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Abstract
One of the most interesting parts of QCD dynamics is the non-perturbative region of long-range
excitations and this thesis explores several semi-classical aspects of this region associated with in-
stantons. The instanton distribution in lattice QCD has been calculated with and without internal
fermions and no statistically significant difference between the two distributions was found for a
sea quark mass mq ,:ti 10OMeV. Since the instanton distribution is observed by using a relaxation
process, the effects of lattice artifacts and pair annihilation during relaxation are investigated.

The role of the low-eigenvalue modes in the Hybrid Monte-Carlo dynamics has been studied
and it is shown that the efficiency of this method can be significantly increased by using a few
recent vectors to approximate the solution of the inverse Dirac operator. The algorithm to find
the low-eigenvalue modes of the Dirac operator was developed and used to study the spectrum of
the Dirac-Wilson operator on the lattice. Restricting the Dirac operator to the complement of the
few lowest modes is shown to completely eliminate critical slowing down in the Conjugate Gradient
method.

Point-to-point correlation functions were calculated using the full propagator and the propagator
in the subspace of low-eigenvalue modes of the Dirac operator. The "truncated" correlation function
reproduces the behaviour of the full correlation function at large distance. This result agrees with
the prediction of the instanton liquid model that quark dynamics in QCD can be described by
instanton zero modes.

Thesis Supervisor: John William Negele
Title: William A. Coolidge Professor of Physics
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Chapter 

Introduction

The Quantum Chromo-Dynamics theory of strong interactions is the conventional way of describing

strongly interacting matter: quarks, gluons, mesons and baryons. With the success of the theory in

the high-energy region came the challenge of describing the intermediate- and low- energy physics

from the first principles of QCD. Due to the asymptotic freedom of QCD, the high-energy processes

can be successfully described within perturbation theory. The same asymptotic freedom leads to

the breakdown of perturbation theory in the low-energy region where other methods have to be

developed to explain the hadron structure, quark confinement and the rest of the experimental data.

Instanton models 73] provide the semiclassical description of QCD dynamics. Although in-

stanton models have difficulties describing confinement, they give a reasonably good description of

chiral symmetry breaking and hadron structure. The range of validity of the semi-classical instan-

ton approximation is complementary to the perturbation theory range. While perturbation theory

produces an expansion in the coupling constant g', the relevant parameter for instantons is the

one-instanton action SI = 82 . The instanton liquid model takes as an input the phenomenologicalgr
parameters, instanton distribution or some other quantities, which can be determined from either

experiments or lattice calculations.

The lattice regularization method is one of the possible methods of perturbative regularization

but it also provides a framework for ab initio calculation of all QCD quantities. In theory, the lattice

results are equal to those obtained by other regularization methods in continuum limit. In practice,

limited computer resources restrict the size of the lattice and the continuum limit is defined only

by extrapolating results from finite lattice spacing and finite lattice volume with statistical errors

arising from the Monte-Carlo integration methods. At present, lattice calculations provide the only

method of studying non-perturbative effects in QCD from first principles.

This work addresses the long-range excitations in lattice QCD. The comparison of the lattice

results with the results of instanton models establishes the link between those models and full QCD.

11



The study of instantons on the lattice can also provide insight on the dynamics of lattice QCD

algorithms.

One of the key tool in studying QCD is point-to-point correlation functions for quark currents.

Many correlation functions can be determined experimentally and any successful model has to de-

scribe them. The instanton gas or liquid models describe the correlation functions by approximating

the propagator with the propagator in the subspace of the instanton zero modes. This approxima-

tion provides a good description of correlation functions and the same approximation was studied

on the lattice, using the exact computed spectrum of the Dirac operator on the lattice.

The algorithms developed for studying instanton physics can also be applied to other problems

of lattice QCD and beyond lattice gauge theories.

Chapter 2 reviews the lattice regularization method (Sec. 21), defines the lattice gauge fields

(Sec. 22) and fermions (Sec. 23), specifies the action (Sec. 24) and defines the Hybrid Monte-Carlo

algorithm (HMC) used for generating the lattice configurations (Sec. 25).

Chapter 3 describes the method of accelerating the computations in HMC method by using the

analytical properties of the HMC evolution. Taking into account the slow evolution of low-eigenvalue

modes during HMC trajectory we have achieved significant increase in the efficiency of the algorithm.

Chapter 4 addresses the instanton distribution in lattice QCD. It begins with a review of instanton

properties and instanton models for QCD dynamics (Sec. 41). Section 42 describes the relaxation

algorithm used to suppress the quantum noise in the dynamically generated configurations and

Section 43 describes the procedures used to identify the lattice instantons. In Section 44 the effects

of the relaxation process on the isolated instantons are studied to determine the distortions of the

instanton distribution introduced by relaxation. Section 45 reports the results of the measurements

of instanton distribution in QCD with and without internal fermions and discuss the results of other

groups on this subject.

Chapter presents the spectrum of the Dirac-Wilson operator on the lattice. Section 5.1 dis-

cusses the general properties of the lattice Dirac-Wilson operator and, in Section 52, the spectrum

for free fermions is studied. Section 53 investigates in detail the low-eigenvalue part of the spectrum

in the field of a single isolated instanton. The results of those sections establish the framework to

study the effects of the instantons in the spectrum of Dirac-Wilson operator in lattice QCD. Section

5.4 discusses the effects of the instanton interaction on the spectrum and the role of the Wilson

term in the Dirac operator. Section 5.5 presents the low-eigenvalue part of the spectrum in the

dynamically generated field configuration and compares the lattice computation with continuum

results. In Section 56, the computed eigenvectors are used to study the role of low-eigenvalue part

of the spectrum on the convergence of Conjugate Gradient algorithm. Separating the low-eigenvalue

part of the spectrum in the Dirac operator completely eliminates the critical slowing down. To

study the effects of the instantons on quark propagation, the quark current correlation function was

12



computed by restricting the quark propagator spectral representation to few modes (Sec. 57). The

results show that essential part of the quarks dynamics is contained in the low-eigenvalue part of

the spectrum.

Chapter 6 gives the summary of main results described in this thesis.

Appendix A defines the gamma-matrices representation used in this work and summarizes the

properties of t'Hooft's q-symbols. Appendix describes the Even-Odd pre-conditioning method

and the k-step Arnoldi method used for computing the eigenvectors.
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Chapter 2

Definitions and Algorithms

2.1 Lattice Regularization

Regularization is essential to a definition of any quantum field theory. Lattice regularization is one

of the possible methods to render the theory finite and start the renormalization procedure. First,

some mesh is defined in the 4-dimensional Euclidean space. Any mesh breaks the Poincarb group

invariance to some discrete group and the full invariance group is recovered only in the continuum

limit. In the case of a regular rectangular mesh, this residual group is a product of 4-dimensional

cubic group and finite translations. Next, the continuum fields are replaced by lattice variables

and continuum operators are replaced by lattice operators acting on lattice variables. The lattice

variables and operators are defined in the following Sections.

The continuum limit of the lattice field theory is reached when the correlation length �, expressed

in lattice units a, diverges. At this point lattice artefacts (- a/6) disappear and the lattice theory

can be related to the continuum theory. In lattice CD this point is at = 2N --* 00 and at this

point all lattice variables, expressed through lattice spacing a, follow the perturbative asymptotic

scaling law
-bi/2b2aA = exp (bog2) 0 (2.1)

L 2 02bogo

where

bo (11N,13 - 2Nf /3) and b (34N2/3 - 13NNf 3 Nf IN,) (2.2)r2 7r2)2i6i (1 6

To make a correspondence with the continuum theory we need some observable which can be mea-

sured both on the lattice and in experiments (or deduced from the experimental data). The string

tension a = 44OMeV)2 and p-meson mass mp = 77OMeV are possible choices of variables used to

set the scale of the lattice spacing a and quark mass q.
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Additional complications arise from the lattice boundary effects. Since the lattice in numerical

computations can not be infinite or even very large, the scaling window a R < L is usually not

very big. The boundaries also introduce additional violations of rotational invariance.

2.2 Gauge Fields

In the standard way of representing the gauge fields on the lattice [18, 191 each link of the lattice

carries the element of the gauge group U.,,,, E SU(N). The index x denotes the site on the lattice

and IL is the direction of the link. In this work all links point in positive directions, that is, connect

points x and x A where A is a unit lattice vector in direction ft. In the continuum limit the link

field Ux,,, is a path-ordered integral of the gauge field A,, (z) along the straight line connecting x and

+
X + IL

Ux = P exp i f A, z)dz ;zt 1 + iaAxt, (2.3)
X

The trace of a product of link matrices Ux,,, along the closed path is gauge-invariant and makes

a building block for constructing gauge field-related observables.

2.3 Fermions

The fermion fields on the lattice are naturally represented by their values on the sites of the lattice

V)x belonging to some appropriate Grassman algebra.

The simplest, so called "naive", discretization of Dirac operator is obtained by replacing the

derivative by the central difference. This operator has a lattice correction proportional to a 2 while

the one-sided difference operator has corrections - a.

Dox = Mox + 1 -ym(?Px+,a (2.4)
2

The spectrum of the "naive" Dirac operator for free fermions can be obtained by simple Fourier

transformation

A,, = nl + i sin(27rn'u)2, (2-5)
A LA

where n. = ml2 ... L.12. The physical part of a spectrum is the region where A + 0 when

L -+ oo and the continuum dispersion relation A = m + illpll is recovered. It is easy to see that

naive fermions have not one but 16 such regions, one in the vicinity of n = and nJ = Lu/2 for

each p, corresponding to 16 species of massless fermions in continuum limit. Those extra fermions

are called "doublers". Only one of the doubler modes is smooth when a -+ 0, the others have a

sawtooth structure - -l)X.
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Note that the word "spectrum" describes the spectrum of the Dirac operator, not the energy

spectrum E(p). The two notions of spectrum are related but I use only the operator spectrum

throughout this thesis. The spectrum of a Dirac operator can be represented on a complex plane

where real and imaginary axes do not have separate physical meaning.

One solution to the doubler problem, proposed by Wilson 84], is to add a term to the action

which gives extra mass to the doublers while not affecting the physical region n A ;zz� 0. The simplest

such term is a Laplacian rA. The full Wilson-Dirac operator is conventionally written as

Rox =,ox yA)UxpV)x+f, + (r + -y,,)Uf - i 'O. -,a (2-6)

The coefficient r is arbitrary and usually set to for simplicity. The hopping constant is related

to a fermion mass by

2m (2-7)
K r"

where r., is a critical K, and r. = 1/8 for free fermions. In the case of interacting fields this equation

is used to define the quark masses after K, is determined separately (see the example of determining

K, in Chapter .

The spectrum of Wilson-Dirac operator (Eq. 26) even for free fermions

An = -- 2r. cos( 27MA) +2ir. Esin( )2 (2-8)
LA LA

A

has a correct continuum limit but is complex in general. Since the Wilson term is not chirally

invariant, the chiral symmetry of QCD is recovered only in the continuum limit . --* r.,. I will

discuss this operator in more details in Section 5.1.

2.4 Lattice Action

The action for the gauge fields is a functional of the gauge-invariant closed loops. The simplest

choice is the Wilson action

SW = E 1 1 TrPX'A'. (2.9)Ne

where the plaquette PxA, is a product of 4 links along the side of elementary square. It is possible to

use more terms to the action adding bigger loops when necessary 77, 78], adjusting the coefficients

of different terms to reduce lattice artefacts. Both the Wilson action and an improved action have

been used in this work (see Section 42).
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The actions for the gauge fields and fermions define the partition function of the theory

= f DUD�DV) exp (OS[U] + �(D + m)o = f DUe-,3slul [det(D + M)INf (2.10)

Calculating the partition function by direct integration is hopeless because of the enormous num-

ber of degrees of freedom and but it can be evaluated by Monte-Carlo integration. The integration

over the phase space with a weight (Eq. 210) is replaced by the average over the set of fields 001

generated by a Markov process with correct probability P[U = e-slul. This replacement is valid if

the process is ergodic and satisfies the detailed balance principle 18, 19]:

P[U]P(U , U = P[U']P(U' , U) (2.11)

The action for the pure gauge theory is well localized and the statistical sample of configurations

can be generated by local updates. Two examples of such algorithms are the Cabibbo-Marinari

(heat-bath) algorithm and the Metropolis algorithm [18, 19]. By using only the pure gluon action

and omitting the determinant, the effects of internal fermion loops are ignored. This approximation

is called the quenched or valence approximation. I also use the term "full" to denote the Monte-Carlo

process and configurations with internal fermions.

2.5 Hybrid Monte-Carlo Algorithm

Since fermions are represented by anti-commuting variables, there is no practical way to define them

on a computer. After the fermions are integrated out of the partition function Eq. 210), the

resulting determinant introduces highly non-local interactions of the gauge fields. In the quenched

(or valence) approximation, all of the effects of the determinant interaction are ignored. In physical

terms, this approximation corresponds to neglecting the internal fermion loops in all diagrams. At

present, typical methods for going beyond the quenched approximation for lattice QCD involve an

increase of several orders of magnitude in computational time - thus severely limiting statistics on

large lattices. Consequently, finding a more efficient approach to the inclusion of internal fermion

loops poses a major challenge for the next generation of lattice simulations 53].

The most successful approach to date for generating full QCD configurations is the so-called

Hybrid Monte Carlo (HMC) algorithm 6 5, 27, 28, 29, 30, 37, 39, 40, 41, 54, 561. This algorithm

has the advantage that, apart from numerical round off, it provides an exact Markov process for

generating QCD configurations. Starting from the Euclidean partition function for QCD (Eq. 210)

with even number of flavours of Wilson Fermions and using the identity

[det (M)] Nf = det(MtM)] Nf 2 (2.12)
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we may rewrite the determinant as Gaussian integral over a set of bosonic "pseudo-fermion" fields

�p.,. The HMC algorithm also requires additional canonical (angular) momentum coordinates, E W,

conjugate to the gauge fields A,, (x) on each link (x, x+#). Combining these steps the QCD partition

function is now rewritten as

Z DUDEDVe -H(UEV) (2.13)

with an entirely bosonic action given by

H(U, E, �o = TrE2 + Sg(U) + �Ot [MtMI-1�0 (2.14)
2

Now the QCD partition function looks like the partition function of a Hamiltonian system.

The standard HMC algorithm alternates Gaussian updates with Hamiltonian evolution in a "fifth

time" coordinate t to achieve detailed balance and ergodicity, the evolution part of the algorithm

is called a Molecular Dynamics algorithm (MD) for historical reasons. At the beginning of each

Hamiltonian trajectory the momenta, E, and "pseudo-fermion" fields, b = Mt- 1�o, are chosen as

independent Gaussian random variables. Next the gauge fields are evolved for a MD time T using

the Hamiltonian equations of motion with fixed values of the "pseudo-fermion" fields �p. Since the

updates at the beginning of each trajectory do not depend on the history of the evolution, the

algorithm realizes the Markov process for the gauge fields U. By the properties of the Hamiltonian

evolution the probability distribution,

P (U) f DOD�e-S9(U)+1W(U)V1 (2.15)

is invariant during the evolution.

In practice, the Hamiltonian evolution must be approximated by an integration scheme with a

finite step size 6t. Consequently, at the end of each MD trajectory, a Metropolis accept-reject test is

introduced to remove integration errors which would otherwise corrupt the action being simulated.

In addition, it is also essential that the MD integration method exactly obey time-reversal invariance

to avoid violating detailed balance. Clearly small violations of detailed balance are inevitable due to

round off errors. Current practice usually employs the leapfrog integration scheme in single precision

arithmetic. This scheme introduces an error in the action proportional to &2 . Better integration

schemes could allow to increase bt and, therefore, reduce auto-correlation time. Also, with standard

even-odd pre-conditioning 26, 39, 40, 41], the full Dirac operator D is replaced by an even-to-even

operator M, (see Sec. B.1). In this case, only pseudo-fermions W on the even sites have to be

introduced and the matrix,

Mt Me, (2.16)

is used in the algorithm.
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There are many small variations on this basic method, but common to all HMC algorithms is

the need to accurately integrate the equations of motion, calculating the force on U due to the

pseudo-fermions at each time step t, The calculation of force on the gauge field requires solving

the Dirac equation,

A(t.)X(t. = (2.17)

over and over again for the propagator X(t), where A(t) =- M(U)f M(U). Technically, this is achieved

by starting with a trial value Xti,,l and iteratively solving Equation 2.17) for X(t). The solution of

Equation 217), which is usually obtained using the conjugate gradient (CG) method, is the most

computationally expensive part of Hybrid Monte Carlo algorithm.
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Chapter 3

Accelerating H\4C with

"Chronological" Inverter

At each time step of the Hybrid Monte-Carlo method the Dirac matrix must be inverted to calculate

the force due to fermion loops. This inversion is the most time-consuming part of the full QCD

algorithm. The Dirac operator is represented as a 12V by 12V sparse square matrix, where the

number of space-time lattice sites (or volume V) is on the order of 10". With the lattice volumes

used in recent simulations, the Dirac matrix may account for 90% or more of the computation time.

Moreover, due to the Dirac inverter, the problem scales as (1/a) 1-7 . Therefore any acceleration of

the Dirac inversion will result in nearly a proportional net gain in the performance of the full QCD

simulations.

There are several ways to increase the efficiency of the algorithm. Better inversion algorithms

are always an option worth exploration 33, 45, 551. Since the detailed balance of the HMC process

is maintained by the final Metropolis accept/reject step, the MD trajectory need not be an exact

approximation to the Hamiltonian evolution. In this method the exact (up to machine precision)

inversion of the Dirac operator is replaced by some approximation to it still maintaining the re-

versibility 32, 45]. At the end, the time saved in reducing the number of inversions is traded for the

lower acceptance rates and/or longer auto-correlation time.

On the other hand, if the inverse is solved exactly (in machine precision), the detailed balance is

preserved, regardless of the details of the algorithm. The conjugate gradient method always starts

with some initial vector, the first guess to a solution. Being able to guess better, the total time to

reach convergence could be reduced. In our approach, the trial vector is "extrapolated" from a set

of the previous solutions of the Dirac inversion. By virtue of the system's smooth evolution in MD

time, the solution X(t) must also change smoothly and it should be possible to use information from

the recent past to perform the next inverse more efficiently 12, 13]. We call the method of guessing
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the solution from the set of the past solutions the "chronological" inverter.

Consider the dynamics of the eigenmodes of the Dirac operator. Since the convergence of the

CG algorithm is determined by the condition number JAmax/Amil and the lowest eigenmodes are

the last to converge 36] a good guess in the subspace of the lowest modes can significantly push

CG to convergence. The lowest modes are also the least affected by small changes in the operator.

On the other hand, those modes are enhanced by the inverse and therefore the subspace of the few

past solutions approximates the subspace of the lowest eigenmodes of the Dirac operator. See also

Section 56 for further discussion of the relations between eigenmodes and the conjugate gradient

algorithm.

Several possibilities can be taken into account. The first obvious step, employed frequently in

HMC codes, is simply to use the previous solution as the starting trial solution. Some groups have

even used a linear extrapolation of the last two solutions 37, 39, 40, 411. The next natural step

is to use a high order polynomial extrapolation. It was shown that the polynomial extrapolation

gives a robust speed up in the CG 131. Motivated by this success, we fixed the trial vector as a

linear combination of the N previous solutions by minimizing the residual in the norm of the matrix

(see Sec. 33). This approach, which we call the Minimal Residual Extrapolation (MRE) method,

further improved the performance.

The generic roblem of a chronological sequence of matrix inversions is not unique to HMC for

QCD. For example, in many fluid dynamics codes, one must solve Poisson's equation for the pressure

field as an inner loop for integrating the Navier-Stokes equation 44]. We believe the ideas developed

here will be useful in many of these related applications.

3.1 Details of the simulations

The work on Chronological Inverter and Hybrid Monte-Carlo code was done in a BU-MIT collab-

oration including Richard Brower (Boston UMIT), Andreas Ruben Levi (Boston U) and Kostas

Orginos (Brown U) on the CM-5 at MIT. We had available two CM-5, one with 128 nodes and the

other with 64 nodes. We used the configurations generated for the MIT-BU lattice collaboration.

We tested various values of the molecular dynamics step 6t for or more independent thermalized

full CD configurations, separated by approximately 100 MD trajectories.

In our tests we performed extensive simulations on a 16 4 lattice at = and r = 0160. These

values of parameters give the lattice spacing ap = .11fin, the quark mass Mq z� 10OMeV and the

pion mass m, ;z:� 63OMeV (see Section 57 and 41, 39]). We choose 6t in a typical window for actual

simulations 0.002 < 6 < 0.015). Some simulations were performed with a lighter quark mass and

we obtained similar results 13], although the magnitude of the improvement depended slightly on

the lattice parameters.
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We used a standard CG method, and we iterated until the normalized squared residual,

Imt M"a - �01'
R 1XII (3-1)

reached a given value. We choose the stopping condition, in much the same spirit as references

[39, 40, 41], so that the error in computing the AS, used in the Metropolis accept-reject step, should

on average be less than 1%. However it is not really known how this error propagates to physical

quantities.

A critical issue is the requirement to converge accurately to the final solution for X. Unless

you start from a value of X which is independent of past values (e.g. X = W), the initial guess

introduces an element of non-reversible dynamics and therefore violates detailed balance. Even in

one of the most commonly used HMC methods, starting from the last value of X (or a constant

extrapolation), failure to converge to the correct inverse introduces a bias that breaks time reversal

invariance. In principle, only if the CG has converged exactly to the fixed point of the conjugate

gradient iterations, will there be no violation of time reversal invariance 46, 31]. In practice, we

have measured this source of error by explicitly reversing the MD dynamics for various values of the

stopping conditions (see Eq. 31). In Figures 31 32 we show examples for R = 0-10, R = 0-",

R = 10-12 , R = 10-13 , R = 10-14 and R = 0". In Figure 31 we can see the action variation

(total, fermion, gauge and momenta) in a trajectory that goes forward in MD time 100 steps and

then is reversed for 100 steps. We have subtracted the initial action, so if the dynamics conserves

energy, the total action should remain zero and if the dynamics is reversible, the total action should

be symmetric around the MD time t = 100.

Our data demonstrates that simulations with R > 10-12 are not sufficient to ensure a reversible

dynamics. In Figure 32, we plot the total action difference between symmetric points in a forward-

backward trajectory. If the dynamics is reversible, this difference should be zero. In this figure we

can see that for R > 0-11 the dynamics is not reversible. For R = 10-13 the action difference

observed is of order of 10' where the total action is of order 107, which means that we are at

the boundaries of single precision accuracy. However, for R = 10-14 we are well bellow the single

precision accuracy. Smaller action variations can not be detected. Consequently, we chose to run

our simulation using R = 10-14 as the conjugate gradient stopping criterion. Running the conjugate

gradient beyond R = 10-14 eventually leads to divergence, although a few restarts quickly reduce

the residue by an additional order of magnitude.

We measured the total number of CG steps needed to invert the Dirac Matrix to a given precision.

The CPU time for a single leapfrog trajectory is practically proportional to the number of CG steps.

However, the true performance of the method should be judged by the total number of CG steps

needed to evolve the system for a fixed MD time, i.e. the total number of CG steps needed to
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Figure 31: Action variation in a forward-backward trajectory. The initial action has been sub-
tracted. R < 10" was used as a stopping criterion and bt = 0.010.

compute a trajectory of time length T. We define the quantity,

CT = NCG (3.2)
bt

which is proportional to the "computational time". Moreover, since a smaller step size will improve

the acceptance rate, the trade-off may be even more favorable for small bt, and this effect should

also be included in an overall measure of efficiency. However, because we always worked with 6 in

a region of very good acceptance rates > 99%), we have not included this effect in our estimate of

overall efficiency in our simulations.
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3.2 Chronological Inverter for CD

We began our investigation by considering a trial solution, X(O), of the new Dirac matrix A) as

a linear superposition of old solutions,

Xtrial --̀� ClX(tl) + C2X(t2) + + CNX(tN)- (3.3)

To simplify our notation, we will always suppose that the new inverse is computed at t = 0, given

the past values at ti, with ... < t < 2 < tl < - In practice, this is usually a regular series of

values t = n bt with an integration step U.

To date HMC simulations have used either the past solution as a trial solution, Xtria = X(ti),

or a linear 37, 39, 40, 411 extrapolation, Xtial = 2X(tl - X(t2)- It is natural to try to improve the

estimate for the trial value by using higher order polynomial extrapolations. For example, if one

uses an N-th order polynomial to fit N + past values, the coefficients are given by

Ck = (-J)k-I N! (3.4)
k!(N - i)!'

Although substantial improvements can be made using higher order polynomial extrapolations, the

method breaks down for large N (N > ) 12, 13].

Since the conjugate gradient method is in fact just a minimal residual technique confined to the

Krylov subspace spanned by vectors A-'Xtrial 36], why not start by examining a "smarter" sub-

space based on past success for nearby times? In this spirit, we suggest determining the coefficients

c,, by minimizing the functional,

1F[X = XtMtMX - VtX Xt1P1 (3.5)

which is the same functional minimized by the Conjugated Gradient method itself. This corresponds

to the minimization of the norm of the residual in the norm of the inverse matrix,

rt 1 r = xtMtMX -ptX - xtv + btb, (3-6)
jWtM

in the subspace spanned by Xi =_ X(ti), where r MtMX and b =_ (Mt)-'V. Therefore we call

this method "Chronological Inverter by Minimal Residual Extrapolation" or MRE. The minimization

condition reduces to
N

1: (X!MtMXj) c = Xtiv. (3.7)
j=1

The only technical problem is that this system can be poorly conditioned because the past solutions

Xi differ from each other by order bt. However, if properly handled, this instability should not
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affect the resulting minima of the quadratic form in the span of the vectors, Xi. We have explored

other methods of extrapolations to some extent, in particular other slightly different definitions of

residue (not in the norm of the inverse matrix) were examined, but nothing appears at present to

out-perform the Minimal Residual Extrapolation method.

3.3 Chronological Inverter by Minimal Residual Extrapo-

lation

We implemented this method by calling a routine that minimizes the residual in the subspace of the

past solutions, right before each CG in the usual leapfrog. This routine has as inputs the set of past

vectors Xi, i = ... N and returns a vector xt that minimizes T[X] in the span(Xi):rZ

MRE Algorithm

• Construct an orthogonal basis vi in the span(Xi) using the Gram-Schmidt procedure.

Form the sub-matrix Gnm = vt MtMv,,,, and the vector bn = Vt �0_

n A

• Solve Gn,,,an = bn using the Gauss-Jordan method.

N
• Return the trial vector Xtrial E anvn-

n=1

Because Xi's are nearly linearly dependent there is a numerical instability, and the Gram-Schmidt

procedure does not produce a true basis of span(Xi) due to round off error. Hoverer span(vi) is a

subspace close enough to the relevant subspace of the old solutions. Because the accumulated error

is larger at the late stages of the Gram-Schmitt iteration, the ordering of the Xi is important. We

get better results if we number the Xi's from the newest to the oldest. This way we quite accurately

pick up the new relevant directions, while the old ones, which are less relevant, are computed with

more round off error. Although the numerical errors still accumulate in old vectors, those vectors

are multiplied by smaller coefficients. In this way we can handle the numeric instability and turn it

to our advantage.

This method requires (N 2+ 5N)12 dot products and N MX matrix-vector applications, and the

storage of 3N past pseudo-fermion configurations. There are other implementations of the above

concepts which can do the same thing using less memory. But most of them suffer from numerical

instabilities. The best we found, and actually used in our production runs, is instead of storing X's,

store v's, keeping them in the right order - most recent first. This reduces the memory requirement

to the storage of N pseudo-fermion configurations, and has the same performance as the original

method. We checked this method using double precision, and there was no visible improvement by

reducing the round off-error.

25



N=O 1.00 1.00 1.00 1.00 1.00 1.00 1.00
N=1 0.73 0.80 0.84 0.85 0.85 0.86 0.90
N=2 0.52 0.67 0.72 0.73 0.76 0.78 0.84
N=3 0.30 0.55 0.63 0.67 0.70 0.72 0.82
N=4 0.21 0.44 0.55 0.59 0.63 0.67 0.79
N=5 0.18 0.33 0.45 0.51 0.56 0.61 0.76
N=6 0.18 0.32 0.38 0.43 0.49 0.53 0.72
N=7 0.17 0.30 0.38 0.42 0.45 0.48 0.68
N=8 0.17 0.30 0.37 0.41 0.42 0.47 0.66
N=9 0.15 0.28 0.36 0.39 0.44 0.47 0.63
N=10 0.15 0.29 0.36 0.39 0.42 0.45 0.61
N=11 0.15 0.27 0.35 0.39 0.42 0.45 0.62
bt 0.002 0.005 0.007 0.008 0.009 0.010 0.015

Table 31: Number of CG steps needed to converge to the solution from minimum residual extrap-
olation. The table is normalized with respect to N = (i.e. no extrapolation, Xtrial = V). The
statistical errors are of the order of 10%.

As explained above, the performance of the method given in "computational time" CT is sum-

marized in Table 32, and in Figure 35. It is interesting to note how CT depends on the number of

the vectors retained. Unlike the number of CG steps, CT does not decrease as bt becomes smaller.

Moreover, there is a range of bt where the performance is relatively insensitive to bt. As you decrease

the step size, you gained back almost the same performance by reducing proportionally the number

of CG steps required for convergence in each step. As discussed earlier, smaller step sizes have the

extra advantage of improving the acceptance rate.

3.4 Comparison with the Polynomial Extrapolation Method

The polynomial extrapolation method has the advantage that it requires very little computational

effort, just a local sum on each lattice point with fixed coefficients given once and for all by Equation

(3.4), costing less than a single CG step. For a polynomial of order N, the only storage requirement

is for the previous N pseudo-fermion configurations, X(ti).

Note also that the coefficients of the Minimal Residual Extrapolation method (Eq. 33), which

a p7io-ri are generic complex numbers, are in fact very close to coefficients in the polynomial extrap-

olation (Eq. 34) for the first few orders. One way to understand this coincidence is to observe that

In Table 31, we record the mean number of CG steps required to reach the solution normalized

relative to starting with Xtrial = W We used the stopping condition that the normalized squared

residual (Eq. 31) was smaller than 10-14.

The data (see Table 31 and Figures 33 34), suggest that the more vectors you keep from the

past the better starting residue you achieve, and as a result the fewer CG steps you need in order to

converge to a given accuracy. Furthermore the number of CG steps is decreasing as 6t is decreasing.
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N=0 5.86 2.34 1.66 1.46 1.30 1.17 0.78
N=1 4.29 1.88 1.40 1.24 1.10 1.00 0.70
N=2 3.03 1.57 1.20 1.07 0.98 0.91 0.66
N=3 1.78 1.29 1.06 0.96 0.91 0.84 0.64
N=4 1.23 1.02 0.92 0.86 0.82 0.78 0.62
N=5 1.08 0.78 0.74 0.74 0.73 0.71 0.59
N=6 1.04 0.74 0.64 0.63 0.63 0.62 0.56
N=7 0.99 0.71 0.63 0.61 0.58 0.57 0.53
N=8 0.98 0.69 0.62 0.60 0.57 0.55 0.51
N=9 0.88 0.67 0.60 0.58 0.57 0.54 0.49
N=10 0.90 0.67 0.60 0.57 0.55 0.53 0.48
N=11 0.88 0.64 0.59 0.57 0.54 0.53 0.48
6t 0.002 0.005 0.007 0.008 0.009 0.010 0.015

Table 32: Computational Time (CT) starting from minimum residual extrapolation.
The table is normalized to at 6 = 0.010 for N = (or xti = Xlast).

for a smooth evolution the determination of coefficients ci,

Xtrial = ClX(tl) + CWt2) - CNX(tN), (3.8)

by a polynomial fit is equivalent to fixing the coefficients by making a Taylor expansion of each

term, Xt.), in t, = n6t canceling all contributions to 0(6tN). To prove this we solve the constraints

N

E(tX-1Y = x(ti),
n=1

(3-9)

for a polynomial fit y(t) = Y1 + t2 - - tN-1YN to find y = Xtjal. We then show that

Y = ri iX(ti) when we enforce the Taylor series constraints,

N

1:(ti)'-'ci = 61'..
i=1

(3.10)

From this exercise, we conclude that the success of the polynomial fit probably results from the

local convergence of the power series MD in time. On the other hand, while the polynomial actually

deteriorates at high order, the minimal residual continues to improve. At the extrapolation order of

N = - 6 the deterioration becomes appreciable.

In conclusion, the increased efficiency of the MRE method is worth the extra computational

effort (equivalent to N2 CG steps). With a Polynomial Extrapolation, one gets poor results on a

few exceptional lattices, whereas the MRE method is a more robust estimator, which implements a

kind of self-tuned extrapolation, never doing worse than a polynomial fit of the same order.
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3.5 Conclusions

Let us summarize our perspective on the problem of accelerating a time sequence of conjugate

gradient inverters. The chronological method has offered significant performance improvement, but

at the same time there is a tantalizing need for further improvement. Just by starting from the

old solution, the residue is reduced by 4 orders of magnitude to order 10', relative to the residue

with X = W. Then if we look at Figure 36, we see that the residue is reduce further by orders of

magnitude using 10 additional past solution vectors in our Minimal Residual Extrapolation method.

Finally, the first 10 CG iterations accounts for another 2 orders of magnitude. However, accurate

reversibility ultimately requires us to reduce the residue by another 4 more orders. This last 4 orders

of magnitude takes several hundred additional vectors in the CG iterations. We are both intrigued

and frustrated by the observation that we can reduce the residue by 11 orders of magnitude in a

20-30 dimensional vector space, but then the standard CG iterations requires hundreds of additional

search directions to accomplish the remaining 4 orders of magnitude needed to satisfy adequately

the reversibility constraint. It is tempting to hope that further improvements can be made on this

last 4 orders of magnitude.

We have emphasized the analytic properties of X(t) because we believe it may suggest ways to

understand and further improve the chronological method. Our success so far is probably due to the

slow evolution of the low eigenvalues of the Dirac operator. Thus we are in essence taking advantage

of "critical slowing down" in the HMC algorithm to accelerate the Dirac inverter. However, there

may well be other vectors (besides the final solution) in the nearby past iteration that can better

exploit the slow evolution of our matrix. For example, the last CG routine, which is closest in time

to our present inverter, itself generates many A conjugate search vectors, that may be more useful

than the older solutions exploited in our MRE method.

In conclusion, we found that the procedure presented here, and in particular the Minimal Resid-

ual Extrapolation method reduces by a factor of about 23 the mean number of conjugate gradient

iterations required to move in phase space for a fixed molecular dynamics time. This is achieved with

negligible extra computational time, at the expense of memory. Consequently when sufficient mem-

ory is available for storing the past solutions the Dirac inverter, our Chronological Inversion method

certainly provides one more useful trick for more efficiently generating full QCD configurations.
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Chapter 4

Instantons on the Lattice

This Chapter begins by reviewing the properties of instantons in continuum theories and models of

instanton dynamics (Sec. 4.1). The variant of cooling algorithm (Sec. 42) and the procedures to

extract the instanton content of a lattice configuration (Sec. 43) are then described and the effects

of the relaxation procedure on isolated instantons (Sec. 44) are studied. Finally, the instanton

distribution of the lattices including dynamical quarks is determined 591.

4.1 Properties of Instantons in Continuum Field Theory

This section reviews the results of instanton models in QCD. The comparison of those results with

the lattice calculation provides both validation of the instanton models from first principles and a

check for the lattice algorithms.

Instantons are non-trivial localized solutions to the classical equation of motion of the Euclidean

Yang-Mills theory. Using the transformation

4 a aV d4X 1 -V -V)2 ::F FaV.Pa.
S 4 f d F'V F 4 2 (4.1)

the action is related to the topological charge

4XF-..P-V.Q d (4.2)
327r2

Since the topological charge is integer for the fields going to zero (pure gauge) at infinity, the

minimum of the action in a given topological charge sector is reached for (anti-)self-dual fields

,a 1 a aF 'v = ±F (4.3)2 MVPOIFP /IV

A single instanton solution in SU(2) gauge theory, first obtained by A. Polyakov and coworkers
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[7, 57] can be written in the following form (due to t'Hooft):

, b 9 og(j +A'(x = Q. OAV (4.4)
A (X - C)2

where Q,,b is a constant rotation matrix in an adjoint representation, c is the instanton position

and p is the instanton size. The tensors �b , are defined in Appendix A. This field has a topological
A

,,2 -instanton field with QA 1 and SA = SI can be
charge Q = and action SI = _�r , the anti

obtained by replacing symbols with in the formula above. The instanton solution was later

generalized to arbitrary numbers of instantons and arbitrary gauge group [1]. Since the topological

charge can not be changed by a small perturbation of fields, the instantons are stable against field

perturbation except for a change in parameters. The action of the instantons does not depend on

the instanton parameters and small variations of the instanton field (Eq. 44) with respect to the

parameters are zero modes of the action.

Since the instantons are the classical solutions to the equation of motion, they enter the semi-

classical expansion of the partition function along with the true vacuum state. The configurations

with well-separated instantons, although not solutions of the classical equations of motion, also con-

tribute to the partition function giving the instanton gas model. In this model all instantons are

considered infinitely far apart, the interaction between them is ignored and the partition function

can be written as a sum over instantons

Z = E e-SI f D'Ae- S'[A] (4.5)
instantons

with all quantum fluctuations factorized in S[A] and the functional integration is done on the modes

orthogonal to instanton zero modes. The sum over all instantons can be written as an integral over

the instanton zero mode parameters: positions of the centers c('), sizes p(') and orientations w(')

N, 4 L 2d c(') dp Z�V)
Z P e (4-6)

Ni i

Taking into account quantum corrections, the differential number of instantons is 14, 79]

0.466exp(-1.679N,) 87r 2 2 N,� 87r2 d 4cdp

dN = (N, - 1 (N., - 2 g2 exp - 92(pl) pl (4-7)

The instanton distribution in a gas (Eq. 47) naively diverges at small p and converges at large p

due to the factor p-5. When running of the coupling constant g(p) is taken into account, the instan-

ton distribution changes to dNI pbo-1 with bo the first coefficient from the beta function (Eq.dVdp
dN dN2.2). In pure gauge theory I P in the theory with two light fermion flavours --- I_ _ p4/3.dVdp dVdp

The instanton distribution is finite in the region of small p but diverges for large p. This divergence
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is an artefact of the dilute gas approximation and presumably is removed by non-perturbative effects

and the instanton interaction which grows with increasing p.

More sophisticated models take into account the instanton interactions 14, 67, 68, 69, 70, 71, 73].

Drawing the analogy with gas condensing into liquid when the relative strength of the interaction

increases, these models are called the instanton liquid models. The starting point for such models

is an approximate expression for the gauge fields between interacting instantons. The simplest

expression is the sum ansatz

A a X) Qia,00 a - ,), (4-8)
JA

iEIA

but it suffers from singularities. The ratio ansatz

QO) -b 0) QU b x )
a, b 77,u v P? a b77,uv

iEI jCA P
A a(X) 2 where P) x - c('), (4.9)

1A 2 X

:4 ++ iEI P jEA pi

does not have singularities. The best approximation is given by the streamline solution which is

a minimum of an action in all but one directions in the configuration space 3 4 62, 82]. The

discussion of instanton effects is continued in Chapter 5, where the instanton effects in the quark

propagation are investigated.

4.2 Relaxation Algorithm

The instantons are not directly visible in the lattice configurations obtained by Monte-Carlo algo-

rithms. The quantum noise is usually several orders of magnitude higher than the instanton field

strength. To separate the instanton content from the quantum noise, the lattice configuration must

be made smoother by some procedure. Equivalently, the lattice observables must be redefined to a

smooth combination of point-like original observables. The standard smoothing procedure is cooling,

when each link on the lattice is changed so that the local action reaches the minimum. After sev-

eral steps of cooling, the quantum noise is dramatically reduced while the solutions to the classical

equation of motion, instantons, do not change much. The fermionic methods provide an example of

the second way of averaging the quantum noise (see Chapter 5).

In order to extract the instanton content of the lattice configurations efficiently on a parallel

computer, a variant of the cooling method has been developed by discretizing the relaxation equation

in the extra "time" coordinate r. Symbolically, the relaxation equation is

dU = 6s (4.10)
dr 6U,

Since the matrices U must stay unitary during the relaxation process, the Equation 4.10) must be
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modified to take into account the unitarity constraint. The SU(3) manifold in the vicinity of the

matrix U can be parameterized with a Hermitian traceless matrix F by U[F = exp(iF)U. The

parameters in F, for example, coefficients in a A-matrix expansion, have no constraints and the

relaxation equation 4.10) is an ordinary relaxation equation in a linear space of parameters F

dF = 6S (4.11)
dr 6F

with an initial condition F = . When this equation is discretized for a small step of size in the

Ccrelaxation time" , the evolution step can be written as

U1 - exp -iE 6S U (4.12)
6F

and all links on the lattice are updated simultaneously. The action gradient is determined by varying

the action

S[U' = Re Tr U'U = S[U] + Re Tr [iFUU,] (4.13)

where U, is a generalized "staple", a sum of the products of all loops entering the action. The final

form of the functional derivative is fixed by the requirement that the derivative must be a Hermitian

traceless matrix,
6S 2

2 uu�, - (UU,)t Im Tr [UU,]. (4.14)
6F N,

For large values of this algorithm is unstable but in the limit - 0 the action evolution curve

converges to the solution of the relaxation equation 4.10) (Fig. 42). The curves for the topological

charge do not converge, which indicates some instabilities inherent to our system. For SU(3) gauge

fields, the value = 0025 gives fast and stable relaxation and this value has been used in all

measurements. Comparing the evolution of the action for our relaxation method with = 0025

and the "standard" Cabibbo-Marinari cooling, one observes that one cooling step is approximately

equivalent to 48 relaxation steps and that the cooling histories for the action are very similar (see

Figure 41). The effective number of relaxation steps corresponding to one cooling steps depends on

the configuration. so it is impossible to establish exact correspondence.

The relaxation algorithm has a well-defined scaling properties in a continuum limit. In this limit

Equation 4.10) transforms to
dA _6S (4.15)
dT 6A

with the continuum gauge field A. When the field A is rescaled by the factor a, the evolution time

,r must be rescaled by a 2 to keep the form of the equation. In comparison, the ordinary cooling

algorithm does not have such a property.
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Figure 4-1: Comparison of the action evolution under cooling and relaxation algorithms for a random
lattice. On the horizontal axis are the number of the cooling steps and relaxation time multiplied
by .

II

Figure 42: Comparison of the relaxation algorithm for different values of .
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We used the following procedure to identify instantons in our configurations. First, we consider all

peaks in the action and topological charge density as candidates for the instantons. With an initial

value of the instanton position co (peak position) and instanton size po = 48/S(co ))1/4 (with the

normalization S(x) --* a 4FP in the continuum limit), we perform a least squares fit to the action

and topological charge densities of a classical continuum instanton,

48p 4
SO(XICP = - (4.16)((X - 62 + 2)4'

as a function of c, p. (The details of the fitting are described below.) If the fitting process converges

and the final values for the instanton position c and size p are within a pre-defined range close to

the initial values, we record the identified instanton. If one of the conditions above is not satisfied,

the candidate peak in the action or topological charge is discarded.

In the simplest approximation we considered the instantons as well-separated objects and used

the fit function Eq. 416) for each instanton in turn. In the next approximation we used the

combined fit function

Si ( ci, pi ) So (X I ci, pi) (4.17)

In this function the effects of the interaction are completely lost. We have also tried a more compli-

cated fit function like the ratio ansatz (Eq. 49), but the improvements to the fit were only marginal

and the amount of additional information extracted from the distribution did not justify the extra

work. In all cases studied in this work, the algorithm fails when two instantons become close, approx-

imately on the distance d ;:: p. An obvious generalization would be to fit instanton-anti-instanton

pairs with a streamline solution when d is close to p.

The instanton action density falls off rapidly with the distance from the center and is screened

by other instantons and remaining noise on distances d - p. There is little information to gain

by fitting outside this region so the weights defining the least-squares fit are cut off beyond this

distance. The following expression for the X is used:

X 2 = E W(X _ X) (S(X _ SO Xo' Po))2, (4.18)

X

where So is the action density in the selected approximation and the weight is

1 + e-ab
w (r) a(-L--b) (4.19)+ e Po

This weight goes smoothly from to zero in the region of the width pola centered at bpo where po is

the original estimate of the instanton size. The results in this work use the values a = and b = .
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The fit is rejected if the values of the parameters go outside the fit region xi E x - bpo, xi + bpo], p E0 0

[0.7po, 1.5po] and p E [p,.,,i,,, p-,,,,x]. From studying the evolution of a single instanton (Sec. 44), the

values pmi, = 2.5a and Pmax = 075Lx were determined. The algorithm works slightly better when

the action density in Equation 4.18) is replaced by the topological charge density.

Although there is some degree of arbitrariness in selecting the parameters in the algorithm, we

were able to identify around 50% of the peaks in the action distribution as instantons with the

remaining peaks corresponding to small instantons, closely bound instanton-anti-instanton pairs or

other excitations.

4.4 Isolated Instantons

Several effects can distort the instanton distribution during the relaxation process. The smallest

instantons disappear by falling through the mesh. The larger instantons may shrink because of

interaction with periodic images or may disappear by instanton-anti-instanton pair annihilation.

We separated these effects by studying the evolution of semi-classical instanton configurations. We

discretized the t'Hooft solution (Eq. 44) by integrating U = P f exp Adx along each link and

used sum ansatz (Eq. 48) to produce instanton configuration. When the instanton positions are

selected close to the center of hypercube, the gauge field on the boundary is small and we ignored the

dislocation caused by forcing the field to be periodic. After a few relaxation steps the configuration

becomes very close to a semi-classical solution of the lattice equation of motion.

First, we investigated the shrinking of a single isolated instanton for a variety of instanton sizes

4 4and two lattice sizes, 16 and 24

In Figure 43 we show the evolution of a single isolated instanton during relaxation using the

lowest-order Wilson action. During relaxation the trajectories begin at the value of p specified

in the key and the size shrinks monotonically until the instantons shrinks to p = 2.5a at which

point they "fall through the lattice". The reason for this behaviour is that the first order term in

the Wilson action expansion in a 2 p2 is negative and the relaxation process forces instantons to

shrink. Since relaxation only adiabatically changes the instanton parameters, we can reconstruct

the S(p) dependence by taking the envelope of evolution histories for different runs. Since there

is no plateau in the action, instanton-like semiclassical solutions do not exist. Hence, the Wilson

action is completely inadequate for instanton study.

Because of the deficiency of the Wilson action, we studied also a first order improved action 35],

Sim = 4TO - wixi) 1 Tr(i - W2.2)- (4.20)
3 48

The coefficients in the improved action were chosen so that the zeroth-order term in a 2 is the same

as in Wilson action, the first order term is zero and the second order term is positive. As Figure
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4-4 shows, the small instantons are much more stable with the improved action 22, 23, 24, 25, 35].

Adding more terms to the action could further stabilize instantons 22, 24, 25, 35] but the first-order

improved action was simple and already sufficient for our studies.

For large instantons the evolution does not depend appreciably on the choice of the action but

the boundary effects are substantial. Unlike other groups 351 we decided to study the instantons in

a periodic box. Ultimately we wanted to study the dynamical configurations produced with periodic

boundary conditions and changing boundary conditions for relaxation appears inconsistent. In a

periodic box, the mirror images put pressure on the instanton and always force it to shrink. It

may be possible to counteract this pressure, described by a p 2IL 2 term in the action, by adding

terms increasing the action for small instantons, but this kind of fine-tuning appears unnatural to

us. Since the dependence of action on p 2IL 2 is so strong, extra terms could stabilize the action

of the instantons only in small region in p, distorting the rest of the distribution. Choosing bigger

lattices significantly reduces finite-volume corrections as shown in Figure 45.

With the improved action, Figures 44 and 45 show that the minimal size of an instanton that

can be sustained on the lattice is approximately 2.8a. Furthermore, the disappearance of the p = 3a

instanton on the 16 4 lattice in Fig. 44 is a boundary effect, since it survives much longer on the

24 4lattice in Fig. 45. Figure 45 shows that the improved action is superior in several important

respects. The action for the smallest instantons is much closer to the continuum result, the slope is

significantly lower and the second derivative is positive. As discussed, the remaining increase of 

with p is associated. with finite-volume effects.

Since we are ultimately interested in on the order of 100 relaxation steps at most, we conclude

that with the improved action and significantly larger lattices, the artificial loss of single instantons

in cooling is negligible.

Next, we studied the evolution of an instanton-anti-instanton (I-A) pair. Figure 47 shows the

history in a typical case: instantons of initial sizes PI = PA = 6.Oa with the separation between
4centers = 12.0a. On the small lattice 16 the boundary effects are much stronger than the

interaction between objects and they shrink in place before they have a chance to interact. On the

larger lattices, the instanton and anti-instanton attract each other and annihilate. The finite volume

effects have stabilized on the largest lattices. When the instanton and anti-instantons have different

initial sizes, they first seem to equalize sizes and then disappear (Fig. 48)

We have also checked that the discretization effects are negligible by comparing the evolution

of two appropriately rescaled configurations. Figure 46 shows the evolution of the two physically

equivalent configurations on 16 4 and 24 4 lattices. The evolution curves almost coincide, which means

that the finite lattice spacing corrections are small in this case.

The "interaction" time during which the instanton and anti-instanton move toward each other

is much less then the "shrinking" time and thus the individual instantons in a pair do not shrink
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significantly. In the case of real dynamical configurations, we expect the interactions of instantons to

dominate their shrinking and hence we believe the conventional use of periodic boundary conditions

will not introduce serious finite volume distortions.

4.5 Instanton Distribution in Quenched and Full CD

We have studied 21 full CD configurations for = 2 flavors of Wilson fermions and 

0.160. As measured by LANL group 39, 41], this choice of parameters corresponds to the lattice

spacing determined from the pion decay constant a(f, = .11frn and pion mass m, ;z:� 63OMeV.

Our own measurements (see Sec. 57), although limited in statistics, agree with those estimates.

Configurations were separated by 50 HMC trajectories with average length 50 steps of size = 01.

Those configurations have the same value of = 016145 as quenched QCD for = 58 (See

Ref. 39, 411). To compare quenched and full QCD in roughly the same physical region, we have

generated 23 quenched configurations for = 5 separated by 500 heat-bath iterations. Although

one can not strictly define a string tension with dynamical quarks, we have also checked that the

slope of the quark-anti-quark potential (measured by the Creutz ratios) in both cases is comparable

in the range of 35 lattice units.

Figure 49 shows the distribution of instantons in sizes after 20, 30 and 50 relaxation steps.

Since our method for identifying instantons is not reliable before 20 steps, we can not determine

the early evolutions of the distribution, but after 20 the distribution certainly changes dramatically

with relaxation. Given that the number of instantons is 0200) or larger in a 16 4 box, the average

distance between instantons is about 4 lattice units, comparable to the average instanton size. Under

these conditions the interaction between instantons is very strong and consequently the effects of

I-A pair annihilation are much stronger than boundary effects.

Since the instanton interaction is so strong that the number of instantons drops very fast with

relaxation, it is not possible to choose the "optimal" number of relaxation steps for measurements of

instanton distributions. This result is in sharp contrast to the results of the other groups 25, 23, 24]

which also measured instanton distributions on a different set of lattices. There are several possible

explanation for discrepancies.

First, the degree of cooling used in 24] is much higher than in the present studies. The 20 - 0

relaxation steps in this work, correspond to < 10 cooling steps, whereas the other group started

with 20 cooling steps and continued to 300. There was not much additional erosion of distribution

after 100 relaxation steps in this work either but the distribution of instantons has already changed

dramatically after so many steps and its relation to the original distribution is not clear.

Second, 24] used the SU(2) gauge group. The dynamics of instantons in SU(3) and SU(2) gauge

groups may be different due to a different number of degrees of freedom.
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Lastly, it is clear that the configurations obtained by Monte-Carlo procedures have close, strongly

interacting instanton-anti-instanton pairs. At some region of instanton sizes p the dynamics of

QCD can no longer be fully described by instantons and the transition from instanton dynamics to

perturbative dynamics is not well-defined. Although small instanton pairs add to the total instanton

distribution, their influence to physical values may be small 69, 67, 68, 70, 71, 73]. For the same

reason, the total density of instantons, ;:z� lfM-4 in the instanton liquid model 731 is much less then

the density we observed on a lattice - 200 0.11fin 16) -4 = 2 jfM-4.

Since the erosion of the instanton distribution with cooling should be the same for the quenched

and unquenched samples, we believe the fact that the distributions shown in Fig. 49 are essentially

identical within errors provides strong evidence that the physical instanton distributions are very

similar in quenched and full QCD, at least at this sea quark mass, which is of the order of 10OMeV.
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Figure 43: Evolution of single isolated instantons of different sizes on a 164 lattice with Wilson
action
On the upper graph, the action is shown as a function of the number of relaxation steps for each
initial value of p shown in the key. In the lower graph, is plotted versus the instanton size p for

the same cases.
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the same cases. Note that the termination of curves is due to stopping of the relaxation, not
disappearance of instantons. The curves for the action on the upper graph do not go uniformly
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5

D = 5Dt-y,5 (5.1)

9 All eigenvalues of D come in complex-conjugate pairs or are real. As

function for full QCD (Eq. 210) is also real.

* If is an eigenvector of D then -y,50i is an eigenvector of Dt with the

eigenvectors of D and Dt are related by a simple -y,5 multiplication.

* In general, two distinct eigenvectors are not orthogonal but if �bi and j

corresponding to eigenvalues Ai and A -3

a result the partition

same eigenvalue. The

are eigenvectors of M

(Oily&j) only if Ai = AtJ (5.2)

Eigenvectors with real eigenvalues are y5-orthogonal to the rest of a spectrum and complex

eigenvectors are -y5-null vectors. We ignore the unnatural possibilities of exact zero eigenvalues

and use relation above as equivalence (It is assumes that for each Oi there is another vector

Oj such that their -y5-product is non-zero).
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Chapter

Study of the Spectrum of the

Dirac Operator on the Lattice

5.1 Properties of Wilson-Dirac Operator

This section summarizes the general properties of the Wilson-Dirac operator D defined in Eq. 26)

or the even-odd preconditioned version M defined in Eq. (B.3).

9 The operator D is neither Hermitian nor anti-hermitian but satisfies the following commutation

relations with -y5:



e Using -y,5 orthogonality, the unity decomposition can be written as

V)i) (0 I 75 (5.3)

Wi, 1 -Y5 1 VM

-Y-5 1,00 Wv 1 (5.4)
WV I 5 0i)

5.2 Free Fermion Spectrum

Figure 5-1 shows the calculated spectrum of the Wilson-Dirac operator for free fermions. In this

case the imaginary axis i's the norm of momentum and the real axis is the effective mass. There are

5 low-momentum regions where 16 doublers live. The region with the lowest effective mass is the

physical region in the continuum limit. It is clear from the analytic expression (Eq. 28) that the

first set of doublers (around the real point 0.5) has momentum (7r, 0, 0, 0) and behaves like (- 1)�r.

There are four such doublers, one for each of the directions on the lattice. Due to the Wilson term,

those modes have acquired the mass ;z� 0.5a. When the lattice spacing a 0, this mass goes to

infinity and doublers disappear from the spectrum. Only the eigenvectors in the physical region are

smooth in a continuum limit and the effective mass in this region (Eq. 27) is finite in continuum

limit. The true continuum spectrum is, of course, m + i1pl - the straight line parallel to imaginary

axis and deviations from this line come from the Wilson term. For subsequent reference it is useful

to denote the real part of the lowest eigenvalue Amin = - 8. (see Eq. 28).

One more complication arises from the finite lattice size. When periodic boundary conditions

are imposed on all directions, the spectrum has a zero-momentum constant mode. This mode is

not normalizable in the infinite-volume limit but complicates the study of the low-energy modes.

There is no such mode when anti-periodic boundary conditions are imposed in time direction and

this boundary conditions were used in this work. These boundary conditions are aso necessary for

the correct formulation of the transfer matrix and definition of the continuum limit.

The free fermion spectrum is highly degenerate. The lowest mode has P0,1/2 = A 0, Lt

and there are 8N, such modes. The next mode i P1,1/2 0, 0, with multiplicity 48N,.Lt

Since the algorithm used in this work is limited to the 128 lowest eigenmodes on 16 4 lattice, those

two modes are the only ones found numerically but the eigenvalues for those modes are barely visible

on the edge of Figure 5-1.

5.3 Spectrum in the Field of One Instanton

The first non-trivial example is a spectrum in the field of one instanton. This spectrum is not known

analytically but it has exactly one normalizable zero mode 79]. In a more general case, the index

theorem 2 specifies that the difference between the numbers of left and right zero modes is equal
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Figure 5-1: The spectrum of free Wilson Fermions with anti-symmetric and symmetric boundary
conditions. Only the upper half of the spectrum shown, the lower half is symmetric. The hopping
parameter is = 0124, which gives the fermion mass mq = 0032 and Ami = .008.

to the topological charge. The zero mode for an instanton at x = with the size p has the form

TOWS'a = US'a x/2 P (5-5)
7r (X2 + p2)3/2

with some constant spinor u,,,,, such that utu = . This (continuum) mode has definite parity, left

for instantons and right for anti-instantons. On the lattice this mode can have a non-zero right

component due to the Wilson term in the operator and finite-volume corrections [75]. Figure 52

shows the low-A part of the spectrum in the field of a single instanton with p = 45 on 16 4 lattice.

The spectrum shows a clear "zero" mode (labeled "O"), two more localized modes and four clusters

of other modes. These modes are discussed in detail below.

The zero mode is not exactly at zero on the lattice but is shifted due to the Wilson term. The

shift can be calculated in first order of perturbation theory (in the Wilson coefficient in Eq. 26)

with the result
ReAo = I�ojDjI�o = Ua (5.6)

P2

which gives a reasonable estimate for the position of "zero-mode" eigenvalue. The Figure 54 shows

the calculated positions of zero mode eigenvalues and the prediction of the shift Eq. 56). This

shift has important implications on the dynamics of fermions in the instanton background. First,

zero modes in the continuum have exactly the same eigenvalue and mix under arbitrarily small

interactions. On the lattice, the "zero" eigenvalues for different size instantons are separated and
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Figure 52: The lowest 32 modes of the Wilson-Dirac operator in the field on instanton p = 45 on
a 164 lattice. The hopping parameter r = 0124 corresponds to mass m = 0032, Ami = .008.
Crosses denote the positions of eigenvalues for free fermions with this r..

sufficiently small interactions do not mix corresponding eigenmodes (see Section 54). Due to the

2Wilson term, the fermion mass is renormalized to mf f = m + 3ra/2p

The zero mode is not the only low-energy mode on the lattice. There are also plane-wave like

modes which have magnitude - 1/.\/-V. Those modes belong to the continuum part of the spectrum

in continuum but in finite box the zero mode and continuum modes are not well-separated. The

instanton zero mode mixes with plane-wave modes and produces several more low-lying localized

modes. The lowest mode for the free fermions has momentum Pl /2 = 0, 0, 0, ± and thereLt

are 8N, such modes which differ by color and spinor orientation. Since the instanton zero mode

has a definite and constant color and spinor orientation, it mixes strongly with only two of the

P(0,1/2) modes; the mixing with other P0,1/2) modes is suppressed. In Figure 52 the strongly

mixed modes are labeled "15" and 16" and weakly-mixed modes are clustered around free value

0.0127653 + 0.0483824i (see Eq. 28). Since the plane-wave modes are smoother then the instanton

zero mode, the effects of the Wilson term in the mixed modes are smaller. In Figure 52 the real

part of the mixed mode eigenvalues "15" and 16" is clearly between the values for instanton zero

mode and the cluster of weakly-mixed modes. As Figure 53 shows, the positions of eigenvalues of
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Figure 53: The lowest 32 modes of the Wilson-Dirac operator in the field of instantons of different
sizes. Crosses denote the positions of eigenvalues for free fermions with this .

the weakly-mixed modes do not depend much on the instanton size, the position of strongly-mixed

modes have some dependence on instanton size and the position of the zero modes have a strong

dependence described by Eq. 56). The other cluster of eigenvalues, visible in the Figures 52 and

5-3, corresponds to the modes with momentum P1,1/2) 2, 0, 0 ± and (free) eigenvaluesLt

A(p(1,1/2) = 00316431 0106527i.

Since the instanton mode has a definite chirality, it can be separated from non-chiral plane waves.

Figure 5-5 shows selected modes for an isolated instanton with p = 45 on the 16 4 lattice. On the

right is the square of the right components, in the center is the square of the full eigenvector and

to the left is the square of the left components. The top row is the instanton zero mode. It is

dominated by left components and has a very small right component. The maximum value for the

norm of this mode is Xp2(0 = 2 = 0.0005 (See Eq. 5.5), close to the lattice value. The next row0 '�_ �P

is the strongly-mixed mode labeled "15". The left component has the same shape as the zero mode

but is approximately 2 times smaller in magnitude. The plane wave contribution is not visible on

the left graph but dominates on the right graph for right component. Mode 16" is similar and is

not displayed. The third row shows the mode 13" which has momentum P0,1/2 = 0 0 0 ± -)L

and is weakly mixed with the instanton. The left and right components have clear sine profiles with
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Figure 54: Position of the "zero-mode" eigenvalue in the field of one instanton vs. the instanton
size. The dots correspond to calculated zero modes in the field of lattice instantons and the straight
line is the perturbative prediction Eq. 56.

almost constant sum characteristic of the plane wave. The amplitude of this mode agrees with the

prediction for the plane wave on the lattice *2 = 1/V = 153 10-5. The last row is one of the

modes with momentum P1,1/2 = 0, 0, 2L, ). It has a sine profile in both Z and T directions withLt

some deviations around the position of the instanton.

Figure 56 shows the similar modes for the same size (p = 45) instanton on the 24 4 lattice. Due

to memory limitations, it was not practical to calculate as many modes in this case. The relative

strength of the plane wave modes is smaller in this case (Q2 = 3 10-1) while the strength of the

instanton zero mode is approximately the same. By comparing the middle row with the top row

one can see that the mixing coefficient squared is about 14, half the value for 16 4 lattice. Since

in perturbation theory we expect the mixing amplitude to vary as 11L, the square should decrease

by 49 in going from 16 4 to 244 lattice. Thus, the scaling is as expected and in the infinite volume

limit the mixing coefficient should go to zero.
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Figure 5-5: Chiral projections of selected eigenmodes of an instanton with p = 45 on a 164 lattice.
Eigenvalue (EV) numbers correspond to the labels on the eigenvalue plot Fig. 52. The top row is
the instanton zero mode labeled "O", the next row is the mixture of the instanton zero mode and
the first Matsubara mode P0,1/2) labeled "15", then the Matsubara mode weakly mixed with the
instanton zero mode labeled 13" and on the bottom row is the mode P1,1/2)-
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Figure 56: Chiral projections of selected eigenmodes of an instanton with p = 45 on a 244 lattice.
On the top row is the instanton zero mode labeled "O", the next row is the mixture of the instanton
zero mode and the first Matsubara mode P0,1/2) labeled 13", then the Matsubara mode weakly
mixed with the instanton zero mode labeled 12". Note that the numbering of eigenvalues differs
from those on Figure 5-5 for the 16' lattice.
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Having understood the modes for a single instanton, we considered the spectrum of the Dirac

operator in the field of an instanton-anti-instanton pair. There are no exact zero modes in this case

even in the continuum limit but, when the pair is well separated and the interaction is small, zero

modes localized at each instanton do not change much and the true eigenmode must be a mix of

two zero modes.

Consider the subspace spanned by zero modes which is called the Zero-Mode Zone 64, 72, 73, 83].

The Dirac operator in this subspace has the following structure in the first approximation:

0I Ai TIA 0I
D (5.7)

�bA TAI AA 'OA

where AI, AA are the eigenvalues for a single zero mode and TIA = �bA IDJOI) is the overlap matrix

element. The overlap elements T and TAA vanish because of chirality. The overlap element TIA

can be calculated in either the sum (Eq. 48) or streamline 62] ansatz for the gauge field appearing

in D.

In the continuum, A, = AA = and TAI = -Tt so that the ZMZ Dirac matrix is simplified toIA

the matrix

DZMZ 0 TIA (5.8)
-Tt 0IA

with eigenvalues Al = ±iJT
,2 IAJ. As we see, the interaction between instantons produces a pair of

complex conjugate eigenvalues.

On the lattice with Wilson fermions, the situation is complicated by the absence of chiral sym-

metry and the Wilson term in the operator. We can count on AA being real but, for unequal

instanton sizes, they are no longer equal. The positions of the eigenvalues of the matrix (Eq. 57)

A- A, AA 2 (5.9)
.LZ - 2

depend on the relative strength of the Wilson term Eq. 56) and overlap matrix elements. Therefore,

we can not expect the formation of the clean ZMZ on the lattice. Rather, the ZMZ will consist of

the real eigenvalues and pairs of complex eigenvalues split by the overlap matrix.

The Figure 57 shows the evolution of the spectrum of an I-A pair during relaxation. In addition

to smoothing the configuration, relaxation also smoothly evolves the instanton parameters so that

the dynamics of the spectrum becomes obvious. When, during cooling, instantons become wider

and move closer together, the "zero" eigenvalues move towards each other, collide and split into a

complex pair. At this point the instantons can not be considered isolated objects, at least from the
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Figure 57: Evolution of the spectrum of an -A pair during relaxation.
The initial sizes of the instanton and anti-instanton were PI = 25, PA = 40 and the distance

between centers was JXA - XI I = 40. The initial orientations of the pair was chosen arbitrarily. All
32 lowest eigenvalues for the relaxation steps 50 - 250 are plotted simultaneously. The value of
hopping parameter = 0124 corresponds to mass m = 0032 and Ami = .008. Crosses denote

the positions of eigenvalues for free fermions with this r..

fermion point of view. Eventually all eigenvalues move toward the free spectrum (Eq. 28).

5.5 Eigenvectors in Dynamical Fields

The structure of the spectrum of the Wilson-Dirac operator in the dynamical gauge configuration,

although not known in general, can be studied using instanton models in the low-energy region

[64, 65, 73, 741. The spectrum has two distinct parts: discrete low-energy modes corresponding

to zero modes of the instantons present in the configuration and the continuum of other modes.

In the instanton liquid model the quark propagator in the subspace of instanton zero modes is

considered separately from the continuum and the effects of the continuum modes are absorbed

into renormalization of coupling constants. In this approximation the Wilson-Dirac operator is

completely described by a (finite) overlap matrix of zero modes similar to Equation (5.8). Further

discussion may be found in ref. 73].

On the lattice the spectrum is complicated by both finite-volume effects and finite-spacing

effects. In the continuum, the mixing between instantons is complete - even a small interaction

mixes the instanton zero modes. The spectrum is determined by the whole instanton ensemble so
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that no instanton can be considered isolated. On the lattice, the Wilson term prevents mixing unless

the interaction is strong enough and thus favours the isolated instantons.

Figure 5-8 shows the lowest 128 eigenmodes for a typical configuration and for the same config-

uration after 100 relaxation steps (see Sec. 42). Since the instantons do not change much under

cooling, the low-imaginary-part of the spectrum should be similar in those cases. Unfortunately,

there is no clear way to separate the instanton modes from low-momenta finite-volume waves. After

100 relaxation steps all but a few eigenvalues come close to the continuum spectrum.

5.6 Using The Lowest Eigenvectors to Accelerate the Con-

jugate Gradient Algorithm

Having determined the lowest part of the spectrum, it is useful to revisit the problem of accelerating

the Conjugate Gradient algorithm (see Chapter 3 This algorithm is used to solve the inversion

problem of the Dirac operator

DX (5-10)

The convergence of the algorithm is determined by the condition number Amin/Amaxl- Since the

lowest few eigenmodes were determined exactly (up to machine precision), Equation (5-10) can be

projected onto the subspace of zero modes and the complement to it.

Po DX = Poo (5-11)

( - Po)DX = (I - Po),o

with a projector Po defined as a partial sum in Eqs. 53) or 5.4). The first equation can be solved

algebraically or using CG in a subspace at negligible cost while the second requires CG for the

modified operator Do = (I - PO)D. The lowest mode of the Do operator has eigenvalue bigger than

Amin so we can expect faster convergence. Also, the dependence of the eigenvalue on the mass is

strongest for the lowest modes and, after taking them out, the convergence of the algorithm would

not significantly depend on mass.

The improvements to CG were studied with the same configuration for which the spectrum was

calculated and shown in Figure 5-8. Figure 59 shows the time history for the CG with different

numbers of eigenvectors subtracted, that is, included in the projector Po in Eq. 5.11. The figure

shows monotonic improvement in CG convergence with the few first eigenvectors giving the most

improvement. The spikes at the end of curves arise because once the residue drops below 10-14, it is

necessary to restart the CG to suppress numerical errors arising from the loss of orthogonality in CG.

The Figure 10 shows the time histories of CG for different r. and for several numbers of sub-

tracted eigenvectors. For this configuration the critical value of ., defined by the first real eigenvalue,
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is r.,\ = 016322 while the critical defined by a statistical average over an ensemble of configura-

tions produced with the same parameters was estimated in 9 to be r. = 01624 and the critical

r, defined by the pion mass on this single configuration r.,(7r = 01628(6). Note that the numbers

above were obtained by extrapolation in the valence quark mass with the sea quark mass fixed by

using n, = 01600 in HMC. As expected, the convergence of CG is getting worse when r, approaches

r., while the convergence of CG with subtracted eigenvectors does not depend much on r.

The improvements in CG convergence come at the cost of applying the projector at each CG step.

The real measure of improvement is the overall computer time needed to reach convergence. Figure

5-11 shows the CG convergence as a function of computer time for the same values of parameters

as in Fig. 5-10. Subtracting the first 17 eigenvectors gives almost a factor of two improvement in

computation cost. Beyond the optimal point, taking more eigenvectors into account does not give

more improvement as the cost of additional projections becomes bigger then the gain in the number

of iterations.

Restricting ourselves to the lowest 32 eigenvalues and taking the conservative value of 100 itera-

tions needed to find those vectors, the total computation cost to find eigenvalues is approximately

equal to 30000 CG iterations. This number can be reduced by making fewer re-orthogonalizations

(see Sec. B.2) and by stopping iterations after finding the few lowest modes of interest. The cost of

12000 CG iterations can recovered by reducing the number of iterations required to find one set of

12 propagators (for 3 colors and 4 Dirac indices) by 1000 iterations each. When three or more sets

of propagators are to be computed with different (low) masses, the improvements begin to justify

the extra cost. The same method should also improve other algorithms like Biconjugate Gradient

and Minimal Residue, although those algorithms were not studied in this work.

5.7 Zero-Mode Zone Approximation of Correlation

]Functions

The effects of instantons on quark propagation can be studied using hadron correlation functions

Ch (X, = Jh W A (0) (5.12)

In this work the meson correlation functions for the currents J = �'-Y'5'0 and J. were

studied. At small distances ( < 0.5fin) the interaction effects are small and correlation functions

approach the free massless correlation function - x-1. At large distance (r > 1.5fm) the correlation

function is dominated by the lightest particles in the given channel, 7r and p mesons, and falls

off like a free particle propagator - x-2e-11x-Y1. The behaviour of the correlation function at

intermediate distance 1fm depends on the details of interactions in the given channel 721. This
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region (0.5fm < r < 1fm) is the region where results of different models can be compared.

The same correlation functions can be computed in the instanton liquid models using the propaga-

tor in the subspace of instanton zero modes 60, 63). Since the propagator in the basis of eigenmodes

falls off like 1/A, the low-A modes are enhanced in the propagator. If the instanton zero modes are

separated by a gap from the rest of a spectrum, the low-A eigenmodes are completely described

by the mixing of instanton zero modes [81, 80, 43, 42] and all other modes are irrelevant at large

separations. Even the simple instanton models give a good approximation to the zero-mode zone

structure and correlation functions.

The computed low-A modes were used to approximate the quark propagator by truncating the

spectral representation in this subspace

N �bi (x)) (0i (y I -y5
D-'(x, Y) (,Oi I y. I bi) Ai (5.13)

(see Eq. 53 for precise definition of the conjugate vector index V) and the correlation functions were

calculated in this approximation. This section describes the technical details of the calculations,

followed by a discussion of results and comparison with other models.

5.7.1 Procedures

The correlation functions on the lattice have both lattice anisotropy corrections and image correc-

tions, which were treated as in reference 16].

The lattice anisotropy effects are the biggest in the region of small distances where the correlation

function is well approximated by the free correlation function. In this region the anisotropy effects

must also be similar to those in a free propagator. Hence, we define an anisotropy function as the

ratio of the free orrelation function on the lattice to the continuum expression for a free propagator

4
P5 (0) A W) - (5.14)Ir4X6

8
(JI (0) JA W) 4 6 (5.15)7r X

The image corrections in the region d < 16 are small on the 64' lattice which was used to define

the anisotropy function. The resulting correction function is plotted in Figure 512. At large

distance, the correction function approaches the constant value fcorr(OO) ;::: 2892 ± 001 which can

be interpreted as a renormalization constant 096 for the lattice Munction times N = 3.

To take into account the image corrections the interference terms between the image sources

are assumed to be small and the periodic correlation function is approximated by the sum of the

terms corresponding to infinite volume correlators from each of the images. The cross terms include

the sum over Wilson lines looping across the lattice and the average of such terms in dynamical
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configurations is small.

The following functional form was used to parameterize the correlation function,

AX = cX-6 + W-6) 1 (5.16)
1 + 3/2em(x-b)

and then we fit the sum of f (x) for all first images to the data with free parameters m, w, c, b. This

function has the correct form for the correlation function at both small and large distances and joins

them smoothly. As a consistency check it was verified that the crossover parameters w and b are

within the fitting range 1:16] and that the mass m is close to the correct value. Since the correlation

function changes by several orders of magnitude in the region of interest, it was useful to fit the

logarithm of it.

The correlation functions in the low-A subspace have a different general form. The following

fitting function was used to approximate the truncated correlation function:

2

f (x) = c(l + )e' (5.17)

At large distances this function still falls off exponentially and some small-distance polynomial

corrections are introduced to improve the quality of the fit. Since the eigenvectors were computed

on even sites only and the propagators on the odd sites were reconstructed after computing the

truncated correlation function, the correlation function is not smooth on even and odd sites. This

approach introduces a small error in the correlation function but allows significant savings in memory

and computer time. It is possible to correct for such lattice artefacts by multiplying the correlation

function on the odd sites by a number close to 1, another fit parameter. For actual comparison with

the full correlation function, the truncated correlation function must be divided by fcorr(00).

The following self-consistent fit procedure was used to check the fit bias and to identify cases in

which the parametric fit was not reliable. The lattice correlation function, in the same approximation

as before, is given by the sum of contribution of images

f W = E Axi) (5.18)

i6mages

This equation implicitly defines the image-corrected correlation function f (x). This equation was

solved iteratively and after each iteration the solution f (x) was smoothed by replacing f (x) with the

(log-)linear approximation to it in the region x ± w This procedure reduces the statistical errors but

introduces the bias of the order 1 log(f)'1(X)W2. Since the correlation function is expected to fall6

off exponentially, the second derivative is small. With w = 025 - 0.5 the bias is around 1%, much

less then the data spread and the correlator agrees with the parametric fit above within errors.

Figure 513 shows the correlation function in the p-meson channel as calculated on the lattice
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Configuration . ma mpa Mqa r., r"A
Full, uncooled 0.1600 0.3507(5) 0.458(2) 0.0545 0.1628(6) 0163216

0.1605 0.3161(3) 0.472(l) 0.0447
0.1610 0.2823(4) 0.431(4) 0.0351
0.1615 0.2405(5) 0.426(6) 0.0255
0.1620 0.1903(8) 0.445(9) 0.0159

Full, cooled 0.1250 0.5055(2) 0.5584(5) 0.157 0.1303(5) 0.13123
0.1260 0.4507(2) 0.5165(10) 0.126
0.1270 0.3925(3) 0.4754(19) 0.094
0.1280 0.3273(5) 0.4352(40) 0.0635
0.1285 0.2898(7) 0.4160(62) 0.0483
0.1290 0.2470(10) 0.4000(99) 0.0327

Quenched, uncooled 0.1600 0.326(4) 0.520(7) 0.0322 0.1617(l) 0.16191
0.1610 0.206(4) 0.455(13) 0.0128

Table 51: Meson masses for the configuration discussed in text.

and after applying the lattice anisotropy and image corrections. Figure 514 shows the fit to the

"truncated" correlation function, and Figure 15 compares the parametric fit with the self-consistent

solution.

5.7.2 Calculation of Correlation Functions.

In this work correlation functions were calculated for three configurations taken from the set used in

Chapter 4 one configuration from the full QCD simulation, the same configuration cooled 20 steps,

and a quenched configuration with approximately the same lattice spacing.

First, the meson masses must be determined to set the physical scale. The meson masses for the

chosen coupling constants were determined by R. Gupta it et. all 39]. According to this reference,

ma = 0366(10) and mpa = 0519(13). To determine the masses in this work, a Gaussian source

with the width 3.Oa was created on time slice on which the gauge field was fixed to Coulomb gauge,

and the zero-momentum projected correlation functions were fitted to the sum of the propagator

and the first image corrections in the region 527]. To increase the fitting region the lattice was

periodically doubled in the time direction from 16 4 to a 16 x 32 lattice.

Knowing the pion mass, the critical hopping parameter ., and the quark masses in the given

configuration are determined by a chiral fit. The spectrum in the low-A region also defines the

parameter .),, the value of . where the lowest eigenvalue goes to zero. This value must be very close

to r,, but, in general, the relation between the one single lowest eigenvalue and the meson masses is

not clear. The results of the fit are summarized in Table 5.1 and Figures 516 and 5-17. With the

caveat that we have only used a single configuration and the p mass is not linear in r,- we note that

the lattice p-meson mass is roughly m a 044, corresponding to a lattice spacing a-1 ;z�� 1.8GeVP P

or a z- .11fm. The data in this work are not sufficient for a reliable chiral extrapolation of the

p-meson mass ad we note that the high-statistics extrapolation in 91 gives the value a-' ;zL- 2.1GeVP

or a :� 0.094fin.
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Full correlation functions

Corr. function cool K M w b X2

Pseudoscalar 0 0.1600 3.67577e-01 4.54506e+00 1.07018e+01 1.52363e-02
Vector 0 0.1600 5.11289e-01 7.37001e+00 1-35129e+01 6.12932e-03
Pseudoscalar 0 0.1610 3.04782e-01 4.57485e+00 1-24113e+01 1.73823e-02
Vector 0 0.1610 4.66675e-01 7.70165e+00 1.46338e+01 7.10922e-03
Pseudoscalar 20 0.1250 5.30744e-01 5.10255e+00 9.55370e+00 4.05560e-03
Vector 20 0.1250 5.99058e-01 7.72994e+00 1.26921e+01 1.08234e-03
Pseudoscalar 20 0.1285 3.14593e-01 4.87173e+00 1.25600e+01 9.31350e-03
Vector 20 0.1285 5.07063e-01 7.23912e+00 1.35451e+01 9.28434e-04
Pseudoscalar 20 0.1290 2.78628e-01 4.89639e+00 1.39631e+01 1.0181le-02
Vector 20 0.1290 5.29472e-01 7.94685e+00 1.45761e+01 1.16805e-03

Corr. function cool K NT-v M w X 2

Truncated correlation functions

Pseudoscalar
Pseudoscalar
Vector
Vector
Pseudoscalar
Pseudoscalar
Vector
Vector
Pseudoscalar
Pseudoscalar
Vector
Vector
Pseudoscalar
Pseudoscalar
Vector
Vector
Pseudoscalar
Pseudoscalar
Vector
Vector
Pseudoscalar
Pseudoscalar
Vector
Vector
Pseudoscalar
Pseudoscalar
Vector
Vector

0
0
0
0
0
0
0
0
0
0
0
0
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

0.1600
0.1600
0.1600
0.1600
0.1610
0.1610
0.1610
0.1610
0.1628
0.1628
0.1628
0.1628
0.1250
0.1250
0.1250
0.1250
0.1285
0.1285
0.1285
0.1285
0.1290
0.1290
0.1290
0.1290
0.1300
0.1300
0.1300
0.1300

128
96
128
96
128
96
128
96
128
96
128
96
128
96
128
96
128
96
128
96
128
96
128
96
128
96
128
96

4.43973e-01
4.20370e-01
6.94474e-01
6.97106e-01
4.60775e-01
4.31284e-01
6.63508e-01
6.61804e-01
3.11332e-01
3.62355e-01
6.02298e-01
6.2480le-01
4.82490e-01
5.21136e-01
7.98668e-01
7.65802e-01
5.45822e-01
5.35643e-01
6.9706le-01
6.94689e-01
5.20004e-01
5.15167e-01
6.9467le-01
6.98770e-01
4.32990e-01
4.3683le-01
7.87116e-01
8.48759e-01

1.28681e+01
1.19193e+01
3.69797e+00
3.25622e+00
9.27689e+00
9.84512e+00
4.34613e+00
4.02443e+00
1-23271e+01
7.29528e+00
1.68133e+01
1-57323e+01
1.82229e+01
8.92229e+00
1.77025e+00
2.33539e+00
5.54051e+00
5.49999e+00
2.85787e+00
3.09413e+00
5.85261e+00
5.72019e+00
2.89436e+00
3.04270e+00
7.53830e+00
7.24053e+00
1.65385e+00
1.17100e+00

3.03466e-04
4.56920e-04
1.23832e-03
5.20885e-03
2.80168e-04
3.73627e-04
1.42544e-03
2.05692e-03
6.17862e-04
6.30676e-04
1.05276e+00
1. 14086e+00

5.40265e-04
7.38465e-04
6.15644e-03
9.50609e-64
4.65273e-04
5.15762e-04
9.4493le-04
1.21252e-03
4.45830e-04
4.65942e-04
8.96840e-04
1.60514e-03
5.3236le-04
4.17893e-04
8.80682e-03
2.14198e-02

Table 52: Fit parameters for the correlation functions discussed in text. Parameters are defined in
Eqs. 5.16) and 5.17), N, denotes the number of eigenvectors used in propagator.
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In Figures 18 519 and 520 the full and truncated pseudo-scalar and vector correlation func-

tions are presented for different configurations. The values of were chosen so that the pion masses

are comparable in all cases. The full pseudo-scalar correlation function grows with distance, which is

an indication of the strong attraction in pion channel. The full vector correlation function is almost

constant up to the distance r ;z 1fm and falls off exponentially on larger distances. Unfortunately,

the region r > 1fm is almost at the edge of the lattice and the results are not very reliable there.

All data presented in these figures are obtained by the self-consistent solution described above.

The other curves on Figures 18 519 and 520 correspond to the truncated correlation function

computed with the different number of eigenvectors. In all cases, 16 eigenvectors are clearly not

sufficient to describe the behaviour of correlation function even at intermediate distances. As the

number of eigenvectors in the propagator increases, the truncated correlation function approaches the

full correlation function at intermediate distances - 1fm ;z 9a but the data beyond this point become

very noisy. The maximum number of eigenvectors used, 128, gives a reasonable approximation to

the p meson channel. In the pion channel the truncated correlation functions are higher then the

full correlation function. Since the truncation of the propagator effectively introduces a new mass

scale, the range of eigenvalues used for truncation, the truncated correlation function effectively

corresponds to a full correlation function with a lighter mass. This effect is not important in vector

channel but can be significant in the pseudo-scalar channel (see Section 57.3 for more discussion).

Figures 521 522 and 523 show the dependence of the correlation functions on r.. This depen-

dence is strong in the pion channel and weak in the p channel. Since r. is only a parameter in the

truncated correlation function (see Eq. 513), those correlation functions can be computed with the

value of = , (mq = 0) without any critical slowing down. The truncated correlation function for

r = K, is plotted on the same graphs but the numerical errors grow even more with r. + r', and the

results are not reliable.

More definite statements on the behaviour of the truncated correlation functions require accu-

mulation of additional statistics and more sophisticated treatment of image corrections or bigger

lattices. On the other hand, even with the present data a reasonable qualitative approximation

to the large distance behaviour of the correlation functions was obtained in the channels consid-

ered above. At most 128 eigenvectors were computed when the total number of eigenmodes was

4NV = 786432, but the full and truncated correlation functions agree within 30%. This approxima-

tion shows that a significant amount of physical information is contained in the first few eigenmodes

of the Dirac operator. The nature of those modes becomes clear after cooling, when the quantum

noise is suppressed and only instantons survive. This result agrees with the previous calculations of

correlation functions in uncooled and cooled lattices [17]_
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5.7.3 Comparison with Other Data

Since the correlation functions were studied in detail in the instanton liquid model 73, 60, 631

and were determined by phenomenological analysis of experimental data, the full and truncated

correlation functions calculated above can be compared with those data.

In Figure 524 the results of this work are compared with the instanton liquid model results and

phenomenological fits to experimental data from 73] for the channels considered in this work. The

other two curves were taken from [171. In that paper the correlation functions were calculated using

the quenched approximation with = 57 on a 16 * 32 lattice. This choice of parameters leads to

the lattice spacing (as determined by the nucleon mass) aN = 0165fm.

Because of the strong dependence of correlation function on the quark mass in the pseudo-scalar

channel, the correlation function with approximately the same quark mass (m. ;::� 25MeV) from ref.

(17] was used for comparison. The dependence of the truncated correlation function on the quark

mass is weaker because the truncation effectively sets the mass scale in the correlation function. The

truncated correlation function agrees with both phenomenological data and the correlation function

extrapolated to light quark masses.

In the vector channel the dependence on the quark mass is weak and the full correlation function

is close to the extrapolated one even for large quark masses. The truncated correlation function

only partially reproduces the full correlation function even at large distances lfm) which may

indicate that 128 eigenvectors is not enough for this configuration. The agreement of the truncated

correlation function, the full correlation function and the phenomenological data is better for full

QCD configurations. One reason for this behaviour may be the suppression of instantons by dynam-

ical quarks. Although there are comparable numbers of instantons in Figure 49 for quenched and

unquenched configurations, the eigenvalues are concentrated closer to the real axis in the quenched

case. Hence the zero-mode zone consists of fewer modes (less then 128) for the unquenched case.

On the graphs for both channels the curve labeled "resonance" comes from the fit to the spectral

representation of the correlation function 17]. The spectrum was fitted with the contribution from

the single isolated resonance (corresponding to the lowest-mass particle in the given channel) and

the suitably parameterized continuum contribution. Then the parameters of the resonance were ap-

proximated to continuum limit. The contribution of this single resonance dominates the correlation

function in the same region where the truncated correlation function approaches the full correla-

tion function. This coincidence suggests that the lowest-mass mesons (7r and p) are described by

instanton dynamics and are excitations of the chiral condensate. The heavier particles must involve

additional degrees of freedom which are outside the zero-mode zone. (I am grateful to Edward

Shuryak for clarification of this point)-
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Chapter 6

Summary and Outlook

This work has studied the effects of long-range excitations in QCD. The instanton distribution in

QCD was determined with and without internal fermions (Chap. 4 and no statistically significant

difference between the two distributions was found. It is possible that this similarity resulted from

the large sea quark mass we had to use (mq ;t� 10OMeV) and future study of larger lattices which

allow lighter quarks is needed. The instanton distribution changes significantly under relaxation

process which complicates the exact determination of the instanton distribution. The finite-volume

effects dominate the dynamics of well-separated instantons under relaxation but are not significant

for the small amount of relaxation needed to study the dense instanton liquid.

The r6le of the low-eigenvalue modes in the Hybrid Monte-Carlo dynamics Chap 3 has been

studied and the efficiency of this method was increased significantly by using few recent vectors to

approximate the solution of the inverse of Dirac operator. The algorithm to find the low-eigenvalue

modes of the Dirac operator was developed and tested on different configurations. This algorithm

was used to study the spectrum of the Dirac-Wilson operator on the lattice (Chap. 5). Restricting

the Dirac operator to the complement of few lowest modes was shown to completely eliminate critical

slowing down in the Conjugate Gradient method (Sec. 56). Since the eigenvectors do not depend

on the quark mass (or hopping parameter .), the eigenvectors computed with one value of . can be

used to speed up the CG convergence for many sources and K.

The calculated low-A eigenmodes of the Dirac operator were used to approximate the quark

propagator by truncating the spectral representation. The point-to-point correlation function ob-

tained using the truncated propagator were compared with correlation functions calculated by the

traditional CG method. The full and truncated correlation functions agree qualitatively at large

distances although the number of eigenvectors used is many orders of magnitude smaller than the

total number of modes in the spectrum. This result shows that the essential part of QCD dynam-

ics on intermediate distance r ;z- 1fm is described by the low-eigenvalue part of the spectrum. The
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comparison of the correlation functions in uncooled and cooled configuration shows that quark prop-

agation can be described by instanton zero modes. The truncated correlation functions approximate

the contribution to the correlation function from the peak in the spectrum corresponding to the

lowest-mass particle in the particular channel. Taken together those results strongly suggest that

the lowest mass particles in different meson channels can be described by the dynamics of instantons

in the QCD vacuum.

Several questions that were not addressed in this work merit further study. The instanton

distribution could be better determined by using the streamline solutions to fit the action and

topological charge densities on the lattice. The exact form of this solution depends on the relative

orientations of instantons which were left undetermined in the approximation used in Chapter 4.

Alternatively, better variables could be found to replace the action and topological charge densities

for the purpose of fitting the instanton background. Knowing the instanton orientations would

permit a better study of eigenvalue splitting (see Chapter 5) although the benefits of such a study

are not clear. The developed algorithm to determine the low-,\ part of the spectrum opens interesting

opportunities for studying the lattice QCD configurations by fermionic methods. Since the chiral

instanton zero modes correspond to instantons carrying topological charge, the topological charge

of the lattice can be determined by counting the zero modes. Such a definition could be compared

with other methods of defining the topological charge of the lattice. Other physical quantities like

the chiral condensate, baryonic correlation functions and particle structure functions can also be

studied using the truncation of the spectrum.
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(A.1)

This work uses the chiral representation of gamma matrices. Any other representation can be

obtained from those by the appropriate rotation in the spin space. All gamma matrices 'Yj ... 5 are

Hermitian and, of course, anti-commute with each other.
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Appendix A

Conventions and Useful Formula

In this Appendix relevant definitions and formula are collected for completeness.

Sigma matrices are very standard:

0 1 0 -i 1 0 0a = Or = U = 0'4 =
1 0 i 0 0 1 0 i

0
71 =

011

72 = 0
a2

73 = 0
0'3



---

0 0 i 0

0 (A-5)

-i 0 -i 0 0 0

0 -i 0 0

i O O O

1 0 0 1 0 0
75 (A-6)

0 -1 0 0 -1 0

0 0 0 -1

The t'Hooft symbols 79] enter the definition of the instanton field and mix spinor and space

indices. In fact, they are the coefficients of the decomposition 04) SU(2) x SU(2).

faiAv 4

77 av pi, 4,v 4 (A.7)
IU

-6av ti 4,v 4

Eaiiv P'V 4

-6at,
JA IL 4,v 4 (A.8)

6a, IL 4,v 4

Those symbols have the following properties 73, 79]

,7a"', b = 4bab (A.9)
A 71A V

71JUv 77JAP 36,P (A.10)

,qav4bv = 0 (A.11)
A A

7,avqb , = babb,,O + abc 
,U JA 77vol (A.12)

,a,,,, = 6tP6. _ 1""6VP ,Ej'vP' (A.13)
11 PO,

4a.g = 6
JA PO' JAP6" 614AP EAVPa (A. 14)

,Pc, ",la, a qa,'Eabdlp" 6 LI VP 77 "P 6,P (A.15)

'E'\,u v aqa, 6P,\77av + bPv?7ajA + 6U?7. (A. 16)
A VA
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P(x = x + y + z + t) mod 2, (B.1)

all sites with P(x = are called "even" and all sites with P(x = are called "odd". The Dirac-

Wilson operator (Eq. 26) has two pieces, the diagonal piece which was normalized to and the

off-diagonal piece which connects even and odd sites. In matrix notation it can be represented as

(B.2)

The determinant of D in a QCD partition function Eq. 210) can be simplified to the determinant

of even-to-even operator

2K,r. ",K"", (B-3)

We shall see that the same operator enters into all computations in the theory.
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Appendix 

A4atrix Algorithms

This Appendix describes in detail the algorithms used throughout this thesis. Since conjugate

gradient (CG), biconjugate gradient (bicg), minimal residue (MR) and Lanczos algorithms were

extensively used in lattice calculations 33, 34, 55, 58), they are not described here.

B.1 Even-Odd Pre-conditioning of the Dirac-Wilson

Operator

First, divide all lattice sites into two sets by the "parity"

1
D =

_r.K.,,

-r.K,,

1 V)O



The inversion problem DX = P written in the matrix notation is

Xe - KKeoXo = 'Oe (B.4)

-r-KoeXe + X0 = ?Po

The second equation can be solved for 0 giving

X = V) + KKoeXe (B-5)

which leads to the inversion problem of M with modified source:

r2, KeoKoe) Xe = V)e + reoV)o (B.6)

The eigenvalue problem for D can be tackled in the same way:

D'O = A DO (B-7)

V,, - r.Ke.,O = ADV)e (B-8)

-rKoeV)e + O = ADO.

I
100 = rKoeV)e (B.9)

-AD

.2
'Oe T- AD K,,oK.e'O, = ADOe (B.10)

( _ 2M'Oe KeoK.,e)'O = AM'Oe (B.11)

(B.12)

We also get the important equation relating eigenvalues of M and D

- Am = 1 AD )2 (B.13)

Note that each eigenvalue of M corresponds to 2 distinct eigenvalues of D. If one of those eigenvalues

is close to zero, the other is close to 2 and is not interesting in the physical region. When the

spectrum Ai(r.) is known for one value of r., the spectrum for all other values can be obtained by

simple resealing
K I r, KI

Ai -Ai r.) + (B.14)
. .
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the lowest eigenvectors of the Dirac operator

Since the Wilson-Dirac operator is not Hermitian, the simple Lanczos methods (58, 201. can not be

applied to it. One option is to use the combined Hermitian operators M = 5M or, equivalently,

MtM = M5. The operator M5 is simpler but not positive-definite and extra care should be taken

in the algorithms using it. In this standard way up to all eigenvalues can be found 49].

Unfortunately, since the operators -y,5 and M do not commute, the spectrum of M'5 has no direct

relation to the spectrum of D and only in the simultaneous limits a -- 0 and m * the two

spectra coincide. Even worse, the spectrum of M5 has non-trivial dependence on and knowing the

spectrum at one value of r. does not help in determining the spectrum at other values of r'.

As discussed in Chapter 5, the few lowest eigenmodes of the Wilson-Dirac operator have par-

ticularly significant impact on physics, so it is essential to be able to calculate them. The lowest

eigenvalues of A15 were studied by the modified conjugate-gradient method 47, 48, 5].

The k-step Arnoldi method developed by D. Sorensen 76) was applied to find the lowest eigen-

values of the true Wilson-Dirac operator. Since it was not discussed previously in the lattice physics

literature, the detailed description of it is given below. One of the important advantages of this

algorithm is almost complete insensitivity to n: once the eigenvalues for one value of r. are known,

the spectrum for any other can be determined. Using this feature one does not need to know the

critical while computing eigenvalues (see Eq. B.14).

First, starting from the arbitrary initial vector v, build the basis up to vk by applying the operator

M and orthogonalizing the result to all previous vectors. If M were Hermitian, this iteration would

lead to a tri-diagonal matrix as in Lanczos algorithm. In the general case, the matrix of coefficients

is upper-Hessian [58]. In vector components the process is defined by

Mv = v hi, V2 h2l

MV2 = vlhl2+V2h22+V3h32

MVk vihik + + Vkhkk + rk

where rk is a residual vector. In the algorithmic form the process is defined by the sequence of steps

hk+lk Irk I (B. 5)

Vk+1 rkllrkl (B. 16)

hik+l (ViIMIVk+1) (B. 17)
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rk+1 4-- MVk+1 - E vihik+l (B.18)

Denoting the matrix of vectors V(k = Vj Vk), the residual vector R (k) = (0, rk) the relations

above can be written in a matrix form

MV=VH+R (B.19)

If this algorithm is continued to k = dim(M) the residue would be zero and eigenvalues of M

are eigenvalues of H. To finish the calculations this way all vectors Vk must be stored. The full

spectrum of Dirac-Wilson operator has been found by a similar procedure 611. In the k-step Arnoldi

algorithm the residue r is driven to zero by successive iterations and vectors vi go toward the span

of the few eigenvectors.

The matrix H can be decomposed into a product of a unitary ad right-triangular matrix U for

any number /t: H - l = QU [58]. The matrix H' = UQ + 1A = QtHQ is also upper-Hessian

with the same eigenvalues. There are many ways to achieve such a decomposition but Q must be

upper-Hessian too. One way to decompose H is to apply SU(2) rotations in the subspace i, i 1}

starting from i = and continuing to i = dim(H).

Q = Q1 ... Qk (B.20)

Each matrix Qj has a form

U V
Qj in a subspace i, i 1 (B.21)

_Vt Ut

with

u = hii/r (B.22)

v = -hi 1i/r (B.23)

r ,jF + hi+,,iF (B.24)

After QR decomposition the system (Eq. B.19) can be transformed

MV = VH+R (B.25)

MVQ = V(QU+A)Q+RQ=VH'+R' (B.26)
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By construction, Q has only two non-zero elements in the last row so that

I k-1, r (B.27)

k_1 = rkQkk-1 (B.28)

kr' = rkQkk (B.29)
VI = (B.30)E VjQji

j=li+l

Note that rotated vectors v satisfy the same system of relations (Eq. B.19) but the residue was

multiplied by a coefficient less than one. After rejecting the last vector Vk we are ready to grow the

matrix or do Q decomposition again. The order of decomposition was crucial in maintaining the

form of the system (Eq. B.19).

Now we have all the parts to the algorithm:

1. Fill the matrix H to level N > k, the value N > k simplifies algorithm.

2. Select N - k shifts jLi (see below)

3. Do QR decompositions for each i and rotate the vectors. After rotation the subset V(k) and

R (k) are ready for the new iteration.

4. If Irk I < all k vectors are lie in the subspace of k eigenvectors with precision E, so the iteration

is terminated.

Selection of the shifts is the crucial and the least defined part of the algorithm. On each

iteration of the algorithm above the residual vector rk is transformed by a polynomial of the operator

with roots at pi

kr/ - Np H(M - Ork (B.31)

with some normalization factor Np. With a proper choice of shifts one can select the point in

eigenvalue space and find k eigenvectors closest to that region (see 76] for more discussion). The

simplest choice of shifts comes from the eigenvalues of H itself. The highest N - k eigenvalues of H

were chosen as the shifts and the lowest k eigenvalues of H were converging to the lowest eigenvalues

of D.

Ideally, the vectors vi stay orthogonal to each other during successive iterations and the system

(Eq. B.19) is always exact. In the real world numerical errors accumulate in algorithm time,

especially when using single precision numbers, and extra care should be taken to keep the error

under control. The simplest solution is to orthogonalize the vectors vi at some point in the algorithm.

Three levels of orthogonalization were used:

3. Vectors vi are orthogonalized by the Gramm-Schmidt procedure after rotations.
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(N)2. The residue rN is orthogonalized to vi after building the matrix H

1. The vectors vi are re-orthogonalized to all previous vectors as they are computed (Algorithm

B. 8).

When the operator has almost degenerate eigenvalues higher level of orthogonalization is necessary.

The computational cost of one step of the algorithm consists of k applications of the Dirac

operator, - k 2 vector products and sums, some synchronization time - k and the time to compute

QR decompositions( - k4 but small in our case). A convenient benchmark for the algorithm is

one-half cost of the one CG iteration (one application of Dirac operator plus some vector algebra)

although different operations can be optimized differently. The results are presented in Figure B-1.

The fit curve for region k E 448 is

f (k) = 0.26k2+ 16k + 0.7 (B-32)

The total cost of the algorithm behaves differently because

a bigger vector space. There is no significant difference in

eigenvectors k > 32.

the convergence is much better with

convergence time for the number of
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