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ABSTRACT 1. INTRODUCTION

This paper reports the outcome of an exhaustive analyt- Due to space limitations we cannot possibly provide in
ical and numerical investigation of stability and ro- this paper analytical and simulation evidence of all
bustness properties of a wide class of adaptive control conclusions outlined in the abstract. Rather, we
algorithms in the presence of unmodeled dynamics and summarize the basic approach only for a single class
output disturbances. The class of adaptive algorithms of continuous-time algorithms that include those of
considered are those commonly referred to as model- Monopoli [4], Narendra and Valavani [1], and Feuer and
reference adaptive control algorithms, self-tuning Morse [2]. However, the same analysis techniques have
controllers, and dead-beat adaptive controllers; they been used to analyze more complex classes of (1) con-
have been developed for both continuous-time systems tinuous-time adaptive control algorithms due to
and discrete-time systems. The existing adaptive con- Narendra, Lin, and Valavani [3], both algorithms sug-
trol algorithms have been proven to be globally assymp- gested by Morse [4], and the algorithms suggested by
totically stable under certain assumptions, the key ones Egardt [7] which include those of Landau and Silveira
being (a) that the number of poles and zeroes of the [6], and Kreisselmeier [19]; and (2) discrete-time
unknown plant are known,and (b) that the primary per- 1-Adaptive control algorithms due to Narendra and Lin [22],
formance criterion is related to good command following. Goodwin, Ramadge, and Caines [23] (the so-called dead-
These theoretical assumptions are too restrictive from beat controllers), and those developed in Egardt [17],
an engineering point of view. Real plants always con- which include the self-tunning-regulator of Astrom and
tain unmodeled high-frequency dynamics and small delays, Wittenmark [18] and that due to Landau [20]. The
and hence no upper bound on the number of the plant thesis by Rohrs [15] contains the full analysis and
poles and zeroes exists. Also real plants are always simulation results for the above classes of existing
subject to unmeasurable output additive disturbances, adaptive algorithms.
although these may be quite small. Hence, it is impor-
tant to critically examine the stability robustness The end of the 1970's marked significant progress in
properties of the existing adaptive algorithms when the theory of adaptive control, both in terms of ob-
some of the theoretical assumptions are removed; in taining global asymptotic stability proofs [1-7] as
particular, their stability and performance properties well as in unifying diverse adaptive algorithms the
in the presence of unmodeled dynamics and output dis- derivation of which was based on different philosophical
turbances. viewpoints [8,9].

A unified analytical approach has been developed and Unfortunately, the stability proofs of all these algo-
documented in the recently completed Ph.D. thesis by rithms have in common a very restrictive assumption.
Rohrs [15] that can be used to examine the class of For continuous-time implementation'this assumption is

existing adaptive algorithms. It was discovered that that the number of the poles and zeroes of the plant,
all existing algorithms contain an infinite-gain opera- and hence its relative degree, i.e., its number of poles
tor in the dynamic system that defines command ref- minus its number of zeroes, is known. The counterpart
erence errors and parameter errors; it is argued that of this assumption for discrete-time systems is that
such an infinite gain operator appears to be generic to the pure delay in the plant is exactly an integer number
all adaptive algorithms, whether they exhibit explicit of sampling periods and that this integer is known.
or implicit parameter identification. The piactica2
oneqnlcng copna quenct idn thei exinteio ce. Te the en- This restrictive assumption, in turn, is equivalent to
engite-gainj optoqotu ece doiathteuw. Analytical and enabling the designer to realize for an adaptive
simulation results demonstrate that sinusoidal reference algorithm, a positive real error transfer function, on
inputs at specific frequencies and/or sinusoidal output which all stability proofs have heavily hinged to-date

disturbances at any frequency (including d.c.) cause the [8]. Positive realness implies that the phase of the
loop gain of the adaptive control system to increase
without bound, thereby exciting the (unmodeled) plant it is a well known fact that models of physical systems

dynamics, and yielding an unstable control system. become very inaccurate in describing actual plant high-
frequency phase characteristics. Moreover, for prac-Hence, it is concluded that none of the adaptive algo-

rithms considered can be used with confidence in a tical reasons, most controller designs need to be basedrithms considered can be used with confidence in a
ptLacticat control system design, because tintabiitiy on models which do not contain all of the plant dynamics,
*wit e6et in wLth a ,hgh p,,obabiity. in order to keep the complexity of the required adaptive

compensator within bounds.
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observers and identifiers in the presence of unmodeled the plant is unity or at most two. The algorithms
dynamics,while such analytical results were harder to published by Narendra and Valavani [1] and Feuer and
obtain for reduced order adaptive controllers. The Morse [2] reduce to the same algorithm for the perti-
first such result, obtained by Rohrs et al [11], nent case. This algorithm will henceforth be referred
consists of "linearization" of the error equations, to as CAl (continuous-time algorithm No.1)
under the assumption that the overall system is in its
final approach to convergence. Ioannou and Kokotovic The following equations summarize the dynamical equa-
[12] later obtained local stability results in the tions that describe it; see also Figure 1. The equa-
presence of unmodeled dynamics, and showed that the tions presented here pertain to the case where a unity
speed ratio of slow versus fast (unmodeled) dynamics relative degree has been normally assumed. In the equa-
directly affected the stability region. Earlier simu- tions below r(t) is the (command) reference input, and
lation studies by Rohrs et al [13] had already shown d(t)=O.
increased sensitivity of adaptive algorithms to dis- g B(s)
turbances and unmodeled dynamics, generation of high Plant: y(t) = -(-- [u(t)] (1)
frequency control inputs and ultimately instability.
Simple root-locus type plots for the linearized system
in [11] showed how the presence of unmodeled dynamics Auxiliary i=ll (2)
could bring about instability of the overall system. It Variables: ui Ps) 
was also shown there that the generated frequencies in
the adaptive loop depended nonlinearly on the magnitudes il
of the reference input and output. wyi (t) = [y(t)]; i=2.....n (3)

Wyi (t) = P(s)
The main contribution of this paper is in showing that
two operators inherently included in all algorithms r(t) k (t)
considered -- as part of the adaptation mechanism -- t r
haveinfinite gain. As a result, two possible mech- w(t) = w (t) ; k (t) k (t) (3a)

anisms of instability are isolated and discussed. It is w - -
argued, that the destabilizing effects in the presence (t)
of unmodeled dynamics can be attributed to either phase
-- in the case of high frequency inputs -- or primarily g B (s)
gain considerations -- in the case of unmeasurable out- Model: y(t) MM [r(t)] (4)
put disturbances of any frequency, including d.c., which Y M ( t)S
result in nonzero steady-state errors. The latter fact
is most disconcerting for the performance of adaptive Control T
algorithms since it cannot be dealt with, given that a Input: u(t) = k (t) w(t) (5)
persistent disturbance of any frequency can have a des-
tabilizing effect. Output

Error: e(t) = y(t) - y (t) (6)
Our conclusions that the adaptive algorithms considered
cannot be used for practical adaptive control, because Parameter
the physical system will eventually become unstable, Adjustment
are based upon two facts of life that cannot be ignored Law: k(t) = I(t) =r w(t) e(t) (7)
in any physical control design: (1) there are always
unmodeled dynamics at sufficiently high frequencies Nominal
(and it is futile to try to model unmodeled dynamics) Controlled
and (2) the plant cannot be isolated from unknown dis- Plant: g*B* - kr gB P
turbances (e.g., 60 Hz hum) even though these may be A* AP - AK* - g BK*
small. Neither of these two practical issues have been u p y
included in the theoretical assumptions common to all
adaptive algorithms considered, and this is why these Error g*B* M
algorithms cannot be used with confidence. To avoid quaionAM
exciting unmodeled dynamics, stringent requirements w(t)
must be placed upon the bandwidth and phase margin of g*B* (9)
the control loop; no such considerations have been A* k* /
discussed in the literature. It is not at all obvious,
nor easy, how to modify or extend the available algo- In the above equations the following definitions apply:
rithms to control their bandwidth, much less their
phase margin properties.

k(t) k* + Z(t) (10)
In Section 2 of this paper proofs for the infinite gain
of the operators generic to the adaptation mechanism where k* is a constant 2n vector
are given. Section 3 contains the development of two A n-2 n-3
possible mechanisms for instability that arise as a K*(s) = k* s + k*n + +k*
result of the infinite gain operators. Simulation
results that show the validity of the heuristic argu- -th component of k
ments in Section 3 are presented in Section 4. Section ui u
5 contains the conclusions. n-l n-2

K*(s)= k* s +k* s + ...+k*.
2. THE ERROR MODEL STRUCTURE FOR A REPRESENTATIVE Y yn y(n-l) y

ADAPTIVE ALGORITHM where k*. is the i-th component of k* and the vector
ym Y

The simplest prototype for a model reference adaptive k* componenwise corresponds exactly to the vector k(t)
control algorithm in continuous-time has its origins to in eqn. (3a). In the preceding equation we have tried
at least as far back as 1974, in the paper by Monopoli to preserve the conventional literature notation [3,4,
[14]. This algorithm has been proven asymptotically 5,9], with P representing the characteristic polynomial
stable only for the case when the relative degree of for the state variable filters and k(t) the parameter
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misalignment vector. The quantity g*B* represents the for any positive constants b,c,w , the operator of
A* eqn. (12) has infinite gain.

closed-loop plant transfer function that would result

if k were identically zero, i.e., if a constant control Proof: The proof consists of constructing a signal
law k=k* were used. Under the conventional assumption
that the plant relative degree is exactly known and, if -e (t) s t T
BM divides P, then k* can be chosen [1], such that e L

(M) im T (16)
g*B* _ gMM X(11) T (6l
A* (n)

AM is unbounded.

If the Relative Degree Assumption is violated, gB*
g B A* Let e(t) = a sinw t, with a an arbitrary positive
MM 0

can only get as close to M as the feedback struc- constant and w the same constant as in eqn. (15).

ture of the controller allows. The first term on the These signals produce:
right-hand side of eqn. (9) results from such a consid-
eration. Note that if eqn. (11) were satisfied, eqn. w(t)e(t) = ab sinw t + - ac - - ac cos2w t (17)
(9) reduces to the familiar error equation form that 0 2 a o
has appeared in the literature [8] for exact modeling. t
For more details the reader is referred to the litera- k(t) = k + f w(T)e(T)dT
ture cited in this section as well as to [15]. o

+ act + -a cose t sin2w t (18)
Figure 2 represents in block diagram form the combina- =o 2 + W o 4w o
tion of parameter adjustment law and error equations
described by (7) and (9). t

3. THE INFINITE GAIN OPERATORS u(t) = G (t)[e(t)] = u + w(t) f w(T)e(-)dT =
w o

3.1 Quantitative Proof of Infinite Gain for Operators 1 ab2 ( 2 ab2
of CAl = u + -abet + ac t+ sinw t +

02 w 2 

The error system in Fig. 2 consists of a forward linear
_ ( 2

time-invariant operator representing the nominal control- -ac ab 3abc ac
led plant complete with unmodeled dynamics, g*B* , 8 4W o 8W - o

k*A* 0 o 0 0

(19)
and a time-varying feedback operator. It is this feed-
back operator which is of immediate interest. The
operator, reproduced in Fig. 3 for the case where w is Next, using standard norm inequalities, we obtain
a scalar and r=l, is parameterized by the function w(t) from eqn. (19)

and can be represented mathematically as:

t ||u(t)l >L ' I 12 abct+ 2 ac sin t - |
u(t) = G (t)[e(t)]= uO + w(t) /w(T)e(T)dT (12) 2 2

Watll2 T aI 2 tT °t2
W 1L Z-i t

In order to make the notion of the gain of the operator o 2 o 2 0 0 
G (t)[-] precise, we introduce the following operator
theoretic concepts. 3abc T ac

- 3a 4 sin2wotL - cos3w tT (20)
o
1 1

8W o
Definition 1: A function f(t) from [0,c) to R is said

to be in L if the the truncated norm 1 1 2 T ,K\1/2~~~~~2e T 1/2 ~~>11 2 abct+ ac t sinot -(KTt (21)
T 1/2 2 2 snt 2

t T (f f2(T)dT (13) with

2 0 2 2
2 2 ac +a

is finite for all finite T. K u + ( 2 c) + +

K = + +o o 0 0

Definition 2: The gain of an operator G[f(t)], which 2

maps functions in L2e into functions in L2e is defined + abc+ a (22)
as 4 °o

IIG[f(t) 1 IT Now

L2 1 2 2~~~~~(T 2c IG sup T I~~(14) 1=p1 abct+ Ac
2

t sinWoti L2

f(t)EL t I f(t) T (14) L

Theorem 1: If w(t) is given by

w(t) isb+c sin t (15)
0



-4-

22 2 ''] T 3 2 infinite gains can arise from any component of the vec-
222 2] 2 [ ) (W t) tor w(t).abc 3o _ - 1 _ 

o 4J2+W 8W0o Remark 2: The corresponding operators G and H de-
0 w w

t cos2w t fined for various other adaptive algorithms such as
sin2w t - 4 J4+ the Narendra, Lin, Valavani [3] and Morse [4] of the

O model reference type, as well as the algorithms devel-
2 3 oped by Egardt [91, which include the self-tuning re-

+ [2aw t sinw t-{w (t) -2} cosw t]T (24) gulators, can also be proven to be infinite gain
2w o o 0 0 0 operators; see Rohrs [15].

Remark 3: Infinite gain operators are generically pres-

>(
2

+ aac
4

) T
3

- K T
2

-
2

-K (25) ent in adaptive control and are typically represented
\ 24 2 1 o as in Fig. 4, where F(s) is a stable diagonal transfer

function matrix and M is (usually) a memoryless map.
where D and C are vectors of various input and output com-

/ 2 4 2 2 3 2 binations, including filtered versions of said signals.
K = a a6c +a bec2 3o <00 (26) The operator in Fig. 4 can also be proven to be infinite

-2 16 2w gain (see Rohrs [15]).

a2 c4 \2l) 2 3 2 3.2 Two Mechanisms of Instability
K1 = a c

-
+ 2 bo 3< (27)

1 16ow X In this section, we use the algorithm CA1 to in-
troduce and delineate two mechanisms which may cause

2 2 3 2 unstable behavior in the adaptive system CAl, when it is
a2 4 / abc3 implemented in the presence of unmodeled dynamics and

Ko = 3 + abc < (28) excited by sinusoidal reference inputs or by distur-
32w / bances. The arguments made for CA are also valid foro 0

other classes of algorithms mentioned in Remarks 2 and

Combining inequalities (21) and (25) we arrive at: 3, mutatis mutandis. Since the arguments explaining
instability are somewhat heuristic in nature, they are

2 verified by simulation. Representative simulation re-
IIu)I > 12 24)b2c -K- a(2 9 sults are given in Section 4.ut) L2 ) a12 + 

24 -K2T-K 1 T-K (29)

3.2.1 The Causes of Possible Instability

Also, In order to demonstrate the infinite gain nature
of the feedback operator of the error system of CAl in

IT /2 . 2 Section 2, it is assumed that a component of w(t) has
e(t)| ~L· 1 = a f sin2w tdt < a T (30) the form

w. (t) = b + c sinw t (32)
Therefore, I 0

and that the error has the form

Ilu(t) T (a 2b2c2 24 ) 3 2 1/2 e(t) = a sinw t (33)L T _K T _K1T-K 0

jle(t)| |I a2T The arguments of Section 2 indicate that, if e(t) and
L2 a component of w(t) have distinct sinusoids at a com-

mon frequency, the operator G of eqn. (12) and the
and, therefore, G for w as in eqn. (15) has infinite w(t)
gain. w operator H (t) of eqn. (31) will have infinite gains.gain. w(t)

Two possibilities for e(t) and w(t) to have the forms
In addition to the fact that the operator G (t) from of eqn. (32) and eqn. (33) are now considered.
e(t) to u(t) has infinite gain, the operator

w
Hw, from

e(t) to k(t) in Fig. 3 also has infinite gain. This Case (1): If the reference input consists of a sinu-
operator is described by: soid and a constant, e.g.

t r(t) = r1 + r inw t (34)
H [e(t)] = k + w(T)e(T)dT (31) 1 2 
w(t) o

tw t where r , and r are constants, then the plant output
/ 2

y(t) will contain a constant term and a sinusoid at

Theorem 2: The operator H with w(t) given in eqn. frequency w . Consequently, through eqns. (2),(3) and
w(t) (3a), all components of the vector w(t) will contain a

(15) has infinite gain. constant and a sinusoid of frequency w .

Proof: Choose e(t) = a sinw t as before. If the controlled plant matches the model at d.c. but
not at the frequency w , the output error

Then k(t) = H(t) [e(t)] is given by eqn. (18). 0

e(t) = y(t) - y (t) (35)

Proof of infinite gain for this operator then follows
in exactly analogous steps as in Theorem 1 and is, will contain a sinusoid at frequency w . Thus, the
therefore, omitted. conditions for infinite gain in the feedback path of

Figure 1 have been attained.
Remark 1: Both operators G and H will also have
infinite gain for vectors wit), since the operator

~~- - -- - - - - -·-~~~znc the oerato



Case (2): If a sinusoidal disturbance, d(t), at fre- signals will grow without bound very quickly (as the

quency w enters the plant output as shown in Fig. 1 effects of the unstable loop and continually growing

the sinusoid will appear in w(t) through the following compound.
equation which replaces eqn. (3) in the presence of an
output disturbance Since the infinite gain of G(t) can be achieved at~~~~~~output disturbance ~~~~g*B* w(t)

i-l any frequency w , if k*A* has +1800 phase shift at

w it) = - [y(t)+d(t)]; i=1,2,...,n (36) any frequency, the adaptive system is susceptible to

instability from either a reference input or a dis-

The following equation replaces eqn. (6) when an out- turbance.
put disturbance is present

Thus the importance of the Relative Degree Assumption,

e(t) = y(t) + d(t) - y(t) W(37) which essentially allows one to assume that k*A* is

r
Any sinusoid present in d(t) will also enter e(t) strictly positive real is seen. The stability proof
through eqn. (37). Thus the signal e(t) and w(t) will of CAl hinges on the assumption that g*B* is
contain sinusoids of the same frequency and the op- k*A*

erators H (t) and G (t) will display an infinite gain. strictly positive real and that G (t) is passive, i.e.

3.2.2 Instability Due to the Gain of the Operator G
of Equation (12) w f G (t)[e(t)Je(t)dt > 0 (38)

The operator G of eqn. (12) is not only an infinite

gain operator - but its gain influences the system in Both properties of positive realness and passivity
such a manner as to allow arguments using linear sys- are properties which are independent of the gain of
tems concepts, as outlined below. the operator involved. However, it is always the case

that, due to the inevitable unmodeled dynamics, only a
Assume, initially, that the error signal is of the form bound is known on the gain of the plant at high fre-
of eqn. (33), i.e., a sinusoid at frequency w . Assume quencies. Therefore, for a large class of unmodeled
also that a component of w(t) is of the form of eqn. dynamics in the plant, including all unmodeled dynamics
(32), i.e., a constant plus a sinusoid at the same fre- with relative degree two or greater, the operator,
quency w as the input. The output of the infinite

gain opeorator, Gw(t) of eqn. (12), as given by eqn. k'A* ' will have + 1800 phase shift at some frequency

(19), consistsof a sinusoid at frequency w with a gain and be susceptible to unstable behavior if subjected
0 and be susceptible to unstable behavior if subjected

which increases linearly with time plus other terms at to sinusoidal reference inputs and/or disturbances in
0 radians/sec (i.e. d.c.) and other harmonics of w ; that frequency range.

1 2 
i.e. u(t) = ac t sinw t + other terms.

2 o 3.2.3 Instability Due to the Gain of the Operator

The infinite gain operator manifests its large gain H of Equation (31)
by producing at the output a sinusoid at the same fre-

In the previous subsection, the situation was examined
quency, Xwoas the input sinusoid but with an amplitude

oquency, awhere the amplitude of the sinusoidal error e(t) grew
increasing with time. By concentrating on with time due to a positive feedback mechanism in the
the signal at frequency w , and viewing the operator error loop. In this subsection, we explore the situa-

G as a simple time-increasing gain with no phase tion where the sinusoidal error, e(t), is not at a
w (t) frequency where it will grow due to the error system
shift at the frequency o, and very small gain at other but,rather,when there exist persistent steady-state

frequencies, we will be able to come up with a mech- errors. Such a persistent error could arise from
either or both of the two mechanism discussed in

anism for instability of the error system of Figure 2, either or both of the two mechanism discussed in
where G consists of the feedback part of the loop.

w(t)

If the foward path B, of the error loop of Figure 1) A reference input with a number of frequencies is
k*A* t applied and the controlled plant with unmodeled dy-
2,r ha esthn+8°phs hfta h reunyX namics cannot match the model in amplitude and phase

2, has less than +1800 phase shift at the frequency wo for all reference input frequencies involved. This

and if the gain of G(t) were indeed small at all other will cause a persistent sinusoid in both the error

frequencies, then the high gain of G at would e(t), through eqn. (6), and the signals w(t), through
frequencies, then the high gain of G ( at wo would

w(t) o eqns. (2) and (3), and/or
not affect the stability of the error loop.

(2) An output sinusoidal disturbance, d(t), enters
gIf, however, the forward loop B* does have 180 as shown in Figure 1, causing the persistent sinusoid

If, however, the forward loop, ,does have 180
°

k*A* directly on e(t), through eqn. (37), and w(t) through

phase shift at w , the combination of this phase shift eqn. (36).

with the sign reversal will produce a positive feedback Assume, that through one of the above or any other
loop around the operator Gw(t), thereby reinforcing mechanism that a component of w(t) contains a sinusoid

the sinusoid at the input of G The sinusoid will at frequency w as in eqn. (32) and that e(t) contains
w(t) a sinusoid of the same frequency. Then the operator

then increase in amplitude linearly with time, as the H has infinite gain and the norm of the output
w(t)

gain of G grows, until the combined gain of G signal of this operator, k(t), increases without bound.
w(t) w(t)
g*B* -The signal, k(t), will take the form of eqn. (18),

and k*A* exceeds unity at the frequency w . At this repeated here:0
~r - act~1 ab ab ac

point, the loop itself will become unstable and all K(t) = k + act + - _ cosw t- sin2w t
2 t w o 2 0

·as s w a r sli~~~~~~~~~sllas so~~~~~~oI~~~s s r a~0 0 



From the second term one can see that the parameters with the reference input

of the controller, defined in eqn. (10), i.e.,
k(t) = k* + 2(t), will increase without bound. r(t) = .3+2.0 sin8.Ot (44)

This simulation demonstrates that if the sinusoid in-
If there are any unmodeled dynamics at all, increasing put is at a frequency for which the nominal controlled
the size of the nominal feedback controller para- plant does not generate a large phase shift (at
meters without bound will cause the adaptive system to w =8.0, the phase shift of eqn. (42) is -133°), the

become unstable. Indeed, since it is the gains of the 0
algorithm may stabilize despite the high gain operator.nominal feedback loop that are unbounded, the system

will become unstable for a large class of plants in-
cluding all those whose relative sdegree is three or Similar results were obtained for the algorithms des-
cluding all those whose relative degree is three or

cribed in [3,4,6,7,9], but are not included here due
to space considerations. The reader is referred to

[15] for a more comprehensive set of simulation results,
in which instability occurs via both the mechanisms

described in sections 3.2.2 and 3.2.3, for sinusoidal
In this section the arguments for instability presen-
ted in the previous sections are shown to be valid inputs.

via simulation.
4.2 Simulations with Output Disturbances

The simulations were generated using a nominally first
The results in this subsection demonstrate that the

order plant with a pair of complex unmodeled poles, instability mechanism explained in Section 3.2.2 does
indeed occur when there is an additive unknown output

2 229 disturbance at the wrong frequency, entering the system
y(t) = (+) [u(t)] (39) as shown in Fig. 1. In addition, the instability mecha-

(s+l) 2
s (s +30s+229) nism of section 3.2.3, which will drive the algorithms

unstable when there is a sinusoidal disturbance at any

and a reference model frequency, is also shown to take place. The same

numerical example is employed here as well.

t) [r(t)] (40)
YM t) s+3

Instability via the Phase Mechanism of Section 3.2.2
The simulationswere all initialized with

In this case, CA1 was driven by a constant reference

k (0) =-.65 ; k (0) = 1.14 (41) input
y r r(t) = .3 (45)

which yield a stable linearization of the associated with a very small output additive disturbance

error equations. For the parameter values of eqn. -6
(41) one finds that d(t) = 5.59 + 10 sin 16.1t (46)

g*B* 527 The results are shown in Fig. 7, and instability occurs
A*__ 3 527 (42) as predicted. The only surprise may be the minutenessA* 3 2

s +31s +259s+527 of the disturbance ( 10
-
) which will cause instability.

The reference input signal was chosen based upon the Instability via the Gain Increase Mechanism

discussion of section 3.2.2 of Section 3.2.3

r(t) = .3 + 1.85 sin 16.1t (43) Figure 8 shows the results of a simulation of CA1 that
was generated with

the frequency 16.1 rad/sec. being the frequency at r=0.3

which the plant and the transfer function in (42),i.e.
but the disturbance was changed to

g**, has 1800 phase lag. A small d.c. offset was pro-
k*A* -6
r d(t) = 8.0x10 sin5t (47)

vided so that the linearized system would be asympto-

tically stable. The relatively large amplitude, 1.85 g*B*
At w =5,g of eqn. (42) provides only -102

°
phase

of the sinusoid in eqn. (43) was chosen so that the k*A*

unstable behavior would occur over a reasonable simul- shift so the sinusoidal error signal of increasing
ation time. The adaptation gains were set equal amplitude, which is characteristic of instability via

to unity. the mechanism of Section 3.2.2, is not seen in Fig. 8.

What is seen is that the system becomes unstable by

4.1 Sinusoidal Reference Inputs the mechanism of Section 3.2.3. While the output appear

to settle down to a steady state sinusoidal error, the
Figure 5 shows the plant output and parameters k (t) k parameter drifts away until the point where the con-

and k (t) for the conditions described so far. The troller becomes unstable. (Only the onset of unstable

Y behavior is shown in Figure 8 in order to maintain
amplitude of the plant output at the critical frequency sale). We note also that even whe the error appeared
(~ =16.1 rad/sec) and the parameters grow linearly scale). We note also that even when the error appeared

o settled,its value represented a large disturbance am-

with time until the loop gain of the error system plification rather than disturbance rejection.

becomes larger than unity. At this point in time,

even though the parameter values are well within the The most disconcerting part of this analysis is that

region of stability for the linearized system, highly none of the systems analyzed have been able to counter

unstable behavior results. this parameter drift for a sinusoidal disturbance at

any frequency tried!
Figure 6 shows the results of a simulation, this time
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Indeed, Figure 9 shows the results of a simulation run Trans. Autom. Contr., Vol. AC-23, pp. 557-570,
with reference input August 1978.

r=0.0 (48)
3. K.S. Narendra, Y.H. Lin and L.S. Valavani, "Stable

and constant disturbance Adaptive Controller Design, Part II: Proof of Sta-
bility," IEEE Trans. Autom. Contr., Vol. AC-25,

d = 3.0 x 10
-6

pp. 440-448, June 1980.d = 3.0 x 10 (49)

The simulation results show that the output gain settle 4. A.S. Morse, "Global Stability of Parameter Adaptive
for a long time, again with disturbance amplification, Control Systems," IEEE Trans. Autom. Contr., Vol.
but the parameter k increases in magnitude until ins- AC-25, pp. 433-440, June 1980.

tability ensues.* Tus the adaptive algorithm shows no
ability to act even as a regulator when there are output 5. G.C. Goodwin, P.J. Ramadge, and P.E. Caines,
disturbances. "Discrete-Time Multivariable Adaptive Control,"

5. CONCLUSIONS IEEE Trans. Autom. Contr., Vol. AC-25, pp. 449-456,
June 1980.

In this paper it was shown, by analytical methods and
verified by simulation results, that existing adaptive
algorithms as describedin [1-4,6,7,19], have imbeddedalgorithms as describin [1-4,6,7,19, have imbedded with Applications to Adaptive Control," IEEE Trans.
in their adaptation mechanisms infinite gain operators Autom. Contr., Vol. AC-24, pp. 305-312, April 1979.

Autom. Contr., Vol. AC-24, pp. 305-312, April 1979.which, in the presence of unmodeled dynamics, will
cause:

7. B. Egardt, "Stability Analysis of Continuous-Time
*instability, if the reference input is a high Adaptive Control Systems," SIAM J. of Control and
frequency sinusoid Optimization, Vol. 18, No. 5, pp. 540-557, Sept.,

*disturbance amplification and instability 1980.

if there is a sinusoidal output disturbance
8. L.S. Valavani, "Stability and Convergence of Adap-

at any frequency including d.c.
at any frequency including d.c. tive Control Algorithms: A Survey and Some New

·instability, at any frequency of reference inputs Results," Proc. of the JACC Conf., San Francisco,
for which there is a non-zero steady state error. CA, August 1980.

While the first problem can be alleviated by proper 9. B. Egardt, "Unification of Some Continuous-Time
limitations on the class of permissible reference in- Adaptive Control Schemes," IEEE Trans. Autom. Contr.,
puts, the designer has no control over the additive Vol. AC-24, No. 4, pp. 588-592, August 1979.
output disturbances which impact his system, or of non-
zero steady-state errors that are a consequence of 10. P.A. Ioannou and P.V. Kokotovic, "Error Bounds for
imperfect model matching. Sinusoidal disturbances and Model-Plant Mismatch in Identifiers and Adaptive
inexact matching conditions are extremely common in Observers," IEEE Trans. Autom. Contr., Vol. AC-27,
practice and can produce disastrous instabilities in pp. 921-927, August 1982.
the adaptive algorithms considered.

11. C. Rohrs, L. Valavani, M. Athans and G. Stein,
Suggested remedies in the literature such as low pass "Analytical Verification of Undesirable Properties
filtering of plant output or error signal [26,7,21] of Direct Model Reference Adaptive Control Algo-
will not work either. rithms," LIDS-P-1122, M.I.T., August 1981; also

Proc. 20th IEEE Conference on Decision and Control,
It is shown in [15] that adding the filter to the out- San Diego, CA, December 1981.
put of the plant does nothing to change the basic sta-
bility problem as discussed in section 3.2. It is 12. P. Ioannou and P. Kokotovic, "Singular Perturbations
also shown in [15] that filtering of the output error on Robust Redesign of Adaptive Control," presented
merely results in the destabilizing input, being at a at IFAC Workshop on Singular Perturbations and Ro-
lower frequency. bustness of Control Systems, Lake Ohrid, Yugoslavia,

July 1982.
Exactly analogous results were also obtained for dis-
crete-time algorithms as described in [5,17,18,20] and 13. C. Rohrs, L. Valavani and M. Athans, "Convergence
have been reported in [15]. Studies of Adaptive Control Algorithms, Part I:

Analysis," Proc. IEEE CDC Conf., Albuquerque, New
Finally, unless something is done to eliminate the ad- Mexico, 1980, pp. 1138-1141.
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Figure 4: Infinite gain operator generically present

in adaptive control
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Figure 7 Simulation of CA1 with unmodeled dynamics,

r(t)=0.3, and d(t)=5.59xlO-
6
sin16.lt. r(t)=O.O, and d(t)=3.0x10-6

(System eventually becomes unstable). (System eventually becomes unstable.)
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Figure 8: Simulation of CA1 with unmodeled dynamics,
r(t)=0.3, and d(t)=8.0xlO06sin5.0t.
(System eventually becomes unstable).


