that:

Fracture occurs by a typical ductile dimple rupture mechanism, voids initiating at MC

carbides and Laves phases.

Voids grows, first by the failure of surrounding brittle area, then by plastic deformation

of ductile matrix.

Thus, the segregation of niobium was identified as a primary cause of weld degradation.

Thesis Supervisor: Dr. Ronald G. Ballinger
Associate Professor of Nuclear Engineering

and Materials Science and Engineering
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I. Introduction

Incoloy alloy 908 (afterward, alloy 908) is a nickel-iron base superalloy with a low

coefficient of thermal expansion and mechanical properties optimized for use as a structural

material in Nb3Sn superconducting magnets such as those proposed for use in the

International Thermonuclear Experimental Reactor (TER).[l ] Strengthening is achieved

by precipitation of ' [Ni3 (Al,Ti,Nb)] during the superconductor reaction heat treatment.

Alloy 908 exhibits superior mechanical and thermal properties for its application as a

conduit for ITER magnet.[2]

The manufacturing of Cable-In-Conduit Conductor (CICC) type superconducting cable for

ITER requires joining multiple of extruded conduit segment. A schematic of the process

steps for the conduit is shown in Figure 1.[3] The extruded conduit design, shown in

Figure 2, consists of a rectangular shape with circular hole at the center. Individual conduit

sections can be about 10 meters in length. The total conduit length will be approximately

1000 meters. This will require that approximately 100 welds will be made for each coil.

Considering the number of weld joints in the finished cable assembly, it is crucial to have a

physically sound and mechanically strong and tough weld joint. However, preliminary

studies indicated that there was considerable mechanical property degradation in alloy 908

welds.[2]

In many of precipitation hardening superalloys, such as Inconel 718 and alloy 908,

segregation of some of the alloying elements with subsequent precipitation of brittle

intermetallic phases during solidification has been considered to be the primary reason of

weld properties degradation.[5,6] The presence of brittle secondary phases within the

interdendritic area of the weld introduces microscopic inhomogeneity. These secondary

phases provide void initiation sites during fracture, and contribute to low fracture

toughness of the weld. To improve the fracture toughness of welds in alloy 908, the

solidification characteristics and fracture mechanism must be understood.

Currently there exits no approved filler wire material for use in welding alloy 908. Based

on the above discussion it was anticipated that special filler wire compositions would have

to be designed if property degradation was to be minimized. In this thesis, an systematic

17



approach was taken to: (1) understand the fundamental processes operative in welding alloy

908 and (2) development of appropriate filler wire compositions based on (1).

Several approaches were taken to understand the relationships between solidification

characteristics and weld mechanical properties of alloy 908 welds. First, the weld

microstructure was defined as a function of welding technique. Welding methods used

included electron beam welding and laser beam welding, as well as gas tungsten arc

welding. Additionally, flash welding, a solid state welding technique was evaluated.

Second, post weld heat treatments were used to modify the microstructure of welds. Based

on the results of these investigations, new weld filler metal compositions were developed

and the effects of alloying element content on solidification and mechanical properties at

room temperature were evaluated. Based on this analysis, two weld filler compositions

were chosen, and used in the evaluation of the effects of cold work and test temperature on

the mechanical properties. Finally, weld mechanical properties in combination with

anticipated fabrication processes for superconducting magnets were evaluated and a final

optimum filler wire composition was chosen.

18



WELDING

C---------------------

CABLE PULLING and 
TUBE REDUCTIONC_-....------- - -<-1-

CABLE BENDING and
WINDING 4

AGING

Figure 1. A schematic of fabrication processes of superconducting magnet assembly using
Nb3Sn superconducting wires and alloy 908 conduits.
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Incoloy 908 Jacket

Helical Core

Superconducting Strands

:ntrnl HAi im FIlcw Ti ih

a) Toroidal Field Coil 2

45

36

I Central Helium Flow Tube

b) Central Solenoid Coil 2

Figure 2. Cable in conduit conductors for ITER magnet. [4]
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II. Literature Review

II.1 Development of Alloy 908 for Fusion Application

II. 1.1. Description of CICC Superconductor

The replacement of normal conducting materials by superconductors can result in

considerable improvement in performance of large scale electromagnetic devices. This is

especially true where high power and/or high magnetic fields are required. Applications

include high energy particle accelerators, controlled thermonuclear fusion reactors, and

superconducting magnet energy storage systems.[7] High current density and very small

heat loss can considerably reduce the size and weight compared to that of conventional

magnets. The most widely used superconductor materials for large scale applications are

NbTi and Nb3 Sn. Both of these are classified as type II superconductors. The
characteristics of type II superconductors are; 1) relatively high critical temperature, Tc, 2)

high upper critical field (Hc2) with high critical current density, Jc, and 3) gradual

reversion to normal state between Hc and Hc2. A schematic relationship among the three

parameters is shown in Figure 3. The critical current density represents the upper limit of

the current carrying capacity of a superconducting material and is a strong function of both

the applied field and temperature. The upper critical field vs. temperature and magnetic

field for various superconductors are shown in figures 4 and 5. The properties of the two

most widely used superconductors are compared in Table 1. NbTi represents the dominant

usage for magnetic fields up to 10 Tesla. It is an excellent engineering material; strong,

flexible and easily processed. For magnetic field above 10 Tesla, Nb3Sn alloys dominate.

Nb3 Sn is brittle, its properties are strain sensitive, and the material is difficult to fabricate.

These properties make the design of a high filed magnet using Nb3 Sn a difficult

engineering challenge.[I 1]

In most practical conductors, the superconducting material is in the form of very fine

filaments within a matrix of normal conductor (usually high quality copper) to stabilize the

system against magnetic and mechanical and thermaldisturbance. In the so-called "Cable-

In-Conduit-Conductor", or CICC design, the magnets are fabricated using superconducting

cables that are enclosed in metallic conduit.[12] The conduit serves as a distributed
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structural component that bears a large fraction of the high electromagnetic force. Two of

the CICC superconductor designs to be used in the magnet of International Thermonuclear

Experimental Reactor (ITER) are shown in Figure 2. In this design cooling is provided by

the forced flow of liquid helium through the central tube.

f CURRENT DENSITY,f Acm-2

J-H-T
Oce

IAGNETIC
FIELD, T

Figure 3. Schematic relation of critical parameters for type II superconductors. [8]

TEMI

Table 1. Comparison of the properties of type II superconductors [10]

Superconductor Tc, K Hc2, Tesla Jc, GA/ m 2 crystal

..... __ ___ _____at 4o2K at 4.2K (lOT) structure

NbTi 9.8 12 0.2 metallic-BCC

Nb3Sn 18 26.9 4.3 brittle-A15
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Figure 4. Temperature dependence of upper critical field (Hc2) of superconductors. [8]

The manufacturing of a multifilamentary superconductor involves several complex

processing steps.[12] For a ductile superconductor such as NbTi, the process starts with

hot extrusion of NbTi rods from a large ingot with intermediate anneals at 800 °C. Each

rod is inserted into a copper tube having a hexagonal outer shape. A number of these are

then nested in a large copper can, the can is evacuated, and a lid welded on the end. The

entire assembly is then reduced, initially by hot extrusion, followed by conventional wire

drawing with intermediate annealing. During the final drawing, the wire receives an

additional reduction in cross-sectional area, which introduces sufficient cold-work for
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adequate flux pinning. After drawing, the wire is given an additional low temperature

(-400 °C) anneal to form a strong-pinning dislocation cell structure and to enhance the

critical current. [8]
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Figure 5. Critical current densities attainable in the non-copper fraction of composite
superconductors vs. magnetic field in the conductors. [9]

When it is desirable to fabricate even higher field magnets, such as that for ITER which

requires a magnetic field of about 13 Tesla,[9] superconducting materials of higher Hc2,

for example A15 compounds such as Nb 3Sn (Tc = 18K) and Nb 3Al (Tc = 19K) have to be

considered. However these compounds are brittle and cannot be drawn directly into

filaments by the process described above. One solution is the so-called "bronze"

process.[12] In this process, the multifilamentary conductor is prepared by the same as

process as that described for NbTi, except that the filaments are pure niobium and the

matrix is a Cu-Sn alloy or bronze. The billet is processed into wire, exactly as for NbTi

multifilamentary conductor. Another process, the "internal-tin" process starts with the

incorporation of pure Nb, in rod or mesh form, into a copper billet that is the partially
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drawn. Rods of pure Sn are then inserted into the billet at locations adjacent to the Nb and

finally the billet is drawn into wire form. After drawing, certain heat treatments steps have

to be taken to form the superconductor. The final annealing treatment, at a temperature

ranging from 650 °C to 800 °C, causes tin to diffuse into the niobium forming Nb 3Sn

filaments in a dilute alloy matrix. For these two processes, the superconductor assembly

has to be formed into final shape before being subjected to the heat treatment. This process

is also sometimes termed as "wind-then-react".

Strain can have a severe effect on the properties of a high field superconductor including

critical current density, Jc, critical temperature, Tc and critical magnetic field, Hc2. The

strain dependence of the critical current density for Nb3Sn superconductor is shown in

Figure 6. The reduction in Jc with strain, termed as strain degradation, can be

significant.[13,14,15] Similarly, strain can also effect Tc and Hc2.[13]

The sources of strain can be many and include: (1) fabrication where the superconductor is

subjected to winding tension and bending, (2) the difference in thermal expansion

coefficient between the conductor itself and the magnet structure, (3) within the magnet

itself during cool-down from Nb 3Sn heat treatment temperature to operating temperature

and, (4) the elastic strain caused by Lorentz force when the magnet is energized.

Fabrication strain and operating strain can be eliminated or reduced by proper selection of

fabrication process and design. Thermally induced strain can be controlled by selecting

proper structural material to match the coefficient of thermal expansion with

superconductor. In the wind-then-react fabrication process, by which Nb3Sn

superconductor is fabricated, fabrication strain is not present because superconductor

forms by heat treatment after fabrication.[ 13]

The hoop stress caused by Lorentz force is proportional to the size of the magnet and can

be as high as the ultimate tensile strength of the superconductor. The magnetic stress will

have a significant degrading effect on t.e superconductor unless there is adequate structural

support provided by the conduit. Accordingly, the conduit has to be designed to minimize

the effect of the magnetic stress on the superconductor.[11, 16,17]

Provided that the fabrication process is adequate, and the mechanical properties of the

conduit are adequate to provide structural support needed to contain the magnetic forces

developed when the magnet is energized, the most significant effects on superconductor

performance result from thermally induced strain. The mismatch in thermal expansion

coefficient of the components imposes significant strain on the superconductor during cool-
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down from Nb 3Sn formation temperature to operating temperature. There are two

significant sources of strain. First, the thermal expansion coefficient mismatch between

bronze matrix and Nb 3Sn induces a compressive prestrain of up to 0.5%.[13] Second, a

conduit alloy with a coefficient of thermal expansion (COTE) much greater than that of

Nb3Sn increases the initial compressive prestrain on Nb3 Sn.[14, 15] Ideally, the

contribution by conduit materials can be eliminated by using a material that exhibits a mean

COTE less than or close to that of Nb 3Sn. In actual magnet design, a small amount of

compressive prestrain is preferred to provide a buffer against any additional tensile strain

induced by magnetic field.[14]

Jc
Jcm

E0 (%)

Figure 6. Strain dependence of critical current density of Nb3Sn superconductor.[13]

Steeves et al. investigated the effect of thermally induced strain on Jc using various

materials with a wide range of COTEs over the temperature range of 1000K to 4.2K.[ 15]

The results are shown in Figure 7. They found that the use of stainless steel caused

significant degradation in the Jc of the conductor. On the other hand, a low COTE Ni-Fe

base superalloy (alloy 903) did not contribute to the degradation of Jc. The result of this

study was to stimulate interest in low COTE superalloys as a candidate for CICC conduit

materials.
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II. 1.2 Development of Alloy 908

The most important advantage of using a low thermal expansion alloy as a conduit material

is that there is little degradation of the performance of Nb 3Sn superconductor by the

conduit itself. To be used as a conduit material, besides having a low coefficient of thermal

expansion, adequate mechanical properties are required. The conduit must withstand the

stresses at 4K from the magnetic field, differential thermal contraction, and internal helium

pressure.[16,17] Consequently, the stresses on conduit are high both during steady state

operation as well as during accident conditions. During operation, cyclic stresses are

imposed as a result of the pulsating magnetic field, internal pressure, and cool-down.

Accident conditions are represented by a "quench" where a magnetic or mechanical

disturbance can locally heat a small portion ofthe superconductor so that it becomes

resistive. The heat generated in that region can in turn raise the temperature of

superconductor and revert the whole superconductor to the normal satate through a thermal

runaway process. Because of the high current densities carried by the superconductor, the

reversion to the normal state can generate a large amount of heat, enough to vaporize the

coolant. The conduit must be able to withstand the pressure rise due to vaporization of

coolant.

To meet the static and cyclic operational conditions of high field magnets which use Nb 3Sn

superconductors, rigorous mechanical properties goals have been proposed. The selection

of the materials for the magnet become further complicated by the fact that the reaction heat

treatment, used to form the Nb 3Sn superconductor, must be applied after the magnets are

assembled. Thus the heat treatment for the superconductors and the conduit material must

be the same. This puts severe restrictions on heat treatments for the conduit and has

required the development of a special alloy, alloy 908, for use in this application. Some of

the proposed mechanical properties reqirements of structural materials for fusion

applications are shown in Figure 8. The 4K yield strength-fracture toughness specification

after heat treatment varies from 1000 MPa - 200 MPax/m [17] to 1200 MPa - 200

MPalm.[16] The requirement for the weld was set at 1000 MPa - 150 MPa\/m at 4K.[17]

Both the base and weld metal must have enough ductility to survive the drawing and

winding process following welding of the conduit sections. The fatigue properties of the

conduit material must be comparable to that of stainless steel. The mechanical properties

laid out by the Superconducting Magnet Development Group at the MIT Plasma Fusion

Center for both the base and weld metal at 4K, were: Young's modulus greater than 138
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MPa, yield strength greater than 1000 MPa, total tensile elongation greater than 15 %, and

a fracture toughness greater than 100 MPa'lm.[l]
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Figure 7. Comparison of the performance of Nb3Sn superconductor
sheath materials.[ 15]

assembly with various

There are number of heat treatment schedules used to form Nb3Sn.[18] In general,

however, those conditions represent an overaging condition for many Fe-Ni based

superalloys. Overaging usually results in coarsening of strengthening precipitates. This

leads to a reduction in strength as well as ductility and toughness. Overaging can also

result in the transformation of metastable strengthening phases to less effective stable

phases which also degrade ductility and toughness.[19] Thus, proper microstructural

stability is needed to retain strength and ductility. The alloy should also be resistant to

environmentally assisted cracking or embrittlement and be able to withstand heat treatment

in a variety of furnace atmospheres.

Considering above requirements alloy 908 was developed at MIT in coorperation with

Inco. Alloys International.[1,20] The chemical composition of the alloy is shown in Table

2 along with that of other related alloys. Alloy 908 is strengthened by y precipitation. The

Al, Ti and Nb content of the alloy are controlled to insure sluggish formation and
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increased Y' stability. The sluggish ¥ formation contributes to the improved weldability of

the alloy as well as allowing for compatibility with the normally longer (for a superalloy)

thermal cycle necessary for Nb 3Sn formation. The amount of chromium was optimized to

retain a low thermal expansion coefficient while providing some protection against

embrittlement by oxygen. The thermal expansion properties are shown in Figure 9 with

that of other alloys. By substituting alloy 908 for stainless steel, the prestrain imposed on

the cable is reduced to an optimum value.[ 14]
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Figure 8. Strength-Toughness requirements for structural materials for high field
superconductor for fusion application. [17]
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The mechanical properties of alloy 908 are shown in Table 3. Both base and weld metal

show sufficient strength at both room temperature and 4K.[2] The fatigue crack growth

rate of both base and weld metal is comparable to that of stainless steel. However, initial

tests conducted at MIT showed a marked decrease in ductility and fracture toughness of

welds while maintaining considerable strength.[2, 21] Considering that these data were

collected on the as welded + aged condition, the possibility of further reduction in both

ductility and fracture toughness after cold work, which would be imposed during magnet

fabrication, raised some concern over the integrity of the conduit during operation.

Table 2. Chemical composition of alloy 908 and other superalloys

. __ Ni Fe Co Cr Nb Ti Al Mo Si C

alloy908 48.7 40.8 4.1 3.0 1.5 1.1 0.2 0.01

alloy903 38.0 41.0 15.0 3.0 1.4 0.7 0.1 0.05

Inconel 718 52.5 18.5 19.0 5.1 0.9 0.5 3.0 0.2 0.04

A286 26.0 54.0 15.0 2.0 0.2 1.3 0.5 0.05

Table 3.Mechanical properties of alloy 908 at various temperature.
(After heat treatment, 200 hrs @ 650 °C)[2]

Note: y

Kic
CVN

: Yield strength, MPa
: Fracture toughness, MPalm
: Charpy impact energy, J
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298K 4K

MATERIAL (y KIc CVN y Kic CVN

(MPa) (MPax/m) (J) (MPa) (MPa/m) (J)

Base 1075+41 196±5 73+1 1227+14 235+5 71+1

Filler GTAW 1061+14 106+8 1278+45 105+1
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Figure 9. Thermal contraction of Nb 3Sn and various structural materials from lOOO1K to
4K.[1]

11.2 Physical metallurgy of welding

11.2.1 Weld solidification and microstructure

Solidification and the resulting microstructure of a weld can be thought of as a small scale

casting under specialized conditions; a moving heat source, turbulent liquid pool, high

temperature gradient, high dendrite growth rate, and mixing with the base metal. An

explanation of typical weld microstructures has been summarized by David and Vitek,[22]

Brody, [23] and Easterling.[24] In fusion welding, weld solidification is essentially a

dynamic process in which the solidification behavior depends on the welding speed and

heat input. Because of large temperature gradients within the melt, together with the
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characteristic properties of the arc, the melt can be extremely turbulent. Turbulence can

have a positive effect, providing extremely good mixing in the melt.

During all practical fusion welding, a certain degree of dilution, or melting back, of the

base metal occurs. The net effect of dilution is a change in weld composition. In multi-

pass welding, the degree of dilution is a function of location. Clearly, the root pass will

undergo far more dilution than subsequent passes. Dilution significantly affects the weld

microstructure, influencing such parameters as the dendrite arm spacing and degree of

segregation.

At the onset of solidification of the weld pool, each base metal grain on the fusion line

serves as a growth site for a fusion zone grain. Therefore, the crystallographic orientation

of each fusion zone grain will be the same as that of the base metal grain on which it grows

epitaxially. Also, the resulting columnar grain sizes are effectively determined by the base

metal grain size at the fusion boundary. As the grains grow, there is competition between

neighbors. The grains with favorable crystallographic orientation (with the direction of

strongest heat flow direction) will survive and continue to grow. In cubic alloys, the

preferred growth direction are the cube axis directions <100>.[25]

If the velocity of the heat source has a vector u and the speed of crystal growth has a vector

V, then the geometric condition is met such that

V = ucos 0 Eq. 1

where 0 is the angle between u and V. Since u is constant, V will vary considerably

depending on position. This is illustrated in Figure 10. Equation 1 implies that initially

crystal growth is relatively slow but increases toward the centerline. If the weld speed is

low, crystal growth is able to keep up with the moving heat source by gradually changing

direction. If weld speed is increased, the shape of solidification structure is modified

toward that shown in Figure 10-b. In this case, growing crystals have to make sudden

changes in direction at the weld centerline which can have detrimental effects on the

resulting mechanical properties.

During equilibrium solidification, the growth mode is planar, in which solid forms with the

composition of bulk material during solidification except during the initial stage of

solidification, as shown in Figure 11. A simple binary phase diagram is shown in Figure

12. During equilibrium solidification, liquid with solute composition of Co is solidifies

over the temperature range of TL to Ts to form a homogeneous solid with solute
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composition of Co. Therefore, the solute composition in resulting material is uniform

throughout the solid. However, during typical fusion welding, equilibrium solidification is

generally not observed.

low u

(a)

V I 11 -11 IIIIIII-\\ high u

(b)

Figure 10. Diagram showing variation of thermal gradient and growth rate along
solidification front for differently shaped weld pool. a) elliptical, b) tear drop shaped. [24]

The actual temperature gradient of the melt will have a profound impact on the resulting

weld microstructure. Within the columnar grains, solute build-up at the liquid/solid

interface promotes interface instability due to constitutional undercooling, as shown in

Figure 13, and promotes a cellular-dendritic structure. As the solute content at the

liquid/solid interface increases, the equilbriumrn liquidus temperature corresponding to the

solute content at the interface becomes lower than that of bulk material. Thus, the

thermodynamic temperature profile, designated as "Liquidus" in Figure 13, is developed.

This phenomenon is termed "constitutional undercooling". Cellular-dendritic growth

occurs when the gradient of this thermodynamic temperature profile is greater than the

actual temperature gradient in the liquid. Mathmatically, this condition is expressed as

follows;

dTL m_ LCo(1 - k) AT0

dx DLIV DL / V
Eq. 2
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where V is the solidification front velocity and equal to the welding speed at the trailing

edge of weld pool, and dTL/dx is the temperature gradient in the melt (= GL). ATo is the

equilibrium solidification temperature interval and equal to the diffrence between liquidus

and solidus temperature (= TL - TS). mL is the slope of liquidus line (line 2 in Figure 12).

DL is diffusion coefficient of solute elements in the liquid. The equilibrium partition ratio,

k is defined as follows;

C*k=
CL
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Figure 11. Solute redistribution during plane front growth. a) initial stage of solidification,
b) steady state solidification stage.[24]

where Cs and CL* are the solute composition of solid and liquid, respectively, at the

interface. For typical fusion welding conditions, shown in Table 4, equation 2 can be

easily met. Thus, it is likely that almost entire weld zone solidifies as a cellular-dendritic
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structure except the very first solid. Therefore in the practical sense, the entire weld zone

structure can be treated as cellular-dendritic microstructure. From this simple treatment, it

is also shown that higher welding speed and shallow temperature gradient promote the

formation of a cellular-dendritic microstructure.

0~

E
0

Tm

TL

TS
T
TE

kCo C C Cs Ca CL GE Cb

Solute content

Figure 12. Average solute composition in solid during solidification, shown with binary
phase diagram.

During cellular-dendritic solidification, numerous primary dendrite arms form within a

single dendrite. The primary arms within a columnar grain are parallel to the preferred

crystallographic growth direction most closely aligned with the predominant heat flow

direction. Numerous secondary arms branch from each primary arm. The secondary arm

spacing, d2 depends on local solidification time ts (which is related to the inverse of the

cooling rate).[26] For various alloy systems, the following general correlation has been

reported;[23]

d2 = C tsn 0.3< n <0.5 Eq. 3
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where C is a constant and n is an exponent for fitting. The secondary arms effectively

divide the liquid into isolated pools. Within the trapped liquid, the solute concentration

increases as the growing solid rejects certain alloying elements into the liquid.
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Figure 13. Development of constitutional supercooling during plane front alloy
solidification. a) solute build up ahead of solidification front, b) condition for plane front

stability, and c) condition for constitutional supercooling. [22]
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Table 4. Test of equation 2 to check the occurrence of cellular-dendritic growth condition in
typical fusion welding processes.

II.2.2. Microsegregation in weld

Microsegregation in alloys during and as a result of solidification has long been recognized

as a consequence of the partitioning of solute between solid and liquid. During equilibrium

solidification conditions where diffusion in the solid and liquid is complete, the

composition of both liquid and solid adjusts during cooling in accordance with the phase

diagram so that the final composition of solid is equal to the composition of original melt.

Therefore, for ideal conditions, no microsegregation will develop within the solidified

structure. On the other hand, at very high solidification rates, solidification can be

completed without microsegregation due to the trapping of solute by the rapidly moving

interface, causing the partition ratio to be unity.[26] However, under practical conditions,

where achieving a high enough solidification rate is not likely and diffusion within the solid

is restricted, the resulting solidified structure is inhomogeneous in composition. In alloys

which are single phase at equilibrium, microsegregation can promote the precipitation of

secondary phases from the solute enriched liquid. A coarse, non-coherent secondary

phase, and an inhomogeneous microstructure arising from microsegregation will result in

poor weldability and/or poor mechanical properties, especially low fracture toughness and

ductility.

The solidification process is schematically represented by the binary phase diagram shown

in Figure 12. During solidification of the weld pool, local thermodynamic equilibrium is

maintained at the liquid/solid interface. The solute composition of the newly formed solid at

a particular time will be governed by the equilibrium partition ratio k. Because initially the

liquid is at the bulk composition, Co, the first drop of solid will be formed with a solute

composition of kCo. If convection within the liquid is rapid and diffusion in the solid is
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slow enough to be neglected during the solidification time interval, liquid will be enriched

with solute ejected at the interface. The solute concentration in the liquid will rise as

solidification proceeds and follow line 2 in Figure 12. Also, at any given time, newly

forming solid with solute composition of Cs = kCL following line 1 is added to the

dendrite. Because the diffusion of solute in the solid is negligible, the compositional

difference remains unattenuated. The average composition of bulk solid will follow line 3.

In the liquid, the overall concentration of solute will increase until it reaches the eutectic

composition. From the final liquid with eutectic composition, the primary phase with Ca

and secondary-phase with Cb form simultaneously by eutectic decomposition as follows:

L--- a + /3

When solidification is completed, the solute concentration within the primary phase is

Cswhich is less than the overall composition of alloy, Co. The secondary phases, formed

by eutectic reaction, are aften stable to very high temperatures and remain undissolved after

most heat treatment conditions, and thus have detrimental effects on mechanical properties,

particularly ductility.

A simple quantitative description of microsegregation is illustrated by the Scheil model.[27]

The schematic of solute segregation by the Scheil model is shown in Figure 14. The

composition of the solid at the liquid-solid interface C s can be expressed as a function of

solid fraction fs

C = kCo(- fs)(k ) Eq. 4

or in terms of liquid composition CL and liquid fraction fL

CL = COf L(k - 1 ) Eq. 5

Elements with k less than unity will be rejected from the growing solid into the liquid

phase. For values of k greater than unity, the liquid is depleted in solute. Thus, the amount

of liquid which participates in the eutectic reaction is

CE l/(k-l)
fE =C Eq. 6

The above equation can be used to quantify the degree of segregation in terms of the final

eutectic liquid fraction, fE. The degree of segregation is large when k is small and Co is
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large. The above equations are derived under the assumptions of no solid diffusion and

uniform liquid composition. The Scheil model predicts that some eutectic will form no

matter what the initial composition is. The model also predicts no effects of solidification

rate on microsegregation, as measured by maximum composition, minimum composition,

or amount of interdendritic eutectic.

If diffusion in the solid plays a role during dendritic solidification, the more complicated

Brody-Flemings' model [28] can be used to take into account of the decrease in

microsegregation. Equation 4 can be modified to consider the effect of diffusion.

Cs=kCO 1+k Eq. 7

where
4Dsts

av 2
d22

Ds is solute diffusion coefficient in solid, ts is local solidification time and d2 is the

secondary dendrite spacing. The dimensionless parameter ock determines the extent of

diffusion in the solid phase. For ck << 1, microsegregation approaches the maximum

predicted by the Scheil model. For ack >> 1, the composition of the primary solid phase

approaches uniformity.

The size and shape of the fusion zone is closely related to the welding heat input rate and

welding power density. The corresponding temperature field determines the overall

solidification and transformation behavior in the weld.[29] The temperature profile around

the weld can be determined analytically. If the heat input of a given welding process is q

and the heat source moves with a speed of u, the heat flux per unit length of weld is given

as q/u. At a given point in the heat affected zone (HAZ) the temperature T(r,t) can be

approximated as follows;[24]

q/u . 2 .
T(r,t) = To + exp(--) Eq. 82,4. 4at

where

a=
pCp

To is the preheat temperature, X is thermal conductivity of the base metal, a is the thermal

diffusivity and r defines the distance of the reference point to the weld center line. p is
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density and Cp is specific heat. Though Equation 8 can not be used to find the temperature

distribution within the weld, it gives a fairly useful indication of the size and shape of the

melt region. The resulting temperature profiles are illustrated in Figure 15. The figure

shows that, as the heat source moves across the workpiece, large temperature gradients

occur in the vicinity of the melt and then drop off rapidly as the heat source moves away. It

can be concluded that a higher weld velocity and/or a higher thermal conductivity will tend

to produce a narrower and more elongated melt region. Also, the cooling rate along the

centerline of weld (where r = 0) can be calculated as follows;

dT 2 rr2dT = 2 (T- To)2

dt q/u

U,

0
0
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Figure 14. Schematics of solute segregation by Scheil equation.

Using this equation, a rough estimation of weld cooling rate can be evaluated for various

welding methods. As a special case, the cooling rate at the liquid/solid boundary along the

trailing edge of the weld pool can be approximated as follow;[30]

dT 2 t 2

dt q/u
Eq. 10
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where Tm is melting temperature of the material. The temperature gradient at the

liquid/solid interface can be estimated.

dT dT dt
dx dt dx

dT 1 27 r 2-- = T
dt u q

Eq. ll

The above equation implies that for a given material, the temperature profile within the heat

affected zone is determined by the heat input rate per unit length. From this temperature

profile, the size of heat affected zone and the size of fusion zone can be determined

approximately.
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Figure 15. Temperature profiles along the weld center line for moving point source on
semi-infinite solid.[29]

Conventional fusion welding processes, such as gas tungsten arc welding (GTAW), gas

metal arc welding (GMAW), and submerged arc welding (SMAW) are chracterized by low

energy density and low speed which results in a rather large weld fusion zone. With a
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larger heat input rate per unit length, the cooling rate is slower than other methods with a

shallow temperature gradient in HAZ. Advanced welding techniques such as electron beam

welding (EBW) and laser beam welding (LBW) use high energy densities, about three

orders of magnitude higher than arc welding[30] and high welding speed. This results in a

narrow weld fusion zone. Because the amount of material being fused during welding is

small, and the welding speed is high, the heat input rate per unit length is smaller in EBW

and LBW processes. With a lower heat input rate per unit length, the cooling rate is much

greater than that of other fusion welding methods. The cooling rate in welds using modem

high energy beam process such as EBW and LBW is about 102 to 103 times as high as that

of conventional processes such as arc welding.[22] The resulting dendritic spacing is

smaller and microsegregation is reduced with much smaller HAZ as well.

11.3 Welding Metallurgy of Superalloys

11.3.1 Segregation of Alloying Elements.

In nickel-base or nickel-iron-base superalloys, which are highly alloyed to promote

precipitation of hardening phases [ (Ni 3(AI,Ti)), Y" (Ni3Nb)], extensive precipitation of

carbides and intermetallic compounds during solidification have been reported.[31,32]

Most of the / or T" forming elements have a very low equilibrium partition ratio, k, in the

austenitic matrix and are likely to be ejected from growing dendrites and enriched within the

interdendritic liquid. The results can be the formation of various intermetallic compounds

with parent elements or other alloying elements either by solid state diffusion or by

segregation during solidification. Donachie and Kriege [33] have performed an extensive

study to tabulate intermetallic compounds in superalloys, formed by high temperature solid

state diffusion.

During solidification, local thermodynamic equilibrium at the solid/liquid interface

determines the redistribution of solute, and eventually precipitation of intermetallic

compounds in the solidified structure. For simplicity, often times, the equilibrium partition

coefficient, k is treated as a constant over the freezing temperature range. In reality, the

value of k varies somewhat significantly with temperature.[34] Also, k for a specific

element differs in different alloy system and composition.[34,35,36] The equilibrium

partition ratios of some elements from various researchers are summarized in Table 5.
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The most severe segregation behavior is expected for niobium. Its partition ratio varies

from 0.16 to 0.58 depending on the alloy system and temperature. In controlled low

expansion superalloys, its partition ratio is from 0.42 to 0.58. The partition ratio of Ti is

slightly greater than that of Nb. Lecomte-Beckers studied the solidification behavior of

IN 100 which contains large amounts of Al and Ti and utilizes a high percentage of the

strengthening phase y [Ni3 (Ai,Ti)].[35] The partition ratio of Ti varied from 0.32 to 0.65

depending on the composition of the alloys. On the other hand, Al and Cr showed a

partition ratio of near unity which meant that the composition of these elements in the

dendrites is almost the same as that in the liquid. Knorovsky et al. reported segregation of

Nb, Mo and Si in the fusion zone of Inconel 718.[36]

Table 5. Equilibrium partition ratio of selected alloying elements

11.3.2 Precipitation of secondary phases

During solidification, secondary phases form in the solute enriched liquid by eutectic

reaction. Vincent performed an extensive investigation of the weld microconstituents in

Inconel 718 and found that Laves phases and MC carbonitride comprises most of the

secondary phases present in the fusion and heat affected zones.[31] It is also reported that

while only large (2 - 10 gm) and irregular carbides are present in the base metal, small (-
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Nb Ti Al Mo Cr ref.

Inconel 718 0.25 0.39 - 0.51 0.80 34

0.5 36

X-750 0.16 - 0.34 0.40 - 0.44 34

Alloy 625 0.25 - 0.34 0.44 - 0.50 0.86 - 0.90 34

IN100 0.32 - 0.65 0.75 - 1.23 0.73 - 0.90 0.75 - 1.11 35

0.57 - 0.73 0.92 - 1.33 0.65 - 0.83 0.79 - 0.99 37

Alloy 903 0.58 0.76 0.95 38

0.47 0.43 39

Alloy 909 0.42 - 0.51 0.40 - 0.72 39



0.5 gm) carbides are also present in the fusion and heat affected zone associated with Laves

phases. The composition of the carbide in the base metal can be either Nb-rich (85 a/o Nb -

15a/o Ti, major phase) or Ti-rich (85 a/o Ti - 15a/o Nb, minor phase). However, the

composition of carbides in the fusion zone and HAZ are always Nb-rich (80 a/o Nb and 10

a/o Ti) but may also contain other elements (Mo, Cr, Fe, and Ni). The major intermetallic

phase found in the fusion zone and at HAZ boundary is the hexagonal Laves phase.

Within the HAZ, the Laves phase morphology ranges from one of isolated particles to

continous sheet to a massive dendritic wall.[31] The most unusual feature of Laves phase

is that many of the larger Laves sheets are decorated with small (20 - 50 nm) MC carbide

particles. This is thought to be due to the rejection of carbon by Laves phase.[3 1]

Knorovsky et al. constructed a solidification diagram for Inconel 718 studying the

weldability of Ni-base superalloys.[36] Using Scanning Electron Microscopy (SEM),

Energy Dispersive Sepctrometry (EDS) and Transmission Electron Microscopy (TEM)

microprobe examination, the composition of the dendritic core, eutectic constituent, eutectic

y, and Laves phase were determined. Also liquidus, solidus, y/NbC, and y/Laves eutectic

temperatures were determined by differential thermal analysis (DTA). They found that the

bulk of the eutectic solidification product was the T/Laves constituent. The Laves phase

constituent was the predominant phase and the carbide and Laves microconstituents were

not intermixed.[36] Laves phase (22.4 w/o Nb) and eutectic y (9.3 w/o Nb) forms from

the eutectic liquid (19.1 w/o Nb) at 1196 °C following the y/MC eutectic reaction at 1250

°C. The equilibrium partition ratio calculated was 0.5 for Nb and found to be constant over

the solidification process.

The crystal structure of Laves phase is MgZn2-type topologically close-packed hexagonal

with a nominal formula of MN2 . Vincent suggested that if Nb, Mo, and Ti represent the

large M atom and Ni, Fe, and Cr to be a small N atom, the overall composition is close to

MN 2 .[31] He also found a small (-la/o) but persistent Si content. The dimensionless

parameter a in the Brody-Flemings equation for Nb in Inconel 718 was calculated as 5 x

10-3 for given welding conditions with a dendrite size of 10 to 20 gm. This implies that

solid state diffusion is negligible during the solidification process.[36]

Thompson et al. [40] reported a 70 % increase in NbC volume fraction but no significant

change in the amount of Laves phase present when the carbon content in cast Inconel 718

was increased from 0.02 to 0.06 %. The increased NbC content was accompanied by an

increased susceptibility to liquation cracking. It is well documented that HAZ liquation

cracking susceptibility is related to the constitutional liquation of NbC well below the
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solidus temperature of wrought Inconel 718.[41] The source of HAZ cracking frequently

cited is the liquation of Laves phases[32, 40, 42] in the cast alloy and MC carbides[41] in

the wrought alloy. The reduction of Laves phases resulted in better weldability of Rene

220C which does not contain Fe. [42]

In a study of casting of alloy 625, Sawai et al. [43] observed interdendritic precipitation of

(Nb,Ti)C and (Ni,Cr) 2 (Nb,Mo) due to microsegregation of solute elements. Due to the

relatively slow cooling in casting (3 - 30 °C/min compared to 300 °C/sec which is typical of

gas tungsten arc welding) [44], there is enough time for solid state diffusion of Nb to

alleviate the degree of segregation. The amount of Laves phase in the solidified structure

has been found to be less in slow cooled (3 C/min) than in fast cooled specimens (30

°C/min). On the other hand, the diffusivity of carbon is much greater than Nb and Ti and

the cooling rate has little influence on carbon microsegregation and precipitation of carbide.

In a separate study of the welding of alloy 625, Cieslak found high hot cracking

susceptibility of Nb-bearing alloys.[32] Within the group of alloys containing about 3.5%

Nb, the predominant microconstituent in low carbon alloys (0.009 %) was Laves phase,

whereas it is the MC carbide in high carbon alloys (0.035 %). Silicon containing alloys

show increasing Laves phase content with high Si content. The composition of MC

carbide is 60 - 73 % Nb and 7 -18 % Mo with 10 % of Ni, Fe, Cr. The composition of

Laves phase is about 18% Nb, 18.5% Mo with 60 % of (Ni+Cr). In summary, the

evolution of solidification microstructure in alloy 625 fusion welds is dominated by the

segregation of Nb.

The competition of carbide and Laves phase during solidification was studied by Nakao et

al. using IN-519 with various C and Nb contents.[45] When the atomic ratio Nb/C is close

to 1, the predominant phase is NbC. When the Nb/C atomic ratio is larger than 1, Laves

phase becomes the dominant phase and contributes to an increase in hot cracking

susceptibility. When the Nb/C atomic ratio is less than 1, Cr23C6 carbide which has a

lower eutectic temperature than NbC begins to precipitate and hot cracling susceptibility

increases again.

11.3.3 Segregation in 900-series Superalloys

The 900-series alloys are Cr-free low thermal expansion Fe-Ni-Co alloys which derive
high strength from precipitation of ¥, Ni3(A1,Ti,Nb). The welding metallurgy of 900-

series superalloys are closely related to that of Inconel 718 and other Nb containing Fe-Ni
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alloys. Alloy 903, representative of this family of alloys, was introduced as the first

commercial low COTE superalloy in the mid-70's and today remains the most widely used

and most extensively studied alloy in this family.

In an earlier study on the weldability of alloy 903, Baeslack III et al. [46] and Ernst et al.

[39] have reported the formation of y/Laves phase eutectic as the major secondary

solidification component in the gas tungsten arc weld fusion zone. They observed that the

liquation cracking susceptibility of the weld metal was significantly greater than that of

solution annealed base metal and concluded that the constitutional liquation of Laves phase

was primarily responsible for the increased susceptibility. SEM/EDS analysis on the

fusion zone and HAZ [39,47] revealed Laves phase rich in Nb, Ti and Si. The occurrence

of a second eutectic reaction in the fusion zone involving fine carbide as well as 'yLaves

reaction was suggested but not extensively studied.[43] Nakkalil et al. [38,48] studied the

microstructure of electron beam welded alloy 903 and argued that the low silicon content

(0.07 %) and high carbon content (0.028 %) of the alloy made the y/MC eutectic

constituent far predominant over the y/Laves constituent in the solidification microstructure

of the fusion zone. This discrepancy may have originated from the difference in the

composition of Incoloy 903 used by the two groups of researchers. They also reported the

presence of Si in the Laves phase. They observed relatively small partitioning of Ti into the

Laves phase. Cieslak also observed predominantly y/MC eutectic phases in high C (0.038

%) - low Si (0.03 %) alloy 625 weld zone.[42] Nakkalil also suggested that liquation

cracking in the HAZ of electron beam welded thermomechanically treated alloy 903

originated from the constitutional liquation of the large and finme carbide as well as the Nb-

rich phosphides present on the grain boundary.

In other 900-series superalloys with higher Nb (5% compared to 3% in 903), there was an

increase in fusion zone hot cracking susceptibility with the amount of alloying

elements.[39] The weld solidification cracking susceptibility originated from the

partitioning of Nb, Ti and Si to grain and solidification substructure boundaries during

solidification and the formation of a low melting point terminal y/Laves eutectic. The

amount of y/Laves eutectic increased with the amount of Nb, Ti and Si. Also an increased

Si content along with lower carbon in Incoloy 909 resulted in an increase in the amount of

TCP (topologically close-packed phase) including Laves and silicide.[39] In high carbon

alloys, fine carbides were also observed in proximity to the dendritic cores, suggesting that

they were formed at higher temperature than the y/Laves eutectic.

46



The solidification characteristics and weld microstructure of alloy 908 have been subjected

to a very limited number of investigations due to the relatively recent introduction of the

alloy. Preliminary research done by Jang [49] indicated Laves phase as the dominant

secondary constituent in the weld. SEM/EDS analysis on the precipitates within the gas

tungsten arc weld of alloy 908 revealed that there is no clear morphological difference

between the Laves phase and MC carbide.

II.4 Mechanical Properties of Weld

11.4.1 Role of Secondary Phases

The degradation of fracture toughness and/or ductility in the welds of precipitation

hardening superalloys, especially Nb-containing superalloys, have been reported by

various researchers. The mechanical properties of some superalloy welds are summarized

in Table 6. Extensive room temperature tensile tests of Inconel 718 weld have been

conducted at Inco Alloys International.[50] The ductility of Inconel 718 weld after direct

aging was reduced to about 30 % of that of base metal with comparable heat treatment.

Mayor [51] also observed a substantial decrease in ductility of welds in Inconel 718 and

706. Weld fracture toughness has been reported as about 50 % of the base metal (55

MPa/m compared to 110 MPa~m).[51] Logsdon [52] also reported about a 30 % decrease

in the weld fracture toughness. He reported an even bigger drop in the fracture toughness

of Inconel 706, which has lower Nb+Ta content, after welded using 718 filler metal. The

low fracture toughness of welds in Inconel 718 have been attributed to the existence of

Laves phase and orthorhombic 5 phase in the interdendritic region of weld.

The fracture surface of the Inconel 718 weld indicated that microvoid initiation occurs at

Laves phase.[51] James [53] also considered Laves phase responsible for the low

toughness. The role of brittle secondary phases and inclusions on the ductility and fracture

toughness of structural alloys have been well recognized. A direct relationship between

inclusion density in austenitic stainless steel welds and the fracture surface dimple density

has been reported.[54] Logsdon also studied the mechanical properties of JBK-75 and A-

286, precipitation hardening Fe-base superalloys, and observed considerable loss of

fracture toughness in autogenous welds.[55] However, for Inconel X750, the fracture

toughness of welds were greater than that of base metal at 4K.[56] Unfortunately, no

extensive investigation to identify the solidification constituents within the weld were

conducted except for the observance of a Nb, Ti rich carbide. Considering the composition
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of X750, low Fe (6.5 %) and Nb+Ta (1 %), it is unlikely that any significant amount of

topologically close packed phases would have formed in the weld except possibly fine

carbide.

There are limited published data on the mechanical properties of 900-series superalloys.

Fracture toughness testing using about 1.6 mm thick sheet resulted in mixed behavior

within the alloys.[57] For alloy 903 and 905, fracture toughness either increased or

decreased depending on orientation at 4K. However, the thickness of the specimen was

not sufficient for valid fracture toughness testing for some of the tests. The test results on

Incoloy 909, whose thickness requirement were met, showed substantial reduction of

toughness after welding. For newly developed alloy 908, loss of ductility and fracture

toughness of welds has been reported.[2, 21] The fracture toughness of gas tungsten arc

welds decreased to about 50 % of that if the base metal. About the same decrease in

Charpy impact energy was observed at all three temperature tested, RT, 77K and 4K.

Table 6. Mechanical properties of selected superalloys

11.4.2 Effect of Post Weld Heat Treatment

Various post-weld heat treatments (PWHT) have been used to improve ductility and/or

fracture toughness of superalloy welds. For Inconel 718, a high temperature solution

treatment (1066 °C) has proved effective in improving ductility.[50] It has also been
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Materials Temp Base Weld ref.

Sy, MPa KIC, SY, MPa KIC,

MPalm MPaIm

Inconel 718 4K 1408 112 1373 52 51

JBK-75 4K 1238 1415 133 55

Alloy 909 4K 1236 70 1084 39 57

X-750 4K 867 76 958 134 56

Alloy 908 RT 1075 196 1061 106 2

4K 1227 235 1279 105 2



reported [52] that a 1066°C solution treatment in forged Inconel 718 before the aging heat

treatment improved both ductility and fracture toughness at 4K by removing the fine

(Nb,Ti)C carbide network. However, a 980 °C solution anneal was not effective in

modifying the microstructure, and resulted in low fracture toughness. Mills compared two

annealing temperatures used after welding, and concluded that the benefit of higher

temperature (1093 °C) over lower temperature (955 °C) is a substantial improvement of

fracture toughness by removing/reducing Laves phase within the weld.[58] He reported an

increased toughness of welds after high temperature annealing as a method for the removal

or reduction of Laves phase in the weld. Lower annealing temperatures (955 °C) were not

effective in improving weld ductility of Inconel 718 and 706.[51 ] A homogenization

treatment of 1050°C/lhr after welding recovered ductility and fracture toughness of alloy

908 by removing Laves phase from the interdendritic area.[21]

The time-temperature-transformation (TTT) curve for Inconel 718 [19] and Incoloy 909

[59] are shown in figures 16 and 17. Laves phase remains stable until the temperature

reaches around 1040 °C. The behavior of alloy 908 which has about 4.5 % of Nb + Ti is

thought to be very similar to that of Inconel 718 and Incoloy 903. A previous study of gas

tungsten arc welded alloy 908 demonstrated the effectiveness of 1050 °C annealing in the

removal of Laves phases in the weld and recovered ductility and Charpy impact energy.[6,

21]

11.4.3 Effects of Welding Methods

There are not enough reported data to allow an analysis of the effect of welding method on

mechanical properties. Differences in dendritic spacing, and solidification microstructure

will strongly effect the resulting mechanical properties. Nevertheless, the degree of

microsegregation remains fairly constant over wide ranges of -ooling rate attainable by

various welding methods.

The use of multi-pass gas tungsten arc welding results in the modification of the

microstructure of the underbead by the following welding passes. Depending on the

location, in-situ solution annealing or precipitation hardening is possible. For thick section

welding, the difference in mechanical properties within the weld require extra consideration

when choosing design values. [60] Various welding techniques, such as gas tungsten arc

welding, electron beam welding, laser beam welding and flash welding, have been applied

to weld alloy 908.[6, 61] Preliminary tensile properties measurements showed minimal
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effects of welding methods even though about a two-fold decrease in dendritic spacing

have been achieved in electron beam and laser beam welding.
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Figure 16. Time-Temperature-Transformation (TI) curve of Inconel 718.[19]
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Figure 17. Time-Temperature-Transformation (TTT) curve of Incoloy 909.[59]
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II.5 Scope of Research

The similarity of chemical composition of alloy 908 to other Ni-Fe base superalloys

suggests that the solidification characteristics and weld microstructure of alloy 908 should

be close to those of Ni-Fe base superalloys. However, there exists no reported data on the

weld solidification of alloy 908 except limited results from work done at MIT. There are

contradicting reports on whether the dominant phase in the solidified weld fusion zone is

Laves phase or MC carbide. Also, some differences in composition, such as the absence

of Co and more Si and less C in alloy 908, can effect the solidification characteristics and

weld microstructure including precipitation of secondary phases. Thus, the solidification

behavior and microstructure of alloy 908 weld needs to be chracterized.

Because the 900-series superalloys were developed for primarily high temperature

applications while mini nizing welding of components, there are not many reported data on

mechanical properties, such as tensile properties and fracture toughness of welds at room

temperature and lower temperature. The mechanical properties including, tensile, fatigue

and fracture toughness of alloy 908 weld need to be evaluated. Also the fracture

mechanism of welds need to be understood in association with microstructure.

The purpose of this thesis is to improve mechanical properties, especially, fracture

toughness of alloy 908 weld based on an understanding of the welding and solidification

metallurgy, in conjunction with the relevant mechanical properties evolution. To achieve

this goal, following research scope was set:

1. Characterize solidification behavior of alloy 908 weld such as, microsegreagtion of

alloying elements and precipitation of secondary phases by examining

* The effects of welding methods on the solidification behavior and mechanical

properties.

* The effects of post weld heat treatment on the weld microstructure and mechanical

properties.

2. Understand the relationship between microstructure and mechanical properties.

3. Based on the proceeding understanding, develop new filler metal compositions.

Evaluate mechanical properties, such as tensile, fatigue and fracture toughness of weld.

4. Understand fracture mechanism of weld in association with microstructure.
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5. Evaluate weld mechanical properties at various stages of fabrication process, including

welding, tube reduction and winding.

6. Evaluate the mcehanical properties of simulated production welding.

The overall steps of research are shown as a flow chart in Figure 18. First, by examining

the effect of various welding techniques, the characteristics of elemental segregation and

precipitation and their contribution to the mechanical properties of weld will be studied.

Second, the effect of high temperature solution annealing heat treatment on the

microstructure and precipitation of secondary phases will be examined. Then, by

controlling the amount of alloying elements in weld filler metals, the optimum composition

which would give reasonable strength-fracture toughness values suitable for use in

engineering applications for ITER magnets will be determined.

Additionally, the weld properties at various stages of fabrication process, including

welding, tube reduction and winding, have to be characterized to ensure the integrity of

weld. Finally, automated welding process will be used to simulate the probable orbital

welding process which will be used in the actual fabrication of conduit.
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Figure 18. Flow chart of research plan for alloy 908 weld development.
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III. Materials and Procedures

III.1. Materials

The nominal composition of alloy 908 is shown in Table 7. Base metal alloy 908 for this

research was produced by vacuum induction melting (VIM) followed by electroslag

remelting (ESR) at the Inco Alloys International, Huntington, West Virginia. Ingots were

homogenized at 1191 °C for 16 hours and fast cooled. A series of forging and reheating

steps reduced the ingots to 7 mm -thick plates which were finally mill-annealed at 980 °C

for 1 hour followed by slow cooling. The general microstructure of alloy 908 consists of a

single phase austenitic structure. Y precipitation occurs during heat treatment. In the

rolling direction, some of the carbides are found along the flow lines.

Table 7. Nominal composition of alloy 908.

Element Fe Ni Cr Nb Al Ti Si C

weight % 40.8 48.7 4.1 3.0 1.1 1.5 0.2 0.01

I1.2. Welding Methods

111.2.1. Gas Tungsten Arc Welding

A. Manual Multi-Pass Gas Tungsten Arc Welding

Manual gas tungsten arc welding was used for most of the weld development studies. The

design for edge preparation is shown in Figure 19. Base plates were taken from 7 mm-

thick plates supplied in the mill annealed condition (MA). Plates for welding were prepared

as 300 mm-long 50 mm-wide plates with a 90° single V-groove design. The adjacent

surfaces of the weld groove (at least 12 mm on both sides) were skimmed to remove
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surface contamination. Plates were sand blasted to remove surface contamination after

weld edge preparation. Before welding, plates and filler wires were further cleaned with

acetone to remove grease or oil contarmination.

A special welding fixture, shown in Figure 20, was used to provide proper shielding and

constraint for the workpiece during welding. A continuous flow of argon shielding gas

was provided through the electrode cup, the holes in the clamping plates, and the holes in a

groove on the backing plate. Welding was done manually with 12 - 15 V and 140 - 180 A

with a travel speed of about 2 mm/sec. For the first pass, during which both the root of the

base plates and filler wire have to be fused together, the highest power was needed. For

subsequent passes, less power was needed. For 7 mm-thick plates, about 5 to 6 passes

were needed to complete the weld. A more detailed description of the welding steps is

summarized in Table 8.

B. Automatic Multi-Pass Pulsed-GTAW

Automatic multi-pass pulsed-gas tungsten arc welding was used to closely simulate the

orbital welding of actual magnet conduit.[62] Two base plate conditions were used: (1)

the mill-annealed condition (MA) which is the same as the as-received condition (AR) used

in manual-GTAW and other welding methods which will be mentioned later, and (2) a

homogenized condition (HT) for plates subjected to the homogenization heat treatment of

1050 C/ 1 hr followed by water quenching before edge preparation. Care was taken to

maintain flatness of plates during heat treatment and quenching. The design for edge

preparation is shown in Figure 21. Plates for welding were prepared as 380 mm-long 75

mm-wide plates. A single U-groove with mixed angle design was used to reduce lateral

contraction during welding. The adjacent surfaces of the weld groove (at least 12 mm on

both sides) were skimmed to remove oxide and reduce the chance of contamination during

welding. Welding was done without back reinforcement except for one plate of the HT

condition.

1H.2.2 Electron Beam Welding and Laser Beam Welding

Electron beam welding (EBW) uses energy from a focused electron beam to heat and fuse

metals to be joined. The focused electron beam can provide high energy density and deep
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penetration. As the electron beam moves along the joint, surface tension draws molten

metal from the leading edge of the hole to the trailing edge where weld metal solidifies in

less than a second. [63] Welds can be made in deep, narrow space with an extremely

narrow weld zone at very high speed. Electron beam welding is done in vacuum.

Laser beam welding (LBW) uses a high energy laser source, usually a CO2 laser to heat

and fuse closely fit workpieces. Welding is done in the samne manner as electron beam

welding and produces an equally deep, narrow fusion zone. Laser beam welding is done

in an inert shielding gas, usually argon. With both of the high energy density welding

methods, the molten metal solidifies quickly in a deep narrow fusion zone. The weld is

formed with less distortion and a smaller heat affected zone.

A -

Figure 19. A Schematic of groove design for multi-pass manual gas tungsten arc welding.

tungsten electrode
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Figure 20. A schematic of the welding fixture. Flow of argon shielding gas was shown as
arrows



.13

Figure 21. Single U-groove with mixed angle design used for automatic pulsed-gas
tungsten arc welding. (in mm)

Table 8. Welding condition of multi-pass manual gas tungsten arc welding.

Because the beam is focused in a narrow spot, the workpieces have to be fit very tightly.

Plates for EBW and LBW were prepared with a square-butt joint design. EB welding was

done in vacuum at a speed of 25 mm/sec with a power of 3.6 KW. LB welding was done

in an argon environment at a speed of 17 mm/sec with a power of 5 KW. A single pass

completed welding. A more detailed description of the welding condition is summarized

elsewhere.[61]
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Power supply Direct current, straight polarity

Electrode 2.4 mm dia. 2 % thoriated-tungsten electrode (EWTh-2)

Cup size > 10

Shielding gas Argon, Welding grade (99.99 % pure)

Gas flow rate at electrode cup 10 L/min with backing pressure of 0. I MPa

Backing pressure at workpiece 0.17 MPa

Electrode to workpiece distance 1.3 mm with 60° inclined angle

Voltage 12-15 V

Current 140 - 180 A

Travel speed 2 mm/sec

Welding wire 1.6 mm dia. bare wire



III.2.3 Flash welding

Flash welding (FW) is a resistance welding process that produces coalescence at the facing

surfaces of a butt joint by electric heating from flashing action (intermittent arcs) followed

by the application of pressure at the end of the flashing action. The flashing action is

caused by the very high current densities at small contact points between the workpieces.

When the surfaces are sufficiently heated, they are brought together under axial pressure by

the process known as 'upsetting'. This pressure expels the molten metal and oxide present

at the interface, and welds underlying clean metal surfaces. This upset process usually

introduces heavy deformation, as high as 50 % [30], and produces outward flow of heated

metal forming hyperbolic shaped flow lines.

Plates for fish welding were prepared as 7 mm-thick 25 mm-wide and 100 mm-long

pieces. The pieces were welded at both in air and argon gas environments. The plates,

initially separated by 55 mm, were flashed over 20 mm at an acceleration of 0.05 mm/sec 2,

and then were welded by upsetting over a 8 mm distance in 0.25 sec using 50 kN force.

Because welded pieces were not large enough to make test specimens, they were electron

beam welded to blocks of alloy 908 base metal to obtain sufficient material, as shown in

Figure 22. Care was taken to align the joint along the anticipated crack front.

\flash weld zone

L 25 mm l

Figure 22. Flash weld joined to alloy 908 block by electron beam welding.
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III.3 Weld Filler Metal Compositions

Based on the nominal composition of alloy 908, the composition of new filler metals were

selected by controlling the amount of minor alloying elements. The compositions of newly

developed filler metals are shown in Table 9. The chromium composition of filler metals

was maintained at 4 % which has been optimized for improved oxidation resistance and

low thermal expansion coefficient for fusion applications.[1] The amount of the three

major precipitation hardening elements (Nb, Ti, Al) was modified slightly.

Niobium is primarily a T' former in many alloy systems. However, due to the relative

abundance of Al and Ti, it partitioned into Y and was the most effective element in

achieving precipitation hardening by increasing lattice mismatch between y-matrix and /

while maintaining coherency.[ 1] Niobium also suppresses the coarsening of Y by heavily

partitioning into Y. This is due to the slow diffusing properties of the element. It is also

known that the low diffusion coefficient of Nb reduced premature hardening during

welding and consequently the likelihood of strain aging cracking. Despite all these

advantages, the chances of hot cracking in both HAZ and underbead weld increases with

Nb content.[39] Most of all, the Laves phase formed within interdendritic region of weld

is known to provide void initiation sites during fracture and is thought to be responsible for

low fracture toughness. Therefore, the amount of niobium was reduced in the design of

potential filler metal compositions.

Titanium is a Y former along with Al in superalloys. Even though it can also form Laves

phase with Fe, its larger equilibrium partition ratio and higher solubility in both Fe and Ni

make this less likely than with Nb. Two Ti composition, 1.85 % and 2.3 % were used.

Aluminum is primarily a y former and stabilizes Y or Y' against premature transformation

to i1 or phases during aging. The equilibrium partition coefficient of Al is almost unity in

most superalloys and the Al composition is homogeneous in solidified structures. The

composition of aluminum was controlled to from 0.5 % to 1.5 %.

The sum of Al and Ti composition effect the weldability of superalloys. To achieve good

weldability the atomic percent of Al + Ti should be lower than 6 %.[64] All the weld filler

metal meet this criteria.

Molybdenum is used in superalloys to promote strong solid solution hardening. Also, Mo

has a higher equilibrium partition ratio than Nb and Ti. About 2 % of Mo was added to the

selected filler metals with low precipitation hardening elements content.

61



Table 9.Chemical composition of new filler metals. (in weight percent)

filler Fe Ni Cr Nb Al Ti Mo

9FA 40.14 50.11 4.01 3.04 1.08 1.83

9GA 41.35 50.23 4.02 1.51 1.12 1.85

9GB 40.98 50.25 4.03 1.50 1.07 2.32

9GC 40.88 50.32 4.03 1.52 1.54 1.84

9GD 40.45 50.28 4.00 1.48 1.59 2.31

9FC 41.72 50.15 4.03 0.99 1.00 1.84

9HA 41.67 51.15 4.07 0.52 1.09 1.85

9HB 44.64 49.72 4.03 0.50 0.55 0.57

9HC 40.65 49.95 4.01 0.51 1.05 1.84 1.95

9HD 42.86 49.40 3.99 0.50 0.57 0.58 1.97

* Final products of filler metals prepared by Inco. Alloys International Inc.

Silicon is added to 900-series superalloys to irmprove notch-rupture strength.[59] Silicon

enhances the formation of iron-silicide along the grain boundary and inhibits grain growth.

Silicon, however, was found in Laves phases in various alloy systems and is believed to

enhance the formation of Laves phases. There is no benefit of inhibiting grain growth in

the weld where the grains are already elongated and much larger than that in the base metal.

Therefore the amount of silicon was limited to below 0.001 %. The carbon content of the

welds were limited to below 0.001 %. However, as will be discussed later, these strict

requirements can not be easily achieved in industrial practice. Thus, it is thought that Si

and C content in filler metals are about the same as those in alloy 908 base metal.

Weld filler metals were produced by vacuum induction melting (VIM) at Inco Alloys

International, Huntington, West Virginia. Ingots were homogenized at 1190 C for 16

hours and fast cooled. Weld filler metals were prepared as 300 mm long x 16 mm diameter

rods. The rods were cold drawn into 1.6 mm diameter wires with intermediate anneal at

1040 C after every 3 reductions. Wires were annealed at 1040 C after the final drawing

step. Test welding with new filler wires were done by the manual multi-pass GTA welding

procedure described in Table 8.

62



III.4 Post Welding Thermomechanical Treatment

IU.4.1 Post Weld High Temperature Heat Treatment

Some of the welded plates were subjected to high temperature heat treatment before

machining. Two post weld heat treatment conditions were used. The first was a solution

annealing heat treatment (SA) for 1 hr at 980 °C in air followed by water quenching. The

other is homogenization heat treatment (HT) for 1 hr at 1050 °C in air followed by water

quenching.

III.4.2 Cold Work

Some of the weld plates were reduced in thickness before machining by cold rolling to

examine the effect of cold work on the mechanical properties of welds. To provide

uniform cold work, both the face and root of the weld were machined off to make flat

surfaces before cold rolling was applied. The rolling direction was transverse to the

welding direction. The amount of thickness reduction (CW) was in the range of 5 % to 13

%.

III.5 Specimen Machining

Various weld mechanical properties, such as tensile, fatigue and fracture toughness, were

measured. Specimens for mechanical testing were machined from welded plates keeping

the welds in the middle as shown in Figure 23. The tensile specimen design is shown in

Figure 24. The design illustrated in Figure 23 was used for the measurement of weld

averaged tensile properties of 7 mm-thick welded plates, and used when comparing the

properties of different welds. Smaller specimens, shown in Figure 25, were used to

evaluated spatial variation of tensile properties within the weld. Small tensile specimens

were sliced from 7-mm thick welds and 13-mm thick alloy 908 weld used in a previous

study[2] as shown in Figure 26. The specimen taken from the face and the root of a 7 mm-

thick welds was designated as F and R, respectively. For a 13 mm-thick weld, specimens

were designated as T (top), TB, BT, and B (bottom) from the face to the root of weld.

Compact tension specimens were used to measure both fatigue crack growth rate and

fracture toughness. Two compact tension fracture toughness test specimen designs were
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used. A larger arger specimen, shown in Figure 27, was used in most cases. A smaller

specimen design, shown in Figure 28, was used when material was limited.

Figure 23. Specimen orientation with respect to the welding and rolling direction.

III.6 Mechanical Testing

Specimens were heat treated after being machined. Specimens were aged for 200 hours at

650°C in vacuum less than 1.0 x 10-5 torr. Temperature was maintained within 5 °C of

set point. Before testing specimens were polished down to 600 grit and etched to reveal

and check the location of the weld zone. When measuring mechanical properties in the

unaged condition, specimens were tested without heat treatment.

4.5
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Figure 24. Standard size tensile

6.4
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Figure 25. Sub-size tensile specimen design. Dimensions are in millimeter.

Weld HAZ

I I F

-Tin lR
a) specimen ID from 7 mm-thick weld

Weld
-A7

b) specimen ID from 13 mm-thick weld

Figure 26. Specimen identification sliced from welded plates
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Figure 27. A 2" wide compact tension specimen for fatigue and fracture toughness testing.
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Figure 28. A 1" wide compact tension specimen for fatigue and fracture toughness testing.

Mechanical tests were done using a cryogenic test facility . The test facility consists of a

computer controlled MTS servohydraulic fatigue machine equipped with a specially

designed load frame. The loading system is designed to operate at temperature as low as

4K, using a stainless steel dewar filled with liquid nitrogen or liquid helium.
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Tensile test were performed in accordance to ASTM standard E-8 at a strain rate of 2 x 104

mm/mm-sec. Specimen strain was measured using a Shepic model extensometer designed

to be used down to 4K.

Fatigue crack growth rate measurements were made in accordance to ASTM E-647 using

compact tension specimens. A AK range of from 17.5 to 60 MPaqlm with a loading ratio,

R = 0.1 was used. Crack length was measured either directly using a traveling microscope

equipped with stroboscope or indirectly by an unloading compliance.

The fatigue crack growth threshold value was also determined using the reducing AK

method with fixed Kmax.[6 5 ] Fatigue crack growth rates were measured by increasing AK

until the reaches 33 MPa'/m. Then, fixing Kmax, Kmin was gradually increased, thus

decreasing AK. Even though AK is decreasing, Keff increased gradually thus minimizing

crack closure effects. Crack growth rates were measured until da/dN < 1.0 X 10-7

mm/cycle at which point, corresponding AK were determined as a AKth.

J-integral fracture toughness testing was done in accordance to ASTM E-8 13 and E- 1157.

The initial a/W for fracture toughness testing was in the range of 0.59 to 0.61. Crack

length during fracture toughness testing was measured by unloading compliance. Tests

were stopped after a crack growth increment of more than 2 mm which was enough to

calculate JIC using power fitting. The plane strain fracture toughness (KIC) was then

calculated as follows;

lJlcE
Kzc 2 1IC - E

where E = Young's modulus

v = poisson's ratio

Because the specimen was relatively thin, a uniform crack front was generally not

maintained during tests, even for specimens with side-grooves. Thus fracture toughness

values were presented as a tentative fracture toughness, JQ or KQ, instead of JIc or KIC.

For each condition at least 2 tensile and 3 fracture toughness tests were performed unless

mentioned otherwise.

For some of the welds, Vickers microhardness (VHN) was measured to study the variation

of strength across weld and aging response.
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III.7 Microstructural Analysis

Specimens for microstructural analysis were mounted and polished to 0.05 gm using

alumina powder and etched using 10 % HC1 + 90 % Methanol + 2 g/100 ml CuCl 2

solution. When electrolyte etching was needed a 10 % HC1 + 90 % Methanol solution with

appropriate voltage-ampere combination was used. Precipitate chemistries were examined

using extraction replicas. Fracture surfaces were analyzed under Scanning Eletron

Microscopy (SEM) equipped with Energy Dispersive Spectrometry (EDS). The chemistry

of the particles sitting in the voids on fracture surfaces were also analyzed, in situ.

Particles were extracted electrolytically using a 10 % HC1 + 90 % Methanol solution with

the current density of 20 mA/cm 2 and collected on Millipore 0.2 gm polymer filter paper.

Due to the samll size of the ,, only Laves phase and carbides were thought to be collected

by filtering. X-ray diffraction analysis was done on the extracted precipitates using a

Rigaku RU-300 diffractometer.

Thermal properties of filler wires are examined by differential thermal analysis (DTA) on a

small amount of material (about 150 mg). Specimens were heated from 1000 °C to about

1450 °C at the rate of 10 °C/min while measuring the temperature difference between the

sample and a reference material. The same condition was used during the cool-down.

From the resulting temperature difference vs. reference temperature curve, equilibrium

temperatures of a material, such as liquidus, solidus and transformation temperature, were

determined.
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IV. Results and Discussion

IV.1. Welds with Various Welding Methods

IV. 1.1 Microstructure of Fusion Welds

Typical microstructures of gas tungsten arc weld (GTAW), electron beam weld (EBW),

and laser beam weld (LBW) are shown in Figure 29. All of the welds showed a typical

cellular-dendritic microstructure with precipitates present within the interdendchitic zone.

The most significant difference among the welds is the secondary dendritic arm spacing

which can be estimated as the average distance between the interdendritic precipitates. The

dendritic spacing measured is about 10 gm for GTA welds, 4 gm for EB weld, and 5.6 gm

for LB'weld. Macroscopically, compared to the rather irregular weld microstructure of

multi-pass GTA weld, high energy density welding methods, such as EB weld and LB

weld form deep narrow welds with a center symmetric dendritic structure.

Scanning electron micrographs of the three weld microstructures are shown in Figure 30.

In all of the welds, precipitates are spaced about the same interval as secondary dendritic

specings. In the immediate vicinity of precipitates, lightly colored deep etched zones are

visible in both optical and SEM micrographs. These regions are though to be the Nb

enriched 'ymatrix formed by eutectic reaction. The precipitates are enriched in Nb. The

microstructure of welds will be discussed later in section IV.2.

At higher magnification, shown in Figure 30-d), it is clear that precipitates are totally

isolated from the surrounding y matrix forming a so-called divorced eutectic. This is

unusual considering that large lamellar-y/Laves eutectic (about 5 pm) has been reported for

GTA welded Inconel 718 [36], and other 900-series superalloys.[39] As shown in

microstructure of the LB weld, several precipitates are closely located within the lightly

etched matrix. This suggest that these precipitates were formed within same interdendritic

liquid.

IV. 1.2 Microstructure of Flash Weld
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In flash welding (FW), which is a kind of solid state welding method, a very narrow (=

0.5 mm) weld zone is formed as shown in Figure 31. Within the weld zone, a fine grain

structure is visible. The grain size within the weld zone is actually smaller than that of the

surrounding base metal. The upset pressure applied to form the joint introduces heavy

plastic deformation on the joint surface. This heavy deformation initiates recrystallization

in the joint. Surrounding the weld, hyperbolic shaped flow lines decorated with primary

carbides are clearly visible. Such flow lines indicate the direction in which molten metal

was expelled during upsetting. Within the weld zone, which is formed under high uniaxial

compressive pressure, flow lines are aligned perpendicularly to the upset direction.

Apparently, no secondary precipitate has formed during welding with this technigue.

a) GTA weld, 200X

Figure 29. Optical micrographs of various fusion welds.
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b) EB weld, 500X

c) LB weld, 500X

Figure 29. Continue.
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a) GTA weld, 2000X

b) EB weld, 2000X

Figure 30. SEM micrographs of various fusion welds
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c) LB weld, 2000X

d) LB weld, 5000X

Figure 30. Continue.
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a) Optical micrograph of flash weld, 50X

b) SEM micrograph of flash weld, 2000X

Figure 31. Optical and SEM micrographs of flash weld.
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IV. 1.3 Mechanical Properties of welds

A. Tensile Properties

The room temperature tensile test results are summarized in Table 10. The effect of

different welding methods is relatively small in yield strength (y), but significant in

ultimate tensile strength (UTS). Compared to GTA welding, EB welding and LB welding

results in a a slightly higher yield strength. The UTS of an EB weld is much larger than

that of GTA and about the same as that of the base metal. Of the three fusion welds, EB

welding shows the largest ductility.

Both of the flash weld conditions give similar tensile properties, having yield strength

slightly higher than that of GTA weld and, LI'TS slightly less than that of base metal. The

ductility of flash weld is about 10 %, similar to that of the EB weld.

B. Fatigue Crack Growth Rate and Fracture Toughness of Welds

The results of fatigue crack growth rate tests and fracture toughness tests are summarized in

Table 11. The fatigue crack growth rate in EB welds, LB welds, and flash welds are much

greater than that in GTA welds.

Fracture toughness of GTA welds, EB welds and LB welds show very similar values.

Both of the flash welds showed very low fracture toughness, even lower than GTA weld.

As in fatigue crack growth, the crack path in the fracture toughness tests propagated

straight along the center of weld without forming any sizable plastic zone along the way.

The existence of oxygen in the welding atmosphere does not seem to have any effects on

the properties of flash welds. The similarity of properties ruled out the possible detrimental

effect of fine oxide along the weld centerline.

IV. 1.4 Fractography Analysis

Fracture surfaces of fusion welds are shown in Figure 32. Fracture occurs by a

predominantly dimple rupture mechanism. The average dimple diameter on the GTA weld

fracture surface is about 10 pgm. The average size of the dimples on the surface

corresponds to the dendrite arm and precipitate spacing. Within the dimples, a debris-like
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fractured structure is visible along with the wavy deformation marks which have formed by

slip on favorable planes during dimple growth.[66] The fracture surface of the EB weld is

almost identical to that of GTA weld except for the diameter of the dimples which are about

4 gm.

Table 10. Room temperature tensile properties of various welds.

Aging oy, MPa UTS, MPa elongation, %

Basea) 650°C/200hr 1075 + 41 1433 + 0 16.5 + 0.8

GTAW 650 °C /200hr 1034 1306 6.9

EBW 650°C/200hr 1041 + 1 1429 + 4 11.3 + 0.5

LBW 650C/200hr 1051 + 3 1358 + 6 4.5 + 0.1

FW in air 650 0C/200hr 1060 + 2 1402 + 1 10.1 + 0.5

FW in aron 650°C/200hr 1073 + 22 1413 ± 16 11.3 + 0.5

a) Data from [2]

b) Data without error are the results of one test

Table 11. Fatigue crack growth rate and fracture toughness of welds with various welding
methods.

PWHT da/dN, mm/cy JQ, KJ/m 2 KQ (JQ),

@AK = 25 MPa1m MPa'm

GTAW 650°C/200hr 2.7 x 10-5 72.2 + 17.1 120 + 14

EBW 650°C/200hr 10.5 x 10-5 78.9 + 20.0 125 + 16

LBW 650°C/200hr 7.0 x 10-5 78.8 + 14.2 125 + 11

FW in air 650°C/200hr 13.7 x 10- 5 37.6 87

FW in argon 650°C/200hr 30.2 78

* For EBW, average of 4 tests

For LBW, average of 5 tests

Only 1 test result for both of FW
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The fracture surface of LB weld is different in character than that for the GTA weld and EB

weld. In addition to the 5 gm diameter dimples which correspond to the precipitate spacing,

numerous smaller dimples are present. Most of the tiny dimples are featureless and

sometimes are part of large dimples. The relative cleanness at the dimple base indicates that

the origin of these dimples is something other than precipitates within the interdendritic

area. SEM micrograph of LB weld, shown in Figure 30, reveals that numerous sub-

micron size defects are present along with precipitates. It is quite possible that microvoids

are initiated at these defects as well as at the precipitates. Another distinctive feature of the

LB weld is the existence of voids as large as 1 mm. It is likely that these voids are due to

the presence of trapped argon gas from welding process. As shown in Figure 33, such

voids are visible on the fracture surface even with the naked eye.

The fracture surface of a typical flash weld is shown in Figure 34 and shows rather large

featureless dimples at the base. No sizable particles were found in the base of the dimples.

Macroscopically, the fracture surface of the flash weld is smooth. The crack plane is well

defined. On the surface of the compact tension specimen, the crack looks nearly perfectly

straight without any sizable plastic zone around it, suggesting crack growth occurred with

little resistance.

IV. 1.5 Summary and Discussion

Various welding techniques were used to evaluate mechanical properties of alloy 908

welds. With high speed, high power density welding processes, such as EB welding and

LB welding, much finer weld microstructures have been achieved. Within the dendritic

structure, precipitates, mostly cubic MC carbide and hexagonal Laves phase are formed in

the interdendritic region. Macroscopically, compared to the rather irregular weld

microstructure of multi-pass GTA welds, high energy density welding methods, such as

EB weld and LB weld form deep narrow welds with a center symmetric dendritic structure.

The LB weld microstructure shows a similar dendritic spacing to that of EB weld.

However, the mechanical properties are much degraded with much lower UTS and

ductility. The LB weld contains large pores containing argon gas. There are also a number

of unidentifiable micro-defects within the fusion zone. These defects cause premature

failure during tensile testing and resulted in poor ductility.
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a) GTA weld, at 1000X

b) EB weld, at 2000X

Figure 32. Fracture surfaces of various fusion welds.
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c) LB weld, at 2000X

Figure 33. Fracture surface of LB weld at 5X, showing pores on the surface.
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Figure 34. Fracture surface of flash weld.

The high crack growth rate in EB welds and LB welds can be attributed to the symmetric

dendritic microstructure. In manual-GTA welding, the subsequent weld beads are not

exactly deposited on the same position as the previous weld bead. The dendrite orientation

in each weld beads thus tend to be different from that of the previous one. The resulting

dendritic microstructure is rather irregular in orientation. In EB welding and LB welding,

the dendritic orientation becomes symmetric along the weld centerline leaving a well

defined boundary. This boundary stretches from the root to the face of weld. Thus, a

crack can propagate without any crack front adjustment which is needed in multi-pass GTA

weld where the weakest plane changes in adjacent grains. The absence of microscopic

crack deviation resulted in a larger crack growth rate in the EB and LB welds.

The fracture toughness of LB welds is about the same as that of EB welds. However, the

existence of macroscopic pores caused intermittent pop-in during the J-integral test. The

fracture surface of LB welds shows much finer dimple distribution than that of a EB weld.

Unlike EB welding, most of the dimples seem to have originated at the micro-defects rather

than at the precipitates.
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The fracture surface of flash welds shows a dimple rupture fracture mechanism. The origin

of microvoids, however, can not be identified. During welding, the external upset pressure

results in the formation of characteristic flow lines around weld along which some of the

carbides are aligned. The number density of carbides is not high enough to explain the

smoothness of the fracture surface. A more plausible explanation could be the preferential

crack growth along the already weakened plane perpendicular to the upset direction. When

the crack tip is aligned to one of these planes, it would propagate quickly without

resistance, resulting in low fracture toughness. The high fatigue crack growth rate

observed can be explained by the same mechanism. The fatigue crack growth rate of flash

welded alloy 908 has been reported by Nyilas et al.[67] He reported much lower fatigue

crack growth rate than in the present study. It is unclear why there is such a discrepancy.

The presence of oxygen in environment has no appreciable effects on the overall

mechanical properties of the flash weld.

The strength, fracture toughness and elongation of welds are plotted in the same graph in

Figure 35. All of the welds show at least 1030 MPa yield strength and 1300 MPa ultimate

tensile strength. Apparently, there is no difference in fracture toughness for the different

fusion welding methods. Flash weld showed improved strength and ductility but resulted

in far worse fatigue and fracture properties.
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Figure 35. Strength-toughness-ductility plot of various welds.
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IV.2 Post Weld Heat Treatment

IV.2.1 Microstructure of homogenized welds

The optical microstructure of as welded GTA welds and homogenized at 1050 °C for

various times are shown in Figure 36. In the as welded condition, the dendritic

microstructure dominates the weld fusion zone. At the homogenization temperature, 1050

°C, the dendritic structure starts to disappear at as early as 5 minutes. In some

interdendritic zones, precipitates also start to disappear. After 10 minutes, the dendritic

structure is weakened further, and twinned grains are visible. After 30 minutes, the

dendritic structure is barely visible and a regular grain structure is clearly visible in the

fusion zone. After 1 hour, the dendritic structure has completely disappeared, leaving

behind sparsely distributed precipitates and a well defined grain structure. There is a lot of

variation in the grain size with extensive annealing twins. Thus, after a homogenization

heat treatment for hr, the dendritic microstructure has been replaced with a recrystallized

structure.

a) As welded, 200X

Figure 36. Evolution of microstructure of GTA weld using 908 filler during
homogenization heat treatment at 1050°C.
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b) After 5 minutes at 1050°C, 200X

c) After 10 minutes at 1050°C, 200X

Figure 36. Continue.
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d) After 30 minutes at 1050°C, 200X
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e) After 1 hour at 1050°C, 200X

Figure 36. Continue.
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SEM micrographs of as welded GTA weld are shown in Figure 37. (for comparison

purpose, Figure 30-a) is again used as Figure 37-a)) Precipitates with various shapes are

present in the interdendritic zones which are deeply etched. The chemical composition of

the precipitates are mostly one of the two Nb-rich phases commonly found in Nb-

containing superalloys. The results of EDS analysis of extracted particles are summarized

in Table 12. One class of the precipitates has about 35 % Nb, 37 % Ni, 22 % Fe with 2 %

Si and is thought to be hexagonal Laves phase. The other has about 86 % Nb and 13 % Ti

with trace amounts of other elements. The most clear difference in the chemical

composition of Laves and MC carbide is the existence of Si in Laves phase and its virtual

absence in MC carbide. The partition of Si into Laves phases is well documented in

various alloy systems and the results of this study are consistent with results on other 900-

series alloys.[39, 47] Also shown are the results of chemical composition analysis around

precipitates, and in the interdendritic area free of precipitates. The chemical composition of

these areas represent the composition of eutectic y which separated from the precipitates

during the final stages of solidification.

There is no clear morphological difference between Laves and MC carbide formed in the

weld fusion zone. However, occasionally, MC carbides with clearly cubical shape are

observed as shown in Figure 37-b). On the same micrograph, the identity of precipitates

are shown. The L and MC represent Laves phase and MC carbide, respectively. In some

of the interdendritic zones, more than one type of precipitates are present, as shown in

Figure 38, which is the magnified micrograph of the Figure 37-a). Laves and MC carbides

precipitate side-by-side without a clear boundary between them.

After a homogenization heat treatment for 1 hour, Laves phases have disappeared and only

MC carbides were detected in the extraction. This is illustrated in the SEM micrograph of

the weld, shown in Figure 39. The amount of precipitate has decreased substantially. EDS

analysis of all of the precipitates confirmed their identity as MC carbides. Again there are

no distinctive morphological characteristics between the carbides.
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a) As welded, 2000X

b) As welded, 5000X

Figure 37. Precipitates in the as welded GTA weld using 908 filler weld. Both Laves (L)

and MC carbides (MC) are shown.
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Table 12. Chemical composition of precipitates found in GTA weld using 908 filler, in as-

welded condition and after homogenization heat treatment. (in weight percent)

Figure 38. Precipitates in as welded GTA weld using 908 filler, showing side-by-side

precipitation of Laves and MC carbide.
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Fe Ni Cr Nb Al Ti Si

908-GTAWAW Laves 21.5 37.3 ..3 35.5 0.1 2.5 1.9

eutectic y 33.7 48.2 10.0 1.3 2.7 0.4

dendrite core 43.8 47.0 4.9 1.6 1.4 0.9 0.3

NbC 0.1 1.2 0.0 85.8 0.1 12.7 0.1

(Nb,Ti)C = 2.2 67.2 = 30.6

908-GTAW AW + HT NbC 0.8 0.9 0.5 83.5 0.3 14.0 0.0



a) At 2000X

b) At 5000X

Figure 39. SEM micrographs of homogenized GTA weld using 908 filler. All precipitates

are MC carbides.
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IV.2.2 X-ray Diffraction Analysis of Precipitated Phases

X-ray diffraction patterns of the particles extracted from the as welded GTA weld using

908 filler, and after homogenization heat treatment (1050°C/lhr) are shown in Figure 40.

The diffraction planes and corresponding d-spacings are summarized in Table 13. Some

strong peaks representing (Fe,Ni)Fe204 are observed when the amount of the extracted

particles are small. Oxide could have been formed during the extraction process by

electrochemical oxidation of the Ni-Fe matrix exposed to the solution. Crystal structure

and lattice parameters of phases were determined by using standard phase identification

methods.[68] The results are summarized in Table 14. Two distinctive phases were

identified in the as welded condition. One of them is a hexagonal phase with lattice

parameter of a = 4.77 A and c = 7.76 A. It is thought to be MgZn2-type Laves phase

considering chemical composition. The other is a cubic (Nb,Ti)C carbide with lattice

parameter of 4.43 A and 4.41 A. MC with larger lattice parameter is thought to be Nb-rich

carbide, whereas MC with smaller lattice parameter is Ti-rich MC carbide whose chemical

compositions are shown before in Table 12. After a homogenization heat treatment, the

peaks representing Laves phase have disappeared and only the peaks representing MC

carbides are left behind. The lattice parameters of these phases are closely related to those

of the phases formed by solid state diffusion during aging even though the stoichiometry of

the solidification precipitates are different.[33]

IV.2.3 Hardness Measurement of Welds

The results of Vickers microhardness measurements on GTA welds are shown in Figure 41

as function of post weld heat treatment. In the as-welded condition, hardness is about 250

VHN for GTA welds. When heat treated, the reduction of hardness are the same at both

980 °C and 1050 °C until 5 minutes. As the time increases, the hardness of weld decreases

at 1050 °C, but does not change at 980 °C. At 1050 °C, the hardness barely changes after

30 minutes. After 1 hour heat treatment, the hardness is 220 VHN for 980 °C solution

annealing treatment, and 175 VHN for 1050 °C homogenization treatment.
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Figure 40. X-ray diffraction patterns of extracted particles from the GTA
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Table 13. Peaks found in XRD on extracted particles within weld

Table 14. Lattice parameters of precipitates found in GTA weld using 908 filler.
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908-GTAW 908-GTAW

As weld Homo enized 1050°C/lhr

d-spacing, A I/Io phase hkl d-spacing, A I/Io phase hkl

2.5566 52 NbC 111 2.5524 100 NbC 111

2.5475 72 TiC 111 2.5405 62 TiC 111

2.3811 38 Laves 110

2.2150 69 NbC 200 2.2176 74 NbC 200

2.2072 72 TiC 200 2.2062 77 TiC 200

2.1995 53 Laves 103

2.1944 46 Laves 103

2.0269 100 Laves 112

2.0002 38 Laves 112

1.9927 38 Laves 201

1.9395 22 Laves 004

1.5643 26 NbC+TiC 220 1.5643 29 NbC+TiC 220

1.3363 23 NbC+TiC 311 1.3346 25 NbC+TiC 311

1.2965 18 Laves 302

1.1922 12 Laves 220

Precipitates Carbides Laves

Structure FCC MgZn2 type

lattice parameters, (A) a = 4.43 (NbC) a = 4.77, c = 7.76

.___ __ .a = 4.41 (TiC)
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Figure 41. Microhardness of post weld heat treated GTA weld using 908 filler

VI.2.4. Mechanical Properties

A. Tensile Properties

The results of room temperature tensile tests for aged welds are summarized in Table 15.
With the standard aging condition of 650°C/200hr in vacuum, the homogenized EB weld

exhibits lower strength and ductility than the solution annealed EB weld. For the same

homogenization heat treated EB weld, the 700°C/100hr aging heat treatment showed much

higher strength than the materials aged at 650°C/200hr without losing ductility. Both the
yield strength and ultimate tensile strength are about 140 MPa higher when aged for 100
hour at 700°C. This suggests that the 650 °C/200 hrs aging condition is not the optimum

heat treatment for strengthening of a solution annealed or homogenized weld.

One of the GTA welds with new filler, GTA weld using 9FA filler (9FA-GTAW), was
also homogenized and aged. It showed slightly higher strength and much improved

ductility than that for a homogenized EB weld.
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Table 15. Room temperature tensile properties of various welds. (Average of two tests)

B. Fatigue Crack Growth Rate and Fracture Toughness of Welds

The results of fatigue crack growth tests (with R = 0.1) are shown in Figure 42.

Generally, the fatigue crack growth rates in homogenized welds are less than those of non-

homogenized welds. The power law exponents in Paris' equation are about 4 in both

cases.

The results of the fracture toughness tests are summarized in Table 16. In the table, the

minimum thickness required for valid plane strain fracture toughness (thickness >> 2 5JQ/ay)

measurements are shown. For both the solution annealed and homogenized EB weld, the

fracture toughnesses are so high that the thickness requirement for a valid J-integral test

was not satisfied. The thickness of the specimens were within the range of from 5 to 7

mm, which is far less than needed for plane strain fracture toughness testing of

homogenized EB weld and solution annealed EB weld. Still, based on the thickness of the

specimen to satisfy thickness requirement (about 5mm of thickness corresponds to 200

MPaym), it can be conservatively estimated that the fracture toughness of the welds are at

least 200 MPaIm. Homogenized GTA welds using 9FA filler showed fracture toughness

of about 195 MPa'lm.

94

PWHT Aging ay, MPa UTS, MPa elongation, %

EBW 980°C/lhr 650°C/200hrs 906+4 1291+3 15.3+0.5

1050°C/lhr 650°C/200hrs 839+7 1175+29 11.8±1.7

1050°C/lhr 700°C/lOOhrs 981+17 1321+18 11.8±1.3

9FA-GTAW 1050°C/lhr 650°C/200hrs 860 1210 15.6
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Figure 42. Fatigue crack growth rate welds after homogenization heat treatment.

Table 16. Room temperature fracture properties of the post weld heat treated welds.

IV.2.5 Fractography of homogenized welds

The fracture surface of a homogenization heat treated GTA weld using 9FA filler is shown

in Figure 43. The fracture surface is typical of a ductile dimple rupture mechanism. At the

base of the dimples, sub-micron size particles from which microvoids were initiated, are
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visible. These particles are rich in either Nb or Ti as confirmed by EDS analysis. Due to

the geometric complexity, and small size of the particle, the exact composition could not be

determined. Based on analysis of particles from the homogenized GTA welds using 908

filler, which has an almost identical chemical composition, the particles are thought to be

cubic MC carbide rich in either Nb or Ti left behind after the homogenization heat

treatment. The presence of extensive deformation marks within the dimple also implies,

qualitatively, high toughness.

Figure 43. Fracture surface of J-integral tested GTA weld using 9FA filler + 1050°C/lhr +
Aged (650°C/200hrs) material.

IV.2.6 Summary and Discussion

Various options of post weld heat treatment have been investigated. If the weld is heat

treated directly after welding, both solution annealing and homogenization heat treatments

decreases hardness significantly within 5 minutes. The hardness continues to decrease

during the homogenization heat treatment.

Microscopically, the dendritic structure of weld almost disappears after the 1050°C/lhr heat

treatment. Recrystallization is completed at the same time. The homogenization process
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also eliminates hexagonal Laves phase from the weld, leaving only cubic MC carbides.

This is confirmed by both EDS and X-ray diffraction analysis.

The effects of post weld heat treatment are generally, to increase fracture toughness and

ductility with lower strength compared to directly aged welds. After an aging treatment at

650 C/ 200hrs, a solution annealed weld shows higher strength and ductility than a

homogenization heat treated weld. For a homogenization treated weld, 700 °C/lOOhrs

aging resulted in higher strength than 650 C/ 200hrs aging. Fracture toughness of post

weld heat treated welds are at least 200 MPaxlm at room temperature.
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IV.3 New Weld Filler Metals

IV.3.1 Microstructure of New Welds

The microstructure of the GTA welds using new filler metals are shown in Figure 44. The
region shown is the center of the weld fusion zone in each case. Cellular-dendritic

microstructure with interdendritic segregation and precipitation is apparent in all GTA

welds. The amount of precipitates in the interdendritic zone decreases gradually as the Nb

content of the filler changes from 3 % (9FA filler) to 0.5 % (9HA filler). Qualitatively,

both the number density and size of the precipitates decreases simultaneously. Between the

primary dendrites, numerous regions of segregation, formed from liquid trapped by the

secondary dendrite arm, emanated from the primary dendrite. The spacing between the

secondary dendrite is about 10 jtm in all of the GTA welds. The dendritic spacing is

known to be governed by the thermal properties rather than small differences in the

chemical composition.[23] None-the-less, small changes in thermal properties, such as the

liquidus and solidus temperature, can be expected due to the compositional differences.

Thermal conductivity which determines the cooling rate of the weld is not effected by

compositional variation.

At higher magnification, shown in Figure 45, the differences between the high-Nb and the

low-Nb welds becomes clear. The precipitates in high-Nb welds are larger and located in

the larger interdendritic zone. Randomly shaped precipitates are mostly formed as isolated

eutectic rather than the lamellar eutectic structure. In some areas. several isolated

precipitates are formed from the same final eutectic liquid. Two general chemical

composition were detected by EDS analysis. One of them is close to the Laves phase

composition, the other is close to MC carbide composition. In the low-Nb weld, the

precipitates are more sparsely distributed and smaller in size. The interdendritic areas are

also small and not connected to each other. All of the precipitates in the low-Nb weld

exhibit the MC carbide composition.

Chemical composition of precipitates were determined by EDS analysis using an extraction
replica taken from the weld area. The results are summarized in Table 17. For GTA welds

with 9FA filler (9FA-GTAW), which has approximately the same chemical composition

except slightly higher titanium, most of the phases are either Laves or Nb-rich MC carbide
with some smaller amount of Ti-rich MC carbide. The overall precipitation behavior of

GTA welds with 9FA filler (9FA-GTAW) is nearly identical to that of GTA welds with 908

filler (908-GTAW). In GTA welds with 9GA filler (9GA-GTAW), the precipitates are not
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appreciably different from those in GTA welds with 9FA filler. As with the gas tungsten

arc weld with 9FA filler, Laves phase and Nb-rich carbide are the major precipitates. In

GTA welds with 9FC filler (9FC-GTAW), which has 1 % Nb, only carbides were

detected. The titanium content in the carbide is increased to 17 % compared to about 13 %

in GTA welds with 9GA filler. Most of the precipitates in GTA welds with 9HA filler are

though to be MC carbide, but with higher Ti content. The titanium content in Nb-rich MC

carbide increases to about 20%. Also, a substantial amount of Al (5 %) is present in the

Nb-rich MC carbide in GTA welds with 9HA filler. Another carbide, (Nb,Ti)C is present

as a major precipitation phase in GTA welds with 9HA filler. In this carbide, the amount

of Nb and Ti are about equal in atomic fraction. It should be mentioned that even though

the weld filler wire has a very low, concentration of carbon, sufficient carbon for carbide

formation could be supplied into weld from the base metal by dilution and, considering the

high diffusivity of carbon in austenite,[69] by direct diffusion.

Several unidentified precipitates with chemical composition, not characteristic of either

Laves or MC carbides were detected in trace amounts in all ofthe GTA welds. They are all

enriched in Nb and can be categorized in two separate phases based on chemical

composition. One of them had a composition range of 1 - 2 % Si, 15 - 20 % Ni, 4 - 14 %

Fe with less than 2 % of Al. A prominent phosphorous peak was detected as well. The

titanium content of this phase increases as the Nb content in the filler wire decreases. The

composition of this phase is somewhat similar to phosphide phase found in the heat

affected zone of electron beam welded Inconel 718 [31] and forged alloy 903.[70] The

other phase was only found in the GTA welds with 9HA filler, contained more Si and Al

with trace amounts of Ni and Fe. These phases were only observed in trace amounts and

would not have significant effects on the mechanical behavior of the GTA welds.
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a) GTA weld with 3% Nb filler (9FA filler)

b) GTA weld with 1.5% Nb filler (9GA filler)

Figure 44. SEM microsgraphs of fusion zone of GTA welds with various filler, at 2000X
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c) GTA weld with 1.0% Nb filler (9FC filler)

d) GTA weld with 0.5% Nb filler (9HA filler)

Figure 44. Continue.
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a) GTA weld with 3% Nb filler (9FA filler)

b) GTA weld with 0.5% Nb filler (9HA filler)

Figure 45. SEM micrographs of GTA welds with various filler, at 5000X
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Table 17. Chemical composition of precipitates found in GTA welds
(EDS on extraction replica, in weight percent).

with new fillers.

Filler Phase Fe Ni Cr Nb Al Ti Si

9FA Laves M 25.2 34.2 2.2 32.5 1.5 3.3 1.1

NbC M 3.6 5.0 0.3 78.1 1.2 11.8 0.1

TiC m 0 0 0 32.1 2.4 63.7 0.8

?? m 9.7 14.8 0.8 64.2 2.1 7.3 1.2

9GA Laves M 27.1 32.6 1.7 33.5 0.4 3.2 1.6

NbC M 0.7 1.5 0.4 83.3 0.5 13.4 0

___? m 13.8 18.3 1.6 54.2 1.8 8.8 1.5

9FC NbC M 0.4 0.7 0 79.8 1.1 17.1 0.7

(Nb,Ti)C m 0 0.8 0 67.6 1.2 29.8 0.7

9HA NbC M 0.5 2.3 0.5 71.4 5.1 20.1 0.2

(Nb,Ti)C M 1.4 3.5 0.3 61.5 0.9 32.0 0.4

?? m 1.3 0 3.2 50.4 3.6 36.3 5.2

?? m 4.3 17.7 1.6 50.8 0.7 23.1 2.0

Note: Precipitates present in major phases are designated as M

Precipitates present in minor or trace amount are designated as m.

IV.3.2 Results of Differential Thermal Analysis (DTA)

Figure 46 shows a set of differential thermal analysis (DTA) results for 908 filler wire.

These results were typical of all of the filler wires developed. The purpose of the thermal

analysis was to determine the precipitation and dissolution temperature of Laves and MC

carbides, corresponding eutectic temperatures, as well as the solidus and liquidus

temperatures. However, it was very difficult to determine any other temperature except the

solidus and liquidus temperature. The peak in the cooling curve (around 1235 - 1250 C)

is for carbide precipitation. No peaks were observed representing Laves phase formation

during cool-down. Part of the problem was the choice of the sample. Because the samples

are taken from the filler wire, which is virtually in single phase except for a few primary

carbides, no distinguishable peak representing precipitate dissolution should have been
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observed. During cooling, solute enrichment in the liquid, needed for the eutectic reaction,

can not be achieved due to the extensive diffusion.

The liquidus and solidus temperatures are determined as the temperature at the onset of

melting and at the completion of melting, and summarized in Table 18. The solidus and

liquidus temperature decreases as the Nb content decreases. The solidification temperature

range (ATnm), which is the difference between liquidus and solidus temperature decreases

gradually at the same time. As the Nb content in filler wire decreases, both solidus and

liquidus temperature increases. Meanwhile, the equilibrium melting temperature range

(Tm) which will affect the hot cracking of Nb bearing alloys [32], decreases as the Nb

content decreases.

Table 18. Solidus and liquidus temperature of filler metals found by DTA.

IV.3.3 Mechanical Properties of Welds with New Filler Materials

A. Room Temperature Tensile Properties

The results of room temperature tensile tests of GTA welds with new filler metals are

summarized in Table 19. Specimen orientation is transverse to the welding direction. This

orientation results in both base and weld metal being located within the gauge section.

Welds with 9FA and 9G-series filler showed at least 990 MPa yield stress with 1260 MPa

ultimate tensile stress. Welds with 9H-series filler showed considerably lower strength

than the others. Despite considerable differences in strength, the ductility of weld does not

change with composition of the filler wire.
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Filler metal Nb, wt.-% TS, C TL, °C ATm, C

908 3.0 1320 1394 74

9FA 3.04 1323 1389 66

9GA 1.51 1355 1406 51

9FC 0.99 1364 1412 48

9HA 0.52 1375 1412 37
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Figure 46. Result of differential thermal analysis (DTA) of 908 filler wire.
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Table 19. Room temperature tensile properties of weld with new filler metals.

Weld strength vs. Nb content of the weld filler is plotted in Figure 47. As the Nb content

decreases from 3 % o 1 %, both the yield strength and UTS decrease by about 80 MPa.

The rate of decrease in yield strength with Nb content is about 40 MPa / % Nb. For UTS,

the rate of decrease is 37 MPa / % Nb. The changes in tensile properties become less

significant as the Nb content approaches 0.5 %. The yield strength of GTA welds with

9FC filler (1.0 % Nb) and GTA welds with 9HA filler (0.5 % Nb) is about the same.

During weld solidification, some of Nb and Ti are tied up in carbide. Also, segregation of

Nb and Ti and subsequent precipitation of Laves phase reduces the amount of these

elements in solid solution. Thus, the amount of Nb and Ti available for precipitation of ~/

is less than that in filler metals used. When the Nb content increases from 0.5 % to 1 %,

the additional Nb in the filler metal is consumed to form carbides rather than remaining in

solid solution and contribute to T precipitation. Thus, there is no gain in the strength of the

weld. This explains the proximity of the strength of GTA welds with 9FC filler and 9HA

filler. The ductility of GTA welds varies from 6 % to 10 % and shows no significant

dependece on the Nb content in filler wire.

The effect of Ti content of the weld filler is shown in Figure 48. The variation of strength

as a function of Ti content is illustrated by comparing the properties of the GTA welds with

9G-series fillers. The rate of change in yield strength with Ti content is about 52 MPa / %
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Aging aOy, MPa UTS, MPa elongation, %

9FA-GTAW 650°C/200hr 1053+14 1317+15 8.2+0.7

9FC-GTAW 650°C/200hr 971+22 1240±12 8.6+0.8

9GA-GTAW 650°C/200hr 990±8 1266+21 9.1+0.7

9GB-GTAW 650°C/200hr 1021±3 1290±_15 7.9+0.3

9GC-GTAW 650°C/200hr 1025 1291 9.3

9GD-GTAW 650°C/200hr 1044+22 1316+18 8.3+0.4

9HA-GTAW 650°C/200hr 970±13 1223+10 7.8±1.8

9HB-GTAW 650°C/200hr 833+±1 1097+27 7.7±-1.9

9HC-GTAW 650°C/200hr 978+11 1258+12 9.0+2.5

9HD-GTAW 650°C/200hr 785±29 1116+1 9.8+2.3



Ti. For UTS, the rate of decrease is 51 MPa / % Ti. Ductility of GTA welds varies from

7.5 % to 10 %. As the Ti content of the filler metals increases, the ductility of GTA welds

decreases slightly.

The effect of Al content of the weld filler is shown in Figure 49. The variation of strength

as a function of Al content is illustrated by comparing the properties of the GTA welds with

9G-series fillers. The rate of change in yield strength with Ti content is about 60 MPa / %

Al. For UTS, the rate of decrease is 54 MPa / % Al. Ductility of GTA welds varies from

7.5 %to 10%.

The change of strength as function of the content of the strengthening elements are

summarized in Table 20. The strengthening effect is the greatest for aluminum and the

smallest for niobium.

The two Mo-added filler, 9HC and 9HD-GTAW show very little change in strength

compared to their counterpart without Mo addition. There is a little improvement in

ductility, however.

* oy, MPa
o UTS, MPa X elongation, %
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Figure 47. Effects of Nb content in the weld filler on the tensile properties of
(after aged at 650°C/200hrs in vacuum)
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Figure 48. Effects of Ti content in the weld filler on the tensile properties of GTA welds.
GTA welds with 9G-series fillers are compared. (after aged at 650°C/200hrs in vacuum)
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Table 20. The effect of alloying elements on the strength of GTA welds. Change of
strength of welds when the amount of strengthening elements changes by % are shown.

Elements A y, MPa AUTS, MPa

Nb 40.3 36.6

weight % Ti 52.3 50.8

Al 59.7 53.6
-- , S . , . . _ _ S . . . ..· [ nl ,

B. Room Temperature Fatigue and Fracture Properties

Fatigue crack growth rates and fracture toughness of GTA welds in the as-welded + aged

condition are summarized in Table 21. The AK range used for the Paris' law regression,

shown below:

dada = C. (AK)'

dN

was from 17.5 MPa'lm to 60 MPa'Im for GTA welds with 908, 9FA, 9FC, 9GA, and

9HA fillers. The Paris' law parameters are also shown in the table for these welds. Paris'

law constants are about 2 - 5 x 10-11 mm/cycle and exponents in the range of 4.1 - 4.3.

There is little effect of filler wire composition on fatigue crack growth rate. Fatigue crack

growth rates for GTA welds with different Nb contents are shown in Figure 50, along with

those for 908 welds.

Fracture toughness as function of the Nb content is plotted in Figure 51. As the Nb content

decreases from 3 % to 0.5 %, the fracture toughness increases by about 50 %. The most

significant change in fracture toughness occurs when the Nb content decreases from I % to

0.5 %. The GTA welds with 9H-series filler metals (low Nb content, 0.5 %) exhibit a

much higher fracture toughness than GTA welds with the other fillers. The GTA welds

with molybdenum added filler metals, 9HC and 9HD, show lower fracture toughness than

their counterparts without Mo.

C. Selection of Improved Welds for Further Test
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Figure 52 shows the data for strength vs. toughness plotted for each filler metal. Two new

filler metals, 9HA and 9HB fillers located ir the upper right corner (high strength and high

toughness), were selected for further testing. The effects of a moderate amount of cold

work, which is expected in the actual conductor manufacturing process was evaluated. The

effects of cold work on the tensile properties of GTA welds with 908 filler were evaluated,

also. The actual magnet operating temperature is at 4K. Therefore, te properties at 4K

were also focused on.

Table 21. Fatigue crack growth rate and fracture toughness of various GTA welds at room
temperature. (after aged for 200 hours at 650°C in vacuum)

110

Weld Paris' law C Paris law m R Kg (Jo), MPa~/m

908-GTAW 4.1 x 10-11 4.2 0.997 120+14

9FA-GTAW 5.0 x 10-11 4.1 0.956 119±16

9FC-GTAW 2.2 x 10-11 4.3 0.94 133+18

9GA-GTAW 2.1 x 10-11 4.3 0.982 127+12

9 SJB-GTAW 121+13

9GC-GTAW 125+15

9GD-GTAW 101+12

9HA-GTAW 2.1 x 10-11 4.3 0.982 165+9

9HB-GTAW 183+15

9HC-GTAW 144±17

9HD-GTAW 155±20



30 40 50 60

AK, MPaVm

Figure 50. Fatigue crack growth rate of GTA welds with varying Nb contents
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Figure 51. Fracture toughness of GTA welds as function of the Nb content in filler.
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Figure 52. Strength-toughness plot of GTA welds with new filler metals. Two GTA
welds, selected for further test are identified in the plot.
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D. Effect of Cold Work and Temperature on Tensile properties

The effect of cold work prior to aging on room temperature tensile properties is shown in

Table 22. The change in tensile properties with cold work are plotted in Figure 53. Cold

work resulted in increased strength and ductility in GTA welds with 908 filler. For GTA

welds with 9HA filler, changes in strength were small. Ductility of GTA welds increased

slightly. For GTA welds with 9HB filler, strength increased but ductility decreased.

The results of tensile tests performed at 4K are shown in Table 23. The effect of cold work

prior to aging on the tensile properties of GTA welds at 4K are plotted in Figure 54. The

effect of cold work is greater for GTA welds with 9HA filler than GTA welds with 9HB

filler. Ductility decreases after cold work.

Table 22. Room temperature tensile properties of cold-worked GTA welds. (after aged for
200 hours at 650°C in vacuum)

CW, % oy, MPa UTS, MPa elongation, %

908-GTAW 9 1104+30 1298+23 8.4+1.0

9HA-GTAW 9 991+35 1210±33 8.8+0.6

9HB-GTAW 9 949+18 1157+18 6. 1+0.8

Table 23. Tensile properties of weld specimens at 4K. (after aged for 200 hours at 650°C
in vacuum)

.____ CW, % Gy, MPa UTS, MPa elongation, %

908-GTAW+SA 9 1250 1696 11.3

9HA-GTAW - 1074 1538 14.7

9HA-GTAW 9 1251 1690 13.2

9HB-GTAW - 1001 1522 9.4

9HB-GTAW 9 1067 1505 8.5
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Figure 54. Effect of cold work on the tensile properties of GTA welds at 4K.
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The effect of test temperature on the tensile properties of GTA welds are shown in Figure

55. As the temperature decreases from room temperature to 4K, both strength and ductility

increase. The increase in UTS is far greater than that of yield strength. The IJTS increased

more than 300 MPa. For GTA welds with 9HA filler, elongation at 4K is 5% more than

that at 298K.

The effect of test temperature on the tensile properties of cold worked GTA welds are

shown in Figure 56. As the temperature decreases from room temperature to 4K, both the

strength and ductility increase. The increase in UTS is far greater than that of yield

strength. The UTS increased more than 300 MPa. The cold worked GTA welds with

9HA filler showed yield strength over 1250 MPa, with a UTS about 1700 MPa and,

elongation over 13 % at 4K. The cold worked GTA welds with 9HB filler showed a yield

strength over 1150 MPa, with a UTS about 1500 MPa and, elongation about 8.5 % at 4K.

Overall, the temperature effect is much more significant and consistent than the cold work

effect.

Figure 57 shows the evolution of tensile properties from as-welded + aged condition tested

at room temperature to as-welded + cold worked + aged condition tested at 4K. Generally,

overall tensile properties at the actual operating condition are better than room temperature

properties with aged GTA weld.
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Figure 55. Effect of temperature on the tensile properties of as-weld + aged condition.
Direction of arrows are front room temperature to 4K.
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Figure 56. Effect of temperature on the tensile properties of as-welded + cold worked +
aged GTA weld. Direction of arrows are from room temperature to 4K.
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Figure 57. Effect of cold work and temperature on the tensile properties of GTA welds.
Direction of arrows are from as-welded + aged condition tested at room temperature to as-

welded + cold worked + aged condition tested at 4K.

E. Effect of Cold Work and Temperature on Fracture Toughness

The results of fracture toughness testing at 4K are summarized in Table 24. Also shown

are the results for cold worked GTA welds tested at room temperature. Figure 58 shows

the effect of cold work on fracture toughness at room temperature. While the fracture

toughness of GTA welds using 9HA filler increased slightly with cold work, that for GTA

welds with 9HB filler showed the opposite behavior. Figure 59 shows the effect of cold

work on fracture toughness at 4K. At 4K, fracture toughness decreased with cold work

prior to aging.

The effect of test temperature on fracture toughness of as-welded + aged GTA welds are

shown in Figure 60. Decreasing the test temperature from room temperature to 4K

decreased fracture toughness of GTA welds with 9HA filler, but increased that of GTA

welds with 9HB filler.
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The effect of test temperature on fracture toughness of as-welded + cold worked + aged

GTA welds are shown in Figure 61. Decreasing the test temperature from room

temperature to 4K decreased the fracture toughness of both GTA welds.

Figure 62 shows the evolution of fracture toughness from as-welded + aged condition

tested at room temperature to as-welded + cold worked + aged condition tested at 4K.

AW+9%CW+Aged at 4K. The latter showed 10 - 30 % lower fracture toughness than the

former.

A strength vs. toughness plot for GTA welds with 9HA filler and 9HB filler is showun in

Figure 63. The cold worked GTA welds with 9HA filler showed yield strength - fracture

toughness combination of 1250 MPa - 120 MPa'lm at 4K. The cold worked GTA welds

with 9HB filler showed yield strength - fracture toughness combination of 1160 MPa -

160 MPa'lm at 4K.

Table 24. Fracture toughness of various GTA welds at room temperature. (after aged for
200 hours at 650°C in vacuum)
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Weld Cold Work Test T, °C K (J ), MPaVm

9HA-GTAW 4K 150

9 % RT 170

9% 4K 121 + 1

9HB-GTAW - 4K 214

9 % RT 173 +8

9% 4K 161
&~~~~~~~~~~~~~~~~~
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Figure 60. Effects of test temperature on fracture toughness of as-welded + aged GTA
welds. Direction of arrows are from room temperature to 4K.

180

170

160

0'

150

140

130

120

110

100
9HA-GTAW + CW 9HB-GTAW + CW
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Figure 62. Effect of cold work and temperature on fracture toughness of GTA welds.
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welded + cold worked + aged condition tested at 4K.
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IV.3.4 Fractography Analysis of Welds

The fracture surfaces of the various GTA welds are shown in Figure 64. All of the fracture

surfaces show a typical ductile dimple rupture failure. On the fracture surfaces of GTA

welds with 9FA filler and 9GA filler, the dimples contained particles sitting at their base,

surrounded by a debris-like broken structure and wavy deformation marks on the wall of

the dimple. On the fracture surface of GTA welds with 9FC filler, the structure on the base

of dimple is finer and less in amount. For GTA welds with 9HA filler, the debris-like

structure is hardly present at the base of the dimples, wavy deformation marks being

dominant. At lower magnification, illustrated in Figure 65, the relation between the

dimples and dendritic structure can be seen. The continous array of dimples coincides with

the general features of the dendritic structure.

The composition of the particles at the base of the dimples on the surfaces of GTA welds

with 9FA filler and 9HA filler were examined by EDS and shown in Figure 66. Because

the particles are small and sitting at the base of the dimples, the compositions shown in

Figure 66 are mixture of the composition of particles as well as that of the surrounding

matrix. Still, particles can be identified qualitatively. Particle A in Figure 66-a) is thought

to be an MC carbide, considering high Nb and Ti contents. Particles B and C are thought

to be Laves phases, considering high Si content as well as high Nb content. Thus, both

Laves and MC carbides are detected at the dimple base on the fracture surface of GTA

welds with 9FA filler. However, the particles at the base of dimples were too small to be

used for EDS analysis.

As with the fracture surface, the surface of fatigue cracks, shown in Figure 67, show

markedly different features depending on filler wire composition. The fatigue surface of

GTA welds with 9FA filler is consisted of the repetition of the area filled with debris-like

broken structure and smooth featureless areas. The fatigue surface of GTA welds with

9HA filler shows a much cleaner structure, having needle-like structure aligned with the

dendritic structure. The size of the broken structure is much smaller in GTA welds with

9HA filler. In both GTA welds, the spacing between the broken structure is about 10 - 20

gm, which corresponds to the primary dendritic spacing.
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a) GTA weld with 9FA filler, 2000X

b) GTA weld with 9GA filler, 2000X

Figure 64. Fracture surfaces of GTA welds with various filler wires.
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c) GTA weld with 9FC filler, 2000X

d) GTA weld with 9HA filler, 2000X

Figure 64. Continue.
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a) GTA weld with 9FA filler, 300X

b) GTA weld with 9HA filler. 300X

Figure 65. Fracture surfaces of GTA welds at lower magnification, showing continuous

arrays of dimples along the dendritic structure.
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a) GTA weld with 9FA filler

Figure 66. Fracture surfaces of GTA welds with EDS analysis results of particles.
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location Fe Ni Cr Nb Al Ti Si
A 21.86 24.23 2.41 43.21 0.40 6.98 0.34

B 28.54 33.47 3.12 30.63 0.00 3.28 0.47

C 31.67 37.91 3.75 21.84 0.28 3.19 0.58

D 40.89 46.50 5.02 4.51 1.77 2.36 0.41



location Fe Ni Cr Nb Al Ti Si

A 43.48 47.78 5.26 2.51 2.21 1.86 0.71

b) GTA weld with 9HA filler

Figure 66. Continue.
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a) GTA weld with 9FA filler, 1500X

b) GTA weld with 9HA filler, 1500X

Figure 67. Fatigue surface of GTA welds..
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IV.3.5 Summary and Discussion

The mechanical properties of alloy 908 GTA welds using 10 newly developed filler wires

have been examined. As the Nb content in filler changes from 3 % to 0.5 %, about a 40 %

increase in fracture toughness has been observed at the expense of a 7 % reduction in

strength. When GTA welds with Nb contents of % and 0.5 % are compared, the latter

shows a 25 % higher toughness without losing strength. Further testing was done to

investigate the effect of cold work and test temperature on selected GTA welds with

favorable strength-toughness combinations. Cold work and low test temperature increased

the strength of the GTA welds. The effect of temperature and cold work on ductility and

fracture toughness showed no definitive trends with filler composition. Overall, the

combined effect of cold work and decreasing test temperature is to increase strength and

ductility but to decrease toughness of GTA welds.

All of the weld showed a cellular-dendritic microstructure with dendritic spacing of about

10 gm regardless of filler composition. However, precipitation within the interdendritic

zone showed different characteristics as the filler composition changed. In GTA welds

with filler containing more than 1.5 % Nb, the dominant precipitates are hexagonal Laves

and cubic MC carbides present in the large interdendritic zone. As the Nb content

decreases. the size of the interdendritic zone becomes smaller and MC carbide becomes the

dominant phase.

Fracture surfaces of GTA welds showed a typical dimple rupture failure in all cases.

During fracture, mnicrovoids initiated at brittle secondary phases. In GTA welds with high

Nb filler, such as 9FA and 9GA filler, segregation during weld solidification formed a

large eutectic zone, high in Nb content arround precipitates. These area become brittle after

aging heat treatment. Right after microvoid initiaition, these area can be easily torn apart

without much resistance and, increase the size of the voids. This results in degraded

fracture toughness. However, in GTA welds with 9HA filler, initial void initiation sites are

relatively small MC carbides surrounded with a smaller brittle zone. In this case, more

deformation is needed for crack growth, resulting in better fracture toughness.
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IV.4 Simulated Production Welding

IV.4. I Base plates selection

Mill-annealed 7-mm thick alloy 908 plates were heat treated to match the anticipated

condition for the actual conduit. Based on discussion with the conduit supplier, it was

determined that the conduit will be supplied with hardness of 80 or less at the Rockwell-B

scale. Pieces of mill annealed plates were heat treated at 980 °C and 1050 C for from 5

min to hr. Hardness and grain size were measured for each piece. The results are

shown in Table 25. At 980 C, the hardness approached 80 after 30 minutes, but grain

growth is not apparent until 60 minutes. At 1050 C, the hardness approached 80 at 5

minutes and decreased continuously afterward. Significant grain growth does not occur

until 10 minutes. Based on these results, a 1050 °C/lhr heat treatment followed by water

quenching was chosen as the proper heat treatment condition to be used in simulated

production welding evaluation.

For comparison purpose with previously accumulated data on manual GTA welds, which

used mill-annealed base metal, one plate was welded using mill-annealed base metal.

Table 25. Hardness and grain size of base metal plate after various solution heat treatment.
(Hardness shown at the Rockwell B-scale)

Temperature, C Time, min Hardness Vickers microhardness Grain size, rm

Mill Anneal 19.3 + 2.6 *

980 10 86.2 + 0.9 182.0 + 5.7 35

30 81.1 + 1.5 177.8 + 5.5 40

60 80.5 + 0.7 196.8 + 13.2 70

1050 5 81.7 + 1.1 175.5 + 7.0 40

10 78.9 + 0.9 193.1 + 5.1 70

30 77.2 + 1.0 176.6 + 5.6 75

60 73.2 + 3.9 177.0 + 4.0 75

* Rockwell-C scale
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IV.4.2 Microstructure of Production Weld

A typical weld optical microstructure is shown in Figure 68. A cellular-dendritic structure

is evident in all of the welds. At higher magnification, the existence of interdendritic

precipitates are also visible. At lower magnification, shown in Figure 69, bands of primary

dendrites along with thickness of weld can be seen. These bands stretched from the face of

weld to near the root of the weld. SEM micrographs are also shown in Figure 71. The

microstructure is similar to previously mentioned manual welds. Both Laves phase and

MC carbides are present within the weld fusion zone. The results of EDS analysis on the

precipitates are summarized in Table 26. The compositions of the phases are about the

same as those found previously in manual gas tungsten arc weld with 908 filler.

Occationally, Laves phase and MC carbides were found side-by-side, attached to each other

at the same location as shown in Figure 70-b). Overall, the microstructure of production

welds were the same as that of manual GTA welds with 908 filler.

Table 26. Chemical composition of precipitates found in fusion zone of production welds.
(in weight percent)

ni l i i i 

_____ ~Fe Ni Cr Nb Al Ti Si

Laves in AAI AW 25.2 34.8 3.2 31.6 1.0 4.6 0.6

eutectic yin AAI AW 32.7 48.1 4.2 10.8 1.2 2.6 0.4

MC in AAI AW 9.9 11.1 1.6 66.0 0.4 11.0 0
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Figure 68. Optical micrographs of production welds.
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Figure 69. Fusion zone of production welds, showing the bands of primary dendrites
stretching from the face to root of welds. (30X)
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a) at 2000X

b) at 5000X

Figure 70. SEM micrographs of as welded production weld.
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IV.4.3 Hardness of welds

The results of Rockwell-B hardness measurements in the as-welded condition are shown in

Figure 71. For welds with homogenized base metal, the hardness decreased gradually

from the center of weld toward base metal. The heat affected zone (HAZ) near fusion zone

showed higher hardness compared to that of the base metal. This localized hardening can

be attributed to in-situ precipitation hardening during the weld thermal cycle. For welds

with mill annealed base metal, a hardness profile is reversed, showing lowest hardness at

the weld. In both cases, hardness at the center of weld is 85 (Rockwell-B).

The results of micro-hardness measurements on the weld with homogenized base metal are

shown in Figure 72. Near the face of weld, the hardness decreasd gradually from fusion

zone to base metal. Small increase in hardness was observed at about 3 mm away from

fusion line. Near the root of the weld, a much larger increase in hardness was observed at

about 4 mm away from the weld fusion line. It is possible that, in these area, temperature

cycle during welding caused precipitation of hardening phases. Overall, the weld area

including HAZ showed considerably higher hardness (or strength) than the rest of base

metal.

IV.4.4. Mechanical Properties

A. Base Metal Tensile Properties

The base metal tensile properties are summarized in Table 27. A significant difference in

tensile properties was observed in the unaged condition. While yield strength and UTS for

homogenization heat treated base metal (HT) are about 230 MPa and 620 MPa, those of

mill annealed base metal (MA) are about 300 MPa higher. Ductility also decreased fromn 56

% to 38 %. The tensile properties of solution annealed base metal lie between these two

extreme cases. The softening of homogenization treated base metal is caused to a great

extent by the removal of residual precipitates including Y, and to a less extent by grain

growth during the heat treatment.
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Figure 71. Variation of hardness around fusion zone of production welds
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B. Simulated Production Weld Tensile Properties

Tensile properties of the simulated production welds are shown in Table 27. In the as

welded condition, welds with mill annealed base metal show slightly higher yield strength

and UTS than welds with homogenized base metal. Depending on the initial condition of

the base metal, two different deformation behaviors are observed. First, if the base metal is

softer than the as welded fusion weld, such as the case with the homogenized base metal,

yielding initiates in the base metal. Subsequent strain hardening makes the base metal

stronger than the weld zone. Then weld zone is deformed too. Afterward, both base and

weld deform simultaneously until the stress reaches the fracture stress of either metal.

Because the length of the reduced section of tensile specimen is 0.75" (19 mm) which is

about the size of in-situ hardened zone of weld where the strength would be higher than

homogenized base metal, the final fracture always occurs in weld fusion zone even though

the UTS of the base metal is lower than that of weld fusion zone. Thus if a larger specimen

which contains non-hardened homogenized base metal within the reduced section is used,

initial yielding and final fracture would occur outside weld fusion zone.

When base plates are in the mill-annealed condition, both initial yielding and final fracture

occur within the weld zone. The fusion weld zone is softer, having lower yield strength

and UTS than the surrounding hardened or non-hardened base metal area. Thus, the

deformation is more severely constrained within the narrow band of the fusion zone. Even

though some deformnation is expected in adjacent base metal, the most significant

deformation is limited within the weld fusion zone, resulting in substantially decreased

elongation to fracture. This difference in deformation sequence explains the marked change

in elongation for welds with two different base plate conditions.

In the aged condition, the strength of both weld and base metal changes. Compared to the

mill annealed base metal, welds with mill annealed base metal show lower strength and

lower elongation. Welds with homogenization heat treated base metal showed greatly

improved elongation with about 20 MPa less strength compared to welds with mill

annealed base metal.

C. Fatigue Crack Growth Rate of Production Welds

The results of fatigue crack growth rate tests of welds with homogenized plates in the as

welded condition are shown in Figure 73. Using the decreasing AK method with fixed
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Kmax, AKth is estimated as about 3.7 MPa/m with Kmax = 33.33 MPa'lm. This method

is considered to be effective in excluding crack closure effects in measuring fatigue

threshold. [65, 71] The fatigue threshold of welds is very close to that of base metal

reported by Tobler. [71] Fatigue crack growth rate measurement with R = 0.1 were

conducted between AK = 15 to 60 MPa~Jm and shown in same plot. Between a AK of

from 20 to 60 MPa'Im, crack growth rate can be correlated using a Paris' law with C = 2.1

x 10-9 mm/cycle and m = 3.2. The data tends to deviate below a AK of 20 MPa~m, but

there are not enough data to determine AKth with fixed R = 0.1.

Fatigue crack growth rates in aged condition are shown in Figure 74. Welds with mill

annealed base metal showed slower crack growth rates than welds with homogenization

heat treated base metal. Crack growth rate can be correlated using Paris' law in the AK

range tested, that is 17.5 to 60 MPa/m with R = 0.1. The Paris' law constants for welds

with homogenized base metal are, C = 1.45 x 10-10 mm/cycle and m = 4.0. Those for

welds with mill annealed base metal are, C = 3.1 x 10
-1 I mm/cycle and m = 4.3.

Table 27. Room temperature tensile properties of production welds

Material Base PWHT (y UTS elongation RA

metal (MPa) (MPa) ( %) (% )

Base MA None 514+3 924+1 38.5±0.9 50.3±2.0

SA None 389 717

HT None 232+3 622+1 55.8+4.4

MA+Ae None(a) 1075±41 1433_+0 16.5+0.8

Weld MA AW(b) 399+2 691+7 28.0+1.0 56.3+5.3

MA AW +Age 1024+2 1287±6 9.8+0.1

HT AW 350±5 659+6 55.6

HT AW + Age 1005+5 1264± 0 15.1+1.2

Note: a) data from reference [2]

b) results of manual GTA welds with mill annealed base metal.

139



.:i ... ................

... ................._..j... ................

0 with R = 0.1
' with Kmax = 33.3 MPalm

.......

r*

I A_ II I I .W I I

_---LI -- I, -- ---- e --- · __
--- -- I

II I _I. I . '~~~~~~ !

10-2

. .................. .............

. . .................. ............. ............... ..........

. .................. C.
AKth

L {

10- 3

;N-b

Cj

i

5

PoI0
PC

10-4

i i I

.....g ..

....

..........-·

....... ;......x .... ;.... A...

k =' OJ
........ :.......L .... :..... ...

........

..,;... {:...,.. ,

.,
lo-6

1 10 100

Figure 73. Fatigue crack growth rate of as-welded production welds. Also shown is the

10-2

10-3

10-4

10-5

10-6

0 Weld with HT base metal

........................ .................................... I---------- ................
m --------------------------------------- I-,,,-,,-

.r ................................................ I _,_I~~~~~~~~~~~

...................... r................
: 0

0
0 #

I.................... IL ................

b
.

.....o.... .......

U

I 3 1 = O.'
................

I

I..........E... .......................

10 20 30 40 0 6
AK, Waa~m

Figure 74. Fatigue crack growth rate of aged production welding



D. Fracture Toughness of Welds

Fracture toughness testing results are shown in Table 28. In the table, the minimum

thickness required for valid plane strain fracture toughness tests (thickness >> 25JQ/cOy) are

shown. For unaged welds, the thickness requirement for valid J-integral test was not

satisfied. (roughly 17 mm thick specimens have to be used, contrary to 6 mm thick used in

this test) Fracture toughness for simulated production welding with mill nnealed base

metal was 141±7 MPaxm. Fracture toughness for simulated production welding with

homogenized base metal was 144+7 MParlm. There appears to be no significant effect of

the condition of base metal on the fracture toughness of welds.

Table 28. Fracture toughness of production welds at room temperature.

IV.4.5. Fractography Analysis of Production Welds

Fracture surfaces of production welds with homogenized base metal are shown in Figure

75. In both of the as welded and aged conditions, crack propagated as ductile dimple

fracture where voids initiated in the interdendritic regions of welds. The particles in the

each dimples were identified as Nb-rich phases, such as Laves phase and MC carbide. The

voids are slightly larger in as welded condition than in the aged condition.

During fracture toughness testing, one of the specimens showed unusual behavior. After

executing about 10 unloading compliance measurements, up to 0.4 mm crack growth,

because of unknown reason further unloadings were not executed. The remaining

specimen was pulled open very slowly. The photo of the specimen is shown in Figure 75.

At first, the fatigue crack size at the side corresponding to face of weld is much larger than

that at the root side of weld. On the fracture surface, the crack plane on the face side of

root is much smoother and nearly flat. The cross sectional view of production weld is
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Base metal Weld condition Jo, KJ/m2 25JQ/sy Kq(J), MPa1m

MA AW +Age 99.8+9.2 - 2.2 mm 141±7

MA+HT AW 345+5 - 17 mm 263+5

MA+HT AW + Ae 104.2+±10.3 - 2.3 mm 144+7



shown in Figure 68. In the center of weld, a narrow band of primary dendrite structure is

aligned in thickness direction. This band stretches from top (face of weld) to near bottom

(root of weld). It can be assumed that when crack front is aligned with this band of

primary dendrite, the resistance to crack growth become lower and unstable crack growth

could happen. With current welding methods, in which the following weld pass is on the

top of the underbead at the same x-y coordinate, it is quite possible to form a wide band of

primary dendrite in the thickness direction, thus producings weak plane. So it is necessary

to review current production welding procedure to eliminate such an extended dendrite

band, especially in thickness direction.

IV.4.6. Summary and Discussion

The selection of the base metal condition for the welding is crucial to determine the

properties of weldments in as-welded condition which is important to assess the

performance of the conduit during fabrication processes of cable assembly. For the tube

reduction and winding processes, enough strength and ductility is needed to prevent

preferential deformation within the weld, which would result in kink and failure. When the

base metal is in the mill-annealed condition, the strength of weld is the same or lower than

adjacent base metal. The net effect of this is that deformation becomes more confined

within the weld and ductility become smaller. As ductility will bc smaller as the amount of

cold work increases, it is assuring to have welds with higher strength and greater ductility

than the base metal. In this respect, the base metal condition with hardness less than 80

(Rockwell-B) was selected for production weld study, based on the results of high

temperature (1050°C/lhr) homogenization heat treatment. When the homogenized base

metal is used, the strength of the welds is higher than surrounding base metal and the

preferential deformation within the weld fusion zone can be avoided.

Fatigue crack growth rate of production welding is similar to that of other welds studied.

The fatigue crack growth threshold value is about 3.7 MPa/m, similar to that of base

metal. [71]

Fracture toughness of production welding is about 20 % higher than that of manual-GTAW

at room temperature. The strength-toughness combination of production weld is 1005 MPa

- 144 MPax/m for weld with homogenized base metal and, 1024 MPa - 141 MPa/m for

weld with mill annealed base metal. Fracture surface analysis showed fully ductile dimple

fracture, with the voids initiated in the interdendritic region.
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a) As welded production welds with homogenized base metal, 2000X

rdIR I

b) Aged production welds with homogenized base metal, 2000X

Figure 75. Fractographs of production welds
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Figure 76. Surface of J-integral tested specimen, showing preferential crack growth near
the face of weld.
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IV.5. Evaluation of Tensile Properties for Fabrication

IV.5. 1. Tensile Properties of GTA Welds with 908 Filler.

A. Weld Averaged Tensile Properties of 7 mm-thick GTA Welds with 908 Filler

The results of full-thickness tensile tests of 7 mm-thick GTA welds with 908 filler are

summarized in Table 29. The relatively low UTS is explained by a loss of strain hardening

ability of the weld. After 9 % cold work is applied, the yield strength increases by about

140 MPa and UTS by about 50 MPa. The strength increased further as the cold work

increased but at slower rate. Ductility decreased gradually from 28 % to 12 % as cold work

increases from 0 % to 13 %. Even though the ductility of welds changed considerably,

reduction of area (RA) for each test condition are almost unchanged.

Table 29. Weld averaged tensile properties of 7 mm-thick GTA welds with 908 filler.

Condition (Ty, MPa UTS, MPa elongation, % RA, %

AW 399±2 691+7 28.5±0.5 56.6+5.3

AW + 9% CW 545±7 740±5 17.5±1.5 53.2+3.0

AW + 11% CW " 647±2 774+3 11.8±1.6 55.3+5.2

AW + 13% CW 653±1 773±1 12.4±0.4 58.2±0.5

AW: As-welded condition

CW: Cold work

B. Tensile Properties Variation through the Thickness of 7 mm-thick GTA Welds with 908

Filler

The results of partial-thickness tensile tests of 7 mm-thick GTA welds with 908 filler are

summarized in Table 30. In the as-welded condition, the root of the weld is stronger than

the face of weld for all of the condition tested. Ductility decreased gradually at both the

face and root of the weld as the amount of cold work increased from 0 % to 13 %. Aging

increased both yield strength and ultimate tensile strength by about 600 MPa. However,

ductility was decreased to about 5 % at both locations.
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Table 30. Tensile properties variation through the thickness of 7 mm-thick GTA welds with
908 filler.

Condition location y, MPa UTS, MPa elongation, % RA, %

AW F (face) 396+1 672+5 28.6+1.2 54.5±+1.6

R (root) 444±10 700±7 25.3+0.2 53.1±1.9

AW + 9% CW F 545+29 740±28 21.3+0.1 46.4+5.3

R 585+11 766+19 17.7±1.2 40.9+8.9

AW + 11% CW F 591+6 748±4 16.4+0.8 55.3±2.0

R 625+4 761+1 12.9+0.1 60.0±4.6

AW + 13% CW F 669+12 793+1 12.9+0.6 60.7+2.5

R 697+14 798+9 12.2+0.8 62.9+2.4

AW + 9% CW + Age F 1156+2 1363+3 8.0+0.2 26.8+4.1

R 1171+5 1345+1 8.4+0.4 31.4+0.5

Note: Description on the location where specimenes were taken is shown in Figure 26.

C. Results of Hardness Measurements of 7 mm-thick Welds with 908 Filler

The hardness profiles along the mid-plane of 7 mm-thick GTA welds with 908 filler are

shown in Figure 77. In the as-welded condition, the hardness of the weld is slightly less

than that of the mill annealed (MA) base metal. Increasing the amount of cold work raised

hardness in both the weld and adjacent base metal. Along the mid-plane of the weld,

within 2 mm of the fusion boundary, the hardnesses are almost the same in all unaged

conditions. Beyond that distance, the hardness approaches nominal base metal values. As

the amount of cold work increases, the hardness of fusion zone and adjacent heat affected

zone becomes much lower than far-away base meta. 1

The hardness variation through the thickness of 7 mm-thick GTA welds with 908 filler are

shown in Figure 78. Hardness is slightly higher near the root of the weld than near the

face of the weld. Such profile remained unchanged with cold work. Aging reduced the

hardness variation through the thickness and resulted in a uniform hardness profile.
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D. Weld Averaged Tensile Properties of 13 mm-thick GTA Welds with 908 Filler

The results of full-thickness tensile tests of 13 mm-thick GTA welds with 908 filler are

summarized in Table 31. As welded material showed about the same strength as 7 mm-

thick GTA welds with 908 filler but with increased ductility. The increase in strength with

cold work is larger than that in 7 mm-thick GTA welds with 908 filler. After 9 % cold

work, ductility is about 26 %.

Table 31. Weld averaged tensile properties of 13 mm-thick GTA welds with 908 filler

Condition Y, MPa UTS, MPa elongation, % RA, %
AW 409 687 44.0 44.4

AW + 5% CW 522+14 735+4 29.0+2.0 40.8+0.1
AW + 9% CW 622+3 792+9 26.0+2.0 40.8+0.7

AW: As-welded condition

CW: Cold work

E. Tensile Properties Variation through the Thickness of 13 mm-thick GTA welds with 908

Filler

The results of partial-thickness tensile tests of 13 mm-thick GTA welds with 908 filler are

summarized in Table 32. In the as-welded condition, the face of the weld showed lower

strength than the other locations tested. Ductility showed maximum at the face of the weld

while those at the other three locations showed almost identical values. At about three-

quarter of the thickness from the face of the weld (location BT), the strength was lower

than that of surrounding materials. This spatial variation of strength is more evident in the

9 % cold worked condition but become less significant after aging heat treatment.

Ductility also showed a similar trend of having higher ductility at the location where the

strength was lower. Generally, ductility decreased to about 17 % gradually at all locations

as the amount of cold work increased from 0 % to 9 %. After aging, ductility decreased

substantially.
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Table 32. Tensile properties variation across the thickness of 13 mm-thick GTA welds with
908 filler

Condition location y, MPa UTS, MPa elongation, % RA, %

AW T (face) 344+8 614+1 41.4+1.4

TB 446+4 700±1 30.1+0.3

BT 432+8 671+21 30.5+2.1

B (root) 444+8 700±7 30.8+0.6

AW + 5% CW T 469+±14 665+±1 21.5±4.7

TB 551+9 727+7 23.1+1.3

BT 532+7 720+8 29.8+0.2

B 637±8 793+6 25.7+1.4

AW + 9% CW T 578+8 717+14 16.5+3.0

TB 684+13 844+1 17.0+1.6

BT 597+1 774+6 17.7+1.9

B 674+4 839+3 19.1+1.2

AW + 9% CW + Age T 1130 1323 6.5 26

TB 1157+16 1343+21 7.7+0.6 20.5+3.2

BT 1133+2 1307+1 6.2+1.5 33

B 1162+15 1384+8 8.9+0.3 25.8+0.4

Note: Description on the location where specimenes were taken is shown in Figure 26.

F. Results of hardness measurement of 13 mm-thick GTA welds with 908 filler

The hardness profiles along the mid-plane of 13 mm-thick GTA welds with 908 filler are

shown in Figure 79. In the as-welded condition, the hardness of weld is slightly higher

than the adjacent base metal. As cold work were increases, the hardness profile is reversed

in that the weld had slightly lower hardness after 9 % of cold work. Aging eliminated the

hardness mismatch between weld and base metal.

The hardness variation through the thickness of 13 mm-thick GTA welds with 908 filler are

shown in Figure 80. In all of the unaged conditions, the hardness minima occur about 3

mm away from the root of the weld. Again, aging eliminated the hardness mismatch

through the thickness of the weld.
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IV.5.2. Tensile Properties of GTA Weld with 9HA Filler.

A. Weld Averaged Tensile Properties of 7 mm-thick GTA Welds with 9HA filler

The results of full-thickness tensile tests of 7 mm-thick GTA welds with 9HA filler are

summarized in Table 33. In the as welded condition, GTA welds with 9HA filler shows a

slightly lower yield strength and ductility than those of GTA welds with 908 filler. After 9

% cold work, the yield strength of GTA welds with 9HA filler approaches that of GTA

welds with 908 filler. However, ultimate tensile strength and ductility are much lower than

those of the GTA welds with 908 filler at the same conditions.

Table 33. Weld averaged tensile properties of 7 mm-thick GTA welds with 9HA filler

B. Tensile Properties Variation through Thickness of 7 mm-thick GTA Welds with 9HA

Filler

The results of partial-thickness tensile tests of GTA welds with 9HA filler are summarized

in Table 34. In the as-welded condition, the root of the weld is stronger than the face of

weld in all test conditions. The face of weld showed larger ductility than the root of weld

in all conditions tested. The difference between them decreased after aging heat treatment.

With aging, the difference of strength between the face and the root of the weld is about 70

MPa. Ductility is almost the same as that of the GTA welds with 908 filler at both location

after and aging.

151

Condition (y, MPa UTS, MPa elongation, % RA, %

AW 364+3 617±2 25.5±0.5 64.2+±0.9

AW + 5% CW 491+7 667+±3 19.8+±1.2 61.9±_2.7

AW + 9% CW 541±+3 680±6 15.3+±1.2 68.6+±2.8



Table 34. Tensile properties variation across the thickness of 7 mm-thick GTA welds with
9HA filler

Condition location Yy, MPa UTS, MPa elongation, % AA, %

AW F (face) 364+3 622±10 31.5+0.5 62.9+4.4

_ R(root) 389±17 641±9 24.6+0.2 71.0+0.5

AW + 5% CW F 416±8 610±3 23.6+0.8 69.7±1.9

R 489±24 659±17 18.6+0.5 63.4+0.4

AW + 9% CW F 524±4 671+8 20.1+1.0 60.9+1.9

R 598±4 739±20 14.3+0.9 53.0+1.5

AW + 9% CW + Age F 1029+6 1265+10 8.4+0.1 30.3+5.8

_ R 1104+8 1278+8 7.5+0.1 33.5+9.4

Note: Description on the location where specimenes were taken is shown in Figure 26.

C. Results of Hardness Measurement of Welds with 9HA Fillcr

The hardness profiles along the mid-plane of 7 mm-thick GTA welds with 9HA filler are

shown in Figure 81. In the as-welded condition, the hardness of the weld is slightly less

than that of the adjacent base metal. Increasing the amount of cold work increased

hardness in both weld and base metal but at different rates. For unaged conditions, within

2 mmn from the fusion zone, the hardness of base metal were close to that of the weld. In

the aged condition, the fusion zone has lower hardness than the base metal. Unlike the

unaged condition, the hardness increases to that of the base metal right outside of the fusion

zone.

The hardness variation through the thickness of 7 mm-thick GTA welds with 9HA filler are

shown in Figure 82. The root of the welds showed higher hardness than the face of the

welds in the as-welded and cold worked conditions. This profile remained unchaged after

the aging heat treatment. In the aged condition, hardness varied from 490 at the root of the

weld to about 440 at the face of the weld.
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IV.5.3. Tensile Properties of Gas Tungsten Arc Weld with 9HB Filler.

A. Weld Averaged Tensile Properties of 7 mm-thick Welds with 9HB filler

The results of full-thickness tensile tests of 7 mm-thick GTA welds with 9HB filler are

summarized in Table 35. Strengths are lower than those of GTA welds with 9HA filler in

all tested conditions. After 9 % cold work, yield strength is 515 MPa and ductility is about

16%.

Table 35. Weld averaged tensile properties of 7 mm-thick GTA welds with 9HB filler

Condition ay, MPa UTS, MPa elongation, % RA, %

AW 328±+7 556±+6 25.6±+1.4 72.5±+0.8

AW + 5% CW 408±+2 583±+1 19.8+0.4 73.1±+0.8

AW + 9% CW 515±+4 662±+3 16.6+0.4 65.8±+2.8

B. Tensile Properties Variation through the

Filler

Thickness of 7 mm-thick Welds with 9HB

The results of partial-thickness tensile tests of 7 mm-thick GTA welds with 9HB filler are

summarized in Table 36. In the as-welded condition, the root of the welds are stronger

than the face of the welds for all test conditions. The faces of the welds showed larger

ductility than the roots of welds except the as-welded + 9 % cold worked condition.

Generally, strengths are lower than the GTA welds with 908 and 9HA fillers at both

locations in all test conditions.

The differences become more evident in the aged condition. The yield strength difference

between the face and the root of the weld is about 250 MPa. There is also a large

difference in ultimate tensile strength at both locations. Ductiliy of the welds decreased

after aging heat treatment.
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Table 36. Tensile properties variation across the thickness of 7 mm-thick GTA welds with
9HB filler

Condition location cy, MPa UTS, MPa elongation, % RA, %

AW F (face) 313+1 531+6 26.5+1.4 72.7+5.3

R (root) 380±2 599 22.6 72.3+10.0

AW + 5% CW F 385+17 568+2 21.3+0.7 62.4+16.3

,, R 483+2 635+2 17.6±0.4 74.7+3.0

AW + 9% CW F 495+8 638±3 16.2+0.7 65.3±5.2

R 561+12 751+21 18.9±0.2 52.2±1.9

AW + 9% CW + Age F 843+3 1071+10 8.1±+0.1 37.2+0.4

R 1100±47 1294+40 6.5+0.5 29.3±3.9

Note: Description on the location where specimenes were taken is shown in Figure 26.

C. Results of Hardness Measurement of Welds with 9HB Filler

The hardness profile along the mid-plane of 7 mm-thick GTA welds with 9HB filler are

shown in Figure 83. In the as-welded condition, hardness of GTA welds with 9HB filler

is lower than that of the adjacent base metal. With cold work, the hardness profile

approached the U-shape. In the aged condition, hardness within the weld, especially near

the center of the weld, are much lower than that of the base metal.

The hardness variation through the thickness of 7 mm-thick GTA welds with 9HA filler is

shown in Figure 84. The root of the welds are consistently stronger than the face of the

welds. The hardness mismatch becomes greater after the aging heat treatment. The

hardness decreases from about 480 at the root of the weld to about 320 at the face of the

weld.
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IV.5.4. Aging responses of GTA welds

The changes of hardness of GTA welds vs. aging time at 650 °C are summarized in Figure

85. The hardness values were taken as the average of several measurements taken through

the thickness of welds. Initial condition of welds is in the as-welded state. For GTA

welds with 908 and 9HA filler, hardness is still increasing after 200 hours. However,

hardness changes little after 100 hours.

The results for cold worked GTA welds are shown in Figure 86. For all three GTA welds,

hardness reaches a plateau at about 100 hours.
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Figure 85. Aging responses of various GTA welds (initial condition:
temperature: 650 °C)
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[V.5.5. Summary and Discussion

A. Effects of Filler Composition

The results of full-thickness tensile tests are summarized in Figure 87 including various

base metal properties. Tensile properties of GTA welds vary considerably depending on
the filler metal used.
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In the as-welded condition, GTA welds with 908 filler show yield strength of about 400

MPa which is about the same value as that of solution annealed (SA) base metal. The

removal of alloying elements (as in the case of 9HA and 9HB) resulted in a significant

reduction in both yield strength and ultimate tensile strength. Some degree of solid solution

hardening might have caused this strength difference even though all three alloying

elements (Nb, Ti, and Al) are considered to be the precipitation hardening constituents.

Aside from the possibility of limited solid solution hardening by alloying elements, in-situ

aging of prior passes by subsequent welding passes would have contributed to the

hardening of GTA welds, especially that of GTA welds with 908 filler.
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Figure 86. Aging responses of various GTA welds (initial condition:
work, aging temperature: 650 °C)

as weld + 9 % cold

Despite having lower strength, GTA welds with 9HA and 9HB filler showed lower

ductility than GTA welds with 908 filler. This does not necessarily mean that they are less

ductile than GTA welds with 908 filler. The specimen geometry used in this study is such

that the gauge section contains both weld and base metal. Therefore, the ductility measured

using an extensometer does not provide an accurate measure of the true ductility of the weld

except for a few partial thickness specimens which had a gauge length of more than 13

mm. Rather, the ductility represent the low bound values of each test condition. In this

158



study, base metal plates were used as in the mill annealed condition which has a higher

strength than the weld. Under loading, weld zone is deformed heavily surrounded by the

stronger base metal. That combination tends to give underestimated ductility values. The

flip side of that is that if the base metal can be kept softer than the weld, most of the

deformation will be avoided within weld zone and be distributed in surrounding base metal.

This situation would be especially important to reduce the risk of crack

initiation/propagation within weld zone during the manufacturing processes.

Unlike ductility, reduction in area (RA) is more closely related to the ductility of the weld

itself. Specimens failed within weld proceeded by necking without exception. The

reduction of area changed inversely with strength.

With up to 9 % cold work, all three GTA welds were hardened more or less the same way.

The increases in yield strength are larger than those of UTS. Ductility decreased to 50 %

of that of the as-welded condition. The reduction of area did not change much with cold

work.

In the as-weld + aged condition, the yield strength of GTA welds with 908 filler is slightly

less than that of base metal. However, UTS is about 100 MPa less than that of base metal.

Welds with 9HA and 9HB fillers showed lower strength than GTA welds with 908 filler.

The difference in strength between three welds are aggravated by aging which fully utilizes

the alloying elements present in filler metal. The low strength of GTA welds with 9HB

filler is attributed to the very low alloying element content (total 1.5 % compared to 5.6 %

in 908 filler). 9HA which has 3 % of alloying elements showed intermediate behavior with

970 MPa which is about 9 % less than GTA welds with 908 filler. Despite the diffrences

in strength, ductility values are almost identical for all three GTA welds.

The effects of cold work prior to aging is to increase yield strength. The change in yield

strength is the greatest in GTA welds with 9HB filler. It has been previously reported that

cold work enhanced the precipitation of Y in the 908 base metal.

The most significant effects of aging was the loss of ductility in GTA welds. A similar

observation for other precipitation hardening materials had been reported earlier.[51, 72]

The effects of different weld filler and/or amount of prior cold work on the ductility of

GTA welds seemed minimal in the aged condition. However, it has to be mentioned that

the fracture toughness of the weld is a strong function of filler metal composition.
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The hardness of the weld changes gradually with increasing cold work. In the as-welded

condition, the hardness of GTA welds are slightly less than the adjacent base metal in all

three GTA welds. For GTA welds with 908 filler, the hardness of the weld and the base

increases at about the same rate as the amount of cold work increased from 0 % to 13 %.

Unlike GTA welds with 908 filler, GTA welds with 9HA and 9HB fillers showed less

increases in hardness compared to base metal. The hardness of the heat affected zone is

almost the same as that of weld. In all three GTA welds, the hardness profile within weld,

which initially showed local fluctuation caused by different thermal cycle and residual

thermal stress, approached a relatively smoother U-shape as the amount of cold work

increased.

During welding, various microstructural modifications occur in both weld and base metal.

The base metal within 2 mm of the fusion zone experienced thermal cycles high enough to

resolutionize small amount of ¥ which was formed during the mill anneal process. This

zone coincides with the grain growth zone near weld.
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Figure 87. Whole-thickness tensile properties of 908 base and weld. Ductility of GTA
welds are written at the bottom of the bar at each condition.
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B. Effects of the Thickness of Weld

The effects of thickness is shown in Figure 87. In the as-welded condition, the strength of

7 mm-thick and 13 mm-thick GTA welds with 908 filler are the same even though they

show a considerably different ductility and reduction of area. With 9 % cold work, 13

mm-thick welds showed higher strength and ductility than 7 mm-thick GTA welds with

908 filler. The large increase in ductility in thick section welds is due to the specimen

geometry. The thick weld contains more weld metal and less of base metal within the

gauge section of the tensile specimen. With such a combination, the constraint imposed on

the softer weld by the stronger base become less and the ductility within the gauge length

become larger.

C. Spatial Variation of Tensile Properties

In the as-welded condition, there is variation in microstructure and mechanical properties

within the GTA welds. The complex thermal cycles during welding causes localized

annealing, grain growth, homogenization, and precipitation of hardening phases depending

on the materials being welded. In multi-pass welding, the microstructure of earlier welding

passes are modified by subsequent welding passes. Also the effects of dilution become

important when the chemical composition of filler is different from that of base metal.

In the as-welded condition, the material at the bottom half of the weld which contains the

root of the weld showed higher strength than the one at the top half of the weld. For

precipitation hardening alloys, the most dominant microstructural modification is aging of

the underbead by subsequent welding passes. As shown in Figure 88, the tensile

properties for material taken at location T (the first quarter near the face of the 13 mm-thick

GTA welds) has the lowest strength and the largest ductility. On the other hand, the other

three, TB (the second quarter of material from the face of the 13 mm-thick GTA welds),

BT (the third quarter of material from the face of the 13 mm-thick GTA welds) and B (the

quarter of material from the root of the 13 mm-thick GTA welds) showed nearly identical

properties. The hardness measurement, shown in Figure 80, also support this argument.

During cold rolling of thick plates, the plastic deformation tends to be concentrated at the

surface of the plates, resulting in relatively small effective plastic deformation at the mid-

plane of the plates. In the case of weld, which has different flow characteristics depending

on location, an additional factor has to be considered. When plates are rolled, the face of
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weld which is softer deforms more readily than the root of weld which is stronger. This

would shift the plane, where the deformation is the lowest, toward the root of weld. Thus,

the lowest strength is observed below near the root of the weld. A similar spatial variation

was also observed, though less extent, in 7 mm-thick GTA welds with 908 filler, as shown

in Figure 89. The strength at the face of weld (F) was less than that at the root of the weld

(R) in cold worked condition. This strength difference disappeared after aging heat

treatment.

As shown in Figure 89, when the filler metal 9HA and 9HB were used, the strength was

reduced both at the face (F) and the root of the welds (R). Unlike the GTA welds with 908

filler, this strength difference was not eliminated after aging heat treatment. In GTA welds

with 9HA filler, the face of the weld has the composition of 9HA filler. However, dilution

at the root of weld formed a solidified structure whose chemical composition is between

that of base meatl and 9HA filler. This difference in composition causes a large difference

in the strength between the face and the root of the welds. The same behavior happens in

GTA welds with 9HB filler. In GTA welds with 9HB filler, the difference in the strength

is far greater than that in GTA welds with 9HA filler.
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Figure 88. Partial-thickness tensile properties of 13 mm-thick GTA welds with 908 filler.
Ductility values are written at the bottom of the bar at each condition. Description on the

location where specimenes were taken is shown in Figure 26.
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Figure 89. Partial-thickness tensile properties of 7 mm-thick GTA welds with various
fillers. Ductility values are written at the bottom of the bar at each condition. Description

on the location where specimenes were taken is shown in Figure 26.

D. Correlation Between Hardness and Strength of Welds

The results of the hardness measurements and tensile tests were correlated. The correlation

between them was found by linear regression methods. The results are plotted in Figure

90. These equations can be used to estimate of strength based on simple microhardness

test results.
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Figure 90. Correlation between strength and hardness of GTA welds.
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V. Discussion

V. 1 Solidification Characteristics of Alloy 908 Weld

During solidification of the weld pool, local thermodynamic equilibrium is maintained at the

liquid/solid interface. The solute composition of newly forming solid is determined by

solute composition of the liquid and the equilibrium partition ratio, k of the solute element.

As solidification progress, elements with k < 1 are enriched in the liquid while those with k

> 1 are enriched in the solid. In nickel-base or nickel-iron-base superalloys, Nb and Ti

have partition ratios of less than unity and preferentially enriched in the liquid within the

interdendritic zone.[34, 36, 38, 39]

Using the equlibrium temperature measured on filler metals with varying Nb content by

differential thermal analysis (DTA) the low Nb side of a pseudo-phase diagram is shown in

Figure 91. Unlike binary alloy systems, where the abscissa is a pure element, the liquidus

and solidus temperature do not coverge at 0 % Nb. Thus the equilibrium partition ratio can

not be calculated using conventional methods, such as k - CSb / Ckb. Instead the

equlibrium partition ratio for Nb was calculated by following methods. First, the solidus

and liquidus lines were extrapolated. Then, the imaginary Nb content (CNbI), where the

liquidus and solidus temperature converge, was calculated to be - 3.14 %. The equilibrium

partition ratio, k at temperature TA can then be calculated as follow:

s _Ck Nb CNb
CsL C1
tMb Nb

The resulting equilibrium partition ratio is about 0.47. The measured partition ratio in alloy

908 welds was (Nb concentration at dendrite core, 1.6 %)/(Nb concentration in 908 filler,
3.0 %) = 0.53, which is close to the above value. Similar values of k have been reported

in 900-series superalloys,[38, 39] and Inconel 718.[36] Often, the equlibrium partition

ratio of Nb has been treated as a constant during solidification, which is confirmed by

electron microprobe analysis.[36] As shown in Figure 91, liquidus and solidus

temperatures are linearly proportional to Nb content, implying that the equilibrium partition

ratio of Nb in alloy 908 welds is a constant for the initial stage of solidification. The
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equilibrium partition ratio at the later stage of solidification can be measured by comparing

the composition of eutectic y and lamellar eutectic constituent which contains alternating

bands of eutectic y and Laves phase.[36, 39] However, in alloy 908 welds, the final

eutectic reaction takes place by precipitation of isolated secondary phase (Laves phase) and

eutectic y matrix (isolated eutectic). It is difficult to determine the composition of the

eutectic constituent. For other 900-series superalloys, lamellar eutectic constituent was

found in the final solidified welds, and the equilibrium partition ratio of Nb at the last stage

of solidification was calculated as about 0.5 [39] which was close to the value of 0.58,

reported for the initial stage of solidification.[38] Thus, approximately, the equilibrium

partition ratio of Nb in alloy 908 welds can be treated as a constant over the entire

solidification temperature range.

The equilibrium partition ratios of other elements were not explicitly measured. Comparing

the composition of the dendrite core and bulk material, the partition ratio of other elements

at the initial stage of solidification can be estimated. Titanium shows equilibrium partion

ratio of about 0.67 which is close to the value reported.[36, 38, 73] At the later stage of

solidification, the equlibrium partition ratio of Ti approaches unity in Inconel 718.[36] In

the 900-series superalloys, Ti partitioning into Laves phase was reported.[39] In manual

arc welds of alloy 908, the composition of Ti in Laves and surrounding y matrix is about

the same, suggesting the partition ratio reaches unity at the last stage of solidification.

However in automatic production welds of alloy 908, the Ti content in Laves phase is

higher than that in the surrounding matrix. It is not clear what causes this difference.

Nonetheless, the segregation of Ti is less significant than that of Nb in alloy 908 welds.

Because of the low atomic weight of Al and Si, their equilibrium partition ratios were not

measured in this study. A partition ratio of Al close to unity has been observed in Ni-base

alloy IN100 [35,37] and in Incoloy 903.[38] Thus, it is assumed that the partition ratio of

Al in alloy 908 is close to unity, also. Silicon is known to be segregated into the liquid

during solidification of superalloys.[36, 39] Though the equilbrium partition ratio of Si

was not measured in 900-series superalloys,[39] it was measured as 0.57 in Inconel

718.[36] Considering the similarity of solidification behavior of the alloys, it can be

assumed that the equilibrium partition ratio of Si in alloy 908 is about the same. Recently,

Cieslak estimated the equilibrium partition ratio if C in alloys similar to alloy 625 to be

approximately 0.2 by using differential thermal analysis techniques.[74]
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Due to the low equilibrium partition ratio and relative abundance, segregation of Nb

determines the overall microstructure of alloy 908 welds. Thus, the solidification behavior

of alloy 908 welds will be discussed, focussing on the segregation of Nb, followed by the

precipitation of the Nb-rich secondary phases, such as MC carbide and Laves phase. The

solidification of alloy 908 welds can be explained as follows using the approach used for

Inconel 718.[75] Initial dendrites of y form and cause the liquid to be enriched in Nb and

C. This enrichment continues during cooling until Nb-rich MC carbides form at around

1250 C as confirmed by differential thermal analysis. This is close to the reaction

temperature range of 1231 - 1250 C reported for nickel base superalloys.[32, 36] Because

the peak representing the MC carbide is broad, it can be assumed that MC carbides form

over a range of temperatures [38, 75] rather than. at a sharp invariant temperature assumed

by Knorovsky et al.[36] MC carbides in alloy 908 welds precipitate as isolated particles

(divorced eutectic) with morphologies varying from distinctive cubic to arbitrary shapes. A

complex form of MC carbide, with lobed and arrow-headed shapes, reported in other

superalloys,[31, 38] were not observed. A small amount of Ti-rich carbides are present.
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As solidification progress, the simultaneous growth of y matrix and MC carbide takes place

through the epitaxial growth of existing y and the nucleation and growth of MC carbides in

the interdendritic liquid. When the liquid reaches the eutectic temperature, the terminal

eutectic can be divorced with respect to carbides which can form epitaxially on existing

carbides.[75] The carbon-depleted liquid then forms the y/Laves eutectic constituents. The

resulting microstructure is the precipitation of seperate Laves phase at the proximity of MC

carbides in the solidified structure.[31, 43, 75] Such a microstructure is oberved in alloy

908 welds. While only one of either Laves phase and MC carbides are observed in most of

the interdendritic zones in alloy 908 welds, both of the phases are observed in some of the

interdendritic zones. The reaction temperature of yLaves eutectic was not apparent from

the results of differential thermal analysis of alloy 908. The y/Laves eutectic temperature of

Inconel 718 is reported as about 1200 °C by Knorovsky et al.[36], and that of alloy 625 as

about 1150 °C.[32] It can be assumed that the final eutectic reaction temperature of alloy

908 welds is close to 1200 °C.

Two kinds of MC carbides are present in the alloy 908 welds. One of them is the Nb-rich

MC carbide with a composition of 86 % Nb - 13 % Ti with face centered cubic structure

and lattice constant of a = 4.43 A. The composition is similar to the MC carbides in alloy

908 base metal [20] and alloy 903 welds.[38] Also, similar lattice constants were reported

in alloy 908 base metal [20], cast and wrought Inconel 718[33], Inconel 718 welds[36],

and alloy 903 welds.[38] Thus, the composition and lattice constant of Nb-rich MC

caqrbide, both in the welds and the base, of nickel-iron base superalloys can be considered

the same. The peaks representing another face centered cubic crystal structure, with lattice

constant of a = 4.41 A, were detected by X-ray diffraction pattern analysis on extracted

particles. Because the lattice constant of TiC is smaller than that of NbC,[76] these peaks

are thought to represent Ti-rich MC carbide with about 30 % of Ti. Even though X-ray

diffraction pattern analysis suggests that Ti-rich MC carbide is an equally abundant phase in

alloy 908 welds, only a small number of Ti-rich MC carbide were identified by EDS

analysis. It is possible that, because the Ti-rich MC carbide is smaller than the Nb-rich MC

carbide, some of the Ti-rich MC carbide might have been lost when replicas were made.

Also, because the replicated film was attached to conductive carbon tape, the small size of

the Ti-rich MC carbide could have made it difficult to get enough signal to identify the

phase by SEM/EDS analysis.

The composition of Laves phase in alloy 908 welds is 30 - 35 % Nb, 20 - 25 % Fe and 34

- 37 % Ni, determined by EDS analysis on extracted particles. Also, 1.9 % of Si is present
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in Laves phase in alloy 908 welds. Silicon is known to segregate into Laves phase in other

superalloys.[19, 32, 39] The amount of Nb in Laves phase in alloy 908 welds is

considerably higher than those in other alloy systems,[31, 36, 38, 39] shown in Table 37.

Compared to Incoloy 903 welds, Co was replaced mostly with Nb and Ni in alloy 908

welds. The crystal structure of Laves phase in alloy 908 welds is hexagonal with lattice

constants of a = 4.77 A and c = 7.76 A, which is similar to the lattice constants of Laves

phase in other 900-series superalloys.[38, 59]

The final solidified alloy 908 weld microstructure is dominated by Laves phase and MC

carbides. No quatitative measurement of each phases was conducted, partly because the

phases can not be distingushed by morphological difference. When, EDS analysis was

conducted to identify phases, slightly more Laves phase than Nb-rich MC carbide was

detected. Also, the intensity of Laves phase peaks in X-ray diffraction pattern on extracted

particles was stronger than that of MC carbides. However, there are two kinds of MC

carbides in alloy 908 welds, the combined peak intensity of Nb-rich MC carbide and Ti-

rich MC carbide is stronger than that of Laves phase. Ernst et al.[39] observed

predominantly Laves phase in the welds of 900-series superalloys. However, Nakkalil et

al.[48] reported predominatly Nb-rich MC carbide in Incoloy 903 welds. Also, Thompson

et al.[40] observed about 70 % increase in the volume fraction of Nb-rich carbide without

change in the volume fraction of Laves phase when the C content changed from 0.02 to

0.06 % in cast Inconel 718. Thus, more research is needed to clarify the diffrences

observed by the different group of researchers.

In welds with new filler metals, the dominant phase changes as the Nb-content in the filler

metal changes. It should be mentioned that, though strict control of Si and C centents was

specified when designing the filler metals, the composition of the filler metals was not

explicitly analyzed. Considering the use of C as a deoxidizer during the vaccum induction

melting process [77] and the presence of Si in the Laves phase in the welds with new filler

metals, it is suspected that new filler wires have low Si and C content. Thus, the Si and C

contents in the new filler metals are considered to be close to those in alloy 908 filler metal.

When the Nb-content is more than 1.5 %, both Laves phase and MC carbide is present as

major phases in the welds. Laves phase was not detected when the Nb-content of the filler

metal was less than 1 %. Instead, MC carbide becomes the dominant phase. The

composition of Nb-rich MC carbide becomes gradually richer in Ti at the expense of Nb.

Cieslak [32] observed a predominantly MC carbide microstructure in high C (0.038 %)

alloy 625 welds which have about 3.6 % Nb. Because the dominant phase in the welds

depends on the ratio of Nb/C,[45] reducing the Nb content in alloy 908 filler has a similar
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effect on the microstructure of alloy 908 welds. When the Nb content in the filler metals is

small, not enough Nb is available to reach y/Laves eutectic composition after the nucleation

and growth of MC carbide. The size of the interdendritic zone, rich in Nb, surrounding the

Laves and/or MC carbide, decreased as the Nb content in the filler decreased.

Table 37. Comparison of the composition of precipitates within the weld fusion zone of
superalloys. (in weight percent)

Alloy phase Nb Ni Fe Ti Si others ref.

718 Laves 22.4 45.2 11.6 1.1 1.6 13 Cr, 4.9 Mo 36

37.5 35.6 9.6 1.4 0.5 11.1 Cr, 4.2 Mo 31*

MC 86.9 2.0 0.5 5.5 0 2.3 Cr, 2.8 Mo 31*

903 Laves 25.5 31.2 25.5 3.8 1.5 12.5 Co 39

30.4 28.2 21.0 2.9 1.6 15.9 Co 38

MC 85.8 14.2 38

908 Laves 35.5 37.3 21.5 2.5 1.9 1.3 Cr Current

MC 85.8 1.2 0.1 12.7 0.1 Current

* Originally given as atomic percents, converted into weight percent.

The kinetics of homogenization can be expressed as an Arrhenius form. The simplest

model for considering solution kinetics is that of Singh and Flemings' [78] for a binary

alloy containing nonequilibrium eutectic. In this model, dendritic arms are assumed plate-

like and solute distribution within them are sinusoidal. In addition, eutectic is assumed

isolated, and so the interdendritic region consists of plates of secondary phase with uniform

composition, Ca. The amount of secondary phase is small so that motion of the l-P

boundary can be neglected. Dissolution is limited by diffusion in the a-phase. The

solution to the diffusion equation is given as;

g + a _r2(Dst/4102 )

go +a

where a = CM - CO
C9
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where g is defined as the volume fraction of secondary phases. Ds is diffusion coefficient

of solute element, 10 is the one half of the dendrite arm spacing or the spacing between the

concentration peak or precipitates to be removed. Cm is the maximum solute content in

primary phase, and Co is overall alloy composition. When heat treatment is at a

temperature very close to the solvus, Co = Cm, and the equation becomes:

g = e-r 2 (Dst/4102 )

go

The relaxation time t = 4102/: 2Ds, which is the time the volume fraction of secondary

phases decreases to a factor of l/e. The diffusion coefficient of elements are expressed as

follows:

D = DO exp(- QT)RT

For Nb in y Fe, Do = 7.5 x 10-5 m2/sec and Q = 2.64 x 105 J/mole have been reported.[79]

At high temperature, the above equation gives almost the same diffusion coefficient as other

published results.[80] At 1050 °C, which is slightly higher than the stability limit of Laves

phase in Inconel 718 [19] and Incoloy 909,[59] DNb = 2.83 x 10-15 m2/sec.

Corresponding relaxation times are estimated (when dendritic spacing is 210 = 10 gm) as

3580 seconds. In a spherical geometry, by which the precipitation could be more closely

described, the diffusion kinetics are a lot faster than the slab geometry treated above.

Approximately, the relaxation time in a spherical geometry is about 1/4 of that in slab

geometry.[81] The resulting relaxation time is then about 895 sec at 1050 °C. The

analytical solution for the dissolution of Laves phases are plotted in Figure 92. In one hour

at 1050 °C, the volume fraction of precipitates decreases to less than 2 % in 3-dimensional

geometry. In a practical sense, complete dissolution of Laves phases was achieved. The

experimental result confirmed the complete dissolution of Laves phase within an hour at

1050 C.

In addition to the dissolution of Laves phase, recrystallization of the weld microstructure

occurred during the homogenization treatment. This was rather unexpected, since initially,

it was thought that heat treatment at such a high temperature might produce an even larger

grain size than the already elongated weld grains. Apparently, plastic deformation caused

by thermal contraction and distortion during the welding could have provided nuclei for

recrystallization.
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Figure 92. Analytical solution of dissolution kinetics using diffusion coefficient of Nb at
1050°C.

V.2. Mechanical Properties and Fracture Mechanics of Welds

Mechanical properties of alloy 908 welds with filler metals show a strong dependence on

the Nb content of the filler metals. When the Nb content is reduced from 1 % to 0.5 %, the

fracture toughness increases about 25 % without losing strength. Recently, similar results

were reported on the fracture toughness of Inconel 718 weld.[82]

Cold work prior to aging increases the strength of welds. Similar behavior of alloy 908

base metal has been reported earlier.[2] However, due to a difference in the amount of cold

work applied, direct comparison was not possible. The effect of lowering the test

temperature was to increase the strength of the welds with filler metals both in the as weld

+ aged and the as-welded + cold worked + aged conditions, which is the typical response

of austenitic and Invar-type alloys.[2, 83, 84, 85, 86, 87] Ductility of alloy 908 welds also

increased as test temperature decreased from room temperature to 4K, showing similar

behavior to the base metal [2] and other superalloy welds.[82] The combined effect of cold

work and test temperature was to increase yield strength of the welds about 30 %.
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The separate effect of cold work and test temperature on fracture toughness varied in each

weld tested and can not be generally determined based on the results thus far. Moderate

temperature dependence of fracture toughness has been reported for both the base and the

welds of several superalloys.[2, 82, 86] Cold work prior to aging caused reduced fracture

toughness in the base metal alloy 908 [2, 88] as well as in the welds with fillers at 4K, as

shown in Figure 59. The effect of cold work on fracture toughness of welds with fillers

was greater at 4K than at room temperature. Despite the mixed response to cold work and

test temperature, the combined effect of cold work and test temperature can be clearly

defined based on the results of this study. Fracture toughness of the welds with fillers at

superconductor operating temperature is about 10 - 30 % lower than room temperature

fracture toughness of directly aged welds.(see Figure 62) Overall, the mechanical

properties of the as-welded + 9 % cold worked + aged welds tested at 4K showed about 30

% higher yield strength and 10 - 30 % lower fracture toughness than the as-welded + aged

welds tested at room temperature.(see Figure 63)

Fatigue crack growth rate tests of the welds with filler metals were conducted only in the

as-welded + aged condition at room temperature. Fatigue crack growth rates of the welds

with fillers, as shown in Figure 93, were slightly lower than that of the base metal and

showed little dependence on the Nb content. Similar behavior has also been reported for

Inconel 706 [52]. However, the opposite behavior has been reported for precipitation

hardening stainless steel (JBK-75) [89] and high Mn-austenitic steel.[90] The effect of

cold work on the welds with fillers will be small as reported for base metal alloy 908.[2]

The effects of temperature on fatigue crack growth rate and fatigue life of austenitic steels

are well documented.[52, 85, 89, 90, 91] As temperature is reduced from room

temperature to 4K, both of the fatigue crack growth rate and fatigue life improved

considerably. For alloy 908 base metal similar behavior was observed.[2, 92] For alloy

908 welds with fillers, similar behavior can be expected.

In ductile dimple rupture, the correlation between fracture toughness and inclusion spacing

is well known. Generally, the fracture toughness of a material increases as the inclusion

spacing increases.[54, 66, 93] Unlike stainless steel welds, which showed a strong

dependence of mechanical properties on welding methods,[93, 94] alloy 908 welds

showed little dependence of fusion welding methods used, except production welds by

automatic gas tungsten arc welding techniques, even though about a 2-fold change in

precipitate spacing was observed depending on welding method. The production welds

showed improved fracture toughness over the manual gas tungsten arc welds, though the

dendritic structure and precipitate spacing is the same as manual gas tungsten arc welds.
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Figure 93. Comparison of fatigue crack growth rate of base metal, manual-GTAW, and
production weld by pulsed-GTAW.
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Fracture toughness of the welds improved dramatically when the welds were homogenized

at 1050 °C/l hr prior to aging. This improvement in properties was achieved by reducing

secondary precipitates within the welds. The benefit of high temperature heat treatment on

mechanical properties of weld and base metal of superalloys have been reported by many

researchers.[5, 51, 53, 58] The most significant effect of the high temperature heat

treatment is to reduce or remove brittle Laves phases by dissolution, which improves

fracture toughness and ductility. For Inconel 718 welds, full recovery of strength was

achieved by precipitation hardening incorporating alloying elements dissolved from

precipitates.[58] For alloy 908 welds, however, only fracture toughness and ductility were

recovered, while the strength of the welds was lower than the base metal in the aged

condition. However, when the 700 °C/100 hrs aging condition was used, homogenized

welds showed much higher strength.(see Table 15) This suggests that the standard aging

condition (650 °C/200 hrs) is not the optimum aging condition for the homogenized welds,

at least to obtain maximum strength.

The fracture surface of alloy 908 welds shows a typical ductile rupture morphology. The

mechanism of ductile dimple rupture has been well summarized by Van Stone et. al.[66] In

alloy 908 welds, the void spacing on the fracture surface is about the same as the dendritic

spacing in the welds with exception of laser beam welds and flash welds. Thus, it is

thought that the interdendritic precipitates such as Laves phase and MC carbide provide the

microvoids initiation sites during the fracture toughness test. Also, both Laves phase and

Nb-rich MC carbide were identified at the base of the dimples by in-situ EDS analysis.

When the Nb content in the filler metals is higher, a debris-like broken structure is visible at

the base of the dimple. This debris-like broken structure is thought to be the result of the

low ductility failure of the y matrix surrounding precipitates. At the last stage of

solidification, Nb-rich y matrix is formed surrounding Laves phases, from the eutectic

liquid. During aging heat treatment, this Nb-rich y matrix is hardened by precipitation of

'/, and become much less ductile than the dendrite core. Such a microstructure can explain

the difference in the morphology of the dimple base between welds with 9FA filler and

9HA filler. The fracture of welds with 9FA filler can be explained as the mechanism

shown in Figure 94-b). First, microvoids initiate by separation of the secondary phases,

such as Laves phase and Nb-rich MC carbide. Then, the surrounding low ductility area is

torn apart without much plastic deformation. This increases the void size effectively.

Finally, the voids grow with plastic deformation until joined to the existing crack. On the

other hand, the fracture of welds with 9HA filler can be explained as the mechanism shown

Figure 94-a). In this case, the voids grow plastically, right after the microvoid formation.
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Considering that most of the energy expended during dimple rupture is absorbed during

void growth,[96] the combination of large secondary phases and large surrounding Nb-rich

area is thought to be the cause of low fracture toughness of welds with 9FA filler metal.

The difference in fracture morphology between welds with 9FA filler and homogenized

welds with 9FA filler can be explained in the same way. The removal of the Nb-rich

matrix and Laves phase leaving only MC carbide resulted in dimples with extensive wavy

deformation marks on the wall of dimples devoid of broken structure at its base.

Thus, it is shown that the reduction of precipitation of secondary phase and the size of Nb-

rich y matrix can be achieved by reducing Nb content (from 3 % to 0.5 %) in the filler

metal. Similar results can be achieved by homogenizing the welds prior to aging. Both

methods increased fracture toughness of the alloy 908 welds.

0o ®
B'

0
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I~z-zIZc
Case I Case II

Figure 94. Schematic of void initiation, growth and coalescence. Case I: General dimple

rupture, Case II: Dimple rupture in weld fusion zone, where less ductile zone is

surrounding brittle phases.
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V.3. Implications to Fusion Applications

The selection of base metal condition for welding is crucial to the determination of the

properties of weldments in the as-welded condition. This choice will determine the

performance of the conduit during fabrication of the cable assembly. For the tube reduction

and winding process, where a considerable amount of plastic deformation will result,

enough strength and ductility is needed to avoid preferential deformation within the weld,

- ich will result in kinks and failure. When the base metal is in the mill-annealed

coiditi ,r., the strength of the initial welds will be the same or lower than the adjacent base

metal. The net effect of this is that deformation will be more confined within the weld and

the elongation in weldments will be reduced. On the other hand, when a softer

homogenized base metal is used, the welds become stronger than the base metal and most

of the deformation will occur in the base metal where ductility is greater. This case is

favorable considering that, the welds area is more likely to have defects.

Currently automatic pulsed-gas tungsten arc welding with 908 filler wire has been

proposed to join conduit sections. Initial mechanical testing of production welds showed

improved fracture toughness over manual-gas tungsten arc welds with about the same

strength. During the fracture toughness testing, one of the specimen showed unstable

crack growth after small amount of crack growth. The surface of the broken specimen

showed a smooth fracture surface covered with dimples. The crack path of that specimen

was less tortuous than other specimens, suggesting less resistance to crack growth. The

reason of such behavior is not clear. Schematics of weld fusion zone dendritic structure are

shown in Figure 95. While, in most of the manual-gas tungsten arc welds, the weld bead

was deposited in jig-jag pattern due to the difficulty of maintaining exact location of

subsequent weld bead during welding, the position of weld beads were well maintained

during automatic welding.[62] At the center of the welds, primary dendrites are aligned

vertically, where the heat flow is the largest, stretching almost entire thickness of weld.

Between each dendrite, brittle secondary phases are formed along with high Nb eutectic

zones. When aged, these areas become high strength-less ductile zone surrounded by low

strength-more ductile primary dendrite, thus providing a easier path for crack propagation

without crack front adjustment which would be needed for manual-gas tungsten arc weld.

When crack front is aligned with these vertical bands of dendrite, crack can propagate with

little plastic deformation. Above hypothesis is too preliminary to be confirmed, but should

be explored.
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The tube reduction and bending processes after welding increase strength of both the welds

and the base metal. Even though the strength of the welds is higher than the surrounding

homogenized base metal, it is possible that the difference in strain hardening response

eventually makes the base metal stronger than weld after cold work. The exact amount of

cold work is not determined yet. As the elongation become smaller as the amount of cold

work increases, and with the uncertainty in estimating the equivalent cold work through the

fabrication process, it is better to have a weld with higher strength and greater elongation

than base metal. In that respect, base plates with hardness less than 80 (Rockwell-B scale)

was determined based on the results of high temperature (1050 °C/lhr) homogenization

heat treatment. When the homogenized base metal is used to be joined, welds become

stronger than surrounding base metal and the preferential deformation within the weld

fusion zone can be avoided at certain degree.

Considering that the actual conduit will be supplied in the homogenized condition, the

strength-cold work relation should be evaluated for proper fabrication processes. As a

conservative approximation, the results of manual gas tungsten arc welding with mill

annealed base metal can be used to estimate the properties of welds after cold work. After

up to 9 % of thickness were reduced by applying cold work, welds showed at least 15 %

of ductility.(see Figure 87-89)

After fabrication, the magnet assembly will be heat treated for 200 hours at 650°C. The

problem of stress assisted grain boundary oxidation (SAGBO) during heat treatment has

been investigated and reported earlier, but mostly on base metal alloy 908.[97] Evaluation

of SAGBO resistance of the welds will be needed.

In the aged condition with prior cold work, GTA welds with 9HA and 9HB fillers showed

promising mechanical properties, having over 1200 MPa - 120 MPax/m and 1000 MPa -

160 MPa'/m strength - toughness combination at 4K.(Figure 63) Properties could be

enhanced by better welding methods, if needed. Post weld homogenization heat treatment

was successful in removal of brittle Laves phase and the surrounding Nb-rich zone and to

recover ductility and fracture toughness of weld. Besides Laves phase dissolution,

elongated weld grains were replaced with much smaller equiaxed recrystallized grains.

Post weld homogenization heat treatments could be an alternative way to improve

mechanical properties of welds.
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a) Manual-GTAW

b) Automatic pulsed-GTAW

Figure 95. Schematics of dendrite orientation in weld fusion zone.
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VI Conclusions

1. A fundamental understanding of the solidification behavior of Niobium-

containing superalloys was developed.

A low Nb-side of Pseudo-binary solidification diagram for alloy 908 was

constructed.

Hexagonal Laves phase and cubic MC carbide are the major intermetallic phases

which precipitate in the interdendritic zone.

During solidification Niobium preferentially segregates to the interdendritic zone.

The equilibrium partition ratio of Niobium was determined to be approximately 0.5.

y/MC and y/Laves eutectic was observed to form in the interdendritic region

between 1250 and 1200 °C.

The y matrix is enriched in Niobium in the immediate area surrounding the

secondary phases.

2. Based on this understanding new filler wire compositions were

developed to allow welding of alloy 908.

Niobium content in the filler wire was reduced as much as possible consistent with

mechanical properties criteria.

3. Filler wire compositions were optimized based on criteria which

included: (1) adequate strength as measured by the yield and ultimate

stress, (2) fracture toughness, and (3) fatigue crack growth behavior.
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Improvement in fracture toughness was achieved as follows: (1) reducing the

amount of Niobium in the filler wire. (2) homogenization of the weld prior to

aging.

A homogenization heat treatment (1050 °C/1 hr) eliminated the Laves phase and

homogenized the chemistry in the interdendritic region leaving only MC carbides.

Within the fusion zone, void initiation, during fracture, was dominated by the

presence of Laves and/or MC carbide. Minimization of secondary phases and the

surrounding Nb-rich y matrix improved fracture toughness.

4. CICC process and fabrication variables were then accounted for in

selecting the optimum , final, filler wire composition.

5. The mechanical behavior of alloy 908 welds were characterized.

Mechanical properties of alloy 908 welds were evaluated for the following

conditions:

* the as-welded condition (room temperature)

* the as-welded + cold worked condition (room temperature)

* the as-welded + aged condition (room temperature, 40K)

* the as-welded + cold worked + aged condition (room temperature, 4°K)

Fatigue crack growth rates are not a strong function of the weid filler wire

composition.

Cold work after welding increased strength.

Care needs to be exercised to avoid easy paths for crack propagation which may be

produced in multiple pass welds which produce a straight path between pass metal.
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6. The key determining factor of welded joint performance during

processing is the relationship between strength of the base and the as-

welded weld metal.

A softer weld promotes localized deformation during processing.

Equal (as much as possible) strength of the base and weld metal insures safe

processing.

Aging effectively eliminates differences in properties between weld and base metal.
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VII. Future Work

Although production welds, using 908 and 9HA filler metals have much improved fracture

toughness, unstable crack growth was observed for the specific case where long bands of

primary dendrites were present normal to the tensile stress. Further work is needed to

explore this case.

The actual conduit will be supplied in the homogenized condition and will be welded using

automatic techniques. However, much of the work in this program made use of mill-

annealed base metal and manual welding techniques. A limited number of tests were

performed on automatic-welded/homogenized base metal plates to confirm that performance

was consistent with mill-annealed/manual welded plates. More work is needed to fill out

the data base for these conditions.

Very limited Stress Assisted Grain Boundary Oxidation (SAGBO) investigations have been

conducted on 908 welds. This area is of critical importance for future work.
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