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Abstract
The influence of physiological motion on magnetic resonance diffusion imaging tech-
niques is studied. First, the applicability of the steady-state free precession (SSFP)
imaging sequence for imaging of diffusion is studied with a novel, fast, and highly
accurate computer simulation based on conditional random walk. By using measure-
ments of in vivo brain motion, it is shown that the SSFP sequence cannot provide
accurate measurements of in vivo diffusion attenuation. Next, the use of navigator echo
for -correction of otion artifacts in the pulsed-gradient spin-echo sequence is stud-
ied. The navigator technique is also extended for the fast spin-echo (FSE/RARE)
sequence. However, it is shown that the navigator technique cannot provide accurate
measurements of diffusion in three orthogonal directions and needs cardiac gating to
minimize the influence of spatially varying motion. Finally, the major result of this
work is a novel line scan diffusion imaging technique (LSDI). The LSDI technique
is inherently insensitive to motion artifacts because it does not use phase encoding.
It is shown, that high quality diffusion maps can be obtained rapidly with the LSDI
technique on both 0.5T and 1.5T systems without the use of head restraints or car-
diac gating. Furthermore, it is shown that these diffusion maps compare very well
with diffusion maps obtained using diffusion weighted echo-planar imaging (EPI) In
contrast to the EPI technique, LSDI does not require modified gradient hardware
and can easily be implemented on conventional scanners. The main disadvantage of
the LSDI technique, is that multi-slice imaging is considerably slower than with EPI.
However, the feasibility of using te LSDI technique for clinical evaluation of acute
ischemic stroke in less than ten minutes is demonstrated. Thus, LSDI should increase
the general availability of robust clinical diffusion imaging dramatically.
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Preface
This thesis summarizes most of my doctoral work at the LMRC lab at the Brigham
and Women's Hospital from the beginning of March 1993 and the chapters reflect in
some way the chronological order of this work. However, all the source code I wrote
for computer simulations and to control the Signa has been left out.

The analysisof the SSFP sequence may seem very long and detailed. As a matter
of fact, the original name of this thesis was "Steady State Free Precession Magnetic
Resonance Imaging of Flow and Diffusion". It is my belief, however, that understand-
ing of the issues that come up in the analysis of the SSFP sequence provides insight
into the whole field of MRI.
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Chapter 

Overview

1.1 Motivation

TROKE is one of the most devastating and costly health problems in the western
world. After heart disease ad cancer, stroke is the third most common cause

of death and each year over 400,000 Americans suffer from stroke 122]. Up to 80%
of acute infarctions are thromboembolic in origin and the remaining are caused by
intracerebral hemorrhage. Mortality at three months after onset of ischemic infarct
and hemorrhage stroke is approximately 20% and 60%, respectively, taking about
150,000 American lives each year.

Currently, limited acute therapeutic interventions are available and there is no
direct treatment to reduce the extent of the neurologic injury. In the last 15 years,
the rationale for early intervention in acute stroke has been changed by the concept of
ischemic penumbra 41]. This term refers to the zone of brain tissue in which ischemic
neuronal paralysis has occurred but where there is sufficient cerebral blood flow to
maintain cell membrane integrity. Until recently, most available imaging modalities
such as CT and MRI have not been very sensitive in the early phase of cerebral
ischemia. This lack of ability to identify the penumbra may be one of the reasons why
few therapeutic strategies have been developed for acute stroke.

Recently, a five year clinical study, conducted by the National Institute of Neuro-
logical Disorders and Stroke, has shown that a treatment with the clot-dissolving drug
t-PA is an effective emergency treatment for acute ischemic stroke despite some risk
from bleeding 122]. The main difference of this trial, and other studies of intravenous
t-PA for stroke where no conclusive evidence of efficacy was found, is the extent to
which the time to treatment was minimized. For each patient, the treatment, which
included CT scanning and other studies, was accomplished in 90-180 minutes from
stroke onset. As compared with patients given placebo, patients treated with t-PA

11



CHAPTER 1. OVERVIEW12

were at least 30% more likely to have minimal or no disability at three months from
onset. In other words, there is a narrow window of opportunity, several hours in dur-
ation, depending on the severity of the ischemia, beyond which neither reperfusion
nor brain protective agents will have any effect. Therefore, the aim of the radiologist
should be to identify the ischemic penumbra or the brain area which is still accessible
for acute intervention as well as screen for intracerebral bleeding. Early detection
of the location and the size of tissue involved in acute ischemia should make any
treatment aimed at reducing morbidity and mortality more effective. Furthermore, it
should enable the monitoring of therapeutic interventions.

Unfortunately, changes on CT and conventional MRI images only reflect already
infarcted brain tissue and not the potentially salvageable area of the ischernic penum-
bra. Earliest changes on T and the more sensitive T2 weighted MRI scan cannot be
reliably visualized within the first hours after the onset of ischemia 80,135]. Ra-
diological cerebral blood flow techniques like positron emission tomography (PET),
Xenon-CT and SPECT 138] can show decreased cerebral perfusion earlier. These
imaging modalities are less readily available, too expensive, cause some discomfort to
the patient, or lack the high contrast resolution of MRI. Also, these methods require
radiation exposure and are therefore of limited value for repetitive clinical research.

Fast MRI techniques combined with contrast enhancers have in recent years been
used to monitor perfusion [110]. By the application of tracer kinetic theory, a series
of these images allow the calculation of laemodynamic parameters such as regional
cerebral blood volume (rCBV) and regional cerebral blood flow (rCBF 4 140].
Therefore, perfusion deficits are visible immediately after vessel occlusion. Because
of the time resolution that is needed for these sequential perfusion images, until now,
most of the few reports in patients have described a single-slice technique. This
is because of the technical limitations of most available scanners. This makes it
impossible to visualize all the ischemic tissue. Also, equipment is required for relliable
bolus injection 41]. New ultrafast echo-planar (EPI) MR techniques make multi-slice
measurements practical for acute stroke patients 136], who often are not able to stay
still for a long time. However, EPI hardware is expensive and still not widely available.

Moseley et aL showed that diffusion weighted MRI can detect ischernic stroke
within minutes after vascular occlusion [90]. Since then, water self-diffusion has be-
come a well established contrast mechanism on MR images and has shown to be
of great value in early detection and characterization of cerebral ischemia in animal
studies of acute stroke [22,23,121,133]. Until now, limited number of diffusion stroke
studies have been done of in humans [20,135]. Diffusion imaging of humans, especially
stroke patients, has been hampered by severe motion artifacts which make evaluation
of the data unreliable. With the advent of diffusion weighted EPI, motion artifacts
have become much less of a problem 137], however, as mentioned before, most MR
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scanners do not have EPI capabilities.
Not only is it possible to identify ischemia with diffusion weighted MRI, but also,

it has been shown, that there is a strong correlation between the apparent diffusion
coefficient (ADC) and cerebral blood flow in aairnal models of stroke [39,69,791. In a
recent study by Warach et a]. 136], it was found that diffusion weighted EPI images
were highly accurate in identifying acute ischemic stroke and in distinguishing patients
who would improve from those who would not.

Thus, it is of great interest and value to have a robust, fast, and accurate diffusion
imaging technique for conventional MR scanners. With such a technique, the number
of clinical sites that would have a tool for early identification and evaluation of acute
stroke would be greatly increased.

1.2 MR1 Perfusion Techniques

The term perfusion has attracted some controversy in the MR community but its
biological meaning refers to the delivery of oxygen and nutrients to the cells. It is
therefore related to the amount of fresh oxygenated arterial blood delivered to the
tissue capillary network. Conventional perfusioa measurements techniques based on
the uptake of radionuclide tracers have led to the identification of perfusion with blood
flow in the tissue, measured in milliliters per minute per 0g of tissue.

A technique of reference for measurement of perfusion uses radiolabeled icro-
spheres, such as albumin microspheres labeled with "Ga. The microsphere deposition
pattern is then determined after irkjection by a nuclear imaging technique or scrifice
followed by autoradiography counting or microscopy.

Invasive MRI perfusion techniques which use tracers can be divided into two main
groups. One group which uses exogenous tracers such as F, 170 , and D20 which
exchange with the tissue. The other group uses tracers such as Gd-DTPA and Dy-
DTPA which are pure intravascular tracers and do not cross the capillary wall i the
brain.

The methods which use the non-proton exogenous tracers, 19F 3 170 [59], and
D20 112] generally suffer from low signal-to-noise ratio (SNR) because of the relative
low concentration of the contrast, although, the signal is not masked by the large
background proton signal. Most of the measurements have therefore been done at
higher field strength than those currently used clinically.

Imaging techniques which use intravascular paramagnetic agents such as Gd-
DTPA ave sown good results f9, 110] for imaging of cerebral perfusion. Te sus-
ceptibility of the contrast agent produces steep localized magnetic field gradients that
cause a decrease in T2*. Because the gradients extend well beyond the capillary wall,
the signal from very many spins outside of the capillaries is influenced by the pas-
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sage of the agent bolus. Second, in these same pulse sequences, the variations in the
magnetic field can lead to a net displacement in the resonance frequency throughout
a whole voxel which can be measured 25]. Fast imaging techniques such as EPI and
Turbo-FLASH are usually applied to measure the change in T2* but SSFP has also
been applied for this purpose 68].

It has been shown 95,104,124], that magnetic susceptibility of blood changes
dramatically when it becomes deoxygenated. This blood oxygenation level dependent
(BOLD) effect is strongly dependent on field strength and was originally demonstrated
at 7T although it can also be observed at lower field. In principle, this method is based
on the same effect as the perfusion techniques which use paramagnetic agents, however,
it is non-invasive. rrhe BOLD contrast has been used extensively in functional imaging
of the brain in recent years 82].

Another non-in-vasive MRI perfusion technique uses water as an endogenous dif-
fusible tracer. The method is based on spin labeling in a labeling plane 30]. These
labeled spins are then allowed to perfuse into a detection plane where the steady-state
longitudinal magnetization will be affected by the labeled spins. This results in a
apparent change in T which can be related to the perfusion. Successful quantitative
results have been reported in rat hearts 143] and rat brain 148] at 4.7T. The high
field is important because T increases with the magnetic field strength and larger T,
values give larger perfusion sensitivity [77]_

Intravoxel incoherent motion (IVIM) introduced by Le Bihan et al. is another
non-invasive method which has been used to measure perfusion [8, 71, 74, 1281. its
concept is based on pseudo-diffusion. The microcirculation of blood in capillaries
is regarded as random, incoherent motion at the voxel scale. The blood is assumed
to change direction several times during the measurement and the apparent diffusion
coefficient (ADC) can be shown to be related to the blood flow. The data analysis
is based on the bi-exponential nature of the signal as a function of the Mactor (see
section 34). Given that the pseudo-diffusion coefficient is much larger than the water
diffusion, it can be estimated from the initial slope of the curve which shows the signal
as a function of the Mactor. The main problem with this technique is that the signal
from the static tissue is not suppressed and only a small fraction of the signal carries
the microcirculation information. The SNR requirement is thus difficult to achieve.

1.3 Prior Art in Diffusion Imaging

NMR has been used to study water self-diffusion 18,55,126] since shortly after its
discovery, but only in recent years has it been used for in vivo diffusion imaging.

The basic principle of most NMR diffusion experiments can be understood from
the pulsed gradient spin-echo (PGSE) sequence, first demonstrated by Stejskal and
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Tanner [118]. The PGSE sequence is shown in Fig. 1-1a) and the stimulated echo
version of PGSE it in Fig. 1-1b). The initial RF pulse produces transverse magnetiz-
ation which is dephased by the strong magnetic field gradient and rephased at a later
time. If the spins are static, the dephasing and rephasing gradients compensate each
other. However, for nucleuses in liquid state molecules, some translational motion is
inevitable during the time A because of molecular self-diffusion. Therefore, in the spin
ensemble, there will be a distribution of residual phase shifts leading to attenuation
in the total NMR signal.

n/2 ICa)
ARF

G
H

A

n /2 7c /2 ' 19
4b)

A ARF VV VV

1G

Figure 11: a) Pulsed gradient spin-echo (PGSE) sequence. b) Stimulated echo version
of the PGSE sequence which is beneficial when T2 is short and T, is long. See also Fig. 35.

All current diffusion imaging sequences are based on the same principle as PGSE,
however, they differ in the way they encode the the spatial information of the object.
The encoding scheme is very important because, it is precisely the imaging part which
determines whether the diffusion sequence is useful in the presence of physiological
motion.

Some of the initial attempts for in vivo imaging of diffusion were by PGSE spin-
warp Fourier imaging 72, 73]. However, this technique is hampered by severe bulk
motion artifacts which make it problematic for accurate assessment of in vivo diffus-
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ivity. Usually, the artifacts appear as a terrible ghost in the phase encoding direction
(see Fig. 64).

Imaging techniques that are faster than PGSE such as steady-state free precession
(SSFP) 74] have been proposed for diffusion imaging. In SSFP, ghost artifacts are also
present, however, this ghost can be minimized by using a frame-by-frame averaging
scheme 27,150]. As our results in chapter show, such a scheme only hides the
problem and signai cancelation occurs nevertheless.

Another fast MRI technique tat has been tried for diffusion imaging is Turbo-
STEAM 135]. This imaging sequence is based on the stimulated echo sequence
shown in Fig. 1-1b). It has been reported, however, that with stroke patients, the
lack of patient cooperation makes the results with this echnique unreliable [t36].
Furthermore, its diffusion sensitivity is not very well defined because of the different
diffusion weighting on each echo.

The advent of diffusion weighted echo-plarar imaging (EPI), made it possible
to quantitatively measure diffusion while minimizing physiological -motion artifacts
1 4 128, 137]. Currently, EPI is not a very widespread technique, because of its
need for a specialized and expensive gradient hardware. Furthermore, EPI diffusion
images are sensitive to large field inhomogeneities and cemical shift artifacts and
fat suppression pulses are usually needed. This has motivated ongoing research to
find techniques which will allow accurate and reliable in vivo diffusion studies on
conventional MR scanners.

Several approaches have been proposed such as reduction of patient motion with
customized head restraints 20]. This is generally uncomfortable and inconvenient,
especially for patients with head injuries. Also, pulsatile brain motion cannot be
eliminated in this way.

Cardiac gating can be used to greatly reduce artifacts from cardiac induced motion
along with gradient moment nulling 12]. The gradient strength on most whole body
imaging systems is however not large enough to make moment nulling an attractive
solution, due to consequent fourfold reduction in diffusion-weighting. Also, as we see
from section 5.8, effects from rapidly pulsatile motion are not fully removed by using
bipolar gradients alone.

The problem of rigid body translational motion in PGSE has been dealt with by
post-processing techniques. An elegant approach is the use of a "navigator echo"
[32.97]. This approach has also been extended to correct for rigid in-plane rota-
tion 2 Recently, fast imaging sequences which employ multiple echoes have also
been augmented with navigator echo 13,14,50]. In principle, however, corrections
for rotation work only when the diffusion sensitivity is applied in the phase encoding
direction 2 24]. Furthermore, cardiac gating is crucial to minimize cardiac induced

'The reason why diffusion weighted EPI is immune to motion is explained in chapter 6.
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motion which is spatially varying 78] and cannot be corrected by using a navigator.
A technique related to the navigator technique is the spiral scan diffusion se-

quence 127]. This technique uses a phase correction scheme without the need for a
navigator, because it samples the center of k-space in each shot. Hence, the signal
from the center of the k-space can be used as a reference. Most recently, a refer-
ence phase map has been introduced to correct diffusion weighted images 132]. This
method is essentially identical with the navigated PGSE technique 97] except that the
phase information is acquired in a separate scan. The reference phase map technique
can therefore neither correct for rotational bulk motion nor spatially varying pulsatile
motion.

Another technique that is known to be less sensitive to motion artifacts (in terms of
ghosts) is projection reconstruction (PR) PR has been used for diffusion imaging 92]
and a modified version which uses the magnitude of the projections has been proposed
to reduce the motion artifacts 46,64]. However, this technique can only correct for
motion in the form of bulk displacement and, from the analysis in chapter 6 it cannot
give accurate measurements of in vivo diffusivity. As expected, the reported values
for ADC in brain tissue 64] Ue very high as compared with our results in chapter 7.

1.4 Summary

This work studies magnetic resonance imaging of diffusion in the presence of physiolo-
gical motion, Le. problems with diffusion imaging of human patients in clinical setting.
We focus on techniques that may work on conventional scanners which do not have
specialized gradient hardware for echo planar imaging.

The first chapters provide the theoretical tools that are needed to understand the
most important issues of MRI diffusion imaging as well as some of the signal-to-noise
considerations that relate to accuracy and sensitivity.

Since much of the analysis was done by a computer simulation, we took a close look
at the intrinsic properties of several simulation techniques for diffusion in NMR In
chapter 3 we extend the random walk model for diffusion and show how a conditional
random walk model can be used to modify existing simulation techniques. This
improves the speed and the accuracy in simulation of free diffusion and allowed us
to develop an extremely fast and accurate simulation technique based on the discrete
Fourier transform (DFT). This technique is particularly useful in the simulatio of
the SSFP sequence. We also show how the concept of random walk can be used
as a simple analytical tool for calculating the diffusion sensitivity in various pulse
sequences.

The SSFP sequence, being fast and known for its high diffusion sensitivity, is
studied in detail in chapter 5. The DFT simulation technique is used to show that
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SSFP is not able to provide accurate diffusion maps. Furthermore, we show that a
recently proposed modification of the SSFP sequence which uses bipolar gradients is
also inaccurate.

After the disappointing results with the SSFP sequence, we experiment with a
recently proposed navigated spin-echo diffusion sequence in chapter 6 and extend it
to the fast spin-echo sequence. Although, motion artifacts can be greatly reduced by
this technique, residual motion artifacts still exist. This technique therefore requires
cardiac gating and some patient cooperation. Furthermore, accurate diffusion weight-
ing cannot be achieved in three orthogonal directions. However, it is important to
measure the diffusivity in three orthogonal directions, since, cell membranes and other
oriented molecular structures lead to anisotropic water displacement. Anisotropy can
be used to determine nerve fiber orientation within brain white matter 67,19,123].
It also permits distinction of relative hyper-intensity in white matter due to acute
ischemic lesions from that due to orientation of axons perpendicular to the direction
of the applied diffusion gradient [133,137]. Recently, diffusion anisotropy has also been
exploited to improve image contrast among the various uterine tissue types 147].

This has led us to develop a novel diffusion imaging technique that does not use
phase encoding. This technique is therefore insensitive to motion artifacts ad for
brain imaging, neither head restraints nor cardiac gating is needed. By insensitivity
to motion artifacts we mean, that any tissue displacement that is small compared
with the image voxel size but large compared with the diffusion displacement of the
spin bearing particles does not cause significant increase in signal loss or other image
artifacts.

In chapter 7 we describe our ultimate solution, ie. Line Scan Diffusion Imaging
(LSDI). The key to the success of LSDI is that each line is self-contained and the phase
information is discarded. Therefore, each line can be considered a one-dimensional
EPI image. Also, line scan and diffusion imaging make a perfect fit, because, prob-
lems related to the secondary echoes disappear by alternating between high and low
diffusion sensitivity. Then, by using an interleaving scheme with a "dummy sweep",
uniform image intensity is ensured as well as high qality diffusion maps.

We believe the LSDI technique is an excellent alternative to EPI diffusion imaging.
Our results show, that it is possible to use the LSDI technique to acquire accurate
diffusion maps on conventional 1.5T and 0.5T systems. This can have great clinical
impact because reliable stroke studies with diffusion imaging, which previously re-
quired scanners with expensive gradient hardware for EPI, can now be done on most
conventional scanners. Hence, this increases the number of clinical sites capable of
doing stroke and other diffusion studies dramatically.



Chapter 2

Background

2.1 Introduction

HIS chapter serves to provide the reader with some insight into basic Nuclear
TMagnetic Resonance (NMR) and NMR imaging (MRI) A much more thorough
discussion can be found in the following references: [16,35,36,75,1151-

2.2 Fundamentals of NIVIR
Nuclear Magnetic Resonance is a phenomena which depends on the internal structure
of the nucleus in atoms. The nucleus possesses a total angular momentum J and a
total magnetic moment m which are related by the gyromagnetic ratio

M ='YJ (2.1)

The angular momentum can be related by Planck's constant, h, to the dimension-less
angular momentum or spin, 1, by J = hl where I takes only integer of half-integer
values. The spin states of the nuclei are inherently quantum mechanical in their
behavior and their dynamics are described by the commutation relationship of the
spin operators, the Schrddinger equation, and the corresponding Hamiltonian operator.
The Hamiltonian for the spin is due to the static magnetic field, Bo, which is usually
taken to be along the z-axis, and is given by

W = -- yhBol, (2.2)

This form of interaction is known as a Zeeman interaction. Calculations with the
density operator show that for uncoupled spin-1/2 nuclei such as protons, the motion
of the ensemble of spins may always be described in terms of a magnetization vector
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precessing in the magnetic field. Tis semiclassical description of NMR has equations
of motion that are analogous to those of an electron orbiting around a nucleus in a
magnetic field. The rate of change of the angular momentum equals the torque and
by using Eq. 2.1) this can be written as

dM = IYM x B (2.3)
dt

The solution to this equation corresponds to precession of the ma netization M,
about the magnetic field, B, at a rate = yB, kown as the Larmor frequency. The
precession does not go on forever because, due to tumbling of the molecules, there
are fluctuations in the local magnetic field that causes the net magnetization to align
with the thermal equilibrium value of the magnetization, Mo. This process is called
relaxation. The thermal equilibrium value of the average magnetization is given by
Curie's law

Mo - ly 2h2 Bo (2.4)
4kT

where kT is the Boltzmann energy an(i Bo is the main static magnetic field. By
applying and external magnetic field with an RF pulse excitation, the magnetization
is perturbed from its thermal equilibrium value, Mo. Relaxation makes the transverse
part of the magnetization, which is orthogonal to the main magnetic field Bo, decay
to-zero and the magnetization will align back towards the thermal equilibrium, Mo,
which is purely longitudinal.

In liquids, the relaxation can be modeled as an irreversible first order process
where T and T2 represent the spin-lattice (longitudinal) and spin-spin (transverse)
relaxation times, respectively. Furthermore, movements of spins because of flow and
diffusion affect the local magnetization if it is not spatially uniform. All these changes
can be incorporated into Eq. 2.3) resulting in the well known Bloch-Torrey quation

dM M. � MY - A, MO)= -yM x - - y- - z- +V vM+ V - DVM (2.5)
dt T2 T2 T,

where v denotes the flow and D is the diffusion coefficient or the diffusion tensor in
anisotropic material.

2.3 Spin Manipulation and Signal Detection
In order to detect the NMR signal, a coil is placed around the sample with its sym-
metry axis transverse to the polarizing magnetic field Bo. The detection process is
governed by Faraday's law and depends on the motion of the magnetization vectors
within the coil. Any transverse magnetization precessing at the Larmor frequency will
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induce an oscillatory em.f. at frequency wo. The receivers work by mixing the signal
e.m.f. with the outpat from a reference RF oscillator, a process known as heterodyn-
ing. This gives low-frequency quadrature output signals which are each respectively
proportional to orthogonal phases of the transverse magnetization. It turns out that
it is most convenient to describe the dynamics of the magnetization in a rotating
reference frame which rotates with the frequency Wr. This is equivalent with chan-
ging from the Schri5dinger picture to the Heisenberg picture in quantum mechanics.
E equation 2-3) can --then be rewritten as

dM = IYM x Bff '2.6)

where the ,-effective magnetic field is given by

Beff = (Bo l-y) + B (2.7)

and B. represents the amplitude of the RF magnetic field which carrier frequency is
Wr- If the reference frequency is chosen to be Wr = -- yBo then the effective field is
simply B1. Hence, by choosing the correct amplitude and duration, , it is possible
to design RF pulses that rotate the agnetization vector by an angle a from its value
prior to the RF pulse

a = Beff T (2-8)

If M is defined as M, + 9My + iM,, then the rotation. around the x-axis can be
described by a rotation matrix, R, which is given by

- I 0 0
R= 0 cos a sin a (2-9)

0 -sin a cos, a

The magnetization following the RF pulse, M, is related to the agnetization prior
to the RF pulse, M-, y

M = RM- (2.10)

This equation assumes influence of relnixation to be negligible, which is usually the
case for short RF pulses.

Spins which are off resonance, i.e. not rotating with the reference frequency YBO,
will precess and accumulate phase, , according to their spatial dependent magnetic
field offset, AB, (r = (B(r - Bo) -

t
0(t) -yAB�, dT (2.11)
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Furthermore, due to relaxation the transverse and the longitudinal magnetization will
decay according to T2 and TI, respectively. The free induction decay (FID) following
an RF pulse at t = is then most easily described by

M(t) = P(t)M(O + i El (t))M0 (2.12)

where
E2(t)coso(t) -E2(t)sino(t) 0

P(t) E2 (t) sin 0(t) E2 (t) cos 0 (t) 0 (2.13)
0 0 El (t)

and El(t) exp(-t/IT,) and E2(t = exp(-t/T2).

2.4 Principles of MRI

2-4.1 K-space Formalism

Spin-warp Fourier imaging is the most common MR imaging technique today. It
uses linear magnetic field gradients, VB = G, to modify the static magnetic field,
Bo. Thereby, the spatial location of the magnetization is frequency encoded. The
magnetization precesses with a frequency that is different from the reference frequency
of the receiver and the offset can be related to the spatial location. It is most convenient
to use a complex notation to describe the precession of the transverse magnetization.
By defining m, = + Wy, the precession can be written as

MXY(t) M__y(0)E2(t)e'0(t) (2.14)

where
t

ly fo G(-r) r & (2. 1 5)

Frequency encoding is only a special case of phase encoding with constant gradi-
ents, i.e. 0(t = wt = yGrt. In this case, the phase varies linearly with time which is
equivalent to a frequency shift. For a more general imaging experiment with complex
gradients, it is better to think in terms of phase encoding.

By recognizing that the precession angle in Eq. 215) can be written as 0(t)
k(t) r it is possible to view the MR imaging experiment in the spatial frequency
domain, or what is usually referred to as k-space. The wavenumber, k, is defined by
the "area" of the gradients

t
k(t = y G (-r) dT (2.16N

fo
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Now ignore transverse relaxation for the moment. The received signal,
S(k(t)), from magnetization which has been tilted into the transverse plane is given
by

S(k(t)) p(r) exp [ik(t) r] dr (2.17)

where represents the proton density of the object. This is clearly the Fourier t:ans-
form of the proton density- By collecting sufficient data in the k-space, by varying the
gradients properly, the image can be reconstructed by the inverse Fourier transform

p(r) oc E E E S(k(n,;, ny, n,)) exp [-ik(n,;, n, n,) r] (2.18)
nx ny nZ

Note that the itegral has been replaced by a sum because of the finite number of data
points collected from the k-space. The point-spread function (PSF) -is determined by
the number and the locationcf the k-space data p-.-its

In conventional MRI iniaging, one line in the k-space is acquired after applying an
RF pulse which tilts the magnetization into the transverse plane. It depends on how
long time passes from the RF pulse excitation to the data collection at the echo time,
TE, how much the magnetization has decayed from transverse relaxation, T2. The RF
pulses are separated by the repetition time TR. If the magnetization has not reached
its equilibrium value, Mp, before the next RF pulse, the magnetization will also depend
on the longitudinal relaxation, T This is called T and T2-weighting. Furthermore,
as will be shown in later chapters, by proper use of extra gradients before the data
collection, it is possible to make the phase and the amplitude of the received signal
reflect flow ad diffusion.

2.4.2 Slice Selection

Unlike imaging techniques such as ultrasound and X-ray computerized tomography,
MRI is inherently a volume imaging technique because of the long RF wavelength.
It is possible, however, to image only a faction of the object at the time by using
volume selective excitation. This is important in order to reduce imaging time and
often only a part of the object is of iterest. Because of the important role volume
selection plays in chapter 7 its major concepts will be outlined here.

The key ins-lit can be drawn from Eq. 27). If the spins are irradiated in the
presence of a linear magnetic field gradient G by an RF wave which frequency is ,
the effective magnetic field will vary with location according to

'The PSF depends also on the transverse relaxation and the order in which the data points are
sampled. To simplify the discussion we have ignored the influence of T2 here.
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Bff =�G -r + iB, (2.19)
Spins which are on resonance, G - r = , will rotate toward the xy-plane according to
the field ,�Bj Spins which are far away from the resonance location, I G - r I I ,
will see an effective magnetic field which is almost entirely aligned towards the z-axis.
These spins will therefore not tilt toward the xy-plane.

This simplistic analysis can now be generalized to include time varying RF ex-
citation, i.e. short duration pulses. Each such pulse can be represented by a sum
of infinitely many continuous waves which frequencies, phases, and amplitudes are
different. Because of the magnetic field gradient, there is a distinct resonance location
for each of the frequencies. Therefore, the flip angle at each location (the slice profile)
will depend on the frequency spectrum of the RF pulse. The width of the slice is pro-
portional to the bandwidth of the RF pulse and inversely proportional to the gradient
strength. Further7,,nore, the location of the slice is determined by the carrier frequency
of the RF pulse.

For small flip angles, it turns out that previous analysis is exact and the slice pro-
file is directly related to the Fourier transform of the RF pulse. Consider the real zero
order hold (ZOH) RF pulse shown in Fig. 2-1a and its corresponding fictitious discrete
time RF pulse. The small flip angle approximation assumes that each of the discrete
time hard pulses produces transverse magnetization without perturbing the longitud-
inal magnetization "reservoir", i.e. sina _- ce and cosa P:� 1. As a consequence, the
transverse magnetization produced by each of the hard plses is not affected by the
trailing hard pulses.

It is easy to verify, by using Eq. 27), that if the sampling rate of the RF pulse
is high enough, the total rotation of the tip of the magnetization vector during each
sampling interval is the same if. a) it rotates according to the effective field of the
ZOH RF pulse waveform, b) it first rotates instantaneously due o the hard puls� and
then due to the gradient. This is demonstrated in Fig. 2-1b.

Each hard pulse creates a small transverse magnetization which is uniform over
space and its amplitude depends only on the strength of the pulse. The area of the
gradient that follows the pulse will then determine the modulation of this transverse
magnetization. As shown in Fig. 2-1a, at time t, the transverse magnetization pro-
duced by the hard pulse at time t is uniform over space, because the area of the
gradient from t, to t, is zero, whereas, the magnetization produced by the pulse at
time tb is spatially modulated at time t, The modulation wavenumber for the har-
monic created by the RF pulse at time t is given by

t,
k(t) it G 7) d7 (2.20)

Clearly, the total transverse magnetization, from the whole train of hard pulses, is the
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Figure 21: a) A zero-order hold sinc RF pulse and the corresponding fictitious discrete
time pulse. The harmonics created by the hard pulses at time t and tb are shown as they
are at time t,. b) The effective rotation of the magnetization vector according to the ZOH
pulse and the discrete pulse is the same. c) The magnitude of the magnetization profiles
excited by the ZOH pulse and the discrete pulse.

discrete Fourier transform of the RF pulse. This is demonstrated in Fig. 2-1c. For
the real ZOH pulse, it is no longer true that the transverse magnetization produced
at a given time in the RF pulse is uniform over space, becwise the gradient causes
the effective magnetic field to vary with location. The real slice profile is therefore
not periodic in space as the one predicted by the discrete Fourier transform of the
fictitious discrete time RF pulse. Indeed, the sidelobes can be determined from the
Fourier transform of the ZOH waveform, and they can easily be made negligible for
one-dimensional selective pulses. For two-dimensional or frequency-spatial selective
pulses, the finite duration of the RF pulse limits the coverage of the k-space and side-
lobes become a much bigger problem. The longer RF pulses get, the more important
it is to correct for transverse relaxation during the excitation pulse. From Fig. 21
and the previous discussion, it is easy to see that the envelope of the RF pulse at time
t should be multiplied by exp [(t, - t)/T2] to correct for the T2 decay.
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The Fourier shift torem, I M (r - ro I == exp [- ikro].F f M (r) , shows that in
order to shift the location of the selective excitation, the phase of the RF pulse has to
be adjusted according to the wavenumber. In the case of one-dimensional RF-pulses
which use linear gradients, the wavenumber changes linearly with time. Hence, the
linear phase variation is equivalent to changing the carrier frequency of the RF pulse.

The previous discussion holds only for RF pulses with small flip angles and for an
accurate analysis and design of RF pulses with large flip angles the Shinnar-LeRoux
algorithm has to be used. The small flip angle approximation is still surprisingly
accurate even for moderately large flip angles.

2.4.3 Pathway Diagrams
Pathway diagrams are an extremely useful tool for understanding MR imaging exper-
iments. These diagrams are easily drawn and they provide good information about
the properties of the most complex pulse sequences. There are two equivalent ways
to think about pathway diagrams: a) as representing the phase of the magnetization
at a particular location (an isochromat), or, b) as representing the spatial frequencies
of the magnetization. The equivalence is due to the fact that 0(t = k(t -r.

There are two things that are essential for understanding how pathway diagrams
are drawn. First, the RF rotation in Eq. 29) has to be written for complex notation.
The magnetization prior to the RF pulse is denoted by (m- , m-) and after the RF
pulse by (m , m+). The RF rotation is then giv--n by

+ + cosa + cos a + i sin a m-
MXY 2 MIXY 2 mXY Z

+ i - sin a i since I
M �� M - �� M_ + cos a m (2.21)Z 2 XY 2 XY Z

The asterisk is used to represent the complex conjugate, i.e. the opposite phase.
Second, at the time when the RF pulses are applied, each component of the mag-
netization vector is decomposed into three new components pathways). Therefore,
the number of components grows exponentially with the number of RF pulses and the
total magnetization vector is the sum of all the pathways.

Between the RF pulses, the phase of the transverse pathways canges according to
Eq. 2.14), whereas, the longitudinal pathways maintain a constant phase. The trans-
verse and the longitudinal pathways decay according to E2(t) and Ei(t), respectively.

Figure 22 shows an example of the pathways formed by three RF pulses applied
during a constant gradient. After the first RF pulse, the local transverse magnetization
can be described by a single transverse pathway which phase increases according to
the area of the gradient. In terms of the total magnetization, this is a single spatial
wave which wavenumber is increasing. The next RF pulse mixes the pathways as
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Figure 22: Pathway diagram example. The RF pulses mix the spatial harmonics accord-
ing to Eq. 2.21). The phase of the transverse magnetization pathways increases because
of the gradient but the phase of the longitudinal pathways remains constant. The RF pulses
split each pathway into three new pathways.

described in Eq. 221). The pathway which starts out with the negative phase will
eventually have zero phase. Hence, an echo will be formed because its average value of
the pathway is nolonger zero2, as is the case for the other two transverse pathways. The
horizontal lines are the undetectable longitudinal pathways. According to Eq. 221),
M+ is a mixture of m- and its conjugate. Therefore, m is represented by two lines
with opposite phase'. After the third RF pulse, there are four more occurrences where
pathways cross the zero phase line. Therefore, the three RF pulses form echoes. The
FIDs that immediately follow the RF pulses have been ignored here. They occur at
locations where a pathway departs the zero phase line.

Finally, it should be mentioned that the echo signals that are drawn according to
the pathway diagram should be delta pulses in time. This is because the spatial waves
with k = integrate to a nonzero number, whereas, s.,,.tial waves with any nonzero

2Spatial waves with zero wavenumber have nonzero average
3By thinking in terms of wavenumbers, Eq. 5.28) makes this obvious.

RP A cc A a

Phase,
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wavenumber integrate to zero. This assumes that the magnetization extents over an
infinite region in space. For real life situations this is not so. The the spatial waves of
the magnetization must be multiplied by the proton density of the object (or any other
contrast function). Therefore, according to the convolution theorem (Eq. (A.27)),
the pathways should be convolved with the spatial frequer;--ies of the object. For the
simple example shown in Fig. 22 the RF pulses are slice selective. From section 24.2
it is known that the magnetization they excite does have spatial frequencies which
amplitudes are identical to the shape of the RF pulse (assuming small flip angles).
The received echo signal should therefore have a shape similar to the RF pulses.



Chapter 3

Diffusion in NMR

3.1 Introduction

ELF-DIFFUSION is a phenomena caused by random motion of the molecules.
This random motion, named Brownian motion in honor of its discoverer, was first

explained by Einstein in 1905 33] from the molecular-kinetic theory of heat. Since
Hahn's invention of spin echoes [55] NMR has become a very important tool i meas-
uring diffusion. Carr and Purcell 18] first described, using a random walk model, how
the dephasing of spins caused by diffusion can be partly refocused. Torrey 126] there
introduced a diffusion term in the phenomenological equations of Bloch and provided
a very useful theoretical tool for predicting diffusion effects in pulse sequences [117].
Since then, many different alternatives have been developed for diffusion measure-
ments for a variety of different applications.

Restricted diffusion is much harder to analyze than free diffusion, even for simple
geometries, and correct analytical results have only been obtained in a limited number
of cases. In order to study restricted diffusion, numerical analysis is therefore often
the only possible choice [5]. There are also cases where it is very hard to obtain
analytical solutions for free diffusion, such as in steady state free precession imaging.
Numerical simulations have also been found to be a useful tool for studying dephasing
behavior in an inhornogeneous magnetic field 40].

The Monte Carlo (MC) method, which is motivated by the random walk model, is
one of the most common simulation methods in NMR because it is flexible and easy to
implement on modern computers. In this method, an ensemble of spins are randomly
moved in space and their phase accumulated according to the local agnetic field at
certain time instances.

The finite difference (FD) method applied to the Bloch-Torrey differential equation
is also commonly used 149]. Recently Wong et a]. 144] presented a deterministic

29
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convolution method for diffusion simulation in NMR which is a combination of the
two previous methods. The Magnetization is discretized in space as in the FD method.
The movements, however, are calculated by the theoretical probability distribution of
the particle displacement similar to the MC method.

Although these simulation techniques are widely used in the NMR literature, little
has been published on their intrinsic properties. In this chapter, we will extend the
results obtained by Carr and Purcell [18] by deriving a relationship between the change
in the precession angle and the spin displacement, using a conditional random walk.
Since the problem is very complex for a nonlinear inhomogeneou.s magnetic field, we
limit ourselves to a constant linear gradient and free diffusion. These results are then
used to modify existing algorithms for both the MC and convolution methods. We
prove it is possible to simulate free diffusion in a constant linear gradient such that
the outcome does not depend on the time steps used in the simulation algorithm.

The conditional random walk model provides good insight into the diffusion related
attenuation. We shown how the MC algorithm can be used as an analytical tool to
evaluate the diffusion sensitivity or the so called b-factor in a pulsed gradient spin-
echo (PGSE). Finally, we show how the apparent diffusion coefficient and anisotropic
diffusion can be understood from the random walk model.

3.2 Theory

3.2.1 Random Walk Process

The displacement of freely diffusing spins can be modeled as a "random walk" pro-
cess. To simplify the discussion we will consider a spin diffusing in one dimension
only; however, the results are readily generalized because contributions to the phase
resulting from displacements in orthogonal directions are independent. We denote the
position of the spin by X and its phase by V Then we let x denote the displacement
of a spin due to diffusion during time At. Similarly we let denote the difference in
the phase of a freely diffusing spin and a static spin, after some time step t. Carr and
Purcell 18] showed, by using a Einstein-Smoluchowski random walk model , that x
and can be written as

N
x = Yai (3-1)

and

'Diffusion can also be described by the Langevin theory of Brownian motion which gives the
relation between the mobility and the diffusion coefficient D = BkT 38,99]



3.2. THEORY 31

N N

= Gy-r� E L a == G-yr� 1: ja(N+l-i) (3-2)
j=1 =1 j=1

where is a small instantaneous displacement and a E (- 1, 1) is a discrete zero inean
random variable which governs the direction of the motion. The gradient strength is
denoted by G and -y is the gyro-magnetic ratio. The time At is defined by the very
small time step -r and the number of steps N; that is At NT. The mean of x and 
is zero and their variance is given by

192 �2
x ai aj N (3.3)

i=1 j=1

and

N N
2 = G2,'Y 2T2�2 iai F01� jaj

N N(N + 1) (2N +
= G 2 ly27T 1: j2 = G 2ly 2T2�2 6 (3.4)

j=1

For every practical simulation time step, At, N will be a large number. By using
the well known relation for the diffusion coefficient 33]

D = 2 (3.5)
2T

one obtains
o,,2= 2DAt and 2= 2_Y 2 At3

01� G D /3 (3.6)

When N is large, both x and depend on a sum of a large number of random
variables. The central limit theorem can then be used to argue that the probability
densities Pr(x) and Pr(O) are Gaussian and therefore completely described by their
mean and their variance as

_x 2
Pr(x, t) _- V2�72 Dt exp 2 2Dt (3.7)

-30 2

Pr(O, t) exp 2 2G2 7 2Dt3 (3-8)
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3.2.2 Conditional Random Walk

In a computer simulation both the position and the phase of the spins have to be
updated. If we assume the displacement x at time t + At caused by the diffusion
of some particular spin to be known, then e are restricted to a subset of random
variables. Consider a set X of random variables (a,, a2, aN) where a E 1)
such that

N
X= (aja2,-.-,aN �Eaj = (3.9)

i=1

To calculate the expectation value 0jx Eq. 32) is used. But first consider the
number of positive and negative ai's which are Np and N, respectively. We must
have that

Np N = N
(Np - N.) = x (3-10)

Because Eq. 32) is linear in terms of aj, we can simply substitute aj by its mean
given the set M which is (Np - NIN. We then get

N
si = G'Y'r� ja.7

N(N + 1) (Np - N.) N + 1= G-y-r� - = G-yr� �X (3-11)
2 N 2

where I X means that the random variable, (a,, a2 ... aN) is a member in the set X
As expected, the conditional average 01., depends on x. Similarly, the variance 2OIX
should depend on x and the variance should decrease by increasing x. The variance
can be expressed as

N N -2
2 G-y-r� ia I X17�ix E 7r� E jaj I X - 0jx

i=1 j=1

N N 2
G2 2262 ai2 + iai Ejaj X (3.12)ly I I Oix

i=1 i=1 j:Ai

The first term in Eq. 312) becomes

N N(N + 1)(2N + 1)
G2,72T262 ai2 I = G 2 ly2T262 (3.13)

6
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Now consider the other terms in Eq. 3.12) by dividing them into to cases, i.e. a = 
and a = 1. Again, using the fact that these terms are now linear in aj gives

N - (N(N+I) _ ) xlC+I)
xlC+N 2 N-1

2

N
xlC+N

2

where we have used standard combinatorial probability notation. After
algebra (see Appendix A.1) te variance can be expressed s

2 G 2ly272�2 N(N + 1) (2N + 1 _ N + 1 Xl 2
01�lx 6 2

(N + 1) (3N2 - N - 2)
+ (2(xl�) - 2N) (N - ) 24

IjP 14)

some tedious

(3-15)

As expected, the variance is found to depend upon x. However, here we are interested
in te limit of large N.

N3
2 2 2 

lim 9�jx - G y 
N-+00 12

By using Eq. 35) this becomes

2 1 2 2 t3 2
I = 2G ^ D /3 -a

4 4

Similarly, in the limit of large N, Eq. 311) becomes

0I = Gytx
2

The final result is therefore

(3.16)

(3.17)

(3-18)

exp 6 ( - Gtx/2)2
2 -G2 ly 2Dt3

Pr(,o I x, t = (3-19)

One thing to note is that the angle's conditional average, 0jx, is the same as Larmor's
equation gives for a spin moving with a constant velocity

tGy(vr)d = G-yvt2 G-yxt (3.20)
fo 2 - 2

N-1
xlC+N _ I

= i- 2
N

iai E ja I
joi
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It is somewhat surprising, that 2 does not depend on x in the limit of very large
17�lx

N. This motivates a differen t approach to calculate Pr( I x, t) which is given in
Appendix A.2.

3.2.3 Diffusive Aenuation

Here, the attenuation associated with diffusion will be considered. Diffusive attenu-
ation is also analyzed in section 34.

There are two extreme limits for diffusive attenuation in a spatially inhomogeneous
magnetic field. The first case is where the magnetic field has a linear spatial variation
and the second case where the variations are highly nonuniform.

Spins which move due to diffusion in a linear gradient G will acquire an additional
precession angle, . The expectation value of the transverse magnetization, Mx =
nix + i my, at location X at time t + At can be described in terms of the magnetization
at time t by

00 00

MxY(X t + t) = Jmxy (X - X, ) ei-YG(X-x)At Pr(x)Je"0Pr(0 I x)dodx (3.21)
-00 -W

This equation explains how the magnetization at X will be influenced by the fraction
of magnetization which diffuses from adjacent regions to X Equation 318) shows
that the magnetization from spins that move through a distance x precess as if the
velocity was constant. As Eq. 317) shows, the magnetization is also attenuated.
This attenuation comes from dephasing and is due to the fact that there are many
different path trajectories leading to the same displacement x. Mathematically this
result is obtained by evaluating the second integral in Eq. 321) using Eqs. (A.26),
(3.17) and 3.18) as well as the fact that, Pr(o I x) is a Gaussian distribution

00
i,)-G(X-x)At i-yGAtdX _,2G2DAt3

Mx (X, t + At) =Imx (X - X, 0 e Pr(x)e 2 e 12 (3.22)
-00

- ly 2G2DAt3
This dephasing term (e 2 represents irreversible relaxation. This result de-
pends on the fact that all the spins experience the same linear gradient. Each spin is
statistically equivalent and the system is therefore ergodic.

in the so called n::qtionally-narrowed regime, the magnetic field is highly nonuni-
form over -,The average path through which each spin diffuses. By using a simple ran-
dom walk odel similar to that described in previous sections, it is easy to show that
for this 1-'ase the diffusive attenuation causes extra irreversible transverse relaxation.
This extra relaxation depends on the strength of the magnetic field inhomogeneities,
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their size and their densities as well as the diffusion coefficient 45]. However, unlike the
case for attenuation in a linear magnetic field gradient, this extra transverse relaxation
reduces with increasing diffusion. Similarly, one can show that for highly restricted
diffusion in a hnear magnetic field gradient, the diffusive attenuation decreases with
increasing diffusion. Then the diffusive related relaxation increases as the square of
the ratio of the restriction size and the average diffusion displacement 19]. This may
seem counterintuitive at first but the explanation lies in the fact that all correlation
between the displacement and the magnetic field strength, a spin experiences, is lost
in the motionally-narrowed regime. A highly restricted spin in a linear gradient will
experience the same magnetic field as a freely diffusing spin moving i a gradient
with the shape of a saw-tooth. With increasing diffusion the effect of each saw-tooth
peak, or minima, on the total precession angle is diminished. This is because with
larger diffusion each spin will pass by a greater number of gradient peaks and min-
irna, therefore reducing the average effect on the precession angle. Also te ifluence
of each gradient perturbation is reduced since the spins pass by more quickly hen
the diffusion is high.

The impact of starting position can also be neglected if the total diffusion trajectory
of each spin is much larger than the size of the restriction. Statistically the highb
restricted system is therefore ergodic. The distribution of the precession angles will
also be Gaussian as in the case of freely diffusing spins in linear gradient, however,
the variance in these two cases will be very different and hence very different diffusion
attenuation characteristics.

We have not considered the intermediate case when neither the linear gradient
free diffusion nor the motionally-narrowed approximation can be applied. Tis case
is of practical interest, such as in the study of cerebral perfusion 40]. It turns out to
be difficult to analyze 57] because the distribution on precession angles ill not, in
general, be Gaussian and the spins will not be statistically equivalent. It is therefore
not sufficient to know the mean and the variance to deduce the distribution in the
precession angles. For such complex cases numerical simulation has been found to be
very useful 142].

3.3 Computer Algorithms

By using the theory in the previous section we can modify two of the existing al-
gorithms for diffusion in NMR. These are the convolution and the Monte Carlo meth-
ods.
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3.3.1 Monte Carlo Method

The MC simulation algorithm is a straightforward application of Eqs. 36) and 3.18).
XVe will use Normal() to denote a function which returns a random value from a
Gaussian distribution with zero mean and unit variance. Between the RF pulses, the
following steps are then repeated for each spin:

1. 0 = 7G -X At (Static precession)

2. x = V2�D-Z�Nt Normal() (Diffusion displacement)

3.-01x YG 4 - At + -yGVj5At316 Nrmal() (Conditional phase correction)

4 4 (D + , +,01., (Precess the spin)

5. X X ,r (Move the spin)

6. goto step 

In a cnventional MC algorithm step no. 3 is not included and 01x is therefore always
zero.

It is also straightforward to include transverse and longitudinal relaxation in the
algorithm. This simulation algorithm uses two calls to Norrnal( in each loop. Equa-
tion 3.22) shows that the variation in the conditional phase causes attenuation. There-
fore we can remove the call to Normal() from step no. 3 and sbstitute this attenuation
into the transverse relaxation

At/T 2 At3
2== exp P 2 _ 2 G D /121 (3-23)

The kind of implementation which is best for the simulation depends on te type
of the problem. For a one-dimerisional problem, there are only four parameters that
describe a particular spin. The two bases A (X, , my, 7r"') and B : (X, ml, mt, �P)
are equivalent. The solution to the Bloch equation for a static spin in a constant
magnetic field is a simple rotation about the z-axis. In the A basis this can be
expressed by a precession matrix. However, in basis this is much simpler because
the rotation becomes just an addition to the precession angle.

Usually RF pulses are considered as being instantaneous and can therefore be
represented by a rotation for all spins in a particular volume. In basis A a rotation
can be expressed by rotation atrix but in basis this is more complicated because
of the nonlinear relationship between the two bases.

When the first pulse is an a pulse and all the following pulses are 180', it is better to
use the basis because the use of trigometric functions is reduced. This is especially
true when results from intermediate time steps are not needed. Also, because the
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precession angle is proportional to the deviation of the magnetic field from Bo, then
by simple scaling of each spin's precession angle, one obtains the result for different
magnetic field gradients 40]. Thus results for different magnetic field gradients can
be calculated from only one simulation experiment, which saves computation time.
This is very useful when doing an experiment where the phase distribution is not
Gaussian and it is hard to predict the magnetic field dependence 40,57]. For Gaussian
distributions, the relationship between the magnetic field strength and the diffusion
attenuation can however be expressed analytically, by Eq. (A.26).

The accuracy of the method depends on the number of spins used in the simulation.
If the odel is assumed unbiased then the accuracy increases proportionally with the
square root of the number of spins. The relative accuracy, however, depends on the
diffusion attenuation. A simple way to estimate the accuracy is to divide the spins
into sub-batches and then use the mean and the variance, obtained from smulation
of these sub-batches, to estimate the accuracy of the mean [5]. For this to be a good
estimate, however, the results from each sub-batch have to be independent. Care must
be taken with the random number generator to ensure this 107].

3.,.'.,.2 Convolution Method

Equation 3.22) is the motivation for the convolution method. The dynamics of the
spins are updated by the Larmor equation as if they were static and then a complex
diffusion propagator, which we will refer to as the correction kernel, is used to ac-
count for the dynamics during the time step. For a constant gradient, the simulation
algorithm is given by:

i) Precess spins as if static; multiply the transverse magnetization by exp [i-YGX - t]

ii) Convolve the magnetization with the correction kernel c(x, At), to account for the
diffusion

iii) Repeat step i

The correction kernel for the transverse magnetization can be found from inspection
of Eq. 322) and the fact that Pr(x) is a Gaussian distribution. It is given by:

1 _X 2 2 2 At3 X
c(X, At) exp - y G D_ + iYG-A (3.24)

V2 �DA t �27 r 2 2DAt 12 2

Note that the correction kernel for the longitudinal magnetization is identical but with
the gradient set to zero (no precession).

The minimum number of time steps is determined by the conditions that a) the
gradient is constant during any particular step and b) RF pulses occur between time
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steps. A correction kernel for a linearly ramped gradient can also be derived and is
given in ref. 49].

Time Step Size nvariance

We want to show that the size of the time steps does not affect the outcome of the
simulation. In other words: simulation from time t to time t + aAt and then from
t + aAt to t + (a + )At yields the same results as a simulation directly from t to the
time t + (a O)At.

We start with some arbitrary magnetization m,(x = m.,(x) + i - %(x). The
signal measured from this magnetization is given by

00

M'Y (x) dx = Y frn.y (x I (k 0 = M (0) (3-25)

where denotes the Fourier transform. We also define C(k, At) as Y f c(x, At)
According to our modified convolution algorithm, the one step simulation gives

MXY(X, + (a +,3) At) (MX (X, ) ei-yGx(a+,3)At c(x, (a + )At)

Y 1� Y1
M(k, t + (a + 3)At) M(k - IG(a +,3)At, t)C(k, (a +,3)At) 326)

where we have used the convolution theorem as well as the scaling and modulation
properties of the Fourier transform (Eqs. (A.27) and (A.28) in the Appendix). The
two step simulation can be written in the Fourier domain as

M(k, t + ceAt = M(k - 7GaAt, t)C(k, aAt)
M(kt+(a+O)At = M(k-,yG,3Att+aAt)C(kPAt) (3.27)

Now one can show, by comparing Eqs. 326) and 3.27) and then using Eq. 325),
that both of these simulations yield the same outcome if and only if

C(O, (a + P)At = C(-7G,3,At, aAt)C(O,,3At) (3.28)

By using the definition of the correction kernel and Eq. (A.26) to calculate the Fourier
transform of the correction kernel, one can easily verify the equality in Eq. 3.28)

C(-,yGoAt, ozAt)C(O, PAt =
-1Y2 G 2At2 (O + a/2)2 2DAta -1Y2G2 DAt3a 3

exp .exp
2 12
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-7'G'At2 (/2)2 2DAtO -,Y'G 2DAt303
- exp .exp

2 12

2 2 + a 2 a 3 )33= exp --y G DAt3 2+ Oa a + - - +
4 12 4 12)J

+13)3.

= exp _1Y 2G2 D ,t3 (a C(0' (a + O)At) (3.29)
3

Hence, the size of the time steps does not affect the total magnetization. As shown
in section 33.2, the finite grid size used in the implementation of the convolution
algorithm will set limitations oti the minimum time step.

As an example, one can easily calculate the result in a spin-echo (SE) sequence
with a constant gradient. By keeping in mind that the 180' refocusing pulse conjugates
the magnetization, m.,y(TE/2+ = m*Y(TE/2-), we can writeX

M.Y (x, TE) MXYX, 0) - iyGxTE/2 c(x, TE/2) e i-yGxTE/2 c(x, TE/2)

(3.30)
The echo is then calculated as the total transverse magnetization. By applying
Eq. (A.26) twice and then using Eq. 3-25), one easily gets the echo intensity

- ly2G 2 DTE 3 

M(t = TE = M*(t = 0) exp 6 2 1 (3.31)

This is exactly the well known result first derived by Carr and Purcell [18].

Comparison with the Double Step FD Meth.-Wod

An important factor in the implementation of the convolution method is the sampling
of the correction kernel. We will argue, by using our numerical results, that the ratio
between the time step and the average time it takes a spin to diffuse between adjacent
grid points, At/(AX2 /2D), is a good estimate of whether the sampling of the kernel
is sfficiently fine. If the time step is much smaller than the average time it takes to
diffuse between the grid points, the only data point in the kernel considerably different
from zero is the center point of the kernel. Obviously this will lead to errors because
no magnetization will propagate to adjacent cells. To understand this better we will
now consider the finite difference method. We will now show that the Double Step FD
method is equivalent to a convolution with a kernel consisting of three points.

Zientara et a]. 149] have shown that the corresponding FD equations for the trans-
verse Bloch equation can be written as

dm.,y W = [in W] M.' () (3-32)
dt
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where f2 is a diagonal matrix whose elements equal -yGxi and W is a tridiagonal
matrix which diagonals are given by -2DIAx 2 arid the first off-diagonals by DIAX2.

Furthermore, they introduce the double step method to solve this equation, because the
theoretical exponential solution becomes impractical for large matrices. The double
step procedure is given by

ffi,;y (t + At) = [I WAt] M'Y W (3-33)

MXY(t + t) = exp [fflAtj ffixy(t + t) (3-34)

These two equations can be thought of as convolution and precession and can just
as well be written in the reverse order. The corresponding correction kernel would
have three elements, I - 2DAt/Ax 2 in the center and DAt/AX2 off-center. We see
that the correction kernel has only real elements and therefore does not account for
precession due to diffusion during the time step. The off-center elements can be
thought of as the probability of a spin diffusing to an adjacent grid point. When the
time step becomes larger than Ax 2 /2D the probability of staying at the same grid
point becomes negative. The reason is that more elements are needed to represent W
as the time step increases. These matrix elements can easily be found by inspection
of the correction kernel in Eq. 324).

3.3.3 Simulation Results
To demonstrate the algorithms we simulated a Spin Echo (SE) pulse sequence with
a constant magnetic field gradient. The RF pulses are a 90' excitation pulse and a
single 180' refocusing pulse. The theoretical diffusion attenuation of the echo is given
by Eq. 33 1).

Figure 31 shows the simulation results for a conventional MC algorithm and our
modified version. The echo amplitude is plotted as a function of the ratio of the echo
time and the simulation time step, TE/At. The average of 10 simulations is plotted,
each using 50000 spins, G = 0.032T/m, D = 3pm 2/msec and TE =: 0.05sec. The
theoretical echo amplitude from Eq. 331) is plotted as a straight line independent
of the time step. Clearly the conventional MC algorithm yields incorrect results for
larger time steps, howe-.-ar, our version is not affected by the size of the time step.

We also compared the convolution method with the Double Step FD method 149].
Figures 32 - 34 show the time history of the x- and the y-magnetization in the SE
pulse sequence. The initial magnetization is a slice in the yz-plane. Note from Fig. 3-
4 how the refocusing pulse, which occurs at the midpoint of the time axis, changes
the sign of the y-magnetization. This is, however, harder to see on Figs 32 and 3-
3 due to the large time steps and the interpolation done by the, plot program. The
theoretical echo amplitude is obtained from Eq. 331) and found to equal 0.2305Mo.
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Figure 31: Conventional MC (dashed) and our modified
in a SE sequence using different time steps.
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MC (solid) methods compared

This echo amplitude is calculated as the average of the magnetization at the end of the
simulation. The average is printed on each plot, for both the convolution and the FD
method. It can be seen that for both At = TE/2 (Fig. 32) and At = TE/6 (Fig. 33)
the convolution method gives correct results whereas the FD method is either unstable
or inaccurate. When a much smaller time step is used, as in Fig. 34, the FD method
becomes more accurate, however, the time step is now too small for the convolution
method, given the grid size in the x-direction. The ratio between the time step and
the average time it would take a spin to diffuse between adjacent grid points (denoted
by t on the figures) is a good indicator of the accuracy of the methods. When the
ratio is larger than one, the convolution method is always exact but the FD method
is unstable. Figure 34 shows that for ratios less than one, the convolution method
loses accuracy because of insufficient sampling of the correction kernel, however the
FD method gives fairly accurate results.



42 CHAPTER 3 DIFFUSION IN NMR

Convolution, t = 29 Double Step FD, t = 29

0

1
0

X
Z>

't
X
>12

X
X2

E)
--- r- -

Convolution, M/Mo=0.2305

1

Double Step FD, M/Mo=-0.9348

. . I

X
>12

-E)Time steps 2 --+ x/sqrt(2D TE)

Figure 32: Convolution versus the Double Step FD in a SE sequence. Theoretical
MIM = 02305, At = TE/2.

3.3.4 Boundary Conditions

For a restricted region with impenetrable boundaries, the Brownian motion can be
obtained by augmenting the random walk with reflecting boundary conditions [5]. This
is easily done for the MC method but can be done as well in the convolution method.

If the boundary is at X and the spin starts at position X, then it will be reflected
to (X + x - X), where x is the isplacement caused by the diffusion. It is very
important to point out that the spin distribution resulting from the reflection method
in one dimension gives the true distribution for time steps of any size 98, pg. 612].
This means that the size of the simulation time step will not affect the distribution of
the particle displacement near the boundary. The same will hold true in two and three
dimensions for any rectangular region. For curved surfaces, the reflection method will
be a good approximation as long as the displacement is small compared to the radius



3.3. COMPUTER ALGORITHMS 43

Double Step FD, t = 1.0Convolution, t = 1.0

X
X2

1-t
X
>I2

X
X2

t t

) TE)rrf%My LkC.L I ;JTime steps Time steps 0 -4 -x/sqrt(2E

Double Step FD, M/Mo=0.1438

I . . . .

Convolution, M/Mo=0.2305

4

D -4 -x/sqrt(2D TE)

X
>12

Z) -4 -x/sqrt(2D TE)

SE sequence. Theoretical

Time stepsTime steps

Figure 33: Convolution versus the Double Sep FD in a
MIM = 02305, At = TE/6.

of curvature of the surface. Then displacements in orthogonal directions will be almost
independent and thus can be treated separately.

When the boundaries are perfectly absorbing, a similar reflection procedure can
be used. The sign of the reflected magnetization, however, has to be inverted. As
for the case of perfectly reflecting boundaries, the reflection method will give a spin
distribution which is independent of the size of the time step.

Although the spin distribution near the boundary does not depend on the time
step, the integration of the spins precession angle will. Therefore, if the gradient is
on, the time steps have to be small to ensure correct phase integration.

For the case of restricted diffusion, the volume can be divided into several subre-
gions, in which the time steps are chosen according to the proximity to the nearest
boundary. Often only a small fraction of the spins are close to the boundary with the
majority located far away from the boundary. This majority can therefore be treated
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Figure 3-4: Convolution versus the Double Step FD in a SE sequence. Theoretical
MlMo = 0.2305, At = TE/20.

by the statistics of free diffusion. To save computation time, we use time steps as
large as possible in the simulation of these spins. When these spins eventually come
close to the boundary their dynamics will be updated by much smaller time steps,
to minimize the error from the free diffusion model at the boundary and ensure cor-
rect phase integration. The size of this time step, At,.i., will depend on the gradient
strength, because the phase change is proportional to At,,G�/_TD�At .. �i,, - The time
steps in a given subregion near the boundary are chosen such that the r.m.s. diffusion
distance during the time step is less than the shortest distance to the boundary from
the particular subregion. The number of regions depends on the restriction size, R,
and the minimum time step needed at the boundaries. By using a fixed ratio (some
integer factor such as 2 between the time steps in adjacent subregions the number
of regions is found to be proportional t l0g2(R'/2DAt,,,). When the number of
regions is larger than 4 the simulation time is found to be approximately proportional
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to OlAt-i- For comparison, in the conventional MC method the simulation time is
proportional to 1/At .. i,,. If only a few subregions "fit into" the volume of restriction,
the computational savings are less. It is therefore only when the gradient is strong and
the restriction size is large compared with the diffusion distances that the overhead of
using the sbregions is beneficial.

Many numerical studies involve analysis of the influence of finite duration gradient
pulses in the study of restricted diffusion [5, 11]. Often the gradient is only active
during part of the measurement. For such cases, it is possible to use the Fl) method,
with small time steps, when the gradient is on, and then use the convolution method,
with larger time steps, when the gradient is off. Both methods would have to be
augmented with reflecting boundary conditions [11] in order to insure correct particle
distribution.

It is interesting to note that according to Eq. 318) the average spin moving in
a linear gradient acquires additional phase, 01, which is the same as if the spin had
moved with constant velocity. This is also the same phase that would have been
obtained by using trapezoidal integration. By using trapezoidal integration for free
diffusion, the error according to Eq. 3.23) is exactly exp (__y2 G 2DAP/12)*steps, where
At -#steps is the total simulation time. Hence, by reducing the time step the error
can be made arbitrarily small.

If a spin is reflected at-, a boundary, it is clear that 01,, will be different than given
by Eq. 318) and the variance of the phase distribution will be less than for the freely
diffusing spins. The problem of finding the phase distribution for reflected spins is
nontrivial, and the distribution, which will not necessarily be Gaussian, will depend
on the distance from the boundary. It might, however, be possible to reduce the error
in the phase integration by modifying 0., such that it reflects the magnetic field over
the trajectory of the reflected spin.

One can speculate about specific interesting areas where the formalism presented
here would be useful. For example one area is in evaluating T2* effects in functional
imaging 142]. Microscopic susceptibility variations cause high spatially varying gradi-
ents, which lead to increased dephasing of spins. By breaking up space into a number
of small regions where the gradient is approximately linear in each region, our diffusion
simulation method may be applied.

3.4 Diffusion Sensitivity

3.4.1 The b-factor

For free diffusion and linear magnetic field gradients, the attenuation of the NMR
signal is most easily described in terms of a single number which is usually referred
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to as the b-factor. The b-factor depends on the RF pulse sequence. Here we will
give an example how the Monte Carlo conditional random walk model can be used to
calculated the b-factor in a very simple but the single most important pulse sequence
for diffusior imaging, namely the pulsed gradient spin echo (PGSE) shown in Fig. 3-5.

R/2 7r

ARF VV VV

G, .E=
H

G,,
Y

G7 I T
" I - R M.. I

Signal

Figure 35: The regular spin-warp pulsed gradient spin-echo (PGSE) sequence. The
amplitude of the diffusion gradient is varied to change the diffusion sensitivity.

Unlike the more general approach we took in section 32-3, we will only be in-
terested in the signal attenuation once the magnetization has been refocused. This
attenuation will only depend on the phase dispersion cause by random motion dur-
ing and between the gradient pair shown in Fig. 35. In section 32.3, we argued
that a system of spins diffusing freely in a linear magnetic field gradient is ergodic.
Independent of location, the attenuation is therefore given by

'00 0,,2

A f e"]� Pr(�P) dD = ep exp, [-bD] (3.35)
-00 2

where we have used Eqs. 3-8) and (A.26) for the evaluation of the integral.
Clearly, we only need to know the variance of the phase distribution to calculate

the diffusion attenuation, A. We will now use the MC algorithm to calculate the
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variance of the phase distribution for the sequence shown in Fig. 35. We will ignore
the slice selection gradient which is usually much smaller in amplitude and shorter
in duration than the diffusion gradients. Obviously, minimum of three time steps
are needed for this sequence: the first gradient pulse At, = J, the separation of the
gradients At = A - , and the second gradient pulse At3 = -

Any initial location can be chosen for the spin and to simplify the calculations
we make it the origin, ie = This makes the initial static precession = .
After the first time step the spin will be located at X = x It is most convenient
to denote the conditional phase correction 01., by 76Gx,12 + AO, where AO, is the
trajectory dependent part of the phase. Therefore, 4) = y6Gx,12 + AO,. At the
start of the second time step the spin is located at X but since no gradient is on,
the only phase change occuring is due to the inversion pulse, e- 4)2 = -(Di and
X = X + X2- In the third time step, it has to be remembered to include the static
precession: 4D3 = D2 + -y6GX2 + -y6GX312 + A03. By substituting the values for 4P2
and X2 this becomes

(D3 = yGJ(x,12 + X2 + X312 - AO + A03 (3-36)

Notice that because of the refocusing pulse, we get x12 instead of 3xi/2 in the
expression for 4�3. This can be referred to as partial refocusing. As mentioned in
section 32.3, the phase dispersion resulting from AO, and A3 is irreversible. This
is because these are two independent random variables.

Now the only thing left is to evaluate the variance Of (N. This done by using
Eqs. 36) and 3.17)2

var((D3) = _Y2 G 262 var(xi/2 + X2 + X312) + var(A01 + var(IA03)

= 2-y 2 DG 262(A - J/3) (3.37)

From Eq. 335), it is clear that the b-factor is given by

b = Y2G 2j (A - J/3) (3-38)

In practice, the gradient amplifiers will have a finite slew rate. It is possible to
use Eqs. (A.24) and (A.25), derived for ramped gradients, to calculate the b-factor
in such situations. These calculations are however much more elaborate since they
involve seven time steps instead of three as in the previous analysis. Because of this,
we only give the final result

2 2 2 (A 8a 3 7a 2J j2 2 Ab = G - 613) + - � �+ a+a - 26 (3-39)
15 6

2Jt is important to realize, that since xi, X2, and X3 represent the particle displacement and not
the location, they are independent random variables.
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Here, a denotes the duration of the gradient's attack and decay periods. By comparing
Eqs. 338) and 3.39), the error from using Eq. 338) can be calculated. This error
can easily be made insignificant (less than 0.5%) for the ratio of a/J as large as 02,
if the gradients are separated by A and it is ensured that their area is equal to G6.

3.4.2 Effective and Anisotropic Diffusion

Until now, we have only considered diffusion in one-dimension. For isotropic medium
such as liquids, the extension to three-dimensions is trivial. However, in liquid crystals
or tissues such as brain white matter and skeletal muscle, the diffusion can no longer
be considered isotropic because of membrains and other tissue mechanism. Because
of restrictions, the diffusivity will actually depend upon position, e. heterogeneous
at a cellular length scale. Often such a system can be modeled on macroscopic or
image voxel length scale as homogeneous but anisotropic. It must be kept in mind,
however, that the diffusion attenuation can then no longer accurately be described in
terms of a single b-factor because the duration of the NMR pulse sequence will become
important.

The Apparent Diffusion Coefficient

A highly revealing example is the case when molecular motion is confined to one-or
two-dimensional local elements as discussed in ref. 16]. These elements have r.m.s
length of A and are interconnected such that the diffusion particle migrates from
one randomly oriented element to another, hence tracing out a random walk in the
laboratory frame. This is different from regular free self-diffusion because of the lack of
branch points. In the free diffusion random walk model it is the time which determines
the number of random variables a in Eq. 31). In this situation, however, it is the
displacement due to free diffusion within the elements, x, which determines the number
of randomly oriented elements each particle has passed through. The time (N) should
therefore be replaced by the r.m.s. displacement according to Eq. 3-6) in section 32-1.
Similarly, the instantaneous displacement should be replaced by the length of the
elements, A The expected number of elements passed is N = x1A = 02-Dt/A. The
mean square displacement in the laboratory frame is then

2K2 = A N = 2DtIN = Av/2Dt (3.40)

If we compare this with Eqs. 3.3) and 3.6), we see that the mean square displacement
is no longer proportional to the time t but the square root of the time. A key factor
for this result is that there are no branch points.

If the diffusing molecule has a choice of paths after moving N elements, comprising
mean square distance R 2 in the laboratory frame over a time -r, the motion can be
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considered as Brownian motion on macroscopic scale. However, the effective diffusion
coefficient will be different from the diffusion coefficient of the free molecules within
the elements. According to Eq. 35)3, the effective diffusion coefficient should be
R'16T. By using Eq. 3.40) to express R' and equating t = T we get

D, = 2D-rlN)16, = D (3.41)
3N

It is clear from the previous discussion, that the geometrical structure of the tissue
will determine the effective diffusion coefficient. Also, the attenuation of the NMR
signal will depend on the finite duration of the gradient pulses [5, 11, 109] and if
there are multiple compartments with different diffusion coefficients and relaxation
parameters, the situation get even more complex 120]. It is therefore necessary to

-define the term "apparent diffusion coefficient" from the NMR diffusion attenuation,
A, and the Mactor as

A = exp [-b - ADC (3.42)

Anisotropic Diffusion

The influence of anisotropic diffusion can easily be studied with the Bloch-Torrey
equation (Eq. 2.5)) 117,126]. Here, however, we show how anisotropic diffusion can
be understood from the random walk model presented in section 32.1.

Consider the definition of the displacement, x, in Eq. 3-1)

N
x ai (3.43)

where a E -1, 1) are independent discrete zero mean random variables. From this
definition and the definition of Dxx = x2/2T and t = NT, it is straight forward to
show that

X(t1)X(t2)=G2 (min(ti, t2)) IT = 2D.,,x min(ti, t2) (3.44)

Similarly we define
N

y bi (3.45)

where b E (-1, 1) are independent discrete zero mean random variables. However, we
will assume that bi and a are correlated and the correlation coefficient is denoted by c.
For instance, if particles collide with permeable membranes that are tilted with respect
to the principal axes of the coordinate system, the particle displacements in orthogonal

'The number 2 has to be replaced by 6 because the mean square displacement is 3 times larger
in three-dimensions than in one-dimension.



directions will be correlated. Analogous to Eq. 3.44), the correlation between x and
y becomes

X(tl)Y(t2) C�x6y (Min(tl, t2)) I = DXY min(tj, t2) (3.46)

where we have defined Dxy c�x6y12,r- From this definition follows reciprocality, i.e.
Dx = D 

Now consider the phase dispersion of anisotropic diffiision in linear magnetic field
gradients. For mathematical simplicity, we will replace the discrete Larmor equation
in Eq. 32) with its continuous counterpart

t
OM = 10 y(Gx(T)x(T) + Gy(,r)y(,r))d-r (3.47)

The variance of 0(t) is expressed as'

t t
2 -y(Gx(,rl)x(,rl)+Gz,(-rl)y(,rl)) dT1 -y(Gx(,r")x(-r")+Gy(,r")y(,rl)) d-rif0-� W = 10 fo

= Itft72Gx(,r')G.,(,r")x(lrl)x(-r") d'dr"0 0

* 2 It f t Y2 Gx (T') G, (") X (T') Y (T") dT'dT"" 0

* ftjtY2Gy(T')G,(T")Y(T')Y(T1) dT'dT" (3.48)0 0

We have yet to specify the shape of the gradients. If the time course of the gradients
is specified, the expectation value of the integrals in Eq. 3.48) can be calculated by
using Eqs. 344) and (3.46). However, for the pulsed gradient spin echo (PGSE)
sequence shown in Fig. 35, we already know from Eq. 337), that the first term in
Eq. 3.48) yields 2y2DxxG2j2( - /3). By inspection of Eq. 348), it should beX

obvious that the total phase variance is given by

CF - 272j2(A -,5/3) [G2Dxx + G2Dyy + 2GG Dx (3.49)o X Y Y Y1

This can be written in a more general form for three-dimensions in terms of the
diffusion attenuation, A, as

ln(A = _2j2( - /3) GDG (3-50)

where D is the diffusion tensor

- Dxx Dxy Dxz

D = DY D D (3-51)
- Dzx Dzy Dzz

4 The mean of 0 is obviously zero.
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Similarly, in the spirit of Eq. 3.7), the probability distribution for the diffusion dis-
placement r = ,�x + gy + iz can be written as

1 _r D' r TPr(r, t) exp - (3-52)F27r 2t) �3 2 t

The diffusion tensor is a symmetric matrix. It follows from a fundamental theorem
in linear algebra, that there exist a coordinate transformation which diagonalizes the
diffusion tensor

DX1 0 0

D = U-1 D U 0 Dyl 0 (3.53)
0 0 DZI

The columns of U are the eigenvector of D. The new primed coordinates are related
to the laboratory coordinates by r' = U'r. The nonzero elements of D' are the
eigenvalues of D and the largest eigenvalue represents the principal direction of the
diffusion. In the laboratory frame, this direction is given by the eigenvector which
corresponds to the particular eigenvalue. Because the trace of the diffusion tensor is
independent of the choice of coordinate system, by calculating ADC-trace maps, the
dependence of tissue orientation in the magnet is removed.
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Chapter 4

MR1 Noise Characteristics

4.1 Introduction

N this chapter we will review the theoretical distributions for the noise in magnitude
images and then we supplement it with the exact expression for the noise distribu-

tion in phase images as well. A very simple post-processing scheme is proposed to
correct for the bias due to the Rician distribution of the noisy magnitude data. The
statistical properties of the correction sheme are studied and compared to a similar
correction scheme for power images, proposed earlier independently by Miller and
Joseph [85] and McGibney and Smith [81].

Noise can influence both the accuracy and the precision of parameters that are
estimated from MR images, such as the diffusion coefficient. Therefore, the problem
of fitting exponential curves is studied for both high and low signal-to-noise ratios.

4.2 Theory
Magnitude images are most common in MRI since they avoid the problem of phase
artifacts by deliberately discarding the phase information. The signal is measured
through a quadrature detector which gives the real and the imaginary signals. We will
assume the noise in each signal to have a Gaussian distribution with zero mean and
each channel will be assumed to be contaminated with white noise.

The real and the imaginary images are reconstructed from the acquired data by
the complex Fourier transform. Since the Fourier transform is a linear and orthogonal
transform, it will preserve the Gaussian characteristics of the noise. Furthermore,
the variance of the noise will be uniform over the whole field of view and, due to the
Fourier transform, the noise in the corresponding real and imaginary voxels can be
assumed uncorrelated.

53
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There are many factors which influence the final signal-to-noise ratio (SNR) in the
real and the imaginary images. Not only is the noise associated with the receiving
coil resistance, but also with inductive losses in the sample 61]. Which one is the
dominant source will depend on the static magnetic field (BO) and the sample volume
size. Furthermore, the final image noise will depend on the image voxel size., the
receiver bandwidth (BW) and the number of averages in the iviage acquisition. By
using similar arguments as Edelstein et al. 31], one can write

B 2 TEX
SNR oc 0 V (4.1)

2 N Ny.BWVrB + aVrBo

where a is a factor whose size depends on the sample size 31], V is the slice volume,
NEX is the number of excitations used for averaging, and N, and Ny are the resolu-
tion in the readout and phase direction, respectively. Equation 4.1) can be used to
compare the relative SNR in two 2D imaging experiments with the same relaxation
parameters, repetition (TR) and echo time (TE). If the sampling time and the total
imaging time are kept constant, Eq. 41) shows that the SNR is proportional to the
image voxel volume'.

4.2.1 Magnitude Images
The magnitude images are formed by calculating the magnitude, pixel by pixel, from
the real and the imaginary images.

= (4.2)

1, and I are the pixel values of the real and the imaginary images and , and ni
are the corresponding noise components. The noise is assumed to be Gaussian with
zero mean and variance al. This is a nonlinear mapping and therefore the noise
distribution in M is no longer Gaussian.

The image pixel intensity in the absence of noise is denoted by A and the measured
pixel intensity by M. In the presence of noise, the probability distribution for M can
be shown to be given by 70,108]

PM (M = M e-(M2+A2)/20,2 Io A-M (4.3)
U2 U2

where 10 is the modified zeroth order Bessel function of the first kind. This is known
as the Rice density and is plotted in Fig. 41 for different values of the SNR, A/0.

'If the resolution is increased by a factor of two in both directions while keeping the signal
sampling time and the total imaging time constant, the bandwidth has to be doubled and it is only
possible to average half as much as before.
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PM (M/09

Figure 41: The Rician
corresponding means.

As can be seen the Rician distribution is far from being Gaussian for small SNR
(A/ < ). For ratios as small as A/a = 3 however, it starts to approximate the
Gaussian distribution.

Note that the mean of the distributions, Vlo,, which is shown by the vertical lines
in Fig. 41 is not the same as Ala. This bias is due to the nonlinear transform of the
noisy data.

A special case of the Rician distribution is obtained in image regions where only
noise is present, A = . This is better known as the Rayleigh distribution and Eq. 4-3)
reduces to

M -M2/20,2
PM(M) = �72e (4.4)

This Rayleigh distribution governs the noise in image regions with no NMR signal.
The mean and the variance for this distribution can be evaluated analytically and are
given by 98]

M UV7r12 and om2 = 2 - r/2)0,2 (4-5)

2These relations can be used to estimate the "true" noise power, a from the magnitude

distribution of M for several signal to noise ratios, A/a, and the
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image. Another interesting limit of Eq. 4.3) is when the SNR is large.

1 - M-VAr+-oT)'120,2pm(M) -- ===e
727072

(4.6)

This equation shows that for image regions with large signal intensities the noise
distribution can be considered as a Gaussian distribution with variance u2 and mean
v�A-2+ �a2. This trend is clearly seen for large ratios, Ala, in Fig. 41.

4.2.2 Phase Images

PAO (AO)
.8 r,

0
AO

3-3 -2 -1 1 2

Figure 42: The distribution of the phase noise for several signal to noise ratios, A/cr. The
Gaussian approximation is shown with a doffed line for Alo = 3.

Phase images, which are commonly used in flow imaging, are reconstructed from
the real and the imaginary images by calculating pixel by pixel the arctangent of
their ratio. This is a nonlinear function and therefore we no longer expect the noise
distribution to be Gaussian. Indeed, the distribution of the phase noise, AO = - ,
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is given by 70]

PAO(AO) 1 e -A'/2o,' +A v127r cosAO e A2 CS2 AO/20,2
27r a

A cos,&O

01 e-X2/2 dX (4.7)
2, f W -

Although the general expression for the distribution of O is complicated, the two
limits of A, A = and A > a turn out to yield simple distributions.

In image regions where there is only noise, A = , Eq. 47) reduces to

if -- 7 < O < r
PAO (AO) =: - (4.8)

O otherwise

This result is obvious since the complex data, which only consists of the noise, "points
in all directions" with the same probability.

For large SNR A > a, it is easy to see that the deviation in the phase angle, AO,
due to the noise will be small. The integral in Eq. 4.7) will therefore be close to and
the second term in the brackets will therefore dominate the constant 1. Equation 4-7)
therefore reduces to

PAO (AO) A cos �O exp A2(l _ CS2A0)
or V27r 2u2

exp A02 (4.9)

)2 2 (oIA) 2Vi7r (a /A�

The noise distribution in the phase angle can therefore be considered as a zero mean
Gaussian distribution, when A or. This result is not surprising because when the
pixel intensity is large, all deviations parallel to the complex pixel intensity can be
ignored. Also the phase variations, due to the noise which is orthogonal to the complex
pixel intensity, can be linearized as /A, where a represents the orthogonal part of
the noise.

The standard deviations for the phase noise can in general be calculated by using
Eq. 47), however, for the two special cases in Eqs. 48) and 4.9) it is given by

a if A or
UAO A 2 (4.10)

7 _if A = FM

Figure 42 shows the distribution in the phase noise, evaluated by Eq. 4-7), for several
signal to noise ratios. The Gaussian approximation is also shown by the dotted line
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for A/a = 3. Clearly the Gaussian approximation is very good even for fairly small
signal-to-noise ratios.

Phase images are sometimes weighted by the magnitude data, in order to reduce
phase variations in regions with no signal. The general noise distribution for such
images is nontrivial. For regions with large SNR one can show that the distribution
approaches a Gaussian distribution whose standard deviation is a.

4.3 Bias Reduction in Magnitude Data

For large SNR Eq. 46) shows that the mean of M is not the true image intensity A,
but approximately fA�2+ �a2. This is a small deviation for large SNR, however, when
the SNR is small this bias has to be considered. We will continue to approximate
the mean by the simple expression v/A�2+ �a2 for all SNR, but for an exact analytical
evaluation of the mean of Eq. 43) see refs. [10, 108]. Figure 41 shows the mean of
the Rician distribution for several values of Alo, plotted as a straight vertical line.
Henkelman suggested a look-up table correction scheme to correct for this bias [58].
We suggest a much simpler correction scheme.

To reduce the bias the following post-processing correction scheme is suggested:

A = VI �M2 �-c-2 T (4-11)

The probability distribution for the corrected signal, A, is then given by

A-pm(,/;2+A2) A-pm(+ if A <
p,4 (A) N/;2+A2 2 (4-12)

A.PM( if A > ,
V/;2+A2

where pm is defined by Eq. 4.3). The distribution of A is shown in Fig 43 for several
signal-to-noise ratios. We see that the bias is greatly reduced, however, the corrected
distribution is not Gaussian. For ratios of A/a > 2 the corrected distribution is
however very close to being a Gaussian. Table 41 lists the mean and the standard
deviation of the corrected and uncorrected distributions.

A different, but somewhat similar, correction scheme has been proposed for power
images, independently by Miller and Joseph [85] and McGibney and Smith [81] to
perform quantitative analysis on low SNR images and as an unbiased SNR estimate
respectively. It is interesting to compare this with our correction scheme, described
above.
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1
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M/0' M/a

0 1 2 3 4 6 0 1 2 3 4 6
M/0' M/a

Figure 43: The distribution of the corrected pixel intensity, A (bold), compared with the
Rician distribution of M for several signal-to-noise ratios. The mean of the corrected distri-
bution, A, is shown with a vertical line.

Their correction scheme is based on the simple relationship between the mean of
the measured power and the true image power, namely M = A2 22 [58,85]. Their
correction scheme is therefore simply

A = M2 - 22 (4.13)

We have found that the resulting distribution for the corrected power, A2, is given by

(,i2+2a2+A2 )/20-2 A - V/A 2 2 2pi, (A2 = 1- Io (4.14),'2 e U2

The mean of A2 gives an unbiased estimate of A 2 We have calculated the variance of
A2 and found it to be given by

a� = A 20,2 44 (4.15)
A2

Figure 44 shows the distribution of M2 and A2 as the original and the corrected image
power respectively. The distributions are clearly far from being Gaussian at low SNR



3 SNR = 

I 

) 4 9 16 25
m2lor2

I--- - - __

11
P 4 9 16 25 31

M2/0,2

SNR = 2

I' I .

SNR = 3

I i

60 CHAPTER 4 MRI NOISE CHARACTERISTICS

0.�

O.'I

O.f
le

0.1

f% l_,
W %J

0.4 SNR=O -

0.2

C
5 5

W I j

0.1

0.05

n

A - r 0.1

O.OE

I
C

364 9 16 25
M2/U2

4 9 16 25
M2/or-2

36

Figure 44: The distribution of the corrected pixel powerA2 (bold), compared with the
distribution of the measured power, M2, for several signal-to-noise ratios. The mean of the
corrected distribution, A = A 2, is shown with a vertical line.

although their mean is always the true mean, A 2 . This can lead to some, ambiguities,
when information is extracted from corrected power data, since least-squares fitting
techniques, such as nonlinear chi-square minimization, assume Gaussian deviation
which is fully characterized by its standard deviation. For large SNR, however, one
can show that the distribution for A2 becomes approximately a Gaussian distribution

Of VA2 with a mean A 2 and variance given by Eq. 4.15). The variance dependence on
the power strength is an issue which has to be taken into account, for accurate fitting.
Unlike ours, their correction scheme, originally proposed to fit mono-exponentials [85],
cannot be used when the signal has a multi-exponential nature. Finally, analysis based
on statistics from a region of interest will be sensitive to any variations in A, because

2the mean of the distribution is a function of A 

4.4 Fitting Exponential Curves
In section 34 it is shown that for spin echo, the diffusion related attenuation can be
described in terms of an exponential decay curve, i.e. exp(-bD). Similarly, the free



Alo, A/c o,,4/c Mlo, amlo,

0 1.03 0.35 1.25 0.43
0.5 1.10 0.42 1.33 0.48

1 1.30 0.59 1.55 0.60
1.5 1.61 0.79 1.87 0.73
2 2.03 0.96 2.27 0.84

2.5 2.50 1.04 2.71 0.90
3 3.00 1. 7 10.9
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Table 4.1: Some statistical properties of the ician distribution and the correction scheme
for several signal-to-noise ratios.

induction decay due to transverse relaxation can be modeled as exp(-t/T2). There-
fore, it is of great importance in MRI to accurately estimate data from exponential
decay curves. Because of its simplicity and the availability of fast algorithms, linear
least-squares is the most commonly used technique for fitting data with Gaussian
measurement noise. We will therefore only focus on this particular technique.

4.4.1 High Signal-to-Noise Ratio

In the following discussion, it is assumed that the measured signal decay can be
described by a mono-exponential

Y = M exp(-b,,,D) + n'M M (4.16)

where y,,, denotes the measured signal, b, is the m'th b-factor applied and n' is the
measurement noise which variance is a. Also, M is the signal strength measured
with zero diffusion sensitivity. To cast this into a linear least-square problem, the
logarithm is applied on both sides

n/
M = C - bmD + nm

M exp(-bnD)
YM ;z_- In M - bmD + (4.17)

This first order Taylor approximation is good if the signal variations due to noise are
2small, i.e. sufficient SNR. Clearly, the noise, n, has no longer fixed variance, a 

When many measurements are taken, it is more convenient to write Eq. 417 in
vector notation

y = B [C D]T + N (4.18)
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where
1 -bi

B= (4.19)

By defining x = C DjT the weighted least-square solution can be written as 42]

R = (B TWB) 1 B TWY

= Py (4.20)

where Wj = exp(-b - D) and the off-diagonals are zero. The matrix P is referred to
as the pseudo-inverse.

Multiple b values

The diffusive attenuation is often measured with b-values distributed evenly from the
minimum b-factor to the maximum b-factor. It is interesting to consider the case when
three measurements are taken with b = bmin, b = (min + bmax)/2, and b = bmax.

According to Eq. 420), the diffusion estimate is given by

[ 0 11Y (4.21)
bmax - bmin

Therefore, the second measurement has no affect on the estimated diffusion coefficient.
A better estimate. with smaller variance, is obtained if the second b-factor is bmax In
general, with multiple b-factor the measurements from the center b-values influence
the diffusion estimate much less than the measurements taken with b-values close to
bmin and bm,,x. Also, as shown in Eq. 417), the log-transformed noise is higher in
aata points of measurements taken with high b-values. Hence, it is more important
to average those measurement than those taken with low b-values.

Two b values

Time constraints often limit the number of possible measurements. It is important
to choose the )-factor such that the estimate of the diffusion coefficient is as precise
as possible. Consider the case when only two measurements are taken with b, and
b2- Clearly it is always optimal to choose the lower b-value as small as possible, e.
b = 0. The second b-factor should be chosen such that the variance of b is as small
as possible. From Eq. 4.20), the estimate is given by

1] Y (4.22)
b
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where b = b - bl. The variance is therefore given by

var jyj I + var Y21
var 01 = 

b2

012+ exp(2bD) 0r2 (4.23)
M2b2

Solving for the minimum gives

a var 0 bD exp(2bD = I exp(2bD) (4.24)
ab

The solution to this equation shows that bpt -_ 1.11D. This expression does not take
into account the T2 relaxation of the Signal. Because of the finite gradient strength, the
echo time needs to be long enough to fit in the diffusion gradients. rom Eq. 338)
it is clear, that the minimum echo time is given by

3b 1/3
TE = �� (4.25)

2-y2G2max

If the transverse relaxation is known, it is easy to use a computer simulation to
estimate the precision of h (UD) in a two point log-linear least-square fit. Similarly,
the relative precision, DID, can be estimated. Since the optimal b-factor is a function
of the diffusion coefficient, it is more logical to use a range of diffusion coefficients.
The figure of merit is then defined as the average precision of the diffusion coefficients
in the specified range. We set the range to be: 0. 1 ILM2 /MS < D < 1IM2/MS . Three
different relaxation parameters, which can be expected in white and gray brain tissue,
were used in the simulation. Also, two maximum gradient amplitudes were tried,
1G/cm and 1.5G/cm. The results are shown in Fig. 45. The optimal b-factor is
clearly close to 1000 S/MM2 , however, it is also obvious that by using a b-factor larger
than 500 s/mm 2, one gets precision which is very close to the optimal precision.

4.4.2 Low Signal-to-Nolse Ratio

When the SNR is low, the analysis in previous section does not apply. This is because
the logarithm is a nonlinear function and the first order approximation is no longer
accurate. The nonlinearity of the logarithm in combination with the measurement
noise introduces bias into the data, y. Furthermore, the original magnitude data,
Y' is biased because of the Rician distribution. Hence, the diffusion estimate in
Eq. 4.20) will be a biased estimate of the diffusion.

Averaging can be used to minimize the noise. However, averaging does not elim-
inate the bias. Here, the correction schemes studied in section 43 will be analyzed
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in combination with a two-point log-linear least-square fit and data averaging. The
following four schemes will be compared:

I: [O 1] P In(y), i.e. estimate D from the average of the data points.

11: [O 1] P ln(y), i.e. estimate D as the average of the independent noisy
estimates.

III: [O 1] P In ��y2 U21 i.e. correct for the Rician bias using Eq. 4.11),

then average, and finally estimate D using the logarithm.

1V: = 11 P In ( 2 - 2a2 ) 2, i.e. use power data and correct for the Rician
bias using Eq. 413), then average, and finally estimate D using the logarithm.

A computer simulation is used to compare these four schemes. Without of loss
of generality, D and b are defined such that D = I and bD = . The data y is then
defined such that y = �(I+ �nj,_)2 2 2,

+ n1, and y = Vexp(-bD) + n2, )2 n2 where
n1r, n2r, nj, and n2i are zero mean Gaussian random variables with variance 2. The
signal-to-noise is then defined from the smaller data point, i.e. exp(-bD)/SNR.
In this way, both yj and y2 have Rician distribution.

For each of the estimation schemes, the bias or the accuracy of D is defined as
- and the precision of the estimate as the standard deviation of A The results

are shown in Fig. 46 for different number of averages and as a function of the SNR.
It is clear, that all these schemes give very similar results for SNR> 3. For very
low SNR, SNR< 2 scheme I is clearly worst because of the strong bias it produces.
When only four data points are averaged, scheme II and III are the best because they
combine low bias and high precision. Although scheme IV has the smallest bias for
SNR< 1, it gives very unprecise estimate. This is in good agreement with Eq. 415)
which shows, that for low SNR the relative variance is larger in power images than
in magnitude images. This variance is then emphasized by the singularity of the log-
arithmic function. However, if 256 data points are averaged, scheme IV yield almost
an unbiased estimate in accordance with section 43. Most surprising is the similar-
ity between the results obtained with schemes II and III. One might even speculate
whether they yield identical results in the limit of infinite averages. No attempt will
be made here to prove this hypothesis. Scheme II and III provide good compromise
between accuracy and precision for few averages. Scheme II, however, is much simpler
and it does not require a prior estimate of the noise, o. It is as if the bias from the
Rician distribution is in part opposed by the bias from the logarithmic function. Also,
the bias in the Rician distribution avoids the singularity of the logarithmic function.
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Figure 45: Left: The average precision, UD, Right: The average relative preci-
sion, aDID. Averages, taken over the range 0.1 ILm 21/MS < D < pM2 /Ms. Above:
G,,,,, = G/cm. Below: G,. = 1.5G/cm. The solid line is for T2= 50rns, the dot-dashed line
is for T2= 75ms, and the dashed line is for T2= 1 Oms. The curves have been normalized
by the maximum value of the dashed line because their actual value is noise dependent.
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SNR SNR

Figure 46: Comparing four schemes for log-linear least-squares fitting of exponential
data curves as a function of SNR. Left: accuracy (bias) and right: precision. Scheme I
(dash dotted), 11 (solid), III (dashed), IV (solid circles). Top: Four averages, middle: 16
averages, and bottom: 256 averages.
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4.5 Artificial Diffusion Weighting
As shown in chapter 7 it can be useful to enhance the contrast between healthy tissue
and ischemic tissue by using a large b-factor. Often the maximum practical b-factor is
limited by the hardware. Also, when time constraints limit the number of b-factors to
two, the b-factor should be chosen such that optimal estimate of the ADC-trace map
is obtained as discussed in section 44.1. However, a higher b-factor may be preferred
in order to allow for improved visualization of the lesion on the diffusion weighted
image.

After having obtained an estimate of the diffusion, (or the ADC-trace), it is
easy to calculate what the image should look like with arbitrary diffusion weighting b
by

I (b = I -exp (- bD) (4.26)
It is interesting to consider the relative noise in PM, i.e. Al(b)/!(b). If we assume
that is estimated from two measurements with b-values of zero and b, and that the

2noise variance in each of these measurements is a then it is relatively easy to show
that

b 2 b 2
std 11(b I = ,� + + ebD- e-bD (4.27)

b,

In particular, if the diffusion sensitivity is doubled, then

AI(2b,) AI(b,) V9 + 4e2b,!DebD (4.28)
I(2b,) I(b')

Therefore, the relative noise increase is in the range from 2 to 3 depending on the
choice of b, Obviously, it is preferable to measure the data with as large b-factor as
possible, if artificial diffusion weighting is used because a large bD minimizes the
noise increase.

A different way to double the diffusion sensitivity is to square the image data It
follows directly from Eq. 4.15), that the relative noise in such power image is twice
as large as in the original magnitude image 2 A drawback to this approach is that it
also enhances the T2 weighting. Furthermore, in this way, it is not possible to weight
the data by the trace of the diffusion tensor.

2Assuming a good signal-to-noise ratio, i.e. A >> o.
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Chapter 

SSFP Flow and Diffusion Sensitivity

5.1 Introduction

HE steady-state free precession (SSFP) imaging pulse sequence has for long been
r] known for its high sensitivity to flow 1021 and diffusion. The diffusion sensitivity
of SSFP has been thoroughly investigated 17,65,74,84,146] whereas the sensitivity to
both flow and diffusion simultaneously has previously only been studied experiment-
ally 49,53,83]. One of the reasons is, that, the approach used by Kaiser et al. to obtain
a closed form solution for the diffusion sensitivity is not feasible when bulk flow is
added to the model. In this chapter we use a partition analysis (PA) to obtain an
approximate analytical solution for the simultaneous sensitivity of SSFP to both flow
and diffusion. Our approach parallels that of Buxton [15], however, includes the flow,
as well as the diffusion and is a fourth order instead of a second order approximation.
The simulation technique derived in chapter 3 is then use for cases where the PA is
inaccurate as well as simulation of pulsatile flow.

The flow sensitivity of SUP was first described by Patz et al. 102] in terms of
a gradient dependent scale invariant parameter. Patz [100, 101] also showed how it
is possible to suppress the signal from static spins and make the steady-state signal
more sensitive to slowly moving spins by using the moving reference frame (MRF)
technique. The MRF method was later used by Tyszka et al. 129-131] to image
very slow fluid flow. The flow sensitivity of SSFP has been used for fast imaging
of cerebrospinal fluid motion 63] and has also been applied in the study of renal
microcirculation. A strong correlation was shown to exist between the signal in a
missing pulse SSFP sequence (MP-SSFP) 103], which has a flow sensitivity similar
to the SSFP sequence, and the perfusion rate in kidney 119].

Because SSFP is very sensitive to diffusion and has relatively short acquisition
times, it has been proposed for diffusion imaging 26,74] as an alternative to method
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such as echo planar imaging (EPI), which require specialized hardware, and to the
pulsed gradient spin echo (PGSE) method 117].

The alm here is to analyze the sensitivity of SSFP to both bulk flow and diffusion.
It is important to understand this simplified problem in order to gain understanding
of more complicated situations that are to be expected in vivo. Understanding of the
flow sensitivity is also essential in order to maximize or minimize the flow attenuation
in SSFP imaging [125,1521.

5.2 Theory
Steady-state free precession (SSFP) sequences involve the application of a stream
of RF pulses separated by a time interval, TR, which is less than the time it takes
the magnetization to reach its thermal equilibrium. One cycle from a general SSFP
imaging pulse sequence is shown in Fig. 5-1. This sequence acquires both the FID
and the echo, however, it is also possible to acquire higher order echoes.

The Bloch-Torrey equation can be solved easily for the free induction decay which
results after applying a single RF pulse 1 18]. For a series of RF pulses, like in SSFP it
turns out to be easier to analyze the dynamics of a magnetization located at a specific
point in space. The magnetization vector represents an ensemble of spins located in
the same� region and is usually called an isochromat.

5.2.1 The Steady State of an sochromat
By assuming that the RF pulses are instantaneous, relaxation can be neglected during
the pulse. The dynamics of the isochromat are then described by a RF rotation,
precession, and relaxation. Figure 52 shows a discrete state model of the Bloch
equation for SSFP, where the time increments are TR. The magnetization vector just
before the application of the RF pulse (echo) is denoted by M- and just after the RF
pulse (FID) by M+. Furthermore, we let a denote the flip angle, El = exp(-TR/Ti)
and E = exp(-TR/T2). The precession angle is obtained from the Larmor equation
(Eq. 215)), = G,,ff rTR where we define Geff as the average gradient strength
and r as the location of the isochromat

Geff = , IT' G(t) dt (5-1)TR "

The longitudinal relaxation, (I - El), can be considered as a discrete input to the
system, because we are only interested in solving for M+ and M-. It is important
to realize, that this discrete system is linear and when neither flow nor diffusion is
present, its response is also time invariant. Due to relaxation, this system is stable
and does therefore reach a steady state.
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Figure 5-1: An SSFP pulse sequence with flow and diffusion sensitivity in all directions.
The effective gradient, which determines the diffusion sensitivity, has to be kept constant in
each SSFP cycle to establish a steady state. This is accomplished by rewinding the phase
encoding gradient, which amplitude varies from cycle to cycle.

Given the condition of a steady state we can relate M+ and M- by using EqS. 2.9)
and 2.13)

M- = P M+ + i(l - E)MO
M' = R M- (5.2)

These two equations can easily be solved to give M = R (I - PR)-'g - E)MO
[34,43]. The expanded solution is given by

M +z (5-3)

--t_ H H

Signal

G- H H
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Figure 52: Discrete-State model for the Bloch Equation in SSFP. Spin-lattice relaxation
can be considered as an input, entering the spin system just before each RF excitation.

The steady-state solution has a much simpler form in the complex notation

= M ae-'O + b
MXY 0ccoso + d (5.4)

where

a = -(1 - EJE2sin a,
b = ( - El) sin a,
c = E2(E - 1) (1 + cos a),
d = -Elcosa-(El-cosa)E22 (5.5)

The echo is then calculated as

M = �+ E2e'OXy MXY (5.6)

In linear gradients, the steady state has a periodic spatial dependence due to its
dependence on . The wavelength, A, is defined by
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A-ylGff ITR = Alkff I = 27r (5.7)

The magnetization will reflect the proton density, p(r), modulated with the steady
state periodic spatial dependence. Due to the periodicity of the magnetization it can
be written as a Fourier series

00

M+ (r, t = p(r) exp [-t/T2 + ik(t) - r] E Ane inkeff -r (5-8)Xy
n=-oo

where t E (0 TR) and k(t) is given by Eq. 2.16).
Equation (5.8) shows that in an SSFP imaging sequence, the pixel intensity will

be influenced by the local magnetic field through the precession angle. Remedies to
this problem have been suggested and are commonly used in practice. They involve
adjusting the effective gradient such that an integer number of SSFP wavelengths exist
within each image voxel [111]. The average FID signal per voxel is then given by

1 12- MO ae-'O + b a b - a 1,rn+ = Ao = - - do=Mo + - - (5.9)
Xy 2-7r 0 ccoso + d C d c V/ �- m 2

where m =: c1d. General expressions for the coefficients, An, in the absence of
diffusion and flow can be found in ref. 152] and a solutions which includes diffusion
can be found in ref. 65,146]. In absence of both flow and diffusion the solution is
given by

1 12,x -i(n+l)o -ino"f ae beAn 0 - dO (5-10)27r 0 ccoso+d

In particular

A-, = Mo b + a - b 1 (5-11)
C d c V F �-m�2

and for any n we get 152]

1 M�2
A,+1 = Ani n > 

M

An- = r An7 n < (5.12)
M
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5.2.2 Static Magnetic Field Inhomogeneity Effects

The applied gradient is not solely responsible for precessing the spins and static mag-
netic field inhomogeneity cannot be neglected in a real imaging experiment. More
importantly, one cannot control the phase evolution from static field inhomogeneities
the way one controls the gradients. Immediately following the RF pulse the FID is in
phase and then it dephases and vanishes as time increases. The echo signal, however,
fully dephased initially after the RF pulse excitation will be in focus just before the
next RF excitation, i.e. it dephases backwards in time. Because RF excitation and
data acquisition cannot occur simultaneously, the radients are used to refocus these
signals at time points just after the RF excitation and before the RF excitation to
read the FID and the echo, respectively. This is shown in Fig. 5-1. The time differ-
ence between the gradient echoes and the "natural" echo location determines the time
interval in which phase evolution due to static inhomogeneities takes place.

Usually it is assumed, that when there is a distribution of static inhomogeneities
within each image voxel, the contribution to the natural linewidth can be modeled as an
increase in the transverse relaxation, i.e. 1IT2 = I/T2 + 1IT2 where 1IT2 = YABo/2.
If TE denotes the time from the RF pulse to the gradient echoes, it should be clear
from previous discussion that the FID and the echo signals can be written as

b a I I I
+y (t = M. exp -TE + - (5-13)

C d c V r �-m�2 T2 T2

- ( = MO b a b I exp TE TR - TE (5-14)
MXY C + d c v F �-m�2 T2 T2

For a discussion of the effects of static magnetic field inhonlogeneity on the higher
order echoes see ref. [152].

5.2.3 Optimal Flip Angle

From Eqs. 5.4) and 5.6), we see that the steady-state is only a function of El and E2,

but not T2*. Therefore, the flip angle which gives maximum signal' is only a function
of TR, T and T2.

When the repetition time is long compared to T2, i.e. E2 �� 0, the optimum flip
angle for the FID is the Ernst angle

a.,t = Cos-'(El) (5.15)

'Ignoring flow and diffusion.
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SSFP-FID SSFP-echo

U

0.2 0.4 0.6 0.8
E2 E2

Figure 53: Optimum flip angle for SSFP-FID (GRASS) to left and SSFP-echo to right.
Contours at 100, 200,..., 800. In the lower left corner the angle is 900.

For the SSFP-FID and the SSFP-echo the relationship is more complex as shown
by Fig. 5-3. The optimum flip angle for SSFP-FID at E = is however the Ernst
angle.

5.2.4 Image Artifacts in SSFP Imaging

A subject related to the uniform pixel intensity is the separation between the FID
and the echo as well as the higher order echoes. Several authors have considered
this subject 54,67,86,151]; however, their mathematical analysis did not consider an
inhomogeneous proton density A much easier ad more intuitive approach is to ana-
lyze the magnetization in k-space. Zur et a]. [151] numerically evaluated the relation
between the effective gradient and the readout gradient in order to have uniform pixel
intensity. Their analysis is, however, only exact when physical parameters such as
the proton density are uniform over the whole field of view. As shown in Eq. (5.8)
the magnetization is modulated in space by the SSFP wavelength. The k-space in-
formation of the object will therefore be aliased over k-space due to convolution of
the spatial frequencies of the object's proton density with the harmonics of the SSFP
wave. The separation of these peaks will depend on the effective wavenumber, keff,

and the amplitude of the harmonics, A,,. Only when kff is two times larger than the
highest spatial frequencies of the object, can the echoes be considered fully separated.
Whether this is true will depend on the structure of the object. It is, however, always
true that the larger the effective gradient, the better is the separation and uniformity
of the pixel intensity. This, however, leads to larger flow and diffusion sensitivity as
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we will show later.

Examples to clarify previous discussion are shown in Fig. 54. In Fig. 5-4a an
attempt is made to visualize the situation where the effective gradient is in the z-
direction, i.e. through the rectangular slice profile. The Fourier transform of the
slice profile is a sinc function. If the slice thickness is an integer number of SSFP
wavelengths, A, then the zeros of the sinc function are located precisely where the
adjacent harmonics lie. When the slice is thick and the proton density is nonuniform,
the sinc function has to be replaced with the spatial frequencies of the object convolved
with a sinc. Hence, it is clear that the more SSFP wavelengths there exist within each
image voxel the better separation of the echoes, i.e. more uniform pixel intensity.
Figure 5-4b shows the case when the effective gradient is in the image plane. The
arrows show how the gradients used in the SSFP pulse sequence in Fig. 5-1 direct the
"travel" in k-space.

AO

P

fi

a) b)

Figure 5-4: a) The harmonics of the magnetization convolved with the Fourier transform
of the slice profile whose thickness is exactly A,. When the FID is acquired (k,(t = 0), the
contribution from all the harmonics is zero except AO. Similarly, A-, is the only harmonic
which contributes to the signal when k,(t = k,,eff, i.e. during the acquisition of the echo.
b) The aliasing of the objects spatial frequencies depends on k,,eff and kyeff as well as the
object itself. The trajectory in the k-space, shown here on top of the contour plot of the
spatial frequencies, corresponds to the pulse sequence shown in Fig. 5-1 with no phase
encoding.

f
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It has been shown by Zur et a]. 152], that it is possible to use phase cycling to
separate the higher order echoes in SSFP when the effective gradient is small. This is
desirable if one wants to reduce the flow sensitivity. Their method resembles the tech-
nique used in spectroscopy to select a particular quantum coherence order [115]. It is
a subtraction technique that requires several acquisitions. The number of acquisitions
is determined by the size of the harmonics, A,,. In practice, as few as 6 acquisitions
are sufficient because both the magnetic field inhomogeneities and diffusion-related
attenuation significantly reduce the amplitude of higher order harmonics.

5.2.5 Partition Analysis

We present in this section a partition analysis, which, despite being an approximation,
provides good insight into the flow and diffusion sensitivity of SSFP. When either flow
or diffusion is present, the previous analysis cannot be used because the precession
angle of the isochromat will no longer be constant. Indeed, each isochromat will
not reach a steady state. As we will show, the ensemble average of isochromats
from a voxel with a uniform distribution of precession angles will still reach a steady
state. To approximate the steady state, we exploit the fact that the discrete state
model for an isochromat shown in Fig. 52 is linear. The response to each input
impulse can therefore be found separately. Each three dimensional vector can be
decomposed into a longitudinal and two transverse components. The input vectors
are purely longitudinal but the RF pulses tilt them into the transverse plane. The
precession then further decomposes the transverse part into two orthogonal transverse
components. At the time when the RF pulses are applied, each of these three vector
components are "fed back" and will be decomposed into three new components. This
partition continues in each cycle and the number of components grows exponentially.
The total contribution from each input vector, or its impulse response, can then be
found by adding together all the vector components. It is difficult to keep track of
all the components; however, it is easy to approximate the signal by limiting the
number of "echo pathways". These echo pathways are shown schematically in Fig. -
5. They represent the partition of each input vector into longitudinal and transverse
components. The longitudinal components do not precess and are represented by
horizontal lines; however, the transverse components that precess are represented by
sloped lines. The slope indicates the precession of some particular isochromat and will
depend on its location. During each longitudinal pathway the signal is attenuated y
El and by E2 during each transverse pathway.

A fourth order approximation in E2 of the signal strength can be calculated by
adding together the signal from all echo pathways with no more than four transverse
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Figure 5-5: This diagram represents the partition of a single vector impulse that enters
the system in Fig. 52 A particular pathway, TTLTT, is shown with a thicker line. Between
the RF pulses the precession angle, , increases byr.kff. The RF pulse splits each vector
into three new vectors. Pathways that cross the zero phase line represent the parts of the
original impulse magnetization vector whose phase is reduced to zero. Only those parts
contribute to the echo.

pathways:

M- -- L ... LTT + L ... LTL ... LT
+ L ... LTTTT L ... LTL ... LTTT
+ L... LTTL ... LTT + L... LTTTL ... LT
+ L ... LTL... LTL. .LTT L... LTL ... LTTL ... LT
+ L ... LTTL ... LTL ... LT L... LTL ... LTL ... LTL . . .LT, 5-16)

where L ... L represents one or more consecutive longitudinal pathways. Note that we
have ignored pathways with an odd number of transverse pathways because according
to Fig. 5-5 they can never have zero phase and therefore do not contribute to the echo.
An equivalent mathematical expression that proves this statement is Eq. (B-3). One
of the reasons why we have chosen to calculate a fourth order: partition approxima-
tion instead of a second order approximation is that it is more accurate for a wider
range of T2/TR ratios. But more importantly, the fourth order approximation reflects
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the behavior of the steady-state signal as a function of E2 whereas the second order
approximation does not. In the second order approximation all the terms are propor-
tional to E2 and changes therefore only affect the overall amplitude. The fourth order
approximation, however, gives more information such as the relation between E2 and
the RF flip angle.

The expression for each component can be found by repeatedly using Eqs. 213)
and 2.9). Here we will only calculate the magnetization for one type of echo pathway.
The calculations are quite tedious but are all "variations on the same theme". Here
we will only consider contributions from all echoes of the type:

L ... LTL...LTL...LTL ... L T
n M I k

This is the last term in Eq. (5-16). In presence of flow and diffusion, the precession
angle will no longer be constant as in Fig. 5-5. The relation between the precession
angles in consecutive cycles is given by

0(n) = 0(n - ) + -yGeff TR [vTR + Ax(n, D, TR)] AO(n, D, G, TR) (5.17)

The terms in the bracket are the displacement of the isochromat due to the flow
velocity, v, and the random variable Ax is due to the diffusion, D. The random
variable AO(D, G, TR) denotes an additional change in the precession angle, which
depends on the shape of the gradient. If we assume the duration of he gradient is
much shorter than the repetition time, this term can easily be ignored.

The expression for the x-component of the magnetization can now be written by
using Eqs. 213) and 2.9).

M(n,7n,1,k),, = Mo(1-Ej)(Ejcosa)n,,+1+k-3 E 3E,4 sin7a

COS(01) COS(02) COS(03) sin(04) (5-18)

where 1, - - , 04 represent the precession angle of each transverse pathway. Note that
the physical significance of this is that longer pathways are better preserved for smaller
flip angles than for larger flip angles, because cos a is closer to one.

As pointed out in a previous section, we are interested in the signal from a uni-
form distribution of precession angles. The probability distribution of all the random
variations in the phase due to diffusion also has to be taken into consideration. The
average value, which we represent by is therefore given by

I 2ir oo oo oo

27r f f f f M 0 1, 02, 03,104) Pr(,01, 02, 03, 04)d04d03d02d0j (5.19)
0 00 00 00
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For free diffusion, the particle displacement has a Gaussian distribution and these
integrals can therefore be evaluated analytically for Eq. (5.18). Unlike the case when
only diffusion is present, the flow makes the x-component of Eq. (5.18) nonzero,
because the precession angles 1, - , 04 are no longer all equal. The details of the
integration can be found in the Appendix.

One can assume, that in order to reach a steady state, the system has been excited
by infinitely many longitudinal inputs. The transverse signal at any given time can
be expressed by adding up all the pathways, from all previous inputs, which are in
the transverse plane at the echo time. Hence, the final result for the x-component of
the L ... LTL ... LTL... LTL ... LT pathways is given by

00 00 0 .

(MX = 1 E E E (M(n, m, 1, k.)
n=O m=l 1=1 k=l

I Ln3 V4 7
MO (I - El) - _J2 sin a

I - El cos a "-"'L
+ I AD (sin (4A,) - sin (3,A,) AD El cos a)

8 D 2(1 - El cos a)1

1 ADE, cos aA 4 (sin(3A,) - sin(2A,)ADE, cos a)D

12(1 - El cos a)
1 A2 (sin(8A,) - sin(6,A,)A 4El cos a)

+_ D
1 D2

2 AD El cos aA 12 (sin(7A,) - sin(5A,)A 4 El cos a)D D
28 Dl.D2

I A2E 2 S2 aA 12 (sin(6,A,) - sin(4,A,)A4El cos a)D I D D+_ (5.20)
1 2D2

where

D, = (1-2cos(A,)ADElcosa+A 2 E2 CS2 a)D I

D2 = ( - 2 cos (2,A,) A 4 El cos a A E 2 S2 a) (5.21)
D D 1

and
A, = 7G,,ff vTR 2 and AD = exp, [-bD] (5.22)

where b (7G,,ff TR)2 TR is the commonly used diffusion factor.
We notice that the steady-state signal has a complex flow dependence and the

diffusion attenuation factor, AD, appears in many different powers. This is due to the
fact that the signal is composed f many different pathways which have different time
lengths. The flow dependence is obviously periodic since the flow velocity only enters
through trigometric functions. This period can be found from the definition of v
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and agrees with earlier definitions of a gradient dependent scale invariant parameter
used to quantify the flow sensitivity of SSFP [101 102]. As expected, the x-component
of the signal vanishes when no flow is'present. The expression for the y-component
resembles Eq. 520); however, the flow enters through cosines instead of sinusoids in
the nominator. The contribution from the other types of pathways is calculated in
exactly the same manner as we have just prescribed.

5.3 Computer Simulation
We did a computer simulation to verify the PA and to evaluate the flow sensitivity
for large T2/TR ratios, where the PA is inaccurate. It is desirable to have a fast
simulation technique for SSFP since the magnetization has to form a steady state
and that usually takes several RF cycles. When diffusion and flow are included in
the simulation model, the conventional Monte Carlo (MC) and finite difference (FD)
methods will usually be very slow 17].

Results from a MC simulation of SSFP in the presence of both diffusion and flow
have been published earlier by Tyszka et a]. 129,131] but they only approximated
the effect of diffusion by increasing the transverse relaxation 74]. Wu et a 146]
have shown that this approximation does not give the correct flip angle dependence of
the diffusion sensitivity.

In chapter 3 we developed a new very fast simulation technique, which correctly
simulates the diffusion and flow without sacrificing computation speed 48,51]. This
technique applies to any pulse sequence and is especially useful in simulating the
SSFP sequence or other steady-state sequences such as the missing pulse steady-state
(MP-SSFP) 103]. Not only does the simulation provide the steady-state value but it
also shows how the magnetization evolves into the steady state.

5.3.1 Circular Convolution Method
From Eq. 322) we see that the dynamics of spins in the presence of free diffusion can
be simulated correctly by first updating the magnetization using the Bloch equation
for static spins and then convolving the magnetization with a diffusion propagator,
which we call a correction-kernel, to account for the movements of the spins [51]. The
correction-kernel is then easily odified to include the effects of bulk flow as well. For
a constant magnetic field gradient during some time step At the correction-kernel is
given by

c(x, G, t) exp, -(X - At)2 _y2G2DAt3 + iGx + vAt A
V27 - 2DEt- 2 - DAt 12 2

(5.23)
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As we know from Eq. (5-8), the magnetization is spatially periodic. We let A denote
the steady-state wavelength which we then discretize with N points. Then we define
MXY In, t] as the transverse magnetization at location x = nAIN at time t and similarly
we define m,, In, t = M, (nA/N, t). Although, generally speaking, the spins can diffuse
further than one wavelength duri-.-g the SSFP cycle, we only need to evaluate the
magnetization in one wavelength. This is due to the fact that any magnetization
which leaves a wavelength-long region from left equals the magnetization which enters
from right and vice versa. Hence, it is possible to simulate free diffusion by using a
N point circular convolution. Between the RF pulses, the simulation algorithm for
the transverse magnetization is give by

MXY In, t + TR] = (MX In, t] ei27rn/N ) 0 C[n, G,,ff JR] E2 (5.24)

The longitudinal magnetization is updated in the same manner but without any pre-
cession

M, In, t + TR] = m,, n, t] � c[n, 0, TR] -El ( - El) Mo (5.25)

As we showed in section 33.2, these calculations are exact for any large simulation
time step At [51]. In conventional MC and FD methods, however, large simulation
time steps cause incorrect phase integration or instability. In practice, both the mag-
netization and the correction-kernel have to be sampled in space with sufficient density
to avoid any aliasing. If -�ve assume the gradient is only on during the first part of the
cycle, then two correction-kernels have to be used, the latter with G = . However,
because the magnetization does not precess when the gradient is off, the second simu-
lation step only involves convolution. The two correction-kernels can then be cascaded
into a single kernel, that is cn, Geff , TR] = c[n, G, At] �c[n, 0, TR - At]. This reduces
the computation time in simulating SSFP with a pulsed gradient. The RF pulses
are calculated by Eq. 2.9) and the steps in Eqs. 5.24) and 5.25) are then repeated
between the RF pulses.

5.3.2 Discrete Fourier Transform Implementation

In the SSFP pulse sequence, the effective gradient in each TR cycle is always the
same as shown in Fig. 5-1. This allows us to exploit the spatial periodicy of the
magnetization. Before we describe the simulation algorithm, it, is useful to define the
following N-point discrete Fourier transform (DFT) pairs 96]

M,,y [k, t] m.,;y n, t]

M, [k, t] m,, In, t]

C[k, G, At] T14 c[n, G, At] (5.26)
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The simulation algorithm represented by Eqs. 524) and 525) can now be written
in the Fourier domain as

M-,Y [k] = M,y [k - ] C [k, Geff , TR] E2

M.-[k] M.+[k]-C[kOTR].E,+N.6[k](1-El) (5.27)

where 6[k] is the Kronecker-delta function. The precession simply shifts the spatial
harmonics of the magnetization and the convolution is replaced by multiplication. The
computation time is much reduced because the number of multiplications is (N)
whereas in convolution the number of multiplications is (N 2) . The expressions for
the RF rotation can be found from Eq. 29) and the definition of the DFT 96]:

1 + cosa cosa
M.Y[k] - M.- [k] M.,-; [- k] + i - sin a M- [k]

2 + 2

i -sin a i -sin a
M.+ [k] M.- [k - � � M,Y - k] + cos a M,, (5.28)

2 2

The asterisk is used to represent the complex conjugate. It should be noted that
this DFT simulation algorithm which is expressed by Eqs. 527) and 528) is in
complete harmony with the diagram in Fig. 5-5. The RF rotation mixes the negative
and positive magnetization harmonics and between the RF pulses the precession shifts
the harmonics up by one.

In the Fourier domain, the initial condition where the magnetization is in thermal
equilibrium is given by

M�,[k, 0 = N 6[k] Mo and M,;y [k, 0] = 0 (5.29)

The simulation steps Eqs. 5.27) and 5.28) are then repeated until the magnetization
reaches its steady state. The detected signal is the average of the zeroth order har-
monic, My[O]IN, since the other harmonics integrate to zero. The higher harmonics,
however, contain the amplitudes of the higher order echoes which can be acquired n
SSFP [54,67,86,152].

5.4 PA and Simulation Resufts
The fourth order partition approximation was evaluated for a range of different para-
meters. Figure 56 shows how the magnitude of the SSFP-echo behaves as a function
of flow and diffusion. The flow sensitivity is periodic and symmetrical. We denote
the flow period by the aliasing velocity V = A/TR. The magnitude range of the
flow sensitivity is then completely described when the velocity ratio v/V, ranges from
zero to 12. The diffusion sensitivity is then plotted as a function of bD. For the
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parameters used in Fig. 56, we clearly see that SSFP is more sensitive to flow for a
30' than a 90' flip agle. This is comparable with the diffusion sensitivity [15], which
is also higher for smaller flip angles. This can be understood from Eq. (5.18). When
the flip angle is small, the higher order pathways or stimulated echoes make a signi-
ficant contribution to the SSFP signal. These echoes are very sensitive to any motion
because of their long time path. Hence the steady state is more easily scrambled for
the smaller flip angles.

30 deg 90 deg

0
M
M

0.05 1' .--

0.04

o 0032
M 002

0.01
0.5

0
n

I

0.5

0.2 0.2
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Figure 5-6: The sensitivity of SSFP echo magnitude plotted as a function of diffusion (bD)
and flow vlV). At left a = 300 and on the right a = 900. T/TR = 0 and T2/TR = 2.

We also note that for the 90' flip angle the signal shows a very complex behavior
when the diffusion is varied and v = V/2. At first the signal decreases when the
diffusion is increased and reaches a value close to zero. Then, however, increasing
diffusion leads to increased signal. Eventually the signal strength will of course start
to fall off as the diffusion increases but it is interesting that a certain combination of
flow and diffusion causes maximum scrambling of the steady state.

The PA was compared with results from computer simulations. In Fig. 57 we see
the agreement is very good for T2/TR ratios as large as 2 We also note that the match
is very good for higher ratios of T2/TR when the diffusion sensitivity is large. This is
similar to our observations on the flip angle behavior. Increasing diffusion decreases
the higher order pathways significantly so that their contribution to the signal can be
neglected.
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Figure 57: The 4th order partition analysis (PA) compared with results from computer
simulation. The solid and dashed lines show the results from the PA without and with dif-
fusion, respectively. The circles and the stars represent the corresponding values from the
simulation. 1T = and a = 600.

5.5 Experimental Methods and Results

5.5.1. Pulse Sequence with a Moving Reference Frame

A 2D SSFP-echo pulse sequence was implemented on a 1.5T GE Signa imager (Gen-
eral Electric Medical Systems, Milwaukee, WI). The imaging pulse sequence is the
same as the one shown in Fig. 5-1 but without the acquisition of the FID. The flow and
diffusion sensitizing gradients therefore followed the RF excitation. In the sequence
we also included the moving reference frame (MRF) by varying the phase of the RF
pulses 129]. For a particular value of the RF flip angle, the steady state of the iso-
chromats is only influenced by the relaxation and-the precession. If the magnetization
is subject to constant bulk flow, it is easy to see from Eq. 517) that the change in
precession angle between subsequent cycles is given by

A, = 7r v (5.30)

V.
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By synchronizing the RF phase with this phase change, it is possible to make those
isochromats which are flowing experience the same RF torque as a stationary isochro-
mat does when the RF phase is kept constant. By similar means, the response of a
static isochromat in the MF will equal the response of an isochromat flowing at te
opposite velocity, -v, when the RF phase is kept constant.

In our implementation of the MRF technique, we used the following phase program

i) p.+i (W. Av) mod 27r

ii) 0+1 (0. + (P.+l) mod 27r

In this phase program, p and are used to represent the precession angle and the
total accumulated phase in the n'th SSFP cycle, respectively.

The phase of the n'th RF pulse was set equal to on; however, the phase of the
receiver followed the phase program of the following RF pulse, n+,. This is easy to
understand by "thinking backward in time". If the phase of the echo did not follow
the phase of the following RF pulse, the torque an isochromats experiences from the
RF pulses would not be constant and hence there would not be a steady state.

It is worth noting that our imaging sequence is different from the imaging sequence
described by Tyszka et a]. 129] since we acquired the echo (A-,) whereas they used
the FID (Ao), which is much less sensitive to flow.

5.5.2 Measurements

The imaging phantom contained three different liquids: water, doped water and ve-
getable oil. The longitudinal relaxation, TI, was estimated by using a fast spin echo
inversion recovery imaging sequence (FSE-IR). Several images were acquired with
different inversion time, TI. The implementation of FSE we used acquired four k-lines
in each RF excitation. The T values were found by fitting the average image intensity
from the three regions of interest (1101) to the theoretical T saturation curve by using
nonlinear least-squares. Similarly, the transverse relaxation was obtained by using
spin echo (SE) images with different echo time, TE. For all these measurements TR
was set to 9 seconds. The results for the best fits can be found in Table 51.

To estimate the diffusion constant, a Stejskal-Tanner [118] imaging sequence was
used with varied diffusion gradients. The diffusion constant was then estimated from
the best least-square fit to the diffusive attenuation as a function of the b value. The
diffusion constants for all the RIs are also given in Table 51.

Instead of using a flow phantom, which can be hard to construct to set up a
constant bulk flow, we used the MF principle described above. By varying the RF
phase or the MRF velocity, we could therefore simulate the ideal constant bulk flow
for the whole phantom.
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Table 5.1: Relaxation times and diffusion constants estimated for the differert regions of
interest (1901) in the phantom. R01 no. is doped water, R01 no. 2 is water and R01 no. 3
is vegetable oil.
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Figure 5-8: The SSFP echo magnitude signal as a function of the MRF velocity for two
different flip angles, 3011 and 900. Theory is shown as a solid line and measurements as
asterisks. The signal intensity is in arbitrary imager units and the standard deviation of the
measurements is less than the size of the asterisks. TR = 0ms and b =-10S/MM2.
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signal intensity was expected. A 1cm thick slice as therefore used and the number
of averages (NEX) ranged from four to eight. The receiver bandwidth was set to
be 16kHz. This was found to be sufficient to make almost all the measured signal
intensities well above the noise level, therefore neglecting any possible bias due to the
Rician distribution of the data 52].

Figure 5-8 shows how the magnitude of the SSFP echo changes as a function of the
flow rate. As expected from the theory, the flow sensitivity is larger (steeper fall off)
for the 30' flip angle than for the 90' flip angle. We also see that the water in ROI
No. 2 is most sensitive to the flow because it has the longest relaxation times. The
absence of the higher order stimulated echoes, which are easily scrambled by the flow,
explains the strong flow sensitivity- In the other regions where the relaxation times
are smaller, the reduction in the signal due to the flow is less dramatic. Notice the
excellent agreement between the experimental data and the theoretical data, which
was calculated by a computer simulation. We also see that the experimental data
shows the correct symmetry behavior around v/Va = 0.5. In the computer simulation
we did not take into consideration the nonidealities of the slice profile. This could
easily be done by averaging the theoretical signal over a range of flip angles, using the
flip angle distribution of the slice profile. This would result in a slight increase in the
flow and diffusion sensitivity [15].

It should be noted that in order to compare the theoretical and experimental data,
the theoretical crve had to be scaled to match with the units of the imager. To do
that we used linear least squares to find a single scaling factor which gave the best fit
to both the data from the 90' experiment and the 30' experiment. This constant is
justified because the amplifier's gain was kept the same for both of the experiments
and because the proton density is not subject to change. If each data set had been
separately fit, an even better fit could have be obtained, however it would be a "less
honest" fit.

We also analyzed the dependence of the signal as a function of flow with variable
diffusion sensitivity. In Fig. 59 we see the results from measurements with two
different b factors, 10sec/mm 2and 50sec/mm 2. TR was 35ms and the flip angle was
set to 30'. It is clear that in regions with large diffusion, ROI No. and 2 the flow
sensitivity changes whereas in ROI No. 3 it is much less affected. Again this agrees
very well with what is expected from the theory because the flow response simply
tells us how the higher order pathways add together. When the diffusion sensitivity
is increased, fewer pathways contribute to the signal and therefore there are less
variations in the signal due to changes in the flow velocity.
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Figure 59: The SSFP-echo magnitude signal as a function of the MRF velocity for two dif-
ferent b values, 1 0 S/MM2 and 50 S/MM2 . Theory is shown as a solid line and measurements
as asterisks. The signal intensity is in arbitrary imager units and the standard deviation of
the measurements is less than the size of the asterisks. TR = 5ms and the flip angle is
30 

5.6 Pulsatile Flow and Diffusion

In this section we will analyze how the pulsatile motion of the brain, due to car-
diac action and respiratory events, influences the measurement of diffusion. It is well
known that the brain and cerebrospinal fluid exhibit periodic motion, with peak velo-
cities up to 1mm/sec, in the frequency range of a normal heart rate. The maximum
displacement of the brain tissue can therefore be as high as prn 78].

In order to address the influence of this motion on the diffusion attenuation we
used flow curves, adopted from ref. 78], of tissue located to the left of the ventricles.
Note that the bulk motion in the brain is spatially varying and our reference point is
chosen arbitrarily. First we simulated a regular SSFP imaging sequence with hardly
any diffusion weighting (DW). We assumed the relaxation parameters of the brain
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tissue to be T = 8ms, T = ms and the diffusion was assumed to be that of
water, D = pm 2/ms. To have a uniform pixel intensity, the SSFP wavelength was
set to be slightly smaller than a typical voxel size, 24cm/256. When the repetition
time was set to 50ms, the resulting diffusion sensitivity was close to bD = .01.
Both 30' and 90' flip angles were simulated. The results are shown in Fig. 510
with the corresponding flow curve at the top of the figure. Note that the flow curve
has been normalized to the units of the aliasing velocity, V, which depends on the
SSFP wavelength and the repetition time. The maximum and minimum of the flow
are 057mm/sec and -0.89mm/sec, respectively. On the plots the time history of
the magnitude of the transverse magnetization is shown with a solid line. For a
comparison, we also simulated the signal when flow (dashed line) and when both
diffusion and flow (dash-dotted line) are ignored. We see that after the magnetization
reaches its steady state, there are only very small perturbations from the response
of static spins. For the 90' flip angle case, there is no diffusion or flow sensitivity
apparent; however, for the 30' flip angle, there is a small attenuation due to diffusion
as well as a tiny flow sensitivity. Figure 5-11 shows the equivalent results when the
b factor has been increased to give bD = 02. Note that this also affects the flow
sensitivity and therefore the flow curve has a different amplitude in units of V. Now
we clearly see a very strong diffusion attenuation for both flip angles, and it is also
evident that e bulk motion of the tissue causes extra signal loss. This increased
signal loss leads to an overestimation of the diffusion attenuation in DW imagivg.

One might speculate whether it is possible to reduce the flow sensitivity while
maintaining the diffusion sensitivity. The relation A, = VV2 b TR implies that for
a given diffusion sensitivity, b, and flow, v, the flow sensitivity could be minimized
by using a small TR. This, however, requires a larger effective gradient in order to
maintain the fixed diffusion sensitivity. checked this idea by repeating the simu-
lation with a shorter repetition time, TR = 30ms, but keeping the b factor constant
and the results are shown in Fig. 512. Our results show that the shorter repetition
time not only gives increased flow sensitivity but also diffusion sensitivity especially
for the 90' flip angle. This is where one of the complications of SSFP becomes visible,,
i.e., that the flow and the diffusion sensitivity depend not only on Av and the b factor,
respectively, but also on El and E2.

To make the results shown in Figs. 5-1 - 512 more quantitative, we calculated the
point spread functions (PSF) one would obtain if the last 128 echoes are used in SSFP
Fourier imaging. This is simply done by calculating the discrete Fourier transform of
the complex SSFP signal. Figure 513 shows the magnitude of the PSFs, in the phase
encoding direction, from the simulation with and without flow, for different diffusion
sensitivity, TRs and flip angles. The amplitude of the PSF has been normalized with
the maximum amplitude of the PSF when both flow and diffusion are ignored. The
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Figure 510: Top: In vivo motion of brain tissue to the left of the ventricles, adopted
from Maier et aL Maximum and minimum flow rates are 0.57mm/s nd -0.89mm/s, respect-
ively. Middle: Results of simulation, showing the magnitude of the transverse magnetiza-
tion with T = 8Oms, T = OOms, bD = .01 TR = 0ms and 300 flip angle. The dot-dashed
line shows the results when both diffusion and flow are ignored. The dashed line shows the
results when-'only flow is ignored. The solid line shows the results when both flow and dif-
fusion are taken into account. Bottom: Same as above except for a flip angle of 900.

height of the dashed PSFs is therefore indicative of the theoretical diffusion attenuation.

We see from Fig. 513 a) and d) that there is only a small distortion from the brain
motion in a non-diffusion-weighted SSFP imaging sequence. In Figs. 513 b), c), e),
and f) the diffusion sensitivity is bD = 02 and now it is easy to see the distortion in
the PSF. The distortion is more severe for the 30' flip angle in Figs. 513 b) and c)
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Figure 5-1 1: Same as in Fig. 5-1 0 except for a larger b factor, bD = 02 A 300 flip angle
(middle) is compared to a 900 flip angle (bottom).

than for the 90' flip angle in Figs. 513 e) and f) because smaller flip angles give more
sensitivity to diffusion and flow. When the repetition time is 50ms, as in Figs. 513 b)
and e), the overestimation of the diffusion attenuation is 61% and 32% for the 30'
and the 90' flip angles, respectively. When the repetition time is decreased to 30ms,
as in Figs. 513 c) and f), the overestimation of the diffusion attenuation is 58% and
33% for 300 and the 900 flip angles, respectively. These results are summarized -in
Table 52. Thus, for this particular flow curve a reduced repetition time does therefore
not reduce the flow sensitivity, if the diffusion sensitivity is kept fixed.
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Figure 5-1 2: Same as in Fig. 5-11 except for a shorter repetition time, TR = 30ms A 300
flip angle (middle) is compared to a 900 flip angle (bottom).

5.6.1 DW-SSFP versus DW-PGSE

We see from Fig. 513 that the overestimation of the diffusion-weighted attenuation
is quite severe. It is therefore interesting to compare the artifacts obtained in a
DW-SSFP to the artifacts obtained in a diffusion-weighted pulsed gradient spin echo
(DW-PGSE) sequence. We assumed the maximum gradient strength to be that of a
conventional scanner, 0.01T/m = 1G/cm, and we also assumed the separation of the
DW-gradients to be as small as possible. Given these conditions we used the well
known Stejskal-Tanner equation 117] to calculate the necessary gradient duration, to
achieve the same diffusion attenuation as in Fig. 513 a) - f). rom this we estimated
the image distortion from the pulsatile bulk flow, in exactly the same manner as we
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Figure 513: The magnitude of the point spread functions in the phase encoding direction,
for the cases considered in Figs. 1 - 512. The dashed line shows the PSF when flow is
ignored and the solid line shows the PSF when both flow and diffusion are considered. The
PSFs are normalized by the maximum of the PSF when both flow and diffusion are ignored,
in order to show the theoretical diffusion attenuation. a) bD = 0.01, TR = 50ms and a = 300.
b) bD = 0.2, TR = 0ms and a = 300. c) bD = 02, TR = 0ms and a = 300. d) bD = .01,
TR = 50ms and a = 900. e) bD = 0.2, TR = 50ms and a = 900. Q bD = 0.2, TR = 30ms and
a = 90'.

did in the SSFP simulation. To simplify the matter we ignore phase artifacts from
read and phase encoding gradients, which should be relatively small when the diffusion
weighting is considerable, i.e. bD = 02. The peaks of the PSF functions were used as
a measure of the diffusion attenuation and from them the error in the estimation was
calculated. Both a regular non-gated PGSE and a cardiac gated (ECG) PGSE were



PSF DW SSFP PGSE ECG-PGSE
no. I aft. err. err. error %
a) 0.94 7 3 0.5
b) 0.40 61 64 14
c) 0.33 58 72 1 8
d) G-98 2 0.5 0.1
e) 0.69 32 25 5
f) 0.62 33 34 7
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considered. For the the acquisition of each phase encode, in the non-gated PGSE,
we picked an arbitrary flow value frc.a the flow curve in Fig. 5-10. For the ECG
simulation we synchronized the acquisition with the large negative peaks of the flow
curve. The results are summarized in Table 52.

Table 52: The error in the estimation of the theoretical diffusion attenuation for the cases
considered in Fig. 513 when using SSFP, spin echo or cardiac gated spin echo.

Table 52 shows that the errors in DW-PGSE for in vivo diffusion assessment are
comparable to SSFP despite the more complicated signal dependence of SSFP By
using cardiac gating, however, it is possible to reduce the errors dramatically. This
results in longer acquisition time because of the need for a long repetition time, to
minimize artifacts which may arise from variable spin lattice relaxation between RF
excitations. Because SSFP is a driven equilibrium technique with RF pulses being
applied at a constant rate, cardiac gating is not possible. Even with the EC in
PGSE, we are still left with some errors due to the phase variations in the signal. The
only way to avoid this problem is to acquire the image in a single-shot, such as in
EPI 128]. The use of a navigator echo has been suggested 297] to reduce the phase
artifacts in DW-PGSE. The correction scheme used with these navigators, however,
assumes the motion of the brain to be that of a rigid object and cannot take into
account the more complicated spatial variations of the brain motion [78].

5.7 The Analogy of Flow in SSFP and RF spoiling
The phase program of the MRF turns out to be-identical to the phase pattern com-
monly used to eliminate the transverse magnetization in many fast low flip angle ima-
ging pulse sequences 21,153] such as FLASH. Constant bulk flow, therefore, causes
identical spoiling of transverse magnetization as does RF spoiling. On one hand this
tells us that when the SSFP-echo signal is totally scrambled due to bulk flow, the
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SSFP-FlD signal equal-, the theoreti -al FLASH signal, which is easily calculated from
the steady-state solution by setting E2 equal to zero. On the other hand, the SSFP-
echo flow curves tell us how effective the spoiling of the transverse magnetization is.
A phase change increment of 117' is commonly used to do RF spoiling 153]. The
effectiveness of the spoiling of the transverse magnetization can be easily seen from
Figs. 5-8 and 59 where vIV, = 117'/360'. Hence by using the pulse sequence with
an MRF, described in this chapter, one can measure whether adequate spoiling can
be achieved. The figures clearly indicate that the effectiveness of RF spoiling depends
on the flip angle, the tissue relaxation parameters, as well as the diffusion coefficient.

5.8 Bipolar SSFP Sequence

A ARF
V 

V

GX

G U

GZ H

Figure 514 A modified SSFP pulse sequence with diffusion sensitivity in all directions.
The effective gradient (black) is made as small as possible and the diffusion sensitivity is
determined by the bipolar gradients.

A modified diffusion weighted SSFP sequence has recently been suggested where the
diffusion attenuation is claimed to be less sensitive to motion and variations in ,
T2, and the RF flip angle 28,150]. The main difference between this modified SSFP

Signal
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sequence and the SSFP sequence described in previous sections is the use of bipolar
diffusion weighting gradients as shown in Fig. 514. Ding et a]. also use a frame-by-
frame averaging scheme which has been proposed to reduce motion artifacts in the
conventional SSFP sequence 27]. In this section, it will be shown that although this
modified SSFP sequence greatly reduces variations in the diffusion attenuation due to
relaxation and RF flip angle, it is still sensitive to physiological motion.

The modified SSFP sequence in shown in Fig. 514. By making the diffusion sens-
itizing gradient bipolar its zeroth moment will be zero. The purpose of this is to
reduce the motion sensitivity 152]. The major drawback is thatt very strong gradi-
ents are needed to obtain high diffusion sensitivity. The bipolar gradients attenuate
the transverse magnetization by AD = exp(-D2,y 2G 2axV/3) according to Eq. 338).
The influence of this bipolar diffusion attenuation is identical to the transverse relax-
ation, E2, and the signal can be analyzed by replacing E2 with E2AD in Eq. 53).
This is because the moment of the bipolar gradient is zero and displacement of spins
in one SSFP-cycle does not influence the precession in the following SSFP-cycles In
other words, the effective gradient and the wavelength, A, is not affected by the bi-
polar gradient. Earlier, this same approach has been taken to analyze the diffusion
sensitivity of the conventional SSFP sequence 74]. Then, however, this gives incor-
rect diffusion sensitivity, because it fails to account for the correlation of the diffusion
related dephasing in consecutive SSFP-cycles.

To reduce variations in the diffusion attenuation from T, T2, and the RF flip angle,
Ding et a]. suggest to select TR such that the signal can be accurately approximated
by a second order approximation in E2, i.e. contribution from fourth order pathways
in Eq. (05.16) can be neglected:

M- ;z:� L... LTT +L ... LTL ... LT (5-31)

Clearly, the signal is proportional to E22. From previous discussion on the influence
of the bi olar gradients, the diffusion attenuation is Al = exp(-bD) independent of

p D

the flip angle and the relaxation parameters. Also, the relative accuracy of the second
order approximation is on the order of E22A 2D-

An issue that is not discussed in the paper by Ding et al. is the first order moment
of the bipolar gradients. It is trivial to show that flowing spins acquire additional
phase from the bipolar gradients that is given by

v = 2 vGmax (5-32)

If the flow displacement in each cycle is constant and small compared to A, this does
not lead to scrambling of the signal. However, if the flow is pulsatile, the phase from
the bipolar gradient is no longer fixed and the signal gets scrambled.
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Figure 5-15: In vivo motion of brain tissue to the left of the ventricles, adopted
from Maier etaL The curve is calculated with a spline interpolation of the original data which
was sampled at every 50rns. Here, the repetition time is TR = 90ms.

The flow sensitivity of this modified SSFP sequence was studied by a computer
simulation analogous to the one described in section 56. The influence of the bipolar
gradient is modeled by replacing E2 by E2AD and the flow phase in Eq. 5.32) is added
to the precession angle of the transverse magnetization. The effective gradient was set
such that the SSFP wavelength was slightly smaller than the pixel size, ca. 1mm. The
relaxation parameters of the brain tissue were assumed to be T = 7Oms, T = 0ms,
and the diffusion coefficient was set to D = I Mm 2/MS . The same flow curve that was
used in section 56 was used in the simulation and it is shown in Fig. 515. Since the
flow sensitivity comes from the bipolar gradient and not the SSFP wavelength, the
flow curve has not been normalized to the aliasing velocity as in Fig. 5-10. The flow
was assumed constant during each bipolar gradient, however, different in each cycle.
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Figure 5-16: The magnitude of the transverse magnetization, in a simulation of the bipolar
SSFP sequence with the flow curve in Fig. 15. Gma, = 1G/cm. The RF flip angle is 500,
b = 6Os/mm 2, TR = 90ms, El = 0.88, E2 = 041, and D = 1IM2/ms. The dot-dashed
line shows results when diffusion and flow is ignored. The dashed line shows the results
when the flow is ignored. The solid line shows the results when both flow and diffusion
are taken into account. The dotted line shows the dot-dashed line scaled by exp(-bD).
The difference between the doffed line and the dashed line is due to the contribution from
pathways of higher order than two.

The errors from this approximation should be minimal.
Examples of the simulations are shown in Fig. 516 and Fig. 517 for the maximum

gradient strength of 1G/cm and 5G/cm, respectively. In both figures, the repetition
time is 90ms and the effective b-factor is 600 S/MM2 . As the solid lines show, the signal
is clearly scrambled because of the physiological motion, less though with the stronger
gradient.

To analyze the implications of scrambling on the diffusion attenuation, the atten-
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Figure 5- 7 Same as in Fig. 516 except that Gmx = 5G/cm instead of G/cm.

uation was estimated from the peak of the PSF as in section 56. The computer
simulation was repeated for five different b-factors: 200,400,600,800, and 1000 S/mm 2.

Log-linear least-squares were then used to estimate the diffusion coefficient from the
attenuation curve. These results are shown in Table 5.3.

From Table 53 it is clear, that the bipolar SSFP sequence overestimates the dif-
fusion in the brain in regions where there is pulsatile brain motion such as near the
ventricles. As expected, stronger gradients reduce the flow sensitivity, because it al-
lows for a shortening of the gradient pulse and therefore reduced phase variations (see
Eq. (5-32)). Although a smaller TR makes the flow variations from 'Ycle to cycle
smaller, it does not reduce the scrambling of the signal because the higher order path-
ways become more. important, unless of course T2 is much smaller than TR. Also,
the bias in the estimate of the diffusion coefficient becomes larger since it depends
on E22. The frarne-by-frarne averaging scheme does nor" fix this overestimation of the



TR/rns 5-0 90

1 Flow urve v v/2 v/4 v I v/2 I v/4 

G,,,,,/(G/cm) I D/(/_LM2/MS) DI( /_LM2/MS)

1 2.44 153 125 2.63 1.43 1.14

2 2.02 1.38 121 22.00 1.28 1.101

5 1.62 1.27 1.18 1.52 1.16 1.07

10 .. 1.44 1.22 1.17 1 1.32 1.11 1 1.06
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Table 53: Estimates of the diffusion coefficient with the bipolar SSFP sequence using
b-factors of 200, 400, 600, 800, and 1 000 S/MM2 . The flow curve shown in Fig. 5-15is de-
noted by v. Similarly, v/2 and v/4 are this flow curve with scaled amplitude. The RF flip
angle is 500, T = 7Oms, T = 00ms, and D = /.LM2/MS. With zero flow, the estimates
of the diffusion coefficient are 1.05 tLM2/ms and 1.15/LM2/MS for the 90ms and the 50ms
repetition times, respectively.

diffusion coefficient, however, it may reduce the ghost in the phase encoding direction
and improve the appearance of the image.

Finally, it is interesting jump ahead and consider the relative signal-to-noise of
the modified SSFP sequence and the Line Scan Diffusion imaging sequence whid. is

introduced in chapter 7 This analysis is not supposed to be very formal, but, give a
rough idea about the relative SNR of these two techniques. The bipolar SSFP signal,
S, was obtained from the simulatiOD described above. The echo time of the LSDI
sequence, TE, is found from the maximum Mactor and the gradient strength. The
sequences are assumed to have the same repetition time. The SSFP sequence uses
50' flip angle which is close to the optimum flip angle. Analogous with Eq. 76), the
relative SNR should be approximately

SNR-LSDI
= MO exp(-bD - TE/T2)/S (5.33)

SNR-SSFP ' Y

where Ny denotes the resolution in the phase encoding direction or the number of
columns in the LSDI sequence. This ratio is evaluated for several gradient strengths
in Table 54. It is clear from the table, that for brain diffusion imaging, the LSDI
sequence has superior SNR.



TR/rns 50 90

G../(G/cm) I SNR-LSDI / SNR-SSFP

1 1 - 1.25

2 1.20 1.93

5 1 1.68 1 2.73
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Table 54: The relative SNR of the LSDI and the bipolar SSFP sequence. The SSFP flip
angle is 500, T = 7Oms, T = 00ms, and the maximum b-factor is 1 000 S/MM2.

5.9 Conclusion

In this chapter, we have shown how a partition analysis can be used to obtain an
analytical approximation of the simultaneous flow and diffusion sensitivity in SSFP
imaging. This approximation was found to be accurate for T2/TR ratios as large as
two and for even larger T2/TR ratios when diffusion sensitivity is considerable. More
significant though is the physical understanding it provides about the signal formation
in SSFP.

A 2D SSFP echo imaging pulse sequence with an MRF was implemented on our
imaging system, and it was used to obtain experimental data from a phantom. The
MRF technique allowed us to make more accurate comparison between our meas-
urements and the theoretical values, because experimental nonidealities due to things
such as vortices and laminar flow were avoided. The phantom contained three dif-
ferent solutions with very different relaxation and diffusion properties. An excellent
agreement was found between the theory and the experimental data.

Our analysis shows, that the flow sensitivity is larger for smaller flip angles than
for larger flip angles. An SSFP imaging pulse sequence that is made maximally
sensitive to diffusion [15] is therefore also inherently very sensitive to bulk flow as
well. Also, if the tissue undergoes bulk movements, whose size is on the order of the
SSFP wavelength, the scrambling of the steady state will lead to additional signal
loss and therefore an overestimation of the diffusion-related attenuation. This was
demonstrated by using experimental data and the simulation algorithm from chapter 3
to calculate the simultaneous effect of pulsatile in vivo brain motion and diffusion. The
scrambling of the steady state is not the only source of error when SSFP is used for in
vivo diffusion measurements. The SSFP imaging sequence uses the phase to encode
the spatial location in the y-direction and is therefore very sensitive to phase variations
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in the signal. The periodic pulsatile brain motion and the strong diffusion gradient
give rise to periodic variations in the signal phase. In Fourier imaging, this appears as
a ghost in the y-direction. This ghost is easily seen in Fig. 513 as the secondary peaks
in the PSF. The PGSE sequence is also sensitive this kind of phase variations. The
overestimation in the PGSE was found to be similar to those in the SSFP sequence.

Finally, we showed that the modified SSFP sequence which was recently introduced
by Ding et a]. is also sensitive physiological motion, although, the flow sensitivity is
less that in the conventional SSFP sequence if very high gradient amplitude is used.
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Chapter 6

Navigator Echoes

6.1 Introduction

N chapter 5, it was shown that it is impossible to obtain accurate in vivo diffusion
estimates with the SSFP sequence because of the simultaneously sensitive to diffu-

sion and other physiological motion. The complex nature of the SSFP signal makes
it impossible to correct for the motion artifacts. The motion artifacts are easier to
study in the PGSE sequence, because, the spin-echo signal does not depend on the
transverse magnetization from previous RP pulse.

Navigator echoes have recently been proposed to reduce bulk motion artifacts in
diffusion weighted images 297] acquired with the PGSE sequence. We have studied
the feasibility of this technique and extended it to a fast spin echo sequence, i.e. FSE
or RARE. The influence of the echo train length and thc order of the navigator in the
echo train is studied in terms of how noise and other image artifacts propagate into
the imagedata from the navigator.

6.2 Theory

Diffusion weighting in the PGSE sequence is accomplished by using a pair of strong
gradients as shown in Fig. 3-5. Any motion of tissue, between the application of these
strong diffusion gradients, will cause a phase change in the signal. The phase variation
due to bulk motion can in general be written as 2]

A(D(r = AD., ,A-[Dy + Ad), dk r (6.1)
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where

dk y f G (t) x 0 (t) dt

&-yj'+'(G,,(t)O-�(t)-G.(t)O�,(t))dt
A+J

+ ky 0 (G�, (t) 0. (t - G. (t) 0. (t)) dt

+ iiy J"+(G.(t)0,# - Gy(t)O.(t))dt
(6-2)

The -D, -I),, and ATi, phase errors are due translation'. The rotation is denoted
by Wand r denotes a location in the image coordinate systeM2 . The diffusion gradient,
G, is assumed to start at time zero and end at A + as in Fig. 6- 1. Since the diffusion
gradients are strong enough to sense the microscopic diffusion displacement, it is easy
to imagine that the slightest patient motion can produce considerable phase change.
When phase encoding is used with repeated RF excitations, this variation in the signal
phase causes ghosts and reduced image quality. This can lead to signal loss in one
part of the image and signal enhancement in other parts of the image.

Anderson et al. 2 have shown, that when the diffusion sensitivity is in the phase
encoding direction only, the zeroth and the first order variations in the phase of a
navigator echo can be used to correct for phase changes due to rigid bulk displacement
and rotation, respectively 2,97]. The principle of this technique is, that the navigator
always collects information from the same part of the k-space and individual navigators
can therefore be compared.

The navigator echo is simply the baseline signal, i.e. the k-line in the k.'-direction.
which goes through the center of the k-space. In other words, there is no phase
encoding such that k = Different navigator echoes, that have circular k-space
trajectory, have also been proposed for measuring translational and in-plane rotational
displacement 44]. These orbital navigators, however, have to be acquired without the
diffusion gradients. In contrast, the k-line navigator is acq,,,Iired with the diffusion
gradients on. The purpose is not to correct for displacements of the object which size
is on the order of the voxel size, but only artifacts related to some small motion during
and in between the very strong diffusion gradients.

The navigator is acquired with the regular frequency encoding gradient but the
phase encoding gradient has zero amplitude. Hence, the Fourier transform of the

I Even if the patient only rotates his head on top of the scan table, there will still be a phase error
in the data from an apparent translation, because the origin of the image coordinates are usually in
the middle of the head and, therefore, do not coincide with the axis of rotation.

2In Eq. 6.1) it is assumed that the rotation angle is small.
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navigator echo gives the projection of the image in the y-direction as a function of x
(see Fig.6-7). If the object is displaced during the diffusion gradient pair, we see from
Eq. 6.1) that the signal will have additional phase which is a function of the motion.
If the object rotates in the image plane and the iffusion gradients are only in the
y-direction, the phase change will vary linear with x (the small angle approximation).
The image echo will have this same phase variation, however, the image echoes are
also phase encoded and therefore it makes no sense to compare the phase of the image
echoes. If no motion is present, all the navigator echoes that are acquired with each
k-line (view) should have the same phase (and magnitude). By comparing the phase
difference between the projections of the avigator echoes, it is possible to estimate
the phase distortion in the image echoes and thus correct it. The corrected image will
have arbitrary phase which depends on the choice of the reference navigator, however,
by forming a magnitude image this phase is irrelevant. For further description of the
correction algorithm see ref 2.

6.3 Methods

Although originally proposed for a single echo PGSE imaging sequence, the navigator
correction scheme lends itself to be used for correction of all the echoes in a RARE
echo train. This is because, ideally the phase of the odu,' numbered echoes should
simply oppose the phase of the even numbered choes.

A RARE imaging sequence (FSE) was modified by adding a pair of diffusion
gradients between the 90' pulse and the first 180' pulse. In order to get high diffusion
weighting on a conventional scanner such as the 1.5T GE Signa which has a maximum
gradient strenght of IG/cm, the time from the 90' pulse to the first echo had to
be made larger than the spacing between the following echoes. In inhomogeneous
magnetic field, this can lead to problems due to stimulated echoes, which fall into
the acquisition window at the later echos. Figure 62 shows a pathway diagram for
the DW-RARE sequence, taking into consideration the nonidealities of the refocusing
pulses. The first two time intervals, i.e. from the 90' pulse to the first 180' pulse and
from the 180' to the first echo, differ in length from the other time intervals. Influence
from inhomogeneities on the precession angle is therefore different. As shown on the
left i Fig. 62, this causes the spin echo and the stimulated echo, which form echo
no. 2 to refocus at different time. The artifacts resulting from this misalignment of
the pathways is shown in Fig 63. The images were reconstructed from the second
echo and the diffusion gradients were sed to simulate inhomogeneities in the phase
encoding direction. By increasing the gradient strength, by a factor of two between
Fig. 6-3a) and Fig. 6-3b), the separation of the pathways is doubled and hence the
spatial variation of the artifacts. When the separation is high enough, as in Fig. 6-
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Figure 61: DW-RARE imaging sequence. The navigator can be placed anywhere in the
echo train by removing the phase encoding gradients at that location.

2c), the stimulated pathway "goes out of the acquisition window" and disappears.
In Fig. 6-3d) the resolution in the phase direction has been increased and now the
artifacts are visible again.

The RARE technique is well known to be very sensitive to the phase of the image
echoes [134]. In order for the correction scheme proposed in ref. 2 to work correctly,
all the stimulated echo pathways have to be spoiled, because they will not have the
same phase distortion as the principal spin-echo pathway. Also, even in single shot
RARE imaging or in single shot GRASE imaging 76], the image would not be free
from motion artifacts, because even and odd numbered spin echoes have opposite
phase artifacts'. For comparison, in EPI all the echoes have the same phase artifact,
since EPI uses gradient echoes. Therefore, it is not necessary to correct single shot
EPI data from phase artifacts due to the diffusion gradients. The reconstructed EPI
image will have an arbitrary phase which is discarded by reconstructing a magnitude
image. In short, one can say that EPI is capable of imaging both "real and imagin-

'See Eq. 3.31). The 180' pulses conjugates the magnetization. If the magnetization is not purely
real, image artifacts are inevitable.
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Figure 62: Pathway diagrams for the DW-RARE sequence assuming imperfect refocus-
ing pulses. Left: Little spoiling or low b-factor. Right: Good spoiling or high b-factor. The
solid lines show the timing of the echoes and the circles highlight the pathways that fall into
the acquisition window of echo no. 2.
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Figure 63: Illustration of artifacts from stimulated echoes because of violation of the
2CPMG condition. These images are formed from echo no 2 only. by = 0025 s/mm 

NV = 128. b) by = .1 /rnm 2, Ny = 128. c) by = 02 SiMM2, Ny = 128. d) by = 02 S/MM2,

Nv = 256.
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ary agnetization" whereas RARE/FSE and GRASE can only form images of "real
magnetization".

6.3.1 Navigators Echo Location

The navigator can be put anywhere in the echo train, however, its position determines
the SNR in the final image. Consider the conventional DW-PGSE navigator sequence
with single navigator echo followed by the image echo. Let A denote the attenuation
between the first and the second echo and 2 denote the image noise variance. If the
navigator is acquired first, the relative signal loss in the image can be considered to
be A. However, if the second echo is used for the navigator, the final image noise will
be affected by the noise which propagates from the navigator in the phase correction
algorithm described in ref. 2 According to Eq. 4.10), the corrected image noise can
be approximated as

2 2 1 + 1 N2-1 IS(k) 12

Corr a E IS ) 12A2 (6.3)
Ny k=-N,12

where I S(k I denotes the amplitude of the k-lines i the pase encoding direction. The
propagation of noise will therefore depend on the object's shape. However, for most
large objects the baseline amplitude IS(0)I is by far the largest k-line and the noise
increase therefore small. Typically, for A as low as 0.5 this leads to almost no increase
in the image noise. When A = 01 the increase in image noise is ca. 50%. In terms of
SNR t should therefore be better to have the navigator in te end of the echo train.
Examples of projections reconstructed from navigator echoes are shown in Fig. 6-7.

6.4 Results
Figures 64 - 66 show DW-RARE images with variable echo train length and diffusion
weighting of b = 4s/mm'. Neither head restraints nor cardiac gating was used.
Although it is hard to compare these in vivo images, because each of them has different
motion artifacts, they all show great improvement from the navigator post processing
scheme. The images in Fig. 64 and Fig. 65 seem to have better signal when the
navigator is in the end of the echo train, however, in Fig. 66 the one with the navigator
in the front is better. It is clear from all the images that the correction scheme cannot
correct for the strong pulsatile motion in the vicinity of the cerebrospinal fluid (CSF).
Close to the CSF, the brain tissue moves radially due to changes in CSF pressure
throughout the cardiac and respiratory cycles. The assumption of rigid translational
motion and rotation therefore breaks down.
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6.5 Conclusion
The initial phantom ad in vivo experiments show that the navigator correction scheme
can in principle be extended from PGSE to DW-RARE imaging if proper spoiling of
stimulated echoes is achieved. We have found that the amplitude of the navigator
varies most in the center of the brain. This indicaties signal cancellation due to
spatially varying motion around the CSF. Therefore, it is clear that cardiac gating is
necessary to minimize the influence of pulsatile brain motion. Another limitation is
that the navigator technique works only when the diffusion sensitivity is in the phase
encoding direction. Our results agree with those in a recent study by Crespigny et
al. 25] which used the navigated PGSE sequence 2 They found cardiac gating to
be necessary in order to get artifact free images. Furthermore, they blindly applied
the diffusion sensitivity in all three directions, however, as to be expected, found
least motion artifacts in the corrected images when the diffusion sensitivity was i the
phase encoding direction. Crespigny et al. found, that in 20 patient examinations, 7
studies had virtually motion free images in all three diffusion directions. Good quality
diffusion images were always obtained from at least one direction.

It is clear, from our results and the previous discussion, that the success of the
navigator technique relies heavily on cardiac gating and it is not possible to obtain
accurate isotropic ADC maps (trace of the diffusion tensor). For that, a sequence that
is inherently more robust to motion artifacts is needed, such EPI or the Line Scan
Diffusion Imaging technique which is studied in chapter 7.
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Nav. no. 

Nav. no. 2

Figure 64: The original and the corrected image from an echo train length of one plus a
navigator. b = 400 S/MM2.

Nav. no. 

Nav. no. 3

Figure 65: The original and the corrected image from an echo train length of two plus a
navigator. b = 400 S/MM2.
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Nav. no. 

Nav. no. 4

Figure 66: The original and the corrected image from an echo train length of three plus
2a navigator. b = 400 s/mm .

Figure 67: A comparison of the
used in Figs. 64 - 66.

projection constructed from the average of the navigators
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Chapter 7

Line Scan Diffusion Imaging

7.1 Introduction

,APPROACHES which offer good immunity to motion artifacts on conventional
I scanners are volume or column-selective NMR. Column or line scan techniques

have been used for in vivo spectroscopic studies 91], thermal mapping 56], and for
quantitative flow and diffusion measurements 19,37,60,88,89]. However, these ID-
profile techniques lack the anatomic details of 2D methods.

We have extended the column-selective technique into what we call Line Scan
Diffusion Imaging (LSDI) 47]. In this chapter, we describe the LSDI sequence as well
as some of its intrinsic properties. Diffusion images from the brain and the abdomen
of a volunteers are shown as well as images from LSDI stroke studies at both 0.5T
and 1.5T. Finally, we compare LSDI with diffusion weighted EPI, which we consider
as the technique of referencefor in vivo diffusion imaging.

7.2 Methods

7.2.1 Line Scan Diffusion Imaging

LSD! uses multiple diffusion weighted spin-echo column excitations to form a two-
dimensional image. As shown in Fig. 71, the basic sequence is composed of a spatially
selective 7/2 and 7r pulses. The diffusion gradients can be applied in arbitrary direc-
tions and are placed on both sides of the refocusing 7r pulse, followed by a standard
frequency encoding readout along the selected column.

The LSDI image is composed of a series of one-dimensional magnitude profiles
obtained from parallel columns lying in the image plane. The sequential collection
of this line data in independent acquisitions makes the sequence largely insensitive to

115
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bulk motion artifacts since no phase encoding is used and shot to shot phase variations
are fully removed by calculating the magnitude of the sgnal.

Each column is formed by the intersection of two planes selected by the two slice
selective RF pulses. For te acquisition of one column, the most obvious choice is
to select one plane orthogonal to the image plane and the other within the image
plane itself In the repetitive process of line acquisition, this procedure leads to spin
saturation and subsequent tissue specific T associated signal loss unless a sufficient
period of time between column xritations is permitted. For quantitative diffusion
maps composed of 256 lines, this would ead to an unacceptable residence time in the
scanner.

To allow for a faster repetition of the excitation without causing spin saturation
the excitation scheme shown in Fig. 72 is used. The basic principle is to avoid an
alignment between the planes excited by the selective pulses and tie imaging plane.
The selected planes are positioned such that the volume at their itersection forms
the column of interest in the imaging plane. The angles a and between the selected
planes and the imaging plane (Fig. 72) can be chosen with a certain degree of freedom.

7.2.2 Interleaving Scheme

Dependent on the field of view (FOV), the number of columns (N) and the size of
their cross-sections a and b, the selected columns which form the lines in the image
may partially overlap. In this case, spin saturation must be avoided by using an
interleaved acquisition scheme as shown in Fig. 7-3. For a sufficiently large number of
lines, the time period between successive line acquisitions is then restricted primarily
by te echo time required for adequate sensitivity to diffusion.

Figure 73 shows an example where the image plane is covered by N = 31 columns
and the column step size, s, is 4 The number of columns per sweep is therefore [Nlsl -
Here xj denotes the smallest integer which is larger or equal to x. Also shown is the
order of the acquired columns for each sweep through the image plane. The column
index, c, can in general be expressed as a function of the excitation counter, e, the
number of columns, and the step size

c = (s x (e mod [Nls]) + el[Nlsl]) mod N (7.1)

As sown in Fig. 73, during sweep number no data is collected, however, in
sweep number 4 the columns excited in sweep are re-excited and data is aquired.
The purpose of this extra sweep is to ensure a steady-state magnetization ill each
column. This is important, when columns overlap and if there is cross-talk due to
imperfect slice profiles. It should be noted, that when many images many b-factors)
are acquired from the same slice, this extra sweep needs only to be done once. The
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Figure 71: The basic LSDI sequence diagram. The dark shaded areas indicate the diffu-
sion gradients and the less dark areas the crusher gradients. R, radio frequency excitation;
x, read-out direction; y and z, select directions.

effective repetition time is defined as the time between the excitation of two adjacent
columns. For all columns except number it is given by

TReff = NIsl TR (7.2)

Here TR refers to the repetition time of the 7/2 excitation pulse. From Fig. 73 we
see that if the number of columns were 32, the effective repetition time of the columns
excited in sweep number 4 would be different from the effective repetition time of the
other columns. Therefore, in our images we use odd column numbers, e.g. 255, 127,
or 63.

As long as TRff is large enough, signal loss due to spin saturation is avoided. The
column step size, s, has to be chosen such that x FOVIN is larger than the column
width. Apart from the time spent on the extra steady-state sweep, the total scan time
for one image is given by N x TR.

In the repetitive process of column excitation, the selective pulses intersect with
previous selective 7/2 pulses outside the image plane as shown in Fig. 7-4a. Partic-
ularly, if the diffusion gradients are turned off, this leads to secondary echoes and
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Figure 72: The selective excitation produced by the LSDI sequence shown in Fig. 71.

ultimately to image artifacts. To some extent these echoes can be reduced by crusher
gradients after signal eadout. The crusher gradient direction is alternated between
each excitation [1], to postpone the refocusing of secondary echoes such that T2 relax-
ation and diffusion attenuation renders them insignificant. By alternating the orient-
ation of the selective pulses, as shown in Fig. 7-4b, there is an efficient elimination of
the strongest secondary echoes which permits a substantial reduction in duration and
amplitude of the crusher gradients.

With short repetition times, the heavy use of diffusion gradients can lead to over-
heating of the gradient amplifiers. In order to reduce the gradient duty-cycle, we
have modified our interleaving scheme such that the sequence alternates between high
and low diffusion weighting. Two images, with high and low bfactors, are therefore
acquired simultaneously. In this way, when the total number of columns is odd, the
subsequent acquisition of each column has a diffusion weighting which is different
from its current one. An nice feature of this scheme is, that it totally eliminates any
secondary echoes. Furthermore, by making the low b-factor sufficiently high, the FID
resulting from imperfections in the refocusing pulse is eliminated. Also, the strongest
stimulated echo pathway, TLLT, which because of imperfect slice profiles comes from
a large fraction of the image volume, is successfully eliminated by alternating between
the high and the low b-factor.
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Figure 73: Interleaved acquisition scheme, for a line scan image composed of 31
columns. To reach steady state of the magnetization, the first set of columns (hatched
columns) is excited twice (sweep and 4 and data is collected alt the last excitation only.
With the interleaving shown here, the repetition time can be reduced by a factor of ca. 
without increasing spin saturation.
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Figure 74: Two possible arrangements (a and b) for the sequence of selective excita-
tions. Selective puises of /2 (grey) and,7r (black), which define the column in the image
plane, are applied sequentially from left to right. The selective Ir pulse (inversion pulse) in-
tersects with earlier selectiver/2 pulses, outside the image plane. This produces second-
ary echoes. The strength of these echoes decreases with the delay (number of repetition
time intervals TR) between the selective pulses. With arrangement a, 7r/2 (a) and 7r (fl), for
each excitation, all previous 7r/2 pulses will contribute to secondary echoes by inversion
after 1 TR, 2 TR, 3 TR, etc. With arrangement b, 7r/2 (a) and7r (,3), followed by7r/2 (,8)
and7r (a), pulses will contribute to secondary echoes only by inversion after 2 TR, 4 TR, 
TR, etc. Thus every second and particularly the strongest secondary echo 'inversion after
1 TR) is eliminated in arrangement b.

z

If



7.2. METHODS 121

7.2.3 The LSDI Point-Spread Function
In order to understand the relation between the object and the reconstructed image,
one has to know the point-spread function (PSF) of the imaging technique 66] By
using the interleaving scheme described in the previous section, the PSF is spatially
invariant.

The resolution in the frequency encoding direction (x) along the column is determ-
ined as in the standard Fourier imaging techniques, by sampling bandwidth, gradient
amplitude and duration. Hence, along the column the shape of the point-spread func-
tion is the sinc function.

The point-spread function in the two other directions, y and z, is a triangle which
geometry is determined by the thickness, a and b, and the angles, a and , of the
selected planes (see Fig. 72). The signal strength is then determined by the cross-
sectional area of the columns.

For iaging with overlapping columns the symmetric solution (a = a = b is
advantageous. because most of the signal derives from the central portion of the cross-
section. For each volume element, this results in a signal distribution, tat is analogous
to cnventional Fourier imaging, where the signal contribution of neighboring volume
elements decays with the distance from the voxel center. The width f the selected
column defines the in-plane resolution and the height defines the image!3lice thickness.
We use the half-maximum of the PSF to define the effective resolution. Hence, for the
symmetric case, the effective image plane slice thickness can be defined as 0.5 x a/ cos a
and the effective i n-plane resolution as 0. 5 x a/ sin a.

In conventional imaging, the established ratio between slice thickness and in-plane
resolution lies in the range of 21 and 41. This ensures good resolution of anatomic
details under the constraints of signal-to-noise ratio (SNR). As shown in Fig. 75,
for a constant cross-sectional area, inclination angles between 65' and 75' produce a
similar range of height to width rUio. Compared to an inclination at 45', inclination
at 70' improves the in-plane resolution by 40%, without reducing the SNR. Because of
the reduced overlap it is possible to use smaller column step size and therefore longer
effective repetition time.

One can argue that overlapping of the columns is favorable, because it avoids under-
sampling of the image, or what is usually referred to as aliasing 66]. If the columns
overlap substantially, the image can be low-pass filtered without any significant loss
in resolution, to improv-- the SNR.

7.2.4 Signal-to-Noise Considerations
The SNR of the LSDI technique, SNRI.,di, is naturally lower than the SNR of a, regular
spin-warp Fourier image, SNR.F. This is because in the LSDI-technique a column, as



450 650 750 a
Height/Width 1 2.1 3.7 tan a

Relative Width 1 0.68 0.52
Rel. Sel. Slice Thickness 1 0.88 0.71 sin a cos a
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Figure 75: Relation between inclination angle and height and width of columns for a
constant cross-sectional area. With inclination angles between 650 and 750, the height to
width ratio of the columns is comparable to the optimal height to width ratio of volume ele-
ments in conventional imaging.
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opposed to a slice full of spins contributes to the NMR signal. In order to quantitat-
ively compare the two, we assume the same slice thickness for both methods. We then
define the effective column width, CW, as the ratio of the cross-sectional area and the
slice thickness. By this definition, the actual slice thickness becomes irrelevant.

Consider an ideal uniform phantom which extends over the whole field of view.
The signal received from each column excitation is proportional to the column width.
The noise we denote by n. When Fourier encoding is used, only the baseline (k = )
gives nonzero NMR signal, whose strength is proportional to FOV. For this particular
phantom, the other k-lines only contain noise; the same as in the LSDI case. This
is because the Fourier transform of this phantom is a sinc function with its zeros
located in k-space where the k-lines are acquired. The total noise in the Fourier
image will depend on the number of k-lines, i.e., the image resolution N. The oise
image intensity in the Fourier image is the square root of the total noise variance,
n'N. For this particular phantom we can therefore write

SNR.97 F0V1V;iTN (7.3)

SNRI.di CW/n
It turns out that this equation holds for any object, given that N is high enough such
that all the significant spatial frequencies of the object are acquired. This is easily
proven by using the scaling property of the Fourier transform. For a "fair" comparison,
we will assume the same spatial resolution in both of the imaging techniques. This
implies that N = FOV/CW. Substituting this into Eq. 73) gives

.SNRy _ (7.4)

SNRIsdi CW

This equation ignores the fact that for short repetition times, the influence of relaxation
is different in the two methods, because in the LSDI technique it is the effective
repetition time that matters. The partial saturation of the equilibrium magnetization
in a spin-echo sequence is given by Mr = M(TR), where M(t) is defined as 161

Al (t = Mo (I - 2 exp (- (t - TE/2 IT,) exp, (- tlTl)) (7.5)

and similarly M,di = M(TReff). Equation 7.5) assumes that T2 is short compared to
the effective TR. The echo time, TE, is determined by the diffusion sensitivity needed
and the gradient strength. Also, according to Fig. 73, the minimum step size needed to
avoid saturation of the magnetization in the succeeding column is s = CW/(FOV/N)
By combining this with our earlier selection of N = FOV/CW and Eq. 72) we find
that TReff = TR x FOV/CW, were TR refers to the repetition time of the LSDI
sequence. Finally, we get

S N R _ N- . My (7.6)
SNRsdi ]V11sdi



M(TR)
M(TRff//NEX)

TI/ms TRff /ms LSDI-NEX SNR-F/SNRIdi

500 1500 10 1 2.4
500 2500 16 2.0

1000 1500 10 1.9
1000 2500 16 1.8
2000 1500 10 1.3
2000 2500 16 1.4
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Note that this equation assumes equal imaging time for both techniques. For long
TR, the LSDI-technique benefits from shortening the repetition time and the use of
averaging. This can be done because of the long effective repetition time, TRff We
denote the number of excitations (averages) by NEX. Equation 7.6) then becomes

N
EX

SNR�,

SNRrdi
(7.7)

In a cardiac gated PGSE sequence, the repetition time is commonly set to 2 x RR -_
15OOms. It is possible to use up to 10 NEX if TE allows TRId to be less than 150ms.
Table 71 compares the SNR ratios of the two imaging techniques for single slice
imaging.

Table 71: The SNR ratio of PGSE Fourier imaging versus LSDI according to Eq. 7-7 as
a function of several parameters. The resolution is N = 63, and the LSDI repetition time,
TR, is assumed less than 150ms allowing 1 0 NEX when TReff is 15OOms and 6 NEX for
a TRff of 25OOms. The SNR ratio with N of 127 and 255 can be found by multiplying the
values found in the table by 14 and 2 respectively.

Finally, it is interesting to compare a single-shot EPI sequence with the LSDI
sequence. If we ignore transverse relaxation and assume that the EPI sequence uses
the same time for acquiring all the echoes as te LSDI sequence uses for acquiring a
single line, i.e. EPI uses N times larger bandwidth, then the sequences should have
equal signal-to-noise ratio.



7.2.5 Optimizing the LSDI Sequence

Gradients

Two images with different diffusion weighting are needed to assess the diffusion coef-
ficient in the direction of the diffusion gradient. Because of the microscopic structure
of tissues, the diffusion is anisotropic and measurements in three orthogonal direc-
tions must be obtained in order to acquire a diffusion map (trace of the diffusion
tensor 6 and information about diffusion anisotropy'. To date, this has been done
by measuring the diffusion along the MR imager gradient coil principal axes, ,�, , and
i. Simultaneous use of all three gradients results in a considerably higher gradient
amplitude. If the maximal relative gradient amplitude in and direction is equal,
we defir- a new orthogonal coordinate system as

-i + - i/2
i + 9/2 - i (7-8)

i/2 + 9 + i

The reader can verify that V, and are mutually orthogonal. Furthermore, this
choice of axis gives the maximum gradient strength for three orthogonal directions,
G.,, G, and G,, An identical diffusion gradient scheme has been derived independ-
ently by other researchers as well 116]. The amplitude gain is 50% compared to
using the conventional gradient axes. For a given diffusion sensitivity, the duration
and ultimately the echo time can be reduced by approximately one fourth because the
effect of the diffusion gradients is proportional. to the square of their amplitude and
the cube of their duration. The disadvantage of using this modified gradient axis is
that they no-longer coincide with the principal axis of the image. For diffusion tensor
trace and anisotropy maps, this does not pose any problems since the trace is rotation
invariant.

The LSDI-technique can be made sensitive to diffusion in all three directions at
the same time so that the trace of the diffusion tensor can be acquired in only two
shots 87,145]. This, however, leads to longer echo times and increased T2 decay or
low and non-optimal b-factors, as discussed below. Due to the rather limited signal
strength of the LSDI technique, our current implementation acquires the trace in either
four or six shots.

The diffusion weighting is determined in terms of the b-factor as defined by Eq. 3.4).
The signal attenuation is then described as S(b = S(O) exp(-b ADC). The apparent
diffusion coefficient can be estimated as the slope of a linear least-squares fit to the
logarithm of the signal amplitude.

'More measurements are needed to estimate all the coefficients in the diffusion tensor.

7.2. METHODS 125
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The results in section 44.1 indicate that the optimum b-factor for brain diffusion
maps is close to 750 S/MM2 . However, the improvement in the precision is minimal as

2b exceeds 500 s/mm .
When many averages are used, the polarity of the diffusion gradients is alternated,

to reduce the effect of cross-terms from the imaging and slice selective gradients [88].
Any averaging must be done after the calculation of the magnitude of the signal.

Receiver Bandwidth

The optimum bandwidth is found by maximizing the SNR of the spin echo with respect
to the sampling rate

TN, 'T T21N
T,,pt = arg max exp (7.9)

T 2 T2

Note that with this optimal sampling rate, the intrinsic spectral broadening due to
T2 relaxation 16] is not a problem because it is smaller than the voxel width, i.e.,
(11T.pt)IN = I/T2 > 1/7rT2. The PSF will be similar to the regular sinc unction
but with smaller sidelobes. With 128 samples in the frequency encoding direction, this
indicates that the optimal bandwidth for brain imaging is in the range from 64OH to
1.2kHz. Note that here the bandwidth refers to onl,, half of the frequency passband,
i.e., BW=1/2T. This low bandwidth makes the image very sensitive to distortions
due to field inhomogeneities and chemical shift. For most of our studies on the 1.5T
system, we used either 8kHz or 4kHz bandwidth. On the 0.5T system, lower bandwidth
can be used since distortions from field inhomogeneities and chemical shift scale with
field strength. We found that 2kHz bandwidth gave a good compromise between SNR

2and short acquisition time 

Filtering

Initially, before the two point logarithmic fit, the images were processed with the
bias reduction algorithm 52] in chapter 4 This is only important for regions with
very low SNR and has no effect on pixels with high SNR. Then the images were low-
pass filtered (convolved) 66] in the direction orthogonal to the columns by the kernel
(1 2 3 2 ) /9. This improves the SNR by a factor of two without any significant
loss of spatial resolution because of the column overlap. Note that the shape and the
width of the kernel is chosen according to the way the columns overlap, i.e. almost
like a matched filter. When the number of column is less than 255, we interpolate the
columns to 255, before we apply the kernel. The SNR improvement from the kernel

2A lkHz bandwidth makes the readout time 128ms. Therefore, the repetition time exceeds 2Oms,
which we found to be too slow.



7 3 RESULTS 127

specified above is less in this case. For instance, when 127 columns are interpolated
into 255 columns, the SNR improvement is only ca. xf2.

Later, we found that it is better to estimate the ADC map before any filtering or
bias reduction. The ADC map can then be filtered by the kernel described above.
Figures 714 and Figs. 716 - 718 are processed in this way. See section 44.2 for
further details.

7.3 Results
The LSDI sequence described in the previous section was implemented on a 1.5T and
0.5T GE Signa whole body scanners (General Electric Medical Systems, Milwaukee,
Wisconsin) both equipped with the 54 operating system and standard gradient hard-
ware with a maximum gradient strength of IG/cm. The images were reconstructed
on-line with the Signa software, however, diffusion and anisotropy maps were calcu-
lated off-line.

7.3.1 Phantom Studies
Diffusion Sensitivity

To verify the diffusion sensitivity of the LSDI sequence, the diffusion coefficient of
doped water in a phantom was measured at "room temperature" in all three directions,
V, �' and V. The b-factor was stepped through the values of 5, 105, 205, 305, 405
and 505s/mm'. For each b-factor an LSDI image was acquired of which a region
of interest (ROI) was selected and used to average the signal intensities. For each
b-factor, two images were acquired with opposite polarities on the diffusion gradients,
as described in the end of the previous section. The results are shown in Fig. 76.
Clearly, the logarithm of the signal as a function of b fits very well to a straight line.
The least-squares fit yielded the following diffusion coefficient: D.,, = 182 pm 2/MS,

DY = 1.80 ILM2/MS , and D,, = 178 pm 2/ms. For comparison, when only a single
polarity on the diffusion gradients was used, the best fits were: D-,, = 1. 78 pm 2/MS,

DY = 182 fjM2 /ms, and D,, = 184 pm 2/MS . The relative precision of the averaged
ROIs was from 006% to 017%, hence, the precision of the estimates is 00026 AM2 /MS.

Therefore, difference in the estimates of the diffusion coefficients has to be associated
with cross-terms and non-idealities in the gradients.

Image Quality

To analyze the image quality of the LSDI technique, a standard image quality phantom
was used. Several inclination angles were tried and the thickness of the slices, a, was
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Figure 7-6: The logarithm of the signal diffusion attenuation of doped water plotted against
the b-factor. The diffusion sensitivity is in direction x (top), y (middle) and z bottom). The
circles represent the means of the R1s; and the lines show the least-square linear fit.

varied. The LSDI images are compared to a regular fast spin-echo image in Fig. 77.
The LSDI images in Fig. 7-7a) and Fig. 7-7b) should according to Fig 75 have the
same SNR, however, because of imperfect slice profiles this is not the case. The LSDI
phantom images were acquired with both high and low b-factor but Fig 77 shows
the images with the low b-factor. Because the echo time is not the same in the LSDI
sequence and the FSE sequence, it does not make any sense to compare the SNRs.
The most important conclusion to be drawn from Fig. 77 is, that 70' inclination angle
is better than 45' inclination angle since it gives a better compromise between SNR
and resolution. Furthermore, apart from noise and some blurring, the image quality
of the LSDI images is very good and no artifacts from secondary echoes are present.
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a b C d

Figure 7-7: Comparing the image quality of three LSDI images, with a different inclination
angle (i) and slice thickness ((,), to a conventional fast spin-echo image (FSE or RARE)
with an echo train length of 8. The resolution of the LSDI images in a-c is 128x256c and
the resolution of the FSE image is 256x256p. The images below show the region which is
outlined in c). a) = 45', = 5M, and SNR = 15. b) a =700, a = Amm, and SNR = 22.
c) Y =700 a = 3mm, and SNR = 13. d) Fast spin-echo image with a 7mm slice thickness
and SNR = 127.
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Figure 78: Coronal images of an healthy volunteer. FOV = 24cm, TR = 130ms, a 
1 = 5MM, (� -- = 70' (see Fig. 75), 255 columns, 8kHz bandwidth, T,fl = 4.2s,
TE = 85ms. a) b. = S/MM2 . b) = s/mm 2. c) b- = 5 S/MM2 . d) 1 = 505 S/MM2.
e) = 05 S/MM2. f b = 505 S/MM2.
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Figure 7-9: Left: Coronal ADC-trace map produced from the images in Fig. 73. Relative
precision in the ADC-trace map is 6. Right: A scatter diagram in which each pixel in the
brain is given a coordinate according to the two independent ADC maps. Ideally, all the
pixels should fall on a straight diagonal line.

Stroke Imaging

Figure 710 shows the first clinical LSDI images. A 45 year old female patient was
imaged eight hours after an acute stroke. Imaging parameters were identical to those
used to obtain Fig. 78. Minimal head restraints were used and no cardiac gating.
The lesion is clearly identified on the diffusion weighted images but hardly seen on
the highly T2 weighted images (those with low b).

Figure 711 shows the three orthogonal ADC maps and the corresponding aniso-
tropy map, that is calculated as in ref. 133]. The anisotropy map is inherently much
more noisy than the ADC-trace map, however, one can see that anisotropy is highest
in the white matter, close to the cerebrospinal fluid. Little difference is seen between
the healthy and the affected tissue.

An ADC-trace map was calculated from the three orthogonal diffusion maps and
shown in Fig. 712. Notice the nonlinear gray scale, used to emphasize the variations
in the diffusion map. This gray scale is adapted from histogram equalization 62 of
brain diffusion maps. For a comparison, a fast spin-echo image (FSE) of the same
plane, with an effective echo time of 68ms is shown. Almost no abnormalities are
visible on this image. The images to right, which were acquired four days after the
stroke onset, show increased area of decreased ADC.
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Figure 710: Acute stroke hours after onset. Images of a 45 year old female stroke
patient with different cliff usion weighting. Minimal head restraints were used and no cardiac

2gating, Imaging parameters were identical to those used to obtain Fig. 78. a) ) = s/mm
b) 5 S/MM2. C b = 5 s/mm 2 . d) 1, = 505 S/MM2 . e) 1, = 505 S/MM2. f = S/MM2.
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Figure 71 1: Acute stroke hours after onset. a) ADC-x. b) ADC-y. ) ADC-z- d) Diffu-
sion anisotropy map calculated as the standard deviation of the three ADC maps.
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Figure 712: Acute stroke. Left: hours after onset. FOV = 24cm. Right: 4 days after
onset. FOV = 22cm. Above: ADC-trace map. Notice the nonlinear gray scale which is ad-
apted from histogram equalization of brain diffusion maps. The ADC is in units of M2/MS.

Below: Fast spin echo image (FSE) of the same slice with an effective echo time of 68rns.
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a b C d

Figure 713: FOV = 24cm, TR = 150ms, i = = 5MM, () ,, = 70" (see Fig. 75).
a) and c): 255 columns, 8kHz bandwidth, I'll,ir = 4.8s, TE 85ms. b) and d) 127 columns,

2 -trace4kHz bandwidth, '1'13,.ff = 2.4s. TE = 90ms. a) and b): b., 5 s/mm . c) and d): ADC
map calculated from six images.
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7.3.3 LSDI at 1.5T versus 0.5T
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Figure 714: Acute stroke, 17 hours after onset. Left: T2 weighted image (low b). Right:
Post-processed diff usion weighted image with a b = 15OOs/mM2 calculated from the image
to the left and the ADC-trace map. FOV = 20cm, 127 columns, TE = 98ms, 4kHz bandwidth,

21.5T field strength. For all three directions, x, y, and z, the b-factors are and 505 s/mm
Effective voxel size (freq., col, sI.) is 1.5mm x 2.7mm x 7.3mm. The total acquisition time
for the six images was 2min.

in transversc relaxation t te two held strengths and te fact tat variations come
froni both iiolse and pixel misregistration froin sinall had motion btween scans.

The restilts indicate tat it is ossible to use te LSDI tecImique to acquire accurate
diffiision inaps oil 0.5T sy-stenis.

Clinical Trial

Z-3 - 718 show example of' how he LSDI techiliqu cn b used in chnical
practice. First te patient is screened for stroke with a fast LSDI volunie coverage.
i.e a rectmigular FV and Nvith diffusion sensitivity n a single direction, Nvith o(,
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1.5T 0.5T

Figure 7-15: Comparison of ADC-trace maps: 1.5T (4kHz, TE = 105ms, 1.3min scan
time) and 0.5T (2kHz, TE = 121 ms, 1.5min scan time). FOV = 3Ox22.5cm and 95 coiumns.
For all three directions, x, y, and z, the b-factors are 5 and 755 S/MM2 . Effective voxel size
(freq., col., sl.) is 23mm x 2.7mm x 7.3mm. The highlighted area represents the region
used for the analysis in Table 72.

low nd high b-factor. To minlinize the echo tilli w lsed al dfilsion gradients

I11111talleolisIv. III tills cse. 10 slices wre cquired in c 6 ininutes. lo-wever bY
reducing te miniber of colunins from 127 to 95 s Ili Fig. 715. it is possible to acquire
15 slices in ca 65 minutes.

Oil(-( te lesion liars been located from te localizers. ADC-trace niaps all,(, cquired
froin the re-ion of interest. i.e. six iinages pr lice. In Fig. 716 nd Fig. We SCO

the ocalizers froni a Stud'v of fli sme patient oil O. D-T nd 1.5T scanners. respectivel.y.
Figure 718 shows the axial. sagittal. nd coronal iniages of' lie region of interest.
There is air excellent comparison bet-Avven te mages from the O.5T ad the 1.5T
svstein. Clearlv. Stroke studies Such as this are practical t oth 1.5T and O-5T field
Strength Nte that III tis St dy. leither crdiac gating Ilor had rest railit wre II-sed.



Field 0.5T 1-5T

I Columns 127 95 127 95

V_1(1_LM2/MS) 0.83 0.86 0.83 0.83

5F-D/(jLM2/MS) 0.061 0.067 0041 0.040

1 UDIMD 1 74% 78% 4.9% 4.8%
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Table 72: Comparison of the precision of 0.5T and 1.5T ADC-trace maps obtained with
LSDI. Imaging parameters are given in Fig. 715.

7.3.4 LSDI versus EPI

We compared 1.5T LSDI images with EPI diffusion images on a 1.5T Vista (Siemens
Medical Systems, Iselin, NJ) echo lanar scanner. The maximum gradient strength on
the EPI system - ,s 2G/cm. Scanning was performed on both systems without cardiac
gating or head restraints. Diffusion weighted images were obtained from three healthy
volunteers. The axial scan plane was defined on a sagittal localizer with the upper rim
of the pons as a reference point. With both techniques, four idependent ADC-trace
maps were acquired from a single slice using typical configuration parameters for each
technique 3. These scans were repeated four times on each system, and the same tpe
of statistical analysis as described in section 73.3 was done for 500 pixels regions,
right and left to the ventricles. The imaging parameters are shown in Fig. 719 and
the results from the analysis are given in Table 73.

Clearly, there is an excellent agreement between the estimated means, MD

0.7 ttM2/MS and incidentally aF-D was 003 MM2/MS for both techniques. Imaging times
were similar for both systems, however, with the echo planar scanner it is possible to
acquire multiple slices in the same time it takes to acquire a single slice, by using
an interleaved acquisition scheme. This is the main advantage EPI has over LSDI,
because with LSDI the acquisition time increases linearly with the number of slices.

From Fig. 719 we see, that the EPI ADC-trace map has a slightly sharper ap-
pearance, however, even though fat suppression was used, chemical shift artifacts are
easily visible in the phase encoding direction. We found that images that included
the eyeballs had even more artifacts because of susceptibility variations. The LSDI
images were free of any such artifacts.

'The EPI protocol was multislice, however, only a single slice was used for the analysis.
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Figure 716: Acute stroke 9 hours from onset. 0.5T LSDI localizer. FOV = 20xl 65mm,
RES= 128x127c, BW=2kHz, TE/TR= 114/15OMS, slice thickness 8.8mm o =6rnm), scan
time 38s/slice, and the b-factors are and 755 S/MM2 . The total imaging time for these 
slices was 6 minutes and 20 seconds.

7.3.5 Diffusion Imaging of the Abdomen

�_,()Ilw f the Ilms rcent applications of diffusion 1111a"Ing an H ho-, )(Ionie 9 d
th hart 29]. The functional tatus of the kidney hs been exploi-ed 1) ,v nicans ()Fffie-MC [93]. These studio's INTI dw Nvith fifflisi Because he 1,.�Dl

I MI X\Ti�,hted EPI.

sequence lises spill ech"ws. 'I to 111apnelic field 11111ollwoelicille".
�Ilwi wh its 1sensitivilY to milk motio mkes it n ieal candidate fM- ;il)(Immim]
(Lffii.siol iiagimI'll

Figure 71-20 shows coi-onal iniapes f a heall hy vollillicer. -he "llue selective pill"'es

Nvere cimsen sch hat a -_ 1) = 1cm and = ' 10' (sce Fi,,-. 75). The field f vw
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Figure 717. Acute stroke 1 0 hours from onset. 1.5T LSDI localizer. FOV = 20xl 65mm,
RES = 28xl 27c, BW = 4kHz, TE/TR = 105/135ms, slice thickness 7.3mm (a = 5mm), scan
time 34s/slice, and the b-factors are and 755 S/MM2 . The tota imaging time for these 10
slices was minutes and 40 seconds.

wns set, to 0cill and the 1-cpetition tinic was 150nis. The total nmber of' colinims
was 255 and Nvitli a colmun step ize of'16. The eective repetition lic Nva,-;

2.4s. In wdcr to pet hgh SiNR. the bandwidth wasset, to 4kHz. Tw iniag qality is
still (1111te pw)d. atholigh. Some cheillical hift, distortion vsible. eg. ill tle spille.
.Xciffiel bvath hold 11m. cardiac gating w used. The iniage with the loxv b-factm,

S/1111112) is XX-itjl()jlj, �111N- X-'sil(5 1 AC 1110tiol dstol-tioll. Ilowever. ill flic one Nvith the hgli
b-fl-wim- (.5015s/111111 2). (I istortioll is visible as signal loss i some of, the
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Figure 718: Upper six images: 0.5T 9 hours after onset. Lower six images: 1.5T,
1 0 hours after onset. For each plane, axial, sagittal, and coronal, six images were acquired.
For all three directions x, y, and z, the b-factors are and 755 s/mm2. The diffusion weighted
images are post-processed as describe in section 45 by using the ADC-trace map and a
b-factor of 1500 s/mm 2. The imaging parameters are given in Fig. 716 and Fig. 717.
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EPI LSDI

Figure 719: a): EPI ADC-trace map. Excitation with fat suppression, TE = 90rns, BW =
16OkHz, scan time 84s, effective TR = 6s, FOV = 21 x280mm, resolution 128x64p, effect-

2ive voxel size (freq., ph., s.) 2.2x3.2x7.Omm, b-factors 0, 160, 340, 600, and 10OOs/mm
b): LSDI ADC-trace map. TE = 105ms, BW 4kHz, scan time 1 00s, TR = 135ms, effect-
ive TR = 2s, FOV = 40xl 80mm, resolution 128xl 27c, effective voxel size (f req., col., sl.)
1.9x2.7x7.3mrn, b-factors 5 and 755 S/MM2.

7.4 Discussion

III this Chapter w hve presented nd anal 'yzed te LSDI squence. which is a novel
diffilsion Imaging eclinique 47]. Asiniilai- (lifl'usion iniaging technique ws piesented

multancousIv bN- other rsearchers r1o6 a wl. However. teir technique shows re
I-eselliblailce with n older echnique clled rpid ine can (RLS) or intedeaved line
scan (ILS). supp-ested for the iniaoing of'inoving objects [1 113.114]. -No application to

diffiision ws contemplated fi- the RLS/ILS technique howeven Coninion to LSDI and
the R LS/ILS techniques is he use of' two slice Select ve plikes to fOrin cohninis nd the
luse f, time varvill- crusher oradients. in onlei, to destiov spin-ious echoes. There re
-everal ledinical differenc-cs that distimniish the LS and the LS/ILS t c

t_1 DI C 11111(jiles.

In the LSI)f squence. a pre-sweep s sed to nsure stead 'y-state imignetization across
the whole field f view. Also. III the LSDI iniaov nei-liboring columns overlap. Tis
avolds allasill", and improves iniage quality I the LSDI squence. te novel idea



'11DI(PM2/MS)

Location Left Right

Technique LSDI EPI , LSDI EPI

subject 1 0.69 066 069 070

subject 2 0.71 0.69 070 070

subject 3 0.71 0.69 071 0.70
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ba C

Figure 7-20: FOV = 40cm, TR = 150ms a = b : 1 Omm a = 13 70' (see
columns, 4kHz bandwidth, Tff = 2.4s, TE = 90ms. a) b., = S/MM2 . b) b,
c) ADC-trace map calculated from six images.

Fig. 75). 255
2= 505 s/mm .

of atei7iiating the slice selection direction is used, tat likes the distinct advantage of'
reducing spurious echoes. Furthermore w show that te inclination angle of 45',
used in te LS/ILS techniques, is outside of te optill1a] range from 65' to 7'. For
these reasons. he diffusion images presented hre re of greatly improved qality d
re"Ollition.

It is shown in Figs 710 - 712 hat LSDI 111MMI (M cearlY identifV the IscheiniC
area in the arl'y phase of acute stroke, whereas it is hardlY visible oil the T wighted

images (FSE and those with low b). Bcause LSDI offers high precision diffiisioll

Table 7.3: Comparing the mean and the precision of EPI and LSDI. The imaging paramet-
ers are given in Fig 719. For both techniques, the mean standard deviation per pixel �T-1)
was 0.03pm2/MS.
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maps, it is possible to accurately monitor the area of reduced ADC. By comparing
images at different time points (Fig. 712) we see that the area of decreased ADC
increases with time from stroke onset. Four days after onset of the acute stroke the
ischemic injury becomes more visible on the T2 weighted image. These findings agree
well with previously published studies on stroke 22,23,69,79,90,121,133,137].

Animal studies indicate that, there is a strong correlation between the regions of
hyper-intensity in diffusion weighted images (DWI) and the area at risk for infarction.
In a recent study 69], it was found that the regions of hyper-intensity in DWI is sim-
ilar to that of tissue acidosis but exceeds that for the depletion of energy metabolites,
particularly during the early phase of ischemia. However, a study which correlated
cerebral blood flow with ADC found that, hyperintense regions on DWIs are signific-
antly smaller than the area at risk for infarction 79]. The disagreement may be found
in the threshold levels used for the planimetric evaluation and therefore the ability
of DWI to accurately predict infarct size remains to be demonstrated. LSDI has the
potential to make such in vivo studies possible on a large number of conventional MR
scanners.

LSDI, in contrast to navigated diffusion imaging, is inherently immune to bulk
motion artifacts. For imaging tissues other than heart muscle, the LSDI-sequence
does therefore not require cardiac gating, which facilitates the technique in the clinical
setting. For single slice imaging, the LSDI technique is faster than the navigated PGSE
technique. Moreover, unlike the navigated PGSE imaging technique, LSDI does not
restrict the difftision sensitivity to selected spatial directions, which allows accurate
assessment of the diffusion tensor trace and anisotropy maps.

The insensitivity of LSDI to bulk motion and susceptibility inhomogeneities makes
it applicable for diffusion imaging in the abdomen and the heart. Unlike echo planar
diffusion imaging, it does not require any special gradient hardware. Furthermore,
arbitrary oblique imaging planes can be defined without any image distortion. In
contrast, when oblique imaging planes are defined in EPI, one has to compromise
between susceptibility artifact and Maxwell image distortion 141]. In abdominal
imaging with a large field of view and severe field ihomogeneities, this may become
an issue.

Our initial abdominal diffusion images in Fig. 720 show signal loss in some of
the columns. This is because of respiratory motion that causes nonuniform motion
within each image voxel. When there is nonuniform motion within each image voxel,
the phase dispersion will exaggerate the apparent diffusion attenuation. If the phase
distribution is known, its influence can be determined from the LSDI point-spread
function 139]. By using small voxels, the influence of phase dispersion can be min-
imized at the cost of reduced SNR A better way to reduce motion artifacts in the
abdomen is to use breath hold imaging. Currently, we have not implemented breath
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hold imaging, however, this should be straight forward because with LSDI two images
can easily be acquired in a single breath hold. The abdominal diffusion maps compare
well with recently published diffusion maps obtained with EPI 94].

As Eq. 61) shows, phase dispersion can also come from rotation. Since the
shape of the LSDI PSF is not the same in the frequency encoding direction as in the
y and z-direction, the influence of rotation related phase dispersion will depend on
the direction of the diffusion gradients. Since, the LSDI PSF has a sinc shape in the
frequency direction (x) and trapezoidal shape in the y and z-directions, the influence of
phase dispersion in the x-direction causes least signal attenuation 139]. Also, usually
the voxel. size the in x-direction is smaller than in the selective directions. Therefore,
instead of applying all three gradients simultaneously, to reduce the echo time for the
LSDI localizers, it may be more robust with respect to patient motion, to use only
diffusion sensitivity in the y-direction. Further experiments are needed to verify this.

In terms of acquisition speed, the LSDI technique is most competent in single slice
imaging. However, volume acquisition can be performed by subsequent acquisition
of several image planes. Figures 716 and 717 shown that volume imaging is still
practical with the LSDI technique. Because the SNR does not decrease with a reduced
field of view in the y direction, it is possible to cover a volume of interest (e.g. the heart
muscle) more efficiently with several rectangular fields of view. Another alternative
for volume imaging is to use a two-dimensional selective excitation pulse [105] instead
of the one-dimensional 7r/2 pulse. This reduces the problem of spin saturation, allows
a much more efficient scanning of the imaging volume, and reduces secondary echoes.

7.5 Conclusion

With the LSDI technique, we are able to acquire high quality diffusion images with
high and low diffusion sensitivity in scan times of less than thirty seconds per slice.
This imaging technique is very robust and easily implemented on conventional scan-
ners. Diffusion maps of the brain that are essentially free of motion artifacts can
be obtained without the use of head restraints or cardiac gating. This makes LSDI
particularly useful in clinical setting.

Most importantly, we showed that the LSDI technique works well on conventional
systems at a field strength of 0-5T and with maximum gradient strength of 1/cm.
Most EPI systems have high field strength and low-field systems are rarely equipped
with EPI gradient hardware. The major difference between the utility of the EPI
sequence and the LSDI sequence is that multislice imaging is much faster with EPI.
By using interleaved multislice acquisition, EPI can image the whole brain volume
in only twice the time it takes to acquire a single slice. In contrast, with LSDI the
imaging time is directly proportional to the number of slices. We have shown, however,
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that it is still possible to screen for stroke with a fast LSDI volume coverage, in less
than seven minutes. Then, more accurate LSDI ADC-trace maps can be acquired
from the region of interest. A patient study such as this could therefore be completed
in approximately ten minutes.

Thus, LSDI should increase the general availability of robust diffusion imaging
which does not require specialized hardware. Therefore, LSDI may have considerable
impact on the treatment of acute stroke.



Chapter 

Conclusion

N this work we have studied the influence of physiological motion on diffusion
weighted MR images. In particular, we showed in chapter that techniques based

on steady-state free precession (SSFP) cannot provide accurate diffusion maps. The
main problem with SSFP is scrambling of the signal and distortions in the 2D phase
encoding from brain motion. We have demonstrated this using numerical simulation of
the SSFP signal using actual experimentally obtained data for pulsatile brain motion.

Similarly, the navigator technique works only if the diffusion sensitivity is applied
in the phase encoding direction and the motion is in the form of bulk motion. As
the results in chapter 6 indicate, cardiac gating is therefore necessary to minimize the
influence of spatially varying motion around the CSF.

Rom these experiments, we have concluded that phase encoding is the main prob-
lem in diffusion weighted Fourier imaging, unless, it is used with a single shot gradient
echo technique such as EPI. More generally we can argue, that imaging techniques
which depend highly on the phase of the signal cannot provide accurate diffusion maps
when there is spatially varying motion. For instance, if there is spatially varying mo-
tion, in projection reconstruction, the amplitude of the projections will be reduced
because of signal cancelation from spins with motion related phase artifacts of op-
posite sign. This results in overestimation of the diffusion attenuation. Also, it is
a misconception, that speed is crucial for successful diffusion imaging. According to
the discussion in chapter 6 the speed of EPI is not its major advantage for diffusion
imaging, but much more importantly the fact, that all the echoes in a single-shot EPI
have the same phase artifacts. In contrast we point out, that diffusion imaging with
a single shot RARE/FSE or a single-shot GRASE 76] cannot work. This is because
these techniques can only form images of real magnetization whereas the single-shot
EPI technique can form images of magnetization which has both real and imaginary
components.

The major result of this work is the novel line scan diffusion imaging technique

147
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(LSDI) The LSDI technique is inherently insensitive to motion artifacts because it
does not use phase encoding. As long as the motion can be considered uniform within
the image voxel and the total tissue displacement small compared with the size of
the voxel, the LSDI technique should not be affected by the phase variations in the
signal. Therefore, we have changed the problem from having uniform motion within
the whole field of view into a problem of having uniform motion within a sngle image
voxel. Obviously, the latter is a much easier to achieve.

Line scan and diffusion imaging make a perfect fit, because, problems related to
the secondary echoes disappear by alternating between high and low diffusion sensit-
ivity. Then, by using an interleaving scheme with a dummy sweep", uniform image
intensity is ensured. Because the LSDI sequence is based on the spin-echo sequence,
it is insensitive to field inhomogeneities and it is easily implemented on conventional
scanners. The only real hardware constraint is that a sufficient gradient strength is
needed in order to have reasonably short echo times.

We have shown, that high quality diffusion maps can be obtained rapidly with the
LSDI technique on both O.5T and 1.5T systems without the use of head restraints or
cardiac gating. Furthermore, we show that these diffusion maps compare very well
with diffusion maps obtained using diffusion weighted echo-planar imaging (EPI) In
contrast to the EPI technique, LSDI does not require modified gradient hardware, is
insensitive to field inhomogeneities, and can easily be implemented on conventional
scanners. The main disadvantage of the LSDI technique is that multi-slice imaging is
considerably slower than with EPI. However, the feasibility of using the LSDI tech-
nique for clinical evaluation of acute ischernic stroke in less than ten minutes is demon-
strated i section 73.3. It remains tobe explored whether the LSDI sequence can be
modified in order to reduce imaging time in multi-slice acquisition.

We believe the LSDI technique is an excellent alternative to EPI diffusion imaging.
This can have great clinical impact because reliable stroke studies with diffusion ima-
ging, which previously required scanners with expensive gradient hardware for EPI,
can now be done on most conventional scanners. Hence, this increases the number of
clinical sites capable of doing stroke and other diffusion studies dramatically.
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Appendix A

Conditional Random VValk

A.1 Variance Calculation

Here we continue the calculation of the conditional variance. We start by rewriting
Eq. 3.14)
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Equation (A. ) simplifies to
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and Eq. (A.3) reduces to
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Finally Eqs. 313), (A.5), and 3-11) are plugged into Eq. 3.12) which gives

N(N+1)(2N+l) N1 2
= G2ly2TT 6 2 X/�

2
(70IX

N(N + 1 2

2

N(N + 1) (2N + 1)
6

+ xl� + N
2N

(XA - 1)
(N - )

(A-6)

After some algebra this can be expressed as
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where r is the correlation coefficient defined by
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Since
Pr(x, = Pr(o I x)Pr(x)

it is easy to show that 98]
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and hence

Substitution into Eq. (A.9) yields

si = rU0X10,X (A. 12)
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Using this value in Eqs. (A. 12) and (A. 13) leads to exactly the
in Eqs. 3.17) and (3.18).

same result as obtained

A.3 Ramped Gradients
Here we extend the conditional random walk model to include time varying gradients
which vary linearly with time.

The difference in the position between a moving and a static spin is defined as

N

x = Eai (A. 5)
i=1

A.2 Different Derivation for the Conditional Variance
Now just assume that x and q5 can be described by a jointly Gaussian distribution

-1 X 2
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2or2 (I - 2)

0
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where a E (- 1, 1) is a discrete random variable. From this definition and the definition
of D = 2 /2T and t = NT it is straight forward to show that

X(tl)X(t2) = 2 (Min(tl, t2)) IT = 2D min(ti, t2) (A.16)
The gradient is assumed to have the following form

G(t = Go at (A.17)

Hence'
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By substituting into Eqs. (A.12) and (A. 13) we get

t t2 (A-22)
01. = 7GO x + -ya-x

2 3

2 2 G 2 t3 Goat4 a22t5-D � � + � � + (A-23)
6 6 45

'The integral product is evaluated by forming a double integral. The inner integral is then split
into two integrals such that Eq. (A.16) can be applied.
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A. 4. SOME FOURIER TRANSFORM PROPERTIES

The last two equations can be expressed in an alternative form

153

, (G(t)
'01. = AL, 6

+G(t + At)X
3

(A.24)

0,021 = 72 DAt3 (A.25)

where G(t) and G(t + t) denote the gradient strength in the beginning and the end
of the time step, At, respectively. It should be emphasized, that the static precession
angle is given by 7AtX (G(t) + G(t + At)) 2, where X is the location of the spin in
the beginning of the time step.

AA Snme Fourier T. ransform Properties
Transform of a Gaussian
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Convolution

-Fjm(x) * c(xAt) = m(x)j.Ffc(x, At) = M(k)C(k, t)

Scaling and Modulation

(A.27)
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Appendix 

Partition Analysis

By using Eq. 5-17) the precession angle for each of the four transverse pathways can
be writte as

Or = 0

02 = 0 + ((M + 1A,, + J. + J)
03 = 0+((m+1+2)A,+J,,,+J,+JI+J2)
04 = 0+((m+l+k+3)A,+,S,,,+J,+J,+J2+Jk+�3) (B. )

where A, = yG,.ff vTR2 and in general J = yGffTRAx. The random variables ,, 2

and 3 are changes in the precession angle due to diffusion during only one SSFP cycle.
The random variables k, J, and Jk are, however, changes due to k, 1 and m SSFP
cycles, respectively. The variance of Sk is therefore k times larger than the variance
of J, and so on. According to Eq. 36) the variance of the particle displacement,
Ax, during one SSFP cycle is given by 2DTR. For a zero mean Gaussian probability
distributions, we find that

1 27r oo oo oo oo 4

2-7r f f f f H cos(O + Ai JO Pr(Ji) 6dJ26364do
0 W M 00 W

1- [cos(Al A - A3 + A4) exp (-var(J - 2 - 3 + J)/2)
8
+ cos(Al A2 + A - A4) exp (-var(J - 2 + J - J4)/2)
+ cos(Al + A - A - A4) exp (-var(JI +,52 - - 4)12)] (B.2)

Note that when there is a uniform distribution of precession angles, the signal from
an odd number of transverse pathways is always zero because

1 os(,o + Ai)d = for n = 35.... (B-3)
27ri c
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By using the identity in Eq. (B.2), we can evaluate the average magnetization of
Eq. (5.18). We see from Eqs. (B.2) and (5-18) that we oly need to know the mean
and the variance of the three different combinations of the four precession angles,
01, - 04. The mean is only a function of the bulk flow and is deterministic whereas
the variance is due to the stochastic nature of the diffusion.

Table&l: Theaccumulatedflowphaseandthetotalvarianceofthephaseduetodiffusion
expressed as functions of k, 1, and m.

Table B.1 shows how the mean and the variance add together for the different
combinations of the four precession angles. Note that the variances always add, inde-
pendent of the signs of the angles. Combining Es- (5.18) and (B.2) with the results
in Table B. gives

(M(nm,1,k).,) J1,J'0(1-Ej)(Elcosa) +,+I+k-3 E 3E24 sin' a

m+k+2+1 (sin(-(m - k),A,)AD
8

",+k+2- sin(-(m + k + 2)A,)AD
- sin -(7n 21 k + 4),Av) Am+41+k+6 (B.4)

D

where AD = exp [-bD] and b = (-yGff TR)2 TR.
The total transverse signal at any given time can be expressed by adding up all

the pathways from all previous inputs, which are in the transverse plane at the echo
time. By using the following two identities repeatedly we find that the final result for
the x-component is given by Eq. 520).

00 cos ((b + 1) aA,) - cos (baA,) El cos a
Ecos(a(m,+b)A,)(Ejcosa)-- = 2 2

(1 - 2 cos(aA,)EI cos a El Cos a)

sin ((b + 1) aA,) - sin (baA,) El cos a
Esin(a(m+b),A,)(Elcosa)` _- ( - 2 cos (aA,) El cos a E 2 S a)
M=1 1

The contribution from other types of pathways is given in the following sections.
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B.1 Two Transverse Pathways

B.1.1 L... LTT

M(n)., Mo(1-El)(Ejcosa)'E2sina

- sin(o) cos(o (, )

- cos a cos(0) sin (O (., 1)) (B.5)

(M(n).) Mo(l-El)(Elcosa)n E22 sin a

-1 (sin(-A,)Al)
2 D

- cos a1 )Al (B-6)2 (-sin(-A D

(M.) E (M(n).)
n=O

1 2sinaA (1 - El) -E2
1 - El cosa

1- (1 - cos a) sin(A,)Al (B-7)
2 D

M(n)y Mo(1-El)(Elcosa)nE22Sina

- sin(O) sin(O (,, + Jj))

+ cos a cos (0) Cos (O (, + Ji)) (B-8)

(M(n)y) Mo(l-El)(Elcosa)"E22sina

(cos(-,A,)Al)
2 D

cos a -A,)AD (B-9)
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00
= E (M(n)y)

n=O

1 2sin= Mo (I - El) _E2
- El cos a

- 1(1 - cos a) cos(A,)Al
2 D

(MY)

a

(B.10)

B.1.2 L ... LTL. . LT

= Mo(i-El)(Elcosa)n (El cos a) - 1 El E22 sin3a

+ COO) sin(,O + ((m + 1A, + �,n + 1))

M(n, m).,

(B.11)

rn-l ElE 2 sin3Mo (1 - El) (El cos a)'(El cos a) 2(M(n, Tn).)

+I (- sin( ( +
2

(B.12)

0 coE E (M(n).)
n=O m=l

Mo ( - El) _EjE2sin a
- El cosa

1 A 2 (sin(2A, - sin(A,)ADE, cos a)
+_ D

2 (I - 2 cos(A,)ADE, cos a A2E2 CS2 a)D 1

Mo(I-El)(Elcosa)n (El cos a) '- 1 El E22 sin 3 a

- COO) cos(o + ((M + 1)A, J. + JO)

(M.)

(B.13)

M(n, m)y

(B.14)

= MO (1 - El) (El cos a) n(El cos a) ̀El E22sin 3a

- M+l1 (cos (- (m + 1) ,,) AD 
2

(M(n, m)y)

(B.15)

1)A,)Am
D +1)



B.2. FOUR TRANSVERSE PATHWAYS 159

00 00(MY) = E E Mn, m),,)
n=O m=1

Mo(l - El 2 sin3a
- El cos a

1 A2 (cos 2 A,) - cos (A,) AD El os a)D (B.16)
2 ( - 2 cos(A,)ADE, os a A 2E 2 S aD 1

B.2 Four Transverse Pathways

B.2.1 L... LTTTT

(M.) MO ( - El) -E24 sin a- El osa
2 3 2+ (1 - 3 os a 3 os a - os a) AD sin (2A,)

8

+ 1(1 Cosa Cos2a - os3 a)A 6sin(4,A,) (B.17)
8 D

1 4 sin a(My) Mo ( - El) -E2
El cos a

2 3 2+ 8( - os a - os a os a) AD

1(1 - 3 os a 3 a - COS3 a)A2cos(2A,)
8 D
1 -

-- (1 + os a - cos 2a - os 3 a)A 6cos(4A,) (B.18)
8 D
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(M.) Mo ( - El) 1 z7, z4 i3a
El cos aL"lj-"2 S

A3 (sin(A,))
Cos2a) D

8 ( - 2 cos(A,)ADE, cos a A2 E2 COS2 a)D

A3 (sin(3A,,, - sin(2A,)A+-(I - 2cos a + cos 2a). D DE1 cos a)
8 ( - 2 cos (A,) AD El cos a + A2 E2 CS2 a)D 1

A7 (sin(5A, - sin(4A,)ADEI cos a)
Cos2a) D

8 ( - 2 cos(,A,)ADE, cos a A2 E2 CS2 a)D I
(B.19)

(My) Mo ( - El) I _ElE 4 in3a
-El cosa 2 

A3 (cos (A,) - ADE, cos a)
Cos2a) D 2 28 (1 - 2 cos (A,) AD El cos a + A2 El Cos a)D

A' (cos (3A, - cos (2,1,) AD El cos a)2 D2cosa + cos a).
8 ( - 2 cos (A,) AD El cos oe + A2 E2 CS a)D 1

1 A 7 (cos(5A,) - cos(4A,)ADE, cos a)
+_(1 Cos2a) D

8 ( - 2 cos (A,) AD El cos a A2 E2 CS2 a)D 1
(B.20)

B.2.3 L ... LTTL ... LTT

1 v 4 3Mo ( - El) - 1 2 Sin a- El cos aj- '
A2 sin(2A,)

+ (I - 2 cos a+ cos 2a) D
8 (1 - El cos a)

Alo (sin(6A,,) - sin(4,A,)A 4 El cos a)+ 1(1 2 cos a + cos 2a) D D (B.21)
8 ( - 2 cos(2A,)A4 El cos a Al E2 CS a)D D 1

B.2.2 L... LTL...LTTT
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1 4 sin 3a
(MY) MO BO -EIE2- El cos a

A2
( - 2 cos a + cos 2a). D

8 (1 - El cos a)

1 2 A 2 cos(2A,)-- (1-2cosa+cos a). D
8 ( - El cos a)

A10 (cos(6A,) - cos(4A,)A 4El cos a)2 D D-- (1+2cosa+cos a), (B.22)
8 (1 - 2 cos(2A.,)A4 El cos a + A8 E2 CS a)D D

B.2.4 L ... LTTTL ... LT

4 sin3a(M.) Mo ( - El) - El cos a EIE2

A3 (sin(A,))
Cos2 a) D 2 28 (1 - 2 cos(A,)ADE, cos ce + A2 El Cos a)D

1 A 3 (sin(3A,) - sin(2A,)ADE, cos a)
+-( - 2 cos a + cos 2a) D

8 (1 - 2 cos (A,,) AD El cos a + A2 E2 CS2 a)D 1

1 2 A 7(sin(5A,) - sin(4A,)ADE, cos a)-- (1 -Cos a) D (B.23)
8 (1 - 2 cos (A,) AD El cos ce + A2 E2 CS a)D 1

(My) Mo ( - El) El E24 sin' a- E cosa
2 A' (cos (A,) - AD El cos a)

-Cos a) D
8 (1 - 2 cos(A,)ADE, cos a A2 E2 CS a)D 1

1 2 A 3 (cos(3A,) - cos(2A,)ADE, cos a)-- (1-2cosa+cos a) D
8 (1 - 2 cos (A,) AD El cos a A2 E2 CS2 a)D 1

1 2 A7 (cos(5A, - cos(4A,)ADE1 cos a)+-(1 -Cos a) D (B.24)
8 (1 - 2 cos (A,) AD El cos a + A2 E2 CS2 a)D I
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B.2.5 L ... LTL ... LTL .. LTT

1 2 E24 Sin5a(M.) = Mo ( - El) -El
- E cosa

(1 - cos a) (Al (sin(A,) - A' (sin(3,A,;) - sin(2,A,)ADE, cos a))- D D
8( - 2 cos(A,,)ADE, cos a A 2E2 CS2 a) ( - El cos a)D

+ cos a) (All (sin(7A,) - sin(5,A,)A 4 El cos a))D D
8( - 2 cos(A,)ADE, cos a A2 Elf S2 a) (1 - 2 cos(2A,)A4 El cosa + A8 E 2 S a)D D D 1

+ cos a) ADE, cosaAll (sin(6A, - sin(4A,)A 4 El cos a))
+ D D

2 COS2 4 8 2 28( - 2 cos(A,)ADE, cos a A DE2 a)(1 - 2cos(2A,)A DEl cos a +A D El Cos a)

(B.25)

2 4 5(My) = Mo ( - El) _E E sin a[
- El cosa 2

cos a) (A' (cos (A,) - AD El cos a) A 3 (cos(3A., - cos(2A,)ADE, cos a))D D

8(1 - 2 cos(A,)ADE, cos a A 2E2 CS2 a) - El cos a)D

(1 + cos a)(All (cos(7A, - cos(5A,)A 4 El cos a))
+ D, D

8( - 2 cos(A,)ADE, cos a A2 E2 CS2 a) ( - 2 cos(2A,)A 4 8 E2 CS a)D DE1 cos a AD

(1 + cosa)(ADE, cosaAll (cos(6A, - cos(4A,)A 4El cos a))D D
8( - 2 cos(A,,,)ADE, cos a A2 E2 CS2 a) (1 - 2 cos(2A,)A4 El cos a A8 E2 COS a)D D D

(B.26)

B.2.6 L ... LTL ... LTTL ... LT

(M.) Mo(l - El) 1 -E2 E 4 sin 5a
1-Elcosa 1 2

A 4 (sin (OA,) - sin - 1 ,) AD El cos a) - AD El cos aA 4 (sin(,A.,,))__(1 + cosa) D D
8 (1 - 2 cos(A,)ADE, cos a A 2 Elf S2 a) 2D
1

+_(1 cosce)
8

A 4 (sin (4A,,) - sin (3,A, AD El cos a) - AD El cos aA 4 (sin(3A,) - sin(2A,)ADE, cos a)+ D D
( - 2 cos(A,)ADE, cos a A 2E 2 S2 a) 2

D I

Al (sin (6,A,) - sin (5A, AD El cos a) - AD El cos aA 8 (sin(5A,) - sin(4A,)ADE, cos a)+ D D,
( - 2 cos(A,)ADE, cos a A 2 E 2 S2 a) 2

D I

(B.27)
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1 2 4 5(My) = Mo ( - El) -El E2 sin- E cosa
+ cos a)

8
A 4 (cos(OA,) - cos(-lA,)ADE, cos a) - ADE, cos aA 4(cos(A, - ADE, cos a)D D

(1 - 2 cos(A,)ADE, cos a A 2E2 CS2 a) 2D

cosa -
8

A4 (cos(4A, - cos(3A,)ADE, cos a) - ADE, cos aA 4(cos(3A,) - cos(2A,)ADE, cos a)D D
+ ( - 2 cos(A.,,)ADE, cos a A 2E 2 S2 a) 2

D 1

A 8 (cos(6A, - cos(5A,)ADE, cos a) - ADE, cos aAI (cos(5A,) - cos(4A,)ADE, cos a)+ D D
( - 2 cos(A,)ADE, cos a A 2 E2 CS2 a) 2

D

(B.28)

B.2.7 L ... LTTL...LTL ... LT

(M.) Mo ( - El) 1 E12E24 sin5a
- El cosa

A 3 (sin(A,)) + A 3 (sin(3A.,) - sin(2A,,)ADE, cos a)cosa) D D
8 (1 - 2 cos(A,,,)ADE, cos a A 2E 2 S2 a) (I - El cos a)

D 1

+ cos a) (Al (sin (7A,) - sin (5A,) Al El cos a))D D
8( - 2 cos(A,,)ADE, cos a A 2E 2 S2 a) (I - 2 cos(2A,)A 4El cos a A E2 CS a)D 1 D D

(1 + cosa)(ADE, cosaAll (sin(6A,, - sin(4A,)A' El cos a))
+ D D

2 2 2 4 2 S28( - 2 cos(A,)ADE, cos a A El Cos a) (1 - 2 cos(2A,)A El cos a A8 El a)D D D

(B.29)



164 APPENDIX B. PARTITION ANALYSIS

(My) Mo ( - El) 1 E 2 E 4sin5a
- El cosa 2

Al (cos(A,)-ADEcosa)+A' (cos(3A,)-cos(2A,)ADElcosa)cosa) D D
8 (1 - 2 cos(A,)ADE, cos a A 2 E 2 S2 a) ( - El cos a)

D 1

+ cos a) (All (cos(7A, - cos(5A,)A' El cos a))D D
+ 8(1 - 2 cos(A,)ADE, cos a A 2Elf S2 a) 1 - 2 cos(2A,)A4 cos a All E2 CS2

D DE1 D

+ cos a) ADE, cos aAll (cos(6A,) - cos(4A,)A 4El cos a))D D
8( - 2 cos(A,)AD El cos a A 2E12COS2a)(1-2cos(2A,)A4Ecosa+A8E2COS2D D D aj

(B.30)

B.2.8 L ... LTL ... LTL ... LTL.. LT

(M.) Mo(l - El) I -E3E 4 sin a
- El cosa 1 2

A 4 (sin (4A,) - sin (3A,) AD El cos a)
2 COS28 ( - 2 cos(A,)ADE, cos a A DElf a)2(1-Elcos�-)

1 AD El cos aA 4 (sin(3A,) - sin(2A,)ADE, cos a)D
8 ( - 2 cos(A,,)AD El cos a +A 2Elf S2 a) 2 ( - El cos a)D

A 12 (sin(8A, - sin(6A,)A 4 El cos a)
2 COS2 COS28(1-2cos(A-,)ADElcosa+A E2 a)2 (1 - 2 cos(2A,)A 4El cos a + A8 E2 a)D D D

2 A El cosaA 12 (sin(7A,) - sin(5A,)A 4 El cos a)D D Q
8 ( - 2 cos(A,)ADE, cos a + A 2E2 CS2 a)2 (1 - 2 cos(2A,)A 4El cosa + A 8 E2 CS2 a)D D D

1 A 2 E 2 S2 aA 12 (sin(6A.,,) - sin(4A,)A 4 El cos a)
+- D 1 - - --D D

8 ( - 2 cos(,A,)ADE, cos a + A2 E2 CS2 a)2 (1 - 2 cos(2A,)A 4El cos a + A8 E2 CS2 a)D 1 D D 1

(B.31)
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(My) Mo ( - El) 1 -E 3E4 Sin a
- El cosa 2

A 4 (cos(OA, - cos(-lA,,)ADE, cos a)D
8 ( - 2 cos(A,)ADE, cos a A2 E2 CS2 a)2 (I - El cos a)D

AD El cos aA 4 (cos(A, - AD El cos a)D
8 ( - 2 cos(A.,)ADE, cos a A 2 E2 CS2 a) 2 (I - El cos a)D
1 A 4(cos(4A, - cos(3A,,)ADE, cos a)D
8 ( - 2 cos (A,,) AD El cos a A2 E2 CS2 a) 2 (I - El cos a)D,

1 ADE, cos aA 4 (cos(3A, - cos(2A,,,)ADE, cos a)
+- D8 ( - 2 cos(A,)AD El cos a A2 E2 CS2 a)2 ( - El cos a)

D
A 12 4D (cos(8A,, - cos(6A,)A DEl cos a)

8 ( - 2 cos(A,)ADE, cos a + A2 E2 CS2 ,)2 ( - 2 cos(2A,)A 4El c.- + A' E2 CS2 a)D D D,
AD El cos aA 12 4 El COS a)

D(cos(7A,) - cos(5A,)A
2 COS 2 4 2 28(1-2cos(A,)ADEcosa+A Elf a -2cos(2A,)A Elcosa+A'Elco a)D D D,

A2 E2 S2 aA 12 (cos(6A,) - cos(4A,)A4 El cos a)
D D D

8 ( - 2 cos(A,,)ADE, cos a A 2 E2 COS2 a)2 ( - 2 cos(2A,)A4El cos a As E2 CS a)D D D

(B.32)
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