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An aggregate model of large power networks that positive or negative;

is based on a continuous DC model is presented. The +
DC load flow problem is formulated as a boundary (5) the notation (x) refers to the positive

value problem for a partial differential equation. part, i.e.,

The model is then used to derive an aggregated fea- + x + lxI
sibility set defined in the space of lumped loads. (x) = 2

1. THE FEASIBILITY SET The only assumption needed is that the power
system network can be represented by a planar graph,

The feasibility set has been defined [1] as so that the dual graph can be introduced. The coef-
ficients a*(z ) refer to the nodes z of the dual

the set of substation loads that can be served in r
steady-state with the available generation re- graph, while The coefficients Pi refer to the nodes

sources without overloading the transmission lines i of the power network graph.
or transformers. This feasibility set takes the
form of a convex polyhedron in the space of sub- A detailed derivation and interpretation of in-

station load vectors, when the distribution of equalities (1) is given in [1].

power flow through the network is represented
either by the DC load flow [21 or by the transpor-
tation flow model. Thus, it can be described by a

inequalities which are linear in the The goal of this work is to replace the exact
systreal bus loads. They take the following form: description (1) of the feasibility set by an approx-real bus loads. They take the following form: imate, aggregate description, for large systems.

imate, aggregate description, for large systems.

(tPt)L. - E (tP*)+ S Indeed, once system size increases substantially,
i A 1 i the number of combinatorial variants is the choice

of the sets A and B will make the above method in-

m (Pt k-P ~~tractable.
The aggregate description sought is of the

where (1) following form:

(1) Li is the real bus load at bus i (in mega- K K

watts), Si is the maximum generating capacity at EtP)Lk- (tP) Sk< F (2)

bus i (in megawatts), Ym is the maximum phase angle k=l k=l
bound across branch m.

where the area covered by the power network has been

(2) A is a subset of the set of node indices divided into K subareas, Lk and Sk denote the lump-
and B is a subset of the set of branch indices. ed load and generating capacity corresponding to sub-

area k and the right-hand side F has to be deter-

(3) For each compatible choice of A and B, mined. The aggregate feasibility set will be there-
the coefficients P* and a*(z ) are determined as fore a set in the space R , the dimesnion of which
the solution of a linear algebraic system; further- is the number of subareas.

more, the P. coefficients-constitute the solution

of a DC loa& flow in the network with the branches The method for arriving at an aggregate des-

of B removed. cription of the feasibility set uses a continuum

model of the power network, where the discrete,
(4) The factor t is arbitrary and can be algebraic network equations of the DC load flow

model are replaced by a partial differential equa-
*This work was carried out at the MIT Laboratory tion. Complete results have been obtained only in
for Information and Decision Systems and at Systems rather special cases where some "homogeneity" and

Control, Inc., with support by the Division of "isotropy" properties arise. The analysis perform-
Electric Energy Systems of the U. S. Dept. of ed here will be confined to these cases.
Energy under contract No. AC01-77-ET29033.



3. THE CONTINUUM VIEWPOINT following boundary value problem:

The aggregation method involves substituting div(a grad v) = t(x,y) - g(x,y) (x,y)ED
©

(3)
a geographical description of the power system for
the topological (i.e., network-based) one. To that grad v a n = 0 (x,y)OD (4)
end, the geographical domain over which the power
system extends, denoted by D, is covered by a square and the power flow density i is obtained as
grid. The spacings of the grid have a length denot-
ed by A, and the elementary meshes of the grid are i = grad v (5)
referred to as A-cells. On each A-cell, the cell
variables are defined in terms of the networks vari- The matrix a is a location - dependent conductance,
ables that refer to branches and nodes contained in constructed by aggregation from the discrete branch
the cell. The detailed description in terms of net- susceptances b [2]. The geographical domain which
work variables is thereby replaced by an aggregate contains te mmcontainsthe power system is denote by D (with in-
description in terms of cell variables. The more terior D , boundary DD, and outward normal to the
nodes and branches each A-cell contains, the less boundary n). The problem (3), (4) in solvable if
detailed the description. One can define the ag- and only if the compatibility condition
gregation ZeveZ as the average number of nodes in
a A-cell. Also, the scale can be defined as the ff[(x,y) - g(x,y)] dxdy = 0 (6)
ratio h/A of h(a one-dimensional measure of the D
extent of the domain D) to the cell side A. The
scale is an indicator of the number of A-cells expressing the equality between total load and gene-
needed to cover the power system and therefore of ration, holds; this is in complete analogy with the
the number of aggregate variables. discrete model.

This approach is applicable primarly to very The discrete DC load flow equations [2] approach
large systems where, simultaneously, the scale is (3), (4) in the limit as A + 0, which means in the
large and the aggregation level is reasonably high. limit of an infinitely large system (the number of
Because of the large scale, the ratio A/h will be A-cells contained in the unit square of the map goes
small and linear expansions will be allowed. On infinity). On the other hand, for fixed A, a compa-
the other hand, having more than one node in each rison can be established between the discrete and
A-cell will entail an economy when network vari- the continuous solution; which shows that the dif-
ables are aggregated and replaced by cell variables. ference goes to zero with A. This is so because the

discrete equations constitute a finite-difference
All data pertaining to an electrical power sys- approximation of the partial differential equation.

tem that are of interest here refer to network ele- Of special interest is the homogeneous-isotropic
ments. The cell variables, obtained by aggregating case, where a(x,y) is a constant multiple a of the
the network variables over the respective cells, -identity matrix. The partial differential equation
can be viewed as resulting from the discretization of the DC load flow (3) then becomes the Poisson
of continuous point functions. Namely, instead equation:
of dealing with a table of numbers - one number for
each A-cell - one can deal with a continuous func- a2v +

2
v

tion (x,y) whose average the kth A-cell is the kth + - = (l/a) [t(x,y) - g(x,y)] (7)
entry of the tableau. This is referred to as the x Y
continuum viewpoint: it substitutes continuous
functions for discrete variables and partial dif- and the boundary condition (4) is simply
ferential equations for algebraic equations.

av
-=0O

The procedure to arrive at a continuum descrip- an
tion involves first-order expressions in A/h. To
simplify the notation, however, the length h is A straightforward example of a network that
taken as the unit of distance. This is equivalent leads to a homogeneous-isotropic equation is provid-
to representing the power system on a map in such ed by a square grid with equal branch susceptances.
a way that a physical length h corresponds to a More general networks can also give rise to isotro-
unit on the map. First-order expassions in A are pic - and sometimes homogeneous - continua, when
then carried out after this normalization. some statistical properties occur, which refer to

the density of the transmission (in miles per square
4. DC MODEL FROM THE CONTINUUM VIEWPOINT mile) and the orientation of the transmission lines.

These properties involve: (a) the variation of the
By relying on physical analogy, it is possible transmission density around a constant as the aggre-

to define continuous variables from the discrete gation level increases; (b) uniformity in the distri-
voltage phase angles and power flows, by means of bution of branch orientations. In the homogeneous-
a cell-by-cell aggregation: in this way one obtains isotropic case, the error between the discrete and
a continuous voltage phase angle density v(x,y) and the continuous DC load flow solution can be bounded
a power flow vector density i(x,y). Given loads and explicitly in terms of A:
generation outputs, modeled respectively by a load
density t(x,y) and a generation density g(x,y) (in jv(xi,y) - v.| < c A2 f1ogAI (8)
megawatts per square mile), the voltage phase angle
density v(x,y) is obtained as the solution of the where c is a constant independent of A.



5. DERIVIATION OF THE AGGREGATE FEASIBILITY SET It turns out that

Application of the continuum viewpoint to the A(z) = c(x,y) + i a P(x,y) (11)
DC load flow problem, eqs. (3), (4), makes it pos-

sible to derive an aggregate description for the and, from (10), one can infer that
feasibility set, eq. (2), which approximates the
exact description (1) for large systems. To this M i

end, the quantities occuring on both sides of (1) A(z) = 27 - + C (12)

must be modeled from the continuum viewpoint.

where, in (12), i is the imaginary unit, C is a com-
The phase angle bounds TY are modeled by means plex constant* and y is an angle that determines the

of a function '(x,y), where m dipole orientation. For a number of dipoles greater

than one, A(z) is obtained by the principle of
Y(x,y) = max Y(x,y,n) (9) superposition.

over n

Finally, the feasibility conditions are model-
and T(x,y,n) is the ratio of the phase angle bound ed as follows from the continuum viewpoint (the
Tm for the branch m in direction n to the length t determination of the right-hand side requires some
m m

of that branch. The Pi and a(z ) coefficients are complex analysis):

modeled by functions P(x,y) and (x,y), which are +
solutions of continuous DC load flow problems that
approximate the discrete load flow problem of which K

P. and ac(z) are, respectively, solutions. From < k)Mk for t > 0 and t < 0
now on, homogeneity and isotropy are assumed to k=l (13)
hold. The bound (8) then applies to the error
between P. and P(x,y), or to that between a(z ) One such pair of inequalities arises for each choice

and (x,y
3
. An explicit assumption is also made of:

about the scale and the aggregation level: (1) the

scale is large, so that A is small as compared to - an integer v not larger then the number
the extent of the domain D; (2) the aggregation of generator nodes;
level is high enough so that the length t of a
branch is smaller than A. These assumptions, rea- - a node subset A with V generator nodes where
sonable for a large system, imply that the two P is required to vanish.
extremities of a branch of B can be modeled as

infinitely close to each other (Fig. 1). As a - a distribution of V dipoles located at
result, the function P(x,y) becomes the potential .. with given orientation y ,...,y

created by a dipole [3] located at the limit loca- and moments ...
and moments M-,...,M to be determined.tion C and directed along the straight line from 1

source to sink. In the case where B consists of
source to sink. In the case where B consists of Given A and the dipole distributions, the function
just one branch, the following expression results P(x,y) is obtained as
for P(x,y): V cosk

M cos) + C2 (10) P(x,y) =(1/2ab ) E rk
P(x,y) - C (10) k=l M

where M is the moment of the dipole, C2 is an arbi- V eiYk

trary additive constant and 0,r are, respectively, = (1/2Wa) Mk Im k + C2 (14)

the angle as defined in Fig. 1 and the distance k=l

from (x,y) to C.
The functionP is completely determined -up to a fac-

Also, since P(x,y) is a harmonic function (ex- tor - by (14) and the requirement the P vanish on

cept at the singularity C, location of the dipole) the V points of A.

there exists [4] an analytic function of the complex
variable z=x+iy of which the imaginary part is The aggregate feasibility set, then, can be
aP(x,y). defined by the following inequalities in the lumped

loads Lk and generating capacities Sk:

E C k-Lk - + -k-r ~( x'y)
]E t P - ]Lk E (tP ) S
k=l k=l

~~~~~~~~~I H u~~~V

|I ~ ~ ~ ~ ~ ~ ~ ~ ~ ] 1 (%)IMjI Itl (15)
j=l 

F
*2
i2= - 1 also, the notation C refers to the complex

number representation of the point C.
Figure 1 Branch of B as a Dipole
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where P is the average of the function P(x,y) over The approximation of P and a(z ) by P(x,y),
sub-area k. Thus, the use of the continuum view- as derived from (12), has been tested satisfactorily
point has made possible a procedure for deriving on a numerical example ([5], [6]).
aggregate inequalities of the type (2) to approxi-
mate the inequalities (1). The bound (8) implies
that, when there is no aggregation (i.e., each sub-

area k contains just one node), (15) gets nearer
[1] P. Dersin and A. H. Levis, "Feasibility Sets

to (1), and the more so, the larger the system is.
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+
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goes to a constant. If, furthermore, the points

of A are also far enough from the dipoles, then
of A are also far enough from the dipoles, then [3] A. G. Webster, Partial Differential Equations

Pxy vanishes since for any a in of Mathematical Physics, Hafner, New York, 1957.

P(a.) " P(oo) = C
1P(ai) P(0) =C2 [4] R. V, Churchill, Complex Variables and Appli-

cations, McGraw-Hill, New York, 1960.
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side of (13) is nearly zero, are trivially satis-
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