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ABSTRACT

This paper is concerned with the problem min {f(x) I xeX} where X is a

convex subset of a linear space H, and f is a smooth real-valued function

on H. We propose the class of methods xk+1 = P(xk - ak9k), where P denotes

projection on X with respect to a Hilbert space norm II-U, gk denotes the

Frechet derivative of f at xk with respect to another Hilbert space norm

iollk on H, and ak is a positive scalar stepsize. We thus remove an

important restriction in the original proposal of Goldstein [1] and Levitin

and Poljak [2], where the norms Ii.u and u1.k must be the same. It is there-

fore possible to match the norm u-l with the structure of X so that the pro-

jection operation is simplified while at the same time reserving the option to

choose -11ik on the basis of approximations to the Hessian of f

so as to attain a typically superlinear rate of convergence. The resulting

methods are particularly attractive for large-scale problems with specially

structured constraint sets such as optimal control and nonlinear multi-

commodity network flow problems. The latter class of problems is discussed

in some detail.



1. Introduction

Projection methods stemming from the original proposal of Gold-

stein [1], and Levitin and Poljak [2] are often very useful for solving

the problem

minimize f(x)
(1)

subject to xsX

where f:H+R and X is a convex subset of a linear space H. They take the

form

Xk+1 = Pk(xk - gk9k) (2)

where ak is a positive scalar stepsize, Pk(. ) denotes projection on X

with respect to some Hilbert space norm 11 11k on H and gk denotes the

Frechet derivative of f with respect to '-Uk, i.e., gk is the vector

in H satisfying

f(x) = f(xk) + <gkx-xk>k + o(uIx-xkIi), (3)

where <-'->k denotes the inner product corresponding to 11-11k.

As an example let H=Rn, and Bk be an nxn positive definite symmetric

matrix. Consider the inner product and norm corresponding to Bk

<x,y> k = x'Bky, Uxllk = (<x,x>)1/2 , T x,ycH, (4)

where all vectors above are considered to be column vectors and prime

denotes transposition. With respect to this norm we have [cf.(3)]

gk = Bkl Vf(xk)' (5)

where Vf(xk) is the vector of first partial derivatives of f
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af(xk)
- ,

ax

Vf(xk) = . (6)

af(xk)

axn

When problem (1) is unconstrained (X = H), iteration (2) takes the familiar

form

Xk+1 = Xk - akBk Vf(Xk).

Otherwise the vector

Xk+l = Pk(xk - "kgk )

is the solution of the problem

minimize lix - xk + akgkllk

subject to xsX.

A straightforward computation using (4) and (5) shows that the problem

above is equivalent to the problem

minimize Vf(xk)'(x - xk) + 2-k (x-x k) (7)

subject to xsX.

When X is a polyhedral set and Bk is a Quasi-Newton approximation of

the Hessian of f, the resulting method is closely related to recursive

quadratic programming methods which currently enjoy a great deal of

popularity (e.g., Garcia-Palomares [3], Gill et al [4]).

It is generally recognized that in order for the methods above to be

effective it is essential that the computational overhead for solving the
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quadratic programming problem (7) should not be excessive. For large-scale

problems this overhead can be greatly reduced if the matrix Bk is chosen in a way

that matches the structure of the constraint set. For example if X is
m

the Cartesian product E Xi of m simpler sets X., the matrix Bk can be chosen
i=1

be block diagonal with one block corresponding to each set Xi , in which

case the projection problem (7) decomposes naturally. Unfortunately such

a choice of Bk precludes the possibility of superlinear convergence of the

algorithm which typically cannot be achieved unless Bk is chosen to be a

suitable approximation of the Hessian matrix of f ([3], [5]).

The purpose of this paper is to propose projection methods of the form

xk+1 = P(xk - ak9k) (8)

where the norms II-U and 1 11k corresponding to the projection and the

differentiation operators respectively can be different. This allows the

option to choose 11-11 to match the structure of X, thereby making the

projection operation computationally efficient, while reserving the option

to choose 11-l k on the basis of second derivatives of f thereby making the

algorithm capable of superlinear convergence. When H = R , the projection

norm 11.11 is the standard Euclidean norm

,lxII = (x'x)1 /2 = I xl , (9)

and the derivative norm 11-Hk is specified by an nxn positive definite

symmetric matrix Bk

ixllk = (x'Bkx)l/2, (10)

the vector xk+ 1 of (8) is obtained by solving the quadratic programming

subproblem
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minimize gk (x - xk) + Ix - 2

subject to x s X (11)

where

gk Bkf(xk) (12)

The quadratic programming problem (11) may be very easy to solve if X

has special structure. As an example consider the case of an orthant

constraint

X = {x 0 < xi, i = 1,...,n}. (13)

Then, the iteration takes the form

Xk+ = LXk - aOkBk Vf(xk)] (14)

where for any vector veRn with coordinates vi, i = 1,...,n we denote by v

the vector with coordinates

i
(vi) = max {O,v }.

Iteration (14) was first proposed in Bertsekas [6], and served as the start-

ing point for the present paper. It was originally developed for use in a

practical application reported in [18]. The computational overhead in-

volved in (14) is much smaller than the one involved in solving the correspond-

ing quadratic program (7) particularly for problems of large dimension.

Indeed large optimal control problems have been solved using(14) (see [6] )

that, in our view, would be impossible to solve by setting up the correspond-

ing quadratic programming (7) and using standard pivoting techniques.

Similarly (14) holds an important advantage over active set methods [41

where only one constraint is allowed to enter the active set at each iteration.
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Such methods require at least as many iterations as the number of active

constraints at the optimal solution which are not active at the starting

vector, and are in our view a poor choice for problems of very large dimension.

An important point is that it is not true in general that for an

arbitrary positive definite choice Bk, iteration (14) is a descent

iteration [in the sense that if xk is not a critical point then for ak

sufficiently small we have f(xk+l) < f(xk)]. Indeed this is the main

difficulty in constructing two-metric extensions of the Goldstein-Levitin-

Poljak method. It was shown, however in L6] that if Bk is chosen to be

partially diagonal with respect to a suitable subset of coordinates then

(14) becomes a descent iteration. We give a non trivial extension of

this result in the next section (Proposition 1). The construction of the

"scaled gradient" gk satisfying the descent condition

<gk Vf(xk)> 0 (15)

is based on a decomposition of the negative gradient into two orthogonal

components by projection on an appropriate pair of cones that are dual to

each other. One of the two components is then "scaled" by multiplication

with a positive definite self-adjoint operator (which may incorporate

second derivative information) and added to the first component to yield

gk' The method of construction is such that gk' in addition to (15), also

satisfies

f[P(xk - agk ) ] < f(xk)

for all a in an interval (O,ak], ak > 0.

Section 3 describes the main algorithm and proves its convergence.

While other stepsize rules are possible, we restrict attention to an

Armijo-like stepsize rule for selecting ak on the arc
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I{z I z = P(Xk - gk)' a>O}

which is patterned after similar rules proposed in Bertsekas [6], [7].

Variations of the basic algorithm are considered in Section 5, while in

Section 4 we consider rate of convergence aspects of algorithm (8), (11),

(12) as applied to finite dimensional problems. We show that the descent

direction gk can be constructed on the basis of second derivatives of f so

that the method has a typically superlinear rate of convergence. Here we

restrict attention to Newton-like versions of the algorithm. Quasi-Newton,

and approximate Newton implementations based on successive overrelaxation

convergent conjugate gradient-based implementation of the method of this

paper is applied to large-scale multicommodity flow problem in the last

section of the paper.

While the algorithm is stated and analyzed in general terms we pay

special attention to the case where X is a finite dimensional polyhedral

set with a decomposable structure since we believe that this is the case

where the algorithm of this paper is most likely to find application.
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2. The Algorithmic Map and Its Descent Properties

Consider the problem

minimize f(x) (16)

subject to xeX

where f is a real-valued function on a Hilbert space H, and X is a non-

empty, closed, convex subset of H. The inner product and norm on H will be

denoted by <-,-> and 1.*11 respectively. We say that two vectors x, yeH

are orthogonal if <x,y> = O. For any zeH we denote by P(z) the unique

projection of z on X, i.e.,

P(z) = arg min {lix-zllI xeX}. (17)

We assume that f is continuously Frechet differentiable on H. The Frechet

derivative at a vector x e H will be denoted by Vf(x). It is the unique

vector in H satisfying

f(z) = f(x) + <Vf(x),z - x> + o(llz - xll)

where o(liz - xi)/iz - xii + 0 as z + x. We say that a vector x s X is

critical with respect to problem (16) if

* *

<Vf(x ),x - x > 0, O xEX, (18)

or equivalently, if x = P[x - Vf(x )].

It will be convenient for our purposes to represent the set X as an

intersection of half spaces

X = {x| <ai,x> < bi, T i l}, (19)

where I is a, possibly infinite, index set and, for each isI, ai is a
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nonzero vector in H and b. is a scalar. For each closed convex set X there
1

exists at least one such representation. We will assume that the set I

is nonempty - the case where I is empty corresponds to an unconstrained

problem which is not the subject of this paper. Our algorithm will be

defined in terms of a specific collection {(ai,bi)l i¢I} satisfying (19)

which will be assumed given. This is not an important restriction for

many problems of interest including, of course, the case where X is a

polyhedron in Rn.

We now describe the algorithmic mapping on which our method is based.

For a given vector xeX we will define an arc of points {x(a) a > O} which

depends on an index set I C I and an operator Dx which will be described

further shortly. The index set Ix is required to satisfy

Ix 2 {i¢II <ai,x> > bi - euaiH} (20)

where £ is some positive scalar. Let Cx be the cone defined by

Cx = {z I<a ,z> o, } ieIX (21)

and C+ be the dual cone of C
X X

x {z I <yz> 0, 0t yC}. (22)

For orientation purposes we mention that if X is a polyhedral subset of

Rn (or more generally if the index set I is finite), and £ is sufficiently

small, then Ix can consist of the indexes of the active constraints at x,

i.e., we may take Ix = {i <ai,x> = bi, isI}. In that case Cx is the cone

of feasible directions at x, while C+ is the cone generated by the vectors

ai corresponding to the active constraints at x. More generally Cx is a
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(possibly empty) subset of the set of feasible directions at x, and for any

AxeC with IIAXII <( the vector x + Ax belongs to X.

Let dx be the projection of [-Vf(x)] on Cx, i.e.,

dx = arg min {11z + Vf(x)Nl zECx}. (23)

Define

d+ = - [Vf(x) + dx]. (24)

It can be easily seen that the vectors d and d+ are orthogonal and that

d+ is the projection of [-Vf(x)] on C+ i.e.,
X X

d arg min {,z + Vf(x)Ul zC+x}. (25)

Note that if the norm 1111I on H is such that projection on the set X is

relatively simple then typically the same is true for the projection (23),

required to compute d and d+.
X X

Let r be the subspace spanned by the elements of Cx which are orthog-

onal to d+, i.e.,
X'

r = span {Cx {z (<z, d> = 0. (26)

Note that

d XrX (27)
x X

since d belongs to C and is orthogonal to d+ . Let D :r +r be a

positive definite self-adjoint operator mapping rx into itself. Consider

the projection dx of Dxdx on the closed cone Cx l{zi<z,d> = 0}, i.e.

d = arg min {z - D d II z , <z,d> = 0}. (28)
X X X 0
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Consider also the direction vector

g -(dx + d). (29)

Given x, Ix, and Dx, our algorithm chooses the next iterate along the arc

x(a) = P(x - ag), a O0. (30)

The stepsize a will be chosen by an Armijo-like stepsize rule that will be

described in the next section.

The process by means of which the direction g is obtained is illu-

strated in Figures 1-4. The crucial fact that will be shown in

Proposition 1 below is that, if x is not critical, then for sufficiently

small a > 0 we have f[x(a)] < f(x), i.e., by moving along the arc x(a) of

(30) we can decrease the value of the objective. Furthermore we have

<Vf(x),g>-O which means that g can be viewed as a "scaled" gradient, i.e.,

the product of Vf(x) with a positive definite self-adjoint operator.

We now demonstrate the process of calculating the direction g for some

interesting specially structured constraint sets.

Example 1: Let H = Rn , <x,y> = x'y, and X be the positive orthant

X = {x xi O, i = 1,...,n}.

Then X consists of the intersection of the n halfspaces {xI xi > 0}

i = 1,...,n and is of the form (19). The set I must contain all indices ix

such that 0 < xi ( e [cf. (20)]. The cones Cx and C+ are given by
Xx =CX

C = {z j z i > 0, I ieIx } C+ = z I i z 0, -isI e zj 0 * V jIx}
~~~~~~~x x' x {z ,~¢ x,



The vector dx and d+ [cf. (4.3.8), (4.3.9)] have coordinates given by

Aaf(x) if I
I if i~I

xax

O if ikI

O if iSIx

af(x) if ifIX
axx

where

x

n+
If I is empty then r = R and we have d = -Vf(x), d = 0. In

this case g = -Dx dx = DxVf(x) where Dx is any nxn positive definite

Vf(x) i f

where RP and w RP The vector g is given bywhere w a R and w E R

Pa n Vf(x) asO.In
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where D is a pxp positive definite symmetric matrix, (Dxi)# denotes pro-
x x

jection of Dxw on Cx, i.e. (Dxw) is obtained from Dxw by setting to zero

those coordinates of D xw which are negative and their indices belong to Ix.

Example 2. Let H = Rn, and X be the unit simplex

n
X = I{x I1 x = 1, x O, i = 1,...,n}. (31)

i=1

Suppose the inner product on Rn is taken to be

<x,y> = sI x y (32)
i=1

where s1, i = 1,...,n are some positive scalars. Let Ix be a set of

indices including those indices i such that 0 < x < s/s . Then the

cone C can be taken to be
X

n A
Cx = {z z zi =0, kZ 0> O. V iIx }. (33)

i=1

The vector d is obtained as the solution of the projection problem

' s iz i 1 af(x) 2

minimize 2 is1 [z (34)
2i= s ax

m A

subject to z = 0, z > O , iIX.
i=1

The solution of this problem is very simple. By introducing a Lagrange
n i

multiplier x for the equality constraint A z = 0 we obtain that X is the
i=1

solution of the piecewise linear equation

i [ [- af()0] + f l , L- f)] = . (35)
i ax IXS ax
x VX

This equation can be solved by the well known method of sorting the break-

points fx) , i.e. Ix in decreasing order, and testing the values of the
ax1

left side at the breakpoints until two successive values bracket zero.
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Once X is obtained the coordinates of d are given by

1 +x)i- . axi 1 if iEI
s ax x

dx (36)

1[h _____0] if iIx
+ ax1

The vector d+ is then obtained from the equation

dx - [vf(x) + dx].

Let

Ix = il iIx and X < afLx) (37)
ax

It is easily verified that the subspace rx is given by

rx ={ z Z z = O, z = 0, -v iEIx}. (38)
i=1

The vector da is obtained as the solution of the simple projection problem
x

mfinimize 2 si [Z (Dxd) ]2 (39)i=d

subject to i z = 0, z O, iIx, 0 
i=1

where (Dxdx)i is the ith coordinate of the vector D dx obtained by

multiplying dx with an nxn symmetric matrix Dx which maps Fx into Fx

and is positive definite on rx . We will comment further on the choice of

Dx in the last section of the paper. The vector g is given now by

g = -(a + dx) Note that the solution of both projection problems (34) and

(39), as well as the problem of projection on the simplex X of (31) is
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greatly simplified by the choice of the "diagonal" metric specified by (32).

Proposition 1 below is the main result regarding the algorithmic map

specified by (20) - (24), (28) - (30). For its proof we will need the

following lemma the proof of which is given in Appendix A.

Lemma 1: Let Q be a closed convex subset of a Hilbert space H, and let

PQ(.) denote projection on Q. For every x¢Q and zeH:

a) The function h:(O,o) + R defined by

h(a) = UPQ(x + az) - x a > 0

is monotonically nonincreasing.

b) If y is any direction of recession of Q [i.e., (x + ay)ea for all a > 0],

then

<y,x + z> < <y,P2(x + z)>. (40)

Proposition 1: For xsX, let e > 0 and I satisfy (20), and let

Dx:rx + rx be a positive definite self-adjoint operator on the subspace

rx defined by (21)-(26). Consider the arc {x(a)l a > 0} defined by (23),

(24), (28)-(30).

a) If x is critical, then

x(a) = x, t a > 0.

b) If x is not critical, then

<Vf(x),g> :- 0, (41)

and

<Vf(x),x-x(a)> > a <dxDxdx> + xIx(a) - (x+aodx) 0 V aCs(O,i-9). (42)
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Furthermore there exists a > 0 such that

f(x) > f[x(a)], rt ac(0,~a]. (43)

Proof: a) It is easily seen that for every zeCx we have

(x + i- -z)EX (44)

in view of the definitions (19)-(21). Since x is critical we have

<Vf(x),y-x> > 0 for all yEX. Therefore using (44) we have

<vf(x),z> > 0, I ZEC x (45)

From the definitions of C d and and (45) itx x x [cf. (21)-(24) and (45) it

follows that

- Vf(x) C +

and

d+ = - Vf(x), d = 0.
X X

Using (28)-(30) we obtain x(a) = P[x - aVf(x)]. Since x is critical we

have that x = P[x - aVf(x)] for all a > 0 and the conclusion follows.

b) We have using the facts Vf(x) = -(dx + d) and <dx,d+> = 0

<ax,Vf(x)> = - <dx,dx + dx> = - <dx,d x>. (46)

Now dx is the projection of D d on the cone C 0n z I <z,dx> : 0 , dx belongsx x x x x
to this cone and therefore is a direction of recession. Using Lemma lb) it

follows that

<dx, > <dxD xd >' (47)
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Combining (46) and (47) we obtain

<dx Vf(x)> < - <d ,Dxd > < 0 (48)

where the second inequality is strict if and only if d f 0. Also d+ is
X x

the projection of - Vf(x) on C, so

<dx,Vf(x)> < 0 (49)

with strict inequality if and only if dx + O. Combining (48) and (49) and
x

using the fact g = - (dx + wx) we obtain
x x

<g,vf(x)> 0 (50)

with equality if and only if d = 0 and d += O, or, equivalently Vf(x) = 0.
x x

Since x is not critical we must have Vf(x) * O, so strict inequality holds

in (50) and (41) is proved.

Take any ae(O, -i l). Since projection on a closed convex set is a

nonexpansive operator (see e.g. [8] or use the Cauchy-Schwartz inequality to

strengthen (B.16) in Appendix B), we have

IIX(a) - xll < IIx - ag - xll = allgil < s (51)

Therefore we have

<a i,x> - b. - ellai l c b - <a.,x(a) - x>, V iXI

and as a result

<ai x(a)> bi, ¥ itIX

It follows that x(a) is also the projection of the vector x - ag on the

set x CD X given by

:= {z| <a.,z> ( b, iscI},
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i.e.,

x(a) = arg min {1z - (x - ag),, j ZQ x} (52)

Now the vector dx is easily seen to be a direction of recession of the set

ax' so by Lemma lb) we have

<dx,X(a)> > <dx,x - ag> = <d ,x + ad+ + a2dx >.

Since <dx,d+> = 0, the relation above is written by using also (47)

-<dx ,x - X(a)> a<dx,Dxdx >. (53)

In view of the fact dxeCx we have (x + adx )Qx, and since x(a) is the

projection on &x of (x + ad:+ + adx) [cf. (52)] we have
<x + + x 

<x + ado + +a - x(a),x + aa - x(a)> < O.

Equivalently, using the fact <dx,dx> = 0,x x

-+ 11a)> , IIX(a) - (x + adx )2
-<dx,x - x(a)>> a (54)

By combining (53) and (54) and using the fact Vf(x) = -(d + d+) we

obtain

IIX(a) - (x + adx)11
<vf(x),x - x(a)> > a<dx,Dxdx> + a (55)

which is the left inequality in (42). To show that the right side of (55)

cannot be zero, note that if it were then we would have both dx = 0

(implying dx = , x(a) = P(x - aVf(x)) and x(a) = x + adx (implying

P(x - aVf(x)) = x). Since x is not critical, we arrive at a contradiction.

Therefore the right inequality in (42) is also proved.

By using the mean value theorem we have
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f(x) - f[x(a)] = <vf(x),x - x(a)> + <Vf(c~) - Vf(x),x - x(a)> (56)

where Ca lies on the line segment joining x and x(a). Using (55) and (56)

we obtain for all ac(O, g )

Ux(a) - (x + ad )II2
a {f(x) - f[x(a)]} > <dx,Dxdx> + 2 (57)

a

+ <f(a) - Vf(x), x -x(>.

Using (51) and the Cauchy-Schwartz inequality we see that

<Vf('a) - Vf(x), x - x(a)> > _ UVf(a) - Vf(x)u.gll. (58)

Since IlVf(4a) - Vf(x)U+O as a + 0 we see from (57) and (58) that if dx * 0

then for all positive but sufficiently small a we have f(x) > f[x(a)].

If dx = 0 then = 0 and using Lemma la)x x

ux(ca) - (x + dx)I 2 IIx(a) - xil 2
2 U22 2 > ux(1) - xl , V as(O,1]. (59)a a

From (57), (58) and (59) we see again that when d = 0 then for all

positive but sufficiently small a we have f(x) > f[x(a)]. Therefore, there

exists a>O such that (43) holds in both cases where dx = 0 and d ~x 0.

Q.E.D.
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3. Convergence Analysis

The previous section has shown how a vector x£X, a scalar >0O, an index

set Ix satisfying

IxYD ie I <ai,x> > b - EllaHil},

and a positive definite self-adjoint operator D x:rx+rx where r is the

subspace defined by (21) - (26), uniquely define an arc of points x(a)eX,

a > 0 where

x(a) = P(x - ag), a > O

and g is defined via (23), (24), (28) - (30). Furthermore for each xeX

which is not critical, Proposition lb) shows that by choosing a sufficiently

small we can obtain a point of lower cost on this arc. Therefore any

procedure that, for any given xeX, chooses Ix, £, and Dx satisfying the

above requirements, coupled with a rule for selecting a point of lower cost

on the corresponding arc x(a) leads to a descent algorithm. There is a

large variety of possibilities along these lines but we will focus

attention on the following broad class of methods:

We assume that we are given a continuous function c:X+R such that

£(x) > O, txsX (60)

£(X) = 0 x is critical (61)

(for example s(x) = min {c,llx - P[x- Vf(x)JlIl where £ > 0 is a given

constant). We are also given scalars 8e (0,1), aO (0,1/2), X1 > 0 and

X2 > 0 with X1 < X2.
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At the beginning of the kth iteration of the algorithm we have a vector

XkeX. If xk is stationary we set xk+ 1 = xk. Else we obtain the next

vector xk+1 as follows:

Step 1: Choose an index set IkCI satisfying

IkZ {is I| <ai,xk> > bi - s(Xk)llail}, (62)

and compute

dk = arg min {Iz + Vf(xk)11I zECkf (63)

dk = - [Vf(xk) + dkl (64)

where

Ck = izl <aiz> < O, iIk}. (65)

Step 2: Choose a positive definite self-adjoint operator Dk:rk+rk, where

rk = span {Ck fn z z <z,dk> = 0}}, (66)

and Dk satisfies

IIDkIl ( A2 and l11zi112 <z,Dkz>, ¢ zer k. (67)

Compute dk given by

dk = arg min {Iz - Dkdk lz C k, <Z,dk> = . (68)

Define

k -(dk + dk) (69)

and

xk(c) = P(xk - agk),' caO. (70)
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Step 3: Set

Xk+1 xk(k) (71)

where

ak = Bmk (72)

and mk is the first nonnegative integer m satisfying

f(xk) - f[xk(am)] > ao {m <dk,Dkdk>

llXk(sm) - (Xk + mdk)112
+ k m } (73)

6m

Proposition lb) shows that Xk+l is well defined via the stepsize rule

(71) - (73) in the sense that mk is a (finite) integer and furthermore

f(xk) > f(xk+l)

for all k for which xk is not critical. The following proposition is our

main convergence result.

Proposition 2: Every limit point of a sequence {Xk} generated by the

algorithm above is a critical point.

Proof: Let {XkIK be a subsequence of {Xk} converging to a point x which is

not critical. We will arrive at a contradiction. Since i{k} is bounded we

assume without loss of generality that

lim :k = a
k+o k
ksK

where ,[0,1]. Since {f(xk)} decreases monotonically to f(-x) it follows

from the form of the stepsize rule that
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lim ak <dk'Dxdx> = 0 (74)
k+co
kEK

r xk( ak) - (Xk + akdk ) 11

1 im = O (75)
k+c ak
keK

We consider two cases:

Case 1 ( > 0): It follows from (74) and the fact <dk ,Dkdk> AXllldkl

(cf. (67)) that lim d = 0, and therefore also lim k = O, lim dk = -Vf(x).
k +co k+oo k+
keK kEK ksK

By taking limit as k+-, keK, in the equation Xk(ak) = P(xk + akdk + akdk),

using the continuity of the P operator which follows because P is a con-

traction we obtain

lim xI,(ak) = P[ -af(x) ]

k+oo
kEK

Therefore (75) yields

= Plx - vf(x)].

Since a > 0 this implies that x is critical thereby contradicting our

earlier assumption.

Case 2 (=0): It follows that for all keK which are sufficiently large

mlk O~k- )112
aZk +k lIXk(-) - (Xk + -k ) 12

f(xk) - f[xk(--)] < { <dkkd k> +k k (76)
"k

i.e., the test (73) of the stepsize rule will be failed at least once

for all kEK sufficiently large.

Since (dk + dk)' <dk,dk> = O, we have
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lggkl2 = lidk l
2 + lakl2. (77)d+ + 11 a II . (77)

Since dk is the projection of Dkdk on Cx n {z| <z,dk> = O} we must have

lidkl < IIDkdkll and, using (67), lidkil < X2 ldkIl. Therefore from (77) and the

fact idkil < IlVf(xk)ll, lidkil < ltvf(xk)ll we obtain

ll9gk1l2 (1 + x2 )llvf(x k)
2 .

It follows that

lim sup llgk ll < (78)
k+co

keK

We also have

lim E(Xk) = s() > 0. (79)
k+oo

keK

It follows from (78), (79) and the fact a = 0 that for all k6K sufficiently
cak 6(Xk )

large E(0, 1 k ) and therefore using Proposition lb) [cf. (42)] we

obtain

:C~k "lXk( ) - (Xk +
<Vf(xk),xk - Xk( -)> >--<dk' d >> +k (80)

Using the mean value theorem we have

f(xk) - f[xk( -- )] = <Vf(xk),xk - xk( a)> (81)

+ <vf( k) - Vf(xk),x k - Xk( )>
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where Ck lies on the line segment connecting xk and Xk( ). From (76),

(80), and (81) we obtain for all keK sufficiently large

ak ak- 2
IXk ( - ) - (Xk + x k)11

( 1-) {<dkDkdk> + 0 -

OLk

Xk - Xk(-) (82)4 <Vf(xk) - Vf(Ck), > (82)
:k

Since [cf. (51),(78)] we have

mk
IlXk -Xk( ( II

lim sup < lim sup Ig11 <
k+o k k+oo

ksK 6 keK

and lim IIVf(xk) - Vf(Ck)ll = 0 it follows that the right side of (82) tends
k+co
ksK

to zero as k+-, keK. Therefore so does the left side which implies that

lim dk = O, lim ak = O (83)
k+c k+
kEK ksK

and

lim ak- )112lim X11k( -) - (Xk + _)1 12
k+ co 0. (84)

ksK "k 2Ck29
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Since it follows from (79) and (83) that there exists F such that

Xk + aX k > kX

we obtain using Lemma la)

IIXk(- )- (x k + -- k),a 2) k + A P[(xk + k + dk] - (Xk + ) (85)

From (84) and (85) it follows that

lim P[(X + -k ) - (f(xk) + d k ) ] - (xk + )2 0k+oo + k k dk k + k
keK

Using (83) we obtain

IP[7- - vf( )] -oxl = 0

which contradicts the assumption that x is not critical. Q.E.D.

We mention that some of the requirements on the sequences {¢(Xk)} and

{Dk} can be relaxed without affecting the result of Proposition 2. In

place of continuity of e(-) and assumption (67) it is sufficient to require

that if {xk}K is a subsequence converging to a noncritical point x, then

lim inf e(xk) > 0,
k+oo
keK

lim inf inf {<z,DkZ>I > zu = 1, zerk} > 0
k+io
keK

lim sup IlDk < A.
k+co
keK
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This can be verified by inspection of the proof of Proposition 2.

A practically important generalization of the algorithm results if we

allow the norm on the Hilbert space H to change from one iteration to the

next. By this we mean that at each iteration k a new inner product <-'o>k

and corresponding norm U1-Uk on H are considered. The statement of the

algorithm and corresponding assumptions must be modified as follows:

a) The gradient Vf(xk) will be with respect to the current inner

product <-'>k [cf. (3)].

b) The projection defining dk, d+, dk and the arc Xk(*) should be with

respect to the current norm U-Uk.

c) The assumptions on Ik, and Dk, and the stepsize rule should be restated

in terms of the current inner product and norm.

There is no difficulty in reworking the proof of Proposition 2 for this

generalized version of the algorithm provided we assume that all the norms

lik, k = 0, 1,... are "equivalent" to the original norm u1- on H in the

sense that for some m > 0 and M > 0 we have

mUzl < izlk < MuzU, I zcH, k = 0,1,...

Naturally the norms -u k should be such that projection on X with respect

to any one of them is relatively easy for otherwise the purpose of the

methodology of this paper is defeated. The motivation for considering a

different inner product at each iteration stems from the fact that it is

often desirable in nonlinear programming algorithms to introduce iteration-

dependent scaling on the optimization variables. This is sometimes

referred to as "preconditioning". The use of the operator Dk fulfills that

need to a great extent but while this operator scales the component dx of
x

the negative gradient, it does not affect at all the second component d+.
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The role of an iteration-dependent norm can be understood by considering

situations where the index set Ik is so large that the cone Ck is empty.

In this case d - Vf(xk), ak = 0 and the kth iteration reduces to an

iteration of the original Goldstein-Levitin-PoIjak method, for which

practical experience shows that simple, for example diagonal, scaling at

each iteration can sometimes result in spectacular computational savings.
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4. Rate of Convergence

In this section we will analyze the rate of convergence of algortihm

(62) - (73) for the case where X is polyhedral and H is finite dimensional.

An important property of the Goldstein-Levitin-Poljak method [cf. (7)] is

that if it generates a sequence {Xk} converging to a strict local minimum x

satisfying certain sufficiency conditions (compare with [7]), then after

some index k the vectors xk lie on the manifold of active constraints at x,

i.e., XkCX + N. where

N = {zl<ai,z> = O, V isA.} (86)

and where

A. = {ilisI, <ai,x> = bi}. (87)

Our algorithm preserves this important characteristic. Indeed, we will see

that, under mild assumptions, our algorithm "identifies" the set of active

constraints at the limit point in a finite number of iterations, and sub-

sequently reduces to an unconstrained optimization method on this subspace.

This brings to bear the rate of convergence results available from

unconstrained optimization.

The rate of convergence analysis will be carried out under the

following assumptions:

(A) H is finite dimensional, X is polyhedral, f is continuously Frechet

differentiable, and Vf is Lipschitz continuous on bounded sets, i.e., for

every bounded set there exists L > 0 such that for every x and y in the set

we have

1Vf(x) - Vf(y)ll < Llix - yll. (88)
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(B) x is a strict local minimum and there exists 6>0 such that

P(y)EX + NX I y such that lOx - Vf(x) - yll < 6 (89)

(C) The function e(x) in the algorithm has the form

E(X) = min {e,Ix - P[x - Vf(x)]jl} (90)

where >0O is a given scalar. Furthermore the set Ik in the algorithm is

chosen to be [cf. (62)]

Ik = {isIl<ai xk> > bi - s(Xk) lail}. (91)

The Lipschitz condition (88) is satisfied in particular if f is twice

continuously differentiable. Condition (89) is a weakened version of an

often employed regularity and strict complementarity assumption which

requires that the set of vectors {aili AL} is linearly independent and all

Lagrange multipliers corresponding to the active constraints are strictly

positive. The form (90) for c(x) is required for technical purposes in our

subsequent proof. The reader can verify that there are other forms of s(x)

that are equally suitable. Finally the choice (91) for the set Ik is

natural and is ordinarily the one that is best for algorithmic purposes.

The following proposition allows us to transfer rate of convergence

results from unconstrained minimization to algorithm (62) - (73).

Proposition 3: Let x be a limit point of the sequence {xk} generated by

iteration (62) - (73), and let Assumptions (A) - (C) hold. Then

lim xk = x (92)
k+oo

and there exists k such that for all k > k we have
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Xk X + N. (93)

rk = span{Ckl{I<z,dk> = 0}} = N (94)

dk = arg min{IIVf(xk) + zll IzEN}, (95)

Xk+ 1 = xk + akDkdk, (96)

mk
where mk = k and mk is the first nonnegative integer m for which

f(xk) - f[xk(gm)] a> om <dk,Dkdk>. (97)

The proof of Proposition 3 is given in Appendix B. From (96) and (97)

we see that eventually the method reduces to an unconstrained minimization

method on the manifold x + N_. The proposition shows that if the matrixX

Dk is chosen so that for all k sufficiently large it is equal to the

inverse Hessian of f restricted on the manifold x + N,, then the method

essentially reduces to the unconstrained Newton method and attains a

superlinear rate of convergence.
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5. Algorithmic Variations

Many variations on iteration (62) - (73) are possible. One of them,

changing the metric on the Hilbert space H from iteration to iteration, was

discussed at the end of Section 3. In this section we discuss other varia-

tions. These will include the use, in various cases, of a pseudometric on

H instead of a metric, variations on the step size rules and finally

variations on the various projections in (62) - (73). We will state the

variations without a convergence proof. In each case, the reworking of the

proofs of Sections 2-3 to show that the variation is valid, poses no

difficulty.

Singular Transformation of Variables through a Pseudometric:

Here we address the case where X is not a solid body in H, i.e. for

some linear manifold M we have X CM * H. In this case we observe that (42)

is the only place where a metric as opposed to a pseudometric is needed.

Noticing that if XC-M, then all quantities in (42) belong to M, one can

conclude that all that is necessary is to have a metric on M. This leads

us to consider the use of pseudometric on H provided it induces a metric on

M. Furthermore, we can change the pseudometric on H from iteration to

iteration, as we can change the metric, provided that the metrics induced

on M are equivalent in the sense described in Section 3. In some cases

the introduction of a pseudometric serves to facilitate the projection

further (see [17], Chapter 4).

Step Size Rules:

The Armijo-like rule (73) can be viewed as a combination of the Armijo

rule used in unconstrained minimization [9], and an Armijo like rule for

constrained optimization proposed by Bertsekas in [[7], cf. eq (12)].

36



Corresponding to an alternate suggestion made there [[7], cf. eq (22)] we

can replace (73) by

f(xk) - f(xk(Bm)) > (98)

.{m <dk,Dkdk> + <Vf(xk),(xk + mdk) - Xk(om)>I}

Also, a variation of the Goldstein step size rule [9] can be employed, in

which a < 0.5 and a is chosen such that

(1 - a) {a<dk'Dkdk> + <Vf(xk),(xk + adk) - Xk(m)>} >

f(xk) - f(xk(a)) > a {a<dk,Dkdk> +

<Vf(xk),(xk + )dk) - Xk( )>}. (99)

The rule (99) is the counterpart of (98). The reader can easily con-

struct the counterpart to (73).

Variations on the Projections:

There is one central observation in the paper, namely, the projections

of Dkd k and dk on any closed convex set for which dk is a direction of

recession, result in descent directions. By employing different sets with

this property, variations on the algorithm result since different direc-

tions may be obtained and different arcs may be searched.

The first variation is to replace Ck in (68) by (Qk - Xk)' i.e.

dk = arg min {liz - Dkdk lI ZEk - Xk <,d> = O (100)

where

=k = {zi <ai,z> < bi t i¢Ik }

Evidently

Qk - Xk D Ck
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and as a result dk is a direction of recession of 2k - xk' which implies

that dk defined by (100) is a descent direction.

Interestingly, this variation gives rise to a variation in the stepsize

search. Since the set {zj ZSCk, <z,dk> = O is a cone, the vector dk of

(68) satisfies

Oadk= arg min {IIaDkdk - zll ZEC k, <z,dk> = 01} 

Thus, (70) can be interpreted as

Xk () = P[xk + adk + qk(a)]

where

qk(a) = arg min {IlaDkdk - zi I zeC k, <z,d k> = 0}.

When Ck is replaced by Qk - xk, a new algorithm results by searching along

the arc

Xk(a) = P[xk + adk + qk(a)]

where

qk(a) = arg min {IicDkdk - zll znk - xk <,d> 01.

Indeed, the particular algorithm suggested in [6] can be considered to be

an implementation of the last variation for an orthant constraint.
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6. Multicommodity Network Flow Problems

In this last section we apply algorithm (62)-(73) to a classical nonli-

near multicommodity network flow problem and present some computational

results. In view of the typically very large number of variables and con-

straints of this problem, active set methods of the type presented in [41

are in our view: entirely unsuitable.
We consider a network consisting of N nodes, 1, 2,..., N, and a set of

directed links denoted by £. We assume that the network is connected in

the sense that for any two nodes m, n, there is a directed path from m

to n. We are given a set W of ordered node pairs referred to as

origin-destination (or OD) pairs. For each OD pair woW, we are given

a set of directed paths Pw that begin at the origin node and terminate

at the destination node. For each weW we are also given a positive scalar

rw referred to as the input of 00 pair w. This input must be optimally

divided among the paths in Pw so as to minimize a certain objective func-

tion.

For every path pePw corresponding to an OD pair weW we denote by

xp the flow travelling on p. These flows must satisfy

X XP = rw ¢ weW (101)
w

x > 0 t pEPP, weW (102)

Equations (101), (102) define the constraint set of the optimization

problem - a Cartesian product of simplices.

In Example 2 we discussed the application of our method to the case

of a simplex constraint. It is not difficult to see that if we take

a "diagonal" metric on the space, the multicommodity flow problem decom-

poses in the sense explained below.
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Let x denote the vector of variables xP, peP , weW, and let xW

denote the vector of variables xp, PEPW. Let C x(xw) and r (xw) denote the

cone and subspace, respectively, in RIl, generated at x, when all variables

aside from those in xW are considered fixed and £ = £(x). Then

X w=7C (xW)

Vf(x) = (...,V wf(x),...)
x

and

x wWr (xW ) .

Thus all projections decompose and therefore in many respects the multicom-

modity flow problem is not different from the problem with a single simplex

constraint. The only points where the "interaction" among the simplices

appears is in computing k,' and in computing Dkdk.

To every set of path flows {xPlpsP w, wcWj satisfying (101), (102)

there corresponds a flow fa for every link acs. It is defined by the

relation

fa = 1 (a)xP V a s (103)
weW peP P

w

where lp(a) = 1 if the path p contains the link a and 1 p(a) = 0 otherwise.

If we denote by f the vector of link flows we can write relation (103) as

f = Ex (104)

where E is the arc-chain matrix of the network.

For each link ac£ we are given a convex, twice continuously differen-

tiable scalar function D a(fa) with strictly positive second derivative for
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all fa > O. The objective function is given by

D(f) = Z D (fa). (105)
aet a

By using (104) we can write the problem in terms of the path flow

variables xP as

minimize J(x) = D(Ex)

subject to:

i xP = r ft weW

PEPwpep

XP > 0 _t P-Pw' wsW.

In communication network applications the function D may express, for

example, average delay per message [10],[11] or a flow control objective

[12], while in transportation networks it may arise via a user or system

optimization principle formulation [13],L14],[15]. We concentrate on the

separable form of D given by (105), although what follows admits an exten-

sion to the non-separable case.

A Newton-like method will be obtained if we chose Dkd k so that xk +

Dkd k is the minimum of the quadratic approximation to f on xk + rk. For

this we must find Av where v solves

minimize <vJ(xk),Av> + 1 <Av,V2J(xk)Av> (106)

and where A is a matrix such that its columns are linearly indepenent

and span rk.

The particular structure of the objective function (105) gives rise

to a Hessian matrix which makes the solution of (106) relatively easy to

obtain. Indeed, using (105) we can rewrite (106) as
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minimize <E'VD(fk),Av> + 1/2<Av,E'V2D(fk)EAv>, (107)
v

where fk = Exk and prime denotes transposition. A key fact (described in

detail in Bertsekas and Gafni [16]) is that problem (107), in light of

V2D(fk) being diagonal, can be solved by the Conjugate Gradient (C-G)

method using graph type operations without explicitly storing the matrix

A'E'V 2D(fk)EA.

Note that a solution to (107) exists since E'VD(fk) is in the range of the

nonnegative definite matrix E'V2D(fk)E.

Computational Results:

A version of the algorithm was run on an example of the multicommodity

flow problem. The network is shown in Figure 5. Each OD pair was

restricted to use only two prespecified paths. This reduced the

programming load significantly, yet captured the essence of the algorithm.

It is conjectured that the results we obtained are representative of the

behavior of the algorithm when applied to more complex multicommodity flow

probl ems.

The algorithm was operated in three modes distinguished by the other

rules according to which the C-G method was stopped. In the first mode

(denoted by Newton) the C-G iteration was run to the exact solution of

problem (107). In the second mode, (denoted by Approximate Newton) the C-G

iteration was run until its residual was reduced by a factor of 1/8 over

the starting residual (this factor was chosen on a heuristic basis). Finally,

in the third mode the C-G method was allowed to perform only one step

(denoted by 1-step--this results in a diagonally scaled version of the

original Goldstein-Levitin-Poljak method). In all these modes, in addition

to their particular stopping rule, the C-G method was
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stopped whenever for any OD pair w the flow on the path with the smallest

partial derivative of cost became negative. Each time this happened, the

last point in the sequence of points generated by the C-G method subitera-

tion was connected by a line to the point preceding it. The point on the

line at which the particular path flow became zero was taken as the result

of the C-G iteration. We used different values sk for different OD pairs,

according to a variation of (60) (with e = 0.2).

We used two types of objective functions. The first is

fa
D (fa) = f aE£

C - fa
a

where Ca is a given positive scalar expressing the "capacity" of link a.

This function is typically used to express queueing delay in communication

networks. The second type was taken to be quadratic. We used two sets of

inputs, one to simulate heavy loading and one to simulate light loading.

For each combination of cost function and input we present the results

corresponding to the three versions in Table 1.

Our main observation from the results of Table 3 as well as additional

experimentation with multicommodity flow problems is that in the early

iterations the 1-step method makes almost as much progress as the other two

more sophisticated methods but tends to slow down considerably after

reaching the vicinity of the optimum. Also the approximate Newton method

does almost as well as Newton's method in terms of number of iterations.

However the computational overhead per iteration for Newton's method is

considerably larger. This is reflected in the results of Table 3 which

show in three cases out of four a larger number of conjugate gradient

subiterations for Newton's method. Throughout our computational experiments
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(see also [17]) the approximate Newton method based on conjugate gradient subi-

terations has performed very well and together with its variations is in

our view the most powerful class of methods available at present for nonli-

near multicommodity network flow problems.
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16.5 20 7.5 10 10

15 5 9 7.5 7.5

M = 3 15 6 8 3

10 6 10 10 14

50 35 x x x

C ! = mij, i : i + 1, j = 1 - 5(i -

Table 1: Capacities

destination
origin 6 7 8 9 10

1 0.5 1 1.5 2 2.5

2 1 1 1 1 1

3 0.5 0.5 1.5 1.5 3.5

4 0.25 0.25 2 0.25 0.25

5 0.75 0.75 0.75 0 0

Table 2: Low Input

High Input = Low Input x 1.75
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Initial Final # of Total # of
Value Value Itera- C-G Subit-

tions erations

Low Load

Nonquadratic Objective 1.600616.106

Newton 8.743550 16 29

Approximate Newton 8.758665 16 16

1-Step 8.758665 16 16

Quadratic Objective 1.866326.101

Newton 7.255231 5 17

Approximate Newton 7.255231 7 13

1-Step 7.255231 12 12

High Load

Nonquadratic Objective 9.759996-106

Newton 3.737092.101 14 117

Approximate Newton 3.737745-10 1 15 30

1-Step 3.747400-10 1 15 15

Quadratic Objective 9.759996.106

Newton 1.521299-101 5 24

Approximate Newton 1.521299.10 1 13 27

1-Step 1.521301-101 1 16

Table 3
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Appendix A

Proof of Lemma 1: a) Fix x£X, zeH and y>l. Denote

a = x + z, b = x + yz (A.1)

Let a and b be the projections on X of a and b respectively. It will

suffice to show that

ilb - xll (< y1a - xll. (A.2)

If a = x then clearly b = x so (A.2) holds. Also if asX then a = a = x + z

so (A.2) becomes lub - xil 4 yizu = ib - xil which again holds by the contrac-

tion property of the projection. Finally if a = b then (A.2) also holds.

Therefore it will suffice to show (A.2) in the case where a # b, a * x,

b * x, akX, b~X shown in Figure (A.1).

Let Ha and Hb be the two hyperplanes that are orthogonal to (b - a) and

pass through a and b respectively. Since <b - a, b - b> > 0 and <b - a,a - a>

O0 we have that neither a nor b lie strictly between the two hyperplanes Ha

and Hb. Furthermore x lies on the same side of Ha as a, and xH a. Denote

the intersections of the line {x + a(b - x)laER} with Ha and Hb by sa and sb

respectively. Denote the intersection of the line {x + aft - x) IcaR} with Hb

by w. We have

i s x i
lib - xil b - lw - xll 11w - aill + lia - xll
II a -xi us xi>

a IIa - x 1 Ila - xll

Ilb - all + Ila - xi lib - xii (A3)l> _ (A.3)
Ila - II Ila - x ll
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where the third equality is by similarity of triangles, the next to last

inequality follows from the orthogonality relation <w - b,b - a> = 0, and

the last inequality is obtained from the triangle inequality. From (A.3) we

obtain (A.2) which was to be proved.

b) Since y is a direction of recession of Q, we have

P (x + z) + YEQ . (A.4)

Thus by definition of projection on a closed convex set

<(X + Z) - PQ(x + Z),(PS2(x + Z) + y) - PQ(x + z)> < 0 (A.5)

or equivalently

<(x + z) - Pj(x + z),y> O0,

and (40) follows.
Q.E.D.
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Appendix B

We develop the main arguments for the proof of Proposition 3 through a

sequence of Lemmas. In what follows we use the word "eventually" to mean

"there exists k such that for all k > k", where k may be different for each

case.

Lemma B.1: Under the conditions of Proposition 3, lim xk = x and eventually
k+oo

Ik : A (B.1)

Proof: By relation (73), since x is a limit point and the algorithm

decreases the value of the objective function at each iteration, we have

lim lIlxk+l - xkl = 0,
k+oo

which implies, again by the descent property and the fact that x is a

strict local mimimum

lim xk = x. (B.2)
k+coo

Therefore from (90)

lim C(xk) = E(-) = O. (B.3)
k+oo

Since the set I is finite it follows from (87), (91) and (B.3) that even-

tually

IkC x. (B.4)

To show the reverse inclusion we must show that eventually

<ai,xk> > bi - s(Xk)lla ia l, V iEA . (B.5)
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By the Cauchy-Schwartz inequality, (B.3) and (90) we have eventually

£(Xk)llaill = lxk - P[xk - Vf(Xk)ll.lajil > <P[x k - Vf(xk)] -xk ai>.

Therefore in order to show (B.5) it suffices to show that eventually

<ai,P[xk - Vf(xk)]> = bi, t isAx

or equivalently

P[xk - Vf(xk)]X + NX.

Since xk + x this follows from Assumption (C).

Q.E.D.

Lemma B.2: Under the conditions of Proposition 3 for each ac(0,1], even-

tually we have

Xk( )¢X + Irx, t as [,1. (B.6)

Proof: From Lemma B.1 we have xk + x and eventually Ck = C where

C = {zl<z,ai> 0, ¢ ics/}. (B.7)

Since the projection of -Vf(x) on C is the zero vector and dk is eventually

the projection of -Vf(xk) on C it follows that

lim dk = 0. (B.8)
k+oo

Since dk is the projection of Dkdk on a subset of Ck, and {ODDkIu} is bounded

above [cf. (67), (68)], it follows that

lim dk = 0. (B.9)
k +ok
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Since -Vf(xk) = dk + dk and gk =-(dk + dk)

lim gk = vf(x). (B.10)
k+W

A simple argument shows that Assumption (B) implies that for all aO[0,1]

P(y)£x + N t y such that I1x - aVf(-x) - yll <( a (B.11)

For any ac(0,1], equation (B.10) shows that we have eventually

ilx - caf(x) - (Xk - c-gk)1 ( c6, t IcIt,l1].

Therefore from (B.11) we have eventually

Xk(a) = P(xk - agk)dx + N, t a[-,1J.

Q.E.D

Lemma B.3: Under the conditions of Proposition 3

lim inf ak > 0.
k+o*

Proof: From Lemma B.1 we have Ik = A and Xk + x, while from (B.8) we have

lgkll + 11Vf(x)I1. Therefore from Proposition lb) [cf. (42)] it follows that

there exists a > 0 such that eventually

<Vf(xk),xk - Xk(a)> "> a <dkDkdk>

+ 1 ilXk(a) - (xk + a k) I2, ac(0,Oa].a k ' '

Using this relation we get that eventually

f(xk) - f[xk(a)] >
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L 'XX(a) - Xk 2
> <Vf(xk),Xk-xk(ca)> 2 -L k

<dk D d > + '1 2 Lx k2 )- xk 2' k k 2k t (X) k -+ak) 2Xk(a) Xkl

> <dk'Dkdk> + llXk(a) - (Xk + adk)l 2

-Llladkll - LIIXk(C) - (xk + dk)

> (1l - LAX2)<dk,Dkdk> +

+ L) llxk( ) - (xk + adk)112

where the third inequality follows from

llx + yll2 < 2ilx12 + 211yil 2

the last inequality follows from (67) and L corresponds to any nonempty

bounded neighborhood of x. Taking any a > 0 satisfying

a a, 1 - LX > o,(1 L) >

we obtain, usinq (73) that

lim inf ak > a
k+oo

and the lemma is proved. Q.E.D.

Proof of Proposition 3: The fact lim xk = x is part of Lemma B.1, while
k+ o

(93) follows from Lemmas B.2 and B.3.

In order to show (94) we note that from Lemma B.1 and (B.8) we have

eventually

Ck = C, Ck = C (B.12)
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and

lim dk = -Vf(x). (B.13)
k+co

Equation (B.13) implies that eventually Assumption (B) holds with d+ replac-

ing -vf(x) and 6/2 replacing 6. Therefore for all i/x. and Pi>O such that

11piai < we have

P(x + dk + piai)x + N (B.14)

P(x + dk) + . (B.15)

For any z1,z2sH we have from a general property of projection on X

<z1 - P(zl),P(z 2) - P(zl)> < 0

<z2 - P(z2),P(zl) - P(z2)> < 0.

By adding these two inequalities we obtain

IP(z1 ) - P(z2)2ll <Z1 - z2P(zl) -P(z2)>' t Z1'Z2EH. (B.16)

By applying (B.16) we obtain

IIP(x + d + Piai) - P(-x + dk)ll (B.17)

+ )- p(-k + dk)>< <+pia ,P(x + dk + pia) - +k

Since <ai,z> = 0 for all zes_, isAIx it follows from (B.14), (B.15) that

the right side of (B.17) is zero and therefore eventually

57



P(x + d±k+ piai) = P(x + d i+A9.
P(k + - k

Since from (B.12) we have eventually dkET , it follows that P(x + dk) = x

and therefore also

P(x + dk + Pjaj) = - i 'A..

Hence eventually

d k ±+ piaiC + , V isA/

which implies that

<dk paY> < 0, t YC, ik. (.18)

Let

yE{zlzsC k, <z,dk> = 01.

From (B.12) and (B.18) we have eventually

<a i y > = 0 t i EAX,

or equivalently yens. Hence eventually

I\ {ZIzSCk, <z,dl> = 01

and it follows that

span pan{Ck n {zl<z,d> = }} = r

To show that the reverse inclusion note that if ysNk then by
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Assumption (B) and (B.12) we have

<y,d+k> = 0.

Since Nr CC and eventually Ck = C it follows that eventually

YECk ) {zl<zdk> = 0} and a fortiori yEspan{Ck n {zl<z,d > = }} = rk

Therefore eventually

NC Cr k

and the proof of (94) is complete.

Since dk is the projection of -Vf(xk) on Ck ) {zl(z,dk> = 01

equation (95) follows easily from (94).

Also from (93) and (94) we have eventually Xksx + NI, dks ~, A kN 1

and dk is orthogonal to N, while by Lemma B.2 the vector Xk+1 is the pro-

jection of xk + ak(Ck + dk) on x + NI. Therefore (96) and (97) follow.

Q.E.D
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