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ABSTRACT

This paper is concerned with the problem min {f(x)l xeX} wheré X is a
convex subset of a linear space H, and f is a smooth real-valued function
on H. We propose the class of methods X4l = P(xk - akgk), where P denotes
projection on X with respect to a Hilbert space norm I«i, 9y denotes the
Frechet derivative of f at Xy with respect to another Hilbert space norm
Wed, on H, and o is a positive scalar stepsize. We thus remove an
important restriction in the original proposal of Goldstein [1] and Levitin
and Poljak [2], where the norms li«l and n-uk must be the same. It is there-
fore possible to match the norm U<l with the structure of X so that the pro-
jection operation is simplified while at the same time reserving the option to
choose u-nk on the basis of approximations to the Hessian of f
so as to attain a typically superlinear rate of convergence. The resulting
methods are particularly attractive for large-scale problems with specially
structured constraint sets such as optimal control and nonlinear multi-

commodity network flow problems. The latter class of problems is discussed

in some detail.



1. Introduction

Projection methods stemming from the original proposal of Gold-
stein [1], and Levitin and Poljak [2] are often very useful for solving
the problem
minimize f(x)
(1)
subject to xeX

where f:H+R and X is a convex subset of a linear space H. They take the

form

Xer1 = (X = 4q9) (2)

where o is a positive scalar stepsize, Pk(-) denotes projection on X
with respect to some Hilbert space norm u-uk on H and 9y denotes the
Frechet derivative of f with respect to u-uk, i.ea, 9y is the vector

in H satisfying
f(x) = f(xk) + <gk,x-xk>k + o(ux-xku), (3)

where <-s->k denotes the inner product corresponding to u-nk.
As an example let H=Rn, and Bk be an nxn positive definite symmetric

matrix. Consider the inner product and norm corresponding to Bk

<x,y>k = x'Bky, Ixh, = (<x,x>)1/2

k » ¥V x,yeH, (4)

where all vectors above are considered to be column vectors and prime
denotes transposition. With respect to this norm we have [cf.(3)]

9, = By VF(x,), (5)

where Vf(xk) is the vector of first partial derivatives of f
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Vf(xk) =

X

e 4

When problem (1) is unconstrained (X = H), iteration (2) takes the familiar
form
= —aB-l

Xeel = Xk = 4B V(X ).

Otherwise the vector

Xer1 = Pxe = o9
is the solution of the problem

Coa 2
minimize Ux - X, + o g I

subject to xeX.
A straightforward computation using (4) and (5) shows that the problem
above is equivalent to the problem
minimize Vf(xk)'(x - xk) +-§%; (x-xk)'Bk(x-xk) (7)
subject to xeX.
When X is a polyhedral set and Bk is a Quasi-Newton approximation of
the Hessian of f, the resulting method is closely related to recursive
quadratic programming methods which currently enjoy a great deal of
popularity (e.g., Garcia-Palomares [3], Gill et al [4]).
It is generally recognized that in order for the methods above to be

effective it is essential that the computational overhead for solving the
3



quadratic programming problem (7) should not be excessive. For large-scale
problems this overhead can be greatly reduced if the matrix Bk is chosen in a way
that matches the structure of the constraint set. For example if X is

the Cartesian product .g Xi of m simpler sets Xi’ the matrix Bk can. be chosen

be block diagonal with18ie block corresponding to each set Xi’ in which

case the projection problem (7) decomposes naturally. Unfortunately such

a choice of Bk precludes the possibility of superlinear convergence of the
algorithm which typically cannot be achieved unless Bk is chosen to be a

suitable approximation of the Hessian matrix of f ([3], [5]).

The purpose of this paper is to propose projection methods of the form

Xpe1 = POX = 4 9,) (8)

corresponding to the projection and the

where the norms Il and n-uk

differentiation operators respectively can be different. This allows the

option to choose H+lIl to match the structure of X, thereby making the

projection operation computationally efficient, while reserving the option
to choose nouk on the basis of second derivatives of f thereby making the
algorithm capable of superlinear convergence. When H = Rn, the projection

norm l*ll is the standard Euclidean norm
Ixi = (x'x)l/2 =| x| (9)

and the derivative norm u-nk is specified by an nxn positive definite

symmetric matrix Bk
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Ixu, = (x'ka) (10)

the vector X4l of (8) is obtained by solving the quadratic programming

subproblem



C . 1 2
minimize g (x - xk) +-§&; |x - xkl
subject to x € X (11)
where
= B (12)
gk = Bkvf(xk)'

The quadratic programming problem (11) may be very easy to solve if X
has special structure. As an example consider the case of an orthant

constraint
X ={x]0<x',i=1,....0}. (13)
Then, the iteration takes the form

-1 +
= - 14
Xeep = 1% - o B VE(x )] (14)

. . i +
where for any vector veR" with coordinates v, i = 1,...,n we denote by v

the vector with coordinates

(vi)+ = max {O,vi}.

Iteration (14) was first proposed in Bertsekas [6], and served as the start-

ing point for the present paper. It was originally developed for use in a

practical application reported in [18]. The computational overhead in-

volved in (14) is much smaller than the one involved in solving the correspond-

ing quadratic program (7) particularly for problems of large dimension.

Indeed Targe optimal control problems have been solved using(14) (see [6])
that, in our view, would be impossible to solve by setting up the correspond-

ing quadratic programming (7) and using standard pivoting techniques.

Similarly (14) holds an important advantage over active set methods [4]

where only one constraint is allowed to enter the active set at each iteration.
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Such methods require at least as many iterations as the number of active
constraints at the optimal solution which are not active at the starting
vector, and are in our view a poor choice for problems of very large dimension.
An important point is that it is not true in general that for an
arbitrary positive definite choice By, iteration (14) is a descent
iteration [in the sense that if X is not a critical point then for ol
sufficiently small we have f(xk+]) < f(xk)]. Indeed this is the main
difficulty in constructing two-metric extensions of the Goldstein-Levitin-
Poljak method. It was shown, however in | 6] that if Bk is chosen to be
partially diagonal with respect to a suitable subset of coordinates then
(14) becomes a descent iteration. We give a hon trivial extension of
this result in the next section (Proposition 1). The construction of the

"scaled gradient" Iy satisfying the descent condition
<g,»f(x,)> =0 (15)

is based on a decomposition of the negative gradient into two orthogonal
components by projection on an appropriate pair of cones that are dual to
each other. One of the two components is then "scaled" by multiplication
with a positive definite self-adjoint operator (which may incorporate
second derivative information) and added to the first component to yield
9 The method of construction is such that 9y s in addition to (15), also

satisfies
f[P(xk - agk)] < f(xk)

for all a in an interval (O;Ek],'ak > 0.
Section 3 describes the main algorithm and proves its convergence.
While other stepsize rules are possible, we restrict attention to an

Armijd—]ike stepsize rule for selecting @, on the arc
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{z| z = P(xk - agk), a>0}

which is patterned after similar rules proposed in Bertsekas [6], [7].
Variations of the basic algorithm are considered in Section 5, while in
Section 4 we consider rate of convergence aspects of algorithm (8), (11),
(12) as applied to finite dimensional problems. We show that the descent
direction g, can be constructed on the basis of second derivatives of f so
that the method has a typically superlinear rate of convergence. Here we
restrict attention to Newton-like versions of the algorithm. Quasi-Newton,

and approximate Newton implementations based on successive overrelaxation

convergent conjugate gradient-based implementation of the method of this
paper is applied to large-scale multicommodity flow problem in the last
section of the paper.

While the algorithm is stated and analyzed in general terms we pay
special attention to the case where X is a finite dimensional polyhedral
set with a decomposable structure since we believe that this is the case

where the algorithm of this paper is most likely to find application.



2. The Algorithmic Map and Its Descent Properties

Consider the problem

minimize f(x) (16)

subject to xeX

where f is a real-valued function on a Hilbert space H, and X is a non-
empty, closed, convex subset of H. The inner product and norm on H will be
denoted by <+s>+> and i+l respectively. We say that two vectors x, yeH
are orthogonal if <x,y> = 0. For any zeH we denote by P(z) the unique

projection of z on X, i.e.,
P(z) = arg min {ux-zu| xeX}. (17)

We assume that f is continuously Frechet differentiable on H. The Frechet
derivative at a vector x € H will be denoted by Vf(x). It is the unique

vector in H satisfying
f(z) = f(x) + <Vf(x),z - x> + o(z - x1)

*
where o(llz - xi)/1z - xi » 0 as z » x. We say that a vector x e X is

critical with respect to problem (16) if
* *
KVf(x ),x - x> >0, Y xeX, (18)

) . * * *
or equivalently, if x = P[x - Vf(x )]..
It will be convenient for our purposes to represent the set X as an

intersection of half spaces
X = {x] <a;,x> < b, ¥ iel}, (19)

where I is a, possibly infinite, index set and, for each iel, a; is a
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nonzero vector in H and bi is a scalar. For each closed convex set X there
exists at least one such representation. We will assume that the set I
is nonempty - the case where I is empty corresponds to an unconstrained

problem which is not the subject of this paper. Our algorithm will be

defined in terms of a specific collection {(ai’bi)' iel} satisfying (19)

which will be assumed given. This is not an important restriction for

many problems of interest including, of course, the case where X is a
polyhedron in R".

We now describe the algorithmic mapping on which our method is based.
For a given vector xeX we will define an arc of points {x(a)l a > 0} which
depends on an index set IXCZ I and an operator DX which will be described

further shortly. The index set IX is required to satisfy
LD {iel| <ayx> > b, - ela, i} (20)
where € is some positive scalar. Let CX be the cone defined by

C, = {z| <a;,z> < 0, ¥ ieIx} (21)

and C: be the dual cone of CX
c: = {z] <, <0, ¥ yeC }. (22)

For orientation purposes we mention that if X is a polyhedral subset of
R" (or more generally if the index set I is finite), and ¢ is sufficiently
small, then IX can consist of the indexes of the active constraints at x,
i.e., we may take IX = {i| <ai,x> = bi’ iel}. In that case CX is the cone
of feasible directions at x, while C: is the cone generated by the vectors

aﬁ,corresponding to the active constraints at x. More generally CX is a

9



(possibly empty) subset of the set of feasible directions at x, and for any
AxaCx with IAxI < € the vector x + Ax belongs to X.

Let d be the projection of [-vf(x)] on C , i.e.,

d = arg min {nz + vF(x) 1} ZeCX}. (23)
Define
d; = - [vf(x) +d ]. (24)

It can be easily seen that the vectors dx and d; are orthogonal and that

d: is the projection of [-Vf(x)] on C; , i.e.,
d’ = arg min {1z + vF(x)1 | ZeC+} (25)
X - x’*

Note that if the norm U<l on H is such that projection on the set X is
relatively simple then typically the same is true for the projection (23),
required to compute dX and di.

Let rx be the subspace spanned by the elements of Cx which are orthog-

onal to d+, i.e.,
X
+
r, = span {c,0{z] <z.d > = 0}} (26)
Note that

dXeI‘x (27)

since d_ belongs to C_ and is orthogonal to d+. let D :T »I' be a
X X X XX X
positive definite self-adjoint operator mapping PX into itself. Consider
the projection Ex of Dxdx on the closed cone CX(){zl<z,d;> = 0}, i.e.
~ . +
d, = arg min {uz - Dxdxni zeC , <z,d > = 0}. (28)
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Consider also the direction vector

~

d,). (29)

+
g = -(dy +d,

Given x, Ix’ and Dx’ our algorithm chooses the next iterate along the arc
x(a) = P(x - ag), o > 0. (30)

The stepsize a will be chosen by an Armijo-like stepsize rule that will be
described in the next section.

The process by means of which the direction g is obtained is illu-
strated in Figures 1-4. The crucial fact that will be shown in
Proposition 1 below is that, if x is not critical, then for sufficiently
small o > 0 we have f[x(a)] < f(x), i.e., by moving along the arc x(a) of
(30) we can decrease the value of the objective. Furthermore we have
<Vf(x),9>=0 which means that g can be viewed as a "scaled" gradient, i.e.,
the product of Vf(x) with a positive definite self-adjoint operator.
We now demonstrate the process of calculating the direction g for some

interesting specially structured constraint sets.

I

Example 1: Let H = Rn, <{x,¥y> = x'y, and X be the positive orthant
X = {x| x| > 0, i =1,.a.5n}.

Then X consists of the intersection of the n halfspaces {x| x' > 0}
i=1,.0.,n and is of the form (19). The set Ix must contain all indices i

such that 0 < x' < ¢ [cf. (20)]. The cones Cx and C: are given by

¢, =1{z|z' >0, viel ), C = {z|2' <0, ¥iel, 2 =0 ¥ jer}

11



The vector dx’ and d; [cf. (4.3.8), (4.3.9)] have coordinates given by

SLUC TN

.i

: X
d! =
X ”~
0 if del
X
0 if 1;51X
ait -
X
2 Afx) )1( if iefx
ax
where
T = {i|1el, and 2X) 5 o},
X X x|

~

If IX is empty then Px = R" and we have dX = -Vf(x), d: = 0. In
this case g = -DxdX = DXVf(x) where Dx is any nxn positive definite
symmetric matrix. If Ix is not empty, by rearranging indices if necessary
assume that for some integer p with 0 < p < n-1 we have ?x = {p+1l,...,n}.

Partition Vf(x) as

=

vf(x) =

b

where w e R° and w ¢ R""P. The vector g is given by
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where DX is a pxp positive definite symmetric matrix, (DXW)# denotes pro-
jection of DXW on C , i.e. (Dxﬁ)# is obtained from DXW by setting to zero

those coordinates of DXW which are negative and their indices belong to IX.
Example 2. Llet H = Rn, and X be the unit simplex
0 i
X={x| Ix;=1,%x >0, i=1,...,n}. (31)
Suppose the inner product on R" is taken to be
[1 . .
KLYy> = ) sxy (32)

where s1 i=1,...,n are some positive scalars. Let I be a set of
indices including those indices i such that 0 < x' < ef V Then the

cone CX can be taken to be

n .
¢, = {z| Lz =0,2 >0, viel . (33)

The vector dx is obtained as the solution of the projection problem

no . 2
minimize %- ) s1[z1 +-—% -éii?Lj (34)
i=1 S 9X

. e _i . i . A
subject to ) z =0, z >0, 1eIX.

The solution of this problem is very simple. By introducing a Lagrange
n

multiplier A for the equality constraint ) ' =0 we obtain that X is the
i=1
solution of the piecewise linear equation
o 1 af(x) .+ S af(x i
z,\—;n-—i—lil f LD Rt A (35)
eI X t X

This equation can be solved by the well known method of sorting the break-
afgx » .. IX in decreasing order, and testing the values of the
oX

left side at the breakpoints until two successive values bracket zero.

points

17 .



Once X is obtained the coordinates of dx are given by

(
+ A
Lo - 20007 r 4ed
1 1 X
i S X
d, = < (36)
Loy e
X
S X
\

The vector d; is then obtained from the equation

+
d = - [Vf(x) +d ].
Let
- A
T = {i|icl, and a < 20X} (37)
X X ax'l

It is easily verified that the subspace rx is given by

n
r.o=1{z| Z z =0, z =0, Vv ieTX}. (38)

The vector Hx is obtained as the solution Qf the simple projection problem

winimize s'[2' - (0a)")° (39)

Hp~—>=

1
2 551

n . . - . ~
subject to ) z' =0, z' >0, ¥ el , =0 v jel,
i=1
where (Dxdx)1 is the ith coordinate of the vector Dxdx obtained by
multiplying dx with an nxn symmetric matrix Dx which maps FX into TX
and is positive definite on Fx. We will comment further on the choice of
DX in the last section of the paper. The vector g is given now by

g = -(HX + d;). Note that the solution of both projection problems (34) and

(39), as well as the problem of projection on the simplex X of (31) is

18



greatly simplified by the choice of the "diagonal" metric specified by (32).

Proposition 1 below is the main result regarding the algorithmic map
specified by (20) - (24), (28) - (30). For its proof we will need the

following lemma the proof of which is given fn Appendix A.

Lemma 1: Let @ be a closed convex subset of a Hilbert space H, and let
PQ(-) denote projection on Q. For every xeQ and zeH:
a) The function h:(0,») +» R defined by

IPg(x + az) - xl

h(a) = 2 Yad>0

is monotonically nonincreasing.
b) If y is any direction of recession of @ [i.e., (x + ay)e@ for all o > 0],
then

y,x + 2> < Ly,Po(x + z)>. (40)

Proposition 1: For xeX, let ¢ > 0 and IX satisfy (20), and let

DX:FX > rx be a positive definite self-adjoint operator on the subspace
r  defined by (21)-(26). Consider the arc {x(a) | « > 0} defined by (23),
(24), (28)-(30).

a) If x is critical, then

x(a) = x, Ya> 0.
b) If x is not critical, then

<vf(x),g> = 0, (41)
and

1 ~ .2
KVF(x),x=-x(a)> > o <dx,Dde> = ix(a) - (X+adx)ﬂ >0 v ae(O,-“;—u). (42)
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Furthermore there exists a > 0 such that
f(x) > f[x(a)], ¥ ae(0,a]. (43)
Proof: a) It is easily seen that for every ZsCX we have

(x +-i§iz)sx (44)

in view of the definitions (19)-(21). Since x is critical we have

<Vf(x),y-x> > 0 for all yeX. Therefore using (44) we have
<vf(x),z> > 0, V'ZeCX. (45)

From the definitions of C;, d, and d; [cf. (21)-(24)] and (45) it

follows that

+
- Vf(x)aCX
and

+ —
d, = - vf(x), d_=0.

Using (28)-(30) we obtain x(a) = P[x - avf(x)]|. Since x is critical we
have that x = P[x - aVf(x)] for all a > 0 and the conclusion follows.

b) We have using the facts Vf(x) = —(dX + d:) and <Hx,d:> =0

~ ~ + ~
@, vF(x)> = - <T@ ,d +d> = - <dLd . (46)

~ . . . +
Now d s the projection of D d on the cone Cx(7{2| <z,d > = 0}, d, belongs
to this cone and therefore is a direction of recession. Using Lemma 1b) it

follows that

<dx,8X> ><d ,D d>. (47)

20



Combining (46) and (47) we obtain

Kd_,Vf(x)> < -<4d_,Dd> <0 (48)
X X" X X

where the second inequality is strict if and only if dX # 0. Also d; is

the projection of - Vf(x) on C;, o)
+
<d,,7F(x)> < 0 (49)

with strict inequality if and only if d: # 0. Combining (48) and (49) and

using the fact g = - (d; + ag), we obtain
<g,7F(x)> > 0 (50)

with equality if and only if dX = 0 and d; = 0, or, equivalently vf(x) = 0.
Since x is not critical we must have Vf(x) # 0, so strict inequality holds
in (50) and (41) is proved.

Take any ae(0, ]gﬂ)' Since projection on a closed convex set is a
nonexpansive operator (see e.g. [8] or use the Cauchy-Schwartz inequality to

strengthen (B.16) in Appendix B), we have
Ix(a) - x# < Ix - ag - xI = algl < € (51)
Therefore we have

a,,x><b. - gla.l< b, - <a,,x(a) - x>, Wil
1 1 1 1 1 X
and as a result

acx(a)>=<b.,  ViEL.

It follows that x(a) is also the projection of the vector x - ag on the

set QX D X given by

e = {z]<a,,2> <b,, iel },
X 1 1 X

21



ie€.,

x(a) = arg min {4z - (x - ag)n| zeq 1. (52)

Now the vector dx is easily seen to be a direction of recession of the set

25 SO by Lemma 1b) we have
+ ~
<dx,x(a)> > <dx,x - ag> = <dx,x + adx + adx>.
Since <dx,d:> = 0, the relation above is written by using also (47)
-(dx,x - x(a)> > a(dx,Dxdx>. (53)

In view of the fact Execx we have (x + aa;)enx, and since x(a) is the

projection on a, of (x + ad; + qEX) [cf. (52)] we have
<X + ad: + “Hx - x(a),x + aa; - x(a)> < 0.
Equivalently, using the fact <d:,8¥> =0,

iIx(a) - (x + agx)ﬂz

+
~<dox - x(a)> > - . (54)

By combining (53) and (54) and using the fact vf(x) = —(dX + d:) we
obtain

IX(a) - (x + aax)uz

<KVf(x),x = x(a)> > a(dx,Dxdx> + (55)

a

which is the left inequality in (42). To show that the right side of (55)
cannot be zero, note that if it were then we would have both dX =0
(implying Ex = 0, x(a) = P(x - aVf(x)) and x(a) = x + uéx (implying

P(x - avf(x)) = x). Since x is not critical, we arrive at a contradiction.
Therefore the right inequality in (42) is also proved.

By using the mean value theorem we have
22



f(x) - flx(a)] = <VF(x),x - x(a)> + <Vf(zy) - VF(x),x - x(a)> (56)

where ¢y lies on the Tine segment joining x and x(a). Using (55) and (56)

we obtain for all ae(O;ng)

) Ix(a) - (x + oﬁx)n2
3 1700 - flx(@)]} > <@,,D,d,> + 2 57)

[¢ 3

+ <f(§a) - Vf(x), 3£41—§Lﬁl>

o

Using (51) and the Cauchy-Schwartz inequality we see that
<Vf(zq) - VF(X), 5——'—%—‘1)9 > - UVF(zggy) - VE(x)u-lgl. (58)

Since Wvf(gy) - Vf(x)U+0 as a » 0 we see from (57) and (58) that if dX #0
then for all positive but sufficiently small o we have f(x) > f[x(a)].
If d, = 0 then HX = 0 and using Lemma la)

Ix(a) - (x + cﬁx)u2 Ix(a) - xu2

7 - — > Ix(1) - x1%, ¥ ag(0,1]. (59)

o a

From (57), (58) and (59) we see again that when dX = 0 then for all
positive but sufficiently small « we have f(x) > f[x(a)]. Therefore, there
exists a>0 such that (43) holds in both cases where dx = 0 and dx # 0.

Q.E.D.
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3. Convergence Analysis

The previous section has shown how a vector xeX, a scalar >0, an index

set IX satisfying
ILD{iel| <ayx> > b, - ela i},

and a positive definite self-adjoint operator DX:PX+PX where Px is the
subspace defined by (21) - (26), uniquely define an arc of points x(a)eX,

o > 0 where
x(a) = P(x - ag), o >0

and g is defined via (23), (24), (28) - (30). Furthermore for each xeX
which is not critical, Proposition 1b) shows that by choosing o sufficiently
small we can obtain a point of Tower cost on this arc. Therefore any
procedure that, for any given xeX, chooses IX, e, and DX satisfying the
above requirements, coupled with a rule for selecting a point of lower cost
on the corresponding arc x(a) leads to a descent algorithm. There is a
large variety of possibilities along these lines but we will focus

attention on the following broad class of methods:

We assume that we are given a continuous function e:X»R such that

e(x) » 0, TxeX (60)
e(x) =0 = x is critical (61)

(for example e(x) = min {e,ix - P[x- Vf(x)|u} where € > 0 is a given
constant). We are also given scalars ge (0,1), oe (0,1/2), A > 0 and

Ay > 0 with A< g
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At the beginning of the kth iteration of the algorithm we have a vector
xkaX. If X, 1s stationary we set X1 = X Else we obtain the next

vector xk+1 as follows:

Step 1: Choose an index set I C I satisfying

k

1,2 {iel| a,,x, > > b, - e(x )a;u}, (62)
and compute

d, = arg min {1z + Vf(xk)u| zaCk} (63)

+ .

d = - [vf(xk) + dk] (64)
where

C, = {z| <a,,z> < 0, iel }. (65)

Step 2: Choose a positive definite self-adjoint operator D :T »T , where

k" k "k
r, = span {C, () {z] <z,d'> = 0}}, (66)
k k k
and Dk satisfies
2
uDku < Ao and A lzi” < <z,Dkz>, Y zeT, . (67)

Compute EP given by

~ . +
d, = arg min {1z - Dkdku|25ck, <z,d > = 0}. (68)
Define
= (d+ +4d) (69)
% T V% T %
and
xk(a) = P(xk - agk), Y o>0. (70)



X = xk(ak) (71)
where

M
o =B (72)

and m is the first nonnegative integer m satisfying
f(x,) - f[x (8M] » o {3" «d,,D,d >
k k k* "k k

uxk(Bm) - (x ¥ Bmgk)n2
+ ™ } (73)
B

Proposition 1b) shows that X141 is well defined via the stepsize rule

(71) - (73) in the sense that m, 1is a (finite) integer and furthermore

k

Flx,) > flx, )

for all k for which Xy is not critical. The following proposition is our

main convergence result.

Proposition 2: Every limit point of a sequence {xk} generated by the

algorithm above is a critical point.
Proof: Let {xk}K be a subsequence of {xk} converging to a point X which is
not critical. We will arrive at a contradiction. Since {ak} is bounded we
assume without loss of generality that

lim o = o

ko K

keK
where ae[0,1]. Since {f(xk)} decreases monotonically to f(x) it follows

from the form of the stepsize rule that
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lll[: o, <40 d> =0 (74)
keK
nxk(ak) - (xk + akgk)u2
Tim =0 (75)
k> %k
keK
We consider two cases:
Case 1 (@ > 0): It follows from (74) and the fact <dk,Dkdk> >x1udku2
(cf. (67)) that Tim d, = 0, and therefore also lim & = 0, lim d} = -vf(%).
k >co k +o k+oo
keK keK keK

. . . e - + ~
By taking limit as k»e, keK, in the equation xk(ak) P(xk + akdk + akdk),
using the continuity of the P operator which follows because P is a con-

traction we obtain

liﬂ xk(ak) = P[x - af(x)].

keK
Therefore (75) yields
; = Pl}(‘ -_&Vf(—)Z)].

Since o > 0 this implies that X is critical thereby contradicting our
earlier assumption.

Case 2 (a=0): It follows that for all keK which are sufficiently large

% Ky 2
% o uxkcg—) - (% * };dk)u
flx) = flx ()] <o {5 <D d> +

}s (76)
x
B

i.e., the test (73) of the stepsize rule will be failed at least once

for all keK sufficiently large.

~

. =_+~ + -
Since 9y (dk +d ), <dk,dk> 0, we have

k
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ugku2 = ud;n2 + uakuz. (77)

Since d, is the projection of D d,_ on Cx (\{z] <z,d+> = 0} we must have

k k~k k
udkn < uDkdkn and, using (67), udku < Azudku. Therefore from (77) and the
+ .
fact udku < qu(xk)u, udku < uvf(xk)u we obtain
2 2 2
Ig 1" < (1 + AZ)HVf(xk)U .
It follows that
1im sup ig, I { =, (78)
k+eo
keK
We also have
Tim e(xk) = g(x) > 0. (79)
k+oo
keK

It follows from (78), (79) and the fact o = 0 that for all keK sufficiently

o e(xk)
1arge-g— e(0, —_ﬁini) and therefore using Proposition 1b) [cf. (42)] we
k
obtain
QO
o o uxkég&) - (x * é?&k)uz
<Vf(xk),xk - xkbg-)> >-E— <dk,Dkdk> + o . (80)
B
Using the mean value theorem we have
Uiy o %
f(xk) - f[xktg—)j = <Vf(xk),xk - xktg—)> (81)

+ <Vf(;k) - Vf(xk),xk - Xk(——0>

B
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¢
where , lies on the line segment connecting x, and x O—E . From (76),
k k k'g

(80), and (81) we obtain for all keK sufficiently large

a
X, —5'5) - (x -gk—a”k)u2
(1-0) {<d,,D,d > + }
k? "k k ¥ 9
)
%
4 - %5
< <vf(xk) - vf(gk), o > (82)
B
Since [cf. (51),(78)] we have
[0
Ix, - xkbg&)n
1im sup < Tim sup ugkn {
ko _Oj(_ k>
kekK B8 k ek

and Tim an(xk) - Vf(;k)u = 0 it follows that the right side of (82) tends
K>e
kek

to zero as k»», keK., Therefore so does the left side which implies that

Tim d, = 0, lim = 0 (83)
k-—>00 k+co
keK k ek
and
Q

Tim HXKQEE) - (xk +-§K8k)n2
k>o = 0, (84)
keK %2

=)

B
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Since it follows from (79) and (83) that there exists k such that

ak —
xk+E—a’keX Yk >k

we obtain using Lemma la)

% %y, 2
Ix, (=) - (x, +=-d,)1 L
k' K> wP[(x + )+ dp] - (x + 55d )% (85)

X

B

From (84) and (85) it follows that

;im uP[(xk +-%K Hk) - (Vf(xk) + dk)] - (xk +-§5 Ek)uz = 0.
keK

Using (83) we obtain

IP[x - vf(x)] -%0 =0

which contradicts the assumption that X is not critical. Q.E.D. .

We mention that some of the requirements on the sequences {s(xk)} and
{Dk} can be relaxed without affecting the result of Proposition 2. In
place of continuity of (<) and assumption (67) it is sufficient to require

that if {xk}K is a subsequence converging to a noncritical point x, then

Tim inf e(xk) > 0,
k+oo
keK

Tim inf inf {<z,Dkz> Izl = 1, zeT
k+co
keK

1im sup D
k>

kekK

(>0

kn { =,
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This can be verified by inspection of the proof of Proposition 2.

A practically important generalization of the algorithm results if we
allow the norm on the Hilbert space H to change from one iteration to the
next. By this we mean that at each iteration k a new inner product <-,->k
and corresponding norm el on H are considered. The statement of the
algorithm and corresponding assumptions must be modified as follows:

a) The gradient Vf(xk) will be with respect to the current inner
product <+s+> [cf. (3)].
b) The projection defining dk’ d:, 5 and the arc xk(o) should be with

k

respect to the current norm u-uk.

c) The assumptions on I, , and D_, and the stepsize rule should be restated

k k
in terms of the current inner product and norm,

There is no difficulty in reworking the proof of Proposition 2 for this
generalized version of the algorithm provided we assume that all the norms

e, , k =0, 1,... are "equivalent" to the original norm I« on H in the

k’
sense that for some m > 0 and M > 0 we have

mizl < Wz, < Mizi, V¥ zeH, k = 0,1,... .

k

Naturally the norms u-uk should be such that projection on X with respect
to any one of them is relatively easy for otherwise the purpose of the
methodology of this paper is defeated. The motivation for considering a
different inner product at each iteration stems from the fact that it is
often desirable in nonlinear programming algorithms to introduce iteration-
dependent scaling on the optimization variables. This is sometimes
referred to as "preconditioning". The use of the operator Dk fulfills that
need to a great extent but while this operator scales the component dX of
the negative gradient, it does not affect at all the second component d:.
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The role of an iteration-dependent norm can be understood by considering
situations where the index set Ik is so large that the cone Ck is empty.
In this case dt = - vf(xk), Hk = 0 and the kth iteration reduces to an
iteration of the original Goldstein-Levitin-Poljak method, for which

practical experience shows that simple, for example diagonal, scaling at

each iteration can sometimes result in spectacular computational savings.
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4, Rate of Convergence

In this section we will analyze the rate of convergence of algortihm
(62) - (73) for the case where X is polyhedral and H is finite dimensional.
An important property of the Goldstein-Levitin-Poljak method [cf. (7)] is
that if it generates a sequence {xk} converging to a strict local minimum X
satisfying certain sufficiency conditions (compare with [7]), then after

some index k the vectors xk lie on the manifold of active constraints at x,

i.e., X, EX + NY where

Ny = {zl<a;,2> = 0, ¥ ieA} (86)
and where

AY = {i|iel, <ai,§> = bi}' (87)

Our algorithm preserves this important characteristic. Indeed, we will see
that, under mild assumptions, our algorithm "identifies" the set of active
constraints at the 1limit point in a finite number of iterations, and sub-
sequently reduces to an unconstrained optimization method on this subspace.
This brings to bear the rate of convergence results available from
unconstrained optimization.

The rate of convergence analysis will be carried out under the
following assumptions:
(A) H is finite dimensional, X is polyhedral, f is continuously Frechet
differentiable, and Vf is Lipschitz continuous on bounded sets, i.e., for
every bounded set there exists L > 0 such that for every x and y in the set

we have

IvF(x) - vf(y)n < Lix - yli. (88)
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(B) x is a strict local minimum and there exists >0 such that

P(y)ex + N ¥ y such that iix - vf(x) - yi < 6 (89)

(C) The function e(x) in the algorithm has the form

e(x) = min {e,ix - P[x - Vf(x)]u} (90)
where £>0 is a given scalar. Furthermore the set Ik in the a]gbrithm is
chosen to be [cf. (62)]

Ik = {1€I|<ai’xk> > bi - s(xk)“ai"}' (91)

The Lipschitz condition (88) is satisfied in particular if f is twice
continuously differentiable. Condition (89) is a weakened version of an
often employed regularity and strict complementarity assumption which
requires that the set of vectors {ai|i€AY} is linearly independent and all
Lagrange multipliers corresponding to the active constraints are strictly
positive. The form (90) for e(x) is required for technical purposes in our
subsequent proof. The reader can verify that there are other forms of e(x)
that are equally suitable. Finally the choice (91) for the set Ik is
natural and is ordinarily the one that is best for algorithmic purposes.

The following proposition allows us to transfer rate of convergence

results from unconstrained minimization to algorithm (62) - (73).

Proposition 3: Let x be a limit point of the sequence {xk} generated by

jteration (62) - (73), and let Assumptions (A) - (C) hold. Then

Tim x, = x (92)
k>

and there exists k such that for all k >k we have
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xkEY + NY (93)

+
I, = span{ck{\{z|<z,dk> =01} = Ny, (94)
dk = arg min{nvf(xk) + ZHIZENY}, (95)
Xepp = Xt 9D ds (96)

m
where @, = 8 k and m is the first nonnegative integer m for which

f(x,) - flx (8")] > o8 <d, D, d > (97)

k?7kk

The proof of Proposition 3 is given in Appendix B. From (96) and (97)
we see that eventually the method reduces to an unconstrained minimization
method on the manifold X + NT‘ The proposition shows that if the matrix
Dk is chosen so that for all k sufficiently large it is equal to the
inverse Hessian of f restricted on the manifold x + NY then the method

essentially reduces to the unconstrained Newton method and attains a

superlinear rate of convergence.
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5. Algorithmic Variations

Many variations on iteration (62) - (73) are possible. One of them,
changing the metric on the Hilbert space H from iteration to iteration, was
discussed at the end of Section 3. In this section we discuss other varia-
tions. These will include the use, in various cases, of a pseudometric on
H instead of a metric, variations on the step size rules and finally
variations on the various projections in (62) - (73). We will state the
variations without a convergence proof. In each case, the reworking of the
proofs of Sections 2-3 to show that the variation is valid, poses no
difficulty.

Singular Transformation of Variables through a Pseudometric:

Here we address the case where X is not a solid body in H, i.e. for
some Tinear manifold M we have X¢ZM # H. In this case we observe that (42)
is the only place where a metric as opposed to a pseudometric is needed.
Noticing that if Xc=M, then all quantities in (42) belong to M, one can
conclude that all that is necessary is to have a metric on M. This leads
us to consider the use of pseudometric on H provided it induces a metric on
M. Furthermore, we can change the pseudometric on H from iteration to
iteration, as we can change the metric, provided that the metrics induced
on M are equivalent in the sense described in Section 3. In some cases
the introduction of a pseudometric serves to facilitate the projection

further (see [17], Chapter 4).

Step Size Rules:

The Armijo-like rule (73) can be viewed as a combination of the Armijo
rule used in unconstrained minimization [9], and an Armijo like rule for
constrained optimization proposed by Bertsekas in [[7], cf. eq (12)].
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Corresponding to an alternate suggestion made there [[7], cf. eq (22)] we

can replace (73) by

f(x) - flx (8M) > (98)

m M~y m
o{g8" <«d,,D d > + <Vf(xk),(xk + B dk) - xk(s >l

K>7kk

Also, a variation of the Goldstein step size rule [9] can be employed, in

which o < 0.5 and a is chosen such that

(1 - o) {o<d, D, d > + <Vf(x, ). (x, + aak) - x (a)>} >

kk
f(xk) - f(xk(a)) >0 {a(dk,Dkdk> +
<F(x, )5 (%, + aak) - x (a)>}. (99)

The rule (99) is the counterpart of (98). The reader can easily con-

struct the counterpart to (73).

Variations on the Projections:

There is one central observation in the paper, namely, the projections
of Dkdk and dz on any closed convex set for which dk is a direction of
recession, result in descent directions. By employing different sets with
this property, variations on the algorithm result since different direc-

tions may be obtained and different arcs may be searched.

The first variation is to replace Ck in (68) by (Qk - xk), i.e.

+

Ek = arg min {1z - D d 1] zeq - X, <z,d> = 0} (100)
where

9 = {z]<a;,2> < b, ¥ iel }.
Evidently

szk - xk:DCk
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and as a result dk is a direction of recession of Qk - Xk’ which implies

that Hk defined by (100) is a descent direction.
Interestingly, this variation gives rise to a variation in the stepsize

search. Since the set {z| ZECk, <z,d;> = 0} is a cone, the vector dk of

(68) satisfies

<z,d'> = 0} .

ody = arg min {1eD d, - zI | zeC N

k k?
Thus, (70) can be interpreted as

X (a) = P[x + ady + q(a)]

where

qk(a) arg min {iaD d_ - z1I}| zeCy <z di> = 0}.

k~k K

When Ck is replaced by Qk - Xp» @ new algorithm results by searching along

the arc

X () N

P[Xk * od + ak(a)]

i)

where

. +
qk(a) arg min {iaD d - zil | zeQ - X5 <2,d,> = 0}.

k

Indeed, the particular algorithm suggested in [6] can be considered to be

an implementation of the Tast variation for an orthant constraint.
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6. Multicommodity Network Flow Problems

In this last section we apply algorithm (62)-(73) to a classical nonli-
near multicommodity network flow problem and present some computational

results. In view of the typically very large number of variables and con-

straints of this problem, active set methods of the type presented in [4]

are in our view entirely unsuitable.
We consider a network consisting of N nodes, 1, 2,..., N, and a set of

directed Tinks denoted by £. We assume that the network is connected in
the sense that for any two nodes m, n, there is a directed path from m

to n. We are given a set W of ordered node pairs referred to as
origin-destination (or OD) pairs. For each 0D pair weld, we are given

a set of directed paths Pw that begin at the origin node and terminate

at the destination node. For each weW we are also given a positive scalar
P referred to as the input of OD pair w. This input must be optimally
divided among the paths in Pw so as to minimize a certain objective func-
tion.

For every path pan corresponding to an 0D pair weW we denote by

xP the flow travelling on p. These flows must satisfy
o P
L X =r Y wel (101)
peP W
W
P
x »0 T peP , wel (102)

Equations (101), (102) define the constraint set of the optimization
problem - a Cartesian product of simplices.

In Example 2 we discussed the application of our method to the case
of a simplex constraint., It is not difficult to see that if we take
a "diagonal" metric on the space, the multicommodity flow problem decom-

poses in the sense explained below.

39



Let x denote the vector of variables xp, pan, wel, and Tet x¥

denote the vector of variables xP, pan. Let Cx(xw) and Px(xw) denote the

cone and subspace, respectively, in le » generated at x, when all variables

aside from those in x" are considered fixed and ¢ = e(x). Then

C =’r‘rC (x")

X wel X

vf(x) = (...,waf(x),...)

and

Thus all projections decompose and therefore in many respects the multicom-
modity flow problem is not different from the problem with a single simplex
constraint. The only points where the "interaction" among the simplices
appears is in computing € and in computing Dkdk‘

To every set of path flows {xp[pst, weW} satisfying (101), (102)
there corresponds a flow 2 for every link aef£. It is defined by the
relation

4= 7 vl (a)x" T acd (103)
weld peP P

where 1p(a) = 1 if the path p contains the link a and 1p(a) = 0 otherwise.

If we denote by f the vector of link flows we can write relation (103) as
f = Ex (104)

where E is the arc-chain matrix of the network.
For each Tink ac€ we are given a convex, twice continuously differen-

tiable scalar function Da(fa) with strictly positive second derivative for
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all f2 > 0. The objective function is given by
D(F) = ¥ D_(f%). (105)

By using (104) we can write the problem in terms of the path flow

p

variables x" as

minimize J(x) = D(Ex)

subject to:

yoxP - F Y wel
peP
W
xP > 0 v pePw, wel.

In communication network applications the function D may express, for
example, average delay per message [10],[11] or a flow control objective
[12], while in transportation networks it may arise via a user or system
optimization principle formulation [13],[14],[15]. We concentrate on the
separable form of D given by (105), although what follows admits an exten-
sion to the non-separable case.

A Newton-1ike method will be obtained if we chose Dkdk so that X ¥
D d, is the minimum of the quadratic approximation to f on x, + I',. For

k™ k k k
this we must find Av where v solves

minimize <VJ(xk),Av> +-% <Av,VZJ(x

v

AV (106)

and where A is a matrix such that its columns are linearly indepenent
and span Pk.

The particular structure of the objective function (105) gives rise
to a Hessian matrix which makes the solution of (106) relatively easy to

obtain. Indeed, using (105) we can rewrite (106) as
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minimize <E'VD(fk),Av> + LQ(AV,E'VZD(fk)EAv>, (107)
v

where f, = Exk and prime denotes transposition. A key fact (described in

k
detail in Bertsekas and Gafni [16]) is that problem (107), in Tight of
VZD(fk) being diagonal, can be solved by the Conjugate Gradient (C-G)

method using graph type operations without explicitly storing the matrix

2

A'E'VD(f, )EA.

W)

Note that a solution to (107) exists since E'vD(fk) is in the range of the

nonnegative definite matrix E'VZD(fk)E.

Computational Results:

A version of the algorithm was run on an example of the multicommodity
flow problem. The network is shown in Figure 5. Each OD pair was
restricted to use only two prespecified paths. This reduced the
programming load significantly, yet captured the essence of the algorithm.
It is conjectured that the results we obtained are representative of the
behavior of the algorithm when applied to more complex multicommodity flow
problems.

The algorithm was operated in three modes distinguished by the other
rules according to which the C-G method was stopped. In the first mode
(denoted by Newton) the C-G iteration was run to the exact solution of
problem (107). In the second mode, (denoted by Approximate Newton) the C-G
iteration was run until its residual was reduced by a factor of 1/8 over

the starting residual (this factor was chosen on a heuristic basis). Finally,
in the third mode the C-G method was allowed to perform only one step

(denoted by 1-step--this results in a diagonally scaled version of the
origina] Goldstein-Levitin-Poljak method). In all these modes, in addition

to their particular stopping rule, the C-G method was
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stopped whenever for any OD pair w the flow on the path with the smallest
partial derivative of cost became negative. Each time this happened, the
last point in the sequence of points generated by the C-G method subitera-
tion was connected by a line to the point preceding it. The point on the
line at which the particular path flow became zero was taken as the result
of the C-G iteration. We used different values € for different OD pairs,

according to a variation of (60) (with € = 0.2).

We used two types of objective functions. The first is

D (f¥) = —— T aes

where Ca is a given positive scalar expressing the "capacity" of link a.
This function is typically used to express queueing delay in communication
networks. The second type was taken to he quadratic. We used two sets of
inputs, one to simulate heavy loading and one to simulate light loading.
For each combination of cost function and input we present the results
corresponding to the three versions in Table 1.

Our main observation from the results of Table 3 as well as additional
experimentation with multicommodity flow problems is that in the early
iterations the l-step method makes almost as much progress as the other two
more sophisticated methods but tends to slow down considerably after
reaching the vicinity of the optimum. Also the approximate Newton method
does almost as well as Newton's method in terms of number of iterations.
However the computational overhead per iteration for Newton's method is
considerably larger. This is reflected in the results of Table 3 which
show in three cases out of four a larger number of conjugate gradient

subiterations for Newton's method. Throughout our computational experiments
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(see also [17]) the approximate Newton method based on conjugate gradient subi-
terations has performed very well and together with its variations is in

our view the most powerful class of methods available at present for nonli-

near multicommodity network flow problems.
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16.5| 20| 7.5 10 10

15 5 9 7.5 7.5

10 6 10 10 14

50 35 X X X

_ —_— . .
Cy = mij» 1= {EJ +1, j=1-5(i-1)
Table 1: Capacities

destination

origin 6 7 8 9 10

1| 0.5 1 1.5 2 2.5

41 0.25| 0.25 2 0.25| 0.25

51 0.75| 0.75} 0.75| O 0

Table 2: Low Input

High Input = Low Input x 1.75
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Initial Final # of Total # of
Value Value Itera- C-G Subit-
tions erations
Low Load
Nonquadratic Objective | 1.600616+10°
Newton 8.743550 16 29
Approximate Newton 8.758665 16 16
1-Step 8.758665 16 16
Quadratic Objective 1.866326+10"
Newton 7.255231 5 17
Approximate Newton 7.255231 7 13
1-Step 7.255231 12 12
High lLoad
Nonquadratic Objective 9.759996+10°
Newton 3.737092.10% | 14 117
Approximate Newton 3.737745.10" 15 30
1-Step 3.747400.10* 15 15
Quadratic Objective 9.759996+10°
Newton 1.521299.10" 5 24
Approximate Newton 1.521299.10" 13 27
1-Step 1.521301.10" 16 16
Table 3
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Appendix A

Proof of Lemma 1: a) Fix xeX, zeH and y>1. Denote

a=x+2z, b=x+xyz (A.1)

Let @ and b be the projections on X of a and b respectively. It will

suffice to show that
b - xIl < ylia - xh. (A.2)

If @ = x then clearly b = x so (A.2) holds. Also if aeX then a = a = x + z
so (A.2) becomes b - xlI < yi#zl = Ib - xlIl which again holds by the contrac-
tion property of the projection. Finally if @ = b then (A.2) also holds.
Therefore it will suffice to show (A.2) in the case where a # b, a # x,

b # x, agX, bgX shown in Fiqure (A.1).

Let Ha and H_ be the two hyperplanes that are orthogonal to (b - a) and

b
pass through a and b respectively. Since <b - a, b -b> >0 and <b - a,a - a

< 0 we have that neither a nor b lie strictly between the two hyperplanes Ha

and Hb' Furthermore x lies on the same side of Ha as a, and xﬁHa. Denote

the intersections of the line {x + a(b - x)|aeR} with H and H by s and s,

respectively. Denote the intersection of the line {x + a(a - x)|aeR} with Hb

by w. We have

- X - —
_ab - Sy T XY o xi _ w - T+ iE - X
ta - xt s, - X1 = =
= _
M -an+ s - xi, 0B - xi (A.3)
i@ - xi i@ - xi
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where the third equality is by similarity of triangles, the next to last
inequality follows from the orthogonality relation <w - b,b - @ = 0, and
the last inequality is obtained from the triangle inequality. From (A.3) we
obtain (A.2) which was to be proved.

b) Since y is a direction of recession of @, we have

PQ(x +2Z) + yeQ . (A.4)

Thus by definition of projection on a closed convex set

(x + z) - Pg(x + z),(PQ(x +z) +y) - Pﬂ(x +2)><0 (A.5)
or equivalently

(x + z) - PQ(x +2),y> <0,

and (40) follows.
Q.E.D.
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Appendix B

We develop the main arguments for the proof of Proposition 3 through a
sequence of Lemmas. In what follows we use the word "eventually" to mean
"there exists k such that for all k > k", where k may be different for each
case.

Lemma B.l: Under the conditions of Proposition 3, 1im Xy =X and eventually
k+o

I, = A (B.1)

Proof: By relation (73), since x is a 1imit point and the algorithm

decreases the value of the objective function at each iteration, we have

Tim ix - x I =20,
K >0 k+1 k

which implies, again by the descent property and the fact that X is a

strict local mimimum

1im X, = X (B.2)
k+co

Therefore from (90)

1im s(xk) = g(x) = 0. (B.3)

K+
Since the set I is finite it follows from (87), (91) and (B.3) that even-

tually
If: Ay. (B.4)
To show the reverse inclusion we must show that eventually
<a.,Xx
i

> > bi - E(Xk)"aiﬁ’ v isAx. (B.5)
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By the Cauchy-Schwartz inequality, (B.3) and (90) we have eventually
s(xk)uaiu = Ix - P[xk - vf(xk)]u-uaiu > <P[xk - Vf(xk)] - X s2.0.

Therefore in order to show (B.5) it suffices to show that eventually
<a1.,P[xk - Vf(xk)]> = b., VoieAy

or equivalently

Px, - Vf(x,)]ex + N

k

Since x, > X this follows from Assumption (C).

Q.E.D.

Lemma B.Z2: Under the conditions of Proposition 3 for each'Ee(O,lj, even-

tually we have

k(a)sx + Ny’ v aef&,l}. (B.6)

Proof: From Lemma B.l we have X, + x and eventually C, = C where
C = {z|<z,ai> <0,% 1s§r}. (B.7)

Since the projection of -vf(x) on C is the zero vector and dk is eventually
the projection of -Vf(xk) on C it follows that
Tim dy = 0. (B.8)
k-)-oo
Since ak is the projection of D, d, on a subset of Ck’ and {uDku} is bounded

kk
above [cf. (67), (68)], it follows that

Tim a'k = 0. (B.9)
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. 4 _ + .0
Since -Vf(xk) = dk +d, and 9 = -(dk + dk)
lim g = VF(X). (.10)
K+o

A simple argument shows that Assumption (B) implies that for all ae[0,1]
P(y)ex + N ¥ y such that lix - aVf(x) - ylIl < ab (B.11)
For any ae(0,1], equation (B.10) shows that we have eventually
IX - avf(x) - (xk - agk)ﬂ < a8, ¥ aefa,l].
Therefore from (B.11) we have eventually
xk(a) = P(xk - agk)éi + N, Y aefa,l].

Q.E.D
Lemma B.3: Under the conditions of Proposition 3
1im inf e > 0.
k>
_+ X, while from (B.8) we have

k
Ig, I > Ivf(x) 1. Therefore from Proposition 1b) [cf. (42)] it follows that

Proof: From Lemma B.1 we have Ik = AX and x

there exists & > 0 such that eventually

<Vf(xk),xk - Xk(a)> > o< ,D d>

k>7k"k

+-% uxk(a) - (xk + aHk)nz, ¥ ae(0,a].

Using this relation we get that eventually

f(xk) - f[Xk(a)] >
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L
> <Vf(x, )X =X, (@)> - 5 ix (o) - xku2

1 2 L 2
> o <d, D d > + -Eﬂxk(a) - (xk + aHk)u - -?ka(a) - X I
> o <d D, d >+ Lix (a) - (x, + od )n2
k’>7k 7k a 'k k k
~ 2 ~ 2
-Liad 17 - Lﬂxk(a) - (xk + adk)u
> a(l - aLA2)<dk,Dkdk> +

1 ~ 2
G- Lix(a) - (x + ad )i
where the third inequality follows from
Ix + yud < 211 + 2uyn2

the last inequality follcws from (67) and L corresponds to any nonempty

bounded neighborhood of Xx. Taking any o > 0 satisfying

G<& l-3la, >oal-Ll)>o
Q

2

we obtain, using (73) that
lim inf o > a
ko

and the lemma is proved. GQ.E.D.

Proof of Proposition 3: The fact lim x, = X is part of Lemma B.1, while

k
k‘)co
(93) follows from Lemmas B.2 and B.3.

In order to show (94) we note that from Lemma B.l and (B.8) we have

eventually

c,=C, C =T (B.12)
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and

Vim dp = -VF(X). (B.13)

K >o0

Equation (B.13) implies that eventually Assumption (B) holds with dE replac-
ing -vf(x) and &§/2 replacing 6. Therefore for all iEAY and p1>0 such that

"piai" <-% we have
_— + —
P(x + dk + piaj)ex + NY (B.14)
P(X + dy)ex + N (B.15)

For any zl,zzeH we have from a general property of projection on X

<z1 - P(zl),P(z?) - P(zl)> <0

<z2 - P(zz),P(zl) - p(22)> < 0.

By adding these two inequalities we obtain

2 ,
uP(zl) - P(zz)u < <z1 - ZZ’P(Zl) - P(22)>, Y zl,zzeH. (B.16)

By applying (B.16) we obtain

IP(X + d; tpa;) - P(X + d;)nz (B.17)

— + +
< <ipia1,P(x + dk + piai) - P(x + dk)>.

Since <ai,z> = 0 for all ZEQF, ieﬁr it follows from (B.14), (B.15) that

the right side of (B.17) is zero and therefore eventually
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— + — + A
P(x + dk £ piai) =P(x +d,), V¥V 1eA¥.

k

Since from (B.12) we have eventually dZéE+, it follows that P(x + d;) =X
and therefore also

P(X +d *pa) =% ¥ ieAs.
Hence eventually

d; " piajéﬁ+, T ieA,
which implies that

<dy £ pias,y> <0, ¥ yeC, ieA. (B.18)

Let
+
ye{zIZeCk, <z,dk> = 0}.

From (B.12) and (B.18) we have eventually
a,,y> = 0 T ieAl,
or equivalently ySNY‘ Hence eventually

<z,d’> = 0}

Ny D{z|zeC K

k’
and it follows that

-— + — —-—
span N = N 2 span{C, N {z|<z,dk> =0} =T,

To show that the reverse inclusion note that if yeNX then by
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Assumption (B) and (B.12) we have

+
<y,dk> = Q.

Since NXC:fC and eventually C, =T it follows that eventually

k
yeCk N {Z|<z,dl> = 0} and a fortiori ysspan{Ck{} {zl<z,d;> =03} =T,
Therefore eventually
Ne < Ty

and the proof of (94) is complete.

Since dk is the projection of -Vf(xk) on Ck (){z[<z,dz> = 0}
equation (95) follows easily from (94).

Also from (93) and (94) we have eventually x ex + Ny, d eNo, HksNX

+ , . ' . _
and dk is orthogonal to NY, while by Lemma B.2 the vector X+ is the pro
jection of x, + a (3 + d;) on X + No. Therefore (96) and (97) follow.

Q.E.D
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