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Abstract
This thesis consists of three essays in capital markets.

In the first essay, given a European derivative security with an arbitrary payoff function
and a corresponding set of underlying securities on which the derivative security is based,
we solve the optimal-replication problem: find a self-financing dynamic portfolio strategy-
involving only the underlying securities-that most closely approximates the payoff function
at maturity. By applying stochastic dynamic programming to the minimization of a mean-
squared-error loss function under Markov state-dynamics, we derive recursive expressions
for the optimal-replication strategy that are readily implemented in practice. The approxi-
mation error or "" of the optimal-replication strategy is also given recursively and may be
used to quantify the "degree" of market incompleteness. To investigate the practical sig-
nificance of these c-arbitrage strategies, we consider several numerical examples including
path-dependent options and options on assets with stochastic volatility and jumps.

In the second essay we study the tracking error, resulting from the discrete-time applica-
tion of continuous-time delta-hedging procedures for European options. We characterize
the asymptotic distribution of the tracking error as the number of discrete time periods
increases, and its joint distribution with other assets. We introduce the notion of temporal
granularity of the continuous time stochastic model that enables us to characterize the de-
gree to which discrete time approximations of continuous time models track the payoff of
the option. We derive closed form expressions for the granularity for a put or call option
on a stock that follows a geometric Brownian motion and a mean-reverting process. These
expressions offer insight into the tracking error involved in applying continuous-time delta-
hedging in discrete time. We also introduce alternative measures of the tracking error and
analyze their properties.

The third essay presents a general equilibrium model of financial asset prices with irre-
versible real investment. The focus is on the effects of the irreversibility of real investment
on financial asset prices. The model shows how this irreversibility leads to time variation in
volatility and systematic risk of stock returns. Changes in these variables are driven by real
economic activity, in particular, by firms' investment decisions. Thus, systematic risk of
stock returns and their volatility are affected by economy-wide and industry-specific shocks.
Firm-specific variables, particularly market-to-book ratios, are linked to real activity and
contain information about the dynamic behavior of stock returns. The model of this paper
also provides a framework for analyzing futures prices. A comparison between the economy
with irreversible investment and an identical economy without the irreversibility shows that
all of these results should be attributed to the irreversibility of real investment.
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Chapter 1

Hedging Derivative Securities and

Incomplete Markets: An

e-Arbitrage Approach (joint with Dimitris Bertsimas

and Andrew Lo)

1.1 Abstract

Given a European derivative security with an arbitrary payoff function and a corresponding

set of underlying securities on which the derivative security is based, we solve the optimal-

replication problem: find a self-financing dynamic portfolio strategy-involving only the

underlying securities-that most closely approximates the payoff function at maturity. By

applying stochastic dynamic programming to the minimization of a mean-squared-error

loss function under Markov state-dynamics5 we derive recursive expressions for the optimal-

replication strategy that are readily implemented in practice. The approximation error or
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"e" of the optimal-replication strategy is also given recursively and may be used to quantify

the "degree" of market incompleteness. To investigate the practical significance of these

e-arbitrage strategies, we consider several numerical examples including path-dependent

options and options on assets with stochastic volatility and jumps.
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1.2 Introduction

One of the most important breakthroughs in modern financial economics is Merton's (1973)

insight that under certain conditions the frequent trading of a small number of long-lived

securities can create new investment opportunities that would otherwise be unavailable to

investors. These conditions-now known collectively as dynamic spanning or dynamically

complete markets-and the corresponding asset-pricing models on which they are based

have generated a rich literature and an even richer industry in which complex financial

securities are synthetically replicated by sophisticated trading strategies involving consid-

erably simpler instruments. 1 This approach is the basis of the celebrated Black and Scholes

(1973) and Merton (1973) option-pricing formula, the arbitrage-free method of pricing and,

more importantly, hedging other derivative securities, and the martingale characterization

of prices and dynamic equilibria.

The essence of dynamic spanning is the ability to replicate exactly the payoff of a complex

security by a dynamic portfolio strategy of simpler securities which is self-financing, i.e.,

no cash inflows or outflows except at the start and at the end. If such a dynamic-hedging

strategy exists, then the initial cost of the portfolio must equal the price of the complex

security, otherwise an arbitrage opportunity exists. For example, under the assumptions of

Black and Scholes (1973) and Merton (1973), the payoff of a European call-option on a non-

dividend-paying stock can be replicated exactly by a dynamic-hedging strategy involving

only stocks and riskless borrowing and lending.

But the conditions that guarantee dynamic spanning are nontrivial restrictions on mrar-

ket structure and price dynamics (see, for example, Duffie and Huang [1985]), hence there

'In addition to Merton's seminal paper, several other important contributions to the finance literature
are responsible for our current understanding of dynamic spanning. In particular, see Cox and Ross (1976),
Duffie (1985), Duffie and Huang (1985), Harrison and Kreps (1979), and Huang (1985a,b).
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are situations in which exact replication is impossible. 2 These instances of market incom-

pleteness are often attributable to institutional rigidities and market frictions-transactions

costs, periodic market closures, and discreteness in trading opportunities and prices-and

while the pricing of complex securities can still be accomplished in some cases via equilib-

rium arguments,3 this still leaves the question of optimal replication unanswered. Perfect

replicaton is impossible in dynamically incomplete markets, but how close can one come,

and what does the optimal-replication strategy look like?

In this paper we answer these questions by applying optimal control techniques to the

optimal-replication problem: given an arbitrary payoff function and a set of fundamental

securities, find a self-financing dynamic portfolio strategy involving only the fundamental

securities that most closely approximates the payoff in a mean-squared sense. The initial

cost of such an optimal strategy can be viewed as the "production cost" of the option, i.e.,

it is the cost of the best dynamic approximation to the payoff function given the set of

fundamental securities traded. Such an interpretation is more than a figment of economic

imagination-the ability to synthesize options via dynamic trading strategies is largely

responsible for the growth of the multi-trillion-dollar over-the-counter derivatives market. 4

Of course, the nature of the optimal-replication strategy depends on how we measure

the closeness of the payoff and its approximation. For tractability and other reasons (see

Section 1.3.5), we choose a mean-squared-error loss function and we denote by e the root-

2Suppose, for example, that stock price volatility oa in the Black and Scholes (1973) framework is
stochastic.

3Examples of continuous-time incomplete-markets models include Breeden (1979), Duffie (1987), Duffie
and Shafer (1985, 1986), F6llmer and Sonderman (1986), and He and Pearson (1991). Examples of discrete-
time incomplete-markets models include Aiyagari (1994), Aiyagari and Gertler (1991), He and Modest
(1995), Heaton and Lucas (1992, 1996), Lucas (1994), Scheinkman and Weiss (1986), Telmer (1993), and
Weil (1992).

4In contrast to exchange-traded options such as equity puts and calls, over-the-counter derivatives are
considerably more illiquid. If investment houses were unable to synthesize them via dynamic trading strate-
gies, they would have to take the other side of every option position that their clients' wish to take (net of
offsetting positions among the clients themselves). Such risk exposure would dramatically curtail the scope
of the derivatives business, limiting both the size and type of contracts available to end users.
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mean-squared-error of an optimal-replication strategy. In a dynamically complete market,

the approximation error e is identically zero, but when the market is incomplete, we propose

e as a measure of the "degree" of incompleteness. Although from a theoretical point of view

dynamic spanning either holds or does not hold, a gradient for market completeness seems

more natural from an empirical and a practical point of view. We provide examples of

stochastic processes that imply dynamically incomplete markets, e.g., stochastic volatility,

and yet still admit e-arbitrage strategies for replicating options to within e, where e can be

evaluated numerically.

In this respect, our contributions complement the results of Schweizer (1992, 1995) in

which the optimal-replication problem is also solved for a mean-squared-error loss func-

tion. Schweizer considers more general stochastic processes than we do-we focus only on

vector-Markov price processes-and uses variational principles to characterize the optimal-

replication strategy. Although our approach can be viewed as a special case of his, the

Markov assumption allows us to obtain considerably sharper results and yields an eas-

ily implementable numerical procedure (via dynamic programming) for determining the

optimal-replication strategy and the replication error e in practice.

Our results also complement the burgeoning literature on option pricing with trans-

actions costs, e.g., Leland (1985), Hodges and Neuberger (1989), Bensaid, et al. (1992),

Boyle and Vorst (1992), Davis, Panas, and Zariphopoulou (1993), Edirisinghe, Naik, and

Uppal (1993), Henrotte (1993), Avellaned and Paras (1994), Neuberger (1994), Whalley

and Wilmott (1994), Grannan and Swindle (1996), and Toft (1996) (see, also, the related

papers by Hutchinson, Lo, and Poggio (1994), Brandt (1998), and Bcrtsimas, Kogan, and

Lo (1999)). In these studies, the existence of transactions costs induces discrete trading in-

tervals, and the optimal replication is solved for some special cases, e.g., call and put options
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on stocks with geometric Brownian motion or constant-elasticity-of-variance price dynam-

ics. In this paper, we solve the more general problem of optimally replicating an arbitrary

derivative security where the underlying asset is driven by a vector Markov process.

To demonstrate the practical relevance of our optimal-replication strategy, even in the

simplest case of the Black and Scholes (1973) model where an explicit optimal-replication

strategy is available, Table 1.2 presents a comparison of our optimal-replication strategy

with the standard Black-Scholes "delta-hedging" strategy for replicating an at-the-money

put option on 1,000 shares of a $40-stock over 25 trading periods for two simulated sample

paths of a geometric Brownian motion with drift = 0.07 and diffusion coefficient a = 0.13

(rounded to the nearest $0.125).

Vt* denotes the period-t value of the optimal replicating portfolio, St denotes the number

of shares of stock held in that portfolio, and VtBS and OBS are defined similarly for the Black-

Scholes strategy.

Despite the fact that both sample paths are simulated geometric Brownian motions with

identical parameters, the optimal-replication strategy has a higher replication error than the

Black-Scholes strategy for path A and a lower replication error than Black-Scholes for path

B.5 That the optimal-replication strategy underperforms the Black-Scholes strategy for path

A is not surprising since the optimal-replication strategy is optimal only in a mean-squared

sense (see Section 1.3.1), not path by path.6 That the Black-Scholes strategy underperforms

the optimal-replication strategy for path B is also not surprising since the former is designed

to replicate the option with continuous trading whereas the optimal-replication strategy is

5Specifically, V2'5 -1000 x Max[0, $40-P 2 5] $199.l and V B 5 -1000 x Max[0, $40-P25] = $172.3 for
path A, and V5 - 1000 x Max[0, $40-P25] = -$40.3 and V Bs - 1000 x Max[0, $40-P 2 5] = -$299.2 for path
B.

6 These two sample paths were chosen to be illustrative, not conclusive. In a more extensive simulation
study in which 250,000 sample paths were generated, the average replication error of the Black-Scholes
strategy is $248.0 and the average error of the optimal-replication strategy is $241.2.
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designed to replicate the option with 25 trading periods.

Table 1.1: Comparison of optimal-replication strategy and Black-Scholes delta-hedging
strategy for replicating an at-the-money put option on ,000 shares of a $40-stock over
25 trading periods for two simulated sample paths of a geometric Browniarn motion with
parameters u = 0.07 and ao = 0.13.

For sample path A, the differences between the optimal-replication strategy and the

Black-Scholes are not great-t* and St are fairly close to their Black-Scholes counterparts.

However, for sample path B, where there are two large price movements, the differences

between the two replication strategies and the replication errors are substantial. Even in

23

Sample Path A Sample Path B

t Pt W o' ¼s9 Vs BS o BS oBS

0 40.000 1461.0 -474.8 1466.4 -481.7 40.000 1461.0 -474.8 1466.4 -481.7
1 40.750 1104.9 -394.2 1105.1 -400.8 39.875 1520.4 -491.8 1526.6 -495.9
2 42.125 562.9 -252.1 554.0 -264.0 40.250 1336.0 -452.4 1340.6 -454.3
3 41.375 751.9 -318.6 752.0 -331.8 36.500 3032.3 -762.4 3044.3 -845.8
4 42.000 552.8 -256.1 544.7 -267.2 36.875 2746.4 -744.1 2727.1 -822.1
5 43125 264.7 -157.8 244.0 -169.5 36.500 3025.4 -777.9 3035.4 -858.3
6 43.250 245.0 -145.6 222.8 -155.1 37.000 2636.5 -750.1 2606.3 -824.5
7 42.250 390.6 -216.7 377.9 -229.5 39.875 479.9 -407.8 235.8 -500.5
8 43.000 228.2 -149.7 205.8 -160.6 39.875 479.9 -412.1 235.8 -501.4
9 41.750 415.2 -250.3 406.6 -267.9 40.125 376.9 -384.8 110.4 -468.4

10 42.000 352.7 -221.1 339.6 -235.5 39.500 617.3 -466.9 403.2 -556.1
11 42.625 214.5 -157.2 192.4 -168.9 41.250 -199.7 -227.2 -570.0 -315.0
12 41.750 352.1 -233.8 340.2 -248.5 40.625 -57.7 -300.8 -373.1 -394.7
13 41.500 410.5 -258.4 402.3 -271.0 39.875 167.9 -403.7 -77.0 -506.9
14 42.625 119.8 -128.5 97.5 -141.7 39.375 369.8 -482.4 176.4 -590.1
15 42.875 87.7 -100.5 62.1 -110.7 39.625 249.2 -452.1 28.9 -552.9
16 42.875 87.7 -91.5 62.1 -99.2 39.750 192.7 -439.2 -40.2 -534.3
17 43.125 64.8 -65.5 37.3 -70.4 39.250 412.3 -533.4 226.9 -632.3
18 43.000 73.0 -62.3 46.1 -G5.4 39.500 278.9 -500.5 68.8 -592.6
19 43.000 73.0 -50.8 46.1 -51.7 39.750 153.8 -461.4 -79.3 -546.5
20 41.875 130.2 -121.8 104.3 -128.2 39.750 153.8 -472.5 -79.3 -552.5
21 41.125 221.5 -209.8 200.4 -219.8 39.875 94.8 -452.8 -148.4 -526.6
22 41.375 169.1 -137.5 145.5 -140.7 39.625 208.0 -538.7 -16.7 -610.2
23 40.625 272.2 -263.5 251.0 -271.2 39.875 73.3 -476.8 -169.3 -542.8
24 40.000 436.9 -475.7 420.5 -496.3 40.000 13.7 -432.2 -237.1 -496.3
25 40.500 199.1 0.0 172.3 0.0 40.125 -40.3 0.0 -299.2 0.0



such an idealized setting, the optimal-replication strategy can still play an important role

in the dynamic hedging of risks.

In Section 1.3 we introduce the optimal-replication problem and propose a solution based

on stochastic dynamic programming. The scope of the e-arbitrage approach is illustrated

in Sections 1.4 and 1.5 analytically and numerically for several examples including path-

dependent options and options on assets with mixed jump-diffusion and stochastic-volatility

price dynamics. The sensitivity of the replication error to price dynamics is studied in

Section 1.6, and we conclude in Section 1.7.

1.3 e-Arbitrage Strategies

In this section, we formulate and propose a solution approach for the problem of replicating

a derivative security in incomplete markets. In Section 1.3.1 we introduce the optimal-

replication problem and the principle of c-arbitrage, and provide examples in Section 1.3.2

of the types of incompleteness that our framework can accommodate. In Sections 1.3.3 and

1.3.4 we propose stochastic dynamic programming algorithms in discrete and continuous

time, respectively, that solve the optimal-replication problem.

1.3.1 The Optimal Replication Problem

Consider an asset with price Pt at time t where 0 < t < T and let F(PT, ZT) denote the

payoff of some European derivative security at maturity date T which is a function of PT

and other variables ZT (see below). For expositional convenience, we shall refer to the

asset as a stock and the derivative security as an option on that stock, but our results are

considerably more general.

As suggested by Merton's (1973) derivation of the Black-Scholes formula, the optimal-
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replication problem is to find a dynamic portfolio strategy-purchases and sales of stock

and riskless borrowing and lending-on [0, T] that is self-financing and comes as close as

possible to the payoff F(PT, ZT) at T. To formulate the optimal-replication problem more

precisely, we begin with the following assumptions:

(Al) Markets are frictionless, i.e., there are no taxes, transactions costs, shortsales re-

strictions, and borrowing restrictions.

(A2) The riskless borrowing and lending rate is 0.7

(A3) There exists a finite-dimensional vector Zt of state variables whose components are

not perfectly correlated with the prices of any traded securities, and [ Pt Zt ] is a vector

Markov process

(A4) Trading takes place at known fixed times t E '. If T = {to,tl,... ,tN}, trading is

said to be discrete. If T = [0, T], trading is said to be continuous.

At time 0 consider forming a portfolio of stocks and riskless bonds at a cost V0 and as

time progresses, let Ot, Bt, and Vt denote the number of shares of the stock held, the dollar

value of bonds held, and the market value of the portfolio at time t, respectively, t E ,

hence:

Vt = OtPt + Bt (1.1)

In addition, we impose the condition that after time 0, the portfolio is self-financing, i.e.,

all long positions in one asset are completely financed by short positions in the other asset

7 This entails no loss of generality since we can always renormialize all prices by the price of a zero-coupon
bond with maturity at time T (see, for example, Harrison and Kreps [1979]).
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so that the portfolio experiences no cash inflows or outflows:

Pti+1 (ti+ 1 - Oti) + Bti+1 - Bti = 0 (1.2)

This implies that:

Vti+1 - ti (1.3)= Oti (Pti+1 - Pt)

and, in continuous time,

dVt = tdPt. (1.4)

We seek a self-financing portfolio strategy {0t}, t E T, such that the terminal value VT

of the portfolio is as close as possible to the option's payoff F(PT, ZT). Of course, there

are many ways of measuring "closeness", each giving rise to a different optimal-replication

problem. For reasons that will become clear shortly (see Section 1.3.5, we choose a mean-

squared-error loss function, hence our version of the optimal-replication problem is:8

minE VT- F(PT, ZT)
(ot}

(1.5)

subject to self-financing condition (1.3) or (1.4), the dyiiamics of [ Pt Zt ]', and the initial

wealth V0o, where the expectation E is conditional on information at time 0.9

8Other recent examples of the use of mean-squared-error loss functions in related dynamic-trading prob-
lems include Duffie and Jackson (1990), Duffie and Richardson (1991), Schil (1994), and Schweizer (1992,
1995).

9Note that we have placed no constraints on {0t}, hence it is conceivable that for certain replication
strategies, VT is negative with positive probability. Imposing constraints on {0t} to ensure the non-negativity
of VT would render the optimal-replication problem (1.5) intractable. However, negative values for VT
is not nearly as problematic in the context of the optimal-replication problem as it is for the optimal
consumption and portfolio problem of, for example, Merton (1971). In particular, VT does not correspond
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A natural measure of the success of the optimal-replication strategy is the square root

of the mean-squared replication error (1.5) evaluated at the optimal {Ot}, hence we define

c(Vo) - /min E [VT -F(PT ZT)]2} (1.6)

We shall show below that (VO) can be minimized with respect to the initial wealth V0

to yield the least-cost optimal-replication strategy and a corresponding measure of the

minimum replication error e*:

e* _= mine(V) . (1.7)

In the case of Black and Scholes (1973) and Merton (1973), there exists optimal-replication

strategies for which e* = 0, hence we say that perfect arbitrage pricing holds.

But there are situations-dynamically incomplete markets, for example-where perfect

arbitrage pricing does not hold. In particular, assumption (A3), the presence of state

variables Zt that are not perfectly correlated with the prices of any traded securities, is the

source of market incompleteness in our framework. While this captures only one potential

source of incompleteness--and does so only in a "reduced-form" sense-nevertheless, it

is a particularly relevant source of incompleteness in financial markets. Of course, we

recognize that the precise nature of incompleteness, e.g., institutional rigidities, transactions

costs, technological constraints, will affect the pricing and hedging of derivative securities

in complex ways.' 0 Nevertheless, how well one security can be replicated by sophisticated

to an individual's wealth, but is the terminal value of a portfolio designed to replicate a particular payoff
function. See Dybvig and Huang (1988) and Merton (1992, Chapter 6) for further discussion.

1°For more "structural" models in which institutional sources of market incompleteness are studied, e.g.,
transactions costs, shortsales constraints, undiversifiable labor income, see Aiyagari (1994), Aiyagari and
Gertler (1991), He and Modest (1995), Heaton and Lucas (1992, 1996), Lucas (1994), Scheinkman and
Weiss (1986), Telmer (1993), and Weil (1992). See Magill and Quinzii (1996) for a comprehensive analysis
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trading in other securities does provide one measure of the degree of market incompleteness

even if it does not completely characterize it. In much the same way that the Black and

Scholes (1973) and Merton (1973) models focus on the relative pricing of options-relative

to the exogenously specified price dynamics for the underlying asset-we hope to capture

the degree of relative incompleteness, relative to an exogenously specified set of Markov

state variables that are not completely hedgeable.

In some of these cases, we shall show in Sections 1.3.3 and 1.3.4 that e-arbitrage pricing

is possible, i.e., it is possible to derive a mean-square-optimal replication strategy that is

able to approximate the terminal payoff F(PT, ZT) of an option to within e*. But before

turning to the solution of the optimal-replication problem, we provide several illustrative

examples that delineate the scope of our framework.

1.3.2 Examples

Despite the restrictions imposed by assumptions (A1)-(A4), our framework can accommo-

date many kinds of market incompleteness and various types of derivative securities as the

following examples illustrate:

(a) Stochastic Volatility. Consider a stock price process that follows a diffusion process

with stochastic volatility, e.g., Hull and White (1987) and Wiggins (1987). The stock

price and stock-price volatility are assumed to be governed by the following pair of

stochastic differential equations:

dPt = bPt dt + atPt dWpt

dat = g(tt) At + Kat dWat

of market inco.-pleteness.
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where Wpt and Wat are Brownian motions with mutual variation dWpt dWat = p dt.

This stochastic volatility model is included in our framework by defining Zt = at.

Then, clearly the vector process [ Pt Zt ]' is Markov.

(b) Options on the Maximum. In this and the next two examples we assume that

T = {to, tl,... ,tN} and that the stock price Pt process is Markov for expositional

simplicity. The payoff of the option on the maximum stock price is given by

F( max Pti) . (1.8)

Define the state variable

Zti - -max Pt,
k=O... ,i

The process [ Pti Zt ] is Markov since the distribution of Pti+, depends only on Pt,

and

Zti+l = max[Zti 7 Pti+l] Z = PO

The payoff of the option can be expressed in terms of the terminal value of the state

variables (PT, ZT) as F(ZT).

(c) Asian Options. The payoff of "Asian" or "average-rate" options is given by

F N+iYPti·
-=
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Let Ztj be the following state variable

1
Zti - i Z Ptk

k=O

and observe that the process [ Pti

depends only on Pti and

Zti ]' is Markov since the distribution of Pti+l

As before, the payoff of the option can be written as F(ZT).

(d) Knock-Out Options. Given a knock-out price P, the payoff of a knock-out option

is 1Th(PT), where h(.) is a function of the terminal stock price and

OT = r[maxi=o,...,Ptj.P]-

Define the state variable Zt:

Zo = [Po<,],

Zti+ = I[Pi+l <P]. zti.

It is easy to see that resulting process [ P Zt, ]' is Markov, ZT = PT. The payoff of

the option is given by F(PT, ZT) = ZTh(PT).

1.3.3 e-Arbitrage in Discrete Time

In this section, we propose a solution for the optimal-replication problem (1.5) in discrete

time via stochastic dynamic programming. To simplify notation, we adopt the following
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convention for discrete-time quantities: time subscripts t are replaced by i, e.g., the stock

price Pt, will be denoted as Pi and so on. Under this convention, we can define the usual

cost-to-go or value function Ji as:

Ji(Vi,Pi,Zi) - min E [[VN - F(PN, ZN)]2IVi,Pi, Zi] (1.9)
0(k,VkPk,Zk),'

i<k<N-1

where Vi, Pi, and Zi comprise the state variables, Oi is the control variable, and the self-

financing condition (1.3) and the Markov property (A3) comprise the law of motion for the

state variables. By applying Bellman's principle of optimality recursively (see, for example,

Bertsekas [1995]):

JN(VN,PN,ZN) = [VN v-F(PN,ZN)] 2 (1.10)

Ji (i(V Pi+lZi+l)Vi, Pi, Z) = i+( ,i+,zi)i]O(i,vi,?~,zi)

i =,... ,N-1 (1.11)

the optimal-replication strategy *(i, Vi,Pi, Zi) can be characterized and computed. In

particular, we have: 12

Theorem 1.1 Under Assumptions (A1)-(A4) and (1.3), the solution of the

optimal-replication problem (1.5) for T = to,t,... ,tN} is characterized by the follow-

ing:

(a) The value function Ji(Vi, Pi, Zi) is quadratic in Vi, i.e., there are functions ai(Pi, Zi),

'Schweizer (1995) provides sufficient conditions for the existence of the optimal hedging strategy.
12Proofs are relegated to the Appendix.
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bi(Pi, Zi), and ci(Pi, Zi) such that

= ai(Pi,Zi) [Vi-bi(Pi, Zi)]2 + ci(P, Zi), i = 0,... ., N . (1.12)

(b) The optimal control 0*(i, Vi, Pi, Zi) is linear in Vi, i.e.,

= pi(Pi , Zi) - Viqi(Pi,Zi)

(1.13)

(c) The functions ai(), bi(.), ci(.), Pi(), and qi (), are defined recursively as

aN(PN, ZN) = i (1.14)

bN(PN, ZN)

Ci(PN, ZN)

= F(PN, ZN)

= 0
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= (pi-qibi) - qi(V i-bi)

(1.15)

(1.16)

Ji(Vi, Pi, Zi)

O*(i, vi, Pi, Zi)



E[ai+l (Pi+l, Zi+l) bi+l (Pi+l, Zi+l) (Pi+l - Pi)Pi, Zi]
E[ai+l (Pil, Zi+1 ) ·(Pi+ - Pi) 2 Pi, Zi]

E[ai+l (Pi+l, Zi+l ) (Pi+ - Pi) IPi, Zi]
E[ai+l(Pi+l, Zi+l ) (Pi+l -P -) 2P, Zi]

= E[ai+l(Pi+l, Zi+l) (1-qi(Pi, Zi)(Pi+l-Pi))2[i, Zi]

(1.17)

(1.18)

(1.19)

ai(P, Zi) E[ai+i(Pi+i, Zi+1) - (bi+l(Pi+l, Zi+l) -

Pi(Pi, Zi)(Pi+l - Pi))' (1 - qi(Pi, Zi)(Pi+l -Pi)) Pi, Z1.20)

- E[ci+l(Pi+l,Zi+l)Pi, Zi] +

E[ai+l (Pi+l, Zi+l) (bi+l(Pi+l, Zi+l) -

pi(Pi, Z)(P+-P)) , Z Zi] - ai(Pi, Zi) bi(Pi, Zi)2 (1.21)

(d) Under the optimal-replication strategy 0*, the minimum replication error as a function

of the initial wealth V is

Jo(Vo, Po, Zo) = ao(Po, Zo) [Vo-bo(Po, Zo)]2 + co(Po, ZO). (1.22)

hence the initial wealth that minimizes the replication error is VO* = bo(Po, Zo), the

least-cost optimal-replication strategy is the {0*(i, Vi,Pi,Zi)} that corresponds to this

initial wealth, and the minimum replication error over all Vo is:13

* = vco(Po, Zo) . (1.23)

13It is simple to show by induction that a,(Pi, Z) > 0 and ci(Pi, Zi) > 0.
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Theorem 1.1 shows that the optimal-replication strategy 0* has a particularly simple struc-

ture (1.13) which can be related to the well-known "delta-hedging" strategy of the

continuous-time Black-Scholes/Merton option-pricing model. In particular, if prices Pt

follow a geometric Brownian motion, it can be shown that the first term of the right side

of (1.13) corresponds to the derivative security's "delta" (the partial derivative of the secu-

rity's price with respect to Pt), and the second term vanishes in the continuous-time limit

(see Section 1.4.2 for further discussion). This underscores the fact that standard delta-

hedging strategies, which are derived from continuous-time models, need not be optimal

when applied in discrete time, and the extent to which the continuous-time and discrete-

time replication strategies differ is captured by the second term of (1.13).

The fact that both the optimal control (1.13) and the value function (1.12) are defined

recursively is especially convenient for computational purposes. Finally, because the value

function is quadratic in Vi, it possesses a global minimum as a function of the initial wealth

V0 , and this global minimum and the initial wealth that attains it can be computed easily.

1.3.4 -Arbitrage in Continuous Time

For the continuous-time case T = [0, T], let [ Pt Z ]' follow a vector Markov diffusion

process

dPt = ,Mo(t,Pt,Zt)Pt dt + o(t,Pt,Zt)PtdWot (1.24)

dZjt = j(t, P, Zt)Zjtdt + aj(t, Pt, Zt)Zj tdWjt , j = 1,... ,J (1.25)
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where Wjt, j = 0,... , J are Wiener processes with mutual variation

dWjtdWkt = pjk(t, Pt, Zt) dt .

The continuous-time counterpart of the Bellman recursion is the Hamilton-Jacobi-Bellman

equation (see, for example, Fleming and Rishel [1975]), and this yields the following:

Theorem 1.2 Under Assumptions (A1)-(A4) and (1.4), the solution of the

optimal-replication problem (1.5) for 7T = [0, T] is characterized by the following:

(a) The value function J(t, Vt,Pt, Zt) is quadratic in Vt, i.e., there are functions

a(t, Pt, Zt), b(t, Pt, Zt), and c(t, Pt, Zt) such that

J(t, Vt, Pt, Zt) = a(t, Pt,Zt) [Vt-b(t, Pt, Zt)]2 + c(t, Pt, Zt), < t < T

(1.26)

(b) For t E [0, T] the functions a(t, Pt, Zt), b(t, Pt, Zt), and c(t, Pt, Zt) satisfy the following
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system of partial differential equations:14

iOa a 9a
aa + E zaaj

2

ro1

Ob

3,zb2

JOb
j--O

1i 2 a
+ °icrojZiZjPi j ZaO

i,j=O Z

a + 2
j=o

cii ___o j ~
U/o o~azj +

c9b
aziaqzi

i,j=O

( cii j 1 j _ijZ

1 i~2 E ar~ (PoiPoj
i= a

c 1 0 i 2c
aZj --j + E 0S oiiZiZiPj zoza ~ 2 a i,j=O i j
J &~i a~~b ab

a 5 ri,7jpZi Zj (poipoj- pij).
i,j=O

a(T, PT, ZT) = 1 , b(T, PT, ZT) = F(PT, ZT) , (T, PT, ZT) =

where Zi denotes the i-th component of Zt and Zo -Pt.

(c) The optimal control 0*(t, Vt, Pt, Zt) is linear in Vt and is given by:

ajZj ObPai- -(t-b) (
a Zj oa

o ao OZj
j=O

14We omit the arguments of a(.), b(.), and c(.) in (1.27)-(1.29) to economize on notation.
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j=0
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with boundary conditions:

(1.29)

(1.30)

J

= E
j=o

/o
o2Zoo0 Z

)

(1.31)

O (t, Vt' Pt, Zt)
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(d) Under the optimal-replication strategy 0*, the minimum replication error as a function

of the initial wealth Vo is

J(O,Vo,Po,Zo) = a(OPo, Zo)[Vo-b(O, Po, Zo)]2 + c(OPo, Zo) (1.32)

hence the initial wealth that minimizes the replication error is V* = b(O, Po, Zo), the

least-cost optimal-replication strategy is the {0*(t, Vt, Pt, Zt)} that corresponds to this

initial wealth, and the minimum replication error over all Vo is:15

E = /c(O, Po, Zo) (1.33)

1.3.5 Interpreting e* and V0*

Theorems 1.1 and 1.2 show that the optimal-replication problem (1.5) can be solved for

a mean-squared-error measure of replication error under Markov state dynamics. In par-

ticular, the optimal-replication strategy 0*(.) is a dynamic trading strategy that yields the

minimum mean-squared replication error (Vo) for an initial wealth Vo. The fact that (Vo)

depends on V0 should come as no surprise, and the fact that (Vo) is quadratic in Vo un-

descores the possibility that delta-hedging strategies can be under- or over-capitalized, i.e.,

there exists a unique VO* that minimizes the mean-squared replication error. One attractive

feature of our approach is the ability to quantify the impact of capitalization V0 on the

replication error e(Vo).

15It can be shown that a(t, Pt, Zt) > 0 and c(t, Pt, Zt) > 0.
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V* Is Not a Price

In this sense, VO* may be viewed as the minimum productioi -cost of replicating the payoff

F(PT, ZT) as closely as possible, to within e*. However, because we have assumed that

markets are dynamically incomplete-otherwise e* is 0 and perfect replication is possible-

VO* cannot be interpreted as the price of a derivative security with payoff F(PT, ZT) unless

additional economic structure is imposed. In particular, in dynamically incomplete mar-

kets derivatives cannot be priced by arbitrage considerations alone- we must resort to an

equilibrium model in which the prices of all traded assets are determined by supply and

demand.

To see why VO* cannot be interpreted as a price, observe that two investors with differ-

ent risk preferences may value F(PT, ZT) quite differently, and will therefore place different

valuations on the replication error e*. While both investors may agree that Vo is the mini-

mum cost for the optimal-replication strategy 9*(.), they may differ in their willingness to

pay such a cost for achieving the replication error E*.16 Moreover, some investors' prefer-

ences may not be consistent with a symmetric loss function, e.g., they may value negative

replication errors quite differently than positive replication errors.

More to the point, an asset's price is the outcome of a market equilibrium in which

investors' preferences, budget dynamics, and information structure interact through the

imposition of market-clearing conditions, i.e., supply equals demand. In contrast, VO* is the

solution to a simple dynamic optimization problem that does not typically incorporate any

notion of economic equilibrium.

16 See Duffie and Jackson (1990) and Duffie and Richardson (1991) for examples of replication strategies
under specific preference assumptions.
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Why Mean-Squared Error?

In fact, there are many possible loss functions, each giving rise to a different set of optimal-

replication strategies, hence a natural question to ask in interpreting Theorems 1.1 and 1.2

is why use mean-squared error?

An obvious motivation is, of course, tractability. We showed in Sections 1.3.3 and 1.3.4

that the optimal-replication problem can be solved via stochastic dynamic programming for

a mean-squared-error loss function and Markov state dynamics, and that the solution can be

implemented as an exact and efficient recursive algorithm. In Sections 1.4 and 1.5, we apply

this algorithm to a variety of derivative securities in incomplete markets and demonstrate

its practical relevance analytically and numerically.

Another motivation is that a symmetric loss function is the most natural choice when we

have no prior information about whether the derivative to be replicated is being purchased

or sold. Indeed, when a derivatives broker is asked by a client to provide a price quote,

the client typically does not reveal whether he is a buyer or seller until after receiving

both bid and offer prices. In such cases, asymmetric loss functions are inappropriate since

positive replication errors for a long position become negative replication errors for the short

position.

Of course, in more structured applications such as Duffie and Jackson (1990) in which

investors' preferences, budget dynamics, and information sets are specified, it is not ap-

parent that mean-squared-error optimal-replication strategies are optimal from a particular

investor's point of view. However, even in these cases, a slight modification of the mean-

squared-error loss function yields optimal-replication strategies that have natural economic

interpretations. In particular, by defining mean-squared error with respect to an equivalent

martingale measure, the minimum production cost V* associated with this loss function can
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be interpreted as an equilibrium market price which, by definition, incorporates all aspects

of the economic environment in which the derivative security is traded.

The difficulty with such an interpretation is the multiplicity of equivalent martingale

measures in incomplete markets-it is only when markets are dynamically complete that the

equivalent martingale measure is unique (see Harrison and Kreps [1979]). It may be possible

to compute upper and lower bounds for e* over the entire set of equivalent martingale

measures, but without additional structure these bounds are likely to be extremely wide

and of little practical relevance.

Nevertheless, e* is a useful metric for the degree of market incompleteness, providing

an objective measure of the difficulty in replicating a derivative security. For example,

we shall see in Section 1.6 that although stochastic volatility and mixed jump-diffusion

processes both imply market incompleteness, our e-arbitrage strategy shows that for certain

parameter values, the former is a more difficult type of incompleteness to hedge than the

latter.

1.4 Illustrative Examples

To illustrate the scope of the e-arbitrage approach to the optimal-replication problem, we

apply the results of Section 1.3 to four specific cases for the return-generating process:

state-independent returns (Section 1.4.1), geometric Brownian motion (Section 1.4.2), a

jump-diffusion model (Section 1.4.3), and a stochastic volatility model (1.4.4).
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1.4.1 State-Independent Returns

Suppose that stock returns are state-independent so that

Pi = Pi-1(1 + i- 1) (1.34)

where Xi-1 is independent of the current stock price and all other state variables. his,

together with the Markov assumption (A3), implies that returns are statistically indepen-

dent (but not necessarily identically distributed) through time. Also, let the payoff of the

derivative security F(PT) depend only on the price of the risky asset at time T.

In this case, there is no need for additional state variables Zi and the expressions in

Theorem 1.1 simplify to:

aN = 1 , bN(PN) = F(PN) , CN(PN) = (1.35)

and for i = N-1,... ,0,

2a
2

ai a+- 2 (1.36)
aTi+ 

bi(P) = E[bi+1(Pj(1 +j))]Pi] - Cov[Oi,bj+l(Pi(1 +O))[Pi] (1.37)
2ri

ci(Pi) = E[cj+l(Pi(1 +q i))jPi] + a+ {UVar[b+l(P(1+Oi))Pi]

Cov [i, bi+l (Pi(1 + qi))Pi]2 } (1.38)

Pi(Pi) = ibi+l(P( +0 l (1.39)(o= 2 + 2)p(
Pi

qi(Pi) = (o? _ A?)pi (1.40)
(a +j)P
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where pi = E[i] and 0-2 = Var[bi].

1.4.2 Geometric Brownian Motion

Let the stock price process follow the geometric Brownian motion of Black and Scholes

(1973) and Merton (1973). We show that the -arbitrage approach yields the Black-

Scholes/Merton results in the limit of continuous time, but in discrete time there are impor-

tant differences between the optimal-replication strategy of Theorem 1.1 and the standard

Black-Scholes/Merton delta-hedging strategy.

For notational convenience, let all discrete time intervals [ti, ti+l) be of equal length

ti+ - ti = At. The assumption of geometric Brownian motion then implies:

Pi+1 = Pi (1 + Xi) (1.41)

log(1 + qi) = (t- 2)At + zi (1.42)- At~~~~~~i ~~(1.42)
Zi "JV(0, 1) . (1.43)

Recall that for At < 1 (a large number of time increments in [0, T]), the following approx-

imation holds (see, for example, Merton [1992, Chapter 3]):

qi * K(aAt, a2At) + O(At3/ 2)

This, and Taylor's theorem, imply the following approximations for the recursive relations
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(1.36)-(1.38) of Section 1.4.1:

Var [bi+l (Pi (1

Cov [qOi, bi+1 (Pi (1

E [bi+l (Pi (1

+ i) )lPi]

+ qi))IPi]

+ Oi))lPi]

E[Ci+l(Pi(1 + - i))lP]

= 2ct+ O(At2)= b'i+ (Pi)f2p?5t + o(a )

= b'i+ (Pi)O2 PiAt + O(At2)

= bi+l(Pi) + b (Pi_l)lPiAt +

d2

b' +O(Pi) P2 t -+ O(At2)

= ci(Pi) + i+l(Pi_l)pPiAt +

c(t)-Pi2At + O(At2)2

We can then rewrite (1.37)-(1.38) as

2
bi(Pi) = bi+l(Pi) + b+l(Pi) Pi2t + O(

i+1 i
2nd conclud t yst)i(Pi) = ci+i(Pi) + Cci+(Pi_)PPit + (P)P 2 t + O(t2)

and conclude that the system (1.37)-(1.38) approximates the following system of PDE's

ab(t, P)
ct

ac(t, P)
at

£72P2 02b(t, P)
2 aP 2

ac(t, P) _ 
2p 2 02c(t, P)= _ 2,pP.

ap 2 OP2

(1.44)

(1.45)

up to O(At) terms. But (1.44) is the Black and Scholes (1973) PDE, hence we see that in the

limit of continuous trading, i.e., as N -+ oo and At -+ 0 for a fixed T NAt, the discrete-

time

optimal-replication strategy of Theorem 1.1 characterizes the Black and Scholes (1973)

and Merton (1973) models.
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Moreover, the expression for c(t, P), (1.45), is homogeneous, hence c(t, P) _ due to the

boundary condition c(T, ) = 0. This is consistent with the fact that in the Black-Scholes

case it is possible to replicate the option exactly, so that the replication error vanishes in

the continuous-time limit.

In particular, it can be shown that the components of the discrete-time

optimal-replication strategy (1.13) converge to the following continuous-time counterparts:

ab P
Pi - qibi -+ P ' qi - 2p

hence the continuous-time limit of the optimal-replication strategy 0*(-) is given by:

O*(t, Vt, Pt) = b(t, Pt) = [- -[-b(t, Pt)] . (1.46)aPt u 2Pt

Now at time t = 0, and for the minimum production-cost initial wealth VO*, this expression

reduces to

0*(ovPO*,o) = ob(O, Po)
19Po

since VO* = b(O, Po). But exact replication is possible in this case, hence the value of the

replicating portfolio is always equal to b(t, Pt) for every realization of the stock price process,

i.e.,

1t = b(t, Pt)
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for all t E [0, T], which implies that

O*(t, Vt Pt) = Ob(t,Pt) (1.47)

As expected, for every realization of the stock price process the optimal-replication strategy

coincides with the delta-hedging strategy given by the Black-Scholes hedge ratio. However,

note that the functional form of (1.46) is different from the Black-Scholes hedging formula-

the optimal-replication strategy depends explicitly on the value of the replicating portfolio

vt.

1.4.3 Jump-Diffusion Models

In this section, we apply results of Section 1.3 to the replication and pricing of options

on a stock with mixed jump-diffusion price dynamics. As before, we assume that all time

intervals ti+l - ti = At are regularly spaced. Following Merton (1976), we assume the

following model for the stock price process:

Pi+l = Pi(1 + i) (1.48)
n,

log(1 + i) = (t - Ak - -)At + av/AtZi + E log Y (1.49)
2

j=0

Zi JA(0, 1) (1.50)

k = E[Yj- 1] (1.51)

Prob(ni = m) = e- A t (AAt)m (1.52)
M!

where the jump magnitudes Yj} are independently and identically distributed random

variables and jump arrivals follow a Poisson process with constant arrival rate A.

We consider two types of jumps: jumps of deterministic magnitude, and jumps with
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lognormally distributed jump magnitudes. In the first case:

Y = 1 + . (1.53)

If we set a - 0 in (1.48), this model corresponds to the continuous-time jump process

considered by Cox and Ross (1976). In the second case:

log Yi - A(0, 6 2) . (1.54)

There are two methods of calculating the optimal-replication strategy for the mixed

jump-diffusion model. One method is to begin with the solutions of the dynamic program-

ming problem given in Sections 1.3.3 and 1.3.4, derive a limiting system of partial differential

equations as in Section 1.4.2, and solve this system numerically, using one of the standard

finite difference schemes.

The second method is to implement the solution of the dynamic programming problem

directly, without the intermediate step of reducing it to a system of PDE's.

The advantage of the second method is that it treats a variety of problems in a unlli-

form fashion, the only problem-dependent part of the approach being the specification of

the stochastic process. On the other hand, the first approach yields a representation of

the solution as a system of PDE's, which can often provide some information about the

qualitative properties of the solution even before a numerical solution is obtained.

With these considerations in mind, we shall derive a limiting system of PDE's for the

deterministic-jump-magnitude specification (1.53) and use it to find conditions on the pa-

rameters of the stochastic process which allow exact replication of the option's payoff, or,

equivalently, arbitrage pricing. For the lognormal-jump-magnitude specification (1.54), we
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shall obtain numerical solutions directly from the dynamic programming algorithm of The-

orem 1.1.

The Continuous-Time Limit

To derive the continuous-time limit of (1.36)-(1.38) we follow the same procedure as in

Section 1.4.2 which yields the following system of PDE's:

= - A[b(t, P(1 + 3)) - b(t, P)] + ASP b( P )

A u [p ab(t, P)AJ2 + . 2 L AP

2 P2 2 b(t, P)

2 aP2

= - [c(t, P(1 + 3)) - c(t, P)]

Ao2

- (_ A)pac(t, P) 

P(1 + 3)) - b(t,

a2P2 02c(t, P)
2 OP 2

P)]] 

(1.57)
2

with boundary conditions:

a(T)

c(T, P)

b(T,P)

= 1

= 0

= F(P)

(1.58)

(1.59)

(1.60)

We can use the boundary conditions to solve (1.57):

a(t)
2= exp(t-T) ] .

= exp[ A 2 2 t-T ]. (1.61)
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ac(t, P)
at

[b(t, P(1 + 6)) - b(t P)]] (1.55)

da(t)
dt

1.56)jPa[ t )_ bt



The optimal-replication strategy is given by:

0*(t, Vt, Pt) = (Pt) - + 2 [V - b(t, Pt)] - A2 2 (t, Pt) +
aPt (AJ2+ U2)pt .622 apt

(A62 + a2)pt [b(t,Pt(1 + 6)) - b(t, Pt)] .(1.62)

For exact replication to be possible, c(t, P) _ 0 must be a solution of (1.56). This

implies that (1.56) is homogeneous, i.e.,

A2 2btP
AuX2 b(t, P) _ -[b(t, P(1 + 6)) - b(t, P)] = 0 (1.63)

A52 + 0,2 9P ~t

for all b(t,P) satisfying (1.55), which is equivalent to

ASa2 = 0. (1.64)

Condition (1.64) is satisfied if at least one of the following is true:

* Jumps occur with zero probability.

* Jumps have zero magnitude.

* The diffusion coefficient is equal to zero, i.e., stock price follows a pure jump process.

But these are precisely the conditions for the arbitrage-pricing of options on mixed jump-

diffusion assets, e.g., Merton (1976).

Perturbation Analysis with Small Jump Amplitudes

Consider the behavior of b(t, P) and c(t, P) when the jump magnitude is small, i.e., < 1.

In this case the market is "almost complete" and solution of the option replication problem

is obtained as a perturbation of the complete-markets solution of Black and Scholes (1973)
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and Merton (1973). In particular, we treat the amplitude of stock price jumps as a small

parameter and look for a solution of (1.55)-(1.60) of the following form:

b(t, P) = bo(t, P) + bl(t, P)

c(t, P) = o (t, P) + C1Cl(t, P)

After substituting this expansion

bo(t, P), b2(t, P), and c4 (t, P) must

tions:

Obo(t, P)
Ot

ab2(t, P)
at

0C4 (t, P)
at

+ 2b2(t,P) + (1.65)

+ 2 c2(t,P) + 63C3(t,P) + 4c4(t,P) + -.. (1.66)

into (1.56)-(1.60), it is apparent that the functions

satisfy the following system of partial differential equa-

a2 P2 02bo(t, P)
2 OP2

AP2 2 bo(t, P)
2 OP2

= -P aC4(tP)- 2p2 02 c4 (t,P) a(t) Ap4 2bo(t, p))2
OP 2 OP2 - 4 aOp2

with boundary conditions:

and

bo (T, P)

b2(T, P)

c4 (T, P)

= F(P)

= 0

= 0

bl = C2 = C3 = 0.
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System (1.67)-(1.72) can be solved to yield:

b(t, P) = bo(t, P) + -2 [bo(t, P)-F(P)] + 0(63) (1.73)

where bo(t, P) is the option price in the absence of a jump component, i.e., the Black-Scholes

formula in the case of put and call options. Observe that for an option with a convex payoff

function bo(t, P) > F(P), which implies that b(t, P) > bo(t, P), i.e., the addition of a small

jump component to geometric Brownian motion increases the price of the option. This

qualitative behavior of the option price is consistent with the results in Merton (1976)

which were obtained with equilibrium arguments.

The optimal-replication strategy (1.62) is given by:

0 (t,Vt, Pt) = bo (t Pt) + aP [bo (t, Pt) - Vt] +apt 0 12pt

A2 [abo (tPt)_ aF(Pt) + t- F(Pt)+ 0(63) . (1.74)

and the corresponding replication error is:

c(t,P) = 64c4(t,P) + 0(56) = 0(54) (1.75)

where c4(t,P) solves (1.69) and (1.72).

Equations (1.73) and (1.74) provide closed-form expressions for the replication cost and

the optimal-replication strategy when the amplitude of jumps is small, i.e., when markets

are almost complete, and (1.75) describes the dependence of the replication error on the

jump magnitude.
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1.4.4 Stochastic Volatility

Let stock prices follow a diffusion process with stochastic volatility as in Hull and White

(1987) and Wiggins (1987):

dPt = laPtdt + tPtdWpt (1.76)

det = g(at)dt + rutdWat (1.77)

where Wpt and Wat are Brownian motions with mutual variation dWptdWt = pdt.

The Continuous-Time Solution

Although applying the results of Section 1.3 to (1.76)-(1.77) is conceptually straightforward,

the algebraic manipulations are quite involved in this case. A simpler alternative to deriving

a system of PDE's as the continuous-time limit of the solution in Theorem 1.1 is to formulate

the problem in continuous time at the outset and solve it using continuous-time stochastic

control methods. This approach simplifies the calculations considerably.

Specifically, the pair of stochastic processes (Pt, Pt) satisfies assumptions of Section 1.3.4,

therefore results of this section can be used to derive the optimal-replication strategy, the

minimum production-cost of optimal replication, and the replication error. In particular,

the application of the results of Section 1.3.4 to (1.76)-(1.77) yields the following system of
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A2 aa(t, )
-a(t, a) - (gla) + 2pO) a

1 (p Oa(t ,a)) 2 1 2
2 a(t, a)

a (t, a) \ 9, / 2 a 2

-( ) ab(t, p, a) _ 2 2 a2 b(t, P, a)
Ocr 2 Ocr

c2p 2 a02b(t, P, a) a2b(tP, )
1 a 2

- pna 2P P O
2) r2 oa(t, a) Ob(t, P, a)

( -- p2) _ n_ n_
at , U) cUU UO

Oc(t, P, a)
at

ac(t, P, a)- g(a) aa

pKUa2P 02c(t, P, a)

a(t, a)r2 2 (p 2 1)

ac(t, P, a) n2a2 02c(t, P, a)
2 aa 2

c2p2 a2c(t, P, a)
2 +p2

ab(t,P,a) 2

a J
(1.80)

with boundary conditions:

b(T, P, a) = F(P, ) , c(T,P, aT) = .

The optimal-replication strategy is given by:

ab(t, Pt, at)
aPt

pn ab(t, Pt, at)
Pt Oat

Vt - b(t, Pt, at)
a(t, at)

p a(t, at) [t - b(t,P )]

Exact replication is possible when the following equation is satisfied:

h2(p2 _ 1) = 0.
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aa(t, a)
at

ab(t, P, a)
at

(1.78)

(1.79)

x

(1.81)

OTIt Vt Pt, Olt)



and this corresponds to the following special cases:

* Volatility is a deterministic function of time.

* The Brownian motions driving stock prices and volatility are perfectly correlated.

Both of these conditions yield well-known special cases where arbitrage-pricing is possible

(see, for example, Geske [1979] and Rubinstein [1983]). If we set = g(u) = 0, (1.79)

reduces to the Black and Scholes (1973) PDE.

1.5 Numerical Analysis

The essence of the -arbitrage approach to the optimal-replication problem is the recogni-

tion that although perfect replication may not be possible in some situations, the optimal-

replication strategy of Theorem 1.1 may come very close. How close is, of course, an em-

pirical matter hence in this section we present several numerical examples that complement

the theoretical analysis of Section 1.4.

In Section, 1.5.1 we describe our numerical procedure and apply it to the case of geo-

metric Brownian motion i Section 1.5.2, a mixed jump-diffusion model with a lognormal

jump magnitude in Section 1.5.3, a stochastic volatility model in Section 1.5.4, and to a

path-dependent option to "sell at the high" in Section 1.5.5.

1.5.1 The Numerical Procedure

To implement the solution (1.17)-(1.21) of the optimal-replication problem numerically,

we begin by representing the functions ai(P, Z), bi(P, Z), and ci(P, Z) by their values

over a spatial grid {(Pi, Zk) : j = 1,... ,J,k = 1,... ,K}. For any given (P,Z), val-

ues ai(P, Z), bi(P, Z), and ci(P, Z) are obtained from ai(Pi, Zk), bi(Pi, Zk), and ci(Pi, Zk)
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using a piece-wise quadratic interpolation. This procedure provides an accurate represen-

tation of ai(P, Z), b(P, Z), and ci(P, Z) with a reasonably small number of sample points.

The values ai(PJ, Zk), b(Pi, Zk), and (PJ, Zk) are updated according to the recursive

procedure (1.17)-(1.19).

We evaluate the expectations in (1.17)-(1.19) by replacing them with the corresponding

integrals. For all the models considered in this paper, these integrals involve Gaussian

kernels. We use Gauss-Hermite quadrature formulas (see, for example, Stroud [1971]) to

obtain efficient numerical approximations of these integrals.

In all cases except for the path-dependent options, we perform numerical computations

for a European put option with a unit strike price (K = 1), i.e., F(PT) = max[0, K-PT],

and a six-month maturity. It is apparent from (1.17)-(1.21) that for a call option with the

same strike price K, the replication error ci(.) is the same as that of a put option, and the

replication cost bi(.) satisfies the put-call parity relation. We assume 25 trading periods,

defined by to = 0, t+ 1 -ti = At = 1/50.

1.5.2 Geometric Brownian Motion

Let stock prices follow a geometric Brownian motion, which implies that returns are log-

normally distributed as in (1.41)-(1.43). We set /u = 0.07 and = 0.13, and to cover a

range of empirically plausible parameter values, we vary each parameter by increasing and

decreasing them by 25% and 50% while holding the values of other parameter fixed. Fig-

ure 1-1 displays the minimum replication cost V* minus the intrinsic value F(Po), for the

above range of parameter values, as a function of the stock price at time 0.

Figure 1-1 shows that V0* is not sensitive to changes in and increases with a. This is

not surprising given that V0* approximates the Black-Scholes option pricing formula.
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Figure 1-1: The difference between the replication cost and the intrinsic value of a six-month
maturity European put option, plotted as a function of the initial stock price. The stock
price follows a geometric Brownian motion with parameter values jL = 0.07 and a = 0.13
corresponding to the solid line. In Panel (a), IL is varied. and or is fixed; in Panel (b), a
is varied and is fixed. In both cases, the variation in each parameter is obtained by
multiplying its original value by 1.25 (dashed-dotted line), 1.5 (dots), 0.75 (dashed line)
and 0.5 (pluses).
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Figure 1-2: The replication error of a six-month maturity European put option, plotted as
a function of the initial stock price. The stock price follows a geometric Brownian motion
with parameter values ,u = 0.07 and a = 0.13 corresponding to the solid line. In Panel (a),
g is varied and ar is fixed; in Panel (b), a is varied and t is fixed. In both cases, the variation
in each parameter is obtained by multiplying its original value by 1.25 (dashed-dotted line),
1.5 (dots), 0.75 (dashed line) and 0.5 (pluses).
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Figure 1-2 shows the dependence of the replication error * on the initial stock price.

Again we observe low sensitivity to the drift p but, as in Figure 1-1, the replication error

tends to increase with the volatility. Also, the replication error is highest when the stock

price is close to the strike price.

Another important characteristic of the replication process is the ratio of the replication

error to the replication cost e*/V0*, which we call the relative replication error. This ratio

is more informative than the replication error itself since it describes the replication error

per dollar spent, as opposed to the error of replicating a single option contract.

The dependence of the relative replication error on the initial stock price is displayed

in Figure 1-3. This figure shows that the relative replication error is an increasing function

of the initial stock price, i.e., it is higher for out-of-the-money options. Also, the relative

replication error decreases with volatility for out-of-the-money options. This is not surpris-

ing given that it was defined as a ratio of the replication error to the hedging cost, both of

which are increasing functions of volatility. According to this definition, the dependence of

the relative replication error on volatility is determined by the tradeoff between increasing

replication error and increasing replication cost.

1.5.3 Jump-Diffusion Models

In our numerical implementation of the jump-diffusion model (1.48)-(1.52) and (1.54),

we restrict the number of jumps over a single time interval to be no more than three,

which amounts to modifying the distribution of ni in (1.49), originally given by (1.52).'

17 This "truncation problem" is a necessary evil i the estimation of jump-diffusion models. See Ball and
Torous (1985) for further discussion.
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Figure 1-3: The relative replication error of a six-month maturity European put option
(relative to the replication cost), plotted as a function of the initial stock price. The stock
price follows a geometric Brownian motion with parameter values P = 0.07 and a = 0.13
corresponding to the solid line. In Panel (a), /p is varied and a is fixed; in Panel (b), a
is varied and / is fixed. In both cases, the variation in each parameter is obtained by
multiplying its original value by 1.25 (dashed-dotted line), 1.5 (dots), 0.75 (dashed line)
and 0.5 (pluses).

Specifically, we replace (1.52) with

Prob[ni = m]

Prob[ni = 0]

-xt(AAt) m
= At ,) m = 1,2,3

rn! 
3

= 1 - E Prob[ni = m].
m=1

Besides this adjustment in the distribution of returns, our numerical procedure is exactly

the same as in Section 1.4.2. We start with the following parameter values:

= 0.07 , a = 0.106 , A = 25 , = 0.015.

Then we study sensitivity of the solution to the parameter values by increasing and decreas-

ing them by 25% and 50% while holding the other parameter values fixed. Our numerical
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Figure 1-4: The difference between the replication cost and the intrinsic value of a six-month
maturity European put option, plotted as a function of the initial stock price. The stock
price follows the mixed jump-diffusion process given in (1.48)-(1.51), (1.54), (1.82), and
(1.83) with parameter values / = 0.07, = 0.106, A = 25, and = 0.015 corresponding
to the solid line. In Panels (a)-(d), pu, a, A, and 6 are each varied, respectively, while
the other parameter values are held fixed. The variation in each parameter is obtained by
multiplying its original value by 1.25 (dashed-dotted line), 1.5 (dots), 0.75 (dashed line),
and 0.5 (pluses).
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results are summarized in Figures 1-4, 1-5, and 1-6.
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Figure 1-5: The replication error of a six-month maturity European put option, plotted as a
function of the initial stock price. The stock price follows the mixed jump-diffusion process
given in (1.48)-(1.51), (1.54), (1.82), and (1.83) with parameter values p = 0.07, a = 0.106,
A = 25, and a = 0.015 corresponding to the solid line. In Panels (a)-(d), ku, a, A, and 3 are
each varied, respectively, while the other parameter values are held fixed. The variation in
each parameter is obtained by multiplying its original value by 1.25 (dashed-dotted line),
1.5 (dots), 0.75 (dashed line), and 0.5 (pluses).

Figure 1-4 shows that the replication cost VJ is not sensitive to the drift rate p and is

increasing in volatility a, the jump intensity A, and the standard deviation 3 of the jump

magnitude. It is most sensitive to a. Figure 1-5 shows that the replication error e* is not

sensitive to IL and increases with all other parameters, with the highest sensitivity to 3.

Finally, Figure 1-6 shows that the relative replication error e*/V* is sensitive only to a and

it decreases as a function of ar for out-of-the-money options.
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Figure 1-6: The relative replication error of a six-month maturity European put option
(relative to the replication cost), plotted as a function of the initial stock price. The stock
price follows the mixed jump-diffusion process (1.48)-(1.51), (1.54), (1.82), and (1.83) with
parameter values / = 0.07, a = 0.106, A = 25, and a = 0.015 corresponding to the solid line.
In Panels (a)-(d), A, a, A, and are each varied, respectively, while the other parameter
values are held fixed. The variation in each parameter is obtained by multiplying its original
value by 1.25 (dashed-dotted line), 1.5 (dots), 0.75 (dashed line), and 0.5 (pluses).
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1.5.4 Stochastic Volatility

We begin by assuming a particular functional form for g(a) in (1.77):

g(a)

We also assume that the Brownian motions driving the stock price and volatility are un-

correlated. Since the closed-form expressions for the transition probability density of the

diffusion process with stochastic volatility are not available, we base our computations

on the discrete-time approximations of this process.8 The dynamics of stock prices and

volatility are described by

Pi+1

cri+I

= Pi exp ((i -/2) t + izPi)

= ai exp ((-( i -) - n2/2)At + nvzai)

(1.84)

(1.85)

where Zpi, Zti N JAf(O, 1) and E[zpizi] = 0. The parameters of the model are chosen to be

= 0.07 , C(=0.153 , =2 , =0.4. (1.86)

We also assume that at time t = 0 volatility ar0 is equal to 0.13. As before, we study

sensitivity of the solution to parameter values. Our findings are summarized in Figures 1-

7, 1-8, and 1-9.

We do not display the dependence on IL in these figures since the sensitivity to this

18This is done mostly for convenience, since we can approximate the transition probability density using
Monte Carlo simulations. While the discrete-time approximations lead to significantly more efficient nu-
merical algorithms, they are also consistent with many estimation procedures that replace continuous-time
processes with their discrete-time approximations (see, for example, Ball and Torous [1985] and Wiggins
[1987]).
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Figure 1-7: The difference between the replication cost and the intrinsic value of a six-month
maturity European put option, plotted as a function of the initial stock price. The stock
price follows the stochastic volatility model (1.84)-(1.85) with parameter values / = 0.07,

= 0.153, a = 2, n = 0.4, and ao = 0.13 corresponding to the solid line. In Panels (a)-(d),
C, , nz, and o0 are each varied, respectively, while the other parameter values are held
fixed. The variation in each parameter is obtained by multiplying its original value by 1.25
(dashed-dotted line), 1.5 (dots), 0.75 (dashed line), and 0.5 (pluses).
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Figure 1-8: The replication error of a six-month maturity European put option, plotted
as a function of the initial stock price. The stock price follows the stochastic volatility
model (1.84)-(1.85) with parameter values p = 0.07, = 0.153, = 2, = 0.4, and
oro = 0.13 corresponding to the solid line. In Panels (a)-(d), , , rn, and o are each
varied, respectively, while the other parameter values are held fixed. The variation in each
parameter is obtained by multiplying its original value by 1.25 (dashed-dotted line), 1.5
(dots), 0.75 (dashed line), and 0.5 (pluses).
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Figure 1-9: The relative replication error of a six-month maturity European put option
(relative to the replication cost), plotted as a function of the initial stock price. The stock
price follows the stochastic volatility model (1.84)-(1.85) with parameter values = 0.07,

= 0.153, = 2, = 0.4, and co = 0.13 corresponding to the solid line. In Panels (a)-(d),
C, , , and a0 are each varied, respectively, while the other parameter values are held
fixed. The variation in each parameter is obtained by multiplying its original value by 1.25
(dashed-dotted line), 1.5 (dots), 0.75 (dashed line), and 0.5 (pluses).
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parameter is so low. Figure 1-7 shows that the replication cost is sensitive only to the initial

value of volatility ao and, as expected, the replication cost increases with 0o. Figure 1-8

shows that the replication error is sensitive to n. and a0 and is increasing in both of these

parameters. According to Figure 1-9, the relative replication error is increasing in K. It also

increases in a0 for in-the-money options and decreases for out-of-the-money options.

In addition to its empirical relevance, the stochastic volatility model (i.76)-(1.77) also

provides a clear illustration of the use of c* as a quantitative measure of dynamic market-

incompleteness. Table 1.5.4 reports the results of Monte Carlo experiments in which the

optimal-replication strategy is implemented for six sets of parameter values for the stochastic

volatility model, including the set that yields geometric Brownian motion.

Table 1.2: Monte Carlo simulation of the optimal-replication strategy 9* for replicating
a six-month at-the-money European put-option, for six sets of parameter values of the
stochastic volatility model (1.84)-(] .85), including the set of parameter values that yields a
geometric Brownian motion (last row). For each set of parameter values, 1,000 independent
sample paths were simulated, each path containing 25 periods, and P0 = 1.

For each set of parameter values, 1,000 independent sample paths of the stock price are

simulated, each sample path containing 25 observations, and for each path the optimal-

65

Model Performance of Optimal Replication Strategy

0o a K O * * 0 0*

0.13 0.153 2.00 0.400 0.0374 0.0084 0.0086 -0.474 -0.44
0.13 0.137 1.50 0.200 0.0367 0.0067 0.0068 -0.475 -0.43
0.13 0.133 1.00 0.100 0.0366 0.0062 0.0063 -0.475 -0.42
0.13 0.131 0.50 0.050 0.0366 0.0060 0.0059 -0.475 -0.41
0.13 0.130 0.25 0.025 0.0365 0.0060 0.0060 -0.475 -0.43
0.13 0.130 0.00 0.000 0.0365 0.0060 0.0062 -0.475 -0.42



replication strategy is implemented. The averages (over the 1,000 sample paths) of the

minimum production cost V0*, the realized replication error *, the initial optimal stock

holdings 0*, and the average optimal stock holdings 0* (over the 25 periods), is reported in

each row. For comparison, the theoretical replication error e* is also reported.

Since stochastic volatility implies dynamically incomplete markets whereas geometric

Brownian motion implies the opposite, these six sets of simulations comprise a sequence of

models that illustrate the fact that market completeness need not be a binary characteris-

tic. In particular, Table 1.5.4 shows that as the parameter values move closer to geometric

Brownian motion, the average replication error E* decreases from 0.0086 to 0.0060. More-

over, the decrease between the first and second rows is considerably larger than the decrease

between the second and third rows-the second and third rows imply price processes that

are closer to each other in their degree of market completeness than that of the first row.

Such specific rank orderings and sharp numerical comparisons are simply unavailable from

standard dynamic equilibrium models that have been used to model market incompleteness.

Of course, * is only one of many possible measures of market incompleteness-a canon-

ical measure seems unlikely to emerge from the current literature-nevertheless it is an

extremely useful measure given the practical implications that it contains for dynamically

hedging risks.

1.5.5 Path-Dependent Options

We consider the option to "sell at the high" as described by Goldman et al. (1979), under

the assumption that the stock price follows the mixed jump-diffusion process (1.48)-(1.51),
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Figure 1-10: The replication cost of a six-month maturity European option to "sell at the
high", plotted as a function of the initial stock price. The stock price follows the mixed
jump-diffusion process (1.48)-(1.51), (1.54), (1.82), and (1.83) with parameter values m = 1,
/ = 0.07, r = 0.106, A = 25, and a = 0.015 corresponding to the solid line. In Panels (a)-
(d), , , A, and are each varied, respectively, while the other parameter values are held
fixed. The variation in each parameter is obtained by multiplying its original value by 1.25
(dashed-dotted line), 1.5 (dots), 0.75 (dashed line), and 0.5 (pluses).
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(1.54), (1.82), (1.83). We define the state variable Z:

Zo = m > Po

Zi+1 = max [Zi, Pi+l] 

According to this definition, Zi is the running maximum of the stock price process at time

ti. The initial value of Zi is m, i.e., we assume that at time 0 the running maximum is

equal to m.

The payoff of the option is given by

F(PT, ZT) = ZT- PT

In our numerical analysis we set m = 1 as a convenient normalization. Note that this

convention is just a change of scale and does not lead to any loss of generality.

The parameters for the stock price process are taken to be the same as in Section (1.4.3).

The sensitivity of the replication cost and replication error on the initial stock price and

parameters of the stock price process are reported in Figures 1-10, 1-11, and 1-12.

The qualitative behavior of the replication cost as a function of the initial stock price is

similar to that of the option price as described in Goldman et al. (1979).19 Figure 1-10 shows

that the replication cost VO is not sensitive to the drift rate p and is increasing in volatility a,

the jump intensity jumps A, and the standard deviation a of the jump magnitude. It is most

sensitive to a. These observations are consistent with the behavior of the replication error of

19 The difference between our model and that in Goldman et al. (1979) is that the latter assumes that
the stock price follows a geometric Brownian motion and that continuous-time trading is allowed. Also
the running maximum of the stock price process is calculated continuously, not over a discrete set of time
moments, as in our case.
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Figure 1-11: The replication error of a six-month maturity European option to "sell at the
high", plotted as a function of the initial stock price. The stock price follows the mixed
jump-diffusion process (1.48)-(1.51), (1.54), (1.82), and (1.83) with parameter values m = 1,

= 0.07, = 0.106, A = 25, and a = 0.015 corresponding to the solid line. In Panels (a)-
(d), , a, A, and are each varied, respectively, while the other parameter values are held
fixed. The variation in each parameter is obtained by multiplying its original value by 1.25
(dashed-dotted line), 1.5 (dots), 0.75 (dashed line), and 0.5 (pluses).
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Figure 1-12: The relative replication error of a six-month maturity European option to
"sell at the high" (relative to the replication cost), plotted as a function of the initial
stock price. The stock price follows the mixed jump-diffusion process (1.48)-(1.51), (1.54),
(1.82), and (1.83) with parameter values m = 1, = 0.07, = 0.106, A = 25, and = 0.015
corresponding to the solid line. In Panels (a)-(d), /y, a, A, and a are each varied, respectively,
while the other parameter values are held fixed. The variation in each parameter is obtained
by multiplying its original value by 1.25 (dashed-dotted line), 1.5 (dots), 0.75 (dashed line),
and 0.5 (pluses).
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the European put option in Section (1.4.3). According to Figure 1-11, the replication error

c* is not sensitive to and is increasing in all other parameters with the highest sensitivity

to 5 and a. Figure 1-6 shows that the relative replication error e*/Vo is sensitive to and

6. It is an increasing function of 6, while the sign of the change of e*/Vo with a depends on

the initial stock price Po.

1.6 Measuring the Degree of Market Incompleteness

In this section, we propose to measure the degree of market incompleteness by exploring the

sensitivity of the replication error and the replication cost of a particular option contract to

the specification of the stock-price dynamics. Specifically, we compare the following models:

geometric Brownian motion, a mixed jump-diffusion process, and a diffusion process with

stochastic volatility. The parameters of these models are calibrated to give rise to identical

values of the expected instantaneous rate of return and volatility, hence we can view these

three models as competing specifications of the same data-generating process.

1.6.1 Calibrating the Stochastic Processes

We consider a European put option with a unit strike price (K = 1) and a six-month

maturity, i.e., F(PT) = max[O, K-PT]. There are 25 trading periods, defined by ti+1 -ti =

At = 1/50. Since the closed-form expressions for the transition probability density of the

mixed jump-diffusion process and the process with stochastic volatility are not available, we

base our computations on the discrete-time approximations of these processes. The model

specifications and corresponding parameter values are:
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Stock Price

Figure 1-13: The difference between the replication cost and the intrinsic value of a six-
month maturity European put option, plotted as a function of the initial stock price. Several
processes for the stock price are plotted: geometric Brownian motion (1.41)-(1.43) (solid
line); the mixed jump-diffusion model (1.48)-(1.51), (1.54), (1.82), and (1.83) (dashed line);
and the stochastic volatility model (1.84)-(1.85) (dashed-dotted line). The parameter values
are given by (1.87), (1.88), and (1.89).
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1. Geometric Brownian Motion. Returns on the stock are lognormal, given by

(1.41)-(1.43). We use the following parameter values:

= 0.07 = 0.13. (1.87)

2. Mixed Jump-Diffusion. The distribution of returns on the stock is given by (1.48)-

(1.51), (1.54), (1.82), and (1.83). We use the following parameter values:

= 0.07 , = 0.106 , A = 25 , = 0.015 .

3. Diffusion with Stochastic Volatility.

given by (1.84)-(1.85). We assume that at

and the other parameter values are:

Stock-price and volatility dynamics are

time t = 0, volatility cro is equal to 0.13,

= 0.07 , =0.153 , =2 , = 0.4 . (1.89)

1.6.2 Numerical Results

Figures 1-13-1-15 and Table 1.6.2 summarize our numerical results. Figure 1-13 presents

the replication cost V* minus the intrinsic value F(Po) for the three models as a function

of the stock price at time t = 0. The hedging costs for the first two models are practically

identical, while the stochastic volatility model can give rise to a significantly higher hedging

costs for a deep-out-of-money option. Figure 1-14 and Table 1.6.2 shows the dependence of

the replication error * on the initial stock price.

All three models exhibit qualitatively similar behavior: the replication error is highest
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Table 1.3: Comparison of replication costs and errors of the optimal-replication strategy for
replicating a six-month European put option under competing specifications of price dy-
namics: geometric Brownian motion (1.41)-(1.43); the mixed jump-diffusion model (1.48)-
(1.51), (1.54), (1.82), and (1.83); and the stochastic volatility model (1.84)-(1.85). The
parameter values are given by (1.87), (1.88), and (1.89).

74

Price Dynamics Initial Stock Price P0

0.90 0.95 1.00 1.05 1.10

Replication Cost Minus Intrinsic Value (V* - F(Po))

Geometric Brownian Motion 0.0054 0.0161 0.0365 0.0176 0.0074
Jump/Diffusion 0.0053 0.0159 0.0364 0.0175 0.0074

Stochastic Volatility 0.0060 0.0168 0.0374 0.0185 0.0082

Replication Error (*)

Geometric Brownian Motion 0.0046 0.0058 0.0060 0.0052 0.0038
Jump/Diffusion 0.0051 0.0066 0.0068 0.0059 0.0043

Stochastic Volatility 0.0061 0.0079 0.0084 0.0074 0.0056

Relative Replication Error (e*/V0 *)

Geometric Brownian Motion 0.043 0.088 0.164 0.292 0.509
Jump/Diffusion 0.049 0.100 0.187 0.335 0.585

Stochastic Volatility 0.058 0.119 0.226 0.400 0.679
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Figure 1-14: The replication error of a six-month maturity European put option, plotted as a
function of the initial stock price. Several processes for the stock price are plotted: geometric
Brownian motion (1.41)-(1.43) (solid line); the mixed jump-diffusion model (1.48)-(1.51),
(1.54), (1.82), and (1.83) (dashed line); and the stochastic volatility model (1.84)-(1.85)
(dashed-dotted line). The parameter values are given by (1.87), (1.88), and (1.89).

close to the strike price. For our choice of parameter values the replication error is highest

for the stochastic volatility model and lowest for geometric Brownian motion. However, this

need not hold in general. As we demonstrate in Section 1.4.3, the replication error of the

mixed jump-diffusion process depends critically on a and A in (1.52, 1.54), thus, by varying

these parameters, one can reverse the order of the curves in Figure 1-14 without changing

the annualized volatility of the mixed jump-diffusion process.

The dependence of the relative replication error on the initial stock price is captured in

Figure 1-15. As in Figure 1-13, the relative replication errors for the first two models are

practically identical, while the stochastic volatility model can exhibit considerably higher

errors. Also, while the relative replication error can be significant, particularly for an out-

of-money option, the variation across the models is not as significant as one would expect.

When continuous-time trading is allowed, the replication error for the geometric Brownian
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Stock Price

Figure 1-15: The relative replication error of a six-month maturity European put option
(relative to the replication cost), plotted as a function of the initial stock price. Several
processes for the stock price are plotted: geometric Brownian motion (1.41)-(1.43) (solid
line); the mixed jump-diffusion model (1.48)-(1.51), (1.54), (1.82), and (1.83) (dashed line);
and the stochastic volatility model (1.84)-(1.85) (dashed-dotted line). The parameter values
are given by (1.87), (1.88), and (1.89).
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motion model is zero, while the other two models give rise to strictly positive replication

errors. This is an implication of the fact that the first model describes a dynamically com-

plete market, while the other two correspond to markets which are dynamically incomplete

(due to the absence of a sufficient number of traded instruments).

Nevertheless, as Figure 1-15 illustrates, the transition from continuous- to discrete-

time trading can smear the differences between these models, leading to relative replication

errors of comparable magnitude. This shows that the inability to trade continuously is just

as important a source of market incompleteness as the absence of traded instruments.

1.7 Conclusion

We have proposed a method for replicating derivative securities in dynamically incomplete

markets. Using stochastic dynamic programming, we construct a self-financing dynamic

portfolio strategy that best approximates an arbitrary payoff function in a mean-squared

sense. When markets are dynamically complete, as in the Black and Scholes (1973) and

Merton (1973) models, our optimal-replication strategy coincides with the delta-hedging

strategies of arbitrage-based models. Moreover, we provide an explicit algorithm for com-

puting such strategies, which can be a formidable challenge in spite of market completeness,

e.g., path-dependent derivatives such as "look-back" options.

When markets are not dynamically complete, as in the case of options on assets with

stochastic volatility or with jump components, our approach yields the minimum production

cost of a self-financing portfolio strategy with a terminal value that comes as close as possible

(in a mean-squared sense) to the option's payoff. This is the essence of the -arbitrage

approach to synthetically replicating a derivative security.

We also argue that the replication error of the optimal-replication strategy can be used
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as a quantitative measure for the degree of market incompleteness. Despite the difficulties

in making welfare comparisons between markets with different types of incompleteness (see,

for example, Duffie [1987], Duffie and Shafer [1985, 1986], and Hart [1974]), the minimum

replication error of an -arbitrage strategy does provide one practical metric by which

market completeness can be judged. After all, if it is possible to replicate the payoff of

a derivative security to within some small error , the market for that security may be

considered complete for all practical purposes even if e is not zero.

Of course, this is only one of many possible measures of market completeness and we

make no claims of generality here. Instead, we hope to have shown that Merton's (1973)

seminal idea of dynamic replication has far broader implications than the dynamically-

complete-markets setting in which it was originally developed. We plan to explore other

implications in future research.
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1.8 Appendix

The proofs of Theorems 1.2 and 1.1 are conceptually straightforward but notationally quite

cumbersome. Therefore, we present only a brief sketch of the proofs below-interested

readers can contact the authors for the more detailed mathematical appendix.

1.8.1 Proof of Theorem 1.1

The proof of Theorem 1.1 follows from dynamic programming. For i = N, (1.14)-(1.16)

are clearly true, given (1.10). We now show that (1.17)-(1.21) describe the solution of the

optimization problem in (1.9). First, as we observed in Section 1.3.3, the functions ai(.,.)

are positive. Together with (1.3) this implies that

E [i+j V + O(P+-Pi), P+j, Z+j Vi, Pi, Zi]

is a convex function of Oi. Therefore, we can use the first-order condition to solve the

optimization problem in (1.11):

diE [Ji+ (Vi + (Pi+ - Pi),Pi+l, Zi+l) Vi, Pi, Zi = 0, (1.90)

where Ji+( -, ) is given by (1.12). Equation (1.90) is a linear equation in i and it is

straightforward to check that its solution, *(i, ,Pi, Zi), is given by (1.13), (1.17), and

(1.18). We now substitute (1.13) into (1.3) and use (1.11) to calculate

Ji(Vi, Pi, Zi) =

E [Ji+1 (Vi + *(i, Vi, Pi, Zi) (Pi+-Pi),Pi+,Zi+l) Vi, Pi, Zi] . (1.91)
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Equations (1.19)-(1.21) are obtained by rearranging terms in (1.91). 

1.8.2 Proof of Theorem 1.2

The more tedious algebraic manipulations of this proof were carried out using the symbolic

algebra program Maple. Therefore, we shall outline the main ideas of the proof without

reporting all of the details.

The cost-to-go function J(t, Vt, Pt, Zt) satisfies the dynamic programming equation

cO2min 0" 'U 02 0j~Tt + zIjZi- a + -SijizPi ia + 0tPOZO +ct 2-mi-- Ot I 0Z - 2 ~ '°'ggJi Z j
q Oti°gZo-W +--j0 i,j=O

I (9troOZO)2 92 02 1J~ = 0 (1.92)
2 (Qt 7W-o)2aa 2 + t UaO'jPOjZOZj awazj

j=0

with boundary condition:

J(T, VT, PT, ZT) = [VT - F(PT, ZT)] 2 (1.93)

where some of the functional dependencies were omitted to simplify the notation.

We must now check that the function J(t, Vt, Pt, Zt), given by (1.26), (1.27)-(1.30), and

the optimal control (1.31), satisfies (1.92)-(1.93). Boundary conditions (1.30) immediately

imply (1.93). Next we substitute (1.26) into (1.92). It is easy to check, using equation

(1.27), that function a(.) is positive. Therefore, the first-order condition is sufficient for the

minimum in (1.92). This condition is a linear equation in Ot which is solved by (1.31). It is

now straightforward to verify that, whenever functions a(), b(-), c(.) satisfy (1.27)-(1.29),

(1.92) is satisfied as well. 
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Chapter 2

When Is Time Continuous? (joint with

Dimitris Bertsimas and Andrew Lo)

2.1 Abstract

We study the tracking error, resulting from the discrete-time application of continuous-time

delta-hedging procedures for European options. We characterize the asymptotic distribu-

tion of the tracking error as the number of discrete time periods increases, and its joint

distribution with other assets. We introduce the notion of temporal granularity of the con-

tinuous time stochastic model that enables us to characterize the degree to which discrete

time approximations of continuous time models track the payoff of the option. We derive

closed form expressions for the granularity for a put or call option on a stock that follows a

geometric Brownian motion and a mean-reverting process. These expressions offer insight

into the tracking error involved in applying continuous-time delta-hedging in discrete time.

We also introduce alternative measures of the tracking error and analyze their properties.
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2.2 Introduction

Since Wiener's (1923) pioneering construction of Brownian motion and It6's (1951) theory

of stochastic integrals, continuous-time stochastic processes have become indispensible to

many disciplines ranging from chemistry and physics to engineering to biology to finan-

cial economics. In fact, the application of Brownian motion to financial markets pre-dates

Wiener's contribution by almost a quarter century (see Bachelier (1900)), and Merton's

(1973) seminal derivation of the Black and Scholes (1973) option-pricing formula in contin-

uous time-and, more importantly, his notion of delta hedging and dynamic replication-is

often cited as the foundation of today's multi-trillion dollar derivatives industry.

Indeed, the mathematics and statistics of Brownian motion have become so intertwined

with so many scientific theories that we often forget the fact that continuous-time processes

are only approximations to physically realizable phenomena. In fact, for the more theoret-

ically inclined, Brownian motion may seem more "real" than discrete-time discrete-valued

processes. Of course, whether time is continuous or discrete is a theological question best

left for philosophers. But a more practical question remains: under what conditions are

continuous-time models good approximations to specific physical phenomena, i.e., when

does time seem "continuous" and when does it seem "discrete"?

In this paper, we provide a concrete answer to this question in the context of continuous-

time derivative-pricing models, e.g., Merton (1973), by characterizing the replication errors

that arise from delta hedging derivatives in discrete time.

Delta-hedging strategies play a central role in the theory of derivatives and in our un-

derstanding of dynamic notions of spanning and market completeness. In particular, delta-

hedging strategies are recipes for replicating the payoff of a complex security by sophisticated

dynamic trading of simpler securities. When markets are dynamically complete (see, for
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example, Harrison and Kreps [1979] and Duffie and Huang [1985]) and continuous trading

is feasible, it is possible to replicate certain derivative securities perfectly. However, when

markets are not complete or when continuous trading is not feasible, e.g., trading frictions

or periodic market closings, perfect replication is not possible and the usual delta-hedging

strategies exhibit tracking errors. These tracking errors comprise the focus of our attention.

Specifically, we characterize the asymptotic distribution of the tracking errors of delta-

hedging strategies using continuous-record asymptotics, i.e., we implement these strategies

in discrete time and let the number of time periods increase while holcding the time span

fixed. Since the delta-hedging strategies we consider are those implied by continuous-time

models like Merton (1973), it is not surprising that tracking errors arise when such strategies

are implemented in discrete time, nor is it surprising that these errors disappear in the

limit of continuous time. However, by focusing on the continuous-record asymptotics of the

tracking error, we can quantify the discrepancy between the discrete-time hedging strategy

and its continuous-time limit, answering the question "When is time continuous?" in the

context of replicating derivative securities.

We show that the normalized tracking error converges weakly to a particular stochastic

integral and that the root-mean-squared tracking error is of order N -1 /2 where N is the

number of discrete time periods over which the delta hedging is performed. This provides

a natural definition for temporal granularity: it is the coefficient that corresponds to the

O(N - 1/ 2) term. We derive a closed-form expression for the temporal granularity of a

diffusion process paired with a derivative security, and propose this as a measure of the

"continuity" of time. The fact that granularity is defined with respect to a derivative-

security/price-process pair underscores the obvious: a need for specificity in quantifying

the approximation errors of continuous-time processes. It is impossible to tell how good
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an approximation a continuous-time process is to a physical process without specifying the

nature of the physical process.

In addition to the general usefulness of a measure of temporal granularity for continuous-

time stochastic processes, our results have other, more immediate applications. For example,

for a broad class of derivative securities and price processes, our measure of granularity

provides a simple method for determining the approximate number of hedging intervals

N* needed to achieve a target root-mean-squared-error : N* = g2 /5 2 where g is the

granularity coefficient of the derivative-security/price-process pair. This expression shows

that to halve the root-mean-squared-error of a typical delta-hedging strategy, the number

of hedging intervals must be increased approximately fourfold.

Moreover, for some special cases, e.g., the Black-Scholes case, the granularity coefficient

can be obtained in closed form, and these cases shed considerable light on several aspects

of derivatives replication. For example, in the Black-Scholes case, does an increase in

volatility make it easier or more difficult to replicate a simple call option? Common intuition

suggests that the tracking error increases with volatility, but the closed-form expression for

granularity (2.20) shows that the granularity achieves a maximum as a function of or and

that beyond this point, it becomes a decreasing function of a. The correct intuition is that

at lower levels of volatility, tracking error is an increasing function of volatility because

an increase in volatility implies more price movements and a greater likelihood of hedging

errors in each hedging interval. But at higher levels of volatility, price movements are

so extreme that an increase in volatility in this case implies that prices are less likely to

fluctuate near the strike price where delta-hedging errors are the largest, hence granularity

is a decreasing function of a. In other words, at sufficiently high levels of volatility, the

nonlinear payoff function of a call option "looks" approximately linear and is therefore easier
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to hedge. Similar insights can be gleaned from other closed-form expressions of granularity

(see, for example, Section 2.4.2).

In Section 2.3, we provide a complete characterization of the asymptotic behavior of the

tracking error for delta hedging an arbitrary derivative security, and formally introduce the

notion of granularity. To illustrate the practical relevance of granularity, in Section 2.4 we

obtain closed-form expressions for granularity in two specific cases: call options under geo-

metric Brownian motion, and under a mean-reverting process. In Section 2.5 we check the

accuracy of our continuous-record asymptotic approximations by presenting Monte Carlo

simulation experiments for the two examples of Section 2.4 and comparing them to the

corresponding analytical expressions. We present other extensions and generalizations in

Section 2.6 such as a characterization of the sample-path properties of tracking errors, the

joint distributions of tracking errors and prices, a PDE characterization of the tracking

error, and more general loss functions than root-mean-squared tracking error. We conclude

in Section 2.7.

2.3 Defining Temporal Granularity

The relationship between continuous-time and discrete-time models in economics and fi-

nance has been explored in a number of studies. One of the earliest examples is Merton

(1969), in which the continuous-time limit of the budget equation of a dynamic portfolio

choice problem is carefully derived from discrete-time considerations (se- also Merton [1975,

1982b]). Foley's (1975) analyis of "beginning-of-period" versus "end-of-period" models in

macroeconomics is similar in spirit, though quite different in substance.

More recent interest in this issue stems primarily from two sources. On the one hand, it

is widely recognized that continuous-time models are useful and tractable approximations

90



to more realistic discrete-time models. Therefore, it is important to establish that key

economic characteristics of discrete-time models converge properly to the characteristics of

their continuous-time counterparts. A revie i of recent research along these lines can be

found in Duffie and Protter (1992).

On the other hand, while discrete-time and discrete-state models such as those based on

binomial and multinomial trees, e.g., Cox, Ross, and Rubinstein (1979), He (1990, 1991),

and Rubinstein (1994), may not be realistic models of actual markets, nevertheless they

are convenient computational devices for analyzing continuous-time models. Willinger and

Taqqu (1991) formalize this notion and provide a review of this literature.

For derivative-pricing applications, the distinction between discrete-time and

continuous-time models is a more serious one. For all practical purposes, trading takes place

at discrete intervals, and a discrete-time implementation of Merton's (1973) continuous-time

delta-hedging strategy cannot perfectly replicate an option's payoff. The tracking error that

arises from implementing a continuous-time hedging strategy in discrete time has been stud-

ied by several authors.

One of the first studies was conducted by Boyle and Emanuel (1980), who consider the

statistical properties of "local" tracking errors. At the beginning of a sufficiently small

time interval, they form a hedging portfolio comprised of options and stock according to

the continuous-time Black-Scholes/Merton delta-hedging formula. The composition of this

hedging portfolio is held fixed during this time interval, which gives rise to a tracking error

(in continuous time, the composition of this portfolio would be adjusted continuously to

keep its dollar value equal to zero). The dollar-value of this portfolio at the end of the

interval is then used to quantify the tracking error.

More recently, Toft (1996) shows that a closed-form expression for the variance of the
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cash flow from a discrete-time delta-hedging strategy can be obtained for a call or put

option in the special case of geometric Brownian motion. However, he observes that this

expression is likely to span several pages and is therefore quite difficult to analyze.

But perhaps the most relevant literature for our purposes is Leland's (1985) investi-

gation of discrete-time delta-hedging strategies motivated by the presence of transactions

costs, an obvious but important motivation (why else would one trade discretely?) that

spurred a series of studies on option pricing with transactions costs, e.g., Figlewski (1989),

Hodges and Neuberger (1989), Bensaid et al. (1992), Boyle and Vorst (1992), Edirisinghe,

Naik, and Uppal (1993), Henrotte (1993), Avellaneda and Paras (1994), Neuberger (1994),

and Grannan and Swindle (1996). This strand of the literature provides compelling eco-

nomic motivation for discrete delta-hedging: trading continuously would gencrate infinite

transactions costs. However, the focus of these studies is primarily the tradeoff between

the magnitude of tracking errors and the cost of replication. Since we focus on only one of

these two issues-the approximation errors that arise from applying continuous-time models

discretely-we are able to characterize the statistical behavior of tracking errors much more

generally, i.e., for large classes of price processes, payoff functions, and state variables.

Specifically, we investigate the discrete-time implementation of continuous-time delta-

hedging strategies and derive the asymptotic distribution of-the tracking error in consid-

erable generality by appealing to continuous-record asymptotics. We introduce the notion

of temporal granularity which is central to the issue of when time may be considered con-

tinuous, i.e., when continuous-time models are good approximations to discrete-time phe-

nomena. In Section 2.3.1, we describe the framework in which our delta-hedging strategy

will be implemented and define the tracking error and related quantities. In Section 2.3.2,

we characterize the continuous-record asymptotic behavior of the tracking error and define
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the notion of temporal granularity. We provide an interpretation of granularity in Section

2.3.3 and discuss its implications.

2.3.1 Delta-Hedging in Complete Markets

We begin by specifying the market environment. For simplicity, we assume that there are

only two traded securities: a riskless asset (bond) and a risky asset (stock). Time t is

normalized to the unit interval so that trading takes place from t = 0 to t = 1. In addition,

we assume

(A5) Markets are frictionless, i.e., there are no taxes, transactions costs, shortsales re-

strictions, or borrowing restrictions.

(A6) The riskless borrowing and lending rate is o.1

(A7) The price Pt of the risky asset follows a diffusion process

dPt = L (t, Pt)dt + a(t, Pt)dWt , a(t, Pt) > o > (2.1)
Pt

where the coefficients 1a and a satisfy standard regularity conditions that guarantee existence

and uniqueness of the strong solution of (2.1) and market completeness (ee Duffie [1996]).

We now introduce a European derivative security on the stock that pays F(P1 ) dollars

at time t 1. We will call F(-) the payoff function of the derivative. The equilibrium price

of the derivative, H(t, Pt), satisfies the following partial differential equation (PDE) (see,

'This entails little loss of generality sixct we can always renormalize all prices by the price of a zero-coupon
bond with maturity at time 1 (see, for example, Harrison and Kreps [1979]). However, this assumption does
rule out the case of a stochastic interest rate.
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for example, Cox, Ingersoll, and Ross [1985]):

OH(t,x) + 2 (t X)X2 2H(t7 x) = 0 (2.2)
+~('2 o x2

with the boundary condition

H(1, x) = F(x). (2.3)

This is a generalization of the standard Black-Scholes model which can be obtained as a

special case when the coefficients of the diffusion process (2.1) are constant, i.e., Iz(t, Pt) = l,

cr(t, Pt) = a, and the payoff function F(P1 ) is given by Max[P -K, 0] or Min[PI, K].

The delta-hedging strategy was introduced by Black and Scholes (1973) and Merton

(1973) and when implemented continuously on t E [0, 1], the payoff of the derivative at

expiration can be replicated perfectly by a portfolio of stocks and riskless bonds. This

strategy consists of forming a portfolio at time t = 0 containing only stocks and bonds

with an initial investment of H(0, Po), and rebalancing it continuously in a self-financing

manner-all long positions are financed by short positions and no money is withdrawn or

added to the portfolio-so that at all times t E [0,1] the portfolio contains OH(t, Pt)/OPt

shares of the stock. The value of such a portfolio at time t = 1 is exactly equal to the

payoff, F(P1 ), of the derivative. Therefore, the price, H(t, Pt), of the derivative can also be

considered the production cost of replicating the derivatives payoff F(P1 ) starting at time

t.

Such an interpretation becomes important when continuous-time trading is not feasible.

In this case, H(t, Pt) can no longer be viewed as the equilibrium price of the derivative.

However, the function H(t,Pt), defined formally as a solution of (2.2)-(2.3), can still be
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viewed as the production cost H(O, Po) of an approximate replication of the derivative's

payoff, and may be used to define the production process itself (we formally define a discrete-

time delta-hedging strategy below).2 Therefore, when we refer to H(t, Pt) as the derivative's

"price" below, we shall have in mind this more robust interpretation of production cost and

approximate replication strategy.3

More formally, we assume:

(A8) Trading takes place only at N regularly spaced times ti, i = 1,... ,N, where

ti E { °I' N1}N I N N'

Under (A8), the difference between the payoff of the derivative and the end-of-period dollar-

value of the replicating portfolio-the tracking error-will be nonzero.

Following Hutchinson, Lo, and Poggio (1994), let Vt(N) be the value of the replicating

portfolio at time ti. Since the replicating portfolio consists of shares of the stock and the

bond, we can express Vt(N)

V(N) = V(N) + V(N) (2.4)
t i - S,ti B,ti

where V(N) and V(Nt) denote the dollar amount invested in the stock and the bond, respec-'S,ti B,ti

tively, in the replicating portfolio at time ti. At time t = 0 the total value of the replicating

2 The term "approximate replication" indicates the fact that when continuous trading is not feasible, the
difference between the payoff of the derivative and the end-of-period dollar-value of the replicating portfolio
will be nonzero. See Bertsimas, Kog..-, ad Lo (1997) for a discussion of derivative replication in discrete
time and the distinction between production cost and equilibrium price.

3 Alternatively, we can conduct the following equivalent thought experiment: while some market partici-
pants can trade costlessly and continuously in time and thus ensure that the price of the derivative is given
by the solution of (2.2)-(2.3), we will focus our attention on other market participants who can trade only
a finite number of times.
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portfolio is equal to the price (production cost) of the derivative

V(N) = H(O, Po)

and its composition is given by

V(N) - aH(t, Pt) P V(f)
S'O - Ot t=0

hence the portfolio contains OH(t, Pt)/OPtIt=o shares of

rebalanced at time periods ti so that

VN _ t (N) (, P ) P
$,p t=tPtBti

V(N) -_ V(N)-- SO I (2.6)

stock. The replicating portfolio is

= V(N) V(N)ti Sti ' (2.7)

Between time periods ti and ti+l, the portfolio composition remains unchanged. This gives

rise to non-zero tracking errors N).

(N) H(tPt - V(N)
ti - - - ti (2.8)

The value of the replicating portfolio at time t = 1 is denoted by V1(N) and the end-of-period

tracking error is denoted by e(N).

The sequence of tracking errors contains a great deal of information about the approxi-

mation errors of implementing a continuous-time hedging strategy in discrete time, and in

Sections 2.3.2 and 2.6 we provide a complete characterization of the continuous-time limit-

ing distribution of 4(N) and {Eti }. However, because tracking errors also contain noise, we

also investigate the properties of the root-mean-squared-error ' AMSE) of the end-of-period
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tracking error el (see Hutchinson, Lo, and Poggio [1994] for other alternatives):

RMSE(N) = Eo [ ((N)) 2 (2.9)

where E0 [] denotes the conditional expectation, conditional on information available at

time t = 0. Whenever exact replication of the derivative's payoff is impossible, RMSE(N) is

positive.

Of course, root-mean-squared-error is only one of many possible summary statistics of

the tracking error. A more general specification is the expected loss of the tracking error

E [U(6(N))]

where U(-) is a general loss function, and we consider this case explicitly in Section 2.6.4.

2.3.2 Asymptotic Behavior of the Tracking Error and RMSE

We characterize analytically the asymptotic behavior of the tracking error and RMSE by

appealing to continuous-record asymptotics, i.e., by letting the number of trading periods

N increase without bound while holding the time span fixed. This characterization pro-

vides several important insights into the behavior of the tracking error of general European

derivative securities that previous studies have only hinted at indirectly (and only for simple

put and call options). 4 A by product of this characterization is a useful definition for the

temporal granularity of a continuous-time stochastic process (relative to a specific derivative

security).

We begin with the case of smooth payoff functions F(P1 ):

4 See, for example, Boyle and Emanuel (1980) Hutchinson, Lo, and Poggio (1994), Leland (1985), and
Toft (1996).
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Theorem 1 Let the derivative's payoff function F(x) in (2.3) be six times continuously dif-

ferentiable and all of its derivatives be bounded, and suppose there exists a positive constant

K such that functions (r,x) and a(r,x) in (2.1) satisfy

aT-flaxY- ' (- x) + (x(-rx)) < K (2.10)

where (T, x) E [O, 1] x [O, oo), 1 c < 6, 0 < 1, 0 < 3,

are continuous. Then under Assumptions (A5)-(A8):

(a) The RMSE of the discrete-time delta-hedging strategy (2.7)

and all partial derivatives

satisfies

RMSE(N) 

(b) The normalized tracking error satisfies:

where

G (tP)1 I a2 H(t t) dWV2_ to (2.12)

Wt is a Wiener process independent of Wt, and "=" denotes convergence in distribution.

(c) The RMSE of the discrete-time delta-hedging strategy (2.7) satisfies

RMSE(N) = + O 1) (2.13)

(2.11)

where
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g = /Eo [7], (2.14)

1 f1l O29H(t, p) 2= _((tP)P prop 2 ) dt (2.15)

Proof: See the Appendix.

Theorem 1 shows that the tracking error is asymptotically equal in distribution to G/IVN

(up to O(N- 1) terms), where G is a random variable given by (2.12). The expected val-lie of

G is zero by the martingale property of stochastic integrals. Moreover, the independence of

the Wiener processes W[ and Wt implies that the asymptotic distribution of the normalized

tracking error is symmetric, i.e., in the limit of frequent trading, positive values of the

normalized tracking error are just as likely as negative values of the same magnitude.

This result might seem somewhat counterintuitive at first, especially in light of Boyle

and Emanuel's (1980) finding that in the Black-Scholes framework the distribution of the

local tracking error over a short trading interval is significantly skewed. However, Theorem

1(b) describes the asymptotic distribution of the tracking error over the entire life of the

derivative, not over short intervals. Such an aggregation of local errors leads to a symmetric

asymptotic distribution, just as a normalized sum of random variables will have a Gaussian

distribution asymptotically under certain conditions, e.g., the conditions for a functional

central limit theorem to hold.

Note that Theorem 1 applies to a wide class of diffusion processes (2.1) and to a variety

of derivative payoff functions F(P1 ). In particular, it holds when the stock price follows

a diffusion process with constant coefficients, as in Black and Scholes (1973).5 However,

5For the Black-Scholes case, the formula for the RMSE (2.14)-(2.15) was first derived by Grannan
and Swindle (1996). Our results provide a more complete characterization of the tracking error in their
framework-we derive the asymptotic distribution-and our analysis applies to more general trading strate-
gies than theirs, e.g., they consider strategies obtained by deterministic time deformations; our framework
can accommodate deterministic and stochastic time deformations.
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the requirement that the payoff function F(P1 ) is smooth-six times differentiable with

bounded derivatives-is violated by the most common derivatives of all: simple puts and

calls. In the next theorem, we extend our results to cover this most basic set of payoff

functions.

Theorem 2 Let the payoff function F(P1) be continuous and piecewise linear, and suppose

(2.10) holds. In addition, let

x219 -a (,) <~ K 2 (2.16)
axa

for (r, x) E [0, 1] x [0, oc), 2 < r < 6, and some positive constant K 2. Then under Assump-

tions (A5)-(A8):

(a) The RMSE of the discrete-time delta-hedging strategy (2.7) satisfies

g ~~~1
RMSE(N) - + o )

where g is given by (2.14)-(2.15).

(b) The normalized tracking error satisfies

V N (N) (t p0 2 H(t, Pt)dWv/-Nel®=) X a2 (tPt)Pt2 Op2 dWt (2.17)

where Wt' is a Wiener process independent of Wt.6

Proof: See the Appendix.

6It is easy to show, using H6lder's inequality, that g < o and this implies that the stochastic integral in
(2.17) is well defined. See Bertsimas, Kogan, and Lo (1998) for further details.
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By imposing an additional smoothness condition (2.16) on the diffusion coefficient

a(r, x), Theorem 2 assures us that the conclusions of Theorem 1 also hold for the most

common types of derivatives, those with piecewise linear payoff functions.

Theorems 1 and 2 allows us to define the coefficient of temporal granularity g for any

combination of continuous-time process {Pt} and derivative payoff function F(P1)-it is

the constant associated with the leading term of the RMSE's continuous-record asymptotic

expansion:

1 dt
g - &E3o [&(f2(tPt)Pt2 (' ) dt (2.18)

where H(t, Pt) satisfies (2.2) and (2.3).

2.3.3 Interpretation of Granularity

The interpretation for temporal granularity is clear: it is a measure of the approximation

errors that arise from implementing a continuous-time delta-hedging strategy in discrete

time. A derivative-pricing model-recall that this is comprised of a payoff function F(P)

and a continuous-time stochastic process for Pt-with high granularity requires a larger

number of trading periods to achieve the same level of tracking error as a derivative-pricing

model with low granularity. In the former case, time is "grainier", calling for more frequent

hedging activity than the latter case. More formally, according to Theorems 1 and 2,

to a first-order approximation the RMSE of an N-trade delta-hedging strategy is g/v-.

Therefore, if we desire the RMSE to be within some small value d, we require

g2
N mz~6
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trades in the unit interval. For a fixed error , the number of trades needed to reduce the

RMSE to within grows quadratically with granularity. If one derivative-pricing model

has twice the granularity of another, it would require four times as many delta-hedging

transactions to achieve the same RMSE tracking error.

/.rom (2.18) is it clear that granularity depends on the derivative-pricing formula

H(t, Pt) and the price dynamics Pt in natural ways. Equation (2.18) formalizes the intuition

that derivatives with higher volatility and higher "gamma" risk (large second derivative with

respect to stock price) are more difficult to hedge, since these cases imply larger values for

the integrand in (2.18). Accordingly, derivatives on less volatile stocks are easier to hedge.

Consider a stock price process which is almnost deterministic, i.e., oa(t, Pt) is very small. This

implies a very small value for g, hence derivatives on such a stock can be replicated almost

perfectly, even if continuous trading is not feasible. Alternatively, such derivatives require

relatively few rebalancing periods N to maintain small tracking errors.

Also, a derivative with a particularly simple payoff function should be easier to hedge

than derivatives on the same stock with more complicated payoffs. For example, consider a

derivative with the payoff function F(P1 ) = P1. This derivative is identical to the underlying

stock, and can always be replicated perfectly by buying a unit of the underlying stock at

time t = 0 and holding it until expiration. The tracking error for this derivative is always

equal to zero, no matter how volatile the underlying stock is. This intuition is made precise

by Theorem 1, which describes exactly how the error depends on the properties of the stock

price process and the payoff function of the derivative: it is determined by the behavior of

the integral R, which tends to be large when stock prices "spend more time" in regions of

the domain that imply high volatility and high convexity or gamma of the derivative.

We will investigate the sensitivity of g to the specification of the stock price process in
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Sections 2.4 and 2.5.

2.4 Applications

To develop further intuition for our measure of temporal granularity, in this section we

derive closed-form expressions for g in two important special cases: the Black-Scholes option

pricing model with geometric Brownian motion, and the Black-Scholes model with a mean-

reverting (Ornstein-Uhlenbeck) process.

2.4.1 Granularity of Geometric Brownian Motion

Suppose that stock price dynamics are given by:

dPt
= ,dt + adWt. (2.19)

Pt

where t and a are constants. Under this assumption we obtain the following explicit

characterization of the granularity g.

Theorem 3 Under Assumptions (A5)-(A8), stock price dynamics (2.19), and the payoff

function of simple call and put options, the granularity g in (2.13) is given by

IE [pt+ln(PI)_a2/2]2] 2

exp - 2(+t) ]
g = Ka 4 dt (2.20)

where K is the option's strike price.

Proof: See the Appendix.

It is easy to see that g = 0 if a = 0 and g increases with a in the neighborhood of zero.

When a increases without bound, the granularity g decays to zero, which means that it has
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at least one local maximum as a function of cr. The granularity g also decays to zero when

Po/K approaches zero or infinity. In the important special case of u = 0, we conclude by

direct computation that g is a unimodal function of Po/K, that achieves its maximum at

Po/K = exp(cr2/2).

The fact that granularity is not monotone increasing in a may seem counterintuitive at

first-after all, how can delta-hedging errors become smaller for larger values of a? The

intuition follows from the fact that at small levels of a, an increase in or leads to larger

granularity because there is a greater chance that the stock price will fluctuate around

regions of high gamma (where 02H(t, Pt)/OP 2 is large, i.e., near the money), leading to

greater tracking errors. However, at very high levels of o-, prices fluctuate so wildly that

an increase in a will decrease the probability that the stock price stays in regions of high

gamma for very long-in these extreme cases, the payoff function "looks" approximately

linear hence granularity becomes a decreasing function of ar.

Also, we show below that g is not very sensitive to changes in when a is sufficiently

large. This implies that, for an empirically relevant range of parameter values, , as a

function of the initial stock price, achieves its maximum close to the strike price, i.e., at

.P/K 1. These observations are consistent with the behavior of the tracking error for

finite values of N that we see in the Monte Carlo simulations of Section 2.5.

When stock prices follow a geometric Brownian motion, expressions similar to (2.20) can

be obtained for derivatives other than simple puts and calls. For example, for a straddle,

consisting of one put and one call option with the same strike price K, the constant g is

twice as large as for the put or call option alone.
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2.4.2 Granularity of a Mean-Reverting Process

Let Pt- ln(Pt) and suppose

dpt = (-ypt-(a+ mt)) +) dt + crdWt (2.21)

where /6 = F - a2/2 and ace is a constant. This is an Ornstein-Uhlenbeck process with a

linear time trend, and the solution of (2.21) is given by

Pt = (po - a)e- t + (a + Bt) + e-'(t-s) dW. (2.22)

Under these price dynamics, we have:

Theorem 4 Under Assumptions (A5)-(A8), stock price dynamics (2.21), and the payoff

function of simple call and put options, the granularity g in (2.13) is given by

Y[a+/Lt+(1n( PI )-a) exp(-7t)_O_2/2]2] 2
V/U- exp - r2 [ Iy(1-t)+1-exp(-2yt)]

g -Ko, 4JV' -V~~ t+~-dt (2.23)(I' 41r/-- /y(1 - t) + 1- exp(-2'yt) )
where K is the option's strike price.

Proof: See Bertsimas, Kogan, and Lo (1998).

Expression (2.23) is a direct generalization of (2.20): when the mean-reversion parameter

y is set to zero, the process (2.21) becomes a geometric Brownian motion and (2.23) reduces

to (2.20). Theorem 4 has some interesting qualitative implications for the behavior of the

tracking error in presence of mean-reversion. We will discuss them in detail in the next

section.
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2.5 Monte Carlo Analysis

Since our analysis of granularity is based entirely on continuous-record asymptotics, we

must check the quality of these approximations by performing Monte Carlo simulation

experiments for various values of N. The results of these Monte Carlo simulations are

reported in Section 2.5.1. We also use Monte Carlo simulations to explore the qualitative

behavior of the RMSE for various parameter values of the stock price process, and these

simulations are reported in Section 2.5.2.

2.5.1 Accuracy of the Asymptotics

We begin by investigating the distribution of the tracking error (N) for various values of

N. We do this by simulating the hedging strategy of Section 2.3.2 for call and put options,7

assuming that price dynamics are given by a geometric Brownian motion (2.19).8 We set

the parameters of the stock price process to = 0.1, = 0.3, Po = 1.0 and let the strike

price be K = 1. We consider N = 10, 20, 50, 100, and simulate the hedging process

250,000 times for each value of N.

Figure 2-la shows the empirical probability density function (PDF) of e(N) for each N.

As expected, the distribution of the tracking error becomes tighter as the trading frequency

increases. It is also apparent that the tracking error can be significant even for N = 100.

Figure 2-lb contains the empirical PDFs of the normalized tracking error, x/Ne(N), for the

same values of N. These PDFs are compared to the PDF of the asymptotic distribution

7According to Theorem 1, the asymptotic expressions for the tracking error and the RMSE are the same
for put and call options since these options have the same second partial derivative of the option price with
respect to the current stock price. Moreover, it is easy to verify, using the put-call parity relation, that these
options give rise to identical tracking errors.

8 When the stock price process Pt follows a geometric Brownian motion, the stock price at time i+ is
distributed (conditional on the stock price at time ti) as Pt; exp(( - o2/2)At+ av/'it7), where r7 Af(O, 1).
We use this relation to simulate the delta-hedging strategy.
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Figure 2-1: Empirical probability density functions of (a) the tracking error and (b) the nor-
malized tracking error (dashed line), are plotted for different values of the trading frequency
N. Figure (b) also shows the empirical probability density function of the asymptotic dis-
tribution (2.17) (solid line). The stock price process is given by (2.19) with parameters

= 0.1, r-0.3, P = 1.0. The option is a European call (put) option with strike price
K= 1.

(2.17), which is estimated by approximating the integral in (2.17) using a first-order Euler

scheme. The functions in Figure 2-lb are practically identical and indistinguishable, which

suggests that the asymptotic expression for the distribution of V/-eEN) in Theorem (b) is

an excellent approximation to the finite-sample PDF for values of N as small as 10.

To evaluate the accuracy of the asymptotic expression g/VN for finite values of N, we

compare g//H to the actual RMSE from Monte Carlo simulations of the delta-hedging

strategy of Section 2.3.2. Specifically, we simulate the delta-hedging strategy for a set of

European put and call options with strike price K = 1 under geometric Brownian motion

(2.19) with different sets of parameter values for (a, ,u, P). The tracking error is tabulated

as a function of these parameters and the results are summarized in Tables 2.1, 2.2, and 2.3.

Tables 1-3 show that g/vN is an excellent approximation to the RMSE across a wide
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7e-4
7e-4
7e-4
7e-4

.023

.023

.023

.023

9.64
6.88
4.43
3.22

1.08
.760
.490
.345

.0071

.0052

.0033

.0024

.0248

.0177

.0113

.0082

8.9 % .501
7.9 % .501
5.9 % .501
3.1 % .501

3.8 % .273
2.9 % .273
2.6 % .273
2.3 % .273

.014

.010

.007

.005

.091
.065
.041
.029

Table 2.1: The sensitivity of the RMSE as a function of the initial price P0 . The RMSE is
estimated using Monte Carlo simulation. Options are Europeall calls and puts with strike
price K = 1. 250, 000 simulations are performed for every set of parameter values. The
stock price follows a geometric Brownian motion (2.19). The drift and diffusion coefficients
of the stock price process are IL = 0.1 and a = 0.3. RMSE(N) is compared to the asymp-
totic approximation gN - 1/ 2 in (2.913)-(92.290). The relative error (RE) of the asyp..totic
approximation is defined as IgN - 1/ 2 - RMSE(N)I/RMSE(N) x 100%.
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10
20
50

100

10
20
50

100

0.50
0.50
0.50
0.50

0.75
0.75
0.75
0.75

.0078

.0055

.0035

.0025

.0259

.0183

.0116

.0082



Table 2.2: The sensitivity of the RMSE as a function of volatility or. The RMSE is es-
timated using Monte Carlo simulation. Options are European calls and puts with strike
price K = 1. 250,000 simulations are performed for every set of parameter values. The
stock price follows a geometric Brownian motion (2.19). The drift coefficient of the stock
price process is p = 0.1, and the initial stock price is Po = 1.0. RMSE(N) is compared
to the asymptotic approximation gN -1/2 in (2.13)-(2.20). The relative error (RE) of the
asymptotic approximation is defined as IgN - 1/2 -RMSE(N) I/RMSE(N) x 100%.
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Parameters Call (Put) Option

N a gN- 1/2 H(0, PO) RSE() RMSE(N) RE~~~H(O, Po)Zo ) RS(R

10 0.3 .0334 .119 .269 .0327 4.1 %
20 0.3 .0236 .119 .192 .0227 3.4 %
50 0.3 .0149 .119 .122 .0145 2.3 %

100 0.3 .0106 .119 .087 .0104 1.9 %

10 0.2 .0219 .080 .266 .0212 3.4%
20 0.2 .0155 .080 .189 .0151 3.0%
50 0.2 .0098 .080 .121 .0096 2.1 %
100 0.2 .0069 .080 .086 .0068 1.7 %

10 0.1 .0100 .040 .255 .0102 1.6 %
20 0.1 .0071 .040 .177 .0071 .04 %
50 0.1 .0045 .040 .111 .0044 1.1 %
100 0.1 .0032 .040 .078 .0031 0.9 %



Table 2.3: The sensitivity of the RMSE as a fimction of the drift p. The RMSE is estimated
using Monte Carlo simulation. Options are European calls and puts with strike price K = 1.
250, 000 simulations are performed for every set of parameter values. The stock price
follows a geometric Brownian motion (2.19). The diffusion coefficient of the stock price
process is ai = 0.3, and the initial stock price is P0 = 1.0, the number of trading periods
is N = 20. RMSE(N) is compared to the asymptotic approximation gN - 1/2 in (2.13)-
(2.20). The relative error (RE) of the asymptotic approximation is defined as IgN - 1/ 2 -

RMSE(N)I/RMSE(N) x 100%.
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Parameters Call (Put) Option

p gN- 1/2 H(O,Po) R ( ,o) RMSE(N) RE

0.0 .0235 .119 .189 .0226 4.3 %
0.1 .0236 .119 .192 .0229 3.4 %
0.2 .0230 .119 .190 .0226 1.7 %
0.3 .0218 .119 .184 .0220 .96 %
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range of parameter values for (, a, Po), even for as few as N = 10 delta-hedging periods.

2.5.2 Qualitative Behavior of the RMSE

The Monte Carlo simulations of Section 2.5.1 show that RMSE increases with the diffusion

coefficient a in an empirically relevant range of parameter values (see Table 2.2), and that

the RMSE is not very sensitive to the drift rate of the stock price process when a is

sufficiently large (see Table 2.3). These properties are illustrated in Figures 2-2a and 2-3.

In Figure 2-2a the logarithm of RMSE is plotted against the logarithm of trading periods

N for a = 0.1, 0.2, 0.3-as a increases, the locus of points shifts upward. Figure 2-3 shows

that gra
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Figure 2-2: (a) The logarithm of the root-mean-squared error logl(RMSE(N)) is plotted as
a function of the logarithm of the trading frequency loglo0 (N). The option is a European
call (put) option with the strike price K = 1. The stock price process is given by (2.19)
with parameters ,u = 0.1, Po = 1.0. The diffusion coefficient of the stock price process
takes values a = 0.3 (x's), a = 0.2 (o's) and a = 0.1 (+'s). (b) The root-mean-squared
error RMSE is plotted as a function of the initial stock price P0. The option is a European
put option with the strike price K = 1. Parameters of the stock price process are y = 0.1,
a = 0.3.

Figure 2-2b plots the RMSE as a function of the initial stock price Po. RMSE is a
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unimodal function of Po/K (recall that the strike price has been normalized to K = 1 in all

our calculations), achieving its maximum around 1 and decaying to zero as Po/K approaches

zero or infinity (see Table 2.1). This confirms the common intuition that close-to-the-money

options are the most difficult to hedge- they exhibit the largest RMSE.

6

0 0

Figure 2-3: The granularity g is plotted as a function of and p. The option is a European
call (put) option with strike price K = 1. The stock price process is geometric Brownian
motion and initial stock price Po = 1.

Finally, the relative importance of the RMSE can be measured by the ratio of the RMSE

to the option price: RMSE(N)/H(O, Po). This quantity is the root-mean-squared error per

dollar invested in the option. Table 2.1 shows that this ratio is highest for out-of-the-money

options, despite the fact that the RMSE is highest for close-to-the-money options. This is

due to the fact that the option price decreases faster than the RMSE as the stock moves

away from the strike.

Now consider the case of mean-reverting stock price dynamics (2.21). Recall that under
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Figure 2-4: Granularity g is plotted as a function of Po and ca. The option is a European
call (put) option with the strike price K = 1. Parameters of the stock price process are
a = 0.2, = 0.05. The stock price process is given by (2.22). Mean-reversion parameter y
takes two values: (a) = 0.1 and (b) y = 3.0.

these dynamics, the Black-Scholes formula still holds. 9 Nevertheless, the behavior of granu-

larity and RMSE is quite different in this case. Figure 2-4 plots the granularity g of call and

put options for the Ornstein-Uhlenbeck process (2.21) as a function of ca and P0 . Figure

2-4a assumes a value of 0.1 for the mean-reversion parameter -Y and Figure 2-4b assumes

a value of 3.0. t is clear from these two plots that the degree of mean reversion -y has an

enormous impact on granularity. When -y is small, Figure 2-4a shows that the RMSE is

highest when P0 is close to the strike price and is not sensitive to ca. But when ,y is large,

Figure 2-4b suggests that the RMSE is highest when exp(a) is close to the strike price and

is not sensitive to Po.

The influence of -y on the granularity can be understood by recalling that granularity is

closely related to the option's gamma (see Section 2.3.3). When -y is small, the stock price

is more likely to spend time in the neighborhood of the strike price--the region with the

9However, the numerical value for a may be different than that of a geometric Brownian motion because
the presence of mean-reversion can affect conditional volatility, holding unconditional volatility fixed. See
Lo and Wang (1995) for further discussion.
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highest "gamma" or 02H(t, Pt)/OPt2-when Po is close to K. However, when y is large, the

stock price is more likely to spend time in a the neighborhood of exp(oa), thus g is highest

when exp(a) is close to K.

2.6 Extensions and Generalizations

The analysis of Section 2.3 can be extended in a number of directions, and we briefly

outline four of the most important of these extensions here. In Section 2.6.1, we show

that the normalized tracking error converges in a much stronger sense than simply in dis-

tribution, and that this stronger "sample-path" notion of convergence--called, ironically,

"weak" convergence-can be used to analyze the tracking error of American-style deriva-

tive securities. In Section 2.6.2 we characterize the asymptotic joint distributions of the

normalized tracking error and asset prices, a particularly important extension for investi-

gating the tracking error of delta hedging a portfolio of derivatives. In Section 2.6.3, we

provide another characterization of the tracking error, one that relies on PDE's, that of-

fers important computational advantages. And in Section 2.6.4, we consider alternatives

to mean-squared-error loss functions and show that for quite general loss functions, the

behavior of the expected loss of the tracking error is characterized by the same stochastic

integral (2.17) as in the mean-squared-error case.

2.6.1 Sample-Path Properties of Tracking Errors

Recall that the normalized tracking error process is defined as:

V/-(N) = v/N(H(t,Pt) Vt ®) , tE [0,1].
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It can be shown that V4(N) converges weakly to the stochastic process Gt, characterized

by the stochastic integral in (2.12) as a function of its upper limit: 0l°

1o tj 2(t p)P H(Ps) W-_ 1 aft a2(te,)p2 P2) dW' .

This stronger notion of convergence yields stronger versions of Theorem 1 and 2 that can

be used to analyze a number of sample-path properties of the tracking error by appealing

to the Continuous Mapping Theorem (see Billingsley [1968]). This well-known result shows

that the asymptotic distribution of any continuous functional ~(.) of the normalized tracking

error is given by ~(Gt). For example, the maximum of the normalized tracking error over the

entire life of the derivative security, maxt v rfeN), is distributed as maxt Gt asymptotically.

These results can be applied to the normalized tracking errors of American-style deriva-

tives in a straightforward manner. Such derivatives differ from European derivatives in one

respect: they can be exercised prematurely. Therefore, the valuation of these derivatives

consists of both computing the derivative price function H(t, Pt) and the optimal exer-

cise schedule, which can be represented as a stopping time r. Then the tracking error at

the moment when the derivative is exercised behaves asymptotically as Gr/V. 1 " The

tracking error, conditional on the derivative not being exercised prematurely, is distributed

asymptotically as (G /V l r = 1).

I°The proof of this result consists of two steps. The first step is to establish that the sequence of measures
induced by v/NN() is tight (relatively compact). This can be done by verifying local inequalities for
the moments of processes v1NN() using the machinery developed in the proof of Theorem 2 (we must
use Burkholder's inequality instead of the isometric property and H6lder's inequality instead of Schwarz's
inequality throughout-see Bertsimas, Kogan, and Lo [1998] for further details). The second step is to
characterize the limiting process. Such a characterization follows from the proof in Appendix 2.8.2 and the
fact that the results in Duffie and Protter (1992) guarantee weak convergence of stochastic processes, not
just convergence of their one-dimensional marginal distributions.

"Some technical regularity conditions, e.g., the smoothness of the exercise boundary, are required to
ensure convergence. See, for example, Kushner and Dupuis (1992).
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2.6.2 Joint Distributions of Tracking Errors and Prices

Theorems 1 and 2 provide a complete characterization of the tracking error and RMSE

for individual derivatives, but what is often of more practical interest is the behavior of

a portfolio of derivatives. Delta-hedging a portfolio of derivatives is typically easier be-

cause of the effects of diversification-as long as tracking errors are not perfectly correlated

across derivatives, the portfolio tracking error will be less volatile than the tracking error

of individual derivatives.

To address portfolio issues, we require the joint distribution of tracking errors for mul-
r~

tiple stocks, as well as the joint distribution of tracking errors and prices. Consider another

stock with price p(2) governed by the diffusion equation

dp(2) = (2)(t (2))dt + a(2)(t,P(2))dW ) (2.24)
Pt

(2)
where Wt can be correlated with Wt. According to the proof of Theorem 1(b) (see Ap-

pendix 2.8.2), since the random variables (Wti+ - Wti)2 - (ti+1 - ti) and W(2) _- W(2)
' ~~~~~~~~~~~~~~~~~~~~ti+l t

12 W~~~~~~~~~~~~~(2)are uncorrelated, 1 2 the Wiener processes W[7 and Wt are independent. Therefore, as N

increases without bound the pair of random variables (N (N), p( 2)) converges in distri-

bution to:

VIN-C(N , p(2)1 2(t, p 2HtP)
t~~pdWp( 2) ) 2) ( t=2( P)tap(2 tdWt, 1( d (2.25)

where Wt' is independent of Wt and Wt(2).

An immediate corollary of this result is that the normalized tracking error is uncorrelated

12 This follows from the fact that, for every pair of standard normal random variables X and Y with
correlation p, X = pY + (1 + p2)1/2 Z, where Z is a standard normal random variable, independent of Y.
Thus X and y

2 _ 1 ae uncorrelated.
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with any asset in the economy. This follows easily from (2.25) since, conditional on the

realization of Pt and P(2), t E [0,1], the normalized tracking error has zero expected value

asymptotically. However, this does not imply that the asymptotic joint distribution of

(VN V) p( 2 )) does not depend on the correlation between Wt and W(2)-it does, since

this correlation determines the joint distribution of Pt and p( 2)

The above argument applies without change when the price of the second stock follows

a diffusion process different from (2.24), and can also easily be extended to the case of

multiple stocks.

To derive the joint distribution of the normalized tracking errors for multiple stocks, we

consider the case of two stocks since the generalization to multiple stocks is obvious. Let

Wt and W(2) have mutual variation dWt dW 2 - p(t, Pt, (2))dt, where p(.) is a continu-

ously differentiable function with bounded first-order partial derivatives. We have already

established that the asymptotic distribution of the tracking error is characterized by the

stochastic integral (2.12). To describe the asymptotic joint distribution of two normalized

tracking errors, it is sufficient to find the mutual variation of the Wiener processes in the cor-

responding stochastic integrals. According to the proof of Theorem l(b) (Appendix 2.8.2),

this amounts to computing the expected value of the product

((Wti+1 -Wt)2 - (ti+l - ti)) ((/W2)- W(2))2- (t - ti)(Wt ti)2~ ~ ti+1 t).
Using It6's formula, it is easy to show that the expected value of the above expression is

equal to

E [2p2(t,PtiP(2))] (At)2 + 0 ((t) 
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This implies that p2(t Pt, 2)) is the mutual variation of the two Wiener processes in

the stochastic integrals (2.12) that describe the asymptotic distributions of the normalized

tracking errors of the two stocks. Together with Theorem 1(b), this completely determines

the asymptotic joint distribution of the two normalized tracking errors.13

Note that the correlation of two Wiener processes describing the asymptotic behavior of

two normalized tracking errors is always nonnegative, regardless of the sign of the mutual

variation of the original Wiener processes Wt and W(2). In particular, when two derivatives

have convex price functions, this means that even if the returns on the two stocks are

negatively correlated, the tracking errors resulting from delta hedging derivatives on these

stocks are asymptotically positively correlated.

2.6.3 A PDE Characterization of the Tracking Error

It is possible to derive an alternative characterization of the tracking error using the intimate

relationship between diffusion processes and PDE's. Although this may seem superfluous

given the analytical results of Theorems and 2, the numerical implementation of a PDE

representation is often computationally more efficient.

To illustrate our approach, we begin with the RMSE. According to Theorem 1(c), the

RMSE can be completely characterized asymptotically if g is known (see (2.14)). Using

the Feynman-Kac representation of the solutions of PDE's (see Karatzas and Shreve [1991,

Proposition 4.2.]), we conclude that g2 = u(O, Po), where u(t,x) solves the following:

a0 a i 2 02 l (2t a~2H(t, x))

[2 + (t'x)x- + -o2 (t, )X2 2 u(t,x) + 2(U2(t,X)Z2 tx) 2 at x~Ox 2 a2 2 9

(2.26)

13This result generalizes the findings of Boyle and Emanuel (1980).
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u(1, x) = 0, Vx. (2.27)

The PDE (2.26)-(2.27) is of the same degree of difficulty as the fundamental PDE (2.2)-

(2.3) that must be solved to obtain the derivative-pricing function H(t, Pt). This new

representation of the RMSE can be used to implement an efficient numerical procedure for

calculating RMSE without resorting to Monte Carlo simulation.14

Summary measures of the tracking error with general loss functions can also be computed

numerically along the same lines, using the Kolmogorov backward equation. The probability

density function of the normalized tracking error e( N ) can be determined numerically

as a solution of the Kolmogorov forward equation (see, for example, Karatzas and Shreve

[1991, pp. 368-369]).

2.6.4 Alternative Measures of the Tracking Error

As we observed in Section 2.3.2, the root-mean-squared error is only one of many possible

summary measures of the tracking error. An obvious alternative is the Lp-norm:

E0 [ P)N j] (2.28)

where p is chosen so that the expectation is finite (otherwise the measure will not be

particularly informative). More generally, the tracking error can be summarized by

E0 [U(6(N))] (2.29)

where U(-) is an arbitrary loss function.

14Results of some preliminary numerical experiments provide encouraging evidence of the practical value
of this new representation.
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Consider the set of measures (2.28) first and assume for simplicity that p E [1,2]. From

(2.17), it follows that

1% [fNj|Pj N1 /2 Eo [jX 2(t, )t Pt2 dWt ] (2.30)

hence the moments of the stochastic integral in (2.17) describe the asymptotic behavior of

the moments of the tracking error. Conditional on the realization of {Pt}, t e [0, 1], the

stochastic integral on the right side of (2.30) is normally distributed with zero mean and

variance

~ol1 (r2 (t, Pt )) 2

which follows from Hull and White (1987). The intuition is that, conditional on the real-

ization of the integrand, the stochastic integral behaves as an integral of a deterministic

function with respect to the Wiener process which is a normal random variable. Now let mp

denote an Lp-norm of the standard normal random variable.15 Then (2.30) can be rewritten

as:

Eo [EN) P 2 0 (2.31)

where R is given by (2.15).

As in the case of a quadratic loss function, 7? plays a fundamental role here in describing

the behavior of the tracking error. When p = 2, 1? enters (2.31) linearly and closed-form

expressions can be derived for special cases. However, even when p 2, the qualitative

'5If X is a standard normal random variable, then mp = E[XIP]/P .
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impact of R on the tracking error is the same as for p = 2 and our discussion of the

qualitative behavior of the tracking error applies to this case as well.

For general loss functions U(-) that satisfy certain growth conditions and are sufficiently

smooth near the origin, the delta-method can be applied and we obtain:

E r~~ 1 1 I U " I (2.32)

When U(.) is not differentiable at 0, the delta method cannot be used. However, we can

use the same strategy as in our analysis of Lp-norms to tackle this case. Suppose that U(-)

is dominated by a quadratic function. Then

E0 [U (E N))] E0 [ ( /12(t,PtP20 2 H( Pt)dWt)]I a~~~~~~~P? (2.33)

Now let

mu(X) = E [U(x71)] 77 - V(0,1).

E [ (e(N)) ] Eo [mu ( R N) ] (2.34)

When the loss function

stochastic dominance).

determined by RT and is

U(-) is convex, mu(-) is an increasing function (by second-order

Therefore, the qualitative behavior of the measure (2.29) is also

the same as that of the RMSE.
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2.7 Conclusions

We have argued that continuous-time models are meant to be approximations to physical

phenomena, and as such, their approximation errors should be better understood. In the

specific context of continuous-time models of derivative securities, we have quantified the

approximation error through our definition of temporal granularity. The combination of a

specific derivative security and a stochastic process for the underlying asset's price dynamics

can be associated with a measure of how "grainy" the passage of time is. This measure is

related to the ability to replicate the derivative security through a delta-hedging strategy

implemented in discrete time. Time is said to be very granular if the replication strategy

does not work well-in such cases, time is not continuous. If, however, the replication

strategy is very effective, time is said to be .very smooth or continuous.

Under the assumption of general Markov diffusion price dynamics, we show that that

the tracking errors for derivatives with sufficiently smooth or continuous piecewise linear

payoff functions behave asymptotically (in distribution) as G/VN. We characterize the

distribution of the random variable G as a stochastic integral, and also obtain the joint

distribution of G with prices of other assets and with other tracking errors. We demonstrate

that the root-mean-squared error behaves asymptotically as g/vN, where te constant g

is what we call the coefficient of temporal granularity. For two special cases-call or put

options on geometric Brownian motion and on an Ornstein-Uhlenbeck process-we are able

to evaluate the coefficient of granularity explicitly.

We also consider a number of extensions of our analysis, including an extension to

alternative loss functions, a demonstration of the weak convergence of the tracking error

process, a derivation of the joint distribution of tracking errors and prices, and an alternative

characterization of the tracking error in terms of PDE's that can be used for efficient
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numerical implementation.

Because these results depend so heavily on continuous-record asymptotics, we perform

Monte Carlo simulations to check the quality of our asymptotics. For the case of European

puts and calls with geometric Brownian motion price dynamics, our asymptotic approxi-

mations are excellent, providing extremely accurate inferences over the range of empirically

relevant parameter values, even with a small number of trading periods.

Of course, our definition of granularity is not invariant to the derivative security, the

underlying asset's price dynamics, and other variables. But we regard this as a positive

feature of our approach, not a drawback. After all, any plausible definition of granularity

must be a relative one, balancing the coarseness of changes in the time domain against

the coarseness of changes in the "space" or price domain. Although the title of this paper

suggests that time is the main focus of our analysis, it is really the relation between time

and price that determines whether or not continuous-time models are good approximations

to physical phenomena. It is our hope that the definition of granularity proposed in this

paper is one useful way of tackling this very complex issue.
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2.8 Appendix

The essence of these proofs involves the relation between the delta-hedging strategy and

mean-square approximations of solutions of systems of stochastic differential equations de-

scribed in Milstein (1974, 1987, 1995). Readers interested in additional details and intuition

should consult these references directly. We present the proof of Theorem 1 only, and refer

readers to Bertsimas, Kogan, and Lo (1998) for the others.

2.8.1 Proof of Theorem l(a)

First we observe that the regularity conditions (2.10) imply the existence of a positive

constant K such that

0a6+7 H(,x) < K1 (2.35)

for (r, x) E [0, 1] x [0, oo), 0 < 3 < 1, 1 < -y < 4, and all partial derivatives are continuous.1 6

Next, by It6's formula,

aH~tPt) 2(tp 2 2H(t, Pt)~H(1,P1i) = H(0, Po) + + ( t, 12 2 +.I at 2 laft~f o, t 

o (t, Pt)dP . (2.36)
i;f o- (2.36)opt

16Since the price of the derivative H(r, x) is defined as a solution of (2.2), it is equal to the expectation
of F(P 1 ) with respect to the equivalent martingale measure (see Duffie [1996]), i.e.,

H(r,x) = E(t=r,p:=)[F(P )]

where

dP t = a(t, Pt*) dWt .
-t

and Wt* is a Brownian motion under the equivalent martingale measure. Equation (2.35) now follows from
Friedman (1975; Theorems 5.4 and 5.5, p. 122). The same line of reasoning is followed in He (1989, p. 68).
Of course, one could derive (2.35) using purely analytic methods, e.g. Friedman (1964; Theorem 10, p. 72,
Theorem 11, p. 24; and Theorem 12, p. 25).
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According to (2.2), the first integral on the right-hand side of (2.36) is equal to zero. Thus,

H(1, P) = H(O, Po) + (2.37): a Pt

which implies that H(t, Pt) can be characterized as a solution of the system of stochastic

differential equations

dXt = aH(t) u(t, Pt)Ptdt + t a(t,Pt)Pt dt,

(2.38)

dPt = (t,Pt)Ptdt + a(t, Pt)PtdWt.

At the same time, VN1() is given by

= H(O, Po) +
N-1

i=O

dH(t, Pt)t=ti (Pti+ _ Pti)
agptti (2.39)

which can be interpreted as a solution of the following approximation scheme of (2.38) (as

defined in Milstein [1987]):

= (tP)t (Pt, -Pt)X4+1 t X4 == t (Pti+1 - PtX)a

(2.40)

= Pti+l - Pti,
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where X and P denote approximations to X and P, respectively. We now compare (2.40)

to the Euler approximation scheme in Milstein (1995)

a9H(t,Pt)t=tjqti Xti+1 - Xti = apt iu(ti, Pti)Pti(ti+ - ti) +

aH(t'Pt)t=t i' (t Pti )Pti (Wti+l Wti)
OPt 2 vtJ

Pti+ - Pt = (ti,Pt)(ti+l - ti) +

r(ti, Pti ) (Wti+ - Wti ).

(2.41)

Regularity conditions (2.10) and (2.35) allow us to conclude (see Milstein [1995,Theoremn

2.1]) that a one-step version of the approximation scheme (2.41) has order-of-accuracy 2 in

expected deviation and order-of-accuracy 1 in mean-square deviation (see Milstein (1987),

Milstein (1995) for definitions and discussion). It is easy to check that the approximation

scheme (2.40) exhibits this same property. Milstein (1995, Theorem 1.1) relates the one-step

order-of-accuracy of the approximation scheme to its order-of-accuracy on the whole interval

(see also Milstein [1987]). We use this theorem to conclude that (2.40) has mean-square

order-of-accuracy 1/2, i.e.,

VEo [(X(1, P)- X(1, P1 ))2] (2.42)

We now recall that X(t, Pt) = H(t, Pt) and X(1, P1 ) = V(N) and conclude that

(2.43)Eo V(N))]

which completes the proof. 
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2.8.2 Proof of Theorem (b)

We follow the same line of reasoning as in the proof of Theorem 1 (a), but we use the Milstein

approximation scheme for (2.38) instead of the Euler scheme:

8H(t'Ft)t=t~~i {ti pi(i iXt -Xti = pt iPt)Pi(ti+l - ti) +

H(t, Pt)t=i (ti, Pt )Pt (Wt+ - Wti) +
OPt

(02H(tPt)t=t (ti Pa + OH(t,Pt)t=t, O(a(t,Pt)Pt)t=t, X
Opt2 0r(ti, P~P4, q- apt ap01'? ~~~~ O~~~t OPtj

½o(ti, Pti)Pti (Wti+l - Wti)2 - (ti+l - ti))

Pt+ - Pti = p(ti ,Pt)Pt(ti+l - ti) + a(ti, Pti)PtiWt,+ - Wti) +

2 V'(i, f(t)PatpP)t=ti l -k- Wti) 2 (ti+l - ti) 

(2.44)

According to Milstein (1974) (see also Milstein [1995, Theorem 2.1]), this one-step scheme

has order-of-accuracy 2 in expected deviation and 1.5 in mean-square deviation. It is easy

to check by comparison that the scheme

= aH(t,Pt)t=t - P) +-ti+ - Xt = opt ( ti+ - ti) +

lcr,(ti, 2 2O2H(t,Pt)ti()Pti)2P 2 oPH(,Pt)tt (Wti+l - Wti)2 - (ti+l - ti)), (2.45)

Pti+l - Pt = Pti+1 - Pti
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has the same property. We now use Milstein (1995, Theorem 1.1) to conclude that

N-1 02 1 (t, Pt)tti
H(1,~~ P) V ® 1 le(ti, 2 H(, P1 ) - V = ti,) Pti pt2 x

i=O

((Wti+l- -Wti)2 -(ti+lti)) + O(k) (2.46)

where f = O () means that lim_, N Et=o[f2] < o. By Slutsky's theorem, we can

ignore the 0(1) term in considering the convergence in distribution of VN (H(1, P)-

v(N)), since VN O() converges to zero in mean-squared and, therefore, also in probability.

Observe now that, since Wti+ -Wt, and Wtj+ -Wt, are independent for i ~ j, (Wti+ -Wt ) 2

and Wti+ - Wti are uncorrelated, Eo[(Wt,+ - Wt,)2 - (ti+l - ti)] = 0 and Eo[((Wti+ -

Wti) 2 - (ti+l - ti)) 2] = 2/(ti+ - t) 2, by the functional central limit theorem (see Ethier

and Kurtz [1986]), a piecewise constant martingale

[Nt]-1I

N2 ((Wt+l -Wti)2- (ti+l-ti)) (2.47)

converges weakly on [0, 1] to a standard Brownian motion Wt, which is independent of l'4t.1 7

We complete the proof by applying Duffie and Protter (1992, Lemma 5.1 and Corollary

5.1). 

17 The notation [Nt] denotes the integer part of Nt and we use the convention Ee 1 = 0.

128



2.8.3 Proof of Theorem 1(c)

Equation (2.13) follows immediately from Theorem 1(a) and the proof of Theorem 1(b).'8

Combined with Theorem 1(b), (2.13) implies that

1 J[ 1 0tp2 2H(t, Pt) 2]2
g - E fo i2(t, P)Pt2 Op2 dW) ] (2.48)

Equation (2.14) follows from (2.48) using the isometric property of stochastic integrals. 

2.8.4 Proof of Theorem 2(a)

Before we present the proof, we establish the following result:

Et=0 [1; | H(t 2 t) 2dt < o (2.49),9p2

for some p > 1. First, since F(x) is a continuous, piece-wise linear function, it suffices to

establish (2.49) for F(x) = max(0, x - y), y > 0. Using this definition of F(x) and the

fact that one can differentiate (2.2) with respect to Pt (see Theorem 10, p. 72, Friedman

(1964)), 02H(r, x)/0x 2 is equal to the fundamental solution of the Cauchy problem for the

following partial differential equation:

u(__,_) +1 02 (r, )2(, x)] = 
7' 2- ix2[O2TXXU7,) -O

After a logarithmic change of variables, conditions (2.10, 2.16) and or(r, x) > a0 > 0 allow

us to apply Theorem 4.5, p. 141, Friedman (1975), from which we conclude that there exist

l 8Relation (2.46), established as a part of the proof of Theorem 1(b), guarantees that convergence in (2.12)
occurs not only in distribution, but also in mean-squared sense.
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positive constants K4 and K 5, such that

a'H (r, x) = - I [I ln(x) -l11(y)12]
x R I= [u(T,x) < K4(1 - ) 2 exp -K5 lIn(x) - l(y)]- TK 1-T

By the same theorem and Theorem 5.4, p. 149, Friedman (1975), distribution of Pt has a

density, which is bounded above by K 6 t- 1/ 2, K6 > 0. Now, by direct computation, we find

that there exists a positive constant K7, such that

Et=0 [ pt2 < K7 (1 -t)-P+.

Condition (2.49) now follows by Fubini's theorem.

To prove the statement of part (a), we use It6's formula and (2.2) to establish that

N-I HtPttti(tl 
H(1 ,P) - V() - H(1,P1) -H(O,Po) - H(Ptt (Pt+ -Pti)

i=o

N-i t i+l ( tH(, Pt) OH(t, Pt)t=t,) dP
E aOt ap d~t

N-i ti+i /ft 2H(, P7) D\

i=OY t a dP dPt.
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We now use (2.1) to rewrite the last expression as a sum of four terms:

N-1

i=0 ti

( t 92H(,p P, )

oPV
PT)PT d)

(It 02H(r, P)
PT)PT dT) u(t, Pt)Pt dWt

t 2H(r, P)
0Pp2

PT )PdW ) (t, Pt)Pt dt

+ i (if
i=0 d Jt

a2H(r, P),(p, P,)PT dW)W,

= I +2+3 +I44-

Now we will show that, for k = 1, 2 3, limNoo NEt= [I2] = 0.

Consider the term I1 first. Using Schwartz's inequality, we conclude that

NEt=o [1]

N-1
< N2Et=o At E

i=O

N-1i

i=O

iti+ 1
l

ti

I I (Jt( 2H(TPT 2

(t 2( r )( -?P (-

:AtEto[2 < (
i=0

02 H(t, Pt)t=r?
apt2 )

2 (i, P )P 2 (t Pt )P t
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+iE
i=O

Jti+1

ti

N-i
+ 

i=O

ti+1

ti

]

o,(t, Pt) Pt dWt

7

,) I.L (t, 

P 2')P 2
P2 (t, pt)pdT t



where ti+l -ti = At 1N. Random times r* and t satisfy ti < r _ < t < t i+1 and

depend on a particular realization of the stock price process. Their existence is guaranteed

by the mean-value theorem. The sum under the expectation sign converges to the integral

I 1 (02H(t,P) 2(t pt)p2) dt,

so we just need to justify the passage to the limit under the expectation sign. This can be

done using the Lebesque dominated convergence theorem. Observe that the integral sum

is bounded above by

1 t -41PI (pt+i (L 2H(Pr p) dT [ max p4(t, S) max P2dt
i=O ( t P t,S)E[O,]X[,] [Ol

f
1 / 2 H 2

- max (4(t, S) H(tt)P max Pp2 dt.
(t,S)E[0,1]x[O,oo] 0t tE[,1]

By H6lder's inequality, expected value of the integral in the last expression is bounded

above by
1

[ /2H (t, Pt)\ 2 P ] r 1 
Et=o ( d dt Et=o max Ptp - p[Jotx ~ / k te[0,1]

for any p > 1. Regularity conditions on functions ,t(t, S) and r(t, S) imply that the second

term is finite (see Friedman (1975), Theorem 2.3, p. 107). The first term is finite by (2.49).

This allows us to apply the Lebesque dominated convergence theorem.

For k = 2 we use the isometric property of the stochastic integral first and then apply
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Schwartz's inequality. As a result we obtain

[N-*"ift

L ~ I t

[IN-1 ti+

i=o Jr

( a2 H(TP) PT), P P)Pt dt]

(t 02 H (r, PT) (,9p' 2P)P) PI) dr)

The last expression converges to zero, by the same argument as in case k = 1. Similar

argument (using Schwartz 's inequality first and then the isometric property) proves the

statement for k = 3.

We now consider the last term I4. Using the isometric property of the stochastic integral,

Et=o [I42] = Et=o
i ti (t[zI 4+ 

i-O

(2 H(r, PT) 2

(yp2

N- ( 2H(t, Pt)t=Tt 2
= Et=o E ap2

li=0 t P
a2Tr*, p *P~2 (tt)

for some ti < ri < tg < ti+l. Now, by the same argument as in case k = 1,

lim NEt=o [142] = lim Et=ON-co N-+oo
[

N-1

i=O

= 1 Et=o

which establishes the result of part (a). 
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2.8.5 Proof of Theorem 2(b)

Using the result of part 1 and Markov inequality, we conclude that the sequence of prob-

ability measures induced on the real line by V (H(l, P1)- V 1(N)) is tight and therefore

relatively compact (see Billingsley (1986)). This implies that every subsequence of the orig-

inal sequence of probability measures contains further weakly converging subsequence. To

prove the statement of part 2, we need to show that every weakly converging subsequence

of the original sequence converges weakly to the stochastic integral in (2.17). Consider a

weakly converging subsequence V/N (H(1, P1 ) - v(Nk)). To show that

V/i (H(1,P1 ) - v(Nk)) j A 2(t, pt)p22 H P(t) dpt

it suffices to check that for any function 0(x) = exp(Vr2TAx),

Et= [ (Vk (H(1,Pi) - V(Nk)))] - Et=0 [d (1 j 2(tPt)P O2 "(t 'P t) dW,)]

We would like to show that for any e > 0, there exists an integer K, such that k > K

implies that

20t 2 2H (t, Pt)

Eo [ (VI-k (H(1, P1) - V(Nk)))- (- f a2(t Pt)P2 t 'P)dWt')] 

(2.50)
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As before, let V (Nk) denote the value of the replicating portfolio at time r. Then

IEt=o [ (k (H(1, P)
- V(k)))] -

Eto [ (~/ H(t,) p 2H(t, P t)) 

Et=o [ ( NA (H (r, Pr)- Vr(Nk))) ] 

( r 2(t),2 2H(t, p t) dW,)] +

,

- Et=o [ (vNk (H(r, Pr) - Vr(N)))] +

t)p 2 H(tPt) dWt' ] -

rt)rP t a~ rt )a wp ) |]|Et=o [0 ( j or 2 (t,

- J1 +J2+J3.

Fix an arbitrary e' > 0. Given (2.49), we can always pick r such that

Et=o [ 1 ( 2(t Pa2 H(t t) 2 dt01 t or9 )2 at
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According to Theorem 2,19 there exists K1 , such that k > K1 implies that J1 I < e'. Since

WW(X)l _ <

Et=o [J] < A2NkEt=o [(H(1,P1) - V1(Nk) - H(r,P) + Vr(Nk)) ] . (2.51)

Using the arguments of part 1, we conclude that there exists K2 , such that k > K2 implies

that

dt + Nk 2eEt-o [(H(lP) - V(Nk) - H(r,Pr) Vr(Nk))]

'2 tP)p2 &H(t,P)< Et=o Jr j; OP2 dtj + ' < 2E'.

Therefore, for k > K2 , Et=0 [J2] < 2A2e. It is also clear from the previous argument that

Et=o [J3] < A2e. Thus, if we set K = max(KI, K2) and e' = (1 + 3A2 )-le, inequality (2.50)

will hold for any k > K. This completes the proof of part (b). 

2.8.6 Proof of Theorem 3

(2.20) follows from (2.18). The closed-form expression for the option price as a function of

time and stock price is given by the Black-Scholes option-pricing formula (see Black and

Scholes (1973)). The diffusion coefficient of a geometric Brownian motion is constant and

the price of the stock Pt has lognormal distribution. We use Fubini's theorem to change

the order of integration in (2.20) and calculate expected values in closed form. 

19Necessary regularity conditions can be established using (2.16) Theorem 10, p. 72, Friedman (1964) and
Theorems 4.5, 4.6, pp. 141-142, Friedman (1975).
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2.8.7 Proof of Theorem 4

(2.23) follows from (2.18). Regularity conditions of the Theorem 2 are not satisfied here.

This is not surprising, since in our derivation we assumed that the stock price process can

be characterized as a strong solution of the corresponding stochastic differential equation.

Therefore, regularity conditions that we impose on the coefficients of such equation are at

least as strong as those required by the existence and uniqueness theorem for stochastic

differential equations. In case of the mean-reverting process these regularity conditions

are not satisfied (the growth rate of the drift coefficient is faster than linear), however

the stock price process is still well defined: there exists a unique solution of the diffusion

equation (2.21) and the stock price process is obtained from it by exponentiation. Now it

is straightforward to verify that our derivation of (2.18) is still valid.

The closed-form expression for the option price as a function of time and stock price

is given by the Black-Scholes option-pricing formula (see Black and Scholes (1973)). The

diffusion coefficient of a mean-reverting process is constant and the price of the stock Pt

has lognormal distribution. We use Fubini's theorem to change the order of integration in

(2.20) and calculate expected values in closed form. 
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Chapter 3

Asset Prices and Irreversible

Investment

3.1 Abstract

This paper presents a general equilibrium model of financial asset prices with irreversible

real investment. The focus is on the effects of the irreversibility of real investment on

financial asset prices. The model shows how this irreversibility leads to time variation in

volatility and systematic risk of stock returns. Changes in these variables are driven by real

economic activity, in particular, by firms' investment decisions. Thus, systematic risk of

stock returns and their volatility are affected by economy-wide and industry-specific shocks.

Firm-specific variables, particularly market-to-book ratios, are linked to real activity and

contain information about the dynamic behavior of stock returns. The model of this paper

also provides a framework for analyzing futures prices. A comparison between the economy

with irreversible investment and an identical economy without the irreversibility shows that

all of these results should be attributed to the irreversibility of real investment.
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3.2 Introduction

Most asset pricing models focus on the demand side of the economy, making extremely

simple assumptions about the supply side. For example, consider two of the most influential

papers in this literature, Lucas (1978), and Cox, Ingersoll and Ross (1985). Lucas (1978)

assumes that the supply of risky assets in the economy is completely exogenous. Thus, the

elasticity of supply is equal to zero and demand shocks are absorbed entirely by changes

in asset prices. On the other hand, Cox, Ingersoll and Ross (1985) assume the opposite

extreme: in their model the supply of basic risky assets is perfectly elastic. As a result,

demand shocks have no effect on the prices of these assets. In both cases the elasticity of

supply is fixed, either at infinity or at zero.

The focus on the demand side of the economy proves to be fruitful by delivering tractable

models. The obvious drawback is that such models do not lead to a realistic description

of supply dynamics, limiting one's understanding of the interaction between real economic

activity and prices of financial assets. To learn more about such interaction, the traditional

paradigm must be augmented by incorporating real economic activity, such as production

and investment decisions by firms.

In this paper I develop a general equilibrium model with a nontrivial production sector.

The most prominent feature of the production sector is the irreversibility of real investment.

This irreversibility restricts real activity, affecting firms' investment decisions, which in

turn determine properties of asset prices, such as stock-return volatility and systematic

risk. Since market-to-book ratios and other firms' parameters are closely connected to real

economic activity, my model leads to a structural relation between these variables and stock

returns.

This paper makes several contributions to the literature on asset pricing and investment.
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I formulate and explicitly solve a two-sector continuous-time general equilibrium model of a

production economy with irreversible investment. This differs from the bulk of the literature,

which analyzes partial equilibrium models. With a few exceptions, models of irreversible

investment cannot be solved in closed form and require complex numerical computations. 1

One of the methodological contributions of this paper is its use of singular perturbation

techniques to obtain accurate closed-form approximations for the exact solution of the

model.

The equilibrium interaction between the supply side and the demand side of the economy

leads to several asset-pricing results. One equilibrium effect of irreversibility is that stock-

return volatility is time-varying and is a function of real variables, such as investment. This

points to a mechanism via which the volatility of returns can increase as the stock price falls.

Another effect is that systematic risk of stock returns can change over the business cycle,

leading to time-variation in expected returns. Irreversibility also gives rise to a structural

relation between the properties of stock returns and firm-specific variables, which proxy for

real economic activity. The market-to-book ratio stands out as a particularly natural proxy

for real investment and is strongly related to the volatility and systematic risk of stock

returns.

The irreversibility of real investment has a number of testable empirical implications.

Industries with a higher degree of irreversibility should exhibit more time-variation in their

betas and expected returns. The volatility and systematic risk of stock returns are expected

to change over time as functions of real investment and market-to-book ratio. These rela-

tions have been relatively unexplored in the literature on real investment, which is concerned

with the behavior of real variables, and in the finance literature, which focuses primarily

1Examples of models with closed-form solutions include Pindyck (1988), Dixit (1989b, 1991), He and
Pindyck (1992), Abel and Eberly (1994, 1995, 1996, 1997a,b).
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on the demand side of the economy. Several papers that do examine both asset prices and

real investment, address primarily the properties of short-term interest rates and the ag-

gregate risk premium, but not the behavior of individual stocks. I discuss a few important

exceptions in Section 3.3.

My model can also be used to study futures prices. This particular application is

more limited in scope, since there is only a small number of commodities for which futures

contracts are traded. Moreover, in many cases, futures prices are heavily influenced by

the dynamics of inventories, suggesting a price-formation mechanism different from the

one considered here. Nevertheless, when storage is relatively expensive, it is reasonable to

expect that futures prices are determined to a large extent by the output dynamics (this

could apply, for example, to the rapidly growing market for electricity contracts). Therefore,

I believe that my model provides a potentially useful method of examining the formation

of futures prices, complementing currently accepted modelling paradigms. I include the

discussion of futures prices separately in Appendix 3.9.1.

The paper is organized as follows. In Section 3.3, I briefly review the literature. In

Section 3.4, I formulate and analyze the general equilibrium model of the economy with

irreversible investment. Section 3.5 develops a benchmark model of the economy with

perfectly reversible investment. In Section 3.6, I present the results on the behavior of

stock prices and futures prices in the economy. Section 3.7 extends the basic model, testing

the robustness of the main results. Section 3.8 is the conclusion.

3.3 Literature Review

Extensive literature analyzes the effects of irreversibility and adjustment costs on investment

activity. In one of the earliest papers on the subject, Arrow (1968), shows that because of
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irreversibility, the optimal investment path of a firm can consist of a sequence of alternating

periods of positive and zero investment. This result was obtained under perfect certainty.

Implications of capital immobility under certainty have also been analyzed in the growth

literature. Examples of this line of research include Johansen (1967), Dasgupta (1969), Ry-

der (1969), Bose (1970), Floyd and Hynes (1979), Smith and Starnes (1979), LeRoy (1983)

and others. 2 More recent literature has focused on the interaction between irreversibility

and uncertainty. I briefly review several aspects of this literature.

One avenue of the literature is concerned with optimal timing of irreversible investment

projects, emphasizing the value of the option to delay investment that arises due to irre-

versibility. This avenue is explored by Henry (1974), Baldwin and Meyer (1979), Baldwin

(1982), Brennan and Schwartz (1985), McDonald and Siegel (1986), Ingersoll and Ross

(1987), Dixit (1989, 1992) and others. Some of the models incorporate the process of firms'

learning about the parameters of the model, e.g., Cukierman (1980), Bernanke (1983) and

Caplin and Leahy (1993). Clearly, the very possibility of firms' learning over time creates an

additional incentive to delay investment. In this paper, however, I completely ignore such

informational problems, assuming that firms possess complete knowledge of their economic

environment.

Another strand of the literature includes models of incremental capital accumulation

by a single firm facing an uncertain economic environment. In particular, some researchers

focus on a competitive firm, taking the stochastic process of the output price and factor

prices as a given. These include Majd and Pindyck (1987), Pindyck (1988), Bertola and

Caballero (1994), Caballero (1991), Leahy (1993), Abel and Eberly (1994, 1997a) and Abel

et al. (1996). Yet others focus on a monopolist facing an exogenously given stochastic

2As LeRoy (1983) argues, Keynes's theory of investment (Keynes (1930, 1936)) can be interpreted as an
early analysis of investment under irreversibility.
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sequence of demand curves. Models of this type are developed by Pindyck (1988), Bertola

(1989), He and Pindyck (1992), Abel and Eberly (1994, 1995, 1996, 1997b) and Dixit and

Pindyck (1994). Methodologically, two solution approaches can be identified. One is based

on dynamic programming techniques, such as singular stochastic control, e.g., Abel and

Eberly (1994, 1995, 1996, 1997a,b) (for rigorous treatment of mathematical techniques, see

Harrison (1990), Fleming and Soner (1993)). Another popular approach utilizes methods of

contingent claims pricing, e.g., Majd and Pindyck (1987), Pindyck (1988). Both approaches

are discussed and compared in great detail in Dixit and Pindyck (1994) and Abel et al.

(1996).

In order to characterize the impact of uncertainty and irreversibility on the investment

behavior of a competitive firm, it is important to recognize that the output price is deter-

mined endogenously in equilibrium, as highlighted by Pindyck (1993). This leads to the

third branch of the literature, encompassing equilibrium models of a competitive industry.

Examples of such models are Lucas and Prescott (1971), Lippman and Rumelt (1985), Dixit

(1989c, 1991, 1992), Caballero and Pindyck (992), Leahy (1993) and Dixit and Pindyck

(1994). Following Lucas and Prescott (1971), most researchers determine the equilibrium al-

locations by maximizing the total social surplus. Another important methodological insight

is based on the observation that firms in a competitive industry can ignore the competition

when formulating their investment plans (see Leahy (1993)). This observation not only

significantly simplifies the solution process, but also provides an additional justification for

popular partial-equilibrium models. Mathematically, the result is based on a deep connec-

tion between the singular control problem, faced by the social planner (see, for example,

Lucas and Prescott (1971)) and the optimal stopping problem, faced by a myopic firm.

Leahy (1993) presents a detailed discussion and references to the literature. Sargent (1979)
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and Olson (1989) present representative agent, one-sector general equilibrium growth mod-

els with irreversible investment. These models are designed to provide some insight into

equilibrium dynamics of aggregate investment. However, as pointed out by Bertola and

Caballero (1991), the empirical relevance of such models is questionable, since aggregate

investment is not volatile enough to make aggregate irreversibility constraints binding.

All papers mentioned above focus on the real side of the economy. There is a small

amount of literature that examines the effects of convex adjustment costs on the behavior

of prices of financial assets. This literature includes Basu and Chib (1985), Huffman (1985),

Basu (1987), Balvers, Cosimano and McDonald (1990), Dow and Olson (1992), Basu and

Vinod (1994), Naik (1994), Benavie, Grinols and Turnovsky (1996) and others. All of these

are single-sector general-equilibrium models. Out of these, Naik (1994) is the model best

suited to incorporate irreversibility of investment. His focus is on the effects of exogenous

changes in output uncertainty on the price of aggregate capital and on the evolution of the

aggregate risk premium. Coleman (1997) works out a discrete-time, general equilibrium

model with two sectors and irreversible investment. He concentrates on the dynamic be-

havior of the short-term interest rate and its relation to sectoral shocks. The structure of

his model and the method of analysis are very different from those in this paper. Several re-

searchers used partial equilibrium models to analyze the behavior of asset prices. Cochrane

(1991, 1996) provides a theoretical model and empirical analysis based on a producer's first-

order conditions. In the first paper, he uses arbitrage arguments to impose restrictions on

investment returns and he tests the model empirically. His assumption that producers are

facing smooth adjustment costs leads to unrealistic investment dynamics, but significantly

simplifies the analysis. His second paper provides some supporting empirical evidence on

the extent to which investment returns can explain the variation in expected returns on
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financial assets in a conditional dynamic asset-pricing model.

My results are most closely related to the recent work by Berk, Green and Naik (1998),

who target a very similar set of issues. In particular, they develop a partial equilibrium

model, in which a firm's investment affects the risk of its stock returns and consequently

links expected stock returns to such variables as market-to-book ratio and size. The logic

of their model is quite different from the logic of this paper. As the authors readily admit,

their model completely ignores the equilibrium interaction between firms' activities and

market prices. This equilibrium effect is the main driving force behind my results.

3.4 Irreversible Investment in General Equilibrium

My focus on irreversibility as the main property of real investment is motivated by em-

pirical evidence. In many (if not most) industries physical investment is to a large extent

irreversible. Little value can be salvaged by selling off a firm's capital, since many produc-

tion factors are industry-specific. This prompts companies to adjust their investment rules,

taking into account the option value of waiting created by irreversibility (see, for example,

Dixit and Pindyck (1994)). As a result, the capital accumulation process is drastically

different from what it would have been under perfectly reversible investment.

In my model, the economy consists of two sectors, each using its own, sector-specific

production factor (a capital good). Thus, there are two capital goods in the economy. One

sector represents the industry under consideration, while the other sector represents the rest

of the economy (if the industry is sufficiently small relative to the rest of the economy, the

other sector can be thought of as a proxy for the market). While it is possible to transfer

capital from the rest of the economy into the industry, the reverse process is assumed to be

technologically infeasible. As a result, the capital stock of the industry cannot be maintained
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at the level that would be optimal if investment were perfectly reversible. Investment is

infrequent: it takes place only when the demand for the industry's assets (installed capital)

is sufficiently high. Since firms are more likely to respond to a demand shock when the level

of demand is already relatively high, the elasticity of supply is a function of the state of the

industry and of general economic conditions.

Alternatively, one can characterize the investment process using q. This concept was

pioneered by Tobin (1969) and later refined by Abel (1979) and Hayashi (1982). Tobin

defined q as the ratio of the market value of a firm to the replacement cost of its capital,

which is now known as average q. However, in my model, the appropriate concept for the

task is marginal q, defined as the marginal value of installed capital. 3 Marginal q coincides

with Tobin's q only under certain conditions. 4 In my model, investment is triggered when

q reaches an endogenously determined threshold. In particular, because of the absence of

adjustment costs, firms find it profitable to invest whenever the market value of capital

exceeds its replacement cost.

The following informal construction can be used to develop some understanding of how

irreversibility affects the prices of financial assets. Consider a single firm in the industry.

By definition, its market value can be computed as a product of its average q and the

replacement cost of installed capital: V = qK. Over a short time interval, given that the

3To be precise, marginal q is defined as the market value of a marginal unit of capital installed in the
firm relative to its replacement cost. The value of a marginal unit of installed capital can be computed as
the present value of the flow of profits from the sequence of future marginal units of capital. This should
not be confused with the present value of future profits from a unit of capital that is presently marginal.
The difference is exactly the opportunity cost arising due to irreversibility. See Pindyck (1988) and Abel et
al. (1996) for an extensive discussion of this and related issues.

4 Average q equals marginal q in my model, because of perfect competition, constant returns to scale and
zero adjustment costs. See Hayashi (1982) for the original result in a deterministic setting and Abel and
Eberly (1994) for an extension to stochastic models.
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firm does not install new capital, return to its owners can be represented as

K +AK + 1 + K Aq (3.1)K K \K/ q

where r stands for the cumulative profit generated over the time interval under consideration

and AK and Aq denote changes in the capital stock and the firm's q respectively (equation

(3.1) follows from It6's formula). Assume that the firm's technology is characterized by

constant returns to scale, that there are no adjustment costs and that all firms in the

industry behave competitively. If investment was perfectly reversible, the last term in

the equation would be absent, since the market value of capital would be identical to

its replacement cost. Because investment is irreversible, q can deviate from one, directly

affecting the returns.

One effect of irreversibility can be seen in the time-variation of the first term in (3.1).

Firms' profits depend on general business conditions, in particular, on the market price of

their output. Given the downward-sloping demand curve, the market price of the output

is a decreasing function of the aggregate output, which in turn depends on the size of

the capital stock in the industry. Since the process of capital accumulation is constrained

by firms' inability to disinvest, so is the aggregate industry output and, ultimately, firms'

profits.

Further insight into the effects of irreversibility on asset prices can be gained by relating

the elasticity of supply to the current state of the economy and the prevailing value of

q. Since the supply of risky assets (installed capital) is more elastic when q is relatively

high and investment is likely to take place, prices of these assets are not very sensitive to

demand shocks and the relative importance of the last term in (3.1) can be expected to be
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low. This is precisely the mechanism by which the properties of stock returns are related

to real activity and firm-specific variables.

The rest of this section sets the stage for the formal analysis of asset prices, which I un-

dertake in Section 3.6. Here, I develop a general equilibrium model with irreversible invest-

ment. The equilibrium is constructed in two steps. First, I find the Pareto optimal allocation

and study its properties. In particular, I characterize the optimal consumption/investment

policy and establish technical conditions under which the problem is well-posed and under

which endogenous variables in the economy follow a stationary process. Second, I prove

that the Pareto optimum can be implemented as an outcome of a competitive equilibrium.

Section 3.4.1 states the assumptions about the technology and preferences and formu-

lates the central planner's problem. In Section 3.4.2, I analyze of the central planner's

problem. Section 3.4.3 demonstrates that the Pareto optimal allocation can be supported

as an outcome of a competitive equilibrium and presents a general characterization of asset

prices. Section 3.4.4 develops accurate closed-form approximations to the solution of the

central planner's problem.

3.4.1 The Central Planner's Problem

The economy. The economy consists of two sectors. Sector represents the bulk of the

economy, excluding the industry being analyzed, which is modelled as sector 2. When the

industry is relatively small, the first sector is a proxy for the market. There are two capital

goods and two consumption goods in the economy. The capital good of type 1 can be used

for production within sector 1, investment into the capital stock of the industry (sector 2)

and can be converted into the consumption good 1. The capital good of type 2 is industry-

specific and cannot be used for anything other than production of the consumption good
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2.5 The consumption good 1 serves as a numeraire.

Capital accumulation. Evolution of physical capital is described by

dKlt (alKlt - cit)dt + olKltdWlt -dIt,

dK2t = -JK2tdt + o2K 2tdWlt + oa2K2tdW2t + dIt,

where cov (dWlt, dW 2t) = 0, K. and K2 are the capital stocks, C1t is the aggregate rate of

consumption of good 1 and It is the total amount of investment into the capital stock of

the industry till time t. The specification of the investment/production technology implies

that the industry responds differently to positive and negative demand shocks. Since the

capital stock can be adjusted upwards freely, a positive shock can trigger an instantaneous

increase in output, while the negative shock has no immediate effect. This asymmetry is

an important determinant of equilibrium dynamics.

Furthermore, I assume that the consumption good 2 is perishable and cannot be used for

investment.6 Thus, the entire industry output is used for consumption. Under the additional

assumption of the production technology being characterized by constant returns to scale,

this can be formalized as 2t = XK 2t, where the parameter X controls the productivity of

capital in the industry.

Agents. The economy is populated by identical agents with separable homothetic prefer-

5In the model, capital goods serve as proxies for production factors in the economy. I assume that
there exists sufficient degree of specificity of production factors to prevent factor prices from being equalized
accross the sectors.

6The absense of storage is an important assumption. One would expect an inexpensive storage technology
to mitigate the effects of irreversibility to some extent. Thus, the results of this paper should be directly
applicable to industries with high cost of storage.
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ences:

Eo e-PtU(Clt, 2 t)dt] (3.2)
0

where

1 -_y 1 b 1-2f 1 acl- + 1^c2-, a .a#1,

U(clc2 )=

ln(cl ) + bln(c2), = 1.

Given the functional form of the utility function, one can set X = 1 without further loss of

generality. I assume preferences to be separable across goods. While somewhat restrictive,

this assumption simplifies the analysis and provides a benchmark for more general studies.

Information structure. I make standard technical assumptions about the information

structure of the economy. I assume that there exists a complete probability space (, FP),

supporting two independent Brownian motions: Wt and W 2t. P is the corresponding

Wiener measure. The flow of information is described by a right-continuous increasing filtra-

tion Ft, t E [0, oo), Yt C F. Each St, t E [0, oo] is an augmentation of the sigma-field gener-

ated by Brownian motions (Wls, W2 ) :S [0, t]} (o - Vt>o0 {(Wls, W 2s): s E [ t]) 7

The central planner enforces the Pareto optimal consumption/investment policy, subject

to technological constraints. Formally, feasible investment policies are restricted to be right-

continuous with left limits, nonnegative and nondecreasing; feasible consumption policies

are restricted to be nonnegative and integrable on any finite time interval. Both are further

constrained by the requirement that the stocks of capital goods must remain nonnegative

7See Karatzas and Shreve, (1991, Sec. 2.7) for definitions related to Brownian filtrations.
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at all times.

Thus, the central planner's problem takes the form

max E e-PtU(Clt, c2t)dt (3.3)
(cut,It. Io 

subject to

dKlt = (aKit - ct)dt + liKltdWlt - dIt, (3.4)

dK2t = -K 2tdt + a2lK2tdWl + 0r2K2tdW2t + dIt, (3.5)

C2t = XK 2t, (3.6)

rT
Clt > , Clt + 2t[ dt < oo, Io- = 0, (3.7)

dIt > 0, Kit > 0, K2t > O, Vt,T > . (3.8)

3.4.2 The Solution of the Central Planner's Problem

For the central planner's problem to be well defined, certain restrictions must be imposed

on the parameters of the model. I state them in the following proposition.

Proposition 3.3 The value function of the original problem is finite if and only if

(2

a (- 1)- 27(y- 1) + p > O, (3.9)2

2 27(1-7) + P > 0.(3.10)

Proof. The idea of the p Dof is to generate tight bounds on the value function and then

to formulate the conditions under which these bounds are finite. For details, see Appendix

3.9.2. 
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Characterization of the Optimal Consumption/Investment Policy. Let J(KI, K2)

denote the value function of (3.3). Due to the homogeneity of the problem,

l-T'J (K1,K2), y7 1,

J(/3K1, K2) =

J(K1,K2) + l- ln(,3), y = 1.
p

This implies that the value function has a particularly simple functional form:

I1 Kl1-?j () , ? 1,

J(K,K 2) = l ln(KI) + ln(K2) + ),

(functions jr(.) depend on the coefficient of relative risk aversion). Thus, the state of the

economy can be characterized by a single state variable, defined as the ratio of the capital

stocks: = K2/K 1 .

The problem faced by the central planner is of singular control type (for background

on singular control of diffusion processes, see Fleming and Soner (1992, Ch. 8)). Similar

problems arise in analysis of portfolio decisions under transactions costs. Rigorous analysis

of such problems is usually highly technical. Here I summarize only the main properties of

the solution. Formal details are not included fr the sake of brevity. 8

8Shreve and Soner (1994) present an extensive analysis of a mathematically similar problem of portfolio
optimization and consumption with transaction costs. In particular, they prove that the value function of
their problem is a classical solution of the corresponding system of differential inequalities (which provides
an infinitesimal representation of the dynamic programming principle for problems of this type) and use
this fact to establish existence of the optimal consumption/investment policy. Their results can be applied
with only minor modifications to the problem at hand. In particular, the special structure of my model
leads to an important simplification of the analysis. The fact that the stock of physical capital is restricted
to be nonnegative, combined with an infinite marginal utility of consumption at zero, implies that the
second capital stock will remain positive at all times. The same result follows for the first stock, given
the irreversibility of investment. Thus, the second-order differential operator in the dynamic programming
principle becomes nondegenerate after the problem is reduced to one state variable, which insures that the
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As in other problems of this type, the value function can be characterized by the differ-

ential inequality

min (PJ - J, JK1 - JK2 ) = 0,

J = sup
c>O

(3.11)

1 1-7 + bK2 -' [" (oaK-C)JK 1 + 1
2-1 2 2 1 2

(-a K2 )JKK2 + K2JKK + ( +)KJK 2K2+Ilc72lKlK2JK1K2 J
J is increasing in K1 and K2 and concave: it inherits these properties from the util-

ity function. Concavity of the value function implies that the zero-investment region

{JK 1 - JK 2 > 0} has the form {K2 > K2(K 1)}, or equivalently {fQ > Q*}. The value func-

tion can be shown to be twice continuously differentiable everywhere. This translates into

the "value matching" and "smooth pasting" (or "super contact") conditions at the boundary

of the zero-investment region:9

(JK1 -JK2 ) I K2- = 0, (3.12)

(JK 1 K1 - JK2 K1 )

(JK 2 K2 - JK2 K,)

(3.13)
IK= = O

=0. (3.14)

Only two of these conditions are linearly independent.

value function is twice continuously differentiable everywhere. In contrast, the value function in Shreve
and Soner (1994) can loose smoothness over the set of points at which the differential operator becomes
degenerate. This forces them to provide additional arguments to handle such cases.

9See Dumas (1991) for an extensive discussion of these optimality conditions.
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The problem can be simplified by a change of variables. Let the new independent

variable be w = ln(P2), and define the new unknown function

(3.15)

For the case y $ 1, the new unknown function f(w) (I have dropped the subscript -y to

simplify the notation) satisfies

P2f" +Plf' +Pof +7 (f I 1- 1/-1 - f' = -be(l-)w,

P2 =
al + 21 + 22 2a21j 1

p -a a+ 27 a2 _21 + ,2
2 1 2

Po = (1- )a-7(1 - ) _ p

inside the zero-investment region and the boundary conditions

f'(w*)(1 + Q*) = f(w*)Q*(1 - ),

f"(w*)(1 + Q*) = f(w*)(1 + (1 - )Q*).

The optimal consumption policy is given by

.l_ _ ( 1 t )
Ki 1 - ~f' 
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where

(3.16)

(3.17)

(3.18)

(3.19)

K2~



For the case y = 1, let

1 (g~~w)--f~~w)-~ ~ 2ab) 2f() (( -b6) 1 a +21 + 0 +p(ln(p)-1).

The unknown function g (w) satisfies

P2g9" + Pg'-pg-ln(1- pg') = 0,

where

2~ + 0,22 + a2 - 2oa21 aP2 = 1 2 > 0,
2
O2 -- 02 1- y2

p = -a + Ol '21 - 2
2

inside the zero-investment region and

b+ pg'(w*) = Q*(1- pg'(w*)),

g (*)(1 + Q*) =b + gI(w*)
p

(3.20)

(3.21)

(3.22)

at the boundary.

p* = C1 = p
K1 1 - pf,

(3.23)

To characterize the value function completely, one must specify its the asymptotic be-

havior as w / oo. My analysis heie is heuristic in nature - formal justification is provided

in Appendix 3.9.4, Lemma 3.9.4.
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As w increases, the possibility of using good 1 for investment becomes less and less

important and the value function is asymptotically the same as it would be under the

additional constraint It 0 (i.e., if the two sectors were completely iolated from each

other). The value function under the additional constraint is denoted by JLB (K1 , K2 ):

jLB(K, K) Kl'y+ b l _I -~, ~1JLB(Ki,K2)= 1 - b 2 - ,
JLB(K1,K2) =-ln(Ki) + -ln(K2) +

p p

1 2(- b)- (a + 2l + a2) + p (ln(p)) =1(~~~
Xl = (Cl*rr - 1 a( - 1) + 

)\2 -(-(7 -- 1) - 221 ' (- + p)

Thus, as w / oo,

f(w) A1 + bA2 exp((1 - y)w), y < 1,

f(c) Al, "y> 1.

g(g) 0, = 1,

(3.24)

(3.25)

(3.26)

The value function and the optimal consumption/investment policy can now be com-

puted numerically by solving systems (3.16-3.18 and 3.24, 3.25) and (3.20-3.22 and 3.26).

The solution procedure is outlined in Appendix 3.9.3.

Next, I characterize the optimal investment process I and the resulting dynamics of

the ratio of capital stocks. Under the optimal choice of the consumption/investment policy,

wt is a reflected diffusion process, restricted to the half-line [*, co). According to the It6's

formula for semimartingales (e.g., Chung and Williams (1990, Th. 5.1) or Karatzas and
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Shreve (1991, Th. 3.3)),

dwt = I (t) dt + (21- al)dWt + a2dW2t + dLt, wt > w*, (3.27)

0'21 1 d+22() ---- 1t(£) -2 2 (3.28)

where t - ct/Klt is a function of w only (see (3.16, 3.20)) and Lt is the "reflection"

process, preventing wt from falling below w*.10 Moreover, by the same formula,

dLt = (1 + *) K ,

where K2t is the stock of capital good 2 under the optimal consumption/investment policy.

Thus, one can reconstruct the optimal investment process It* as

/0It* = Io + (1 +Qf*)- 1 K*UdLu, (3.29)

where I is the initial investment necessary to bring w into the region [*, o): if wo < w*,

= Ko 0(o 0 - Q*)(1 +

otherwise Io = 0. The investment process It is singular: investment takes place only when

Q= * (w = w*). Formally,

It* = o + A jws=w*}dIs7

1°The process Lt can be characterized as the local time of wt at w*. See Gihman and Skorohod (1972,
Ch. 5) or Chung and Williams (1990, Ch.8) for background on reflected diffusion processes.
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where 1{.} denotes the indicator function.

The Long-Run Dynamics. I now state a simple condition under which the ratio of capital

stocks possesses a long-run stationary distribution. Existence of the limiting stationary

distribution is a prerequisite for empirical analysis of "average" (unconditional) behavior

of economic variables. The condition that I am about to present is "almost" necessary:

except for a knife-edge case, any violation insures that the ratio of capital stocks converges

to infinity.

Proposition 3.4 If parameters of the model satisfy

a+ _ (7 - 1) p 21 + o2 > 0 (3.30)
-2 l) + -- 2 212

the ratio of the capital stocks Qt possesses the long-run stationary distribution. If the in-

equality opposite to (3.30) holds, t almost surely tends to infinity and there does not exist

a long-run stationary distribution.

Proof. See Appendix 3.9.4. 

3.4.3 The Competitive Equilibrium

In this section I demonstrate that the solution of the central planner's problem can be sup-

ported as an outcome of a competitive equilibrium in a decentralized production economy.

Similar results on equilibrium implementation of Pareto optimal allocations have been de-

veloped in several papers (see, for example, Lucas and Prescott (1971), Prescott and Mehra

(1980), Brock (1982)).

The decentralized economy is populated by homogeneous households, introduced in

Section 3.4, and a large number of competitive firms. Each firm owns a stock of capital
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good 2 and sells its output at the spot market.

At any point in time, there exists a spot market, where the consumption good 2 is

traded against the numeraire good at the prevailing spot price St. Agents purchase good

2 for consumption at the spot market. They also have access to four long-lived financial

assets.1 1 The first asset generates the cumulative return process identical to the constant-

returns-to-scale production technology of the first sector:

dv~td = adt + aidWit, (3.31)
Vlt

where vlt is the amount invested in this asset at time t. The second asset, the stock, is a

claim on the stream of cash flows generated by firms in the industry. I assume that at any

point in time there is exactly one share of equity outstanding. Hence, each share generates

a stream of dividends at rate StK2t and investment expenses, which total It by time t. I let

Pt denote the ex-dividend stock price. The third asset, the bond, earns an instantaneously

riskless rate of return rt.12 The fourth asset, priced at Ft, is available in zero net supply

and produces the cumulative return process

dFt F (wt) dt + dW 2t, (3.32)
Ft

Ucici (ctt, Clt) ~ ( d (ct, Wit) dt
PF (t) = rt Ucl (ct, ct) (0 1 W J, (3.33)

(t, W2t)/dt

where (-,.) denotes the cross-variation process (see Karatzas and Shreve (1991, p. 36)). I

lI introduce the fourth long-lived asset because the instantaneous variance-covariance matrix of returns
on the first two risky assets (see definitions below) might be degenerate and thus the market might not be
dynamically complete.

12Given that the optimal investment process is singular, one could expect returns of financial assets to
have a singular component. This turns out not to be the case in equilibrium. I will verify this directly
for stock returns in Section 3.6. Absence of arbitrage implies that financial asset prices have no singular
components in equilibrium (see Karatzas, Lehoczky and Schreve (1991, Section 4 )).
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define AF using the Consumption CAPM formula (e.g., Duffie (1996, p. 229)) to make the

return process (3.32) consistent with the optimal consumption policy.

In equilibrium, each household maximizes the expected utility of consumption (3.2),

subject to the nonnegativity constraint

Clt > O, C2t > O,

and the budget constraint

dVt = - (clt + Stc2t) dt + Vbtrtdt + rpt (Stdt + dPt) +

7rFtdFt + COVltdt + aivtdWlt, (3.34)

Vt Vbt + rPtPt + 7rFtFt + Vlt, (3.35)

V0 = P0 + K1 o0 ,

Vt > 0,

where Vt is the individual wealth process, Vbt is the amount of wealth invested in the bond,

7rPt is the number of shares of the stock and rFt is the number of shares of security F held

by the household at time t. The nonnegative-wealth constraint (3.35) rules out arbitrage

opportunities (see Dybvig and Huang (1989)). To make sure that the wealth process is

well defined by (3.34), I assume that both the consumption policy (clt, c2t) and the port-

folio policy (bt,7rpt, TrFt, V1t) are progressively measurable processes, satisfying standard
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integrability conditions:

Clt + Stc2t + Ivbtrt + 7rpt (St + [gp (t) Pt) + T7rFt/F (t) Ft + avltI dt < ox, (3.36)

~~~o f 1rPt12 d (P)t + j wrFtFt12 dt + I1VItl 2 dt < 00 (3.37)

for a sequence of stopping times rn / co, where Mp (wt) Pt and (P)t are respectively the

drift coefficient and the quadratic variation processes of Pt.

Since capital markets are dynamically complete, the exact form of financing is not

important and I assume for simplicity that firms are financed entirely by equity. Firms

make investment decisions to maximize their stock price, determined by the value of their

output and investment expenses. Specifically, they solve the following problem:

max E0 rotStK 2tdt - j ro,tdIt , (3.38)

subject to

dK2t = -SK 2tdt + r2lK 2tdWlt + U2K2tdW2t + dlt

and Io0- = 0, dIt > . Firms value future cash flows using the stochastic discount factor

rt,s, t < s. To ensure that firms hold rational expectations, t,s has to be consistent with
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observed market prices:

- lirn Et [7t,t+At] rt, (3.39)
xt\,O At

Et [ Rt, 7S~K2ds - j 7t,sdI; + T,TPT = Pt, (3.40)

Et [t,TFT] = Ft, (3.41)

Et [qt,Texp ((a- ) (T-t) + al (W1T-Wlt)) = 1 (3.42)

for arbitrary t and T, such that T > t. These conditions, however, are not sufficient for 7Tt,s

to be a valid discount factor. In general, there might exist more than one process satisfying

(3.39- 3.42), leading to a variety of possible values for non-tradable assets. I am looking

for an equilibrium with dynamically complete markets, in which case there exists only one

candidate stochastic discount factor (see Harrison and Pliska (1983)).

Definition 3.5 A competitive equilibrium with dynamically complete markets is a collection

of stochastic processes Kt, K2t, ct, ct, It*, vt, vt, 7rt, 7r't St, rt, Pt and qt,s, such that

(i) ct, c2t, vi, vt, 7rt and r*t solve the households' optimization problem, given St, rt,

Pt and K2*t; (ii) It* is the aggregate investment process solving (3.38), given St and t,s;

(iii) Kt and K2t solve (3.4,3.5), given ct and It* and the initial stocks of capital in the

economy; (iv) markets clear: ct = K2t v* = 0, v* = K, rt = 1, t = ; (v) St, rt, Pt,
2~ ~~ O, vI it, ~

It* and K2t are such that Yt,s is the unique stochastic discount factor satisfying (3.39-3.42).

I construct the competitive equilibrium using the solution of the central planner's prob-

lem.

Proposition 3.6 There exists a competitive equilibrium with dynamically complete mar-

kets, satisfying the Definition 3.5. Processes K*t, K2t, c, ct and It* are given by the
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solution of the central planner's problem in Section 3.4 .2. The optimal portfolio policy is

given by (*t, v r ) = (0, Klt, 1, 0). The stochastic discount factor is defined by

ts = e-p(s-t) Ucl (cOs C2s ) (3.43)
Uc1 ( lt' CVt)

Prices of financial assets satisfy

Uc-2(C*1t'c2t)St = Uc(ctct) (3.44)

Et [d (e-ptU (c* clt*t))rt - - 1 (3.45)
e-PtUcx (ct, c~t)dt

JK (Klt K*t)Pt= JK (Ku, K* 2t K (3.46)

and (3.32,3.33).

Proof. See Appendix 3.9.5. 

3.4.4 Closed-Form Approximations

In this section, I use techniques of singular perturbation analysis to obtain an increasingly

accurate sequence of closed-form approximations to the solution of the central planner's

problem. These approximations are particularly close to the true solution when b is suffi-

ciently small, in which case the industry remains small relative to the market most of the

time.

While popular in physical sciences, such mathematical techniques have seen only a

handful of applications in finance, e.g., Hull and White (1987), Atkinson and Wilmott

(1995), Bertsimas, Kogan and Lo (1997), Whalley and Wilmott (1997). Thus, the second

objective of this section is to present the methodology that might prove helpful in analyzing
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other finance models with similar mathematical structure.

Assume that y - 1. The case of y = 1 is presented in Appendix 3.9.6. The unknown

function f(w) satisfies (3.16), subject to the boundary conditions (3.17, 3.18, 3.24, 3.25). I

rescale the independent variable. Define to be equal to b-'/vQ. The optimal investment

threshold is determined by *. Let be the natural logarithm of E: = w - ln(b)/-y. is

the new independent variable. As a function of 6, the unknown function f(s) satisfies

P2f +Plf' +Pof +7 f -1-b]l

subject to the same boundary conditions. I look for f(6) and E* in the form

f(6) = A + b/' (A2e(l-<) + f(o)(e) +* bn"/f(n)() +* ),

- * -bl/ + ( ) + bn/Y'(n) + 
Elements of the expansion (f(0) (c), E(0)), (f(1) (c), '(1)), etc., can be computed sequentially.

Without going into the details (see Appendix 3.9.6), I present only the resulting expressions

for the first two terms in the asymptotic expansion.

The first-order terms:

f(o) (6) = A(o) exp ((_ - ,)),

A27(1- ) A1 n-1 1-1/V
A(o) = I(-1) 2 K-(1-7)

(A1 K-1 i/
-(o) = - I -A2 (

-ql - vql 2 - 4q2qo
2q2
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The second-order terms:

f(1) () = A(i) exp ((~ - ~*)) + C(1) exp (2n(~ - )),

C1 -1-1/? A~o) (1-y - )2
C() 2 ( - 1) 1 4 2q2 + 2nqi + qo'

where A(1) and (1) are characterized by the following system of linear equations

KA(1) + (A2 (1 - 7)2 G - ) 1 (1 - 7)) (- 1) -(( -1)A(o)E(o) + 2xC(1)),

(- _) A(1)- A27 (1 _ )2 -' =-( ( + -1) A(0 ) 0 + (42 2) C) ) .

Higher-order terms in the expansion (3.106) can be also computed explicitly, providing a

sequence of approximations to the optimal solution of increasing level of accuracy.

One can use the asymptotic results to derive a sequence of approximations to the optimal

consumption policy. For instance, the first-order approximation is

b1/_Y A(o) 1 e

It is an increasing function of 6 and it approaches Al 1/ as approaches infinity. When b

is small, the optimal consumption policy is approximately constant and equal to the one in

an identical economy without the second sector.

To evaluate the accuracy of the asymptotic expansion, I compare the first- and the

second-order approximations to the optimal consumption/investment policy with the nu-

merical results. I plot the optimal consumption policy, * as a function of Q and the

approximations in Figures 3-1, 3-2. I also tabulate the optimal investment threshold E*

and the approximations in Table 3.1. The subjective discount rate is set to p = 0.05 and
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the estimates of real stock-market returns are taken from Obstfeld (1994). I consider three

different values of the relative risk aversion parameter: 0.5, 1.0 and 2.0. The rest of the

parameters are chosen somewhat arbitrarily. Resulting moments of returns on the industry

portfolic

y=2.0 y= 1.0 7=0.5
'.UD3U,3

0.0375 0.05"
0.0365

0.0495
0.036

0.049
0.0355

0.0485

0 0.5 1 0 0.5 1 0 0.5 1
Q Q Q

Figure 3-1: The optimal consumption policy cl(Q) (solid), the first-order approximation
(dash) and the second-order approximation (dash-dot) are plotted against the ratio of the
capital stocks Q = K 2 /Ki. The following set of parameter values is used: b = 0.05, p = 0.05,
a = 0.067, a = -0.03, ah = 0.124, 21 = 0.04, /o2 + r2 = 0.25.

Figure 3-1 shows that both the first- and the second-order approximations are highly

accurate. Given the choice of parameter values, the industry accounts for at least 2.5%

of physical capital in the economy. Thus, the industry is not negligible relative to the

market. Figure 3-2 goes even further. While the first-order approximation is not particularly

accurate for 7 = 0.5, the second-order approximation is practically indistinguishable from

the numerical solution, even though the capital stock of the industry is at least 9% of that

of the first sector. Table 3.1 shows that the second-order approximation to the optimal

investment threshold is extremely close to the numerical solution. Thus, even a small

number of terms in the asymptotic expansion can provide an accurate approximation to the

solution of the problem at hand. The first-order approximation is within 3% fcr b = 0.05,
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Figure 3-2: The optimal consumption policy cl(Q) (solid), he first-order approximation
(dash) and the second-order approximation (dash-dot) are plotted against the ratio of the
capital stocks F = K2/K1. The following set of parameter values is used: b = 0.1, p = 0.05,
a = 0.067, a = -0.03, al = 0.124, 2l = 0.04, v721 2 0.25.

which suggests that it can be highly accurate for reasonable values of the parameters. 13

3.5 Reversible Investment in General Equilibrium

In this section I develop the model of fully reversible investment. This provides a benchmark

for evaluating the effect of irreversibility on the properties of financial assets.

3.5.1 The Central Planner's Problem

Since there are no constraints on the capital transfer between the two sectors of the economy,

there is no need to differentiate between the two capital stocks. One only has to keep track

13As the development of this section suggests, certain singular control problems arising in financial eco-
nomics can be efficiently solved using computer algebra software. By automating symbolic computations,
one can carry out perturbation analysis of arbitrarily high order. Such a combination of perturbation anal-
ysis with computer algebra algorithms has proved to be an effective tool for tackling challenging problems
in physical sciences, e.g. in nonlinear dynamics

This approach has a number of advantages over traditional numerical methods, such as finite-difference
schemes. The solution can be computed for all possible combinations of model parameters at once, which
significantly simplifies estimation of the model. Numerical stability is not an issue and no accuracy is lost
in computing derivatives of the solution. Persuing this direction further would take me too far away from
the main topic of this paper, therefore I leave it for future research.
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Table 3.1: The optimal investment threshold Q*, the first-order and the second-order ap-
proximations are tabulated for different values of the risk-aversion parameter -y and b. The
following set of parameter values is used: p = 0.05, = 0.067, = -0.03, a1 = 0.124,
O'21 -= 0.04, A/21 + a 2 = 0.25.

of the evolution of the aggregate capital stock Kt. The investment policy is specified by the

choice of Ot, defined as the proportion of the aggregate capital stock invested in sector at

time t. Thus, the central planner's problem takes the form

maxE~ ePt 17 (tt) 7 dt, ,

subject to

dKt = ((t - (1 - t))Kt- ct)dt (iOt + 721(1 - Ot)) KtdWlt +

02(1 -Ot)KtdW 2 t,

Ot > 0,

Ot < 1,

(3.48)

(3.49)

(3.50)

(3.51)
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(3.47)

y bl-bE(o) b1/ (E(O) + b'l/7E(l)) Numerical Solution

b = 0.05

2.0 0.0277 0.0273 0.0274
1.0 0.0258 0.0254 0.0254
0.5 0.0250 0.0243 0.0243

b= 0.10

2.0 0.0392 0.0384 0.0385
1.0 0.0516 0.0499 0.0500
0.5 0.1001 0.0886 0.0900

Kt > ,



Constraints (3.49, 3.50) restrict physical capital to be nonnegative (see (3.8)).

3.5.2 The Solution of the Central Planner's Problem

The solution of the central planner's problem (3.47-3.49) is finite as long as parameters of

the model satisfy (3.9, 3.10) and the additional condition

a (y- 1) - (2 - 1) + p > 0, (3.52)

where

= ( 21(1 - ))2 + 2(1 - 0)2,

= -max (0, min 1,
a+ -[- 5 6- ('a21 -21 - 2)

a ((0.1-21)2 + 22)

(see Appendix 3.9.7). The solution is given by the following proposition.

Under the assumption (3.52), the indirect utility function and the optimal consump-
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tion/investment policy of (3.47-3.49) are characterized by

J(K) - A - _ (3.53)

Ct = A-1/Kt, (3.54)

Ot = max(d*, 0), (3.55)

b(1-0*)-7 + _y((Ol - r21)2 + 0o2)0* +

Ay ((l -- 2l)121 - 2) -A(a + ) = 0, (3.56)

b(l - 0*)1-7 + X'-1 /? + A(1 - 7) ((a + 5)* - - l/-) _

21 --(1- -) ((0*(al - 2 1) + 21) + (1 0*)2 22)-PA = -0. (3-.57)

Proof. See Appendix 3.9.7. 

3.5.3 The Competitive Equilibrium

As in Section 3.4.3, one can show that the Pareto optimal consumption/investment policy

can be implemented as a competitive equilibrium. I will not repeat the details of the

argument here.

It is straightforward to characterize the properties of asset prices in this economy. The

average q is identically equal to one. Values of q above one cause entry into the industry

and cannot persist in equilibrium; values of q below one cause exit from the industry and

are also inconsistent with equilibrium. Thus the stock price equals (1 - d) Kt, which is

simply the amount of capital in the industry.

The fact that q is identically equal to one implies a particularly simple behavior of stock

prices. In particular, the beta of stock returns with respect to the first sector is constant and

equals ra21/al. Similarly, the volatility of stock returns is constant at is given by a21 + a.
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3.6 Irreversibility and Stock Returns

As it has been established in Section 3.4.3, the solution of the central planner's problem can

be supported as an outcome of a competitive equilibrium. In this section I study properties

of stock returns: their volatility and systematic risk and their relation to real economy.

Stocks in the model are claims on the entire output of the industry. Empirically, one

can think of the stock as a portfolio of stocks of companies in a particular industry. In the

model, there is only one share outstanding at any point in time. As it has been established

in Proposition 3.6, the stock price can be computed as the shadow price of capital (i.e., the

ratio of the indirect marginal utility of the second capital good and the indirect marginal

utility of the numeraire good) times the total amount of capital installed:

P= JK K2 (3.58)
JKI

The ratio JK 2 /JK 1 defines average q for firms in the industry, since in my model the re-

placement cost of capital is identically equal to one. Being equal to the marginal q, it equals

one when investment takes place and is less than one otherwise.

In order to describe the behavior of financial assets in the economy, one has to charac-

terize the dynamics of q. Using It6's rule for semimartingales,

dqt = Ilq(wt)qtdt + .ql (wt)qtdWlt + 0q2(wt)qtdW2t - qt qt (wt) dLti

q'(w) 02 + (21 - C1)2 q"(w)
pq(W) = -/ () q () +() (3.59)

,,) + 2 q (w)'

Uql () = (21 -- ) q(w )- (3.60)
q(w)()

.q2(W) -= 2 q'(w) (3.61)
q(w)
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where () is defined by (3.28). Due to the fact that the state variable wt is reflected at

w*, dLt = {w= }dLt and the singular component of the process qt equals

_( q' (w* )qt ~ q-~ ) dLt.

It is easy to see that this is in fact equal to zero, since qI(w*) = 0.14 Thus, qt has no singular

component and follows a regular diffusion process.

The fact that q'(w*) = 0 is a direct consequence of two assumptions: irreversibility of

investment and instantaneous upward adjustment of the capital stock. Since this result is

crucial for understanding the behavior of financial asset prices, it is important to discuss

the economic intuition behind it. If q'(w*) was different from zero (negative), the capital

gain due to the change in q (at w = w*) over a time-period At would be negative and of

order vA, since instantaneous investment prevents q from rising above one. Since the flow

of profits over the time-period is of order At, it could not be optimal for firms to invest

when w = w*. This argument suggests that the main results of the paper are robust in the

following sense: if it was not possible to invest at an infinite rate, the downward pressure

on q would still imply that the upside due to capital gains is limited, hence the downside

and the slope of q(w) at w* would have to be limited accordingly.

Note that the above argument does not rely on the one-factor structure of the model.

Even if the state of the economy was driven by several state variables, q (the market-to-

book ratio) would affect stock returns in a similar fashion: variation in q would have more

14The optimality conditions (3.12-3.14) imply that

(JK2 /JKI)K 2 = 0

at w = w*. The result follows from

q' () = K2(KJK/Ji)K2
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impact on returns for relatively low values of q. This singles out the market-to-book ratio

as a firm-specific variable that is particularly informative from the perspective of asset

pricing. This should not be surprising in view of the following observation. In the model,

behavior of stock returns is driven by the elasticity of supply, which is determined by the

real investment policy. The informativeness of q (market-to-book) stems from the fact that

it is the sufficient statistic for real investment in my model.

Stock returns can be decomposed into a sum of three components: the change in the ex-

dividend stock price, dqt/qt + dK2*t/K2t + (dqt/qt, dK2*t/K2*t), the negative of the investment

cost relative to the share price, -dIt / (qtK2*t), and the dividend flow per dollar invested,

St/qt. Since dIt* -dI*/qt = 0, stock returns have no singular component. Thus, the

instantaneous rate of return is given by

iq(W) - 6 '+ ql (W)'21 + Oq2(W)'2 + q() dt +

(21- q(w) + 21 dWt + 2 q() + a2) dW2t. (3.62)
((a21 -o'l) q-~ + fo'2q(w)

3.6.1 Volatility

Consider the instantaneous standard deviation of the cumulative return process:

q'(w)/2 q (W) 2] 1/2
=[(21 - 1) + 21 + 2q() + 21 (3.63)q(w) ) q2

Since the above expression depends on the state variable, stock returns are heteroscedastic

and their volatility is persistent. The relation between the volatility and the state variable

can be quite complicated and is determined by model parameters. We can, however, gain

some insight by considering several special cases. According to (3.63), when w = w* (q = 1),
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a equals (a2 + 21)1 /2 . Compare this with the limiting behavior as - o, (q -+ 0). In

the limit, the ratio q'(w)/q(w) approaches -y and or tends to

(422 (1 _-y)2 + (a21 (1 -y) +- YOl) 2 ) 1* (3.64)

When direct shocks to industry's capital are relatively small, i.e., when o1 + 41 < a,

volatility is higher for low values of q.

To obtain more specific results, I assume that b << 1 and use the asymptotic approx-

imation developed in Section 3.4.4. This results in the approximation to the industry's

q:

qQ (A - 2e7¢ f A(°) e (- 1)¢- + O(bl/ ). (3.65)

In the limit of b X 0, one can check using (3.111, 3.112) and (3.113) that q is a monoton-

ically decreasing function of its argument, which in turn implies that there is a one-to-one

correspondence between q and the state variable (the ratio of capital stocks). The ratio

q'(w)/q(w) is negative and increasing in w. Clearly, q'(w*)/q(w*) = 0 and (3.113) implies

linm,_~ q'(w)/q(w) = -y.

Consider the special case in which there are no direct shocks to the industry's capital

stock. Then

I q(w) I

This is an increasing function of the state variable and is negatively related to q. This

implies that stock returns become more volatile as the stock price (the market-to-book
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ratio) falls. According to (3.63), one would expect a similar type of behavior for low values

of q when al dominates 21 and a2 or when the risk aversion coefficient y is sufficiently

large.

I illustrate these points in Figures 3-3 and 3-4 by plotting against q. As one can see

from these figures, the volatility as a function of q can take on various shapes, depending

on the model parameters: it can be increasing, decreasing, inverted hump-shaped, convex,

concave, etc. Figure 3-3 presents the case of U21 and 2 being relatively small. Volatility

is generally negatively related to q, particularly for larger values of . The first panel of

Figure 3-4 corresponds to a relatively large value of y (compared to the values used in the

other two panels). One can see that as q gets smaller (0.75 and less), stock-return volatility

increases rapidly.

Leahy and Whited (1996) present some empirical evidence on the relation between re-

turn volatility, q and investment based on a sample of six hundred U.S. manufacturing

firms. While one should not expect to find an exact linear relation between volatility of

stock returns and such variables as q and investment across different stocks, their results

do provide a useful summary of the data. Their main findings are consistent with the pre-

dictions of this model. The amount of real investment is negatively related to the volatility

of stock returns (adjusted for leverage). When Tobin's q is included in the regressions,

the coefficient on the volatility becomes insignificant. They also report a negative relation

between the return volatility and q.
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Figure 3-3: The instantaneous standard deviation of the industry portfolio is plotted as
a function of the industry's q. The following set of parameter values is used: p = 0.05,
a = 0.067, -= -0.01, Cl = 0.124, /t2 + o2 = 0.08. Four different values of a21 are used:
0.0, 0.02, 0.04, 0.06.

3.6.2 Systematic Risk

The beta of the stock with respect to the first sector equals

3P,K1 = 21 + (o21 _ 1) q'(w) (3.66)
al \ 7a J q(w)(

It is a function of the state variable wt, and therefore varies over time in response to changes

in economic conditions. One can see that the beta can be naturally decomposed into a sum

of two terms. The first term, 21/o1, can be interpreted as the technology beta: it equals

the beta of K2t with respect to K1 t,

d (K2t, Kit) a2
3X2,K1 --d (Kit, Kit) a1
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Figure 3-4: The instantaneous standard deviation of the industry portfolio is plotted as
a function of the industry's q. The following set of parameter values is used: p = 0.05,
a = 0.067, = -0.03, ol = 0.124, V/o221+a2 = 0.25. Four different values of c721 are used:
0.0, 0.06, 0,12, 0.18.

The second term, (21/Ul - 1) q'(w)/q(w), measures the elasticity of q with respect to the

state variable. It equals zero at w*, when real investment takes place and q equals one. As

w increases to infinity, q approaches zero and q'(w)/q(w) converges to -y.

Thus, the technology beta is the key parameter in the relation between the stock beta

and the state of the economy (or the market-to-book ratio of the firm). It's effect is easy

to see from the asymptotic behavior of the beta:

lim 3P,K () = K2 ,K1

lim /JP,K1 (w) = -K(2,K 1-K 1).w/oo ' 

Thus, 3pK1 (co) exceeds /3 P,K (*) if and only if /I3 2,K 1 is less than one.

Next, consider the limit of b approaching zero. The consumption of the numeraire good
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is given by

Clt = (1 i/ + K(bl/7))Kit.

Thus, the instantaneous correlation between innovations in consumption and industry-

specific shocks, corr(dclt, dW2t), is of order b1lU. Therefore, the market risk premium asso-

ciated with industry-specific shocks is of order b1" and the consumption beta of the stock is

approximately the same as its beta with respect to the first sector: P,K1 = -P,c, + O(bl/y).

This justifies the focus on 3 P,K1 as a measure of the systematic risk of the stock.

In the limit, q is a monotone function of the state variable, given explicitly by (3.65).

Thus, it is easy to characterize the dependence of the market beta on w and q. It is a

monotone function: if /K 2,K1 is less than one, it is decreasing in q, otherwise it is increasing.

Specifically,

=721 (U21 A e(l_,Y)(w-w*) - e(w- ' )

1 (_ _ -_ e(y)(w)_I + O(bl/U). (3.67)k,1 11 e(1-*Y)(w- ' )+ ' r(-'

The beta of stock returns is a monotone function of q. In particular, it is in inverse relation

with q if and only if the technology beta, 2l/al1, is less than unity. Thus, one cannot

expect to find the same qualitative relation between the covariance of stock returns with

the market returns and q or investment across different industries or firms. This would

explain why Leahy and Whited (1996) find no such relation in their panel regression, while

their results do show a significant relation between investment, q and the total volatility of

stock returns.

As an illustration, I compute the market beta for several sets of parameter values and

plot it as a function of q in Figure 3-5. The beta is more variable as a function of q for
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larger values of the risk aversion parameter.

y= 2.0 7= 1.0 7= 0.5
2

1.5 ...............

~1= . . .. .

0.5 . . .

0 ,
0 0.5 1 0 U.5 1 U 0.5 1

q q q

Figure 3-5: The beta of the industry portfolio is plotted as a function of the industry's q.
The following set of parameter values is used: p = 0.05, a = 0.067, 5 = -0.03, al = 0.124,
V/2 22 = 0.25. Four different values of O21 are used: 0.0, 0.06, 012, 0.18.

Dynamically, the systematic risk of the stock follows a nonlinear mean-reverting process,

determined by evolution of the state of the economy. Market-to-book ratio provides a good

proxy for the underlying real variables. In fact, it contains complete information about

the state of the economy in this model, being in one-to-one correspondence with the state

variable. As I have pointed out in the beginning of this section, market-to-book would

remain an informative proxy even if the economy was described by more than one state

variable. When the market-to-book ratio (q) is below its long-run mean, it drifts down,

while it is restricted from rising above one (due to new investment). In general, the beta is

affected both by market-wide and industry-specific shocks via their impact on q. In Section

3.5, I have shown that the beta is not variable when investment is perfectly reversible. This

suggests the following testable implication: industries with higher degree of irreversibility

should exhibit higher degree of time-variation in their beta.

The dependence of the systematic risk on the state of the economy has implications for
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asset allocation across sectors (industries). In particular, the systematic risk of the industry

portfolio changes in response to market-wide shocks in a predictable manner. Consider the

case 3K2 ,K1 < 1 first. The industry portfolio becomes relatively less risky when the market

is doing well, because in that case positive shocks to the market raise q, reducing the beta

of the stocks accordingly. The opposite is true when the market experiences a sequence of

negative shocks - the beta of the industry increases. In case of /K 2,K1 > the argument

changes. Now positive shocks to the first sector reduce the industry's q and its [,eta, while

negative shocks have the opposite effect. The bottom line is that a sequence of negative

(positive) shocks to the market leads to a rise (decline) in the industry's beta. This is

another testable implication of the model.

The above argument suggests that popular statements about certain industries being

good "defensive" investments due to their low correlation with the market should be taken

with caution: an industry can be practically uncorrelated with the market when times are

good, but can become highly correlated during market declines. As a result, certain indus-

tries can be more sensitive to significant market declines than to extended periods of market

growth. Such an asymmetry in the stocks' response to market-wide shocks is intimately

related to the asymmetric response of investment to changes in business conditions: both

are driven by irreversibility of real investment.

Since the expected excess rate of return on the stock is proportional to its systematic

risk, it exhibits similar dependence on the state of the economy and firm-specific variables,

such as the market-to-book ratio. In particular, expected returns are time-varying and

persistent. This provides a potential theoretical underpinning for empirical findings on

time-variation in expected returns (see, for example, Conrad and Kaul (1988)). It also

implies that returns are predictable, more so at long than at short horizons (see Fama and
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French (1988)).

The Long-Run Dynamics of the Beta. Ignoring terms of order b1/'y and higher, the

dynamics of the beta can be completely characterized in terms of the dynamics of Wt (or

¢t, as defined in Section 3.4.4). When the condition (3.30) is satisfied, t is a reflected

Brownian Motion. The stationary long-run distribution of t - 6* is exponential with mean

(scale parameter) -- 2/ (2p), where pC and oC are the drift and the diffusion coefficients of

(t. This makes it easy to study the long-run behavior of the beta. To provide some insight,

I compute the first two unconditional moments of the beta for several sets of parameter

values. These results are summarized in Table 3.2. The unconditional variance appears to

increase with -y. Otherwise, both the variance and the mean of the beta exhibit complicated

dependence on model parameters. Most importantly, the table shows that the systematic

risk of stock returns can vary significantly over time.

3.7 Extensions and Generalizations

Gradual Adjustment. In the previous sections I assumed that the capital stock of the

industry can be adjusted upwards instantaneously. This prevented q from rising above one

and thus restricted the equilibrium dynamics. It is of interest to check how the results

change when one restricts the rate of investment. This would slow down the adjustment

of the capital stock, generating a lag in the industry's response to demand shocks. This

modification of the model also serves as a check of robustness of the main results.

Specifically, assume that the capital can be transferred at most at rate imaxK2. Thus,
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Parameters Moments

6 a2 1 E[,3pK,] STD[/PK,]

2.0

-0.03 0.00 1.62 0.43
-0.02 0.00 1.36 0.47
-0.03 0.08 1.20 0.16
-0.02 0.08 1.09 0.17
-0.03 0.16 0.88 0.14
-0.02 0.16 0.97 0.14

-y =0.5

-0.03 0.00 0.35 0.14
-0.02 0.00 0.31 0.14
-0.03 0.08 0.76 0.05
-0.02 0.08 0.74 0.05
-0.03 0.16 1.21 0.04
-0.02 0.16 1.22 0.04

Table 3.2: The first two unconditional moments of the beta of the industry portfolio are
tabulated for several sets of parameter values. The following parameter values are used
throughout the table: p = 0.05, ca = 0.067, al = 0.124, c/42 + a' = 0.25.
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the capital dynamics is described by

dKilt = (aKt - cit)dt + alKltdWt - itdt, (3.68)

dK2t = -K 2tdt + a21K2tdWlt + a2K2tdW2t + itdt, (3.69)

where it dt/dt E [0, imaxK2t]. Without going into the details of the analysis, I only

outline the optimal policy and some of the asset-pricing implications.

The optimal investment policy is of the "bang-bang" type: it = imax for Q < Q* and

it -= 0 otherwise. This policy closely resembles the singular investment policy of the basic

model. The optimal consumption policy is characterized by the envelope condition

UC1 (-, C*) = JK1 (K1 ,K2 ) 

Average q in the model still equals marginal q. To see this, note that the constraint on the

rate of investment can be equivalently reformulated as an adjustment cost c (i, K), which

equals zero for i/K less then max and is infinite otherwise. This adjustment cost function

is linearly homogeneous. Combined with constant returns to scale, this equalizes average

and marginal q (see Abel and Eberly (1994, Lem. 2)). Unlike in the basic case, however,

q can exceed one. The logic behind this is straightforward. Before, q could not rise above

one because firms would immediately invest (enter the industry), drive down the output

price and, ultimately, reduce q to one. Given that instantaneous adjustment is impossible,

when q exceeds one, firms invest at the maximum possible rate, but they cannot reduce

q to one instantaneously. As a result of industry-specific and market-wide shocks, q can

even increase temporarily. However, with sufficiently high rate of adjustment, profitable

investment opportunities (high q) quickly get arbitraged away. At the same time, since
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investment is irreversible, low q's can persist, since there is no arbitrage pressure in this

case. Thus, as in the basic model, dynamics of q is asymmetric, albeit less extreme.

To illustrate the behavior of asset prices, I plot the beta of stock returns as a function

of q (in the limit of b approaching zero, to obtain a closed-form expression) in Figure 3-6.

Note that the behavior of the beta for q < 1 closely resembles the one in the basic case,

as illustrated in Figure 3-5. The main difference is that in this case q can exceed one and

the beta is an increasing function of q for q > 1. This suggests that it is unlikely that the

dependence of the beta on q can be adequately captured by a linear econometric model,

since, at the very least, it can be expected to be non-monotone.

One can understand the time-variation of the beta in terms of the time-variation of q.

In particular, one the state space can be partitioned into the following three regions.

First region. Low values of q: q < 1. Firms do not invest and irreversibility prevents

them from disinvesting. Thus, the elasticity of supply is relatively low and q is relatively

volatile.

Second region. Intermediate values of q: q 1. Firms are either about to invest, following

an increase in q, or are already investing at the maximum possible rate and are about to

stop, following a decline in q. The elasticity of supply is relatively high and, as a result, q is

not sensitive to shocks and does not contribute much to the stock returns (see the discussion

in the beginning of this section).

Third region. High values of q: q >> 1. The industry is expanding. Firms are investing

at the maximum possible rate and are likely continue investing during an extended period

of time. Market-wide shocks (demand shocks) do not immediately change the rate of entry

into the industry, the elasticity of supply is low and demand shocks are offset mostly by

changes in the output price. Thus, q is relatively volatile.
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This argument is illustrated by plotting q against its argument - ~* in Figure 3-7.

When the maximum possible rate of investment is very high, q rarely exceeds one. Thus,

the third regime can be observed only infrequently, during periods of active growth of the

industry. In the extreme case of instantaneous adjustment, as in the basic model, this

regime is completely absent. The first two regimes, however, can still be identified.

P(q)
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Figure 3-6: The beta of the industry portfolio is plotted as a function of the industry's q.
The following set of parameter values is used: y = 2, p = 0.05, a = 0.067, = -0.03,
al = 0.124, 21 = 0.06, /021- = 0.25, imax = 1.

Partial irreversibility and variable costs. The assumption of complete irreversibil-

ity is relatively easy to relax. For example, one can assume that capital can be transferred

back from sector 2 to sector 1, but a fixed proportion would be lost during the transfer.

This would impose a lower bound on q in the model, since firms would find it optimal

to disinvest when q becomes sufficiently low. As a result, supply would become relatively

elastic for values of q close to the lower bound, reducing the volatility of q in this region of

the state space. A similar behavior would result if one introduced variable production costs

into the model, allowing firms to leave their capital unused when the price of their output
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I)

Figure 3-7: q is plotted agains its argument, ~ -*. The following set of parameter values
is used: y = 2, p = 0.05, a = 0.067, = -0.03, a, = 0.124, x21 = 0.06, '/ = 0.25,
imax = 1.

is too low to cover their production costs.

Preferences. Separability of preferences across the consumption goods can be relaxed

as well. The resulting analysis would be particularly tractable when goods are either perfect

substitutes, or perfect complements. SuchL modifications, however, would not alter the main

qualitative results of the paper.

Cross-section of industries and heterogeneous firms. An equilibrium model of

irreversible investment with multiple sectors or with firm heterogeneity within the same

industry would provide a significant extension of the model in this paper. Such a model

would allow one to study cross-sectional properties of stock returns, as well as the joint

dynamics of interest rates, real investment and stock returns. However, a straightforward

modification of the model of this paper leads to Serious technical difficulties, associated with

singular control problems in higher dimensions. Thus, this particular extension would most

likely require an alternative modelling strategy.
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Strategic behavior. Another modification of the basic model would be to abandon

the assumption of perfect competition within the industry, introducing elements of strategic

behavior. This would change firms' investment policies, affecting the dynamics of capital

accumulation. The objective would be to identify the effect of firms' strategic behavior in

the product market on the behavior of associated financial assets. I leave this extension for

future research.

3.8 Conclusion

In this paper, I have developed a general equilibrium model, emphasizing the effect of

irreversibility of real investment on the behavior of financial asset prices. The interaction

between the demand side and the supply side of the economy leads to a structural relation

between real economic variables and properties of stock returns. As a result, the volatility

of stock returns is stochastic and is a function of the state of the economy. In particular,

irreversibility explains why stock-return volatility might rise as the stock price falls and how

the systematic risk of stock returns changes over the business cycle, as well as in response

to industry-specific shocks. My model also links stock returns to real investment. Because

of irreversibility, market-to-book ratio (Tobin's q) plays an important role as a proxy for

real variables, such as investment. It explains the time-variation in stock-return volatility,

systematic risk and expected returns.

At this point it remains to be seen whether the implications of my model are supported

by the data. I plan to pursue the empirical analysis and certain theoretical extensions in

future research.
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3.9 Appendix

3.9.1 Futures Prices

In this section I study properties of futures prices (futures are contracts on the industry's

output). As I have pointed out in the introduction, the number of commodities for which

futures contracts are traded is relatively small and in many cases futures prices appear to be

driven by dynamics of inventories. My model would apply to contracts on commodities for

which storage i: elatively expensive, such as contracts on electricity, natural gas, etc. Thus,

my model complements the models based on storage (inventory) models (e.g., Williams and

Wright (1991)) and those with exogenous specification of convenience yield (e.g., Gibson

and Schwartz (1990)).

Futures prices in my model are often in backwardation and the level of backwardation is

positively related to q. The volatility of futures prices decreases with the contract horizon,

which is consistent with the Samuelson proposition (see Samuelson (1965)). "Conditional

violations" of the Samuelson proposition can be observed for sufficiently low values of q: the

difference in volatility between contracts of different horizons is positively correlated with

the degree of backwardation.

The Dynamics of the Spot Price

As it has been established in Section 3.4.3, the spot price of a unit of output produced by

the industry (the commodity) equals the marginal rate of substitution of good 2 for good 1,

i.e.,

= uc 2(ci c ) = b ()U1 (cl, )
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Unlike the stock price, this process generally has a singular component in equilibrium. The

spot price follows a nonlinear mean-reverting process, due to the fact that there exists an

upper bound on the spot price. In case of b < 1,

S = l exp (--y ( - *)) + O (b/Y), (3.70)1 _(O)~~~~~~~~~~~~(.0

and thus the spot price cannot exceed Al'=-. When below the upper bound, the spot price
A1 (o)'

behaves as a Geometric Brownian Motion. Also, periods of higher q (higher investment)

are associated with higher levels of the spot price.

If investment was perfectly reversible, the commodity spot price would be constant:

St = U (Ct, Ct) = (1 - max(0*, 0))

This suggests that the nonlinear dynamics of the spot price in the model is due entirely to

irreversibility.

Ignoring terms of order b' and higher, one can characterize the long-run stationary

distribution of the spot price explicitly. The stationary distribution of it - 6* is exponential

with mean 1 /me - a/ (2p), where ye and cA are the drift and the diffusion coefficients

of ft. Therefore, the stationary distribution of the spot price is given by

a~ ( E1 (0) S-a1 S E (0, --1-
,Y, (A -Y) - , 1 '"(o)]

Depending on the model parameters, this distribution function can be either increasing or

decreasing in its argument. This is reflected in the time-series properties of the spot price.

When m/ < 1, the spot price tends to stay relatively low most of the time, exhibiting
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occasional "spikes". Such behavior is consistent with the data, as reported in Williams and

Wright (1991, Ch. 6). Another important empirical property of the spot price is persistence:

annual time series exhibit high first-order autocorrelation. This property is clearly implied

by my model, since the spot price is a function of a persistent state variable. To illustrate

these observations, I plot a single path of annual spot prices for a specific set of model

parameters in Figure 3-8.

Spot Pnce

(u

0
I

Figure 3-8: A time series of the spot price. The following set of parameter values is used:
p = 0.05, y = 2, ao = 0.067, a = -0.03, al = 0.124, a21 = 0.04, v/aJ2 + = 0.25.

The Term Structure and Volatility of Futures Prices

Let bt,s denote the futures price at time t. 15 Using the results in Cox, Ingersoll and Ross

(1981), Richard and Sundaresan (1981) and Duffie and Stanton (1988), one can represent

It,s as the time-t market value of fiS rudu units of time-s commodity (good 2). The following

proposition provides an explicit expression for the futures price in the limit of b approaching

zero.

15The definition of futures contracts is given, for example, in Cox, Ingersoll and Ross (1981)
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Proposition 3.7 In the limit of b approaching zero, the futures price is given by

't,s(X) = AQ-'=-" (I1 + 12 + 13),~,~~(x = 1 "'(o)

I1 = exp - (+ - (2) (s

12 (a)2{ ( ()2 ss12 = (2 exp (2
_ () - 24 (0')2

_-x + (8 - (a') (t) 
G ,I/j-t

,))) C

.- -2/-y t-x - -(s -t) 
1- _Y j 2 G ( je; )

If parameters of the model are such that

thpc6 +e o-1/f + 2 + asf7o1 (a21 -t m r) < s,

the price of contracts of long ("infinitc") maturity satisfies

o < urn 4p, 8 (X) =
S 4(XZ

-() -1 ---
_ ) 0 2 - C< 1 -(o)

im -at,s(x) = 0.

Proof. Given the representation of the futures price as the time-t market value of

f[ rudu units of time-s commodity, Pt,s = Et [S], where E denotes expectation under the
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risk-neutral probability measure, Q.16 In order to compute the futures price, one needs to

specify the behavior of the state variable is under Q. As it has been established in Section

3.6.2, in the limit of b approaching zero, there is no market risk premium associated with

the industry-specific source of risk W2t. The risk premium on Wit can be extracted from

returns on the market portfolio: since the short-term risk-free rate equals a - y0- , the risk

premium is equal to Cy. Thus, under Q, the state variable it is equal in distribution to the

solution of the following stochastic differential equation with instantaneous reflection at *:

day = pf ds + dWs, U > 6,*, (t = t

-- 2 or2 2=-a + -1/Y + I - 2 + 2 _ 0'1 (0-21- '1),
2

0- = V'1 - o1)2 + 2,

where Wt is a Brownian motion under Q.17 One can now represent the futures price as

ts(ft'-- )= Et [/1l_(o exp (- (s- .))] (3.72)

Observe that the futures price is proportional to the Moment Generating Function of the

conditional distribution of s -s - (specifically, conditional on t), which can be com-

puted in closed form using the expression for the corresponding cumulative distribution

16One cannot define the Equivalent Martingale Measure on the original space (Q, T, 7) (e.g., Karatzas
and Sreve (1991, p. 192) or Chung and Williams (1990, pp. 210-212)). Instead, following the construction
in these references, I define the martingale measures Q on the unaugmented filtration Ft°, generated by
(Wit,W 2 t), as the probability measure on (Q,Yo), such that its restriction on Ft' is equivalent to the
corresponding restriction of P for all finite t. An alternative would be to define measures Q on (Q, s) for
every finite s. This would allow one to compute futures prices, since futures contracts are finitely lived.

l7 See (Karatzas, Lehoczky and Shreve, 1991) for a formal discussion of an equivalent change of measure
for It6 processes with a singular component.
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function (see Harrison, (1990, §3.6)):

Pro b { <y} 1 G (-Y + t + I(s - t))

e2py/a 2G 8 St+p4(S-t) (3
Ua V/__ -t

where G () is the standard normal cumulative distribution function. The first result of the

proposition is then obtained by direct calculation.

If parameters of the model are such that /a < 0,18 s has the long-run stationary

distribution characterized by the exponential distribution function with scale parameter

- () / (2/p). This allows one to compute the limit of the futures price directly as the

Moment Generating Function of the exponential distribution. One can also obtain the result

as a mechanical limit of the general expression. If _ > 0,

lim Prob {s < Y} = 0, Vy

and the result follows. 

This proposition provides a number of testable implications for the behavior of futures

contracts.

1. Futures contracts can exhibit strong backwardation, i.e., the futures price can be less

than the prevailing spot price. The existence of the long-run stationary distribution

of the spbot price implies that the futures are in backwardation whenever the pre-

vailing spot price falls above its long-run mean. Backwardation is not restricted to

18If jue > 0, there does not exist a long-run distribution: lims-. Probt [ < ] = 0 for any positive , and
thus limsO t,s (x) = 0. This is a manifestation of the fact that Q and P are mutually singular on (Q, F°)
(e.g., Karatzas and Sreve (1991, p. 92) or Chung and Williams (1990, pp. 210-212)). Thus, it is possible
for a process to be ergodic under one measure, but not under the other.
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long-horizon contracts. For instance, when q = 1, the prevailing spot price is at its

maximum and, since (Ot,s = Et [Ss], the futures price is guaranteed to fall below the

spot price regardless of the maturity of the contract. By continuity, futures will be in

backwardation whenever q is sufficiently high.

2. For the long-horizon futures contracts the level of backwardation is positively cor-

related with the prevailing spot price. This is immediate, since the futures price is

constant for long-horizon contracts.

3. Volatility of the futures prices is higher for short-h)rizon contracts than for very

long-horizon contracts. Again, this follows from the futures price being constant for

long-maturity contracts: the volatility of long-horizon contracts is zero, while the

volatility of the spot price equals ya. 19

4. The level of backwardation is positively correlated with q. This follows directly from

(3.71).

The first three implications are largely consistent with known empirical facts (e.g.,

Milonas (1986), Litzenberger and Rabinowitz (1995))20 and have been generated in a num-

ber of theoretical models. The difference between my approach and most of the existing

results is the absence of storage technology in my model. Thus, one cannot appeal to tra-

ditional arguments based on either exogenous convenience yield (e.g., Gibson and Schwartz

(1990), Brennan (1991), Schwartz (1997)) or nonnegativity of inventories in competitive

storage models (e.g., Williams and Wright (1991), Deaton and Laroque (1996), Routledge,

19This is a special case of the Samuelson proposition (Samuelson (1965)), which states that volatility of
futures prices is decreasing with contract maturity.

20See, however, Fama and French (1988) for examples of conditional violations of the Samuelson
proposition.
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Seppi and Spatt (1998)). The main conclusion of this analysis is that many of known prop-

erties of futures prices can arise due to irreversibility of physical investment alone. Whether

or not irreversibility is an empirically important factor depends, among other things, on the

actual cost of storage for a particular commodity.

Term Structure of Futures Prices

6

s-t

Figure 3-9: The term structure of futures prices is
set of parameter values is used: p = 0.05, -y =
a21 = 0.04, u 1 + u2 = 0.25.

qt

plotted as a function of q. The following
2, = 0.067, = -0.02, 1 = 0.124,

The last implication is new. It can be understood as follows. When q is sufficiently

high, firms invest and increase their output. As a result, the future spot price tends to be

lower than the prevailing spot price, since the industry cannot reduce the rate of its output

in response to a negative demand shock. This is reflected in lower futures prices and higher

level of backwardation.
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Term Structure of Volatility of Futures Prices
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Figure 3-10: The term structure of volatility of futures prices is plotted as a function of
q. The following set of parameter values is used: p = 0.05, y = 2, c = 0.067, = -0.02,
a1 = 0.124, a21 = 0.04, 21 + 2 = 0.25.

I plot the term structure of futures prices, (bt,s, and volatility of futures prices,21

STD (t,s) = /Et [(dt4)t,s/d)t,s)2] /dt,

for a specific set of parameter values in Figures 3-9, 3-10.

As one can see from Figure 3-9, the term structure of futures prices can have several

shapes. It can be entirely in backwardation (monotonically decreasing) for large q, entirely

in contango (monotonically increasing) for small q and it can be hump-shaped for interme-

diate values of q. Note also that the futures price increases in q, which is quite intuitive,

since the spot price is an increasing function of q. To see that this is a general property

of futures prices in my model (and not just a peculiarity of the numerical example), note

that, according to (3.73), the distribution of Cs under Q "increases" with (t in the sense of

2'Before applying the It6 formula to the ftures price, one must complete the probability space fY and
augment the filtration .Ft with the Q-null sets (see Chung and Williams (1990, p. 212)).
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the First-Order Stochastic Dominance. Since the spot price is a monotonically decreasing

function of the state variable, this implies that the futures price decreases with (t (increases

with q).

Figure 3-10 suggests that the volatility of futures prices decreases monotonically with

the contract horizon. However, the relative difference in volatility between short- and long-

horizon contracts depends on the current state of the economy. In particular, consistently

with known empirical facts (see Fama and French (1988)), this difference is positively corre-

lated with the degree of backwardation, leading to "conditional violations" of the Samuelson

proposition. This behavior is explained by elasticity of supply being a function of q.

Figure 3-10 also points to another property of futures prices: their volatility decreases

with q.22 Both of these features have been observed for a wide range of parameter values.

The latter observation is a testable prediction that has not been previously considered in

the literature. The relation between q and the volatility of futures prices suggests that the

latter should change in response to market-wide and industry-specific shocks. In particular,

futures prices are predicted to become more volatile in response to negative shocks to the

market, as long as 3K 2,K1 < 1. This follows from the fact that, if 3 K2,K1 < 1, q decreases

in response to negative shocks to the market. Independently of the parameter values, the

volatility of futures prices increases in response to positive idiosyncratic (industry-specific)

shocks. The reason for this is that the industry's q must drop in response to positive

idiosyncratic shocks. The bottom line is that both the market-wide and industry-specific

shocks affect the term structure of futures prices and the volatility of futures prices through

22In general, the volatility of the futures price equals zero when q equals one. This follows from the
representation t = Et[Ss] and the fact that the state variable, ~s, follows a reflected diffusion process.
According to Gihman and Skorohod (1972, p. 184), the first derivative of 4 t,s with respect to equals zero
at *. Thus, the instantaneous volatility of bt,s equals zero when = * (when q equals one). At the same
time, as q approaches zero, the volatility of the futures price approaches the volatility of the spot price, given
by yo .

201



their impact on the industry's q.

3.9.2 Proof of Proposition 3.3

To demonstrate that the conditions of the proposition are sufficient, I construct a lower

and an upper bound on the value function and show that the conditions of the proposition

imply that both bounds are finite.

Consider the lower bound first. It is provided by the solution of the problem in which

the two sectors are completely isolated from each other and the capital stock is initially

split evenly among the sectors. Consider the problem for an isolated sector 1:

maxE 0o e- pt c-dt 1 (3.74)

subject to

dKt (pKt - ct)dt + aKtdWt,

Kt O, ct > O.

The value function, JI (K), satisfies the dynamic programming equation23

pJ 1 ma J{ (3.75)PJ1 = ma 1 c 1 - + J1K(pK - c) + 2J1KK K (375)
~_>o 1 - - 2 

23Here and in Appendix 3.9.7, I solve the dynamic programming equations in closed form. To verify that
the resulting solution is indeed the value function of the original optimization problem, one can use the
standard verification theorem, e.g., Fleming and Soner (1992, Th. 9.1).
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The solution of (3.75) is given by

1 (A p, O', p) Ki_?Y,Ji(K) - ' i(, )K1 -7

ct(1 = Kt,

(IL, a, p) = (Ha -2 (?Y - 1)+ ) . (3.76)

Constraints Kt > 0, ct > 0 are clearly satisfied. This verifies (3.9). For the case 7 = 1, it is

easy to check that the value function has the form J (K) = p-1 ln(K) + const.

For an isolated sector 2, one must compute

E0 e-Pt b Kldt] , ' 1, (3.77)

[/

subject to

dKt = pKtdt + aKtdWt.

Since Kt = K0 exp ((a - 2 /2) t + a (Wt - Wo)), the solution is given by

J2 (K) = b A2 ( U, ) K1-7,1-Y

A2 (. a, p) = (,Y - 1) - --Y ( - 1) + (3.78)

Similarly, for -y = 1, J1(K) = bp- 1 ln(K) + const.

Thus, the lower bound on the value function is given by

JLB(K K2) = 1 -K1 7b(1 K,2) 1--y 1 1 K2
7 ,Y 7#1 (3.79)
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JLB(K1, K2) = ln(Ki) + -ln(K2) +
p p

p2 (- -2 -b)- (a + 221 + 2) + p (ln(p)-1) , y = 1. (3.80)

The lower bound is finite if and only if Al and A2 are finite.

An upper bound on the value function can be obtained by adding the solutions of the

following two problems:

max EO 1e- ct d , (3.81)
{cIt,Ot} 1- I t1

0-

and

max Eo e- p t b Kt 1 (3.82)

-0

both subject to the same constraints as the original problem. The idea behind these two

problems is clear: one computes an upper bound by maximizing each of the components of

the original objective function separately. Economically, each of these auxiliary problems

corresponds to maximizing the utility of consumption of only one of the goods. The upper

bound is then given by

JUB(K1 K2) = JLB(Ki,K 2 + K). (3.83)

To see this, note that the problem (3.81) is equivalent to (3.74), since it is impossible to

transfer capital from the second sector to the first. The problem (3.82) is equivalent to
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(3.77) with he initial condition K2 + K1, since it is clearly optimal to transfer all the

capital from the first sector to the second. Thus,

JUB (K1, K2) = J (K, K2) + J2(K1 , K2 + K1 ).

To see that the conditions of the proposition are necessary, note the following: for a < 1,

both the value function and the lower bound are positive, thus the lower bound must be

finite; similarly, for y > 1, both the value function and the upper bound are negative, thus

the upper bound must be finite; for 7 = 1, the value function is always finite and conditions

(3.9, 3.10) are trivially satisfied. 

3.9.3 Numerical Solution of (3.16-3.18, 3.24, 3.25)

I design a sequence of finite difference approximations to the Hamiltol-Jacobi-Bellman

equation and the boundary conditions. First, introduce the new independent variable =

b-/'YQ, = ln(E) = w - ln(b)/-y and the new unknown function

g() =_ b-1/ (f( ) - Al- bl/'rA2 exp((1 - y) 6)) (3.84)

According to (3.105), g(6) satisfies

p2g9" + Pig9' + Pog = -b - l 1 A + b1 'y
- -1 1 - Al pob- / v. (3.85)
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The boundary conditions (3.17, 3.18) translate into

fg(9*) (1 + bl/eC*) - g(*)(1 - y)bl/7eC' = A(--1 - --

A2(1 - )e(l-7)c

g"(*) (1 + bl/yeC*)- 9g(*) (1 + (1 - y)bl/'Y7e) = A2(1 -- )e (1-' )c*

For a given value of 6*, introduce a discrete grid {61, 2,-. ,I}, such that ji+1 - i = h

and 61 = ,* - h. A finite difference approximation to (3.85) is

gi+ l - 2'+ i-1 g+ p 9 g+i i-1 + p9i=
P2 + P 2h

-yb1/(i- 1 i+ - gi-1-fi b- / ')' I - 2h - Alpob-1/7,

(3.88)

while the boundary conditions (3.86, 3.87) are approximated as

93 -gl (1 + bl/'e*) -g(1- )bl/'e C -

A (1 - -y)e + A2 (1 - y)e(l-7)* = 0,

g3- 2g2 + 91g (1 + bl/7e*)
h2 -3 -gl 1 (1 (1-7)bl/7eC*) -
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(3.86)

(3.87)

(3.89)

A2 (1 - y)ye(1-7) = 0. (3.90)



I solve the system (3.88-3.90) iteratively. Let gn-1 denote the solution of the n-th step of

the iterative procedure. Then gn is computed as a solution of

g?+l 2g + gz lj -- - q_ po n

~P2 9 h2 + Pi 2h +po =

ginl- gi--1
-'yb - "max , gi 1o-7yb-1 /1 /max ( n- _ -1 -1 1--1 /7 -

1 - ? h

-gl i--- 2,...I- 1,
93- (1 + bl/1e *) - g 1 - -y)bl/'Te* = Al(1 - y,)e*e - 2(1 - '')e)C2h 9 \

n= gI-1 I gIX,

where the last equation accounts for the asymptotic behavior of g(w) (see Appendix 3.9.5,

(3.104)). Iteration steps are repeated until

i=, gl -- + I gi1 i -1maxg{ g 1 I+max < ,i~~~l,2,...,I ~ ~ ~ ~ ~ 1 - 2h

where controls the desired accuracy level. The initial iteration can be started with g9 - 0,

or a better approximation, e.g. the one developed in Section 3.4.4.

After the convergence criterion has been satisfied, compute the error in (3.90) using

gi and repeat the above procedure as a part of a line search to solve (3.90). I is chosen

large enough so that g < E (see 3.104)) and refine the grid by reducing the discretization

parameter h until the solution of the finite difference scheme is no longer sensitive to h.

Finally, I use Richardson's deferred approach to the limit (see Press, Flannery, Teukolsky

and Vetterling (1992)) to obtain an accurate approximation to the solution of the original
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problem, corresponding to "h = 0".

3.9.4 Proof of Proposition 3.4

The proof relies on the following two lemmas.

Lemma 3.8 The optimal solution of the central planner's problem satisfies

E [|° eP(S-t) UC2 (ls, C.s) R2sds] JK2 (K*t, K2*t)Et e- - 1 2 'd, it ~~~~~~~~~(3.91)[~Ucl (c*t, c) R 2t JK 1 (, ' (32t)

where

R2t = exp (- (6 + U21/2 + o2/2) t + 21Wlt + a2W2t) (3.92)

Equivalently,

r r0 R2 1Et [/ e -~s t)Uc2 (C~lsvc2S dsj = JK2 (K t, K2t) (3.93)
[/t~e- (-t) U-2 (S I2 C) i

Relation (3.91) has an intuitive interpretation. It states that the relative value of a

marginal unit of capital 2, expressed in terms of the numeraire good (the shadow price of

capital), equals the present value of the entire future output produced by the marginal unit,

taking into account the equilibrium capital accumulation dynamics (the marginal q).

Proof. Since Uc (*, c2) = JK1 (K*, K2*), it is sufficient to establish (3.93).

Without loss of generality, assume that in (3.93) t = 0. Consider an economy with

initial capital stocks (Ko10 , K20 ), K 20/Klo > Q*. c t and I are stochastic processes arising

as a result of applying the optimal consumption/investment policy. Let (Kt, K2*t) be the

resulting process for the capital stocks. Consider now another economy with the initial

208



condition (Kl0 , K20 + A). Implement the consumption/investment policy defined by the

pair of stochastic processes (it, It) (this amounts to "setting aside" A units of capital good

2 and treating the remaining capital stocks as if A did not exist). Let te corresponding

indirect utility function be J. By construction,

J = Eo [ e-Pt 1 e(tKjt) -v + 1 (K*t + AR 2 t)1- 7) dt]

Since such a consumption/investment policy is suboptimal, J < J(Klo, K20 + A). Thus,

J(K10 ,K20 + A) - J(Ko, K20) > J- J(Ko,K 20)
A - A

One concludes, by taking the limit of A \, 0 and using the dominated convergence theorem

to pass the limit under the integral sign, that

JK2 (K1o, K 20 ) > Eo [ e-Ptb(K2*t)-R 2tdt] . (3.94)

Next, repeat the above argument for the economy with initial conditions (K 0lo, K20 - A),

A < K20. Implementing (t, A*) for this economy leads to the indirect utility function

1 1p--(it bA 1-'V\ -dtJ = Eo [ e-Pt (EtK)' - - + (K2*- R2t)17 t]

Note that K2*t > AK2s/K2t, due to A < K20. Suboptimality of the constructed strategy

implies J < J(Klo, K20 - A). Therefore,

J(K 1 o,K20 - A)- J(K1 o, K20 ) J - J(K1o, K2o)
A - A
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and the limit of A \l 0 yields

JK 2 (K1o, K20 ) < Eo [j e-Ptb(K2t)-YR 2tdt] (3.95)

Inequalities (3.94) and (3.95) imply

r roo

JK2 (Kto, K 20 ) = E 0 j e-Ptb(K2t)- R 2tdt ,

which completes the proof. 

Lemma 3.9 The value function J(K1 ,K 2) satisfies

JK1 K2 <O 0, VK1 > 0,K 2 > 0. (3.96)

The relation (3.96) can be justified intuitively. Note that the marginal unit of the

numeraire good can be used in two ways: either for consumption, or for investment. Ac-

cordingly, its contribution to the indirect utility function can be decomposed into a sum

of the discounted present value of the marginal utility of consumption and the value of

the imbedded "investment option". While the utility derived from consumption does not

depend on the size of the capital stock K2, the value of the investment option does. Specif-

ically, it decreases with K2, since so does the marginal indirect utility of K2. This explains

why the marginal value of the numeraire good decreases with K2.

Proof. According to Lemma 3.8,

JK2 (Kit, K2t) = Et [O eP(st)b(K2))- R2 dt
X ·
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I start by characterizing the dynamics of the capital stock K2, resulting from the optimal

investment policy It. According to (3.5) and (3.29),

_ R2s 1 (Ls-Lt) , t<s,
K2s = K2t R2t exp ( + Q* L-t),t<s

where R2t is defined by (3.92). Then

JK2(Klt,K2t) = Et e-p(s-t)b(K2t)-- (R 2t) exp 1 + Q* (Ls-L))dt . (3.97)

It is therefore sufficient to demonstrate that Ls -Lt is a nondecreasing function of the initial

condition Kit. Consider a pair of initial conditions (Klt, K2t) and (K", K2t), Klt < K'.

Denote the corresponding reflection processes L' and L"'. I will show that L' < L" almost

surely.

To this end, define wt and wt' as two solutions of (3.27) with initial conditions

ln(K 2o/K' 0 ) and ln(K 2 o/K'o) respectively. Suppose there exists a finite moment of time s

at which w' > wc. Since wo < wo' and both solutions have almost surely continuous paths,

there must exist r E (t, s), such that w = w". However, due to uniqueness of the solution

of (3.27) (see Gihman and Skorohod (1972, §23, Th. 1)), this implies that w' = w", for any

u> . I conclude that w' < w" almost surely. Given the characterization of the reflection

processes L' and L' as local times, this last inequality implies that L' < L' almost surely.

Lemma 3.9 provides an important insight into the behavior of the optimal consumption

policy. Since = (K 1)- (JK,) - 1 / f, it is clear that (a1)K2 > 0. This should not be

surprising by now: when deciding how much to allocate for consumption, the central planner

trades off the direct benefit of consumption (the marginal utility), which is independent of
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K2 , against the indirect benefit of adding a marginal unit of the numeraire good to K1 ,

which has been shown to be a decreasing function of K2 . This results in the following

lemma.

Lemma 3.10 The optimal consumption policy Z1(w) is a nondecreasing function of its

argument: a*'(w) > O.

Being a nondecreasing function of its argument, 1 (w) possesses a limit as w approaches

infinity. As suggested by (3.24, 3.25, 3.26), this limit is finite and equals A '1/ - the

optimal consumption policy in the economy with completely isolated sectors. This result is

formalized in the following lemma.

As the ratio of capital stocks increases, the optimal consumption policy E1 (w) approaches

a finite limit:

lim (w) = A" = - 1 2 1 + p (3.98)
w-~-oo --oo[1/'7 y 23. 2

Proof. To show that limn E* * (w) = Al / , it is sufficient to prove that

lim JK1 (K1,K 2) = AiK1.
K2 -+o00

Since JLB (K1 ,K 2 ) < J(K 1 ,K 2 ) < UB (K1,K2), where JLB (.,.) and JUB (.,.) are

given by (3.79, 3.80) and (3.83) respectively, one concludes that

bA2 1~/1 AlI--y

lim J(K 1,K2 ) b 2 K- = 1 Kh, (3.99)
2-+00 1 - 1-7

convergence being uniform of compact subsets of (0, oo). This verifies (3.24-3.26). Com-

bined with the fact that JK1 is a nonincreasing function of K2 (see Lemma 3.9), this allows

212



one to prove the statement of the lemma.

Consider an arbitrary value of K1 and h E (0, K1 ). Monotonicity of JK 1 and the mean

value theorem imply

J (K1 + h, K2) - J (K1, K2) < JK (K, K2) J (K1, K2) - J (K1 - h, K2) VK2
h h '

Combined with (3.99), this means that

A, (K + h)l- vy- K" -
limK2-o00JKl (K1, K2) > A (K1 + h)- 1i-'y h

1 Y - h
limK2-ooJK, (K1,K2) < K- (K-h)-

The fact that this holds regardless of h guarantees that, as K2 approaches infinity, JK1 (, K 2)

converges and the limit equals AiKT .

A brief discussion will clarify the intuition behind the main result. If parameters of the

model satisfy (3.30), the drift of Wt is strictly negative everywhere. By Bellman-Gronwall

inequality (see Gihman and Skorohod (1972, §16, Lemma 4)), this implies that wt is bounded

from above by the process w* + (a+-A-1 /--a2/2+ (a21 +aU2)/2)t+ (1 +-2 1 )Wt +U2W2t,

reflected at w*, which is equivalent in law to a reflected Brownian motion with the drift

coefficient a+5-A 1 l/Y-or2/2 +(o21 +a2)/2), the diffusion coefficient ((a21 -_ or1)2 + a) 1/2

and the initial condition wo. This process possesses the long-run stationary distribution,

characterized by the exponential density (see Karlin and Taylor (1981)). Thus, t has

zero probability of reaching infinity. Similarly, wt is bounded from below by a reflected

Brownian motion with the drift a + - (w*)- a2/2 + (o2 + u2)/2,therefore w* is not an

absorbing boundary. Both the upper and the lower bounds on wt have long-run stationary

distributions and so does wt.
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If the inequality opposite to (3.30) holds, the drift of the process wt is uniformly positive

for all values of w exceeding a certain fixed value, therefore the ratio of capital stocks has

a positive probability of reaching infinity (see Karlin and Taylor (1981)). In the case under

consideration an even stronger result holds, as stated in the proposition.

To prove the first statement of the proposition, define a new process = w - *. This

process is a diffusion on [0, oo) reflected at zero and is equivalent in law to the solution of

dt = MCdt + ~dWt, t > 0,

ok = (-a - 5 + ~1t(wt) + 12 0,2 )
2 2 '

= /(a2 1 -- 1 )2 + o2dWt.

Following Gihman and Skorohod (1972, §23), I introduce a function u(.) defined on [0, co),

decreasing, possessing bounded continuous derivatives u'(.), u"(-) and satisfying

u(0) = 0, zcu'(0o+) + 1C2U"(0o+) = 0, lim u'(x) = 1, lim u"(x) = 0.
2 ( X---OO X-)0

Such a function can be constructed by "pasting" together a linear and an exponential

function and smoothing the resulting function around the pasting point. Then t =- u((t)

is itself a diffusion process reflected at zero. rt satisfies

dt = Mt7 (rlt)dt + a77( rt)dWt
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on the interval k0, 00), where

() = (-a- + t(w* + u-l(r7)) + I C'l + )u (u-())+2 2

or2U t(U (V7))

o7(vr) = ac'(u - (1))

Thus, jn7(.) is bounded and it approaches --a - + +21/ a2/2 - (21 + o2) /2 as 77

approaches infinity. a,(.) is also bounded and approaches oa as approaches infinity. Next,

extend the functions p/)(.) and ao7(-) to the whole real line by means of

P77* W = 7 X I > .

PI*I(X) = -97(X), x < 0,

Cn(x) = o.(-x), x > ,*(X) = -~n~), _ <o

(x) = (x), x < o0. 

Define 7/* as a solution of

drt* = ,t4(7n*)dt + (4)dWlt.

According to Gihman and Skorohod (1972, §23), the process Ir* is equivalent in law to

rt. Thus, given the one-to-one correspondence between t and wt, it suffices to establish the

existence of the long-run stationary distribution of r/*. To do this, define a new function

() = 7 (x) exp - a 2 (Y).
0 7
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According to Gihman and Skorohod (1972, §18, Th. 3), the process t possesses the long-

run distribution if

00

J - 2 () dy < oo.
-00

This last condition is clearly satisfied in view of the properties of the functions p,(-) and

a,() established above.

To prove the second statement, assume that Prob{limt 0o (t = oo} '< 1. Then, there

exists M > 0, such that for any M1 > M,

Prob{3 {tk, k- =1,2,...}: ki tk = •~ tk < i} > O
k--oo

To uncover a contradiction, define M1 > M, such that pC > 0 for > M 1. Fix M 2 > M 1.

Since the process Ct is continuous and bounded below by a reflected Brownian motion,

Prob{3 t E (tk, 0): t =M2tk < M1 } = 1.

According to a well-known property of the Brownian motion with drift (e.g., Harrison (1990,

§8), Karatzas and Shreve (1991, pp.196-197)),

Prob {3 s (t, oo): Cs < lit = M2 } = e < 1,

where is a function of M2, M2 and model parameters and does not depend on t. Thus,

one concludes that

Prob {3 (t, s),l I 1,2,... < ts < s < t+l, t = A/12, (s, < M1} = lim E1 > O0,
1-*oo
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which is a ciear contradiction. 

3.9.5 Proof of Proposition 3.6

One has to verify that the processes defined in Proposition 3.6 satisfy the Definition 3.5. I

check each of the statements of the definition separately.

(i) Suppose that the agent can attain a higher level of expected utility with another

feasible consumption plan (lt, c2t):

[/oE0 e-Pt (U (Cit, )t- U (alt, 2t)) dt < 0.

By concavity of the utility function,

U (c1, c) - U (1, C2) > UC (1, C2) (C1 - 01) + Uc2 (I, C2) (C2 - C2),

and therefore

E 0 [ 0O,t ((cL - Elt) + (~t- C2t))dt < O.

As I will show in (ii), E0 [f0o r7o,tStctdt - f 0 ro,tdIt*] = PK 20. An entirely similar ar-

gument can be used to demonstrate that Eo [fo 7o,tcitdt + f0 ilo,tdIt*] = Ko1 0. t follows

that

E0 [ 7 0o,t (ct + Stct) dt] = PoK2 o + K10 = VO
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and therefore

Eo / 7o,t (lt + St2t) d > Vo. (3.100)

Given (v), the dynamic budget constraint implies that

Eo [j 70,t (Cit + Stc 2t ) dt < Vo, VT > 0.

for every feasible consumption plan (clt, c2t) (e.g., Karatzas and Shreve (1991, p. 374)).

Using the monotone convergence theorem,

E0 [ O,t (clt + Stc2t) dt] Vo,

which is a clear violation of (3.100). Thus, (1t, C2t) cannot be budget-feasible, which proves

optimality of (t, ct). 

(ii) Without loss of generality, assume that there is only one firm in the industry, facing

the problem

maxE [ 00ePt Uc (*t, C*t) U 2 (*it, c*t) K2tdt -
fit} 0 C1 (C*10, C20) C1 (Clt, 2t)

00 ep UC ( t, c2t) dlt
Uc1 (C10 o C 0 )

subject to (3.5) and It > 0, dIt > 0. First, according to (3.91),

Es [/00

218

(3.101)

= psJK2 (K, K2*s)
JK 1 (K1S, K2s)

Pt Uc, (c*t, c*t) R2t
e- 1 2

Q,,, (c*,, c*,) R2s1 2



Second, the solution of (3.5) is given by

ft
K2t = K 2oR 2t + J d-dIs, (3.102)

where R2t is defined by (3.92). Finally,

Eo [I* e-Pt Uc( (ct Ct) U (C1t 2tdt] =

e0Pto2 Clt C 2)t C2t

E[ c ) dK20R2t | dIdt =
UC-1 (C10 C20) 0R2s

[Jo c2 0) (K2OR2~(c~t J2t)R~
JK 2 (Kio, K2o) K 2 0 + E 0 0 e-PtU2 1 , ~dtdI,JK1 (Kio, K2 0 ) U f -U 2 (c1t, C2t) R2

)K20 E°[JO S U0 1 (c1 0 , c2 0 ) R2 s SJ

where the first equality follows from (3.102) and the second is obtained using integration

by parts and Lemma 3.8. According to the law of iterated expectations, the second term

in the latter expression equals

0 UC ( C _ ePt U2 (c 2t dtl d] R-EO~ ~ ~ / is 2c.,e- 1d~
[JK U2c (10, C20) LU U- (ct, c) R2s J J

r U 1 (cKC2S) JK2 (K, K*) dI]
o IIle 5 1 2 is 2s

the equality being an application of (3.91). Thus, the firm's problem is equivalent to

ma Eo [ e-Pt U (ltl C2t) ( JK2 (Klt, K2*d_1 dt

Note that, because of (3.11) and the constraint dt 0, the last expression is nonpositive

for all feasible investment policies. It equals zero if 1{JK 2 •JK 1 } dt = 0. Since the candidate

solution It* satisfies this condition, its optimality has been verified . Finally, the value of
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the firm under the optimal investment policy equals

JK2 (K1 o, K2o)
JK 1 (K10 , K 2 0 )

(iii, iv) These conditions are satisfied by construction.

(v) The short-rate process rt is well defined by (3.45) (this can also be verified by direct

calculation or indirectly, as discussed in footnote 12) and satisfies (3.39) by construction. As

I have demonstrated in (ii), Pt =Et [t ° rt,s2sK2sds - ft' 7t,sdIs], thus (3.40) is satisfied.

Both (3.41) and (3.42) hold, because corresponding cumulative return processes satisfy the

Consumption CAPM (see Duffie (1996, p. 229)):

(a) = r- U (c, Wit) )
I-F U, IC) 0 1 d (lt, W2t) /dt

This proves that Tlt,s is a valid stochastic discount factor.

I will now show that 7t,s is the unique stochastic discount factor consistent with (3.41)

and (3.42). First, note that the instantaneous variance-covariance matrix of the cumulative

return processes is constant and nonsingular. Second, according to Harrison and Kreps

(1979), it is sufficient to demonstrate that the process for the market price of risk,

u~~~ ~l~ (c, Wit )d
Ot U 1C1 (Clt c) ( d (CT, W1 ) /dt (3.103)

iso u y ti, rwrite (3d (cit, W2t) /dt /

is uniformly bounded. Using the relations Uc, = JK, and c = (JKc)- /7, rewrite (3.103)
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as

KI( JK,K + 2l K2 J, K

t JK, JK,
K2 JK1 K2 )

0.22 JKI

Since J(Ki, K2) 1 'K2K1K2 
Since J(Ki, K2 ) = 11 lK; f(w), both K2JK 1 K 2 /JK1 and K1JK1 K1 /JK1 are functions of w

only:

K2JKK 2 f l-'Y
JK1 f 1 f

K1JK1 K1 _ __f _ f

JK1 f 1- f

Thus, it suffices to establish that the first ratio is finite. The denominator equals Z* (w) - 'Y,

which is a bounded function (see Lemmas 3.9, 3.9.4). The following lemma implies that the

numerator is also bounded. 

Lemma 3.11 As the ratio of capital stocks approaches infinity ( -+ oo), f'(W) - lY-fit()

approaches zero.

Proof. Define g(w) using (3.84). Thenf'-T1-f" equals b-l/ ('9 - 19g). According~~~~~~~~~1--~eul -( ' 1-~" codn
to Lemma 3.9.4, limn&_ (f(w) - 1 f'(w)) = A1. This implies that

limrn ((w) -1 9'(W)) =0.
W-4oo 1 - 7

Next, (3.99) implies that lim,,-, 9(w) = 0. Thus,

lim g(w) = lim g'(W) = 0. (3.104)
W---- W-00
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Next, using (3.85),

, 1 , , pig' + pog + Tb-1 /y (A1 + bl/'y (- 1. g))-1/Y + Alpob-/'

(1 - ?)P2

which converges to zero as w approaches infinity (I used the fact that po = -y1 - 1/v). 

3.9.6 Perturbation Analysis, Section 3.4.4

The case y 1. As I have stated in Section 3.4.4, the first step in the analysis is to

rescale the independent variable, introducing = w - ln(b)/-y. As a function of the new

independent variable, f (~) satisfies

P2 +pf' +p~~of +F 1 f) 1-1/P2f" 4-Plf' 4-Pof 4- f 1 - Y (3.105)

subject to the boundary conditions (3.17, 3.18, 3.24, 3.25). I look for f(~) and the optimal

investment threshold E* in the form

f(6)= A1 + bl/ y (A2e(1- 7)

*- (o) bl/7y-(1) , -

(3.106)

(3.107)

The next step in perturbation analysis is to substitute the expansion (3.106) into (3.105)

and to collect terms of the same order in b'7. This way one obtains a sequence of equations
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on f(0)(C), f(i)(~), etc.:

q2f(o) + qlf(o) + qof(o) = 0,

q2f(l) + qlf(l) + qf(l) = - 1A-ll/ (f(o) 1 f))
2y -- Y 

q2 =P2 > 0,

ql = P + <A1/ ,

qo = --A 1/' < .

Each of these equations is a linear differential equation with a known general solution.

The inhomogeneous term in equation on f(k+l) depends only on f(k' therefore one can

solve these equations sequentially. To specify the solution completely, one has to impose

boundary conditions, obtained by substituting (3.106) and (3.107) into (3.17, 3.18) and

matching the terms according to their order in b. I solve for the first two terms in the

asymptotic expansion (3.106).

The general solution of (3.108) is given by

f(o) () = A(o) exp (- (~ - *)) + B(o) exp (s+( - *)), (3.110)

where

-ql q vq12-4q2qo
2q2

+ > 0, n_ <0.
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Since f(o)() inherits the condition lim&÷, f(0)(~) = A1 from (3.24, 3.25), one immediately

concludes that B(l) = 0. Next, substitute (3.110) and (3.107) into (3.17, 3.18). This results

in a system of two equations on A(o) and E(0):

A2 (1 -Y) =1-0 (1 - Y) (0) + A(O) = 0,
_-Y (o)hAo

- 27Y (1 -(0) + (2 - K)A(o) = O.

where nr = ,_. These equations can be solved explicitly:

A2 7(1 - -)
A(Q)- 1

A1 K-1 1-1/7(2 A - (1 y)

1 ¢--1 K I -1/7=(o) 2 K - (1 - )

E(0) is well defined, since 2 4

K-(1-Y) <0.

Note that sign(A(o)) = sign(1 -7), which one would expect to hold, because

(bl/7A(o)/(1

2 4 Since

-ql -2(1- y)q2 - q - 4q2qo
2q2

and q2 > 0, it suffices to check the sign of

(q2 - 4q2qo) - (ql + 2(1 - )q2)2 .

The last expression equals

4q2
-4q2(qo + (1- )ql + (1-7y)2q2) = q2 > 0.

This implies that (3.113) holds.2
This implies that (3.113) holds.
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approximates the difference between the optimal and a feasible solution of the maximization

problem. Also, note that (3.113) implies that the first-order approximation to the value

function is of the same sign as 1 - y, which must be the case for the optimal solution. It

is straightforward to verify that in the limit of y approaching 1, (3.111, 3.112) converge to

their counterparts for the log-utility case (3.119, 3.120), and thus the first-order terms in

(3.106, 3.107) converge to the first-order terms in (3.114, 3.115).

Next, I determine f()(~) and (1) .f(1)(~) equals

A(1) exp (n(,-*)) + C(1) exp (2n(~ - *))

where C(1) is found from (3.109):

Ci 1 -1-/7 A20) (1 -7 ) 2

( ) 2y(-y-1) 4n2q2 + 2ql + qo

A(1) and E(1 ) satisfy a system of two linear equations, resulting from (3.17, 3.18):

/nA(1) + (A2 (1 -7)2 B- 7 - 1 (1 -)) (1) =- ((n + -y - 1) A(o)E(o) + 2nC(1)),

(- _,) A(,) - A27 (1 - )2 Z) (l) = - ( ( + - 1) A(O)(o) + (42 - 2K) C(1)).

While it is clearly possible, I will not solve for A(,) and -=(1) explicitly here.

The case y = 1. The new unknown function g (w) satisfies the differential equation

(3.20), subject to the boundary conditions (3.17, 3.18, 3.26). I expand g(w) in powers of b

as

g(w) = bg(l)(w) + b2g(2)(w) + bng(n)(w) +. (3.114)
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Also, I expand Q* as

Q* = b(l) + b2(2) bnQ(n) + - (3.115)

After substituting (3.114) into (3.20) and collecting terms of the same order in b, one obtains

a sequence of equations on g(1)(w), g(2)(w), etc.:

P291) + (P1 + P)gI) - Pg(l) = 0,

P29) + (P1 + p) 9g2) - Pg(2) = p2 (g) 2

The first equation has a general solution

g(1)(w) = A(l)exp (. (w - w*)) + B(1) exp (+ ( - w*)),

where

= - (Pl + P) i V(Pl + p)2+ 22
2p2

Observe that n+ > 0 and n < 0. According to (3.17), limn,, g()(w) = 0 therefore

B(1) = 0. Let nE- _. Then

g(1)(w) = A(1) exp(n(w - w*)).
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Similarly, the second equations yields

g(2) (w) = A(2) exp (a(w - w*)) + C(2 ) exp (2i.(w - *)),

-p2-2A(2)
C(2) = 4p2 ;2 2K(pl + p) - p'

It is clear that all other equations can be solved in closed form as well.

To find coefficients A(,), Q(1), A(2) Q(2), etc., that satisfy both of the boundary condi-

tions on g(w), substitute (3.116-3.118) into the boundary conditions (3.17, 3.18) and collect

terms of the same order in b. After simple algebraic manipulations, the unknown coefficic- ts

are shown to satisfy the following system of equations:

pa;A(l) - Q(1) -1,

1
(K2 - )A() = 1

P

)KA(2) - (2) = -2p1'C(2) - pKf(l)A(l),

(K2 _ I)A(2) = -n2 ()A() - (4n2 2)C(2),

This infinite system of equations has a block-diagonal form. The first pair of equations

leads to

Q(1) = A_ 1 > 0,o

A() = p( 1) >0.
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The second pair yields

A( 2) = -n2( 1 )A(1) -(4n + 2)C(2)

-Q(1)A(,) -(4 + 2I)C( 2)
9(2) = p~gl-

In general, coefficients A(k)+, (k-2) can be computed sequentially by solving systems of

two linear equations.

To obtain an approximation to the optimal consumption policy, expand it as

a* (w) = cl(O) (W) b(1) (w) + b2 cl (2) (w) + - bna(2 ) (w) + ...

Using (3.114), one finds that

~*
cl(0) = p,

Cl~(1) (w):= p2g(l) (a),Xp2g, i p(, )

C1(2 ) (w) = p2 9(2 ) (w) + P (1) (w))

3.9.7 Proof of Proposition 3.5.2

First, I prove the sufficient condition for the value function to be finite. Restrictions on the

model parameters (3.9, 3.10) are sufficient when -y < 1. To obtain a sufficient condition

for the case -y > 1, consider the following two auxiliary optimization problems: (3.81)

and (3.82), both subject to (3.48, 3.49, 3.50, 3.51, 3.6). An upper bound on the original

objective function results from dropping the irreversibility constraint and maximizing each
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of its components separately.

Consider the problem

max E If
{citOt}

o0

1 _ dt 

subject to

dKt = ((aOt - 6(1 - t))t-Clt)dt + (t + 21(1 - Ot)) KtdWlt +

a2(1 - Ot)KtdW2t,

Ot > O, Ot < 1.

The value function, J(K), satisfies

pJ= max
c>O,OE[0,1]

{

1cl- + JK((aO - 6(1 - O))K - c)

+ 1 )
I JkK ((rrl 0 + 21 (1 _0)) 2 + ,2( - 0)2) K 2

The solution has the functional form J(K) = A(1 -7)-'lK 1 - . The maximization over 

yields 0 = ,

0 = max (O min 1,
21 a-2 - - o2)

( (-a2)2 + 2o2)

After that the problem is reduce to (3.75) and I find that A = A1 (, , p) (see 3.76), where

= /('1 + o21 (1
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To verify that the resulting solution is indeed the value function of the original optimization

problem, one can use a standard verification theorem, (see, for example, Fleming and Soner

(1992, Th. 9.1)). Similarly, the second optimization problem is reduced to computing (3.77)

with properly defined values of parameters. The resulting value function is finite if and only

if A2 (, a, p) is (see 3.78).

The value function of (3.47-3.51) satisfies

_ I 1 - + b (OK)1'- + JK((aO - 6(1 - 0))K -C)+
pJ = max c -

c>o,=E[ ma ] l 2-JKK ((o0 + U21(1 - 09))2 + 2(1 _ )2) K2

Due to the homogeneity of the problem, the solution has the functional form J(K) =

A(1 - )-)K 1- ' . The optimal choice of 0 must satisfy (3.55, 3.56), while A must satisfy

(3.57). The optimal choice of c is given by (3.54). 
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