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ON THE APPLICATION OF SOLAR RADIATION
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by Philippe Villers
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for the degree of Master of Science

ABSTRACT

This thesis is an evaluation of solar radiation propulsion,
known as solar sailing, and its applicability to interplanetary'
propulsion. Consideration is also given to the use of solar sails
for vehicle attitude stabilization. The thesis includes four parts.

Part I provides up-to-date information on pertinent aspects
of the space environment. This part includes a survey of previous
literature on the subject and a critical evaluation thereof. Possible
solar sail missions are surveyed and new ones presented. A
more systematic classification of solar sails, applicable termi-
nology, and a suitable figure of merit are proposed. The new termi-
nology " Solar Bounce" is offered to replace Solar Pressure"
because of significant errors resulting from existing implications
of the latter term. All sail designs are found to fall into three
classes, of which one is shown to be unstable.

Part II is a study of the Self-Stabilized Stabilizer" which is
offered as a new attitude stabilization design with interesting possi-
bilities.

Part III is a preliminary design study on a " Centrifugal Sail"
Mars Reconnaissance Probe. Included is a study of " Payload
Shift" , a new method of sail attitude control, employing inertial
effects and solar forces to cause sail precession. Part III also
includes results of experiments performed by the writer at
M. I. T. and similar experiments at NASA on dynamic responses
of the spinning sail.

Part IV compares the merits of a solar sail vehicle with
alternative concepts and draws conclusions as to the present
desirability of initiating research and development activities.
Further related topics for future theses are also suggested. A
possible Solar Sail development program is offered.

A bibliography and list of references, including 140 recent
entries on space technology, is appended. It is organized by
topic, and short summaries of each entry have been included.

Thesis Supervisors: Robert W. Mann
Associate Professor of Mechanical Engineering
Paul E. Sandorff
Associate Professor of Aeronautics and

Astronautics
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NOME NC LATURE

A. U. = astronomical units, (Earth-Sun distance = 1)

A = area

A = albedo of earth

a = acceleration

A = absorptivity

A = A solars

A = A Earth
e

A = tangential acceleration

A = radial accelerationr
An = acceleration in g units for a = 0

ii 2B = Bounce" (as defined p 10)in psf, where B = B cos a0

B = Bounce ' (as defined p 10)at normal incidence in psf0

C = speed of light

Cd = aerodynamic drag coefficient

C = solar constants

D = distance

D - diameter of earth

d = moment arm

E = energy

e = emissivity

F = solar radiation force on sail

F = solar gravity force on vehicle
g

FI = solar gravity force on sail alone

G = sublimation rate in gm/cm2 sec



Nomenclature (cont.) - 2

go = standard earth gravitational acceleration

9g = solar gravitational acceleration

g = grams

H = angular momentum

h = altitude

K R /R +h

L = lightness number of vehicle defined by Eq. 16
(see Eq.16a for conversion between L and acceleration a)

L = lightness number of sail alone defined by Eq. 17

M = molecular weight

M = mass of 1 atoma
M = payload mass

p
M = mass

N = number protons/cm 3

P = vapor pressure in mm Hg

P = gas pressure in psf

R* = radial distance from sun in A. U. (dimensionless).

r = radius

R = reflectivity

Re = radius of the earth,< 4000 miles

S = solar constant at 1 A. U.

S' = solar constant at distance specified

S = earth reradiation constant at surface of earthr
S = earth constant including reflection and reradiation at

e surface of the earth

S = earth constant including radiation plus reflection at a
distance R + D from the center of the earth



Nomenclature (cont.) - 3

T = temperature in 0 K

t = time

V = velocity

W = weight

= density in lbs/cu ft

a = angle of incidence, (measured between the incident
light ray and a vector normal to the surface

13 = angle between rod and normal to sail (Fig. 21)

13 = angle of reflection

13 = angle that normal to sail makes with respect to the
ecliptic

y = wt/unit area in lbs/ft 2

ly = angle between velocity vector and the local tangent to
an orbit

= wt/unit length (in lb/ft

= efficiency

= emissivity

= inside

Oso .= outside

all = electrical conductivity

LAo = central transfer angle, (solar)

= angle between instantaneous velocity and acceleration
vectors

= central' gravitational constant where 'A is the
gravitational potential

gravitational potential
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I. INTRODUCTION

Space vehicle propulsion systems have the unique property

of operating in a high vacuum in the presence of extremely weak

field forces. It is because of these conditions that propulsion

systems frequently referred to as micro thrust propulsion are of

real interest. In the last few years ion propulsion systems have

attracted considerable study, and more recently, actual develop-

ment effort. Problems of system weight, complexity, reliability

and design are, of course, extremely severe and have prompted

the continuing search for other propulsion methods.

As early as 1951 a propulsion system of utmost simplicity

was suggested involving direct use of solar energy through

momentum transfer to a lightweight reflecting surface. (Ref. 108).

Such a system popularly known as Solar Sailing" offers for

reasonable payloads a vehicle accelerations of the order of 10 4g,

which is the value most frequently quoted for ion propelled systems.

Two unique properties of a solar sailer" are: a mass ratio

of unity and a thrust which, for a fixed geometry, varies uniquely

as a function of orientation and radial distance from its power source,

the sun.

At the present time the lack of extensive work in this field has

fostered a widespread belief that Solar Sailing is an ingenious idea

of limited practical interest. This point of view has been con-

tributed to by the, in important respects, over-stretched analogy

with the sailing ship on earth. This coupled with the very small
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solar radiation forces available has tended to discourage detailed

investigation. It is the purpose of this paper to critically examine

the problems raised by this novel propulsion approach with the

avowed objective of determining to what extent the concept of solar

radiation propulsion deserves practical development.

Part I of the paper is an attempt to organize available infor-

mation from a wide variety of sources into a coherent framework

covering: pertinent environmental data, propulsion and control

design approaches, suitable missions and their limitations, and

applicable trajectories. In Part I will also be found an explanation

of why the writer suggests the use of the term "' Solar Bounce"l to replace

1? solar pressure, " and an account of how the aerodynamic analogy

suggested by the latter term has resulted in several incorrect con-

clusions in the existing literature.

Part II develops a new solar sail design to be known as the

"7 self-stabilized stabilizer" for attitude stabilization and co nsiders

its merits.

Part III introduces a design deemed suitable for a Mars re-

connaissance probe, and presents analytical and experimental

data relevant to the proposed vehicle. Some of this data was

developed by the writer in experiments conducted at MIT, and

the remainder comes from several sources as is indicated in

respective footnotes. The vehicle design presented draws on

existing contributions to the field and goes on to develop several

new design features proposed by the writer.

Part IV will draw on Parts I, II, and III to justify conclusions
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as to the present and future competitive potential of " Solar Sails"

for space use.
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PART I - Solar Sailing, A Survey of Applications, Techniques, and

Feasibility - Pertinent Effects of Environment

1. 0 Space Environment

Just a few years ago the term "1 perfect vacuum" was con-

sidered an adequate description of the space environment, Today

intensive study, existing astronomical data backed up by rocket,

satellite, and space probe data has provided some information

and at the same time raised many new and unanswered questions.

In Table I is found a list of important characteristics of the space

environment taken from a paper by Dr. John C. Simons, Jr. of

the National Research Corporation (Ref. 38).

This section will present available information on many of

the above characteristics and also indicate areas of ignorance

important to space vehicles, more specifically solar sails. First,

however, we will comment on the Solar Flux and resulting solar

momentum transfer.

1.1 Solar Flux as a Propulsive Source

The sun is a radiating source of energy equivalent to a black

body at about 6000°K andsfollowing the inverse square attenuation

law it provides power at a distance of 1 A. U. of 1. 36 to 1.4 erg/cm 2

sec = 92-95 ft lb/ft sec. This power is distributed with a peak

energy transmission in the visible range. Table II reproduced

from an article byR. A. DiTaranto and J. J. Lamb shows energy

as a function of wavelength. (Ref. 32). In astronomy, solar mo-

mentum transfer is considered responsible for several. important

effects including the streaming of comet tails and expulsion from



TABLE I

CHARACTERISTICS OF THE SPACE ENVIRONMENT

Low pressure and density

Chemical composition
Dissociated molecules
Ions

Thermal radiation, influencing vehicle temperature
Infrared solar radiation
Earth' s albedo
Infinite radiation sink (0K)

Other solar radiation
Visible
Ultraviolet
X ray

Cosmic radiation
Electromagnetic (gammas, X rays)
Primary particles (protons, atomic nuclei)
Secondary particles (electrons, positrons, mesons,

Neutrons)
Van Allen belt radiation (protons or electrons)

Meteoric particles

Force fields
Electromagnetic
CT?-rnTf Atno1
,A dV LL C. ll.C lZ.

Propulsion products

Vehicle outgassing

Acceleration

Vibration

Space debris

Hostile action

-1
<4
P: 

z

EL

0
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TABLE II

SOLAR ENERGY AS A FUNCTION OF WAVELENGTH

Region

Far Ultraviolet

Near Ultraviolet

Visible

Infrared

Infrared

Infrared

Wavelength (in Angstroms)

1 - 2000

2000 - 3800

3800- 7000

7000 - 10, 000

10, 000 - 20, 000

20, 000 - 100, 000

Energy (in %)

0. 2

7. 5

41

22

23

6

(From Ref. by R. A. DiTaranto & J. J. Lamb)



the solar system of micrometeorites of certain weight/area ratio

(Ref. 42). The equations relating the Energy E to the rate of

momentum transfer/unit area are as follows.1

1 The following derivation substantially follows that of Krafft A.
Ehricke, Ref. 128, p. 62.



A Ik V-CR 4

_J_ lAWL {X OAN& 5ATE ADI .S4LTIlir SOLAR $CtNCM

SO AR FL A

l I l l ! a

INcIDENT LI GmT

RE l-ECED L tI7HT

VECTC. REo R5 L4T /O

SAIL

Cof I EFLEt /oA/
k MI ST= *-

OF HOME&XvT TRANhiFER TO SAIL

I/

, #

le

i-

r

-

AJ- c r , --ri a;,j = c.^L A i



S
S 2 where S is the solar constant at 1 A. U. (1)

R,
where R. is the distance in A. U.

E = mc2 where m is the relativistic equivalent mass. (2)

E S2At' Force time 2

2 2 (3)c c length

where m is the relati.vistic equivalent mass
and where A is the projected area at normal
incidence shown in Fig. 1 such that with angle
of incidence a Al = A cos a (4)
the momentum per unit area is:

s t cos a Force time
mc = 2 (5)

c length

where mc is the momentum of the incident beam/unit area

From Newton s second law, the force/unit area for re-
flectivity is:

S [__Force
a/at (mc) c- os a (6)

c Len gth

For a body of reflectivity, R, the force unit area is
obtained as the time derivative of the vector sum of the
incident and reflected momentum transfer. As seen in
Figure 1:

F/A = a/at (1 + R).mc cos a + (1 - R) mc sin a (7)

For R 1,

at 7 mc = 2 mc cos a (8)

2 S 2 - cos a (9)
c



V

1 0

2 S
define B = (10)0 c

2 Sj
define B- cos 2 a (11)

C,

Therefore, B = B cos 2 a (12)0

Where B is the rate of momentum transfer/unit area for
an area normal to the source, and is equivalent to force/unit
area.

Where B is the rate of momentum transfer/unit area whose
normal is inclined at an angle a with respect to the source.

The use of the term " radiation pressure "' which has been

previously used has been avoided, This is to avoid the isotropic

connotations of pressure which have resulted in misunderstandings

in the existing literature. For instance, the ' parachute" type of

solar sail discussed in Section 2.1, and previously referred to in

the literature appears to be inherently unstable in the absence of

stiffeners or force fields. In the case of a true gas pressure or

aerodynamic phenomenon it would, of course, be stable, and the

apparent analogy between the two cases is undoubtedly responsible

for the opinion that such an unstiffened sail configuration might be

stable. Similarly, we find that " gas pressure" P acting on a

2
sphere of radius r gives a force Po 77 r whereas, contrary to

previously reported values, for a solar radiation of " pressure"

Po, the force on the sphere is only P IT r . (See Appendix II. )

For the above reasons the writer has used the terminology

it Bounce to stand for what strictly speaking is " rate of mo-

mentum transfer/unit area. The symbols B and Bo will be used0



respectively for "' Bounce" at an arbitrary incidence and at normal

incidence. This is advocated - as helpful in

disassociating the vector radiation process which can be repre-

sented by the classical process of momentum transfer through

elastic collisions from the stochastic and scalar process of kinetic

theory of gases commonly associated with the term Pressure.

Both PresSure and Bounce can be measured in lbs per square

foot (PSF) but Pressure being a scalar has the same magnitude

for all orientations. Bounce being a vector has a magnitude which

is a function of orientation. The confusion between the above vector

and scalar quantities is in many respects similar to the one in

nuclear engineering between the dimensionally identical terms,

Intensity (I) and Flux () which are only identical for the special

case of the collimated beam.

The values of Bounce at normal incidence are as follows:

Distance: Mercury Venus Earth Mars

Bo (lb/ft 2 ): 10- 6 3. 55x10 7 1.95x10 7 9.10 - 8

using in each case the mean distance of the planet' s orbit. 1

We recall that for angle of incidence a, the Bounce will be

B = B cos a.0

A further important correction is that for other radiation

sources. Radiation from other sources produces negligible

Bounce as compared to sunlight with the sole exception of a

satellite orbit where the combined effects of a planet s albedo

and infrared reradiation produce a maximum Boterrestial As

rRef. 128, p. 62



derived in Appendix I, this quantity varies such that at an altitude

of 1000 miles, for example:

0. 1 B - B -0.33 B (111)
0solar °terrestrial °solar

which is of course a major correction factor for any satellite

Bounce calculations. Clearly for many orientations since B = B

cos a (Eq. 12).

terrestrial solar

We shall therefore keep this in mind in discussing solar

sailing near the earth.

1. 2 Thermal Balance

As is. well-known)thermal balance and heat rejection are

among the more difficult problems in space operation. Although

evaporation, ablation, and other material consuming heat dissi-

pation techniques are of interest for a few space and re-entry

operations, in virtually all cases radiation cooling is the domi-

nant mechanism.

The applicable variables are then: geometry emirrattianted area

orbital characteristics, orientation, and absorptivity ratio,emissivity e
internal heat generation and, if transients are important, thermal

capacity and conductivity.

For satellite operations an excellent treatment taking into

account earth light will be found in Ref. 124.

For space vehicles a series of calculations by R. A. Cornog



of the Space Technology Labs. (Ref. 122) shows how equilibrium

temperature for plates and sphere vary as a function of orienta-

tion, A ratio, distance and internal heat sources. Table III re-

produced from the above reference lists A for some materialse

of interest.

Figure 2 through 5 also reproduced from Cornog' s work

shows equilibrium temperature as function of the pertinent vari-

ables.

Existing data on satellite vehicles indicates that through

judicious choice of coatings, temperature has been successfully

controlled between the predicted limits of 0 - 400 C. (See Ref. 29

for information on coatings and results obtained. ) Since A is a

function of temperature choice of materials with desirable
and ae 4at and at , coupled with T4 radiation law help provide adequate

temperature stability. For space missions involving substantial

changes in R* (distance to sun) active control may be required.

Such a system using thermostatic control to change the color of

the surface is described in Ref. 125. A concrete example of a

sophisticated technique involving control by regulation of waste

heat from solar cells is described in Ref. 135. Thermal equi-

librium for a proposed solarsail is treated in Section 2. 5.



TABLE II11

OPTICAL PROPERTIES OF VARIOUS MATERIALS

Absorption
Number A

0. 04

Emis - E Ratio
sivity E A/E

0. 02 2. 0

Aluminum, polished

Aluminum, 2 024, buffed
and polished 9

Stainless steel, black

Stainless steel,
polished

Fused quartz, bricks

100
1000
100

100
1000

100

0.10

0. 34-0. 37

0. 40

100 0.1-0. 4

Hard rubber, asbestos

Lamp black

SiO on polished metal 7

MgO 9

Titanium, 6A1-4V9

100
1000
100

100

100

0. 95

0. 1

0.15

0. 8

0.95 1.0
0. 95 --
0. 90 0.1

0. 97

0.18

0.15

4. 4

Buettner stated that the ratio of absorptivity of solar radia-
tion to the low temperature emissivity may vary from ten
for ideally polished metals such as aluminum and nickel,
to o-tenth for ideal white.

1 Reproduced from R. A. Cornog, Ref. 122.

Material F

Silver 100

0. 05
0. 06
0. 03

2.0

12. 0

0. 90
0. 90

0. 05

0. 90

1000

8. 0

0. 2

0. 90
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1. 3 Radiation Effects

Among solar radiations listed in Table I two types in particular

can be highly damaging to a number of materials. One such are

soft X rays, the other are ultraviolet rays. It is to be recalled

that most of the ultraviolet rays of the sun do not reach the earth

and therefore represent an area of limited knowledge. According

to recent experiments both the extreme ultraviolet and soft X rays

regions of the solar spectrum can have detrimental effects on

some materials. (See Ref. 29, p. 6 and Ref. 30. ) This is es-

pecially true of organic materials with their weaker covalent

and molecular (Van der Wahl) bonds. These effects as reported

in Ref. 29, p. 6, include crosslinking of polymer chains and in-

creased molecular weight, scission of the molecular chains and

decrease in molecular weight, dehydrogenation and fragmentation

of volatile products (methane, ethane, CO, CO2 ), as well as

double bond formation. The above referenced paper by Dr. Clauss

of Lockheed also describes the practical consequences of the above

effects. They include: raising or lowering tensile strength, em-

brittlement of polymers, decreased solubility, loss of adhesion,

discoloration, and increased electrical conductivity. Current

theories as to the mechanisms of degradation including the theory

of Random degradation, the Weak link theory, and the reverse

polymerization theory, are covered in Ref. 35, p. 2. A Sub-

stantial bibliography on the subject is included in the paper.

Ref. 39 brings out the interesting fact that degradation of polymers

due to ultraviolet action are in some cases less severe in vacuum.



We will discuss these problems in the specific context of a solar

sail in Section 1. 6.

Of special interest to our discussion is the phenomenon

known as sputtering. Quantitative values have been presented by

Whipple (Ref. 42). They are, however, subject to large factors

of uncertainty. Experiments on the subject are being conducted,

but offer great difficulty. (See Ref. 40 for existing experimental

data and experimental methods). " Proton sputtering" is the ejection of

atoms from a surface by bombardment of high energy protons.

Quite obviously the same effect can be caused by electrons or

other ions both from solar and cosmic sources, but according to

Whipple, outside of the immediate vicinity of the earth, proton

sputtering from the sun is by far the dominant mechanism. A

rate of 2 x 10- 13 gm/cm 2 /sec is given for the sputtering effect

on aluminum which corresponds to approximately 1 x 10- 6 in. /yr

Whipple s data are based on the equation:

d mass M N V
_ a (14)

dt 4

where: M = mass of atom (forAl = 4. 5 x 10- 23)a
= efficiency factor (atoms removed/proton)

N = protons/cm 3 (uses 600)

V = average velocity (uses 300 kmfsec)

As for the efficiency of sputtering we note the interesting

experimental result reported by Clauss that surface oxides reduce

sputtering on metallic surfaces. 2

Ref. 42, p. 120
Ref. 29, p. 9
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Whipplel s above calculations are based on average values. In

recent years interest in solar flares has been stimulated by data

showing very large variations coinciding with increased solar

activity. The incident of February 23, 1956 for instance increased

the cosmic ray flux by three orders of magnitude in ten minutes

and abnormalities lasted two days. (Ref. 135, Vol. III, p. 564).

The effect on materials of cosmic rays and any secondary

radiations generated by them is another important consideration.

Existing information consists of extrapolation from data on nuclear

irradiation, and is not yet on a solid footing. It is likely that em-

brittlement of some metals will result, as is the case for nuclear

bombardment. Sandorff discusses this problem briefly and pro-

poses the term radiation fatigue, °J postulating time and stress

dependent effect on metals similarly to ordinary metal fatigue,

(Ref. 119).

1. 4 Cosmic Dust, Micrometeorites

Existing data on matter in space is generally acknowledged

to be subject to an order-of-magnitude error. The most widely

used values for meteoritic and micrometeoritic matter is based on

a study by Whipple. His values are reproduced in Tables. (Ref. 42).

The values he indicates should be taken as " fairly high limits, re-

presenting high rates of puncture probabilities, because the pene-

tration law .... almost certainly overestimates the powers of small

particles to make holes in sheets of material. " He further points

out, t it is possible that a considerable error is made for the

numbers of particles in the ranges of interest."



-.~~. C, -, ,'% I 'D i'7 1-, , . r .l - -- e ? m2- -- *. ; - ' I-, ' -*.. . A T.: ' T r " -- rI,. ~ -Jf?.,s'.ri,". -. ) 
r o m ref. 4.) l'.abl j

(by .L :ihipple)
!(~ ) {~~~~~~~~~~(2) r'(7 F ~ ( ¢ .hpc))

(7. ) (2) () (1;) ( i) (6) (7) i. )i

iiet eor
vis-ual
.mm~nn _

tude

0

I

3
L
5

0
(3

8

9
10
11
12
13
1r

15
16
17
18
19
20
21
22
23
24
25
26
27

29
30
31

Mass (g)

25.0
9.95
3.96
1.58
0.628
0.2502

9.95xlO-
3.96x10-
1. 58x10-3
6.28x10-3
2.50x10-3
9.95xlO-4

3.96x1'0-4
1. 58x0lo -
6.28x10-5
2. 50x10-
9.95x10-
3.96x10-6
1.58x10-6
6.28x10-7
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9.95x10- i'
3 .96x!0-~
1. 5xO- 
6.28xlO-

2.50xlO- 9
9.95x0- 10
3 Q610 1

1.58x-10
6.28x 10 1
2. 50xlQ- 1

9. 9510 -'2

Radius

_ _ _

49,200
36,200
26,600
19,600
14,400
10,600

7800'
5740
4220
3110
2290
1680
1240
910
669
492
362
266
196
144
106

78.0
57.4
39.8*
25 .1*
15.8>
10.0*
6.30*
3.98*
2.5 1'
1.58-
1.00
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(KMe

3ec )

28
28
28
28
28
28
28
28
27
26
25
214

23
22
21
20
19
18
17
16
15
15
15
15
15
15
15
15
15
15
15
15

E ( erg s)

1. OxlO1
3 .98xo13
1.58x10 13

6.31x101 2
2.51x1012

L.00x101 2

3.98x10ol
1. 58x10 1

). 87x10
2.17x10 10

7.97x109
2.93x109

1.07x109

3.89x10l
1.4TxlO8
5.10xlO
1.83x107

6. 55x10 0o
2.33x106
8.20x105

2.87x105

1.14x10 5

4.55x10O
1. 81xlO
7.21x103

2.87x10?
1.14x103

4.55x102

1.81x102

7.21xlO
2. 87x10
1. 4xlO

Pen.
in Al
(cm)

21.3
15.7
11.5
8.48
6.24
4.59
3.38
2.48
1.79
1.28
0. 17
0.656
0.469
0.335
0.238
0.170
0.121
0.0859
0.0608
0.0430
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0.223
0.0164
0.0121
0.00884
0.00653
0.00480
0. 00353
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0.0)191
0. 0)0141
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No.
ing
rer

Strik-
earth
day

2xlO8
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69x1011

2.33x112
5.84x10ol
1.47x10O
3.69x101 3

9.26x1013

2.33x101 4

i x .l7x1015
3. 69x101

?.26x01l
2 33x1016

5.t84xl6
1 .47x0 7
3.96x 1

9. 26x10 7

2.33x108
5 .84x1- 8

No. striking
3 mn shere

oer day

2. 22x10-5
6.48xlO- 5

1. 63xlO-
4. 09x10-4

1.03x10- 3

2.58xlO10
6.48x10-3
1. 63x102
4. 09x10-2
1.03x0l-
2.58x10'
6.48x101-
1.63
4.09
1.03xlO
2.58x10
6.48x10
1.63x102
4.09x102

1.03x103

2.58x1031. 63xlO1 .03x1052. 5SxlO4'
6. 48xlO-'
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Whipplel s quantitative data is based on extrapolation from the

Harvard photographic meteor program, checked against radio

astronomical data and deep sea meteoritic accression studies.

It is interesting to note that presently available information from

Explorer I satellite measurements is found to be 't not inconsistent

with" Whipple s figures.l

An area of important concern is the effect of micrometeorites

on surface finish and in turn both on optical and thermal properties.

Concern about effect on the absorption/emission ratio has led to

sandblasting several of our satellites before takeoff with the object

of insuring that the micrometeoritic effect on surface finish would

no longer produce any further important changes. In the case of

optical surfaces Whipple concludes, "the erosion cannot become

important optically over a period less than a year. 2 For long

lived vehicles such as Mars probes, the problem is a serious one

and has resulted in the proposal to turn the lens of optical trackers

towards the vehicle when not in use and to cap photographic lenses

until the time a photograph is made.

As for the penetration of micrometeorites given size and

velocity, no generally accepted theory has yet evolved. Diamond

in Ref. 123, p. 12 gives some equations on the cratering process

based on the theory that at sufficiently high velocities the process

is analogous to deceleration in a fluid media. He also discusses

1 Ref. 33, p. 44
2

Ibid, p. 121
3 Ref. 135, Vol II, Section 6-16, and Ref. 135, Vol. I, p. 37.
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other penetration modes. Ref. 41 reports experimental results

at NASA on 11, 000 fps impacts. The subject is still widely debated

since the relative impact velocities involved in the 10 - 80 km/sec range

have not been successfully simulated.

The distribution of meteorites, micrometeorites, other

particles and radiation is very probably not uniform in space, but

little is known about this important subject. From observation of

zodiacal light and radar results it is believed meteor orbits may

follow the planetary pattern in being concentrated in a plane roughly

that of the earth's ecliptic. (Ref. 42, p. 121. This raises the

interesting possibility of reduced penetration probability for tra-

jectories sharply inclined to the ecliptic, however, no experiment-

al confirmation exists as of now. A high concentration of radiation,

is trapped around the earth in the so-called Van Allen belts and this

may turn out to be true with other planets. As'for micrometeoritic

surface erosion, Whipple feels that it may well follow some inverse
1law of distance decreasing with distance from the sun.

1.5 Vacuum Effects

The gas pressure in space at some distance from the earth

is estimated to have density equivalent pressures of 1012 to 10
2mm Hg. Vacuum effects include increased friction, outgassing

(sublimation), and of course modes of heat transfer. Also " sur-

face effects" - crack propagation, emissivity characteristics,

surface oxides, chemical reactivity, alloying activity.

Ibid, p . 121
2 Ref. 38, p. 6



The importance of oxygen and other adsorbed layers on

frictional characteristics are well know. Most common lubri-

cants will either not lubricate in a space environment or vola-

tilize (many oils), and with the absence of normal oxides and

other surface films cold welding may result. According to

Ref. 31, MoS2 and WS2 seem to perform satisfactorily. Ref. 31

cited above includes a discussion of current.theories on the

mechanisms of friction and data on experiments in progress.

Also of interest are Teflon, Nylon, Sapphire, and Pyroceram,

indicated as good bearing materials in Ref. 29. An experi-

mental program on frictional properties in a vacuum is in

progress at Litton Industries in California on a number of

materials and some results are already available (Ref. 34).

The second problem, namely outgassing, is just beginning

to be fully appreciated. The expression relating loss in

gm/cm2 sec of material to vapor pressure is:

M P

G = (15)
T 17.4

where G is loss per unit exposed surface area in
,egm/cme sec.

M = molecular Wt

T = temperature in 0 K

P = is vapor pressure at T in mm Hg

The above equation quoted from Ref. 39, p. 21, is based on kinetic

theory of gases. It assumes that no liberated atoms return to the

IF



material. Experimental work conducted at NRC is reported in the

above reference, and provides the vapor pressure of many plastics

and some metals. Figure 6 (based on a figure in the above refer-

ence) presents a plot of vapor pressure vs. temperature for a

large number of metals and a few plastics. A further table of

values is presented in Ref. 35 and provides vapor pressure for

organic coatings as a function of temperature. The practical

significance of the findings in the above three references is that

thin coatings of many plastics and some metals are subject to

excessive sublimation at even moderate temperatures, in some

cases, ambient temperature. However, one should note that

equation 15 may not be valid for complex polymers in that plas-

ticizers may sublimate more easily than the parent plastic there-

by giving deceptive high value to vapor pressure in short and

medium length experiments as reported in the above experiments

This is apparently the case with the. polyester film known as Mylar

which is discussed further in the next section.

1. 6 Effects of Space Environment on Solar Sailing

The preceding five sections have developed some of the im-

portant characteristics of the space environment. We wish now to

relate them to a solar sail which we shall assume is a thin plastic

film such as Mylar with an aluminum or silver coating.

1.6.1 Outgassing

The average molecular weight of Mylar polyester films

is approximately 20, 000.1 Using this value in Equation (15), using
1 Privatp communiction. Mr. Emmnimal Schnitzer. NASA.

It Langley Field.
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300 K for temperature, with a pressure P of 10- 7 mm Hg from

Figure 6 we find that:

l -7
10 7 / 20, 000 -8 2

G =- / 5 x 10 gm/cm sec (16)
17.14 300

or 2 x 108 in. /cm2 sec for 1 surface exposed.
-4Therefore, a thin film of 10 inches would volatilize in

5, 000 seconds? .

Experimental data on a polyester coating, namely "'Paraplex

P-43" of the Rohm and Haas Company with 2% " Luperco ATC"

added (made by the Novadel Agene Corporation) is given in Ref. 35,
-5Table 2. Results at ambient temperatures, 4 x 10 mm Hg pressure

and 24 hours exposure are a weight loss of only 2. 5% (19. 7% for a

run at 300 °F. Obviously then the assumptions using Eq. (15) must

be wrong. The probable answer was provided the writer by

Mr. Emmanual Schnitzerl of NASA who explained that Mylar mole-

cules are not homogenous and that a small percentage of the com-

ponent molecules are of low molecular weight and are weakly

bonded. Their volatilization provides the relatively high vapor

pressures found in vapor pressure measurements, and very proba-

bly longer runs would find decreasing pressure. In the case of

many plastics with appreciable plasticers, fillers and unreacted

material this effect may be even more pronounced. It therefore

seems that,at least for many organic materials , Formula (15)
. _-- - -_-- - - - - - - - - - - - - - - - -

1 Private communication, Mr. Emmanual Schnitzer, NASA,
Langley Field.



must be rejected. In the specific case of Mylar (a promising

material for a solar sail) according to the bast available in-

formation at NASA an approximately 1% weight loss is anticipated

with very low outgassing rates afterwards. NASA' s forthcoming

Mylar passive communication satellite should hopefully corroborate

the above estimates.

1. 6. 2 Space Drag Effects

As will be shown later, Solar Bounce may provide up to

approximately 10 -4g acceleration. We are interested in comparing

this to probable space drag due to the 10- 12 or higher dynamic

pressure in space. For order of magnitude values we shall use

the results of Krafft Ehricke s work based on a CDA/W ratio =

500 for a 10-4 inch thick Mylar sphere and gas weight small as

compared to the weight of the Mylar. With a relative velocity

of 100, 000 fps, he finds a drag produced deceleration at 50, 000
-12miles from the earth of 5. 10 g. At 300 miles this figure is

6.10 4 g, at 1, 600 miles deceleration it is 3. 4 x 108 g 1 The

300 mile value is in good agreement with Ref. 17, Fig. 2 which

shows altitude vs. dynamic pressures and solar bounce.

1. 6. 3 Erosion, Puncture and Radiation Damage to a Solar Sail

Given a thin solar sail of Mylar coated with aluminum or

silver we can predict some but not all the effects of environmental

factors discussed in preceding sections. Meteoritic effects of all

particles .reported by Whipple in the case of a 10- 4 inch thick

coated Mylar sail will produce penetration rather than surface

Ibid.
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erosion. Reference 123, p. 20, suggests that " meteroids larger

than the wall thickness would make a hole equal in diameter to the

material." Meteroids whose diameters are of the same order or

smaller than the wall thickness would penetrate explosively. Treat-

ing Whipple' s data as of the first category and summing all the cell

intervals we arrive at the interesting result that the meteoritic

effect would be to pierce . 003%0 of the sail area/year. C ertainly

not an alarming result for microholes and low stress levels.

Proton sputtering is more serious, again using Whipple' s data,

we arrive for aluminum at an erosion rate of D 10- 6 in. /yr. For
1 co e s h;1h. . i Pi rof 1_araa Zk aci verlk± -±e -tyL{u L. ±±±, - y .L±- ±t: w,- u vuuLVy Y iltcu Lllt.±-U.Lur

a minimum aluminum coating of X> 10-5 in., or - 3000 Angstroms.
-4Compared to 104 in Mylar this represents a coating weight of approxi-

mately 20% above that of the film alone, or 17% of the overall weight.

NASA experiments on 2200 A° aluminum vapor coated Mylar

concludes that:l Ultraviolet protection by the aluminum is probably

satisfactory. 1 U. V. transmission is 1 part in 1013 at between

4000 - 833 A°, then increases to 10% at 500 A° . At the latter wave-

length "the intensity of the sun' s radiation is not yet known, " Nor

is the "effect of prolonged exposure of the plastic to about 10% of the

intensity in this wavelength range .... " Again this year' s communica-

tion satellite experiment should give some answers.

Based on the previously quoted experimental results of Ref. 30,

p. 10, the ultraviolet effects in a vacuum may not be as serious as

in an oxygen atmosphere. As for radiation damage by X rays,

cosmic rays and secondary emissions no detailed information be-

1 Ref. 109, p. 4

Li



r-

yond the information given in Section 1. 3 was found, and the

remarks on the forthcoming NSA satellite apply here too.
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2.0 TOWARDS A SYSTEMATIC DEVELOPMENT OF SOLAR SAIL

DESIGN

In any new field one of the necessary steps is the development

of logical classifications, symbols, and terminology as a prerequi-

site for further systematic development. The writer feels that

solar sailing is ready for such a step to follow the creative work

of its early contributors: Wiley (Ref. 108), Ehricke (Ref. 100 and

100A), Garwin (Ref. 102), Sohn (Ref. 104), Tsu (Ref. 106), and

Cotter (Ref. 98).

A first question is what is a useful index, or figure of merit,

to replace the mass ratio or specific impulse indexes which apply

to chemical, nuclear, and ion propulsion systems. Solar sails,

we recall, have a mass ratio of unity and a specific impulse of

infinity. A suitable index has been proposed by Cotter at Los

Alamos Scientific Laboratory. He defines a dimensionless para-

meter. t Lihtnesss for which we sh1ll q thpe vmrhnl J T,f .

Lightness is defined by him as " the suns s maximum radiation-

pressure force divided by the sun's gravity force on the whole
n 1device. In our notation this would be:

+0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % r

L = B A for a 0
0

F

We note that a simple conversion between "L" and
vehicle acceleration " a" exits, namely,

.0194 L a in ft/sec 2 (17)

Ref. 98, p. 5

i,
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6.2 x 104 L = a in units of go (earth gravity) (Is)

L = a in units of g (solar gravity) ( )

where:

A = sail area

B = bounce

Fg = solar gravity force on vehicle

a = angle between normal to the sail and
the solar radius vector.

L has units of lb force/lb force

Since Bounce and solar gravity both follow the inverse square

law, the Lightness number of a vehicle is invariant for any distance

from the sun and 7, is a measure of the inertia of the device. "

Obviously, the higher the Lightness number L" , the greater the

acceleration capability of the system.

T- Ca a7nrlan+a nm rv aAnrI l an+1 r1 fyrr onil lrklnlrli Wf [hJ:

define:

L = I" B A for a = 0 (20
0

F
where g is the gravity force on the sail alone. This introduces-

where Fg is the gravity force on the sail alone. This introduces

" Lo' as a measure of merit of the sail design irrespective of

the payload. We thereby have a figure of merit for the sail irre-

spective of the choice made in tradeoff between more payload and

greater vehicle acceleration.

Given the above figure of merit to evaluate sail designs, the

writer wishes further to propose the division of all solar sailing
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devices into three broad design classes. We will then proceed to

demonstrate the impossibility of one entire such class in its pure

form as a payload carrying design. The proposed three classes

are, respectively: Self-Supporting Membranes, Rigidized Sails,

and Field Effect Sails. We further propose to break down the

latter two classes into sub-classes for which we will develop

concrete illustrations, and whose important aspects we will briefly

describe.

2.1 The Self-SuppQrting Membrane

As the name implies, a ? self-supporting membrane" would be

a structure which carries a load in essentially pure tension and

whose equilibrium position would be due to balance between Solar

Bounce Forces and tensions in the sail. If one excludes the special

case of a homogenous surface with either no payload or a uniformly

distributed payload, one must assume that the connection between

payload and sail may be either in the middle, at the edges or at

some intermediate point. Let us first consider a configuration

similar to a parachute and we shall then suggest the generalization

of our results. Figure 7 shows such a device. We shall, for the

moment, make no assumptions as to the equilibrium shape of such

a sail except for circular symmetry. First let us consider an

intuitive approach to this problem. In a parachute, the sides of the

parachute are held out by gas pressure which according to well-

known principles is a constantsnormal to the level surface. For

light, however, as the sides approach an angle of incidence of 900

the forces opposing collapse of the sail towards the sail axis

i
3

i

i
i

i
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2approach 0 as cos a - 0. The horizontal components of tension,
2 2however, do not have a cos a = cos 4b term and therefore do not

go to zero as rapidly. This means that in the absence of sail

stiffness, a small element cannot start to curve (giving a local

finite radius of curvature) without violating equilibrium. It is

this rapid decrease of available bounce forces near the edge that

prevents an equilibrium solution for finite curvature.

Now we shall proceed to demonstrate the above statements in

a more rigorous fashion. Figure 8 shows a section view of a parti-

cular ring in Figure 7. We shall consider a band (using spherical

coordinates) located by the angle 4,.

Clearly if there is a payload there is a Athat 4, = since with-

out stiffness the sail elements immediately adjacent to the tension

shroud ribbon connecting the payload must assume an angle parallel

+r +h hrl-_l nor hxrc h >- Thrfnr._ QIch a hand . +that in

Figure 8 must exist where 4 = a whether at the edge of the sail or

some other point.

T a+ r n ,rnilih lt -V'l C"Crlr c"n in +lha FI rAit r+inn (nfla-
.i.J' , tA.J VV L t; IC;:;i L v J. ;. LA .I .X l,.i.- %J .vu.L

ward). We note that for the case of the sail axis directed towards

the sun and with 100% reflectivity,

B cos2 a = B cos (z)
O 'O

where a is angle between sun and normal to the sail at any point.

Denoting the tension in the sail at -, by T2, and a very small width

of sail at = by 4,
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-T sin 2[12(r- r cos +B cos2 2)[27r(r d) 0 (2 A)

using:

sin (23)

cos ( - sin

2 0 2riB[ 2~1 Ir

T2= B0r () (6)

Therefore, for:

T2 -°0 ( 7)
unless r -ao

Equation 22 then tells us 'that equilibrium cannot be satisfied

for T2 > 0 if r is finite. 1 Therefore, the sail will collapse inward

at this ring and obviously this mode of failure will propagate. We

note that the only specification on the load we have assumed is that

its diameter be less than the sail diameter. The only secificationw _ha_ v mad._ o th sai._ s _ __ __ _it ._ , -- sc -___ - e __ __

It ~ we have made on the sail shape is that it be symmetrical and have

a circular cross section normal to its axis. By using an element

dA instead of a ring 2irrdr, as in our analysis, one can show that

1 Technically this statement is not correct as was proved to the
writer by Prof. Sandorff. If one were to have a sail 200, 000, 000
miles in diameter making a hemisphere around the sun then, of
course pure tension members across the bottom of the sail would
hold it in equilibrium. This is the only exception known, and is
mentioned as an amusing example of the difficulty in extrapolating
boundary conditions to infinity.

L



r.

this latter restriction is not a necessary one. If one considers a

case where the sail is not normal to the solar flux, one can show

that for 180° of the ring circumference the Bo cos a term reverses

its sign and helps to produce collapse, therefore changing the

orientation will not improve stability. In the above equation we

see that if ' B" was a scalar constant as is the case for a gas

pressure we would find an equilibrium position and, in fact, would

be solving the problem of a parachute suDDorted by dynamic gas

pressure. Since our analysis considered only local equilibrium

on a ring without assumption as to shape it can be readily seen

that only slight modification of our treatment would lead to the

same conclusions for shroud ribbons located near the center or

at any intermediate point.

2.2 Rigidized Sails

This class represents designs utilizing compression members

of appreciable stiffness. Subclasses include: Inflated Sails,

Peripherally Stiffened Sails, and Spider Web Sails.

2. 2.1 Inflated Sails (Figure 9)

The inflated sail can, in principle, have many shapes.

It is characterized by being an essentially three dimensional con-

figuration as compared to the primarily two dimensional shapes

considered elsewhere. The first proposal of this type was by

Krafft Ehricke of Convair-Astronautics (Ref. 100 and 100A). He

suggested silver coated spheres which would have a small amount

of hydrogen inside to provide a 400 psi skin stress in the 10- 4 in.

thick Mylar film. He suggested the provision of small windows of clear

i

I
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Mylar to keep the gas at an acceptable equilibrium temperature.

He felt that the Mylar s own rigidity and the broad weight dis-

tribution would be sufficient after it was once inflated to keep it

essentially spherical. With a payload, of course, this last assumption

is open to question, and some stiffners would be required thus making

a combination vehicle with the " Spider Web Sail. "

It is very interesting to note that Ehricke s vehicle is almost

exactly the same as the NASA passive communication satellite to

be sent up this year. and this raises the point that Bounce will be

an important, although in this case unintentional, effect. Bounce

will undoubtedly strongly contribute to changing the satellite s

orbit.

As a solar sail, a fully silvered sphere lacks orientation

control. A half-silvered one o uld have control (one hemisphere

only coated), but at the price of serious ultraviolet exposure

problems, for which Mylar would probably not be suitable. More

serious however, is the sphere' s poor Lightness number.

ii Total radiation force is only B °2 ("1)
as derived in Appendix II. While solar gravity force is

as derived in Appendix II. While solar gravity force is

4 rr2 tjg ( )
go

where: g = solar gravity
= earth gravity

t = thickness in feet
p = density (lb/ft3 )
B = Bounce in psf
L° = Lightness number

so that L =

Bo go

8yP t g (27)8ptg



An improved lightness number is obtainable with the 11 flying

saucer" (Fig. 9c) which has controllable orientation, but suffers

from the same puncture problems.
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2. 22 Peripherally Stiffened Sails
This type rigidized sail involves essentially a stiffening ring

at its periphery. Such a ring need only provide enough stiffness to

prevent the mode of failure of the membrane of Section 2. 1. The

stiffness required to avoid collapse can easily be calculated as a

function of sail diameter, sail shape (how taut), size and vector

orientation of inertial reaction forces of the payload on the sail.

This has been done in Appendix III. The stiffener involved could

be an inflated ring with independent sections to minimize the danger

of collapse, but a study of Whipple' s data as it applies to thin films

(Section 1. 63) does not encourage such an approach. A more real-

istic approach is to use tubular pockets" filled with a plastic

foam. It might be possible to delay the foaming process until the

vehicle was in space, thus allowing the sail to fit into a compact

payload for launching into orbit. Such an idea has been proposed

by Cotter. 1 An alternative is the use of a permanently stiff

material such as a heavier plastic or light metal stiffeners (Piano

wire). These might raise serious launch and deployment problems

for reasonable size sails. (Useful sails are of the order of 150 -

1500 feet in diameter. )

No proposal using the peripherally stiffened sail has been made

to date. It offers potential passive static stability (see Section 2. 6)

and a good lightness number _ _ . .. . . .

diameters, as is apparent from Appendix III. NASA is said to be

planning to investigate an inflated ring design for a communication

satellite. (Ref. 136, p. 143

Ref. 98, p. 12.
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2. 2. 3 The Spider Web Sail (Fig. 11)

This type of construction involves a panel and stringer

construction. Panels might be coated Mylar or even thin aluminum.

The stringers could be of the foamed in place Mylar tube variety,

or given the low forces involved, (total pressure forces on a 1000

feet sail 1/10 lb) some piano wire type of structural matrix, or

light honeycomb construction. l (See Section 2. 4 for a discussion of

materials and structural problems. )

The web type construction offers good potential lightness

numbers since a virtually flat disk is possible, in addition, passive

static stability becomes possible as brought out in Section 2. 6.

2. 3 Field Effect Sails

As we have seen the central problem of solar sail design can

be reduced to the catch phrase " more Bounce to the ounce. 1 We

wish to optimize the lightness number Lo , which is related to but

yet (as proven for the case of the sphere in Appendix II) is different

from the criteria of optimum projected area/weight ratio.

Available field forces include electrostatic,~ magnetic electro-

magnetic (including light), gravitational (in the form of gravity

gradients) and inertial. The first two are handicapped by our re-

quirement for a surface as flat as possible. Repulsive forces are

a vector effect along the line joining the individual charge or dipole

pairs and at the limit for a coplanar surface the repulsive force

For an excellent generalized comparison of the merit of various
materials and structural configurations for space missions, see
Ref. 117 by George A. Hoffman of the Rand Corporation, and for a
comparison of pressure stabilized vs. stringer and sandwich
constructions, see Ref. 116 by George Gerard of NYU and Ref.
118 by Paul Sandorf of M. I. T.
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preventing bending goes to zero. As for electromagnetic effects

in the case of solar flux, we have shown the collapse caused by

its action (Section 2. 1). Any eddy currents in a satellite orbit

would of course also have less and less Rigidizing effect as

the sail became flat. Gravity gradient effects are small as

compared to solar bounce. Inertial effects in the form of centri-

fugal acceleration are of great potential interest. They have

been proposed by Cotter (Ref. 98, p. 14) in the form of a counter

rotation between payload and sail. We will propose a different

variant in Part III and will consider this very promising approach

in great detail.

2. 4 Materials for a Solar Sail

As is shown later (Appendix V) stresses on a solar sail are

a few psi, with total solar force of= 0. 01 lbs for a 250 ft diameter

sails. Therefore, the limiting factor on Lightness number is the

ability to produce thin films, and to package them on earth. Such

factors as meteoritic effects and erosion (Section 1. 63) have been

shown to be less restrictive.

The polyester film Mylar is at the present time the lightest

continuous film available in appreciable sizes. It is now produced

in 1/4 mil. thicknesses with a weight of . 0018 lb/sq. ft. At present

rolls 58 inches wide and 20, 000 feet long have been made. Mylar

cannot be heat-sealed, but 1/2 inch wide 1/4 mil. tape is available

at . 0036 lb/sq. ft. with a tensile strength of 1500-2500 psi, tempera-

ture range of -184°C to 138°C (melting point), and satisfactory en-

vironmental and aging properties. 1 Samples of 1/10 and 1/20 mil Mylar exist

Private communication, Mr. Ronald L. Larsen, Schjeldahl Company
who are manufacturing-the 100 ft. Mylar NASA satellite.

I



and given adequate demand could undoubtedly be produced. 1

For our further calculations, we shall assume 1/10 mil. Mylar

and use . 001 lb/sq. ft. to account for bonding, non-uniformity in

thickness, etc. Mylar service temperatures are quoted by Dupont

as -60 to 1500C. Further properties of interest are reproduced in

Table XV. No data on damping properties or stiffness is presently

available. Mylar is susceptible to degraddation under ultraviolet

exposure.

Other plastic films that might be of potential interest include:

Polyethelene (less strength, better ultraviolet properties, can be

heat sealed but not available in 1/4 mil thickness), Polyvinyl

Fluoride (good ultraviolet resistance), Makro Fol and Isolier Folie

DO-202 (German polycarbonate films), M X D-6 (metaxylylene

adipamide), polyvinyl alcohol, and Kel-f.l

A very interesting, if somewhat speculative possibility, (see

Ref. 108) is to choose a film backing that would sublime in space

leaving a 3000 A° layer of aluminum on a grid matrix of a non-

volatile material such as Fiberglas. Stress calculations show

that this possibility is an interesting one. The major obstacle

is to develop such a backing (required to handle the sail prior to

launch). Because of earth gravity forces large scale testing of

this approach may prove impossible. However, experiments at

NRC on lifting thin vacuum deposited films from the surface of

a solvent have been successfully conducted. 2

1 Private communication, Dr. T. C. Tsu, Westinghouse Research
Laboratories.

2 Private communication, Dr. J. Simon, National Research Corpora-
tion, Cambridge, Mass.



TABLE V
PROPERTIES OF MYLAR'"

PHYSICAL

Typical Value
(1 mil film)

10, 000 lb/sq. in.
at 1500 C

Test Method

Tensile strength
Tensile modulus
Break elongation
Impact strength

Bursting strength
Tear strength

Flex life

Bending recovery

bending recovery
Density
Area factor
Refractive index

,:.'Light transmission

20, 000 lbs/sq in.

550, 000 lbs/sq in.

75%

60 kgm.-cm

45 lbs.
15 gms.

20, 000 cycles

43%

51%

1. 39 gms/cc.

20,000 sq. in./lb
1.64 nD-25°C.

about 90%invisible >
4000 A0 , zero at <
3000 A

Instron tensile tester
Instron tensile tester
Instron tensile tester
DuPont falling ball

impact tester
Mullen
DuPont single sheet

tear tester
DuPont flex tester

at 250 C.
Immediate 1800 bend

recovery
60 second bend recovery
Density gradient tube
Calculation
Abbe refractometer

CHEMICAL

Moisture absorption

Oxygen permeability

THERMAL

Thermal coefficient
of expansion

Conductivity coef-
ficient

Less than 0. 5%

0. 90 gms/100 sq rmhr

15x10 6 inches/inch/OF

3.63x10 4 ca/cmrn/sec/OC.

1 week immersion at
250 C.

General Foods tester

From 700 to 1200F

Cenco-Fitch method

* From Ref. 100,
;'* From Ref. 120

Property

Table 2.
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According to Mr. Carey of the Civil and Sanitary Engineering

Department at M. I. T., a development cost of around $500, 000

could produce a practical solution. He feels that a highly plas-

ticized vinyl coated solution of 1/10 to 1/20 mil could be edge

sealed and aluminum coated on rolls and would not only be practical

to handle on earth but would quickly sublime in space. In any such

device since the stress in the sail near the hub varies approximately

as 2rrt, a central section of increased thickness would be required.

Potential improvements over a 10' 4 in Mylar 3000 A° aluminum

coated sail could increase Lo by a factor of 5 to 6. The limiting

value is that of the aluminum coat alone whose minimum thickness

as seen in Section 1. 64 is dictated by considerations of proton

sputtering losses.

As for use of thin metallic films alone without a plastic back-

ing, the thinnest aluminum films known are of the order of 2 x 10'6

inches and were used in the German Fabry-Perot interferometers

in the 1930s. 3 A web structure using a titanium mesh of 20 seconds/

meter and . 001 in. diameter with 2 x 10-6 in. aluminum panels has

been suggested by H. J. Gale of M. I. T 4 While this proposal pro-

duces the very low weight of . 42 x 10- lb/ft 2 , the problem of

erection seems extremely difficult and the aluminum thickness is

below the one probably necessary to have a reasonable life in the

face of sputtering. The Titanium grid, however, can be considered

as an alternative to the Mylar or Fiberglas mesh proposed earlier.

Private communication
Ref. 107, Section 2. 10

Ibid.

I
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Reference 117, Figure 3, seems to indicate glass fibers as offering

a more favorable strength/wt ratio. For the stresses involved in

a so lar sail it is likely that the minimum available wt/length is

probably more important since the thinnest strands available

are probably strong enough for the forces involved.

2. 5 Thermal Equilibrium of a Solar Sail

As previously mentioned (Section 1. 2) temperature equilibrium

is a function of configuration, orientation and material. A study at

NASA has been made of temperature equilibrium of the 100 foot

diameter sphere with encouraging results (Ref. 109). For circular

orbit they calculate a maximum temperature on the exposed side of

148 - 1600C, respectively, for altitude of 800 miles and earth

albedo of 0. 36, and altitude of 1000 miles with an albedo of 0. 52.

The minimum temperature of the coldest point: for 800 miles,

-1040 C and 1000, -108 0 C.

The equations used which are derived in the above paper con-

sider both solar radiation, earth reflection and earth reradiation.

We quote their results:

C A A S+ 1 -+ a AE] o)
S (1+ 2 +- E

4 a 4 IS

[1 - (1- k2) 1 2] )

= (~i + d' )~THS

I
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LI 4 1 .- A 2A12
T - CSAS- ) [1 {- - k) '-]i T 4 SS2

where:

a = albedo of earth

A = absorptivity (fraction of incident
radiant energy which is absorbed)

Cs= solar constant

h - altitude

k = RE/(RE + h)

6 = emissivity

am electrical conductivity

For a flat disk type of sail of aluminum coated Mylar, the

equilibrium temperature far away from the earth has been calcu-

lated by Tsul based on estimated emissivities as 50 C to 600C.2

This is, of course, a function of angle, but variations from this

value can easily be estimated from Figures 3 and 4, and do not

appear serious for reasonable angles. We note that such a sail's

conductivity and heat capacity is so low that temperature changes

can be very rapid. Tsu calculates that the sail should not be

allowed to be on edge with respect to the sun for more than 5

seconds because of the excessive resulting drop in temperature. 1

2. 6 Orientation Control

A solar sail, unless special design features are incorporated,

is of neutral static and dynamic orientation stability. Forces in

Private communication, Ibid.

He estimates that the range between -50°C and +120°C is the
temperature for all conceivable emissivities of the sail surfaces.
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space are low, but conversely so is damping. If we are interested

in obtaining a desired attitude of the sail and maintaining it,

several methods are available. On Class 2, or rigidized vehicles,

we can change attitude by moving the equilibrium position of

stabilizers shown in Figure 10. These stabilizers as shown in

Figure 10 produce a restoring torque against any random motion

and if moved by a control device would create torque about a

new equilibrium angle. Analysis of all torques around the center

of mass show the long lever arms involved. Designwise the

above approach is difficult of execution and we will consider others,

noting that the stabilizing fins shown in Figure 10 may be desirable

for passive stability in any case in vehicles of this type. As we

shall show later, they are not necessarily advantageous in spinning

sails.

A second approach is to either pull or alternatively release the

shroud ribbons or other connections between the payload and one-

half of the sail thus creating a torque on the sail, and by reaction

shifting the position of the payload. Approximately half way

before the desired position is reached the process must be reversed

to recenter the payload and avoid overshoot. This process is re-

quired, to have zero resultant angular momentum. Since angular

momentum transfer from Solar Bounce to the sail is non-linear

as a function of angle, an equal and opposite momentum transfer

must in general be initiated at some point other than midway

through the orientation change. The above analysis follows from

requirements for a final steady state, and from conservation of



T -50-

angular momentum between the sun and the system.

A different arrangement proposed by Cotterl involves first

orienting the payload in a suitable manner and then spinning the

payload, which by conservation of momentum will cause the sail

to rotate. After the midway point is reached, the maneuver is

reversed and both payload and sail return to zero angular velocity

at the desired sail orientation, Of course, the difference in

inertias between sail and payload is such as to require a rela-

tively high angular velocity for the payload. A typical ratio

between the two inertias might be 105 to 10 (for a 1000 lb. payload

and 1000 feet diameter sail). This system in turn would produce

appreciable centrifugal stresses on payload components, and might

thereby affect reliability and structural weight.

A possibly more attractive solution also taken fro m Cotter: s

work2 is that of a class 3 sail - where the sail is a spun disk. Cotter

suggests spreading the payload so as to increase its inertia and

spinning the payload in an opposite sense to the sail. With equal

angular momentum for payload and sail he suggests that merely

by applying a torque between the two " gyroscopesl (payload and

sail) we will induce a mutual precession about their common axis.

An important advantage of this method is that the system has gyro-

scopic stabilization and is therefore relatively insensitive to small

disturbances. For a1500 foot sail rotating at 1/2 rpm Cotter calcu-

Ref. 98, p. 12
2 Ibid, p. 14
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lates a precession rate of approximately 1 rev/2hrs. Control is

simplified since precession has no overshot and the sail will stay

in whatever orientation it finds itself when the mutual torque is

removed.

A final, and as far as the writer knows an original method, is

that of payload shift. It is felt that its simplicity may be valuable in

terms of reliability of control. Payload shift, as the name implies,

consists in shifting the center of mass with respect to the center of

Bounce (pressure). This is done by placing the payload on a movable

arm such that by changing the moment arm r and an angle & (where

& is a polar angle in the sail' s plane measured with respect to the

sail) we can introduce a torque in any desired direction.

This system is suitable for two position " on-off" control, i. e.,

payload either extended with relative angle and distance r or re-

tracted. The application of the method of payload shift to a centri-

fugally supported sail will be extensively treated in Part III (Section

8.0).

To generalize the preceding survey, attitude control for a sail

can then be accomplished through four basic approaches:

1. Asymmetrical Bounce by configuration change

2. Asymmetrical payload application,

3. Reaction forces (including reaction torques)

4. Cross-coupling of forces (precession)

We did not discuss, as of little general promise for solar sail

attitude control, field forces: gravity gradient, electromagnetic, etc.



3. 0 Possible Application of Solar Sailing

We have classified potential solar sailing applications into

promising, possible, and impossible or impractical. This list

includes both applications suggested in the literature ad a few

new ones. The list is not meant to imply any completeness or

definitiveness, but should be considered as what it is, both a

survey and an expression of opinion.

3.1 Promising Applications

In general, one can start by ruling out all solar sailing ap-

plications below an altitude of 400 miles where Solar Bounce first

becomes larger than aerodynamic pressures. No applications except

for attitude control should be considered below 800 - 1000 miles at

which point aerodynamic drag ceases to be of major importance. 1

Three very different types of applications are considered as promis-

ing. They are "primary propulsion" , 1trajectory perturbation"

and 'attitude control" .

3. 1. 1 Solar Sailing as Primary Propulsion

A solar sail powered vehicle is well-suited for modest pay-

loads (up to 1000 or 2000 lbs) to the near planets. It simplicity, in-

herent reliability, unlimited energy, reasonable weight, simple pay-

load orientation, and excellent midcourse correction capabilities,

as well as relatively relaxed navigation requirements are some of

the reasons that make it of interest. Part III of this paper which

discusses a solar sail propelled Mars probe will develop those advan-

1 Ref. 56, p. 111



tages as well as problem areas in considerable detail.

3.1. 2 Solar Sailing for Trajectory Perturbations

Solar sail vehicles to get an acceleration of 10 4g

or L of 0. 16 are of very large diameter. There are a number of

interesting ballistic trajectories, however, where only relatively

minor perturbation capabilities are required. An " auxiliary"
-5sail of 10 g or less capability might be very adequate for these

purposes. We note that 10 5gO gives a AV of 128 ft/sec/day and

that most interplanetary ballistic trajectories speak of auxiliary

correction capabilities of the order of 2000 - 3000 fps over trips

of two or more years durations. For example, the MIT Instrumenta-

tion Laboratory Mars probe design has a AV capability of 2, 250 ft/sec

(Ref. 135).

Specific applications include orbit adjustment maneuvers for

high altitude satellites, such as the 24-hr satellite. There the un-

limited energy capability of the sail, and its physical size as a

good radar, radio and optical reflection would be substantial advan-

tages. In addition, the absence of large areas vulnerable to micro-

meteorite penetration (as is the case with radiators) is an important
-5asset. A 10 g sail incidentally might weigh only 10% or less of the

payload weight.

Another interesting if somewhat speculative idea is to use a

solar sail as a means of orbital correction capability for lifeboats,

as will undoubtedly be of eventual interest in manned vehicles (For

a design study on space lifeboats, see Ref. 127.) Desirable character-

istics include long storage life, low cost, compactness, dual function
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as attitude stabilizers (human movement in such a light vehicle

might otherwise cause large angular velocities. ) Further, these

relatively large sails would be very valuable for optical and radar

tracking by rescue vehicles. A small perturbation capability is

desired to allow for instance to deviate from a re-entry course

which a lifeboat" might not be designed to sustain.

3.1. 3 A Solar Sail as Attitude Control Device or as an
Angular Momentum " Sink"

Many vehicle attitude control proposals employ fly-

wheels, (Ref. 6, 8, 18), spin stabilization, (Ref. 3, 7, 9), or

microthrust rockets (Ref. 14) (for comparisons between different

methods see References 1, 2, 12, 13). All the above systems have

the advantage of relatively fast, orientation insensitive, response.

They have already been used in various applications (according to

Soviet data flywheels were used on their lunar probe). All the above

systems, however, have the limitation of being eventually saturated

in the presence of small but persistent unbalanced torques which for

an earth satellite include Solar Bounce, and earth (Ref. 3) gravity

(Ref. 104), and centrifugal gradient effects (Ref. 4, lO))aerodynamic

forces (Ref. 5, 17) and interaction with the earth's magnetic field

(Ref. 21, 134). For a space probe, of course, all systematic un-

balance effects other than Solar Bounce become negligible. Faced

with the problem of stabilizer saturation, several solutions are

possible. For low orbit satellites (up to about 300 miles) aero-

dynamic stabilization systems are interesting (Ref. 18), for many

other satellite missions magnetic field interaction attitude control

has interesting possibilities as a method of "dumping" angular

L
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momentum (see Ref. 134 for a specific design proposal, involving

the generation of eddy currents).

However, for many high altitude satellites and all ballistic

space probes, a solar Bounce altitude control has unique advan-

tages. In the case of a proposed 340 lb. ballistic trajectory Mars

probe with microthrust jets for midcourse correction, a series of

four " solar vanes1 ' have been proposed. In this careful four

volume treatment of a Mars photographic reconnaissance by

M. Trageser and associates at the M. I. T. Instrumentation

Laboratory, (Ref. 135) flywheel altitude control is supplemented

by four " solar vane:" sinks. For simplicity, Solar Vane control

is restricted to " on - off" control. The metal vanes are either

extended or retracted. Four vanes, one on each side, are set at

450 tilt with respect to the vehicle axis. Each vane is of 160.0 sq.
-8

cm and has a Bo of approximately 6 dyne cm = 42 x 10 ft. lb.

They can be operated in pairs to produce a couple in any desired

axis. By using the flywheels to hold them in a fixed attitude,

angular momentum is " dumped" at a fixed and calculated rate,

and the flywheel is allowed to slow down correspondingly.

A general treatment of a solar sail as a stabilizer and dynamic

damping system is given by R. L. Sohn of the Space Technology

Laboratories (Ref. 104). Sohn evaluates the sail for use on a

lunar probe. For a- derivation of the appropriate equilibrium

equations for Solar sail stabilizer see Appendix IV. The deriva-

tion in Appendix IV takes into account the previously discussed

vector nature of Bounce, Bo, as opposed to the scalar nature of

k
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a gas pressure Po. Sohn's calculations, taking onto account the

above comment, still show very reasonable stabilization times for

representative gravitational and solar bounce asymmetries.

A special feature of a solar sail attitude control system not

previously mentioned in the literature is that contrary to other

stabilization torques, it is primarily a heliocentric effect. For

such projects as an orbiting satellite telescope the value of this

is obvious, inasmuch as the telescope orientation must be maintained

fixed in inertial space and not with respect to earth. Using the ex-

pression B = Bo cos2a where B near the earth is 1. 95 x 10- 7 psf
0 0

for a stabilizer of area A sq. ft., and mean distance to c. g. of d
-7 2

we have available torque of 1. 95 x 10 A d cos a.

For a purely passive system where other disturbing torques

are of the same order as the sail the restoring force is small, for

small disturbance a : , and for a permissible oscillation of 1°

Where is a small angle

an average restoring force of approximately

-7
1. 95 x 10(AL) (3 )

i3

1 cos 2 a is available. However, we also note that -2 sin a cos aJa
and therefore maximum sensitivity occurs for a = 90° and minimum

sensitivity for a = 0 . In the case of an active system with an on-

off mode acting as an angular momentum dump in conjunction with

a flywheel altitude control system a much smaller sail can be used

s
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since the available torque becomes approximately:

1. 95 x O7 A psf ( 33)

When the stabilizer is oriented by the flywheel normal to the sun.

This is the advantage of the extendable type of sail as developed

in the MIT proposal.

Of obvious interest is a dual mode where gross motions are

reduced by flywheel and stabilizersafter which the stabilizer is

allowed to assume its neutral orientation. As mentioned by Sohn,

dynamic damping can be then introduced into the stabilizer system,

by providing motion to the stabilizer in such a way as to provide a

proportional restoring force.

An entirely different mode of operation providing attitude

stabilization, an angular momentum sink and damping in a single

integrated mode of operation is that of the " Self' Stabilized Stabilizer."

This approach, as far as the writer knows, has not yet been suggested.

It appears to offer a number of substantial advantages and for that

reason is discussed in detail as Part II.

3.2 Secondary Applications of Solar Sailing

Deemed of less interest than applications in Section 3.1 but none-

the less possible are two further types of application, namely radiation

tracer bodies and relative motion control.

Radiation tracer bodies as developed by Ehricke (Ref. 100 & 100A)

are of interest in obtaining data on drag, in the neighborhood of planets

and the moon (interplanetary drag he calculates would, however, be too

small to observe). Ehricke proposes silver coatings predicting a low
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equilibrium temperature of -1700k -2000 k at which temperature he

expects the empty Mylar sphere will have sufficient rigidity. He

further suggests that a'sphere could serve as a measuring device

for micrometeoritic penetration and silver coating erosion through

optical measurements (i. e., gradual or sudden fading process).

With the rapid evolution of more complex vehicles and larger

boosters it is very possible that the above purposes may well be

served with multi-purpose vehicles.

We recall that Ehricke s radiation propelled tracer bodies

are capable only of ballistic trajectories with a fixed Solar Bounce

superimposed in a purely radial direction. Such a body, if

launched in a given solar orbit, has an easily calculated path de-

pending uniquely on initial condition and lightness number (Ref.

66, 100). As noted earlier, the NASA communication satellites

are a special case of the radiation tracer bodies and aolar Bounce

effects are very significant on them.

As for the other type of sail mentioned, a , relative motion

control" , this can be thought of as an intermediate between

attitude control and trajectory perturbation devices. A "' relative

motion control" ' would apply to such a vehicle as a nuclear powered

ion engine with a payload located (as has been frequently suggested)

at the end of a very long tow cable (to take advantage of - nuclear

radiation attenuation and thus economize on radiation shielding). A

relatively small sail might then be used much as aerodynamic controls

are employed on a glider towed by an airplane. This sail would be

utilized to allow limited control of relative position with respect to



the ion propulsion unit, and probably more important to damp out

any tendency towards pendulous oscillation of the vehicle at the

end of a long cable. Because such a device is not of apparent

interest in the very near future no attempt has been made to explore

it carefully, and it is merely mentioned in the interests of a more

complete coverage.

3.3 Impossible or Impractical Applications of Solar Sailing

This section has been included both as a convenient way of

bringing out some of the limitations on solar sailing, and also

because mere mention of what appears to be an impractical appli-

cation may lead others to a modified and useful concept. The

above classification includes low orbit satellites, 't solar tugs" ,

cislunar vehicles, manned vehicle applications except as small

perturbation, and space relay stations.

Low orbit satellite sails as we have seen earlier in Section 3.1

are undesirable because they lead to excessdrag. A minimum

altitude of 800 miles insures fairly negligible drag, but attitude

control applications can in some cases be considered at 400 miles.

The 1 solar tug" is a superficially attractive idea for " ferry-

ing" cargo from a low or medium altitude orbit to a higher one

with no expenditure of stored energy, using a solar sail tow vehicle.

Considerations of size, transfer time and payloads relegate this

idea to the realm of the impractical (see Section 4. 1 for appropriate

equations and relevant calculations).

Cislunar vehicles in general cannot use a solar sail to great

advantage because of the unfavorable performance in the presence

i .



of a central force field, such as the earth' s, greatly stronger

than the available aolar Bounce effect. This combined with the

relatively short transfer times make the sail as a means of

propulsion as contrasted to perturbation) ar less attractive

than nuclear-electric or even chemical systems. As for use as

midcourse correction, low transit time to the moon make this

process also unattractive.

Solar sails for manned vehicles have been listed as un-

attractive (especially as primary propulsion) because of weight

and (except when used as a perturbative force effect) time factors.

A solar sail of approximately 250 ft. diameter will give an accelera-

tion of the order of 10-4g to a 200 lb. payload. For much larger

payloads of which manned vehicles are an example either accelera-

tions become excessively low or sail sizes become so great as to

raise serious technological questions of present day feasibility.

In fact, even a 250 ft. diameter sail requires a certain amount of

developre nt effort, but it is generally considered as of manageable

proportions.

The space relay station concept involves the use of solar sailing

to station one or more communication relays in space with control-

able attitudes and position. With the recent developrme nt of Maser

technology the advantages in terms of signal to receiver noise in

using a Maser installation on earth are such as to make even a

directional rebroadcast system in space appear of little present

interest.

i
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4. 0 Interplanetary Trajectories for Solar Sailing

In this section we shall consider separately the two key problems

of a potential mission: earth escape and subsequent interplanetary

transfer maneuvers. Inasmuch as no fundamentally new ideas will

be offered in this section except for inclusion of earth Bounce

effects, derivation of the appropriate equations will only be discussed

and the reader will be referred to the original references for a more

detailed presentation. In any case the material presented here will

no doubt be superseded by a more precise computer aided study now

being conducted by Dr. Theodore Cotter at the University of Michigan

where he is currently a visitinglecturer in Physics. Dr Cotter

plans to present his findings in a paper to be delivered at the New

York annual meeting of the Institute of the Aeronautical Sciences

(IAS), January 25 - 29, 1960. 1

4.1 The Earth Escape Maneuvers

In some ways escape from earth can be said to differ from

escape from the solar system only in the magnitude of the parameters,

and hence the time scale. For a solar sail four significant differences

stand out. First isthat Solar Bounce for earth escape acts as a helio-

centric vector. This is to be used to furnish the desired accelera-

tions in terms of geocentric coordinates and this forces use of rela-

tively rapid orientation changes. Second, solar gravity is of the

same order of magnitude as Solar Bounce effects, for a reasonable

design, but Solar Bounce is-at least 4 orders of magnitude less than

earth gravity for much of the escape spiral. An analytically important

Private communication, Dr. Theodore Cotter.



factor is that for interplanetary travel the ratio of Solar Bounce

effects to solar gravity effects are a constant, hence the use of

a lightness number. For earth escape this of course is not true,

instead Solar Bounce effects are a constant, Earth Bounce effects

and earth gravity are decreasing. The fourth difference is of course
;

the non-negligible Earth Bounce effect whose distribution is a vary-

ing function of position, season, etc., and whose magnitudes are

not accurately known.

Its estimated fluctuations as per Appendix I, Equation 112 of

between:

. 6 R )2 Bsolr R 
0.16 (R+ D0 o r B 0 52 R B

solar solar

does not permit its omission in any but order of magnitude estimates

(except for the case of the polar orbit).

In general we can say that an optimum time earth escape program

must at least initially optimize (geocentric) tangential acceleration.

The impossibility of escape using purely radial acceleration by the

use of forces less than 1/8 those of the central force field has been

proved by Copeland in Reference 66. Optimization studies for low

thrust acceleration devices have shown tangential acceleration to be

either the fastest or in some uses close to the fastest method of

escape for a given available thrust (Refs. 63, 69, and 55 Sections

8 and 10).

In the case of a solar sail pure tangential acceleration is

imnossihle but we note the nroof by Tsu (Ref. 106. . 9) that only
---- ~ ~-__. - - - ___V_ -__ V- ---- - - - --



small errors are introduced by neglecting the effect of the radial

component of acceleration (for velocity vectors close to circumfer-

ential). We also note Ehricke's proof (Ref. 55, 8-113) that the

results for a low mean acceleration are approximately the same as

for a ' . constant acceleration equal to the mean accelera-

tion. In doing this we sidestep,possibly with insufficient justification

the effect on escape time of the degeneration of a circular or elliptical

trajectory in the presence of small but repeated unsymmetrical

acceleration patterns over many revolutions. Perkins says in his

paper that 1t whether or not the thrust is constant, if it remains

less than 1% of local vehicle weight, the mean path of these traject-

ories will maintain the familiar circular velocity-altitude relation-

ship for some time. "1

Having assumed the foregoing, we are able to use directly

the computer derived plots of position, time and velocity for a

constant 10-4 tangential acceleration as shown in Figure 13 and 14

which are reproduced from the paper by F. M. Ferebee of Rocket-

dyne (Ref. 69). 2

From Figure 13 we see that for a 104 g constant acceleration

starting at a 300 nautical mile orbit about 85 days are required for

escape after 337 turns. From 1000 nautical miles using Ref. 74

1 Ref. 74, p. 237
2 For a representation of a large family of such curves for varying

accelerations see reference 55, Sections 8 and 10. For non-
dimensionalized solutions from which all the pertinent parameters
can be easily calculated for cases of interest, see Ref. 74.
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we find that only 80 days are needed. We recall that for a solar

sail an 800 to 1000 nautical mile launch altitude is needed. If our

average acceleration is 10 g At the time to escape

becomes, according to Ehricke, (Ref. 55, p. 8-112):

Constant Tangential Acceleration Time from 300 N Mile Orbit
to Escape

104 85 days

. 5 x 10 g 8 months

-4.3x10 g 12 months

Clearly then, mean accelerations less than . 5 or . 6 x 10 g

are of very limited interest for earth escape. Given this approximate

value, we can at least arrive at some order of magnitude answers.

(Noting previous reservations on the accuracy of the answer and

leaving moot any gains that might be made through the use of an

elliptical orbit. )

Two basic modes of escape offer themselves: One is a polar

orbit, (Ref. 98) the other is an orbit in the ecliptic (Ref. 98, 102,

107, 108), with an obvious infinite number of intermediate orbits

between the above two.

The polar orbit offers the advantage of having as possible

orbit one in which the tangential Solar Bounce component is a

constant. As can readily be seen by taking the derivative of
2 ocos a sin a, its maximum is obtained for a = 35° .

For convenience, let us use a = 30° as an approximation,

then:
B=B cos2 a= 3/4 B 34)a 30
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B B cos a sin a .37 B (3
tangential 0 0

Bradial = B cos3 a = .68 B (3)

Where B is normal both to the ecliptic and to the polar orbit.

The effect of Bradial is to gradually push the escape spiral to an

escaPe siral t lightly lrcer rdjiv fromn the suin and. th-rtfr4

slightly greater altitude. This effect is of secondary importance,

however, and escape is primarily due to the tangential component.

We note that a polar orbit escape is also possible with a geocentric

sail orientation using only earthlight with:

For a = angle of earthlight incidence

2
Btangential: Bterrestrial cos a sin a

for the above Btangential = 3/8 B(terrestrial) which from Eq. (112)
is seen to have a maximum value of . 06 Bor. From the above

we see without computing the numerical value that an intermediate

compound angle which would use both earth and solar bounce is not

advantageous for a polar orbit, and that, (assuming a flat sail), an

optimum polar orbit is the one with a Bterrestria = 0 and with solar

angle of incidence of 35° .

For an equatorial orbit as shown in Fig. 16, earth bounce will

no longer have value zero. As shown in Fig. 16, (modified slightly

from Cotter, Ref. 78), we see that tangential solar bounce has a

four position average of:

1, 3/8, 3/8, 0 = .44 B (3 )

for the case of no earth shadow. For the case of earth shadow,

L
-L
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Btangential has an everage of . 34 Bo. In addition, point 2 has a

positive tangential contribution of 3/8 Boterrestial' point 4 has a

negative tangential contribution of 3/8 Boterrestrial where

Boterrestrial for point 4 is approximately .56 Bosolar and

Boterrestrial for point 2 is only .16 Bosolar as per appendix I,

Equ. 112. Points 1, 2, 3, 4 all have a positive radial Boterrestrial

which, as previously stated, we neglect in a first approximation.

A calculation by Cotter of which the results only are quoted

by him, (Ref. 98), gives earth escape in months from a 1000 N

mile orbit as approximately 1/L where L is the lightness number.

Since we considered B average to be between: .34 Bo and . 44 B
0

our approximate calculation gives us a result slightly higher than

Cotter s, which given our crude approximation of a 4 point average

and our neglect of radial acceleration is not surprising.

The polar orbit versus the equatorial orbit requires further

analysis to establish which is more practical. The equatorial

orbit would have a lower average B if too large a fraction of the

orbit was spent in the shadow of the earth, but as pointed out by

Cotter, this effect can be minimized by orbiting in the ecliptic

around a relatively high latitude, this would also reduce the

negative tangential contribution of Boterrestrial In addition,

a slight tilting of the orbit might be found to be justified because

of the resultant further reduction in earth shadow time, and

Boterrestrial effect. As mentioned earlier, an analysis of the

ellipse might provide a limited improvement. However, for a

non-polar orbit the circularizing effect of greater Bounce at the
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apogee than at the shadowed perigee also must be taken into

account.

A point not so far mentioned, but probably noticed by the

reader, is that because of the earth rotation around the sun an

80 to 90-day escape would require a polar orbit to change its

plane by almost 90°. To a limited extent, use of a slightly

asymmetrical sail angle would change the plane of the escape

spiral. However, a calculation made in Ref. 80, Eq. (29) shows

that given a 10- g acceleration, where g is the acceleration of

the central force field involved, a 5 change in plane of the orbit

requires 200 revolutions. Since we would only have a fraction

of ar available for this purpose, and ar is as we calculate equal

to about 3/8 JF x 10 4 go, obviously the forces available can

only cause a negligible small (for our purpose) change of orbit.

From this we conclude that for reasonable lightness numbers

(0. 5 or less) the polar orbit would degenerate ultimately to

an orbit almost normal to the starting one, at which point the

escape orientation pattern would be the same as for the equator-

ial orbit shown in Fig. 16. In addition, of course, launch into

the proper polar orbit requires both more energy and more

accuracy.

An approximate polar launch might be an orbit whose normal

is 30 - 450 away from the solar radius vector so that after launch

the 80 - 90° orbital change would still provide an orbit whose

normal is 45° or less on the other side of the new solar radius

vector, while maintaining the orbit normal to the ecliptic. As
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for the final velocity at escape, as shown in Fig. 14, it is small

as compared to the earth orbital speed and, therefore, is not as

serious a disadvantage of the polar launch orbit as would other-

wise be the case.

With the difficult orientation problems involved and long

escape times, one should seriously consider the launching of a

solar sail vehicle into a hyperbolic path with respect to earth

(escape) by use of a larger booster and using the solar sail only

in space where it is more effective. However, such a step involves

considerable additional energy over the 1000-mile orbit. For

escape from earth we require: 673 x 106 ft/lb/slug (disregarding

coriolis, drag, and other " non-ideal" effects) for launch to a

1000 mile circular orbit we require only 413 x 16 ft lb/unit mass.

We, therefore, need over 50% more energy than is the case if we

use a solar sail for earth escape.1

Alternatively, Dr. Tsu has suggested a solar heating rocket

booster unit for escape from satellite orbit which would be suf-

ficient to bring the payload plus sail to the same acceleration as

the sail alone. 2This booster which might then be dropped off

would improve escape time, (assuming payload mass = sail mass)

1 Based GM GM GM is gravitational potentialBased on E G _ G where --- s gravitational potential
energy on the surface of the earth = -673 x 106 ft lb/slug and
E at altitude h = GMr o + h
Ref. Table 1. 1, Eqs. 2, 27, 2. 45, P. E. Sandorff, " Orbital
Vehicle Notes, " Chapter 2, March 1959.

Private communication, Dr. T. C. Tsu



by a factor slightly greater than two.

4.2 Interplanetary Transfer

Once the solar sail propelled vehicle has escaped we have seen

in Fig. 14 that its specific orbital velocity is approximately the

same as earths s. For an interplanetary mission we must either

add or subtract specific energy from the orbit (for missions to

inner and outer planets, respectively). For a planetary probe

we are also interested in the velocity matching problem. The

two pertinent parameters are then specific energy E and specific

angular momentum H, both referenced to the sun.

First let us quote a few pertinent results from the application

of celestial mechanics. In Fig. 17, we have reproduced an E-H

diagram of the solar system from Ref. 75, by Edward Rodriquez

of Autonetics. One of the mose important tools to understanding

the behavior of a space vehicle in a central force field is the E-H

plane analysis.

Rodriquez derives, the following key relations, (with slightly

different nomenclature). 1

Given instantaneous specific energy:
v2

2 r

H= -r2 6o)

1 Ref. 79, p. 6-8.
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We obtain:

E=aV cos l

H= ar cos (+ ) ?)

) EV cos ) ( )
H r cos

where:

aL is the acceleration vector

Ar is radial acceleration

A is tangential to the orbit

V is the instantaneous velocity vector

r is the radial distance to the sun

is the instantaneous angle between velocity and
acceleration vectors

is the angle between the velocity vector and the
local tangent to an orbit

E is the specific energy

H is the specific angular momentum

6 is the central transfer angle, (solar)

is the gravitational potentialr

From the preceding equations we see that Br (= 90°) produces

E = 0 and H = - a¥ for ~ = 900. In general an acceleration tan-

gential to the velocity vector ( 0 = 0) produces:

E =4 IH =ar cos ' (4')

Similarly for Y + =+900 H = E = avcos (

For low thrust vehicles since initially is O0 we have that
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initially radial thrust produces E = 0 and H = . By controlling

the sign of the tangential component as well as the ratio of the two

components of thrust we can control our E and H (since the radial

acceleration can only be positive for a solar sail, we can only

change the sign of a.). Applying this approach Cotter finds

that to match Mars orbital velocity the initial portion of the trip

must be with Q.= negative so as to produce a negative H and

thereby avoid excessive velocity at Mars. (Ref. 98, Fig. 3.)

Cotter s calculations show a feasible Mars trip (including velocity

matching) for a lightness number of L = 0. 5 of 10 months with a

6-month wait in the vicinity of Mars (spent orbiting) and 10 months

return, (ibid, p. 10). The same velocity matching objective as

shown in Reference 69 or 86, Fig. 17 can be achieved more ef-

ficiently for an ion engine by using a negative radial acceleration

during a portion of the trip.

In general one concludes that the effect on E and H of radial

and tangential component are a function of past history, (as

manifest in the instantaneous velocity vector), and that both time

and energy optimization , therefore, is a highly complex problem.

One very obvious method of getting to Mars is, of course, a

purely radial transfer, this has been examined in Ref. 66, but

both in terms of velocity ma tching, flexibility, and time does not

seem to be of any advantage. Such a transfer mode cannot be

used for a return to earth ; . Radial acceleration

towards the sun by use of radial thrust is of course impossible for

a solar sail.

i

i



A general description of the effect of Ar and AA in the 7,;

plane is more intuitive than the E, H plane, but the E, H plane

as has been shown is very useful. For an analysis of Mars tra-

iprtnrv nnsibilitipe in thp r. & nlnnp see the ahovP reference

by Irving, (Ref. 86).

For a solar sail, in particular, as was pointed out by

Dr. Tsu at Westinghouse, an attempt to optimize travel time

without insisting on exact velocity matching, (although a close

approach to it does in fact result), leads to a very simple and

interesting result. This result is that, (assuming initialvelocity

and position that of the earth (which is approximately true as seen

in Fig. 14) and further assuming coplanar, circular orbits (also

a very useful first approximation) minimum transfer time is

achieved by use of a " Logarithmic Spiral". The logarithmic

spiral involves a constant angle of incidence. Further this angle,

Tsu proves, is purely a function of what is here termed the light-

ness number L.

From this simple solution he is then able to answer a number

of pertinent questions: transfer time, angle of incidence a, and

the"spiral angle (9 " which is, as before, the angle between the

velocity vector and the. local tangent to the circular orbit.

In his solution a further approximation is made. Namely

that the effect of radial acceleration is negligible. The effect of

r is later compared to that of a. and it is shown that for the

accelerations in question the error is small. We recall that
2 3a = Bo cos a sin a anda.r = B0 cos a.=B cos a.~r 



Results of Dr. Tsu' s calculations are here reproduced as

Figures 18-20. These show sail setting a, spiral angle 7 , and

trip time to various planets. 

An interesting possibility for return to earth from Mars with-

out a waiting time was reported by Battin at the MIT Instrumentation

Laboratory, (Ref. 62). He showed that for a ballistic vehicle a

close encounter of Mars of the order of a few thousand miles

could be used to modify the return journey so as to make feasible

non-stop round trips for most transfers. (Where it proved im-

possible, this manifested itself as a requirement for grazing with

radial distance such as to be inside the surface of Mars. ) The

approach derived by Battin is to treat grazing encounters as

impulses taking place at the minimum miss distance. Under

these conditions the change in the magnitude of the velocity vector

is small, but the angle change, ( A/ ), may be large. 2

Battin' s work includes a 3-dimensional perturbation analysis

and he reports on a whole family of ballistic encounters. Of

special interest is his comparison of similar transfer orbits

treated first as circular, coplanar transfers and then as non-

coplanar, non-circular. More of his work including computer

runs is included in Ref. 135, the MIT Instrumentation Laboratory

Mars Probe Study. Another interesting study showing all possible

1 For a different derivation eading to the same transfer orbit con-
clusions in slightly different form, see Ref. 61.

2 For another interesting application of grazing encounter where
Ehricke shows that a vehicle may gain a AV of 547 ft/sec on a
close passage of the moon, see Ref. 100, p. 22.

i
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transfers in the form of a topological mapping of date vs. transfer

time with equi-energy lines serving as contour lines is found in

Ref. 64, and is reproduced herein as Fig. 27.

4. 3 Relativistic Effects

rI
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involve velocities where relativistic mass corrections are direct-

ly important, but what of any pertinent relativistic corrections on

the behavior of the impinging photon and its momentum transfer.

Ehricke in Ref. 100 treats the relativistic force correction due to

the Poynting-Robertson effect. This effect, a relativistic force,

is based on a doppler shift such that " radiation emitted in the

direction of azimuthal motion has a slightly higher frequency than

the radiation emitted in the opposite direction" . Further, since

radiation energy is a function of frequency we have an energy

change. A similar radial effect exists. For a light 100 ft diameter

sphere Ehricke finds, (p. 62), an azimuthal deceleration of 2. 3 x

101 go due to the above effect. Thus relativistic corrections are

of no practical importance.
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PART II - The " Self' Stabilized Stabilizer" for Satellite Attitude
Control

5. 0 Mode of Operation

In Section 2. 6 we discussed the various possible methods

whereby a solar sail or vane can be used for attitude control,

angular momentum dumping" or oscillation damping. The

purpose of Part II is to describe a novel approach to the above

function that the writer believes provides a more efficient method

of performing any or all of the above named functions.1 For the

purpose of discussion we shall consider as a useful application a

2000 lb earth satellite of cylindrical configuration and 10 ft in

length. Such proportions might be those of an orbiting telescope,

not including its auxiliary functions.

The Self-Stabilized Stabilizer consists basically of a very

small Class 2,or rigidized sail with provision for inherent passive

stability to obviate the need for active attitude control of the at-

titude control device itself. In using a Class 2 sail we reduce our

sail lightness from L = . 32 to about between . 032. This corres-

ponds to a sail whose wt/sq ft is instead of . 001 lbs about . 01, The

above sail typically of 10 ft diameter is to be attached to the payload

Although the Self-Stabilized Stabilizer here presented is believed
to be a new idea the writer wishes to acknowledge the influence on
his thinking of a paper on Aerodynamic Stabilization by John K. Wall
of Douglas, (Ref. 9). The viscous damping technique proposed in
this paper is based on a similar device of Wall' s.

i
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-through a lightweight rod of sufficient stiffness to prevent collapse

under the forces involved. Clearly, as will be seen, an optimum

ratio exists between sail size and the above moment arm. However,

this is a function of design and material select i o n and optimization

has not been attempted here.

All previous proposed stabilizers follow the expression derived

in Appendix IV. They have a restoring force:

A cos2 a 6)

where:

a is the angle of incidence

A is sail area

e is moment arm between c. g. of vehicle and
c. b. (center of bounce) of sail

Momentum transfer devices, (which are essentially the above

stabilizer rotated 900), such as the MIT solar vane, (see Section 2. 6)

have a torque of A cos a where a, 0. However, the solar vane

has no steady state stabilizing effect,,for if it is used the vane will

exert a torque tending to cause the vehicle to rotate until it reaches

the condition of the first mentioned stabilizer, unless a second and

equal solar vane is placed on the opposite side of the vehicle in which

case clearly restoring torque is zero for all a.

The Self-Stabilized Stabilizer shown in Figure 21 has a restoring

force of Ad sin 13 for all .
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where:

13 = angle between rod and normal to sail

A = area of sail

d = distance between end of connecting rod and c. g.

We further note that for equal weight stabilizer area " A" can be

much larger without collapse than for other designs since its

behavior in bending is in general that of a uniformly loaded plate

with a central supportor for the design of Fig. 21, the case of a

hoop with a membrane supported at its center, Other stabilizers

are either cantilevers or membranes in a cantilevered frame.

For maximum angular momentum transfer the stabilizer can be

held, (by a flywheel system in the payload) at B13 = 90°.

For damping action we propose two alternatives depending on

damping requirements. The simplest ne thod is to coat the rod

with a rubber suitable to the environment, (possible a silicone

derivative). As is well known, rubber is a very effective damping

media and flexural oscillations of the rod would provide a small

but for some systems adequate damping. Here again an optimiza-

tion study should be made. An optimum damper is a function of

available stabilizing torque (which limits useful stiffness) and a

balance between the damping and spring constants. We leave

such an investigation to a later study.

A more efficient but also more complex and heavier approach

to damping is to use a viscous coupling between rod and vehicle

with a weak centering spring, somewhat similar to Wall' s device

I



mentioned earlier. Such a device should not be used between sail

and rod. The bearing at that point should on the contrary reduce

friction to a minimum to prevent variations in stabilizer orientation.

As for the stabilizer itself as seen on the figure we propose a

1/4 mil Mylar disk perpherally stiffened by a spring wire hoop and

with a reinforced center section where the bearing connection with

the rod is made. The rod itself for optimum weight should be

built in several concentric sections of decreasing diameter so as to

closely approximate a tapered rod of uniform stiffness. For a

sufficiently long rod the base (vehicle) sections would be hollow

tubing.

6. 0 Calculated Characteristics of Stabilizer

Given:

B = 2 x 10-7 psf (at 1A. U.)
O

d = 10 ft

d2 = 11 ft (per Fig. 21)

d = 15 ft

1. Force due to solar bounce

d +d d2 -d 1F- Bo [T (d )2 + cos3 dr(- 2 (^d] (47)
2 

F x10-7 10 2 + 55 ( 10+11-10] 0' t
F 2 2 2t

F = 6.3 x 10 7 [25 + 2. 9] = 1.7 x 10- 5 lbs )

2. Maximum stabilizing torque

1. 76 x 10-5 lbs x 15 ft = 2. 64 x 10 4 ft lbs ( )

: 3580 dyne cm (rI)

I-

I 

I 



T-

3. Restoring torque for any angle 3

Tr2. 64 x 10- 4 sin B ft lbs

Tr : 3580 sin B dyne cm

4. Self-stabilizing torque (available to preserve stabilizer
Orientation

Trestoring s2 B [ cos3 -cos 3 ( - da)] 2 (r 2
3 ) (54)

for da = small change in angle of incidence

34 1320-1000) [B cos 3 B-cos3 (B - a)]

= 400 x 10- 7 [cos 313 - cos 3 ( - Ja)] ft lb

for special case ofJa = 20

-7
= 13 x 10 ft lbs

= 17 dyne cm

Weight of Self-stabilized stabilizer

Wt. of rod 0. 5 lbs (assuming rod ten feet long at . 05 lb/ft

Weight of stabilizer

(aluminum coated 1/4 mil Mylar) plus frame

1. Wt. Mylar r 2 = 11 )2 ( 0 0 2 )lb/sq ftT r2 

(.S)

(5s )

(s )

(t'a)= .19 lbs

2. Frame (2 wire hoops)

where . = wt/ft

assume 16 gauge wire 0625"

Frame wt. = .66 lbs

dia. then = .0105

Total weight (not including damping mechanism)= 1. 3 lbs

(s.)

(S3)

(ss )

d [It dl + F d2 ] = 1T(10 + 11) = 66 /t . (41)

(6I)

('9.)



As seen in Figure 21, a second and slightly larger hoop con-

centric with the first one provides stabilization to the stabilizer

by offering a restoring torque for any Ja perturbation, (such

as bearing friction). In this manner the stabilizer is kept normal

to the sun. Stabilizer equilibrium clearly occurs ata =0. The optimum

angle 13 for maximum restoring torque of the stabilizing section

is easily computed by finding the minimum of the restoring

torque expression for small displacement on unit areas at ..opposite

ends.

For small a:

T (a ) cos3(- a )- eos3 (a + ) = [0)

T 31 (cos 2 (a - 13) sin (a - ) + cos(a+f3)2 sin(a-13) = 0 )

specializing to a = 0

)T = 3 [(co2 13 sin B) + cos2 B sin B = (7)

() a2 T -2 cos13 sin 2 B + cos 3 B =0 (6b)

adding sin2 to both sides3. sin2 B = cos2 13 + sin 2 3B (6

sin 2 3 = 1 (70
3

B =35 (7)

It is this feature which is the basis for the suggested name of the

whole stabilizer, the " Self-Stabilized Stabilizer.

L
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information and specific proposals pertinent to the use

of solar sails. We also tried to classify these roposals

in a significant manner, with appropriate terminology.

In this part e shall focus our attention on a particular

mission and develop a solar sail vehicle concept which,

the writer feels, can be seriously considered for this

purpose. Part III will include a brief description of

design alternatives and a brief explanation as to why

a articular selection is made.

7.0 THE "CENTRIFUGAL SAIL" AS A DESIRALE COCNFIGURATICN

By "Centrizugal Sail" we mean a class 3 or "Field

Effect Sail" which derives its pseudo-stiffness from the

inertial forces induced by spinning the irular sail

about its own axis. In appendix V, we derive the

appropriate equations for determining a suitable RPM with

acceptable stresses and deflections. It is shown in that

appendix tthat at suitable velocitities corresponding to

less than 0.qtRPM, deflections from a perfectly flat disk

of the order of 1 to 2 ft. and maximum centrifugal stresses

less than.5 psi result for our proposed 250 ft. diameter

i
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sail with its 200 lb. -payload,. (as more fully described

in sectin 11.).

7.1 Centrifugal Sail Design Asoects

The choice of a centrifugal design is based on its

high li3htness number(Lo = 0.32 for our proposed design)

its simplicity of constructi-n, its freedom from serious

micrometeoric damage, (as indicated in section 1.6), its

ease of erection in space and the special advantages

derived from its gyroscopic behavior.l The benefits of

gyroscopic properties are the well known ones of "spin

stabilization" which minimizes the effects of disturbance

tcrques, and controlled precession which, by preventing

overshoot, greatly simplifies the dynamics of the appli-

cation of control torques to cause attitude change. This

is especially true in space where, in the absence of

3yroscopic action, any impulse will cause a certain angular

velocity which will persist until an equal and opposite

impulse or corresponding integrated torque is provided.

The value of eliminating the need for a constant control

The idea of spinning a sail is not presented as a new idea.
The writer first thought of the idea after studying Hoff-
man's excellent paper on structural design for space vehi-
cles, (ref. 117), and has since read Cotter's paper, (ref.
98), which uses a centrifugally supported solar sail as
part of one of his design alternatives.

L
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t'dither" to maintain the orientation vector, (and thereby

for a solar sail the acceleration vector) within prescribed

narrow limits cannot be over emphasized.

The use of aluminium vapor coating is based on its

satisfactory reflectivity which is over 98% in the infrared

region of interests, (ref. 155), and 90% in the visible

(ref. 109). Its low transmission of ultraviolet radiation

to the mylar backing, (ref. 109), and its A/e ratio which

leads to satisfactory thermal equilibrium temperatures

(ref. 122), are among desirable characteristics.

Of possible alternative coatings silver (suggested by

Shricke) is of special interest. Its A/e of 2.0 as

compared to 12.0 for aluminium would lead to a substantially

lower equilibrium temperature, (see ?iFgs. 2, 3, 4). This

in turn would increase the stiffness of the mylar coated

surface and improve self damping of the sail. Silver has

the further advantage of a higher reflectivity, 96% in the

visible and 99% in the infrared. The coating removed by

proton sputtering according to Whipple is proportional to

both atomic weight and an efficiency factor. Thus the mass

of the coating would be a constant if sputtering removal

efficiency turns out to be the same. No experimental data

on this point has been found.

A detailed solar sail design study should determine

optimum temperature and consider a mixed aluminium, silver

Ref. 155 & 100, p. 58



ccatinr in a ratio suitable for providing the desirable

temperature range. Use of mixed coatings for this purpose

has already been made on existirg satellites.i Another

property of films which requires further investigation

is conductivity and its effects. During an earth escape

manoeuver interaction of the spinninE sail with the earth's

magnetic field might cause eddy current damping. Such a

consequence may therefore have to be guarded against in

any design involving earth escape.

The choice of the polyester film Mylar is basaed on

its availability, wide service temperature, high tensile

strength, (primarily valuable for handling on earth),

negligible outlassing, (discussed in section 2.4), and

excellent flexural tolerance, plus current availability

in $ mil. thickness and potential availability in 1/10

mil.? No thinner or equally thin film is known to be

available. Mylar has three known disadvantages: poor

ultraviolet resistance, an adhesive is required for

bonding, and relatively high specific gravity, (1.38).

The above it will be recalled are elaborated on and

alternative films are discussed in section 2.4. It will

be recalled that the interesting alternative of sublimating

the plastic film in space and allowing the 3000A ° coating,

(with a grid type support), to carry the load was also

1Ref. 29, p. 2
2Private communication, Dr. T. C. Tsu



the sail lightness number (even assumin a 20% sail weight

allowance for a supporting grid), from 032 to 1.5 is very

attractive. With payload of mass equal to that of the

sail this would give a vehicle L of 0.75 and would allow

earth escape in about 40 days. This, as seen in section

4.1, would radically change a presently somewhat marginal

situation. Because such a device requires a substantial

development effort, however, we have not made it the basis

of our proposed first generation" solar sail. We note

that such a device by being a practical Earth escape

vehicle would substantially improve the launch mass ratio.

7.2 Dynamic Behavior of a Centrifugal Sail

The reader may have already asked himself what is the

dynamic response of a sail to attitude changes, will it

precess like a rigid body and because of its low stiffness

and damping properties what types of vibratory modes may

be expected, what amplitude might be found both for steady

state and transient conditions? The above questions turn out

to be extremely difficult ones to answer in a satisfactory

manner.

Because of their importance, considerable effort was

expended on them and, after a number of false starts, three

fundamentally different ap.roaches yielded useful information:

I .
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Ex;erimental -- xperiments were erformed. at the IT

Dynamic Analysis Control Laboratory usirn spirmni la stic

and loth disks of varying stiffness and weisht. Rsponse

to various perturbations was observed using a strobotac

and photographs were taken using an .G.. strobolume

Model #1532A.1 Results are shown in Figures 22..

Because of lack of funds, (i.e. none) it was not possible

to arrange to run the experiment in a vacuum. Nonetheless

some interesting observations were made.

Fortunately (after the above program was well under

way) Mr. Emmannuel Schnitzer of NASA told the writer of a

similar experiment conducted at NASA in a vacuum of 0.02 mm

mercury. Through the courtesy of lMr. James G. Simmonds of

NASA,Langley Field Operations, their findins were made

available and will be discussed here.

Analytical - Simlified Model -- A simplified three

domain model was used to predict the precessional behavior

and follow through of the sail.2

Analytical Treatment - Vibration Patterns -- A

careful mathematical analysis of the eneral case of a

rotating disk of negligible stiffness is found in po:lied

Elasticity by john Prescott, (ref. 133). Pertinent re-ults

The courtesy of Dr. Edgerton of Edgerton, Germeshausen &
Grier Inc., in loaning this iece of equipment is

:ratefuliy ¢cknro ledged.
2The contribution of Dr. Robert Hufnagel of the Perkin-Elmer
Corp. Ncrwalk, Conn. in suSest-in the model is ,ratetu.lly
acknowledged.

.-
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of this very I'. cJrouth m. a the ,t a- aalyli- :i vtt;.t e

~.nd at lc oarmed fith experi.nitai. findirgs.

7.21 "xperimental Information

The experiments performed by the writer at the IT

Dynamic Analysis Control Lboratory were designed to provide

experimental information on behavior of thin spinnig- mem-

branes. It was also intended to study modes of vibration

as a function of sail stiffness, angular velocity, and sail

diameter. Any transients due to small pertubatlons was

to be observed. Finally, I"follow through" of the sail

during a rotaticn normal to the spin axis was also to be

observed, and precession-noted. Test mounts included a hp

electric drill as shown in figure 22 with a 6" diameter hub.

A Variac control was provided for speed variations.

A second mount consisting of a 1/20 hp motor on a 2

de.iree of freedom gyroscope mount was also used. Provision

had been made for small unbalance torques to-be provided

to initiate sail precession. These did not turn out to

be large enough to observe precession and torquing by hand

was successfully substituted.

Conduct of Experiment.

4 sails were employed consisting of:

1 - light cloth sail of 15" diameter.

2 - TG thin lastic disks of low stiffness with

30" dia. and 20" dia. respectively.

.L
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7
5 - One tin plastc disk of ireater s iffness .nd

wei,;ht witL a diameter of 30". (Type and exact

agre cf plastic filmn not known.)

The disks were circular and hmogeneous in all ases, a

6" hub supported them at the center and the sail was taped

at the edge joint between te adSe o the central hub and

the sail at r 3". ,xperiments on both mounts were

conducted at seeds ransinE from about 200 rpm through

2000 rpm. After preliminary observations were recorded the

experiment was performed at night with a Strobotac which

was used to observe the sail patterns and to determine

both sail speed and speed of rotation of nodes. The

S`trobulume unit mentioned early with a 100 microsecond

flash was used for photoSraphy. In all some 20 different

combinations of speed and sail diameters were observed and

the followinq was found:

1. In all cases and on both mount, rrespective of

method of deployment only 3 ndes were observed. They were

equally spaced radially as seen in figure 22. No other

vibration patterns were observed. Deployment was done at

varying accelerations and both with sail folded on the

hub (centrifugal self deployment) and with sail edges

supported by hand.

2. Cusps ocured either on th8 bottom (more frequent)

or on the top, the usp once "set in"t on a particular

run would not reverse, but might for the same sail be

I



dif aereunt n available to easure

3. 'c suitable equi-ment as available to masure

osc.Lat1in an mlitu de and it was t er3 are e sttfaeI.

Amplitude was a funtion of s peed, and increased non-

linearly with angular velocity.

4. Cscillation amplitude was a function of diameter

of sail, and increased with increasing diameter.

5. io combination of seed and diameter resulted in

a standing wave. Node rotational velocity varied between

15 and 26 of sail aular velaiocity.

6. Ping ong balls were thrown at the sail at various

speeds to simulate small pertubations. In no case was an

observable transient produc ed.

7. The sail mount (electric motor) was rotated by

hand about an axis normal to the sin axis to observe

follow through. This was invariably smooth and mcnotonic.

The experiment was done with both low and, hish angular

accelerations. When a 20" sail was run on the yroscopic

mount at around 100 rpm it was possible to observe the

beginninrs of sail precession. This precession was of urse

prevented by cnstraints on the hub aid therefure appeared

only as a transient, but very perceptible mode. recession

torque was provided by rapid hand rotation in one axis of

the mount normal to the spin axis.

Before discussinr,3 the results we shall consider the



experiments run at NASA. Exeriments at iASA, Lanrley

Field were performed by Mr. James G. Simmonds They

were performed in a 0.02 mm H vacuum. A thin circular

film of 4 oot diameter was spun at between 500 and 2500

rpm. At a speed of 800 rpm a simultaneous rotation of

2.4 rpm about a second axis was also employed. The

resultant oscillations on the latter test were recorded

on film at 24 frames/second. Both distortions and

precessions were observed. As described they appear to be

similar to the ones obtained in our tests except of lower

amplitude. The photographs taken by them, fig. 23 (in copies

1 to 4 of this thesis only) are not distinct enough to be

readily interpreted by someone who did not actually see

the experiment.

Through analysis of the aerodynamic forces, they

conclude that the ratio of aerodynamic forces to centrifugal

forcesI Pa b
P h

"here Pa = air density
b = radius of disk
P a density of film
h - film thickness.

They conclude that "even for low vacuums the ratio of b
h

may be so large as to make the aerodynamic forces significant."2

1private communication, Mr. James G Simmonds

2 Mr. Sim.ronds is currently proparing a report titled "The
Dynamics of pimriing Membranes" which will explore the
problem further.

1
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7.23 Analytical - Simp1ifliad iModel

As seen in fig. 24 in determinigj the method of

initiating precession we can conveniently consider the sail1

to be composed of 3 domains.

Domain A - a rigid disk not rotating on which a torque

T is impressed.

Domain B - a non-rotating membrane.

Domain C - a rotating rigid body (where centrifugal

force 3ives it pseudo stiffness.)

These approximations then allow us to connect the

domains by appropriate boundary conditions.

Namely: at A-B- Mb 0

at BE-C Mb = 0

where Mb is the bending moment

Cbviously the membrane can only carry tension. In the

successive sections of figure 24 labeled t 1 , t - 2,

t 3 and t - 4 the precession mechanism, is described.

At time t 2 we see a control torque causing a displace-

ment in the membrane and transmitting a stress S1, to the

outer disk. At time t -3 we see the outer disk precessing

and transmitting a counter torque 32. S2 causes the hub to

precess. This simplified analysis by correctly identifying

3 areas where different forces predominate reduces our

interaction problem to one of: torque ir a rigid non-

rotating body, force transmission in a membrane, and precession

in a rigid rotor, each of which is well known.



7.235 Analytical Treatment

Ref. 133, chap XVIII by Prescott ncerns itself with

natural vibrations of rotating disks. The analysis of a

rotating disk in the above reference considers stiffness

and centrifugally induced tensions. The contribution of

aeorodynamics (or solar bounce) efe4 cts is of course not

included.

We quote:

"When a rigid disk in rotation vibrates it is
controlled both by the tensions and the stiff-
ness. Since the tensions in the disk are pro-
portional to the square of the angular velocity
it is clear that, at low speeds, the main -con-
trolling force is the rigidity, whereas, at
very high speeds, te main controllir force
may be mainly the tensions due to rotation. Vie
shall first find the periods of vibration of a
disk which has a negligible rigidity. Afterwards,
when the periods of vibration due to rigidity
alone have also been found, a method will be
given for finding the period of the rotating disk
in which both rigidity and tensions are taken
into account. "1

of special interest to us is the case of a disk without

stiffness.

For this case the differential equation for equilibrium

reduces to (p568)

r + (r 2f62 , w _ A(73)

where: W = displacement normal to the plane
P = radial tension
t- circumferential tension

/ - density

Ref. 133, . 565



oiolutiJns of this equationr are tien derived. ThS equatsns

satisfied by slutions .sistiE ̂  f -one or more nd'a

zEP!5 and >Z ne or me re nodi diameters ae as pe te

follow in table 'rom pases 571-574}.·

iumber of Nodes
N = (nodal diameter) N 0 2 1 2 4 15 56 nn

SI 1 0 1 5 20 0 1

Further, Prescott finds that the case for N = 0 can only

be satisfied for a free disk since the center of the disk

is not at rest.

Pres-ctt solves for the rate of rotation of nodal

diameters. He finds 3 possible angular veloities:

W- 1W, W + 1

7 et)
where P1 is the frequency of vibration.

A case of special pertinence is that of the "uniform disk

vibratirng with one nodal diameter" (p. 610) for this is

the case of a disk clamped at an inner radius, and in this

respect orresponds to our sail. For this ase (analysed

by R. V. Southwell) "it is possible for te disk to vibrate

with its edge free in a mode with one nodal diameter and no

nodal circle."

We could easily consider this analysis in more detail,

but the above is sufficient to lead us to conclude that:

1. The above a-nalytical a roach by not including

the very comvlex aerodynmical efi ets fails to predict

modes obtained experiaentally (fi 22).

2. In ay ase accordin t Presott the analytical



approxia tion which he uses t ma.ke te irobl t act as

do nut apply to the relatively large amlitudes of interest.

He says:

"If the maximum deflexion in any vibration is
less than one fifth of the thickness of the disk the
theories of this chapter can be regarded as practi-
cally accurate; for a maximum deflexion equal to the
thickness the frequency miht be, accordirLa to the
particular mode of vibration, 10 t 25 per cent
greater than we have calculated. In fact, for
large amplitudes, the motion cannot be resolved
into normal modes of vibration; and robably there
are no pure vibrations at all, but only an irregular
wobbling in which amplitude and period bth chanSe
considerably from sne vibration to the next."l

j. Analytical solutions of Prescott's show a great

many permissible modes and show the importance of the ratio

of hub diameter to sail diameter, this can very probably be

considered as enerally valid and should be taken into

account in experimental work.

4. Conspicuous by their absence in our experimental

results are both aternate modes involving various

diametrical nodes and any form f circular nodes.

We can accordingly conclude that, as for instance in

the case of lift in fluid mechanics, purely analytical

techniques for the problem of aspilning sail may require too

many simplifying assumptions to allow useful predictions

and that it may ossibly rove more fruitful to resort to

experiment oupled with dimensional analysis. If, however,

the above conclusion should be disproven we are confident

this will not be without much labor.

lIbid p. 619

I
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7.24 Discussion of Results

Our experiments and those ot MA I s OW the potential

importance of flutter in a spinning sail. They also show

the importance of aerodynamic effects, and how only a high

vacuum will permit adequate simulation. The analytical

work of Prescott'a,which do not take into account aerodynamic

effects, should better describe phenomena in a vacuum and

(since they are only valid for a small amplitude.) can serve

as a useful starting point for the analytical evaluation of

conditions of stability which can be done in conjunction with

experimental work. We note that Solar Bounce, providing as

it does a vector frce of varying intensity normal to the

local unit area, can act as a damping force or as an exciting

force. depending on assumed flutter geometry. Aerodynamic

effects are several orders of magnitude smaller. As for

self damping of the mylar no information is currently

available.

Flutter in a spinning disk subject to dishing is

inherent in the fact that a dished disk is a "non develop-

able surface", i.e. cannot be developed from a two dimensional

shape without distortion. Conceivably a solar sail whose

equilibrium shape would be slightly dished could eliminate

flutter since such a shape would not require distortion to

take on a dished configuration. In this context we note with

interest the experimental results at NASA with spinning of a

"cone parabola combination which contrary to the disk behaved

1
excellentlz -c--"uni-ation, -r. James inn-s

lprivate -. ,munICDtion, r. James SirmOnds
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8.0 ORIENITATION CCGIlERL BY PAYLOAD SHIFT

As we have seen arlier . saolar sail controls ts

velocity vectcr by shifting its orientation. Cos3,

and cos2~ sina are respectively radial, tar) and

tangent ia, (at) accelerations. In addition a component

of velocity norml.1 to the ecliptic can be obtained by

orienting the sail at some angle,. To change orientation

several methods are available as was shown in section

2.6. The method to be known as method of "Payload Shift"

which will be developed here has the advantage of requiring

only very slow displacements and infinitesimal forces.

These 2 features are of special value in space vehicle

reliability for relatively long periods of time. The method

of Payload Shift relieson the fact that if the center of

mass and center of pressure do not coincide a torque

results. In our particular case for a payload whose mass

equals that of the sail a payload displacement of a few

feet from the center creates adequate torque. For our

proposed design the torque equals 0.15 ft. lb. For a

spinning sail this torque causes a precession normal to

itself. This has been evaluated in appendix V. The
O. IS'

result is an angular velocity of .4V/minute for d s 300
and Bo 2xl0- 7 psf. At the orbit of Mars this is reduced to

about Icos 2o degree/min. These values are considered

quite adequate for the purpose and are typically 6 or more

orders of magnitude greater than solar gravity gradient



forces. On the other hand, for a spiral escape from

earth starting at an altitude of lOOOn miles we have

calculated a maximum initial gravity gradient torque of

.025 ft. lbs. Compared to our maximum of 0.15 cos2 c

ft. lb of Payload Shift control torque it is clear that

Payload Shift does not lend itself to orientation control

during escape. Honwever, this is no great loss since a

more serious objection already exists. Since the payload

shift attitude control depends on cos2( a condition

would occur during the earth escape spiral where 1 = 900°,

in which case our control would fail. This remark holds

true for all escape spirals except a polar one in which 

iS never 900.

Slnce our vehiclet's Lightness number of .16 renders

it unsuitable for polar orbit escape as demonstrated in

section 7.1, we realize that if we were to consider earth

escape by solar sailing some other attitude system such

as Cotter's mutual precession method mentioned in section

2.6 would be required.

To summarize then, payload shift is an effective orien-

tation control method except during manoeuvers requiring

e~= 9 , as is the case for almost all eartn escape spirals.

9.0 GUIDANCE. CCT1UNICATIONS AND CMPUTME FUNCTIONS

These three topics are treated in a single section

because of their close interrelationship. The mode of

Ref. 3, p. 15



guidance annot be chosen until both communication and

computer functions have been-decided, which in turn are

effected by guidance requirements.

Many interesting possibilities are discussed in

the literature, and choice among these possibilities of

a solution best suited to a solar sailing vehicle can*

of course, be a major investigation in itself. The design

to be offered should therefore be considered primarily

as a means of placing the complete solar sailing vehicle

design in concrete terms, rather than an optimization

study on guidance, communication, and computer functions.

With these reservations there are nonetheless a number

of logical considerations which can guide our choice of

a system well matched to the special characteristics of

a solar sail. The most import'ant consideration is that of

system complexity and reliability. As compared to an ion

engine with its heat source, conversion system and heat

dissipation systems, the solar sail is f extreme simplicity.

T a lesser extent this is true as compared to the

ballistic vehicle with rocket mid-course correction devices,

and with its very stringent launch requirements, and the

need for very precise predetermination of the influence

of pertubating bodies. Further the solar sail is not

vulnertb-le to micrometeorites. The lare deviations in

trajectory, which its relatively long transfer time and

unlimited energy source allow it, make the uidance accuracy

V .
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link, a solar sail vehicle seems to su~g'est the use of

as simple a uidance and control system as possible with

saicriz when necessary, of speed and accuracy. Further

calculations based on ref. 23, and carried out in aendix

VI show that optical tracking of the 250 ft. dia. sail

wit' a 101ot telescope, will be possibly all the way to

Mars. Radar ranlging to the limit of available equipment

is also helped by the 96-97% radar reflectivity of alumi-

nium coated mylar.1

As for communication, if we are to receive data about

Mlars we must either have adequate comrmunication facilities

or we must recover the vehicle. A solar sail is poorly

suited to recovery, first because we must then add a

velocity matching requirement the return trip, and

second the reentry problem sacrifices the main asset of the

vehicle, reat simplicity and reliability, by adding a

mission requirement of distinctly less reliable a nature.

Futting all the above elements together makes us

conclude that:

1 A telemeter link to Mars will be the mode of

data recovery, and therefore will be necessary

for mission success.

2 Since telemeterinE failure will mean mission

%Ref. 109
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appreciably by operatic the vehicle as much

as possible by earth command. By eliminating

a sophisticated computer we are therefore

sinifi3rantly raising the system reliability,

lowering cost and complxity.

3 Our uidance system data must be suitable for

telemetry in as compact form as possible and

must rely as much as possible on ground optical

observation to eliminate complexity, and
unnecessary telemeterin- requirements. Accuracy,

especially in early phases, can be relaxed as

compared to other vehicles.

4 Control command functions must be in a form

for direct alication to the attitude control

subsystem (payload shift system).

5 Advantage can be taken of known approximate

location, velocity and acceleration. The first
two based on optical data, the third on sail

orientation. Orientation an be determined with

adequate precision as will be seen later.

To implement the above we suggest the system described

in the following two subsections.

9.1 Guidance

Dr. Tsu has sugested that the sail should be turned

toward the earth at resular and fairly frequent intervals.

I



This will allow stical observ,.ti: and in the vent c

telemetering system failure r structured falure w low

direct knowledge as to te ath of the vehicle. For any

position on -'the transfer orbit,- the orrect ale for

maximum rflection t an earth station can be easily

calculated. Except during the final portion of the

mission viewing will be from the dark side of the earth.

However, for the proposed 250 day transfer time viewing

from the day light side of earth would be required during

the final Mars approach phase. Even under these circum-

stances as seen in appendix VII viewing is possible, at

least on the basis of our simple calculations. However,

this point rquires further study.

We note that with the sail's slow rate of precession

of about.°0 /minute the roblem of orientin5 the sail is

simplified, as it needs merely to slowly traverse the angle

h·FI h~~m+ mm Yof1ar n $ +-4 4 -h 4-~ - T- --t%{lu - - - +.

approximate sail location and the use of photomultipliers

can contribute to improved tracking ability from the tele-

scope. Because of the low sail acceleration we further

note that the effect of the earth facin manoeuver on

the trajectory is a very small pertubation. The possibility

of using angular measurements from earth as been examined

in a recent pap.er by F. H. Kierstead, Jr. of the oodyear

Aircraft Corp.- His earth bsed &.proac is essentially

1 private communication, Dr. T. C. Tsu

2Ref. 71

I

I
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the samie as that used for etermini. orbits of omets.

Kierstead used the technique of linear error

coefficients to compare various navigation ods on the

basis of their midcourse to terminal miss distance. This

he plots in ;iles/second of arc error (in anzle measurement).

His Fig. 2 (not;. reproduced) then goes on to r elate any

rivon "mis distance" to actual distance of ascase as a

function of relative velocity. In this manner Mars focusing

effects are taken into account.

In Fig. 25 we have combined results of Kierstead's

figures 3 and 13 to show how Earth vs. "on board" navigation

compare for a Mars vehicle. The figure shows the somewhat

greater accuracy of "on board" measurements in the initial

phase assuming equal angular accuracy. However, if earth

measurements are made to 1 second of arc accuracy the

resultant errors seem entirely acceptable. This is all

the more true because of the solar sail's continuous

propulsion which allows considerable orbital change

even relatively late in the transfer orbit. 1 second of

arc is readily obtainable using existing telescope

photographic techniques.

Further refinements, if found necessary, can include

use of rdar ransind during the early art of the transfer

with the lare flat sail area acting as a passive target.

Kierstead's fig 9 (not reproduced here) shows the ains

made by this method as a linear error function of range and

angle error. At a ost of increased omplexity terminal
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suidance co uld also be ba .sed oobn board, mea surement of

Sun-iarth angles.

te ':ave not yet mentioned the effect of sail acceleration

on tne above analysis, or for that matter the effect of

-I A T,1 .4. A I - -I - -9- -A -M -~nC~ ?r~n~r ,u ~ 7~ 
JA -C;1, blU A -L 11UL L- A. - 3 Ut4 ~t 2, U LVU 6VU 1UL DeS IV

200 day ballistic transfer to a 250 day logarithmic transfer.

Klerstead himself mentions the problem and concludes that

values for similar trajectories will not be far different.

This remark of course cannot apply to the effect of the

Solar Bounce. This fortunately, is a small acceleration

producing small AV between reasonable intervals. If we

therefore know orientation to a moderate degree of accuracy

we can know the ac:eleration vector, to a good apprcximation.

Analysis of the initial phases of the trajectory when the

sail is still relatively close to the earth should provide

an empirical correction to establish a more precise value

of te vehicle li3tness L. There remains then to fix the

sail orientation to moderate accuracies. We propose that

this be accomplished by use of two sensors.

Cne sensor will track the Sun and -rth. The second will

track te Sun and I4ars. We can ncw- consider the Sun as our

reference axis and Earth-Sun or Mars-Sun as our reference

plane. In this coordinate system we can instrument our

device to measure two ulerian ales representins sail

orientation with respect to the two above reference olane.

I
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We 'have now provided redundant information from which sail

orientation is implicit. The redundency provides us with

a choice in which data we use, a desirable feature in that

for any orientation we can use the plane whose data is more

precise for the particular vehicle osition. In addition,

the provision of a redundant system contributes to vehicle

reliability.

We note that, if desirable, the above sensors could by

the addition of an angle measurement, (i.e.: Sun-Earth or

Sun-Mars,) be used as an "on board" navigation system. This

we do not suggest, however, in that we feel that emrh.sis

must be on simplicity and reliability rather than performance.

Acquisition and readout errors of the order of 1 degree are

contemplated. The type of sun sensor might for instance be

adapted from the highly reliable type developed for sounding

rockets on which much field experience already exists,

(ref. 47). Another and possibly more sophisticated design,

based on trackers successfully used in connection with

balloon astronomy, employs a beam splitter and nulls the

output of two photo detectors, (ref. 134).

By using only planet trackers instead of star trackers

we eliminate the need for photo multipliers. The low

accuracy desired will eliminate the sophisticated procedure

required to null the sensor on the center of a planetary

disk and the requirement for correction to compensate for

i



changing planetary hases, as is necessary when accuracy

does not ermit treating the lanet in question as a point

source. The above arrangement also obviates the need for

use of both coarse, broad field and fine, narrow field

sensors. Finally, the Mars tracking function can be used to

orient the camera system and to trigger it when the planet

passes at'a preset angle with respect to the sun. Altarna-

tively triggering can be based on the planet;subtending a

given angle at the tracker.

As for alternate navigation schemes, a number have been

proposed including: recording star pattern 1800 from the

sun coupled with radio ranging (ref. 67),' sun and two of

nine principal stars, (ref. 135). Two sun-star measurements

plus angle subtended by sun, two sun-star, a planet-star and

time, two sun-star and two planet-star measurements (ref. 72),

and the optimization study previously discussed involving

various combinations of earth,, planetary and sun data as

the mission progresses, (ref. 71).

9.2 Communications, Computer Functions, and Auxiliary Power1

.As indicated earlier our proposed vehicle desitn

lIn this section and the fQllowing one on instrumentation we
shall draw on the very excellent and thorough 4 volume study
of a Mars probe by MI. Trageser and associates at the MIT
instrumentation Lab. (ref. 135) for weight, power require-
ments, and where indicated specific hardware. The writer
wishes t thank Messrs. Trageser, Dahlen, DMae, Bowditch,
Toth, and Scholten for having made available this material
and for some very interestin- and stimul:ting discussions.



znvr:lves mninlmum of n bmard ' nputer ty;e fun-' t'.nLs :.na

substitutes te extensive use of telmetry. :3nca ewe propose

Ut;) sein bank ph:to3raghic data o-n ±iars . our telemetry require-

ments are primarily dictated by that purpose, and other

requirements will then be easily met. Let us sionsider for

the moment that navigation requirements will be met by

computin a new fix every ten to twelve days, (for considera.-

tions dictatirn otimum time ntervals ee ref. 71, p. 14.)

TelemeterinS requirements will be as follows:

_FrJm robe:

1. Data on orientation of sail for receedin

period (two an!les fr.om Sun-La~rth tracker, two

from Sun-Mlars,) measured to around 1 desree

accuracy.

2. Temperature.

3. Othor sientific data, (see section 11 4,).

4. Signal tat photograph as been taken.

5. Telemetry of photografn.

To p>ir-e:

1. Two angles specifyin oriantation durirnS next

peri od.

2. Direction as to whether an^les to be used are in

Sun-Earth system or 3un-Znars system.

3. Command t initiate a precession for purpose of

observation of sail from earth, variant on

c:r>rnad ,l, to be aUs-3 in cas e of failure of

n, t u*- - -

I
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4. Command to start photographic mission, (in case

of failure of automatic equioment.)

n vrmn +n , Tr M+v.l v+Z M r +f A + + rnami V - -4
10 iJ .w Li - \.i JL4U.L vJ L ' u. -dsu .Ja 1D 'U

(in case of failure' of timed sequence.)

For the above we shall require considerable electrical

energy. We shall assume for the purpose of this study a

* k.w. capacity. This very large requirement is based on

the photora-h te-lemeteri requirements. To meet the

requirement, will require approximately 75 ft. of solar

cells based on 10% effeciency in the vicinity of Mars,

(figures based on data of ref. 130). The above reference

makes the worthwhile pint that the low acceleration of a,

is tt se ion propelled. vehic le allows the use fAn ultra

light "shingled" mountir for the individual solar cells

without use of asins. :stimates on weight of silicon photo

voltaic cells rnges from about 75 to 175 lbs/k.w. varying

principally as a function of assumed asing weight, and

on random vs. fixed orientation. See ref. 21; 105; 24

table 5; 19; 20 p..49; 135; 123 fig. 4; and 130. Ref. 20

in particular shows improvement in efficiency possible by

use of an infrared filter (which allows cooler operation.)

The same reference shows the opposite effects of increase

in cell operatins efficiency, (due to lower temperature,)

and decrease in power flux between Earth and Mars orbit. The

overall effect is an almost dubling of the lbs/k.w. rati.

.1



The ~Ot,:UI I= 10 Ib/k, . and 150 ft .w. r/' wtio wj

zhave usea as a basis is in ka-epiX. wth te remarks f iesssrs.

Hebeler, anr Y Jhi te (ref. 130) ccnerni, te li lw,,eight

mountira possibilities inherent in a low acceleration

veiicle . Wei. Yia also note in assing that a weiht of

40 lb-801b./k.w. is estimated as feasible witl the use of

thermionic devices. These, however, are not yet fully

developed. A thermionic device using part of the sail as

collector by making such a section arabolic offers interesting

future possibilities.
,,le wi11, of course, require a sophisticated telemetering

link and in addition one or preferably two receivers, (a very

desirable redundency,) and a directional antenna system.

Discussion of requirements placed on this link is differed

to the next section, while motor types, power and weigt

estimates are evaluated in section li.2.

As for computer equipment, we have reduced ur require-

ments to very modest ones. We require a lock and it seems

that a crystal oscillator at 100 EC might be appropriate,

with an annual drift of less than 1 part per million (ref.

135, . 326). We require an appropriate simple memory device

to activate the reviously enumerated commands. ;ie require a

closed loop servo that will chare te sail orientatioln with

respect to t e trlcskers in accordance with the uidance

command.. Q;ne such closed loop system must ativate the

payload shift m-echanism by first orientirG it and then

L
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extend.inE^ ti.'e ayB ia . . tw sta "n-out" mode is rO-

posed for design simplicity. iKe ncte that for the periodic

criantation of the sail towards te ,!arth l the desired

orientation is very simply tha-t whcse normal bisects the

anle formed by the Sun-arth tracker. The camera and

instruments each require their own controls quite

analogous to those presently used on earth satellites.

Necessarily the above description is very sketchy, but

the reader will note that throu;- h use of earth uidance

and a ground based computer system (whose design is not

included in this paper) complexity is moderate. As

discussed earlier, the clock functions can be overridden

in the case of malfunction, by o mwand signal.

One also notices the absence of flywheels. This is

because the inertia of the sail is such that any desired

movement of the payload or instruments can be made with

negligible reaction on the art of te sail. A point which

requires further study, however, is 'whether the sail taken

as a whole will be steady ensuh or whether the trackers

antennhas and i'ossibly camera will require vibration isolation

and, or inertial platforms. The question of vibration

amlitudes as discussed earlier is cne of considerable

diffiulty.

As for alternative modes of communication a very

interestinrZ proposal is made in ref. 173 by H. K. Hebeler

and R. D. White at Boeinrz. They suzgest bypassinq the need

for electrical i-ower for the telemeterilix link in favor of

i



an otical data link consisting of a mirror, a polarizer

and a Kerr cell modulator. The Kerr cell would modulate

sunlight aimed at the earth and thus an amplitude modulated

signal of white light could be received by a large earth

telescope, passed through a photo multiplier and from then

on electronically analysed in the same manner as a radio

signal. Because of the undeveloped state of this idea snd

the writer's lack of knowledge about pertinent details that

would bear on its feasibility (such as atmospheric "seeing"

random fluctuations), it has not been seriously considered.

It is mentioned, however, as a rather interesting potential

communication link.

10 .0 INSTRUENTAT ION

The most imortant piece of instrumentation on our

proposed vehicle is the camera and its related data condi-

tioning and telemetering system. Present technology in this

area has made great strides and the Russian Lunar probe's

photograph of the back side of the moon is an excellent

example of results which have already been achieved.

We will use the results and many of the design features

of the MIT proposal, (ref. 135,) as the basis for our camera

and telemetering description. The proposed camera will have

a i" focal length and a 1.5" aperture. Nominal distance from

Mars will be 500C miles with a - 100 mile tolerance. For



i

, -_

I 

a film resolution of 150 lines/mm a grcund rsolution of 7

lines/mile on Mars should result. The image of Mars should

roughly fill a 6" plate. The number of bits of information

will then total approximately billion. (Above resolution

values are quoted from ref. 135, and are on the whole

optimistic, in any case 75-100 lines/mm could definitely

be met for high contrast features.)

The proposed photograph further requires image motion

conpensation of about 1 millirad/sec 1O0%.? The informa-

tion so obtained should answer a grat many quesktions about

Mars, in particular comparable photographs of Earth accord-

ing to the MIT study would definitely reveal the works of

man. They find that "the image of Mars obtained....will

increase our knowledge of Mars by a factor exceeding the

advantage gained over the unaided eye by the use of the most

powerful telescopes in the observation of the moon'.3 The

MIT proposal involved recovery of the vehicle and only

touched on telemetry as an alternative.. The telemetry

requirements they find, however, would be as follows. A

6"x6" photograph at 100% contrast and 200 line/mm (sic)

would require assuming a 2 level photograph9.3xl X108 bits.

At 50 million mile range the report assumes 1 oule/bit.

1For a sophisticated information theory approach to the
question of optical system performance capabilities as a
functiQn of the various applicable factors see ref. 48
by Dr. R. Scott at Perkin-Elmer.

2Ref 135, section 14.18

3Ibid, Vol. 1, p. 6



Adanptinr its data to 5 l .ls,, cut nl y l'nes /.m e If ind

that at an ;:asverae ower of 450 watts te data would require

about 25 days to tr:nsmit. st ix106 mile it ould only

require a half hour. The above values are based on the

equation, (ref. 135, p. 442,) :

R max -Ev Cv Ae
-4--X T L /i 

where:

R max Range in meters
Ev = Transmitted energy/bit in Joules.

Gv - Transmission gain of vehicle antenna.
Ae Effective receiver aperture of Earth antenna

in 2 .
K - Boltzmann constant 1.38x10-23 watts/00 ps
Te _ Effective receiver temperature 0° K.

s/n = s/n ratio required at output of a matched
filter to rovide reliable reception.

L = System losses.

Where many of the above factors are frequency sensitive:

Iv, the Vehicle Antenna gain for the dipole used
- 4 : AV/?,2

Where A = 4 sq. ft. for the proposed design.

With te above in mind we feel that a logial extension

of the technique successfully used on the Vanguard "Cloud

Cover" Satellite will be adequate fr intermediate data

storae. The process involves a magnetic tape recorder, on

which the information is stored. tSee ref. 121 for a detailed

account and ,hotograph of system hardware. ) For our

application an image orthicon tube miSht be the intermediate

strae, repla:in the conventional film, if sufficient

resolution can be btained. h number f other techniques
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are al so ocssible and we will not attemt to indicate

whi-'ch would be optimum, a choice would definitely involve

considerable study and canno-t be e object of a casual

selection.

We ropose that part of te si$nal onditioning

equipoinent include provision for csntrollin$ the rate of

transmission information as the robe returns toward Earth.

Here again redundency may prove a desirable tool fr it

wo;ld be desirable to start transmitting ba-k as soon as

possible at reduced bandwidth to minimize th, risk of system

failure after photograph and before telemetry. urther a

-resently somewhat unpredictable de radation will be

suffered by the tapein stxe during the return Journey due

to damarinz influences discussed in onsiderable detail

in section 1.3. After initial crlmunication we propose that

the transmissi:-n of ur (single) hoto sraph be repeated.

With deora2sinS ranSe, quality of roecae>tion should improve

and statistical correlation teclniques will allow production

of a roatly imjproved canf::site, after several scorn lte

tr nsmi s io ns.

Beyond this minimum objective, a more ambititious

goal which should be considered is increasin storare to

allow for colr transmission. Here one misht consider

use of only two suitable filters chosen so that, in accordance.

with the recent wrk of Land at Polarcid, a color reproductiom

could be made usir.. only two col.ors. One would, of ourse,



need t cmare the sensitivity t tran3:is:in yise o

this ap-roach t color recroducti1on versus that A: te

more orthodox three olor ap--roa'h. In any case the lare

increase in information content by use of color is well

known. 3ome reduction in resolution would even be worth-

w hile.

Further desirable instrumentation milht include. (as

selected from ref s. 24, 130):

1. A micrometeorite counter
2. A magnetometer
3. A radiation sensor
4. A cosmic ray counter
5. A spectrometer (if weil,;Ct allows)
6. Temperuture gauges.

These instruments would of -ofrse provide interesting

information durin3 the entire transfer and would be

telemetering during this period. height and power

estimates for all the above cited purposes will be found

in section 11 (Table VI).

11.0 AN IT3ATID VEHICI ES6IGN

In the previous sections f part III we have examined

a number of the important features and characteristics of a

400 lb. ars photographic reconmnassance vehicle usin a

class 3, Centrifugal Sail, of 250 ft. dia. and vehicle

lishtness number L 0- .16. In this section we shall incor-

porate these features into a vehicle design which will bring

out possible dsign solutions to a sola.r sailin5 vehicle.

I' .i
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nce more it is iwell to mention that optmization 4as nlot

been attempted. 'Lhat is done, as a logisia next step to

previous work in the literature is to consider the general

problems of solar sailing and translate them into a set of

possible vehicle, design.decisions. Those hopefully will

serve as a preliminary, but realistic starting point for

further studies.

Vehicle design requirements can be conveniently grouped

into overall configuration; motors, trackers, and antenna;

electronic and electrical system; instrumentation; launch

and development process.

11.1 Overall Configuration

As shown in fig. 26 the proposed overall configuration

consists f:

Part 1. The sail proper a centrifugal sail with

a 250 ft. o.d. and 22 ft. i.d. made of .00025 in

mylar with a 3000 AO vapor deposited aluminmm

coating, possibly inluding some silver.

Part 2. A fiberglass filament ring with a diameter of

D=22 ft. and another wtth a diarster of 6 ft.

Part 3. A "spider web" type section of fiberglass

filaments between the inner ring and outer rings

(part 1.), and between te inner rin: and part 4.

Part 4. 3 acomprssion members in te frm of 3 ft.

I beams of unifJrm stiffness, (taperedsea'tion.)
part 5. A connecting constant speed motor of

special design.

K! 
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Part 6. A notor rive turn-tabie.

Part 7. A 10 ft. uniform stiffness I beam, (tapered)

Joining te sail and payload. This i beam Is used

for payload shift.

Part 8. The payload od roper w ei ,hing . 190 lbs.

including a surrounding array of solar cells of 9

foot diameter.

The dimensions and values to be listed over satisfy

static requirements, but are only suggestive in that the

final values would, in the writer's opinion,be based on the

dynamic analysis of te system, a problem of some difficulty.

Let us now discuss each of the listed features and

their basis.

Part 1. The sail proper, has been discussed in

detail earlier in section 7, t .001 lb./sq. ft. it is the

lightest design potentially available in the immediate

future.

Part 2 & 3. The fiberglass filaments were chosen

on the basis of their strength/wt. ratio, and availability

in very small sizes. The inner section had t be transparent

because of navigation requirements during payload shift.

A clear mylar section was considered and rejected on the

grounds of ultraviolet hazzard when not protected by

aluminium. To reduce weight further requires eliminating

the sail backing as discussed in section 2.4. This as

stated earlier, is not an immediate prospect and requires
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considerable R&D.

Part 4. The central "compression members" are

required to carry loads in bending. ie note that these

loads will always be normal to the sail, (since acceleratian
and precession forces must act in t.is plane.) For this

reason tapered I beams are chosen as the most efficent

bending load carrier. On the basis of ref. 116. 118. 11q

berrylium despite its serious manufacturing and handling

problems, is the most desirable material. The equilateral

triangle offers an apparently irreducible minimum of 3

members for iproviding plate stiffness. A continuous plate

would be possible, but heavier. Other configurations

considered included 4 or more members.

Part 5. bie require a slow constant speed motor to

compensate for bearing friction and thereby prevent angular

momentum transfer between sail and payload. TWe note that

bearing loads under lO-4 go acceleration at .4 rpp are most

conducive to reliable operation. The motor design is

discussed in section 11.3.

part 6. This platform is mounded directly to the motor

shaft. On it is located a friction drive to move part 7

in and out.

Part 7. The payload shift extension arm. This I beam

has a capability of moving 10 ft. in or out. By this means

a 10 ft. payload shift motion is accomplished.

Part 8. The payload packa;e as shown is on a two

J
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degres cf freedom mount. By remainii pointed at te sun

it ptimizes slar cell energy conversi:-n and all ws te

Sun tracker to be built ir. without any relative moti on.

It also sirplifies the payload thermal equilibrium problem.

Berrylium sheet is most suitable to reduce micrcmeteoritic

penetration, (ref. 1l6) and so is proposed for payload walls.

payload configuration ollows that of the MIT design, (ref.

135,) in usin a modified rectangular solid. In space,

aerodynauic considerations are f no interest and a

rectanrular solid .roughly aroacning a cube is attractive

because f te graater packirn efficiency whic. can be

achieved as compared to a sp:ere.

Part 9. The variable openir; shutter is provided to

control te nzut of Flux to the solar cells n te paylad.

By ndirect cilntrol (i.e. -C:ntrolling s ilicon cell waste

heat) we can maintain desired ayload temperature. In fact

spherical c- nftiuration for small sizes tend to waste the

space betwee te sphere and te inscribed cube. A cube

comes lose (after te sphere and cylinder) in optimsing

volume/area ratio. It is much easier to fabi-icate and lends

itself well to such components as camera and Sun tracker.

The use of corner tubes, (followian the MIIT desin, ) is

a convenient way of eliminating stress ncentration, im-

prov ln rigidity ;,nd ftousi~n, te un trackers. As for te

This approacn was reviouslv proposed, see ref 135.



sili on els ,1 they reaquire Compr3es.ion members to hold

them out, but as shown in f. 25 they do no t require

support in bending as thi is done with ,uy wires. duy

wires ould also have been used to reduce the weight of

the other ompression members, (parts 4,7,) but the vehicle

configuration is such as to prevent such an approach unless

the ayload is separated axially severalfeet from the sail.

ie note that according to a static analysis1 tension wires on

the sail hub and m the payload shift arm would be required

F n nnt +.a rtfan.tinnq TTnw.vzr annnaifri-nar ivnamic

characteristics, tension members in both diredtin would be

desirable on hub and arm.

11.2 Trackers and Antennas

Cur proposed design calls for a solar cell collector

area always normal to the sun. This allows the sun seeker

portion of our astrotrackers to be built into the payload.

Nulling of the sun trackers is done by controlling the 2

motors which give the payload its two degrees of freedom

with respedt to the payload shift arm. The third degree of

freedom provided at the uncture between sail and payload is

required for angular displacement of the payload during

payload shift attitude control manoeuvers. With the 2

restrictions imposed by payload shift requirements and

constant sun orientation we require 2 additional degrees

of freedom for Earth and Mars trackers respectively. For

i

I
I
I



the Yiars tracker a rtatble, -osci ±atins irror rovides

t're required ima e in the trackear. For te arth tracker

a separate Lmount is used. Th is m unt connects the eart

tracker to the un tracker. Together they define the

Oun-Earth plane. The mi,.nt then serves the additional

purpose of mounting the helical receiver and dipole trans-

mitter antennas. (Alternate antenna types such as spirals

have not been considered in detail.) In the above manner

our antennas are kept oriented towards the earth which is

required for the lon6 periods of transmission of the

telemetered data. Use of a constantly -ointing directional

antenna allows continuous transmission. Consequently no

batteries for peak loads are provided in our design, and

continuous transmission is used instead.

11.3 Motors and Drives

In interplanetary vehicles, motor selection must take

into account low loads, extremely high reliability require-

ments, friction problems at bearings and brushes, as well

as the importance of low weight and power requirements.

We propose to use D.C. power. In addition , D.C. power is

suitable for low voltage application and does not require

D.C. to A.C. conversion from the silicon ells. The major

obstacle is of course that of commutation in a vacuum.

Haussermann in ref. 6 proposes a solution to tis problem.

His "impedence commutator motor" uses perm;nent magnets



for field exciltation, and provides a variable induction

as a switching, signal to a transister switching device.

Our most severe reliability problem mnay well be that of

part 5, a continuously running 0.4 rpm constant speed motor.

We require very close speed control in order to

maintain the payload stationery and ust compensate for

bearing friction. This undoubtedly requires a closed loop

speed control using either planetary tracker or possibly

an accelerometer located on the edge of the hub as sensor.

For orientation change it is a simple matter to vary

the speed control and thereby rotate the payload to a

predetermined angular setting as provided by ground command.

In additions analysis may show the need for a closed loop

system for maintaining orientationsalthough spin

stabilization tends to minimize the need.

Other existing drive functions include a device on

part 6 to drive the payload shift extension arm back and

forth from a centered payload to the payload lO ft. off

center r position. A simple possibility would

be to take advantage of the constantly running motor

(part .5) with a power take off which would power a friction

drive. This requires a 900 transmission link and a clutch,

(possible magnetic.) The advantage of this approach is

avoidance of another off-on motor.

Additional motor requirements are also of the low

L
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degrees of freedom required by te payload t remain

oriented toward the un. They also include drives fr the

two planetary trackers. The antenna system as hown is

mounted with the earth tracker, and the camera drive can

be run off the Mars tracker. The payload we recall>is to

be continuously ointed tward the Sun.

As mentioned earlier it has been assumed that because

of the sail's very large inertia we can consider it as an
*. __ 1 + . , - - __ _ _ - .1 -_ _ _ __ - .2 _ _ it 1 _ _ J 1- t -:1 Ol _ 1 _ tilniinie nupular murnenrtum sin±ux ou U1i py uuu. ±i±±Ib

assumptions while undoubtedly valid for a rigid systems

bears further study for a membrane type structure with its

centrifugally induced pseudo-stiffness. If those fears

do turn out to be ustified and oscillations of appreciable

amplitude exist the best solution might be to place the

entire payload on an inertial platform and thereby obtain

decoupling of sail oscillations and payload. In no cade

does it seem reasonable to suppose that a flywheel system

will be required, in as much as at worst it would appear

that the sail is a very large angular momentum dump which

interacts with the payload to produce transient and or

oscillatory modes.

11.4 Electronic and lectrical Systems

To reduce radiation and penetration hazards, (except

for secondary emissions), it is desirable to place the

electronics as far from te surface as ossible. This

L

-,VW,

-7 

I - -.- -- A - 4 - - MI, - 4 - - 1, , q A ^ 4 - -, 4-- - P.- - 4-1, - + i~ ~- 



consideration, however, has to be balanced against heat

dissipation requirements. 'e have assumed tt the latter

problem can be met and therefore ave located electronics

well inside the payload. Our electronics includes primarily

a transmitter, receiver, data conditilning system, tape

recorder, image orthicon tube and associated amplification

equipment, as well as the oscillator "clock" and a "memory"

storage to activate subsystems which must be turned on

either by round command, time sequence, or both. As

compared to other vehicles, te size and sophistication of

the latter is very modest. dditional electronic equipment,

in preference to more Vulnerable neum.~tic or ydraulic

systems, are required in connection with the tracker,

nullins drive and the closed loop drives mentioned in

section 11.2.

A special problem present in our design is that of power

transmission between the payload source and the sail hub

while in the "shifted position." A sliding contact does not

seem reliable enough and we tentatively suggest a flexible

cable whose inertia would insure its staying clear of the

vehicle. An alternative is a take-up reel, which again

involves a sliding contact. Cur proposed approach may

appear unreasonable in the light of earth experience with

"loose" objects, but there being no stray gusts of wind

in space, it may well be tnat the inertial considerations

permit a cnfident conclusion as to behavior of a wire

-
1,



supported in tension at its ends and "trailing behind."

11. 5 Instrumentation

The problems of instrumenting our proposed vehicle

seems to be confined largely to the photographic system.

By that we mean that secondary experiments as listed

earlier can be treated as another application of existing

satellite hardware. These remarks apply equally well to the

problem of micrometeorite gages, temperature sensors,

radiation detectors, etc. The spectrograph mentioned

earlier would involve an instrument that to the writer' s

knowledge has not been orbited to date, but proposals for

such are known to have been made. Incorporation of a

spectrograph is largely a matter of decision based on

weight. To save weight we have not provided storage

batteries as is required for lower powered vehicles, and for

this reason there should be power to spare on subsidiary

experiments and their telemetry during the outbound transfer.

11.6 Launch and D.ployment Considerations

The problem of launch and dployment of our proposed

vehicle is of appreciable complexity and deserves attention.

Assembly in space which might be convenient is of course of

no interest in the next few years.

A 400 lb. payload on a parabolic escape as is shown

in' section 12 is well within the projected U.S. space



capabilities of te period obeq1innias3 in late 1960, early

1961. Even assuminS delays, late 1961, early 1962 is a

realistic date. The problem is then to show that our

vehicle can be packed into a reasonable configuration,

and then deployed at some point where aerodynamic effects

are negligible. In fact the best location for deployment

would be at 50-90 arth radii where the sail can begin

functlcnitn in its normal mode.

The sail proper could be launched by spinning the payload

and then letting the sail open centrifugally, however, for

reasonable payload diameters the required angular momentum

is excessive. (a payload spin of 3600 rpm was calculated

for ne assumed mass distribution.) A more attractive

approach is that of a modest spin which would only cause

the sail t spin. utdthis can then be supplemented by small

tangential rockets at the edges of a thin circumferential

ri, which would be located at the outside ofthe sail.

Calculations in appendix V show that four lb thrust

rockets will provide te entire required spin in 32 seconds.

The initial spin therefore merely eliminates the need for

some other deplvyment medhanism and microthrust rockets

are proposed for bringing te sail up to speed. As for

folding of the sail, it will undoubtedly require both

ingenuity and slip powder, but is f comparable complexity

to the problem of foldin the 100 ft. dia. A3SA balloon

into its 30" spherical Sontainer, (ref. 139, p. 1430)



The 1Q ft payload shift arm may require a spring released

hinged section, which locks in place after opening. The

3 ft. sections of sail hub can fold together to a common

apex and be opened by a spring release. The payload itself

is potentially suitable for fairing in as part of the last

stage. Provisions ae required to provide enough rigidity

during the high acceleration and vibration levels encountered

solely during launch, This problem is not a new one,

however, and considerable experience in this has been

built up with satellite launchings. In general, temporary

pressure stabilization is a very useful approach for the

payload. Solar cells deployment would be an adaption

to a more difficult configuration of the technique

successfully used on the "paddlewheel" Explorer satellite.



1 lad

Camera

Motors

Data conditioning

Tape recorder

Transmitter

All other

Receiver

Clock

Trackers

Spectroscope

Hadiation flux counter

Scintillation counter

icrometeorite gages

Magnetometer

Solar cells

Structure

Electronics

Miscellaneous

q__antity

1

5

__m

1

1

2

2

1

1

75 sq.ft.

Payload total

2 Payload shift extension

3 Platform

4 Payload shift, and sail to
load connection motor and drive 1

5 Sail hub (Fiberglass mesh)

b Sail

I

eight
i a LIb s power

20

5

10

3

10 450 watts

50 watts

9

1

10

10

2

3

5

50

32

15

5

190 500 watts

2

1

199

Tab."La VI 4t - I nd Powe

- -

- -- -- - - -- -

I



-140-

PARqT rV CN THE I;iRITS CF DEVELCPING Ak _LTR SAIL :T

TH PR3O.N"TT T:

There is a growing recognition that the prestige and

hence the effectiveness of the United States as a world

leader is very strongly influenced by the degree to which

our technology, specifically our asace technology, leads

4re - P I- -4 - 4l r S AO 4 - -0 ---- A An " L
b[1. . IJ LJ I [l I W/ UL 1LL. 1 b 1 a. a-I re-f Ii,- M . a-II J I." ' rl . 1R-Lrl

times being what they are, we are for the next few years

definitely relegated to second place in terms of booster

capabilities. As of a July 1959 report the Thor-Able

booster with Mars ballistic payload capability of 50

lbs. and the Atlas-Able with Mars payload capability of

200 lbs. were expected to be the largest boosters during

1960. 1Since the publication of the above report further

postponement and cancellations have been announced. It

is in this conttext that we should view the need for con-

tinuing our present lead in payload weight reduction through

miniaturization and microminiaturization. It also is

imrloortarnt t extend our capabilities by other means, such

as decreasing booster requirements by providing hig;her or

"infinite" specific impulse propulsion after booster cutoff,

without excessive weight penalties and -with high reliability.

The second mtJor problem as emphasized by difficulties faced

to date is to im1!rove system reliability.

Ref. 96, p. 125

1
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When rese:rch for this thesis was egun it was the

writer's intention to try and arrive at some.substantiated

answers on whether solar sailinrZ either in 4'he lorz or short

run could, with reasonable effort, make a worth while contri-

bution to these goals. The study reported here has lead

the writer to the conclusion that in two very specific

areas, namely an attitude stabilizer (Part II), and a

moderate payload planetary reconnaissance mission (Part III),

the capabilities, probabilities of success, and probable

cost and ti-me factor are such as to ustify a substantial

research and development effort directed towards a solar

sail planetary reconnaissance probe. As to attitude

stabilization it is concluded that no new technology is

required and that applications can and should be made of

solar sail attitude stabilization in the immediate future.

The following sections will attempt to substantiate these

conclusions, and section 15 will suggest a suitable develop-

ment program.

12.0 COPARISCN OF CABILITI...

In the immediate future the only alternative to a

solar sail for interplanetary transfer is a ballistic

trajectory with chemical correction capabilities. The IT

Instrumentation Lab Proposal frequently referred to in this

study (ref. 135) is a very competent example of this type

of vehicle.
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.Assumi= a very sirniil!ar- .i':ioad, tKle consequences of

eliminating hemical correction and substitutir a solar

saiL include the oiot.inE:

I. Launch requirements -- Substantial relaxation of

launch requirements with regard to ac-uracy of cutoff.

Relaxation of restriction on launch times.

2. Trip tie and Mass Ratio -- For equal trip time,

(one way transfer orbits of around 250 days), our computa-

tions based on Sutton's data, (ref. 105), and that of

Breakwell, iliespie and Ross, (ref. 64), show that our

proposed solar sail can launch a vehicle of 1.3 times the

w eight of a hemical vhicle on the basis of same take off

weiht, (see apendix VIII). Chemical vehicles theoretically

can make a faster transfer but the weijzht penalty and error

sensitivities become very severe. Further the AV = 1.147V

earth orbital transfer velocity used in our calculations

isarare occurrence for non coplanar, non circular orbit

analysis and the penalty for a ballistic vehicle at any other

timne is considerably hiher. This is seen in Fig. 27, a

topological transfer velcity versus time lot.

3. Reduced Navigational Instrumentation -- Relaxed on

board instrumentation requirements is an importnt advantage.

As has been shown in apendix VII all navi.ation fixes and

trajectory omputation an be made on earth because of the

sail visibility.

4. Elimination of payload "ttitude Control Subsystem --

The elimination of separate attitude stabilization and

�i
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FIGURE 27
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propulsion systems contributes to simplification. For a

solar sail a simple attitude control system for the sail is

required, and (on the basis of our preliminary study), no

separate attitude controls are needed the payload. Silicon

cells can, therefore, be constantly oriented normal to the

sun and the directional antenna at the earth with no weight

penalty..

5.,System Simplification -- The elimination of a number

of subsy stems including: computer, yros, accelerometers,

flywheels, and chemical microthrust correction system result

in a simpler and, therefore, pptBntially more reliable system.

It is felt that the addition of a radio receiver, and a

sail orientation and angular velocity control do not represent

a corresponding increase in complexity.

6. System Flexibility -- The problem of energy as a

function of mission characteristic greatly effects chemical

systems. With a solar sail and its unlimited energy, supply,

unfavorable launch time, or an incorrect cutoff no longer

need mean failure, instead it may mean a longer trip,

After a successful mission sail flexibility is such as to

permit the vehicle to commence a second mission. With

3radually increasing reliability the reuse and redirection

capability may become of great interest.

7. Decreased Mlars Pertubation Sensitivity -- The Mars

pertubaticn effect has been shown by Battin to be very useful

in providing a non stop round trip, (ref. 62). However, for

the ballistic vehicle with a limited energy storage available

i
i
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for corrections any/ substantial error in the pertubation,

(such as took place with the Russian Lunar photographic

reconnaissance vehicle) may well sell mission failure. For

a solar sail the unlimited source of energy would prevent

mission failure and instead result in a longer mission.

It is felt that the above listed reasons ustify the

desirability of a solar sailing vehicle, however, because of

practical limits on size,. manoeuverability in high gravity

potential environments, and present lack of development it

cannot be said that solar sails will supplant modified

ballistic trajectory vehicles. The reasonable conclusion

seemsto be that, as has been pointed out in the literature

many times, a variety of vehicles are needed for an adequate

space program; the above reasons lead us to believe that a

place for solar sails exist in such a program.

As pointed out in the previous section a solar sail

vehicle is simpler, and has a substantial reduction in the

number of subsystems. In addition the elimination of a

substantial computer, gyros, flywheels, etc. represent a

very substantial decrease in what one might term the

"vulnerable cross section". This cross section is the total

uL'VbM. bVi LP.L JL1 WL-I. UL.± UUWLLJ" WLJUU.LU %;C&%A=

system failure. This in-turn reduces structural requirements

for meteorite barriers.

i.
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A further result of system simclification and the

improved mass ratio is to permit the use in many instanes

of redundant comoonents without lacing our vehicle weight

outside of the limits feasible in the next two years. In

this context it is well to note that estimates of computer

reliabiiity are consistently lower than that for other

sybsystems. An extreme example is ref. 97, fig. 4, by Xenakes

at ,WADiiC whose 1958 report gave mean time to failure for a

lunar mission computer as 25 hrs. versus 1,060 hrs. for the

next most vulnerable element, (astrotrackers). Since then

computer development and therefore, computer reliability

has made tremendous strides, but it remains by sheer mass

of.components the weakest reliability link in most system

proposals 1

We have said very little here about comparin a solar

sail vehicle with ion drives, or nuclear or solar heating

rockets. This is because the two are not competitive.

The above named will not be available for interplanetary

vehicles in the immediate future, nor are their system

1A more recent and more optimistic evaluation of computer
reliability projected to 1960 optimum otential wa made
at Perkin-Elmer Corp. They estimate a MTF pf 8xlO hrs.
per computer component based on a ratio of 1 transistor per
7 passive components including connections. The same study
uses 200,000-300,000 hrs. as tube, MTF, 10,000,000 hrs. as
silicon diode MTF, and 50,000 hrs. as motor MTF. These
figures are based of course on conservative design in a
space environment free from hi,;h vibration and acceleration
effects. The above datq is from a private communication by
Dr. Robert ufnagel whose help is gratefully acknowledged.



weihts reasonable for boosters availble in t e immediate

future. Radiator requirements, system complexity, nd

vulnerable meteorite cross sections will be uch reater

for those vehicles. Their mission capabilities, however,

should be c4a- correspondingly reater and vast increase

in payloads are contemplated.

As earlier stated, no profitable application of solar

saiiing to the above high payload missions or to manned

vehicles is foreseen. Use of ion engines for comparable

low payloads, (200-1000 lbs.), suffers from increased com-

plexity even more than the chemical modified ballistic

vehicle to WL-sick we have comrared a solar sail.

14.0 EVALUATICN CF CCST AND TIME SCALE

A solar sail as ompared to other forms of space

propulsion is an inherently inexpensive item. Material
cost at 10./lb. would be only 2,000, at 100./lb only

$20,000. As for development costs, contrary to other
propulsion systems, a solar sail manufacturing capability

is not different for different vehicles. If one has the know

how and capability to manufacture a solar sail, the devel-

opment cost of a different size sail is small indeed. This

means that investment in a solar sail capability will develop

a vehicle propulsion system of extremely low unit cost and

one which need only be built in a few incremental sizes

to be adaptoable to a. whole rarzge of missions. The solar sail



is unique in that ayload and roulsion are structurally

independent and can be designed independently, in the same

man:-er s outboard motcrs and motor boats where one matc.hes

any appropriate size propulsion unit to the vehicle.

As for the time scale involved in development the next

section discusses required R&D. From it, te reader will

probably agree that an 18 month to 2 yr. program from

initiation to completion of the sail unit is entirely

r a LPn . Th rl n-n 1 rol7-7 -f -,a n+ a hc+ ! n+ n1 1 'r

different from other vehicle payload programs, except that

it is simpler than most interp&lanetary systems where payload

and roulsion onfigurations are more intimately tied. The

development cost of a second ~-eneration solar sail involving

a. sail lig.tness number of Lo = 1 or greater has been

estimated by Var. Carey of the MIT Civil & Sanitary Engineer-

ing Dept. as stated earlier at 50000.

The material development cost of a first generation

sail, on the other hand, would probably be mainly that of

putting into roduction 1/10 mil mylar film, (already made

on trial basis as reported earlier) instead of the present

mil. No cost estimate is available, but one should point

out out that such a thin membrane is also of interest for

otiher space prorams such as a solar heating rockets, light

wei'rht parabolic space antennas and various condenser and

radiater proposals.

i
i
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15.0 A D PR C DEL15.0° A SU=S-T~ PRCrRiM CF DEVELOPMENT

In the previous 3 sections we have seen some reasons

that make a solar sail capability desirable. In the body of

the thesis we have seen the problems requiring answers.

Here we shall indicate what appears to be a logical

development program.

1. Materials Investigation -- Alternate materials to
mylar, in section 2.4, should be included together with mylar

in a systematic study of the relevant space effects discussed

earlier. The NASA passive communication satellite should

help greatly in this, especially if prior thought is given

to the matter. In addition an experimental program should

be undertaken to refine present knowledge on ultraviolet

and x-ray effects, and on self damping and stiffness properties

of these thin films. At the same time the sail fabrication

problems and development costs should be ealuated.

2. Dynamic Analysis -- Further experimental and

analytical work should be done to insure an adequate

understanding of dynamic characteristics on which only

tentative information, (as discussed in section 7.2 now

exists. Properly scaled models would probably give useful

answers if run in a high vacuum chamber, but as seen in

section 7.2, moderate vacuums are unsatisfactory.

3. Optical Properties -- An analytical and possibly

experimental study taking into account predicted dynamic

performance and its effects on configuration are required



to determine the limiits of otical tracking.

4 PackaR:L.n. Design -- Although packaging and

deployment problems for the sail are an entirely logical

extension of the present state of the art, the size and

design of t:'a sail is sufficiently different to make a

preliminary study of these aspects desirable.

5 Overall Vehicle Development -- It is felt that the

results of the 4 above named tudies should be sufficient to

definitively ansi.er the question o general feasibility

of the "Centrifugal Sail" design approach, and to a large

extent otFher desi3ns.Either in parallel, to save time, or

after the first 3 steps,a design study will of course be

required to refine and improve or possible radically alter

desiSn ideas found in the literature. This phase is very

similar to that of payload development for other vhicle

types and would both apply to and derive benefit from

studies on ballistic veiicles with error corre~tion

capabilities.
The above prosr:,m cula led to a defi nitive answer

as to w;hther what a .ear to be a promising vehiLle cconcept

sho)uld lead to an actual vehicle. In the event of affirmsative

findin--,s it will be hi;tly dcir:-ble for initial production

ilases t overlap with some of the above sta3.es. It is felt

·that ' ti-ihtly run project could very probably lead t a

vehicle with-l 2 yers.

r
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The above develo-ment progrta;. is then what is nded

to lead t a vehile rnow. It appears as a desirable program

at an a eotable cost. Its full exeacct In ,.. aires substantial

funding. A second question on which the writer proposes to

close is what further work is suitable for thesis activity

at MIT in the event that the full rogram previously mentioned

iq nnt. initoated. P .hR fToll1i~_. areac offer zood nsibVilitv

1. More complete analytical and o (with f-unding)

experimental study of vibration behavior of a solar sail.

Of special interest, are the centrifually stabilized type

extensively discussed here. Any experimental work in a

high vacuum will be aced with problems involvin, the

motor and motor outgassinr, one might take advantage (as

suggested by Prof. Paynter) of t::, possibility of using a

rotor only and providing a rotating field in the vacuum

chamber to cause te device to spin.

2. A detailed feasibility study of a round based

navigation system ±for a solar sail such as the system for

which a tentative evaluation has been presented here.

3. A general study of attitude control of a solar

sail propulsion unit including dynamic response and

stability parameters.

4. A solar sail orientation control desin study for

an earth satellite. A suitable aplication such as a

satdillitte.telescope could be studied, and the ideas developed

or reported here might serve as a starting point. The
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study would include a determinatifn of suitable dmpi3;s,

required dimensions and optimization considerations.

5. A more detailed study of a solar sail vehicle

design for a ars reconnaissance mission. A number of

design alternatives could be compared as a step towards

design optimization.

6. A feasibility study for an ultra light sail of

sail liahtness number L = I or better. This would require

investigitn methods of sublimating all but the reflecting

coatirn of the sail after its deployment in space.



APPENDIX I

A Derivation of Earth Bounce on a Satellite Vehicle

As defined earlier Solar Bounce or the rate of momentum

transfer/unit area is equal at normal incidence to 1. 95 x 10- 7 psf.

With the earth' s albedo of approximately.36 (Ref. Van Allen -

p. 80) and given the fact that the earth' s mean temperature is

roughly a constant we can calculate Bounce on a satellite due

to the earth (note according to Ref. 109, p. 7, the earth' s albedo

varies seasonally from 0. 32 to 0. 52, and therefore our calcula-

tions are only approximate) For these calculations we shall

continue to assume R (reflectivity) = 1 although in the infrared

this may be somewhat inaccurate.

The earth absorbs:

S ( R2)(1 - Ae) ( I )

where:

S = solar constant at 1 A. U.
R = earth' s radius

A = albedo of earth
e

If we assume as a rough approximation isotropic reradiation

(in the infrared) then by conservation of energy,

ST R2 (1- A e) =S r (4 R2) AI OS)

where S = earth reradiation constant

Sr= S 1- Ae L- .36 = S (o )
S ) 4 16 ( 3
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For the sunlight side of earth we add to this the reflected light

to arrive at a total light flux. For rough calculations we can

assume thatfor satellites near the earth in comparison with the

earth' s diameter, the reflection will be uniformly distributed.

This assumption will be exactly valid only for an area normal

to the sun and will constitute an upper bound for all other points

on the sunlit side.

Using an albedo of 0. 36,

Sr Se Sr +Ae (S) (Io0)

0.16 S -5 0. 16 S + 0. 36 S (I OS)

0. 16 S 0.52 S ( or)
e

at distance D above the surface of the earth,

AX, 2 AJ = A ,t( P- m2r (I o7 )
e 'e

where S is total earth radiation and reradiation per unite

area at an altitude D.

s: R 2 .o)
e R + D e

typically for D = 1000 N miles

Se = 34 4 0 )2 S 6 S (lOl)e 3440 e e

2SSince from Eq. 10 Section 1.1, B = 2S where from Eq. 1

Section 1.1 2 = 2S at 1 A. U. then total Bgarth Bounce at ground
C C

-r·· ·. -r · · · ·. I· rr ·



0. 16 B
°solar

B
Oterrestrial

= 0. 52 B
solar (I O

for D = 1000 N miles above the earth using (108),

0.1 B
0 solar 0terrestrial

= 0. 31 B
0solar

for any distance D from the earth,

0.16B S ( R B+
0 solar R D 0 terrestrial

-0.52 ( R )2 B (I I )
R D 0 solar

I

level is:

(I I I )
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APPENDIX II

A Derivation of Solar Bounce Forces on a Spherical Solar Sail

Let F be the force due to Solar Bounce.
S

Consider a hoop 2ITr (rda)

R = r sin a (II 3)

area of hoop,

21T r2 sin ada

recalling that B = Bo
O

(IIt)
2

COS a

where B B + B = B0

fB. JA = 

2
COS a sin a + B

o
3cos a

by symmetry

FS = r A = (Bo cos a) 217

I S)

(I/)
2r sin ada

2 cos 4 a 
F=[-2lTr 4 10

F - r2

S = 2

11 7 )

(I )

B
O (J' 1)

40kj j4 1 SOLAR L14X



APPENDIX III

A Derivation of Equilibrium Conditions
for a Peripherally Stiffened Sail

S t-//D4 P.

Ay o I/

dzT
1 dr

21 r = 1 Bo rr 2

For B Bo

B r_ oT = 0
1 dz

d r max

Assume paraboidal shape then:

dz
dr max

- 2 dzdr average

For buckling from Den Hartog Ref.

31Tcrit critical tension 
r

59a, p. 278.

(1 .3)

Therefore,
3

Tcrit r
3E

( 2 )

where:

E = Young's modulus

I = moment of inertia of peripheral stiffner
required

(i12 o)

l2. 1)

3 
3
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r = radius of sail

T= tension in lbs/in.

Combining with Equation (121) and assuming that &'0, and there-

fore that payload contribution to radial tension on stiffener is

negligible, further assume that: Tr t T1

where: Tr = radial tension on stiffener

B r
rNEI = dz3rdr

4
(I 2.-)

max

assuming:

r 125 ft.

z = 2.5 ft.

B = 2 x 10
o

-7
2 x 10) psi1441

-7 psf

(125 x 12)4

3(.04)
= 58, 000 lb. in. 2 (Iz - )

E = 30 x 106

I -IT d4 - .00264

therefore,

d = 0.8" 1 lb/foot length

For a foam filled Mylar ring we calculate the following size:

assume E Mylar = 500 , 000 psi

assume foam = 2 lb/cu ft.

(where foam just prevents Mylar from collapsing)

assume t Mylar = . 001 in.

Where t = thickness of Mylar ring of circular cross-section

EI

for steel
(I 2 7)

(I 1s)

i
Iii

ii

I

-



then approximately:

= r r3 t: I )

using (126)

3 58,000 I o)
r ETT-E1 t

58, 000 (
17X 500, 000 x.001

3 = 37in.3 3 )r : 37in'

r 3. 3in . 133)

Weight of foam per foot:

(3.3)2 ft2 (2 )lbft3 (1)ft l48b/foot length 13)
in2 2 .48' length 4144 in/ft2

For . 001 Mylar we can neglect the weight of the Mylar as

compared to the foam.

Therefore weight of stiffener, 0. 5 lb/ft length

From this example we see that peripherally stiffened sails

quickly become excessive in weight if large sizes are used even

using low density stiffeners. For a small sail such as is used in

the Self-Stabilized Stabilizer since EIur 4sail' we see that very

reasonable values of stiffener diameter can be obtained.



APPENDIX IV

A Derivation of Equations Governing the Restoring Force

of a Solar Sail Attitude Control

$o&K . MrL

V 's I /4

St&;l I1 h.

The unbalance torque on a vehicle due to solar bounce is:

TD BXlA =Bcos 2 X Al (13 )

where:

B = Solar Bounce

B = Bounce at normal incidence0

= distance between c. g. and center of bounce
1 (pressure).

A1 = cross-section area of vehicle (assumed in
this expression to be coplanar) since
force = A

TD= disturbing torque
Tr =S 2 A2 BO sin a 3g)

where:

x2 = moment arm of stabilizer around the vehicle c. g.

A2 = stabilizer surface
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T = stabilizer restoring forcer

Therefore, equilibrium angle (about which oscillation can

take place) is:

2B cos a
0 x1 Al = x2 A2 B o

sinsin a (1 37)

2 X1 A1tan a =-I
2 2

1

tan a = (2A 1
A2

138)

(/3 ?)

I

;
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APPENDIX V

Calculated Values of Angular Velocity, Angular Momentum,

Deflection,and Stress in the Proposed Solar Sail Design

1. Assume design as follows:

R = 125 ft. (250 ft. diameter)

at r = Ro, let the centrifugal force be 40 times the Solar Bounce.

This guarantees a negligible amount of " dishing" (z deflection)

2. Calculated required angular velocity w

2

o =40 B
g

(i lo )
where:

= . 001 psf

g = 32. ft/sec 2

o = angular velocity

R = 125 ft
o

B = 2 x 10 psf

2 _4 0 (2 x 10- 7 ) (32)001125001 x 125

(Il4 )

= .044 rad/sec

=0.4 rpm (I 43)
3. Calculated Maximum Stress (using a flat disk approximation)

from Ref. 59A, p. 57

:2 2 2 2 1-133/4
Smax = athub = St = RR R2
max t 8- g ol o 3+,A 1RII~~R 3-R R10

(It'r)

o



where:

St = tangential stress

= poissoni s ratio (not known for Mylar, shall
omit in calculations)

= density in lb/ft 3

St 3/18 x 2 ft/sec x. 002 ad/secf (125)2 ft2 (2) f5)

%60 psf /

0.4 psi

4. Energy Required to Deploy

T = Ipw

where:

T = torque

Ip = polar inertia

t = time

Txt = Ipw (I 9t)

mr : 200 lbs. 125) ft 2
Ip w = 2 (4:Ip = 2 2 (2 ft(. 044) rad/sec (IlQ)

Ip c0 = 2:x 103 ft lb seconds (1-0)

5. Spin using four-1/4 lb. Thrust Rockets at Edge

We shall assume only a sufficient original spin to deploy sail

(instead of the 3600 rpm required to bring it up to speed). We

shall determine time required to reach 1 rpm from a negligibly

low speed using rockets at Ro = 125 ft. Assume four-1/4 lb.

thrust rockets.
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t T _ Ip )

1x125 ft

t = 32 seconds

6. Angular Momentum, of Centrifugal Sail

H= Ip 

from (5) = 2 x 103 ft lb seconds

7. Deflection of Sail

I.

Consider equilibrium forces parallel to the sail on a thin ring

of width dr.
A4-. o s 9 

dF = (2- w r2 ) (-21Tr dr)

where:

= weight/ft 2

dF= change in tensile stress in membrane between
r and r + dr.

F= f .
R

2
dF = 2 r w'

3
(R3 r3 )

r1 =imer radius = 2. 2 ft.

R = outer radius = 125 ft.

Consider hub equilibrium:

F sin &= Ma

I

(Isi)
(I5-)

(1 3)

(Is(')

(IS's-)

where:

[ISa)

(I - 7)

-

Mr.- PayiO44-



where:

M = mass of payload = 2
go

slugs

a = acceleration of vehicle = 1 x 10.,- __ Ma
2 2 (R
3

-4

-r 3)

200 slugs x lx104 x go

go
S ) & 

2 fr( 3 2 ) slugs/ft (0.

sin 9 = .0795

& = & max

x O-4 )(rad/sec)2[125 (2.2) 3] f t

= 4 30

since,

= 4 30
max

for any reasonable geometry,

average <
40 30

3

Without calculating the equilibrium shape we can say that

maximum dishing for r = 125 ft.

08Z 4125 x = 3.3 ft
max 3

We can therefore consider the sail as a flat disk (except for

dynamic characteristic and flutter considerations discussed

in Section 7.2).

(IlSe)

(/ )
(I1)

/ 62.)

-L ' 

go

" Y (/ 5-9

O S.3)
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APPENDIX VI

Calculations of Available Control Torques

and Rate of Precession

The method of payload shift depends on precession for change

of attitude. Since the payload inertia is negligible as compared o

the sail' s we shall ignore the non-rotating payload in this analysis.

For a gyroscope:

G =Ipwp (/ 6S)
G = couple

t = spin in rad/sec (0. 044 rad/sec)

p = precession in rad/sec

Ip = moment of inertia about spin axis

given:
200payload - slugs
go

-4 2
vehicle acceleration = 1. 0 x 10 go cos a

moment arm for payload shift of d = 10 ft., then

G = (m a)d = 2 0 0 ) lbs (1 x10 4 go)(loft) cos2 a

0. 2 cos 2 a ft lbs.

for a = 300 (typical)

G = 0. 15 ft lbs (/67)

from (164)

G 0.15 f4 6 )
P Ip 2 x3 = 0.75 x 10

Ip w 2 x 10

0.7 x10 3 rpm / 6)

0.250/min (/7 °)



APPENDIX VII

Calculations on the Visibility from Earth

of the Proposed Solar Sail Design

We shall use the results derived for specular reflection in

Ref. 28, by S. H. Dole.

From p. 23, we write:

E T r 1

B 2 Ee raSB

where:

(17 1)

d = distance from vehicle to earth (in centimeters)
Be

aSB = angle subtended by sun at vehicle (steradians)

rB = reflectivity

E = minimum illumination required to see vehicle
against background

ESB= illumination of vehicle

DB = diameter of sail (5250 cm)

T = earth atmospheric effecte

Using Fig. 5 and 7 of the above reference, let:
.17.

E = 10a lumens/cm2 for 100" telescope (from dark
side of earth)

-5a = 2. 9 x 10 steradians at Marssb
Esb= 6 lumens/cm 2 (at Mars)

rb =

T =0.7
e 1 1

7600 r'l[- 6 (0.7)) - 1022-2 14cm
be 2 10-17 (2.9 x102]= 7.6x1 



/l= 4 x 09Nmiles (173)

for viewing from daylight side, let:

E = 10 14
r

then:

dbe = 1 x 10 8 N miles /174)be

The above values are only order of magnitude, they include no

"non-ideal effects" . We should also note, however, that with the

use of photomultipliers given knowledge as to the approximate vehicle

locationwe should be able to substantially improve on the above

values.



APPENDIX VIII

Comparison of Mars Transfer Mass Ratio

for a Solar Sail vs. a Ballistic Vehicle

Case 1 - Solar Sail launched at Earth
Escape Velocity

Case 2 - Ballistic Vehicle at
Minimum feasible
Transfer Velocity
(from elliptical non-
coplanar analysis)

V. 36, 700 fps 4100 fps losses 240 , 000)2)2
40,700 fps 43 e·* */PJ

Vi/Vexhaust 4. 07 4.32

mR = mass ratio overall 1 75

e Vi/jIg 60

MR Stage: I II III I II III
(MassRatio) 3. 75 4 4 4 4 4. 7

6= structural factor .05 .05 .05 .05 .05 .05

.265 ..25.25 .25 .25 .213

. 1 W 21_ .20 .20 .20 .20 .163
- 95 .95 95 95 .95 .95
I _e

>s overall= 1 ( 2)(A3) = .0098 .0075

(2)payload solar sail 1. 3
payload ballistic

t 7)

1 7J

(it )

(I I3)

1 Assuming specific impulse I = 3000 seconds

2 Assuming same take off weight, and considering sail and midcourse
correction rockets respectively as " payload"
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