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Abstract

In designing an intelligent cruise controller (ICC) for an automobile, one would like to
know the risk of collision based on all the information provided by on-board sensors
and computers as well as vehicle, highway and driver conditions. Based on this
information, the ICC can determine whether to take actions and what kind of actions.
Most current ICC’s use radar to detect speed and distance of the two vehicles and
determine the control action based on a theoretical safe-following model without
taking into account other factors such as the individual driver’s driving behavior. As
a result, these ICC’s, when they are put in the market, may not be acceptable for all
drivers.

The purpose of this thesis was to investigate differences in car-following behavior
under different conditions, to develop a framework for modelling car-following safety
based on these real data, and finally to demonstrate the usefulness of this model in
the design of intelligent cruise control.

Two approaches were used to measure car-following behavior: field measurements
and simulator experiments. The field measurements provided realistic but uncon-
trolled data for a large and varied population under different environmental condi-
tions. The simulator experiments, on the other hand, provided data among different
groups of drivers in a planned, controlled environment. The results show that envi-
ronmental effects on car-following were mostly minimum, while driver characteristics
have a great influence on car-following behavior.

A preliminary analysis of the kinematics of car-following safety was presented.
The analysis showed that an analytical solution for this safety model might not be
obtainable due to the fact that the empirical car-following data could not be expressed
in a convenient analytical form. We proposed an alternative solution to this problem
by using the Monte-Carlo simulation to determine the probabilities of a crash occuring
given certain specified conditions. A fuzzy-logic intelligent cruise controller was then
developed based on the crash analysis results from the model. Simulation results
showed that such an ICC has potential of reflecting individual driver’s driving habits
and, at the same time, maintaining safety.
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Chapter 1

INTRODUCTION

1.1 Problem Description

Rear-end collision is one of the most common types of crashes involving two or more
vehicles. The National Safety Council (NSC) reported [1] that there were approx-
imately 11.5 million automobile crashes in 1990, of which 2.2 million were front-to-
rear-end, about 19.1% of the total. These crashes accounted for 24% of all collisions
involving two or more vehicles. The NSC further reported, in the same year, on 1800
fatalities (in front-to-rear-end crashes) or 4.4% of the fatalities occurring in all mo-
tor vehicle crashes. Front-to-rear-end collisions accounted for 11.4% of all fatalities

involving two or more vehicles in crashes [2].

There is plenty of evidence that these front-to-rear-end accidents result primarily
from drivers keeping inadequate headway for the speed of travel and, therefore, not

being able to stop or slow down sufficiently when the lead vehicle unexpectedly de-
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celerates or stops rapidly due to the late timing of a maneuver, an obstacle, or some
other emergency situation. The NSC [1] reported that 8.7% of all collisions or nearly
one-half of front-to-rear-end crashes are due to drivers following too closely. Various
warning systems and intelligent cruise controllers are being designed to help the inat-
tentive, inexperienced or risk-prone driver keep an adequate following distance and
react when unexpected situations occur. To be acceptable to the driver, those devices
should be actuated by a “smart” algorithm which activates either or both warning
and deceleration, depending on the circumstances. Unfortunately, what drivers be-
lieve to be an acceptable following distance is not easy to deal with for many reasons.
The individual driver has his/her own intuitive and heuristic internal model of the
car following situation. The driver may also decide to engage in active risk-taking
behavior when planning and carrying out driving maneuvers. The driver’s sensory
and perceptual limits for detecting speed and distance may change according to age
and gender. These and many other factors are not mutually exclusive, which makes

the defining of a safe following distance very complex.

The current research on ”car-following” focuses on fitting overall highway data
to some theoretical model. This approach usually includes data for every car in
a traffic stream, some of which are not really car-following. In order to realize a
valid car-following model, an experimental data for steady car-following needs to be
established, and for this a method to evaluate the car-following safety needs to be

developed.
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1.2 Car-following Research

Considerable research has been directed to drivers’ car-following behavior or headway
distribution. Tolle [3] compared different models of headway distribution using real
highway data. He tested three different statistical distributions, composite exponen-
tial, Pearson Type III and log-normal , and concluded that log-normal was the best
fit of the three. Koshi [4] suggested possible dual-mode car-following behavior. He
analyzed highway data and found the possible discontinuity between low speed and
high speed region. Chishaki [5] formulated a headway distribution model based on
the distinction between leaders and followers. He developed a very complex math-
ematical model to describe an overall headway distribution as a function of trafhic

flow.

Several researchers also tried to define a so-called ”safe” following distance (or
headway). Dull [6] defined the safe distance as a function of vehicle braking capabil-
ity and of driver reaction time. He employed this theoretical safe stopping distance
as a safe following distance in his design of collision warning system. Colbourn [§]
investigated the effects of traveling speed, driving experience and instructed probabil-
ity of the leading vehicle’s stopping on driver car-following behavior. He found that
the effects were nﬁnimum, and that drivers adopt headways of approximately two
seconds. Fenton [9] proposed a headway safety policy for automated highway oper-
ations by ana,lyzing all the p>ossible parameters that affect the theoretical stopping
distance. Ioannou [7] et al. used the California rule for safe car-following distance, a

vehicle length for every 10 m.p.h, for their intelligent cruise control design.
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These mathematical models, though easy to implement in simulation, can hardly
reflect the real driver judgments of the safe following distances, since they all try to
define what is a safe following distance instead of what following distances drivers

believe to be safe and/or actually employ.

1.3 Intelligent Cruise Control

An Intelligent Cruise Control (ICC) system is an assisting system that controls rel-
ative speed and distance between two vehicles in the same lane. The system has
great potential for enhancing the safety, comfort and convenience of highway driving
by sensing and appropriately responding to forward traffic scenarios. A schematic

diagram for the ICC system is shown in figure 1-1.

Driver adjustable speed

Automatic spacing

S 330888888

Automatic braking Radar sensor Reflector

- Figure 1-1: Intelligent Cruise Control Operating Concept

Highway driving safety is potentially improved by responding to slower leading
vehicles with high closure rates and vehicles that cut into the lane of the intelligent
cruise control vehicle. High closure rate traffic scenarios detected by the system alert

the driver and automatically initiate braking. The degree of braking depends on the
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relative distance, own vehicle speed, and the closing rate.

Many automobile companies and research institutes have undertaken research and
development of intelligent cruise control for the last few decades. Early research used
warning devices to passively warn drivers of potential danger, instead of the active
braking device that will automatically slow the vehicle in the presence of danger [6]
[10]. The application of advanced technology sensors, processors and software has
pushed forward to include braking control as part of the intelligent cruise control

[11] [12] [13] [14].

1.4 Summary of this Thesis

1.4.1 Objectives

The objectives of this research are to develop a measurement method and experimen-
tal data for car-following, to evaluate car-following safety with a proposed simulation
model, and to use such model to help design intelligent cruise control. For this pur-

;V)ose,‘ the following issues are investigated:

1. Car-following behavior of Boston drivers.
2. Braking reaction time measured in a laboratory setting.

3. Safety model of car-following based on car-following behavior and braking re-

action time.
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4. Possible application to the design of intelligent cruise control.

This research first investigated constant velocity car following behavior as a func-
tion of absolute speed, weather, illumination, traffic density, driver intention, experi-
ence and gender. Two approaches were used to measure the car-following behavior:
field measurements and actual-driver-in-the-loop simulator tests. The field measure-
ments provided realistic but uncontrolled data for a large and varied population under
different environmental conditions. The simulator tests, on the other hand, provided
data distinguishing among different groups of drivers in a planned, controlled en-
vironment. Those data were then used in combination to develop and validate an
evaluation model of car-following safety. Finally, with this knowledge of car-following

safety, an example of intelligent cruise control is demonstrated.

1.4.2 Thesis Contributiens

This thesis makes the following major contribution:

1. A data base for steady car-following was acquired. This data base
provides analyzed steady car-following data instead of commonly seen raw data

that includes much non-following information.

2. A driving simulator was developed for investigation of driver behav-
ior. The loﬁv-cost, fixed-base driving simulator developed for this research pro-

vides a useful tool for further driver related research.
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3. A dynamic braking reaction time distribution was obtained. Using
the driving simulator to test driver braking reaction time proved to be safe,
efficient and, we believe, reasonably accurate. With the control environment,

both surprise and alert reaction time was investigated.

4. A model for estimating car-following safety was implemented. This
thesis proposes the implementation of a Monte-Carlo model for evaluating car-
following safety. The simulation demonstration shows its effectiveness in inves-

tigating safety under different conditions.

5. A fuzzy intelligent cruise controller was developed using the safety
simulation results. It is first such design to take into account real driver
car-following behavior. It improves the acceptability of this type of driver aid

device.

1.4.3 Thesis Overview

This thesis is arranged as follows:

Chapter 2 presents the method used to collect and analyze highway data. The
implication of environmental effects on car-following behavior are also discussed. In
chapter 3, désign of the Human-Machine Systems Laboratory (HMSL) Driving Sim-
ulator is first discussed. Experimental tasks for car-following and braking reaction
measurement are then described. Chapter 4 discusses the model for evaluating car-
following safety with some examples. Chapter 5 demonstrates the use of safety results

in the development of a fuzzy intelligent cruise controller. Chapter 6 states the con-
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clusions and suggests some directions for future research.
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Chapter 2

Field Measurements on Car

Following

Real highway data are important for evaluating the safety of driver car-following
behavior and the effectiveness of intelligent cruise control. This chapter summarizes
the locations chosen for highway measurements, describes the method used to obtain
data from the measurements, and finally discusses the measurement results which
imply environmental effects on car-following behavior, including effects of weather,

illumination, traffic density and locations.

2.1 Location

The considerations for choosing the locations includes: being within convenient dis-
tance from MIT, high traffic density to measure steady car-following behavior, and

availability of a high-rise building nearby for videotaping the traffic.
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Most measurements were carried out on Interstate 1-93 near Boston area. This
section of 1-93 is a dual three-lane freeway going north and south. The location has
the merit of having steady traffic flow during the rush hour and even during the non-
rush hour. Only data from the inner two lanes were taken. A high elevated parking
lot along the highway was chosen to place a video camera so that we could have a
clear view of the whole highway and thus were able to distinguish between vehicles
on adjacent lanes. Figure 2-1 shows a typical view of the traffic on this section of

highway.

Figure 2-1: Typical View of the Traffic on [-93

Another location, the Massachusetts Turnpike (I-90), was mainly used to collect
additional high speed data and to show the effect of a different location. This section

of 1-90 is a dual four-lane toll highway going east and west. Again, only the inner
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two lanes were considered.

Both highways are well maintained and have good surface quality. The average
throughput ranges from 1500 to 2000 vehicles per hour per lane during rush hour and

approximately 1000 to 1600 vehicles per hour per lane during non-rush hour.

2.2 Variables

Clearly car-following spacing is a function of driver, environment and vehicle. In this
thesis, however, only environmental conditions were considered for the field measure-
ments since the other two variables are not readily measured from the method used
to collect the traffic data. Instead, they will be considered in the simulator tests
and safety evaluation sections. The environmental variables of interest for this thesis

include:

1. Surface conditions - dry or wet,
2. Lighting conditions - daylight or night,
3. Traffic density - rush hour or non-rush hour, and

4. Location - near downtown area (I-93) or away from downtown (I-90).

Surface condition coincides with weather in that wet surface was considered only
when there was light rain, the road surface was wet and the visibility was not much

worst than that under dry surface. Daylight was considered to be normal light, with
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no cars having their headlights on. Night was when all cars had their headlights on,
and the sun had completely set. We defined the rush hour as 5 to 7 in the evening.
The two locations were used to show whether drivers followed cars differently near
downtown areas. These variables were chosen because they were easily observed and

distinguished.

2.3 Data Collection and Analysis

A Sony Hi-8 Handycam video camcorder was used for measurement. It had a 10:1
zoom lens with 1 lux light sensitivity. The camera was adjusted so that about three
cars following one another could be seen in one video frame. This ensured proper
car-following action but did not sacrifice accuracy. The traffic data collected from the
highways were analyzed using the stop-frame method on a VCR (distance measured
by a scale on the screen). The VCR had a slow-frame speed of 1/60 second per frame,

and this was used to calculate a velocity for the vehicles.

Since this study only considered car-following under a steady traffic stream, cars
with observable acceleration/deceleration were discarded. To achieve this goal with-
out measuring the acceleration rate, we employed the data only when there were at
least three cars following each other at approximately the same speed. Two station-
ary marks, 55 feet apart on the highway, were used to calibrate between the distance
that appears on the TV display (TV-screen-inches) and the distance on location (real
distance). In order to avoid errors caused by image distortion from the camera, we

measured the distance from the center of the screen where the markers were observed.
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Each cited instance of car-following was classified by the speed at which both cars
were traveling and the distance the cars were measured to be apart from one another.
It was assumed and afterward checked that both cars were traveling at the same
speed. It was also assumed that the velocity was constant for the specified distance
between the two marks. A collection of about 50-100 of these data points constituted
one data set for each video session. There were 60 video sessiops from [-93 and 15

sessions from I-90, or roughly 5600 data points in all.

2.4 Results

The results of the field measurements are discussed in this section. Analysis of vari-
ance was used to evaluate the difference in car-following distances under different
environmental conditions and so-called box plots provided graphical presentation of
the comparisons and showed the general distributions. Figure 2-2 shows a typical
example of a box plot. A box plot has several graphic elements. The lower and upper
lines of each “box” are the 25th and 75th percentiles of the distribution. The line in
the middle of the box is the median value of the sample. The lines extending above
and below the box show the total range of data in the sample, except that any sample
value that is more than 1.5 times the box range is shown as individual point above

or below the box.
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Figure 2-2: Typical Example of Box Plot

2.4.1 Baseline Results

Figure 2-3 shows the raw data under seven different conditions. Note that figure
2-3(a) to (e) are the raw data taken from I-93 while figure 2-3(f) and (g) aré from
I-90. Also note that only one non-rush hour data set, figure 2-3(b), is presented for

comparison.

By observation, all the data sets seem to indicate that there is poor correlation
between following distance and speed. A two-variable regression analysis was used to

test this observation. The equation to be estimated under the analysis is

(following distance) = A + B x (speed) (2.1)
where A and B are two coefficients to be estimated.

The results of the regression analysis are shown in Table 2.1. Since the sample
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size is large enough, the Student’s t test was used to determine whether A or B were
significantly different from zero. This hypothesis could be rejected in both cases at
the 95 percentile. The small R? values (< 0.4) show that there is little correlation

within each data set.

Coef ficients

Conditions Intercept, A | Slope, B | R? Numberof Points
193, daytime, dry, rushhour 5.18 0.15 0.11 | 1413

193, daytime, dry, nonrushhour | 8.01 0.06 0.11 | 577

193, dusk, dry, rushhour 8.28 0.046 0.069 | 508

193, nighttime, dry, rushhour | 6.28 0.14 0.35 | 610

193, daytime, wet, rushhour 5.77 0.15 0.31 | 1060

190, daytime, dry, rushhour 11.95 0.04 0.006 | 1600

190, nightteme, dry, rushhour | 10.19 0.06 0.015 | 850

Table 2.1: Regression Analysis for Following Distance vs. Speed

A ”dual-mode” assumption is widely used in the analysis of traffic flow. It seemed
to the author that car-following behavior might show a similar characteristic. A
dual model is clearly evident in figure 2-3(c) and (e). The high speed region (or
free-flow region) has a steeper slope than the low speed region (or congested region).
The critical speed is at around 50 km/hr for both cases. Our interpretation of this
phenomenon is that in the congested condition drivers do not really follow the cars
ahead as closely as they would in a free-flow condition, because they know that they
are not really in a steady flow and they will be forced to brake sooner or later. The
non-rush hour data, on the other hand, do not show the "dual mode” characteristic
and reveal only very slight variation within the whole speed range. The data also

show a great variation among drivers in keeping a steady car-following distance. For
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example, the following distance for the speeds of 40-50 km/hr ranges from 5 to 20

meters during daytime and from 5 to 25 meters during nighttime.

Figure 2-4 presents the raw data from Figure 1 in cumulative probability functions.
From these graphs it is easy to see that people are more sensitive to speed during rush
hour than during non rush hour. For example, under daylight and during rush hour,
the average increase of following distance per speed increase of 10 km/hr was about
one meter, while during non rush hour the average increase was only 0.6 meter. Notice
the extremely narrow range for the non-rush hour data. This shows that drivers paid
little attention to the their speeds when following the lead car under light traffic. It
also appears that people were less sensitive to speed in car following when driving on

1-90 than on I-93.

Another common way of dealing with car-following behavior is to look at the time
headway distribution. A time headway is time needed for the following car to reach
the current position of the lead car. In another word, the time headway is product
of current relative distance between two cars and the inverse of following car current
speed. A common recommendation from the government regarding highway safety is
to follow a car with two seconds time headway. Figure 2-5 shows the histogram of time
headway distribution for the daytime data. It is evident that majority of people we
observed folléwed cars at much smaller time headway. In fact, most people seemed
to keep one second headway. The overall distribution fits to a geﬁeral log-normal

distribution as suggested by many researchers [3] [15].
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Figure 2-4: Raw Data in Percentile
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Figure 2-5: Histogram of Daytime Headway

2.4.2 Effect of Environmental Conditions

Based on the collected data, the car-following distance was found to vary greatly in

each speed range.

Effect of Road Surface Conditions and Weather

Figure 2-6 compares driving on a dry surface in clear weather with driving on a wet
surface in rainy weather. Generally speaking, people claim to take more caution
while driving under adverse weather conditions than under normal conditions. (The
effect of the road surface was considered to coincide with that of the weather since
we did not collect other wet-pavement data such as icy road or snowy weather.) In
our experiments, however, the average following distance was not significantly greater
on rainy days than under clear weather for some of the speed ranges. An Analysis

of Variance (ANOVA) showed that there were no statistically significant differences
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between means for different conditions for the speed ranges from 40 to 60 km/hr,
while the effect was significant for the ranges from 10 to 40 km/hr. Table 2.2 shows
the detailed analysis. The results suggest that people may not be so sensitive to speed
if the traffic flow is close to steady even though the pavement is wet. Note that also
shown in figure 2-6 are the one-second and two-second headway lines. It is evident
that most people keep well below the recommended two seconds headway, and many,

especially at high speeds, are even below one second headway.
2 seconds headway

30

25

1 second héadwéy
20 : ]

15

Following Distance (m)

15 25 35 45 55
Speed (km/hr)

Figure 2-6: Comparison of Following Distance under Dry and Wet Road Surface

SpeedRange(km/h) | F df |P

10 - 20 112.2 11,40 | < 0.001
20— 30 9.2 |1,681 | = 0.0025
30 — 40 9.1 1,849 | = 0.0026
40 — 50 0.005 | 1,275 | = 0.94
50 — 60 0.025 | 1,105 | = 0.874

Table 2.2: ANOVA of Effect of Road Surface Conditions
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Effect of Lighting Conditions

Figure 2-7 shows the effects of ambient lighting conditions on the car-following dis-
tance distribution. Due to the lack of high speed data for daytime on I-93, only those
data under congested flow were compared. To examine the effect at higher speed,
data from I-90 were used. This is justified since the effect of location is minimum as
will be shown later. We would normally expect that low visibility will greatly increase
the following distance. An ANOVA was again computed and the results are shown
in Table 2.3. The car-following differences between daytime and nighttime were sig-
nificant for the low speed region while there is no significant difference for the high
speed region. Overall, the car-following distance during nighttime was approximately

14 percent greater than that during daytime.

, 2 seconds headway 1 second headway

pail

30

|

Following Distance (m)

15 25 35 45 55 65 75 85 95 105 115
Speed (Km/hr)

Figure 2-7: Comparison of Following Distance during Day and Night
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SpeedRange(km/h) | F df |P

10 - 20 498 |1,53 |=0.03
20 - 30 4.74 1,736 | = 0.03
30 — 40 3.32 | 1,783 | =0.07
40 — 50 18.65 | 1,290 | < 0.001
50 — 60 36.86 | 1,171 | < 0.001
70 — 80 2.4 1,108 | = 0.12
80 — 90 0.05 |1,405|=0.82
90 — 100 94 [1,642 | =0.12
100 — 110 0.3 1,244 | = 0.58

Table 2.3: ANOVA of Effect of Lighting Conditions

Effect of Traffic Conditions

Rush hour usually means heavy traffic, especially for areas near downtown. Therefore,
the effect of the rush hour on car-following behavior was investigated. The results
are shown in Figure 2-8. It seems that except for the speed range 40-50 km/hr,
there was no significant difference in the following distance under these two different
conditions. An ANOVA was computed on the cell means. Table 2.4 shows the results
and confirms this observation. It appears that rush hour has little effect on drivers

car-following behavior.

SpeedRange(km/h) | F |d.f |P

30 — 40 0.57 | 1,709 | = 0.45
40 — 350 6.24 | 1,222 | = 0.013
50 — 60 0.12|1,89 |=0.73

Table 2.4: ANOVA of Effect of Rush Hour
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Figure 2-8: Comparison of Following Distance during Rush and Non-rush Hour

Effect of Location

Figure 2-9 compares the nighttime data from the two different locations. Overall, the
average nighttime following distance on 1-93 was approximately 15 percent greater
than that on I-90. The ANOVA in Table 2.5 shows that the difference was significant
at ranges from 70 to 90 km/hr but not at the range 90 to 100 km/hr. The cause of
this difference may be the fact that there are 4 lanes on I-90 while only three lanes
on [-93. Also, the existence of a downstream exit on I-93 from where we took the
data, compared to no exit for about 2 miles on that I-90 section, may also contribute

to the difference.

SpeedRange(km/h) | F df |P

70 — 80 16.33 1,156 | < 0.001
(80 —90 - 16.23 11,334 | < 0.001

90 — 100 1. |1,341 | =032

Table 2.5: ANOVA of Effect of Location
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Figure 2-9: Comparison of Following Distance for Different Locations
Overall, the environmental effect of pavement wetness and illumination on driver
car-following behavior seems to be minimal when the traffic is in free flow, while the
effect appears to increase when the traffic becomes congested. As for traffic density,

no obvious effect is shown for the collected data.

2.5 Summary

The video camera together with the stop-frame method provides a simple, yet ac-
curate, way to measure car-following distance on the highway. The findings of the

environmental effects on car-following behavior show some interesting results:

1. The speed-spacing relationship seems to be comprised of two separate regions,

a "dual mode” behavior. The boundary of these two regions lies around a speed

of 40-50 km/hr.

2. There is great variation among drivers in car-following behavior.
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3. There is greater variation of following distance between drivers within a speed

range than there is of means between speed ranges.

4. The environmental effect of pavement wetness and illumination on driver car-
following behavior seems to be minimal when the traffic is in free flow, while
the effect appears to increase when the traffic becomes congested. As for traffic

density, no obvious effect is shown for the collected data.

5. Drivers in this study seem to keep the following distance well below the recom-

mended 2 seconds headway.
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Chapter 3

Simulator Tests

In most cases, the rationale for developing a driving simulator is to provide a safe and
economical means for presenting an operational scenario in a controlled environment
with readily available measures of system performance. Many examples of the accep-
tance and utilization of driving research simulators now exist throughout the United

States, Europe and Japan. [16] [17] [18] [19]

3.1 Human-Machine Systems Laboratory (HMSL)

Driving Simulator

The driving simulator developed in the Human-Machine Systems Laboratory provides
a variety of possible para,fneter variations. Figure 3-1 shows the configuration of the
simulator. The fixed-base car cabin allows the driver to control the vehicle through

the existing gas pedal, brake, and steering wheel. Two audio speakers are used to
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generate the sound environment. Steering wheel torque feedback is generated by a
computer-controlled DC motor on the steering shaft. The motion of the vehicle is fed
back to the driver mainly by the visual cues from the projection screen and secondarily
by the feel of the steering wheel and the auditory cues which include engine noise (a
function of speed) and a car-passing sound (change in loudness and pitch according
to the closing speed and distance relative to on-coming cars). The road scene consists
of a two-lane highway with vehicles in each lane. The subject’s vehicle can pass or be

passed by other vehicles. The detailed description of this simulator is in Appendix A.

Generally speaking, skilled drivers were able to sense the lateral acceleration
through visual cues and steering wheel torque. This simulator has been tested and
performance on it compared to results from actual road test with regard to longitu-
dinal distance to objects (there is tendency to keep a slightly larger distance in the
simulator), oversteer on sharp curves (one tends to oversteer in the simulator because

acceleration cues are missing), and other variables.

3.2 Experimental Tasks

The simulator was used to test the effect of driver experience, gender and intention to
pass on car-following behavior, and to test the driver’s braking reaction time under
different conditions, such as lead car applying full brake and a suddenly appearing
obstacle. In other words, car-following distance distribution and reaction time distri-
bution under different driving conditions and under different speeds were measured

using the HMSL simulator.
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Figure 3-1: Configuration of HMSL Driving Simulator

The subjects were first given oral and written instruction describing the task
and the procedure of the experiment. They were then given practice driving the
simulator for as long as necessary in order to easily handle the vehicle and be familiar
with a variety of presented scenarios that would appear in later experiments (usually
15 minutes). Immediately following the practice, two different experiments were
conducted with about 12 minutes for each experiment and a 5-minute break between
them. In the first experiment, the subjects were instructed to follow the lead car
and to change speed or to brake as they would in normal driving according to the
lead car conditions. The lead car changed speed randomly and occasionally braked
to stop. For the second experiment, the subjects were asked to drive at their normal
speeds and were allowed to pass whenever possible without collision. There were “no
passing” zones and on-coming cars to limit the passing frequency. Following distances

at different speeds were continuously recorded in the computer, and braking reaction
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times were measured whenever the lead car applied its brake. This reaction time
was measured from the onset of the lead car braking until the onset of the subject’s

applying maximum braking.

3.3 Subjects

The 35 drivers tested in the simulator were all holders of a current U.S. driver license.
None of the drivers was professional. The subjects had been selected on the basis of
their driving experience, age, and gender. The 11 senior subjects, with a mean age of
72, were all experienced drivers with more than 40 years of driving experience. The

24 young subjects included:

(1) Inexperienced drivers, with a mean of 1.3 years of driving (o = 0.5 year), and
a mean age of 27.2 (o = 2.2).
(2) Experienced drivers, with a mean of 6.3 years of driving (¢ = 1.8 years), and a
mean age of 29.7 (o = 5.5).‘
(3) Female drivers, with a mean of 3.8 years of driving (¢ = 2.4 years ) and a mean
age of 29 (o =5.2).

(4) Male drivers, with a mean of 4.0 years of driving (¢ = 3.1 years) and mean age

of 28.3 (o = 4.1).

Categorization into two experience levels was made on the basis of statistical risk
of accident, assuming drivers with up‘to 2 years experience have a higher risk of

accident.
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All subjects were volunteers and were not paid for their services during the period

of approximately 1 hour required for testing.

3.4 Results

The log-normal distribution was assumed to compare the mean following distance for

each experimental condition.

The main effect of driver experience on following distance was statistically signifi-

cant (P<0.05) for all speed ranges except for the range of 60-70 km/h (P=0.34). The

detailed ANOVA analysis is shown in table 3.1. Overall, the inexperienced drivers

kept larger following distance than experienced drivers did.

SpeedRange(km/h) | F d.f P

40 — 50 50.37 |1,1000 | < 0.01
50 — 60 17.38 |1,1623 | < 0.01
60 — 70 0.8 1,2221 | = 0.34
70 — 80 309.57 | 1,2324 | < 0.01
80 — 90 136.13 | 1,2230 | < 0.01
90 — 100 14.43 |1,2499| < 0.01
100 — 110 12.45 [1,1780| < 0.01
110 — 120 7.68 1,1050 | < 0.01

Table 3.1: ANOVA of Effect of Driver Experience

Table 3.2 shows the ANOVA for different genders of drivers. Except for speed

ranges of 40-50 and 100-110 km/hr, differences in the following behavior for male and

female drivers were statistically significant. The average following distance for female

drivers was larger than that for male drivers.
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SpeedRange(km/h) | F d.f P

40 — 50 2.08 |1,1000} =0.15
50 — 60 16.66 | 1,1623 | < 0.001
60 — 70 31.05 | 1,2222 | < 0.001
70 — 80 14.92 | 1,2324 | < 0.001
80 — 90 12.60 | 1,2230 | < 0.001
90 — 100 19.61 | 1,2136 | < 0.001
100 — 110 1.08 |1,1780|=0.30
110 — 120 96.72 | 1,1050 | < 0.001

Table 3.2: ANOVA of Effect of Driver Gender

The driver intention to pass had great effect on following distance as shown in
table 3.3. The data seemed to suggest that before passing, drivers slightly increased

following distances.

SpeedRange(km/h) | F d.f P

40 — 50 58.97 |1,1000 | < 0.01
50 — 60 1.36 1,1623 | = 0.24
60 — 70 36.01 |1,2222|<0.01
70 — 80 9.52 1,2324 | < 0.01
80 — 90 217.87 11,2230 | < 0.01
90 — 100 382.63 | 1,2136 | < 0.01
100 — 110 382.74 11,1780 | < 0.01
110 — 120 40.43 |1,1050 | < 0.01

Table 3.3: ANOVA of Effect of Driver Intention to Pass
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The effect of age on car-following behavior is easily seen from the box plot. Fig-
ure 3-2 shows the detailed result. The effect was obviously statistically significant
(P<0.01) for all speed ranges. The mean following distance for the senior drivers is

almost twice that for the younger drivers.
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Figure 3-2: Comparison of Following Distance for Senior and Young Drivers

Figure 3-3, 3-4 and 3-5 show the box plots for following distances for different
experience, gender and intention to pass. Using the same recommended following
headway, i.e., 2 seconds, we can see that the following distances from the simulator

test were well below the recommended distances.

Figure 3-6 shows the cumulative frequency function for braking reaction time for
the young drivers. The mean reaction time for the lead car applying its emergency
brake is 1.25 seconds, while that for sudden appearance of an obstacle is 1.10 seconds.
Both reaction times include perception time and foot movement time. These results
are very close to those from Olson’s experiment under surprise conditions [23]. For

the senior drivers, the distribution is shown in figure 3-7. The average reaction times
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for emergency braking and sudden obstacle are 1.5 and 1.3 seconds, respectively. It
is obvious that the reaction time increases with age. The difference lies in the longer

perception time for the senior drivers than for the younger drivers.
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Figure 3-6: Braking Reaction Time for Young Drivers
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Figure 3-7: Braking Reaction Time for Senior Drivers
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3.5 Summary

The HMSL driving simulator proved to be effective in the research of driver car-
following behavior and braking reaction. The effects of driver characteristics on car-
following behavior are statistically significant in terms of driver experience, gender,
intention to pass and age. These results provide a guideline for designing a collision
avoidance system that is intended to suit individual needs. The braking reaction time
distribution is reasonable compared to other research, and thus will be used for the

modeling purpose of the next chapter.

46



Chapter 4

An Integrated Method for
Evaluating Car-following Safety

The car-following data discussed in the previous two chapters clearly shows that
there might not be a simple mathematical form to represent car-following distance in
a general way. Even if a more complex form can be found, it could be too complex
for the car-following safety analysis. This chapter discusses a model developed to
estimate safety. The model is called CARMASS which stands for CAR-following

Model And Safety Simulation.

4.1 Framework of the Model

Figure 4-1 diagrafns the framework for evaluating the safety of car-following. The car-
following distance distribution is acquired using the data from highway measurements.

The distribution of driver reaction time, on the other hand, comes from the results of
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the simulator test only. The vehicle braking characteristics are dependent on vehicle
type, vehicle speed, and road surface conditions. The discrete following distance and
stopping distance are sampled separately using the Monte Carlo method, assuming
these conditions are independent of one another. The difference between these two
distances then forms the distribution of safety margin under that particular condition.

The status of the interaction, collision or not, is then determined.

snoed Vehicle following Collision safety
weath:ar following distance margin criterion
’ distance : distribution
— > -
pavement, distribution ﬁ)
driver : |/ S
characteristics IZ S stopping
distance
Driver
reaction Vehicle
driver » |time __|braking
characteristics”  |distribution characteristics
speed,
pavement

. Figure 4-1: Block diagram of the car-following evaluation algorithm

The kinematics in determining the safety of car-following are straightforward if
all the factors to be considered are available. The factors to be considered include
variables from driver, environment and vehicle. A collision scenario means that a

driver keeps too short a distance to react soon enough to stop his/her own vehicle
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before reaching the lead car stopping position. Therefore, the car-following safety
model compares the car-following distance (D;) and the safe relative distance (D)
between the two cars. If the difference is positive, there is no collision. Otherwise,

there is a collision. Equation 4.1 shows this simple relation.

A =D;—D, (4.1)

where A = margin to collision, D; = car-following distance, D, = safe relative dis-

tance.

The car-following distance is obtained from the highway data while the safe rela-

tive distance makes use of the following equation:

2

D= vt + -1 42)
where
D, = the stopping distance required to avoid collision,
Vi = the speed of following car,
T, = the driver braking reaction time,
Vi = the speed of lead car,
Q) = the deceleration of lead car,
oy = the deceleration of following car.

The parameters ay and o; are dependent upon the assumed vehicle braking char-
acteristics while T, varies according to the probability distribution derived in chapter

3. For the extreme case of a sudden-stopped obstacle or vehicle moving perpendicu-
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lar to own vehicle path, the effective ¢ is infinity and the required stopping distance

would be the largest.

The probability distribution of collision is obtained through the Monte-Carlo in-

tegration of the two distance distributions
P(A < §) = /P(Ds = 2)P(D; > § +z)de (4.3)

where
P(A < §6) = the probability of margin to collision less than 6,
P(Ds =) = the probability of car-following distance equaling to z,

P(Dy > 6 + ) = the probability for safe relative distance larger than é+z.

When é = 0, the result represents the probability of collision. For detailed discus-

sion of the analytical model, see Appendix B.

4.2 The CARMASS Model

CARMASS is a quasi Monte-Carlo simulation which uses car-following data recorded
from the real highway as a source of realistic information on vehicle speeds and
following distances in traffic. The simulation also incorporates routines to represent
the effect of the driver’s reaction time and hence the potential for collisions. The
objective is to develop a tool that can be used to (1) investigate the sensitivity of
rear-end collisions to various kinematic parameters and assumptions, (2) provide some

insight into the effectiveness and limit of potential intelligent cruise control.
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4.2.1 Scenario

The model simulates the scenario for a lead vehicle and a following vehicle traveling
in the same lane. At time Tj, the lead car applies emergency braking and slows to
a stop. After some human response time delay, the driver of the following vehicle
begins to brake if no automatic braking control is available, or the automatic braking
control begins to brake after some sensor time delay. The parameters that determine

whether or not a rear-end collision occurs are:
1. the lead vehicle’s speed,
2. the following vehicle’s speed,
3. the following distance,

4. the two vehicles’ deceleration,

5. the reaction time of the following vehicle’s driver to the onset of lead car braking,

and

6. the reaction time of potential intelligent cruise controllers.

Following sections discuss the basis for specifying each of the these parameters.

4.2.2 Assumptions

Several assumptions were made to simplify the analysis process or to make the sim-

ulation more realistic.
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Braking Reaction Time

Random values for the braking reaction time are obtained from the distribution de-
scribed in chapter 3. As diecussed before, this distribution was based on the surprise
reaction time data with the following speed at around 55 km/hr. However, drivers
may be more alert when keeping shorter following distances as suggested by Farber
et al. [20]. Accordingly, the reaction time for alert drivers should be shorter than for
non alert drivers. Based on Johansson et al. study [21], the correction factor for
surprise and alert reaction time is about 1.3. This will be adopted in this thesis as

an assumption in order to make the simulation more realistic.

Lead Car Deceleration Level

For an emergency situation, it is assumed that the driver of the lead vehicle will brake
at or near the limit of tire-pavement friction. Hence the braking level for the lead car
under investigation is fixed at 0.7g or 6.86m?/s, a level achievable on dry pavement by
vehicles capable of meeting FMVSS 105, the Federal Motor Vehicle Safety Standard
for braking. Since about 80% of rear-end crashes occur during dry weather, only dry

weather is under consideration for this model [22].

Following Car Deceleration Level

It is again assumed that, in an emergency, the following driver will apply full brake as

described for the lead car braking limit. For an automatic braking-control vehicle, the
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deceleration level is set to the desired level for the controller. To maintain deceleration

at a comfortable level, the braking is limited to 2.5m?/s.

4.2.3 Structure

As noted above, CARMASS is a quasi Monte-Carlo simulation. Vehicle speed and
following distance and driver’s braking reaction time are random variables, sampled
from appropriate distributions discussed in previous two chapters. The lead vehi-
cle’s braking level is set at emergency braking. The following vehicle’s braking level

depends on whether or not an automatic braking control is used.

In each single iteration of the model, the following speed and distance of a vehicle
are read from the traffic data file. Random values are drawn from the following
driver’s braking reaction time for manual control. CARMASS then calculates, given
these initial conditions, the margin to collision based on the kinematics explained in

the previous sections.

4,3 Simulation Results

To illustrate the procedure, consider the following four examples for different control
actions. The distribution of the car-following distance under daylight and dry pave-
ment acquired from the highway data, as shown in Figure 4-2, are used for all the

examples.
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Figure 4-2: Cumulative frequency distributions for car-following distance

4.3.1 Manual Control

The first example considers the driver response when the lead car suddenly brakes
fully to stop and there is no automatic braking control. The distribution of the
brake reaction time is described in figure 3-6 for this special case. The stopping
distance for this special case was derived by using equation 4.2. Using the Monte
Carlo sampling method, the safety margin is a distribution as shown in figure 4-3.
From this hypothetical result one can see that under this special condition, most of
the population will have a collision for all the speed ranges. Note that in this example,
the braking reaction time is based on a ”surprise” reaction time. Figure 4-4 shows
the result when the following drivers are in an alert condition and thus the braking
reaction time is reduced by a factor of 1.35. There is slight improvement in terms of

margin-to-collision; however, the majority of the drivers still have a collision.
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Figure 4-3: Hypothetical distribution of the safety margin with lead vehicle emergency
braking, without any braking control and with a "surprise” reaction time

4.3.2 Engine Control

The second example involves the case when the lead car applies full braking, and
automatic engine braking control is applied to the following vehicle. In this case,
the driver reaction time is replaced by the sensor/actuator delay time, assumed to

be 0.3 second. The engine braking characteristics varies for different vehicles. An
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*100
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Figure 4-4: Hypothetical distribution of the safety margin with lead vehicle emergency
braking, without any braking control and with alert reaction time
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approximate equation has a first order response

Deceleration(t) = A x (1 — €5) (4.4)

where A and B are two constants.

Due to lack of detailed data for engine braking, we ignore the fact that the deceleration
rate should change according to the gear ratio and the vehicle speed and assume
the rate to be constant. Figure 4-5 shows the hypothetical result. It is clear that
with automatic engine braking the outcome is worse than for manual braking since
the deceleration rate is very small for engine braking compared to that for regular
braking. Therefore, it is reasonable to conclude that engine braking can only be used
to slow the vehicle under normal conditions rather than to stop the vehicle in an

emergency situation like the one assumed in this example.
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Figure 4-5: Hypothetical distribution of the safety margin with lead vehicle emergency
braking and with automatic engine braking control
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4.3.3 Limited Automatic Braking Control

The third example shows the case where the lead car applies emergency braking
and an automatic braking control is activated. However, in order for the vehicle to
be operated at a comfortable maneuvering level, the deceleration rate is limited to
2.5m/s%. The sensor/actuator delay is again assumed to be 0.3 second. Figure 4-6
shows the simulation results. One can see that with this limited braking, collision

can only be avoided for a very small population and only for low speed conditions.

Distance to Collision (m)

100 0

T (+)
Speed (km/hr) Percentile (%)

Figure 4-6: Hypothetical distribution of the safety margin with lead vehicle emergency
braking and with limited automatic braking control

4.3.4 Full Automatic Braking Control

For the last example, assume maximum deceleration is allowed for the automatic
braking control. Obviously, the result will be much better than that for limited
braking. Figure 4-7 shows that most of the population will avoid collision under this

condition.
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Figure 4-7: Hypothetical distribution of the safety margin with lead vehicle emergency
braking and with full automatic braking control

4.4 Correction Factors

The procedure can be modified with some correction factors for different assumed
conditions but using similar statistical distributions. For example, data from the
highway measurements show there is 0.9 meter greater average following distance
under wet road surface for speed range 30-40 km/h. The safety margin might then
be estimated by simply shifting the distribution of safety margin to the right by 0.9
meter. In this case the collision probability would be 94% instead of 96% as in the dry
surface condition (assuming the reaction time remains the same). Figure 4-8 shows

this hypothetical shift.

The procedure can be further refined to include correlation at the stage of Monte
Carlo sampling between reaction times and following distances (a young man with
faster reaction times follows more closely) and of course can be improved upon with

better data as it becomes available.
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Figure 4-8: Hypothetical shift of distribution of the safety margin for dry and wet road
surface

4.5 Summary

Although CARMASS incorporates many simplifying and idealizing assumptions, it
provides a simple way to estimate car-following safety. It is important to keep in mind
that the findings reflect these assumptions and only provide ”potential” collision. The
high frequency of collision resulting from long braking reaction time seems unrealistic
and of course our examples are based on the most extreme and worst-case assump-
tion of lead-car behavior. However, even with moderate reaction times, drivers still
are driving in a risky situation. This can be seen from the very short headway that
drivers keep when they are following a lead car. Though significant rear-end collisions
are a rare event for a given driver, it is the designer’s responsibility to understand
any potential risks and design a device that can help drivers avoid these rare events.
Simulation resulté from CARMASS can provide a guideline for designing and evalu-

ating such a device. It is shown that engine braking control may not be used for the
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purpose of avoiding collision. Such limited braking can avoid collision only if drivers
are willing to give up short following distance. Full braking is the only option if the

driver’s desire of following closely is to be satisfied.
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Chapter 5

Demonstration of Intelligent

Cruise Control

The results from chapter 4 indicate potential collisions in car-following if the emer-
gency scenario does occur. Many reports have indicated that the major contributing
causes of the discussed accident scenario are driver inattention (long reaction time)
and following too closely (small headway) [24] [25]. Since we may not be able to
change driving habits, it is evident that the only way to help drivers avoid collisions
in emergency is to reduce driver reaction time. This can be done either by using a
warning system which will arouse the driver’s attention or by employing intelligent
cruise control which will detect an emergency situation and respond with a delay

which only a fraction of the driver reaction time .

Intelligent cruise control is a system désigned to control relative speed and distance

between two consecutive vehicles in the same lane. An ICC system can be consid-
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ered as an extension of the traditional cruise control. Over the past few decades,
ICC researchers have been focusing on developing more reliable sensors and image
processing technology [6] [10] [13]. Some important, non-technical issues that will
affect the success of ICC are yet to be resolved. Among them, how to make a proper
trade-off among comfort, convenience and safety is a question frequently asked by
human factors researchers. In another words, whether ICC can provide support to
suit each individual need is our main concern. A successful ICC needs not only to deal
with the complex driving task in the presence of hard disturb;nces such as appear-
ance of obstacles, but it also must have the capability of imitating driver car-following
behavior. This chapter describes the design of a fuzzy-logic based ICC which utilizes
the car- following model derived in the previous chapter and provides on-line learning

process to mimic the driving behavior without much sacrificing safety and comfort.

5.1 Overview of Proposed ICC System

The overall vehicle system equipped with the proposed ICC is shown in figure 5-1.
There are three blocks or modules in this diagram. The fuzzy control block is the
main part of the ICC and will be discussed in more detail in the next section. The
vehicle block denotes the vehicle’s equipment and its interaction with the ICC and
the environment. The speed control block stands for the traditional cruise control

that is usually included as a pdrt of the ICC.
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Figure 5-1: Vehicle System with ICC

5.2 Fuzzy-logic ICC

5.2.1 Fuzzy Set Application

Generally speaking, a good control theoretic design must be based on thorough knowl-
edge of the system to be controlled, the environmental influences, and the relevant
task elements. In many situation however, the structure of the system is unknown,
parameter variation is unpredictable, or goals and constraints are not readily quantifi-
able by a single number. Fuzzy set theory, introduced by L.A. Zadeh thirty years ago
[26], may be invoked to deal with such control problems. In fact, fuzzy set theory en-
ables the conversion of linguistié control strategy, based on expert knowledge, into an
automatic control strategy. The resulting algorithm usually preserves, or is marked

by, the expert’s subjective, inaccurate, incomplete, and maybe even contradictor
p J plete, y y
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behavior.

Fuzzy set theory has a short yet remarkably rich history in process control and
decision making [27]. For control of a number of ill-defined processes in particular,
fuzzy-logic controllers have proven to be the most satisfying substitute for a skilled
human operator. One of the first, and most striking, examples of fuzzy logic control is
the control of a cement kiln by Holmblad and Ostergaard [28]. A brief introduction

to fuzzy set theory is given in Appendix C.

Intelligent cruise control systems are based on the availability of fairly accurate
measurements whereas most aspects of driver car-following behavior are much more
inexact by nature. The non linearity of the vehicle dynamics and the uncertainty
surrounding the environment and the driver further remove the classical linear control
from consideration. In dealing with non-linearity and uncertainty, fuzzy set theory has
been demonstrated to have design advantages over other non-linear control theories
[29]. Thus, the proposed ICC system employs the fuzzy-logic technique in solving

this complex control problem.

5.2.2 Safe Distance Control

As shown in ﬁgure 5-1, safe distance control is one of the major control elements
of the ICC. The purpose of this module is to create a car-following criterion for the
controller based on the results of the safety evaluation described in chapter 4. For
example, if the control objective is to maintain a safe distance in all instances, and the

control constraint limits the braking level to 2.5m/s? (these two elements are adopted
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by virtually all the ICC’s currently been developed), the margin to collision from the
simulation shown in figure 4-6 will be used to calculate safe following distances. Figure
5-2 shows the same graph in a 2-D form. If the overall ICC goal is to avoid collisions
in an emergency, this goal can not be achieved without sacrificing the driver’s desire
of keeping a close following distance. Instead, the safe following distance for this
special case would approximately increase to the distribution shown in figure 5-3 at a
95% level. The large increase of following distance is due to the use of limited braking
for the sake of comfort. Again, this is a result of trading driver desire of following
closely for the safety and comfort of driving. However, if the maximum braking
capacity is allowed, the safe following distance will substantially decrease, perhaps
to what the driver originally desires. Notice that this only provides the initial safe
following distance distribution used for the ICC. Subsequently, the control module
will modify the following criterion according to on-line learning of individual driver
following behavior. This on-line learning is discussed in more detail in the following

section.

5.2.3 On-line Learning of Driver Skill

One advantage of using fuzzy-logic for control design is to mimic the operator control
action. In addition to incorporating the real-world driver following behavior into the
design process, it is easy to implement the on-line learning of each i‘ndividual driv-
ing habit. As shown in the previous section, the ICC trades the individual desire
of following closely with overall safety and comfort. Unfortunately, this design may

not appeal to some drivers who are either risk-prone or are willing to sacrifice some
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Figure 5-2: Margin to Collision for Limited Braking Control

comfort. The ICC can learn from observing driving action under different conditions
while the ICC is disabled. For instance, the ICC could detect that the driver fre-
quently brakes near maximum braking capacity. It then modifies the safe following
control module to adopt a different safe following policy. Figure 5-4 shows the ex-
ample when full braking is allowed. Note that the safe following distance is close to
the observed driver following distance. This implies that if the observed following
distance distribution reflects what drivers really like to maintain, the ICC must use

full braking when emergency occurs in order to maintain safety.

5.2.4 Design of Fuzzy-logic ICC

For this application, the original form given by Mamdani is used for design of the

fuzzy-logic ICC [30]. Mamdani’s fuzzy control method can be characterized by a
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Figure 5-3: Safe Following Distance for the ICC

crisp relation and a context depending on the fuzzy equality. Vague rules are used to

described characteristics of the system and commonly have the following form:

IF absolute speed 1S fast AND distance IS large
AND lead car IS opening (5.1)

THEN increase engine power slightly.

Now the problem is to generate all the proper control rules in the if-then-else form
for the overall controller. For demonstration purpose, the author simply tried out
different possible driving rules based on some common sense. If the system involved
becomes very large and complex, other procedures have to be taken to acquire the

rules.

The detailed description of this fuzzy-logic controller is in Appendix D.
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5.3 Simulation Results

Three separate simulations were carried out to validate the controller design. For all

three examples, the braking was limited to comfortable level of 2.5m/s2.

The first simulation, as shown in figure 5-5, involved the scenario that an ICC-
equiped car was traveling at 80 km/hr and wished to maintain this speed. A slower
car appeared at far distance and was approaching fast. When the distance reduced to
near the safety limit, the ICC began to act by reducing engine output and eventually
by applying tile brake to slow down the car. Finally, the speed reduced to the same
speed as the lead car and followed the lead car at constant distance. Note that the
final following distance was maintained at about 20 meters, which represented the

necessary condition for this particular ICC that was operating with limited braking.
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Figure 5-5: Example of Car-following with Lead Car Slow down

The second example simulated the case where sometime after the first scenario,
the lead car sped up quickly to 90 km/hr. The ICC car reacted by increasing the
speed back to 80 km/hr as set by the driver and maintained at that speed thereafter.
The result is shown in figure 5-6. Note that in this case, the braking was never used
and the following distance kept growing since there was a 10 km/hr positive relative

velocity between the two vehicles.

The final example involved the scenario that after traveling at 80km/hr for some
time, a slower car (traveling at 70 km/hr) appeared. At time t=4 second, the lead car
applied emergency braking. The ICC reacted by applying maximum braking allowed,
i.e., 2.5m?, to stop the car to avoid collision. Note that the final distance between the

two stopping cars was about 3 meters. Therefore, a potential collision was avoided.

These three simulation results show that the fuzzy controller can perform both
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speed and distance control under different conditions. Note that a low-pass filter
was added to the fuzzy-logic controller to smooth out the control output for all three

cases.

5.4 Summary

The design process for a fuzzy-logic intelligent cruise controller based on the results
from the CARMASS was demonstrated in this chapter. Using fuzzy-logic evidently .
helps realize the complete control system in a very short period of time and avoids

complicated mathematical analysis.

The ICC can assist drivers, with observed car-following behavior, in avoiding
collisions in an emergency only when the ICC is using full braking capacity. In the
case that comfort is the main concern, the ICC must increase the safe distance to an
extent that some drivers may not like to have the ICC. The trade-off problem may

be resolved through on-line learning.

Some simulation examples were shown to validate the ICC. The results showed

that the ICC successfully performed safe car-following and collision avoidance.
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Chapter 6

Conclusions and

Recommendations

6.1 Conclusions

A driving simulator was first designed for the purpose of carrying out car-following
research in the laboratory. This simulator provides most of the necessary elements to
achieve realistic driving, including sound environment, force feedback on the driving
apparatus and r_ealistic visual environment. Numerous experiments carried out on

this simulator proved its adequacy and effectiveness.

Understanding Driver car-following behavior is important in the design of any
driver aid. While a lot of research has been focused on a mathematical model of
car-following in overall traffic flow, very little has been done regarding individual

car-following behavior in a steady traffic stream. This thesis investigates the driver’s
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car-following behavior in a steady traffic stream on both actual highways and in a

simulator creates a data base that can provide for future research in related areas.

The study of car-following behavior reveals following important information:

1. The speed-spacing relationship seems to be comprised of two separate regions,
a "dual mode” behavior. The boundary of these two regions lies around speed

of 50 km/hr.

2. There is great variation among drivers in car-following behavior, and no simple

function relating following distances to vehicle speed as appropriate.

3. There is greater variation of following distance between drivers within a speed

range than there is between speed ranges.

4. The environmental effect of pavement wetness and illumination on driver car-
following behavior seems to be minimal when the traffic is in free flow, while
the effect appears to increase when the traffic turns into congested flow. As for

traffic density, no obvious effect is shown for the collected data.

5. Drivers in Boston area seem to keep the following headway well below the 2

seconds recommendation value.

6. The effects of driver characteristics on car-following behavior are significant.
“General speaking, male drivers keep smaller distance than female drivers , ex-
perienced drivers keep smaller distance than inexperienced drivers, and younger

drivers keep smaller distance than older drivers. smaller distance.

73



This thesis also investigates driver braking reaction time in a simulator under
different assumptions. The results show that while older drivers do have longer reac-
tion times, experience and gender seem to have little effect on overall reaction time.
The mean values vary from 1.1 seconds to 1.5 seconds for response to lead car using

emergency braking.

Using the experimental data of car-following and braking reaction time, a numeri-
cal model for estimating car-following safety is proposed and some examples are given
to demonstrate its feasibility. The simulation results show potential car-following
safety problems when drivers are responsible for unexpec‘ped emergency traffic con-
ditions. On the other hand, intelligent cruise control system shows its potential in

helping drivers by reducing reaction time.

Based on the CARMASS simulation results of safety, a simple fuzzy-logic intelli-
gent cruise controller is developed. The controller can perform basic speed control as
well as more sophisticated safe distance c;)ntrol. It also has an ability to learn indi-
vidual driver’s habits provided they are within the preset safety lirﬁiﬁ. A simulation

result shows the effectiveness of this controller.

6.2 Direction for Future Research

While a data base for steady car-following has been established, it is never a com-
plete work. More data must be taken and analyzed to really understand the inter-

dependency of all the environmental factors. A multiple regression model is worthy
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of exploring when additional data become available.

Although the comparison of car-following behavior as a function of driver char-
acteristics has been made with the HMSL driving simulator, the following data still
are not comparable to real highway data. A more detailed calibration of the HMSL

driving simulator is necessary to generalize measured behavior on the control highway.

The CARMASS model presented here assumes that the deceleration levels for both
the lead car and the following car are identical for the simulation. Consideration of
the difference between these two needs to be explored. This approach will lead to a

more general car-following model.

The intelligent cruise control designed in this thesis provides a simple example of
utilizing the safety margin as a basis for design. The controller has been shown to be
effective in performing classical speed and safe distance control tasks. However, the

adaptiveness, or the learning ability, of the controller needs validation.
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Appendix A

HMSL Driving Simulator

A.1 Overview

The objective of the HMSL simulator is to provide a basic tool for driver-related
research with acceptable simulator fidelity. The general block diagram for the HMSL
driving simulator is illustrated in figure 3-1 and is redrawed here in figure A-1. The
whole simulator is under control of the host PC-486 computer, which directs the
scenario or event sequence encountered by the driver. An instrumented cab is tied in
with this host computer and another PC-486 computer and some subsidiary electronic
equipment are arranged to provide interactive steering and speed control for the
driver. Control signals from the cab are processed by the host computer using vehicle
equations of rnotipn to yield vehicle motion commands for the main visual display
system, instrument drive signals (speedometer), auditory display (engine and road

noise, tire squeal, crashing, wind, etc.), and other subsidiary visual display (rearview
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Figure A-1: Configuration of HMSL Driving Simulator

A.2 Functional Components

A.2.1 Visual Display

Visual inputs provide the predominant cues for driving. The delineated path to be
followed must be perceived visually, along with other vehicles or obstacles that must
be avoided. The resolution of these cues is not usually critical to steering and speed
control tasks but is crucial to distance control. The driver controls the vehicle’s path
through combined perception of heading angle and lateral position relative to the
commanded path, and the local curvature of the commanded path [31]. Smooth

motion of the commanded path display is an important factor because image textural
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"streaming” across the retinal field is an important cue for vehicular control [32].

With these design requirements, a good visual display generator is needed even
for a low-cost, fixed- base simulator such as the one designed here. A SiliconGraph-
ics Indigo-II Extreme is used to generate high resolution graphics and a Barco-800
projector is used to project the image on a large projection screen sized 12°x8’. The
screen refresh rate is about 20 frames/sec which is at the lower limit of smooth mo-
tion. This updated rate, however, is slightly lower than the recommended 0.04 second

computation delay [33].

A general scene seen by the driver from the cab is shown in figure A-2

Figure A-2: Typical View from HMSL simulator

0
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A.2.2 Control Feel

The control force or "feel” characteristics of steering and pedals can be an important
aspect of simulator realism and impressions of the vehicle’s handling and braking
qualities can have small effects on driver performance. The primary concern in a car
simulator is with the steering dynamics. The driver’s hands and arms combined with
the steering system should form a fairly complicated dynamic system with equiva-
lent inertia, damping and compliance properties to those in real driving [34]. The
driver controls the position of the steering wheel and receives proprioceptive feedback
information on joint position and force exerted via pressure and stretch receptors.
The driver’s neuromuscular system also contains feedback loops or reflex arcs which

operate with very small loop time delays of approximately 25 msec [35].

Due to current predominance of power-assisted steering, passive steering feel char-
acteristics (i.e., spring, viscous damping, and friction) can offer a plausible steering
feel. However, to correctly simulate the restoring torque reflected back by rolling tires
on the road or the dynamics of power steering is more difficult. The HMSL simulator
simulates the conventional steering system with motor-generated force feedback as a
function of steering wheel position and vehicle speed. The control feel is controlled

by a computer-driven fuzzy-logic controller.

Figure A-3 shows the setup of the springs for the gas and brake pedals and the

motor for the steering wheel.
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Figure A-3: Setup for the Gas and Brake Pedals and the Steering Wheel

A.2.3 Dynamics Computations

Driver control signals and driving scenario event commands are translated into com-
mands for the driver interface systems via dynamic computations. The basic com-
putations consist of the vehicle equations of motion, which generate vehicle accelera-
tions and velocities as a function of control commands (gas, brake pedal position and
steering wheel angle) and scenario inputs (road friction, wind gusts, downhill, etc.).
Outputs from these equations command the motion and feel systems and auditory

cue generator. The vehicle velocities are then integrated in kinematic computations



to yield vehicle state variables (e.g., distance, heading and lane position) which form

commands to the display generator.

The equations of motion include force and moment expressions which in general
would result in six-degree-of-freedom motions. Simplifications are usually applied
here, however, as appropriate to a given situation, in order to minimize the devel-
opment effort, improve reliability, and reduce cost. Computational delay is another
concern in determining the degree of complexity of the equations of motion. At best,
significant computational delay will reduce simulator realism. At worst, it will seri-
ously destabilize the driver’s closed-loop control behavior and invalidate experimental

results.

The HMSL simulator uses Dugoft’s vehicle model for the equations of vehicle mo-
tion [36]. Figure A-4 shows the overall model developed for this simulator. Dynamics

of both the vehicle body and tires are taken into account in this model.

The equations of motion based on above model is described as follows. For the

dynamic equations:

m(t —rv) = F, (A.1)

m(v —ru) = F, (A.2)

IF=T (A.3)

ILyw =T+ Fpui( R — 6,;) — Fl; X,i — Couitwui (A.4)
Fxr= Foo+ Foo+ Foa+ Fry ~ Fp (A.5)
Fy=Fg+Fp+Fis+ Fy (A.6)
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th(Fxl_FrZ_Fx3+Fx4) +a(Fyl+Fy2) _b(Fy3+Fy4) (A7)
Foi = Fryicos(6;) — Fyyi sin(§;) (A.8)
Fyi = wa,‘ sin(6,~) + wa,’ COS((S;) (Ag)
1
FD = -2—CDpADu2 (AlO)
For the tire kinematics:
up =u+tr v =0+ ar (A.11)
Uy =u —tr vy = v+ ar (A.12)
Cuz=u-—tr v3=v—br (A.13)
ug = u +tr vg=v—br (A.14)
Uwi = u; c0s(6;) + v; sin(§;) (A.15)
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§; = 1+ (A16)
(227
a; = tan~12L — 8; (A.17)
Ug

A.2.4 Auditory Display

Aﬁditory cues can be important feedback in certain control situations, such as tire
squeal during cornering and braking, and in holding constant speed. In the real world
these effects contain combined auditory and motion cues, which can be simulated to
a large degree with auditory cues from a good sound system. Auditory cues can also
add to driving realism through sounds associated with the engine, tires, wind, body

resonance due to road texture, etc.

Auditory cues can be displayed with reasonable cost high-fidelity systems, and
generated with a variety of sound generator electronics currently produced for video
games. The more difficult job is to correctly generate the appropriate amplitude and

frequency commands for realistic sound cues.

The HMSL simulator uses a PC-based SoundBlaster-Pro sound board to simulate
all the sound effects for the simulator. FM sound is used to generate the engine
noise as a function of engine speed. Digitized sound, on the other hand, is used to
generate special sound effects such as tire squeal, car crash and car-passing sounds
as a function of relative distance and speed. Generally speaking, these simple sound

effects have been found to be satisfactory for the purpose of this research.
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Appendix B

Analytical Basis of the
Car-following Model

B.1 Kinematics of the Crash Scenario

The model considered in this thesis consists of two vehicles, lead vehicle A and follow-
ing vehicle B, with the condition that the driver of the lead vehicle suddenly applies
his/her vehicle’s brakes. The driver of the following vehicle reacts to this situation
and applies his/her own vehicle’s brakes. There are several possible outcomes of these

actions:

1. Vehicle B strikes moving vehicle A after vehicle B applies the brakes.
9. Vehicle B strikes stationed vehicle A after vehicle B applies the brakes.

3. Vehicle B strikes moving vehicle A prior to the time vehicle B applies the brakes.
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4. Vehicle B strikes stationed vehicle A prior to the time vehicle B applies the

brakes.

5. Vehicle B does not strike vehicle A.

Time equaling zero is assigned to the time at which the driver of vehicle A begins
to apply his/her brakes. By applying the laws of motion it is possible to determine

which of the above outcomes has occurred.

For vehicle A:

Tas = Va/ay, (B.1)
Sa=VaTus - %QA(TAS)Z, (B.2)
where
Tss = time in seconds required for vehicle A to stop given that it is not struck by
vehicle B,
Vi = initial velocity of vehicle A in meters per second (mps),
as = brake deceleration in meters per second square (we have adopted the conven-

tion of assigning deceleration a positive sign, thus expressing it as a variable operating
counter to velocity),

Sa = distance in meters covered by vehicle A during the time required to stop.

For vehicle B:

Tgs = Vg/asg, (B.3)
1 2
SB = VBTBS - EaB(TBS) , (B4)
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where TgS, Vg, ag and Sp are corresponding variables for vehicle B.

The following distance between the two vehicles at time zero is Dy.

The instantaneous distance between vehicles can be determined from the following

relations:
D(t:;) = Sa(t:) + Dy — Sp(t:), (B.5)
D(t;) = Vat; — %aA(t,')z + Dy — Vpt; — %ag(t,- ~-T,)?, (B.6)
where
t; = instantaneous time in seconds measured from time zero,
D(t;) = distance in meters between the two vehicles at time = zero,
T, = braking reaction time in seconds for driver of vehicle B.

If D(t;) is less than or equal to zero, a crash has occurred . The time (¢.) at which

a crash occurs can be determined by setting D(¢.) = 0 and solving for t..

1

t. =
7 2a,

{=V; £ [V? + 40, D,]2}, (B.7)

where

Vi =Ve+Tap—Vy,
o = 3(ap —ay),

D, =D;+ %(O.’BTTZ). ,

The solution is the smallest positive value of ¢.. An imaginary solution for t,

would imply that vehicles do not crash (i.e., the relative distance between does reach
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zero). Thus the condition for a non crash is :
V.2 + 40, D, < 0. (B.8)

If this condition is not met, then a crash has occurred. Note that equation (6) applies
only when both vehicles are in motion and both have started to decelerate. Therefore,
if t. is less than T, a crash occurred before vehicle B began to decelerate. In this

case, equation (6) becomes:
‘ 1
D(t,') = VAt,‘ - §aA(t,~)2 + Df - VBt,'. (Bg)

Again a crash occurs when D(t;) = 0. Equation (9) can be used to solved for the

time (¢;).

Note that the condition in which the following vehicle B stops before striking
vehicle A was eliminated by an imaginary solution to equation (7). From the above

results, the distance to crash point could also be computed.

B.2 Possible Analytical Solution

If it is desired to determine the probability of a crash analytically, one could begin

with equation (8). Define a new variable:

6, =0, = V,2 + 40, D,, (B.10)
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and compute its probability density function. Then,
0
probability of a crash =1 —pr(f; <0)=1-— / f(61)db,. (B.11)

One can conceptually obtain the density function of 8, by a convolution of the distri-
bution of the input variables [37]. The variables in (10) can be expressed in terms

of the input variables as follows:

‘/'r = VB + TTaB - VA7
o = Yo o), (B.12)
D, = Df + %(O!BTE)

Therefore,

01 :g(DfaTraaAaaBavAva)) (B13)

where g contains six independent random variables (ideal condition). These random

variables are distributed as follows:

9(Ds, Ty, aa,08,Va, V) = (D) f(T,) f(@a) f(aB) f(Va) (V). (B.14)

Five new random variables can be defined as:

ai = f(Df7TraaA7 ap, VAa VB)(Z - 2733 e ’6) (B15)
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The original variables can be transformed to functions of the #;’s by using equation

(15).
Dy = Dy(61,0,---,06),

T, = T.(61,05,--,0), (B.16)

Ve = Vg(61,0,---,0),

Using these variables we can write:

h(ala 02a veey 96) = f[Df(ola ‘927 e 796)’Tr(013 027 T 96)5 Tty VB(BD 02a e 396)”‘]"
(B.17)
where |J| is the absolute value of the Jacobian of the transformation. The distribution

of #; can be obtained by integration of (17).
MQ):/m-~/mhwh%wq%wﬁwyud&. (B.18)

If the distributions of the input variables in equations (14) can be expressed in con-
venient analytic form, it might be possible to perform the integration in equation
(18). However, for this thesis, they are expressed as discrete distributions obtained
empirically. At this point, the difficulties of obtaining an analytical solution should
become evident. In addition, if one wishes to obtain a probability distribution of crash
margin, as is done using the simulation model CARMASS, the problems become even

greater. Therefore, the Monte Carlo simulation was chosen for this thesis.
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Appendix C
Fuzzy Set Theory

C.1 Fuzzy Set

Traditionally, mathematics dictate that an object be only a full member of a given
set, or not a member at all. There is nothing in between. What distinguishes fuzzy
sets from conventional crisp sets is the fact that fuzzy set theory allows degrees of
membership, varying from 0 (non-member) to 1 (full member). Fuzzy sets provide an
elegant mechanism to describe and handle all sorts of so-called linguistic variables,
the variable ”"speed” for instance. A linguistic variable is characterized by a series
of terms, such as "low”, "moderate” or ”high”, each term representing a fuzzy set
(e.g. the fuzzy set ”high speed”, of which a speed of 80 km/hr may be a member
to a degree of only 0.3). The vfunction that associates a grade of membership of a
fuzzy set with every object that to some extent could be in that set, is called the

membership function. The most commonly used membership function is that of a
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trapezium. Other examples are triangle, square, exponential, etc. When smoothness
of the membership functions is considered essential, exponential relationships are

employed.

C.2 Notation, Terminology and Basic Operation

A fuzzy set A of a universe of disclosure U is characterized by a membership function
pa — [0,1], which associates with each element y of U a number p4(y) in the interval
[0,1], which represents the grade of membership of y in A. The support of A is the
set of points in U at which p4(y) > 0. A fuzzy singleton is a fuzzy set whose support
is a single point in U. In particular, A is called a non fuzzy singleton if the grade of

the only element is 1.

Let A and B be two fuzzy sets in U with membership functions g4 and pp,
respectively. The set theoretic operations of union and intersection for fuzzy sets are

defined as follows. The membership function u4up of the union A U B is pointwise

defined for all u € U by

pavn(u) = maz(pa(w), ns(w). (c.1)

The membership function panp of the intersection A N B is pointwise defined for all
u € U by

pans () = min(pa(w), us(u)). (C.2)

For a detailed discussion of fuzzy sets and operations on fuzzy sets, refer to Zadeh
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C.3 Fuzzy-Logic Controller

A comprehensive survey of fuzzy-logic controller (FLC) design has been made by Lee
[39]. In the following section, the author will review the most common type of FLC.

It was employed by Holmblad and Osterggard [28].

As shown in figure C-1, an FLC consists of the following major units. Fuzzy rea-
soning is performed by the inference engine, the kernel of the FLC. The fuzzification
inference converts real numbers into fuzzy sets, to be supplied as an input to the
decision making logic. The knowledge base of an FLC comprises two components,
namely, a data base and a fuzzy control rule base. The data base provides the in-
ference engine with the membership functions of fuzzy sets used in the rule base.
The rule base holds the control rules. The defuzzification inference transforms fuzzy
control actions into non fuzzy, crisp controls. Fuzzification is performed by interpret-
ing an input z¢ as a non fuzzy singleton A, that is, p4(zo) is equal to zero, except
at the point zy, at which p4(zo) equals one. The antecedent part of a control rule
consists of a number of conditions, each of them relating an input to a term which is
represented by a fuzzy set ("speed is high” for example). Analogously, the antecedent
consists of one or more conclusions. Control rules, just as the contents of the data
base, are usually formulated by consulting experts. The so-called self-organizing con-
troller [40], however, is an exception to this rule. For a self-organizing controller, it

is not necessary to have an exhaustive set of rules as the starting point. By applying
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Data Rule
base base

Y

Fuzzification ] Inference ——w-Defuzzification

fuzzy |_engine fuzzy

output Physical actual control
plant

nonfuzzy

nonfuzzy

Figure C-1: Configuration of Fuzzy-Logic Controller

a performance criterion, the algorithm is capable of conceiving additional rules, and

of deleting redundant or contra-productive rules.

In order to illustrate the operation of the inference mechanism, consider the fol-
lowing dual-inputs-single-output mechanism of n fuzzy control rules:
iput : z1s A andy is B’
rules : if x1s A; and y is B; then C; (C.3)
output z1is C’
where z, y and z are linguistic variables representing the process state variables and
the control variables, respectively. A;, B; and C;, on the other hand, are linguistic
values (or terms) of the linguistic variables z, y and z in the universe of disclosure U,
V and W, respectively, with i = 1,2, ..., n. The inference process starts with assessing

for every rule the weighting factors c; that express the significance of that rule. Since
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non fuzzy singletons are assumed for a defuzzification strategy (i.e., the fuzzy inputs
A" and B’ are equal to the non fuzzy input zg and yg, respectively), this may simply

be performed as:

o = pia,(70) A p;(yo) (C4)

with ¢ = 1,2,...,n, and where u4,(zo) and up,(yo) play the role of the degrees of
partial match (per condition) between the controller input and the corresponding
term in the i*h® rule. The contribution of the t*® rule to the fuzzy controller output

is then calculated as:

por(w) = aipe, (w) (C.5)

As a result, the membership function g+ which is the union of the individual control

decisions C.5, is

oy (w) = u tiic (w) (C.6)

Deducing a crisp control value zy from C’ is achieved by performing one of two de-
fuzzification strategies. The first method, ”center of area” or ”zero-order moment”
method, calculates the abscissa value that divides the area under the output member-
ship function in two equal parts. The other method, ”center of gravity” or "first-order

moment” method, yields the center of gravity of the output membership function.
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Appendix D

Fuzzy-Logic Intelligent Cruise
Control

The fuzzy-logic intelligent cruise controller was designed by referring to the human
operator’s experience and to contro] engineering knowledge. The design procedure for

the fuzzy-logic braking controller will be described in detail in the following sections.

D.1 Control Scheme

For the car-following controller, the following variables were used as input information.
D : relative distance between own car and lead car
V . absolute speed of own car

R : relative speed between own car and lead car
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We assumed that we have perfect sensors and actuators, i.e., the dynamics of
them were ignored. Based on this information and the knowledge extracted from a

hypothetical expert driver, the controller determines appropriate control action.
B : braking torque
T : engine torque
The following are some possible rules we could expect from an expert:
1. If absolute speed is fast and distance is large and lead car is opening then increase engine
power slightly;

2. I__f absolute speed is fast and distance is large and lead car is closing then decrease engine

power slightly;

3. If absolute speed is medium and distance is small and lead car is closing then apply medium

braking;

Note that only one output can be used each time. Therefore additional rules are
needed to avoid any conflicts. For example, we added ”if there is braking then exert

no engine torque output.”

Figure (D-1) shows the block diagram of this controller.
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Absolute speed (U)
Relative speed (Ur)
Distance (D)

Fuzzify U',Ur',l'.L Rules

Figure D-1: Block Diagram for Car-following Controller

D.2 Input Fuzzification

Defuzzify

Braking torque (B)

Engin Torque (T)
S—

Figure (D-2) shows one example of the partition of the input spaces. Note that the

6 1s the desired car-following distance derived from the safe car-following distance

distribution which is adjustable.

Partition of distance
Hd very very

large

small medium large

Distance to obstacle (m)

Note:d0 is stopping distnace at 10 km/h.

v Partition of absolute speed
4 very

low i
1l siow slow medium fast

Vi V2 V3 V4

Speed (km/h)

Partition of relative speed

Hr

opening fast  opening closing

0 15 35 55 75 95

closing

Speed (km/h)

fast

Figure D-2: Input Membership Functions for Car-following Controller
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D.3 Fuzzy Rules

Since there are three inputs for this controller, there is no way to express all the
fuzzy rules in a simple matrix form such as that for the braking controller. In this
preliminary design, we use five partitions for for each input. This results in 125
rules for the whole controller, which is somewhat complex to derive immediately and

required numerous iterations to get to the final rule base.

D.4 Output Defuzzification

Figure (D-3) shows the combination of the output membership functions. The range
of the braking torque is 0 - 1800 Nm while the increase/decrease of engine torque is
limited to 200 Nm. Note that the two outputs are mutually exclusive, i.e., if braking

is used, the engine power must be cut off, and vice versa.

The final crisp output was determined using the center of gravity method. For

instance, for the braking output, the output torque would be:

3
> (wi - By)

Output torque = =2 (D.1)

3
i
1=0
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Partition of braking torque output

no light medium  hard
braking braking braking  braking

B B1 B2 B3

0 300 600 1200 1800 Braking torque (Nm)

Partition of changed engine torque output

Lt
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decrease  decrease 4 |change increase Increase

-200 100 200 Changed engine torque (Nm)

Figure D-3: Fuzzy Rules for Braking Controller
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