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Abstract
With the development of CAD packages which can create complicated 3-D models
and mesh them with tetrahedral elements with relative ease, the application of fi-
nite element techniques in mechanical design has reached unprecedented proportions.
However, the extension of these techniques to fracture mechanics studies is hindered
by the unavailability of a general method to obtain fracture mechanics singularity
strength (J, K, etc.) for tetrahedral meshes. An approach to obtain these parame-
ters along a 3-D crack front using tetrahedral elements is presented here. The method
is then validated on well-known crack geometries using tetrahedral meshes generated
from commercially-available CAD-FEA packages , both elastic and elastic-plastic
problems.
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Chapter 1

Introduction

1.1 Fracture mechanics singularity strengths

1.1.1 Linear elastic fracture mechanics

The stress fields at the tip of a crack are given by the Williams [2] expansion

k
aij = ()fij(O) + higher-order terms, (1.1)

where rij is the stress tensor, r and 0 are as defined in figure 1-1, k is a constant,

and fij are dimensionless functions of . The higher-order terms depend on the

geometry, but the solution for any given configuration contains a leading term that

is proportional to 1/x/r. As r -+ 0, the leading term approaches infinity, but the

other terms remain finite or approach zero. The above equation describes a stress

singularity, since stress is asymptotic to r = 0.

There are three types of loading a crack can experience: Mode I, where the prin-

cipal load is applied normal to the crack plane; Mode II, which is in-plane shear; and

Mode III, which is out-of-plane shear. For Mode I loading, the stress state ahead of

the crack tip reduces to

lim K( ) ) (1.2)
The factor K is called the stress intensity factor for Mode I type loading. The stress

The factor K1 is called the stress intensity factor for Mode I type loading. The stress
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intensity factor defines the amplitude of the crack tip singularity and completely

defines the crack tip conditions, in the sense that if K, is known, then all components

of stress and strains in front of the crack can be computed. Closed-form solutions

for K1 for a variety of simple crack geometries and loading conditions have been

tabulated in the literature [3]. For complex geometries, the stress intensity factors are

computed using experimental and/or numerical methods. Historically, finite elements

have been used to compute KI using energy-based methods. The stiffness derivative

formulation by Parks [9] first used finite elements for the virtual crack extension

method to accurately compute compute KI, and the domain integral method (see

chapter 2), which is based on the virtual crack extension method, has been widely

used to compute Ki-values for various crack configurations. Computational fracture

mechanics has developed since, and a discussion on computational issues can be found

in [4].

Elastic analysis of the stresses at the crack tip is valid as long as the plasticity at

the crack-tip is negligible. A first-order estimate of the crack-tip plastic zone is given

by
1 K I

rY = ( )2 (1.3)

where aYs is the yield strength of the material. More accurate estimates of the size

of the plastic zone using various correction factors can be found in [5]. Thus for K

to be a valid singularity, or for linear elastic fracture mechanics (LEFM) to be valid,

we must have small-scale yielding (SSY), which requires the plastic zone to be much

smaller than the in-plane dimensions of the structure.

Most of the classical solutions in fracture mechanics have been performed by

reducing the problem to two dimensions (i.e., either plane stress or plane strain). In

general, the crack-tip conditions are neither plane stress nor plane strain, but are

three-dimensional. There are certain cases when either of these assumptions provide

good approximations. For a specimen with a thickness (out-of-plane dimension) much

greater than the plastic zone, plane strain conditions prevail in the interior near the

crack tip. Similarly, plane stress conditions prevail for a thin specimen. It has been
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observed [5] that the size of the plastic zone for a specimen in plane strain is smaller

than the one for a plane stress specimen, loaded to the same Kj-level.

The utility of K lies in its ability to predict fracture. Theoretically fracture occurs

(i.e., a pre-existing crack in a material would begin to grow) when K equals a critical

value, Kc, which is termed the fracture toughness of the material. It must be noted

that while K is a loading parameter, Kc is purely a material parameter (under the

conditions described below). In some sense, Kc is the resistance of the material to

crack propagation. If the plastic zone is too large, or if the specimen thickness is too

small, the constraint at the crack tip relaxes, and this lower degree of triaxiality results

in higher toughness. One manifestation of this process is the fact that the plane strain

fracture toughness is generally smaller than the fracture toughness in plane stress.

The plane strain fracture toughness is denoted as KIc, and the design-against-fracture

criterion can now be expressed as K < Kl¢. The American Society for Testing and

Materials (ASTMI) has laid down specifications for KI, testing, requiring

in-plane, out-of-plane dimensions > 2.5( K ' )2

for a valid KiC result.

1.2 Elastic-plastic fracture mechanics

Linear elastic fracture mechanics (LEFM) is valid only as long as non-linear material

deformation is confined to a small region surrounding the crack-tip. For materials

and structures exhibiting substantial plastic deformation, elastic-plastic fracture me-

chanics must be used. Analogous to the Williams expansion (1.1) for the elastic

fields near the crack-tip, the Hutchinson-Rice-Rosengren (HRR) singularity fields de-

scribe the asymptotic elastic-plastic crack-tip fields for power-law hardening nonlinear

stress-strain behavior. Two elastic-plastic crack-tip parameters which characterize the

crack-tip fields are the J-integral and the crack-tip opening displacement (CTOD).

The J-integral can be computed numerically using a finite element implementation

of the domain integral method (detailed in chapter 2). A detailed discussion on the

J-integral and elastic-plastic fracture mechanics is presented in chapter 6.
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1.3 Status of fracture mechanics computation us-

ing FEM and the need for a general proce-

dure for tetrahedral elements

The overall quality of mesh generators for tetrahedral elements has been consistently

improving over the past decade, and a number of CAD-FEA interfaces are now avail-

able, thus allowing construction of complicated 3-D models at the click of a button.

However, currently-available finite element implementations of domain integral or

virtual crack extension methods for evaluating the variation of fracture mechanics

singularity strength (J, KI, etc.) along a 3-D crack front require the use of brick

elements in the neighborhood of the crack. Unfortunately, the capabilities of mesh

generators for brick elements remain in a comparatively early stage of development [1].

In order to address this issue, we extended domain integral techniques to tetrahedral

meshes.

A "straightforward" implementation of the method (see chapter 3) proved quite

unsatisfactory; the estimated nodal J-values along the crack front depended strongly

on the particular choice of the perturbation field and were in poor agreement with

analytical predictions. Refining the tetrahedral meshes and optimizing element as-

pect ratios did not result in substantial improvements. These difficulties are tied to

the inability of the quadratic tetrahedral shape functions to describe accurately the

gradients introduced by a node-based representation of the perturbation fields.

An alternative domain integral procedure to calculate 3-D stress intensity factors

has been proposed by Cervenka and Saouma [6]. In their approach, all the finite ele-

ment support is abandoned, and the domain integral is evaluated through quadrature

over an analytically-defined tubular domain surrounding the crack front. Integrands

at the quadrature points of the domain integral, which do not necessarily correspond

to either nodes or integration points of the finite element mesh, must be interpolated

from the finite element data. The method, while general in its applicability to all finite

element formulations, does not address the problems specific to tetrahedral meshes.
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The solution also presents inherent limitations: the crack front must intersect the free

surfaces at right angles, and the entire boundary of the domain of integration must

lie within the body, thus limiting the radius of the domain to the minimum distance

between the crack front and the nearest free surface. These requirements restrict the

applicability of the technique to a limited set of crack configurations.

In the approach proposed here (chapter 4), we outline a procedure to obtain the

singularity strengths (J, K) to overcome the poor performance of the tetrahedral

shape functions while remaining within the framework of the finite element method.

We use a piece-wise linear crack-front perturbation pattern and selectively evaluate

the perturbation gradient at the integration points of the elements in the interior of

the domain through direct analytical differentiation of the globally-defined perturba-

tion field. We retain the shape function representation of the perturbation gradient

for elements on the boundary of the domain. The versatility of finite elements in

modeling crack combinations and free surface configurations is thus preserved. This

expedient has allowed us to improve dramatically the accuracy of the procedure, as

demonstrated by validation on a number of standard crack configurations. We also

evaluate alternative crack-front perturbation patterns and domain integral evalua-

tions, and the accuracy of each method is tabulated in chapter 5. The proposed

method is validated for the linear elastic case first (see chapter 6) and the stress in-

tensity factors are calculated for a number of crack geometries. The formulation for

the elastic-plastic case (see chapter 7) is then developed, and the method is validated

for various crack geometries. The elastic-plastic analysis is also conducted on different

material models and hardening behavior and compared with reported results. The

effect of mesh topology on the accuracy of the computed J-values is studied, and

guidelines to obtain accurate J-values are proposed in chapter 8.
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Chapter 2

Domain integral method

2.1 Definition of crack tip parameters

The path-independent J-integral is a measure of the intensity of the singular crack-

tip fields which can be used to correlate the initiation of crack propagation. For a

two-dimensional, planar solid, assuming small displacement gradients and neglecting

body forces and crack-face tractions, the path-independent J-integral is defined by

[7]

J f[Wal - 'ij]d, (2.1)

where F is any counter-clockwise path within the body starting on the lower crack-

face and terminating on the upper crack-face, as shown in figure 2-1 (a). Here ai is

the outward normal to r, ij the Cauchy stress, ui the displacement, dy the increment

of arc length along r, and W the strain energy density defined by

W(Ekl) = ] tijdcij. (2.2)

In plane strain, the potential energy per unit thickness, 7r, of a loaded body is

r = A W(ij)dA - AT Tiuid, (2.3)
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where A is the area of the body and AT is the portion of the boundary where the

tractions, Ti, are prescribed. The energy release rate, g, is a characterizing parameter

of elastic crack tip fields. 5 denotes the decrease in or due to a unit crack advance in

its plane with the tractions held fixed:

G= air- (2.4)

Then, to the first order,

S1 = -6 (2.5)

where 61 denotes the virtual crack advance, uniform through-the-thickness in a 2-D

formulation.

Expression (2.5) can be generalized to three-dimensional problems by introducing

a point-wise definition of the energy release rate, 5(s), as a function of the arc-length

measuring curvilinear coordinate, s, along the crack-front, C. Let 61(s) denote the

magnitude of the virtual crack advance at s, in the plane of the crack and in the

direction normal to the crack-front, as shown in figure 2-1 (b). Equation (2.5) can be

recast, to within first-order terms in 61(s), as

J ()Jl(6l()ds =-6r, (2.6)

where ds is the elemental arc length along C, and -67r is the decrease in total potential

energy of the body.

The energy release rate, , can be evaluated by means of the contour integral

J. J and G are equivalent for a crack advancing uniformly through the thickness

under plane stress or plane strain conditions [8]. Along a 3-D crack-front, as r -+ 0+,

asymptotic plane strain conditions prevail so that the three-dimensional stress fields

approach the plane strain two-dimensional fields along C. Hence, as r shrinks onto

the crack front, F -- Fo 1, the local value of the energy release rate, G(s), and point-
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wise value of the J-integral, J(s), become equivalent:

r(s) = lim 9Wknk - aijj jnk] dy = Jro(s)= J(s), (2.7)

where n is the in-plane normal to the crack-front at location s. Equation (2.6) can

then be written as

/ J(s)6l(s)ds = -6, (2.8)

with the understanding that J(s) is defined through (2.7).

2.2 Volume integral expressions for evaluating the

energy release rate

The domain integral method provides a convenient way to calculate the energy release

rate for 2-D and 3-D problems [8]. The finite element formulation of the domain inte-

gral method corresponds to the virtual crack extension method [9], which is versatile

in its applicability to 3-D crack configurations.

2.2.1 Two-dimensional formulation

Introducing Eshelby's energy momentum tensor [10], Pij = Wlmij - amjaum/xi, we

can recast (2.1) in the more compact form

J = j -[W6lj-'iJ Z]jd/ = d Pljojdy. (2.9)

We now consider a second curve around the crack tip, rl, surrounding r, and define

a simply-connected region Q between rl and r, as shown in figure 2-2. is bounded

by the closed curve qI = rl + r+ - r + r-. The path-independence of J [7] gives

J = f Pljcjdi = r P1 cjdy. (2.10)

We define a vector 3 as the outward normal to I, such that 3 = - ck on r, and p
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= ai on Fl. If the crack faces are traction-free, then ij ,· j = Oi on r+ and r-. Also,

on r+ and r- the vector 3 is normal to the direction of crack propagation, /l = 0,

so that (2.5) can be written as

- i* = 6i = J61 - 1f[Wslj - aizlui ]ljd = f

where we have introduced a sufficiently-smooth (C°) vector-valued perturbation field

q = ql el in Q which has magnitude 61 on r, and vanishes on Fl:

ql__ 510q, =
0

on and within r ,

on Il.

Application of the divergence theorem reduces (2.11) to

- 6i = J1 = /f [a (Pljql )]dA 
57X~

JX PIi ql
OP¥

/ li-~~

+ Plj ]dA.
i~xi

(2.12)

Since Plj/lxj = 0 in Q [10], (2.12) becomes

- 6i = J1 = [Wli - aiJx i -aqldA.
x i axj

2.2.2 Three-dimensional formulation

For three-dimensional crack configurations, (2.7) and (2.8) can be combined to express

the decrease in total potential energy as

- 6 = Jc 61(s)[lim J Pkjnkajd7]ds. (2.14)

Introducing surface So as the envelope of the curves o(s) as shown in figure 2-3 (a),

we can write (2.14) as

- r = lim fS Pkjnkajdl(s)dS.
S-+SoS

(2.15)
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Now consider a second surface around the crack tip, S1, surrounding So, and define

a three-dimensional simply-connected domain Q between So and S1, as shown in

figure 2-3 (b). Q is bounded by the closed surface S formed by the surfaces So, S1,

S+, S-, SR and SL, where S+ and S- are surfaces on the respective crack faces, and

SR and SL are the respective ends of the cylindrical domain as shown in figure 2-3

(b). We define a vector as the outward normal to S, such that = - a on So; also,

the traction-free crack surfaces S- and S+ have their respective outward normals

,/ = +m, where m is the normal to the crack plane.

We now consider a sufficiently-smooth (C°) virtual crack advance pattern, dl(s)

which vanishes at all crack locations outside the Q-domain2 , and the corresponding

perturbation field, q, in as

61(s) n(s) on the crack front,

0 on S1,q--
0 on SR U SL,

q m=0 on S+US-.

The third condition applies only if SL and SR are not bounding surfaces of the body.

If an end surface is a bounding surface of the body, only the components of q normal

to that bounding surface must vanish. If the crack faces are traction-free, oij 3j = Oi

on S+ and S-, so that qkPkj/pj = 0 on S+ and S-. Combining these results with

(2.15), we obtain

- 7= s f[Pkjqkj] dS. (2.16)

Application of the divergence theorem to (2.16) leads to

- ax = X ~[Waki _mj ] dV, (2.17)

where use has again been made of the result aPkj/Oxj = Ok [10].

2If the end surfaces, SL and SR are not bounding surfaces of the body, this condition requires
61(s) to vanish at the domain end-points where C intersects SL and SR. If an end surface is such a
bounding surface. all components of crack advance normal to the bounding surface must vanish at
the corresponding end point along C.
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2.3 Finite element implementation

Finite element (FE) implementation of the domain integral method for Lagrangian

elements is extensively discussed in [8]. Here we specialize the formulation to 10-

noded 3-D isoparametric tetrahedral elements. At each point K along the crack,

we define a toroidal coordinate system as shown in figure 2-4 (a), consisting of a

crack-front tangent vector t and normal vector n in the crack-plane. We also define

a constant normal vector m = n x t perpendicular to the crack-plane. The vectors

n and t vary with the coordinate s. The position of each point P in Q is identified

by its distance from the crack-front, r, the curvilinear coordinate s* of its projection,

P*, on the crack-front, and the angle 0. In general we can write the position of P*,

X (P*) = X (P) - r, as shown in figure 2-4 (b). In a FE model of the cracked body,

the crack-front is discretized by M element-edges of tetrahedral elements and their

corresponding N nodes.

Recalling the expressions (2.8) and (2.17) for the energy release rate, the method

to obtain values of the J-integral at each of the N nodes along the crack-front

{J1 , J2, .. , JK, .., JN} involves definition of N perturbation patterns, {6Sl(s), 612 (s),..,

lK(s),.., SIN(s)}, centered on each of the N nodes. For the K - th perturbation

pattern { qK; lK(s); QK }, we have a crack-front integral expression for the energy

release:

6rK =- j J(s)SIK(s)ds, (2.18)

as well as the corresponding domain-integral expression:

K qa,-" K
6wK K ] ["k - lm, 0m>U dV (2.19)

Equating the right-hand sides of (2.18) and (2.19), we obtain an implicit expres-

sion for the J-profile. Nodal values of the J-integral can then be obtained through

appropriate selections of the perturbation fields { qK, 6 1K} and of the domains of

integration, QK, as detailed in the following sections.
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2.3.1 Crack-front integral expression for the energy release

The profiles of quantities along the crack-front are defined in term of their nodal

values and interpolating shape functions. For each element-edge along the crack-

front, we identify an isoparametric coordinate iq, and define shape functions Nl(r),

where I = 1, 2, 3 denote the three nodes of the element-edge. In general, we express

the value of any quantity g at location rl along the element-edge j, in terms of the

nodal values of g and shape functions as

g9(7) = Nj(r) < g >j, (2.20)

where the summation convention (from I = 1 to 3) is implied also for the capital

subscripts, and < g >j is the value of g at the local node I of the element-edge j.

In particular, the explicit form of shape function interpolations for the curvilinear

coordinate s, the point-wise value of the J-integral, and the perturbation field J1K

are

s(r) = NQ(17) < sQ >j, (2.?1)

ds = ds dr = dN < SQ >j dr, (2.22)

and

J(q) = Np(ir) < Jp >j , (2.23)

6lK(r) NL(77) < IL >j, (2.24)

where < Jp >j and < 61j >j are the point-wise values of J and the K-th perturbation

field, respectively, at local nodes P and L of element-edge j. Combining (2.21 - 2.24)

with (2.18), we obtain an expression for the energy release associated with the K-th

perturbation field, 67rK , in terms of the nodal values of J and 6l:

6 wK- E - NL(v) < 1K >j Np(v) < Jp > d < sQ >j dry}, (2.25)
where we have transformed the integral along the crack to the sum of the integrals

where we have transformed the integral along the crack to the sum of the integrals
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over each element-edge along the crack.

2.3.2 Domain integral expression for the energy release

Evaluation of (2.19) requires the definition of the domain of integration, Q2K, and of

the perturbation field qh'. For the K-th perturbation pattern, we define the domain

of integration, QK2, to be centered on the K-th crack-front node, as the union of all

elements with at least one node B, located within a distance p from node K, as shown

in figure 2-4 (c).

The perturbation field qK at point P in figure 2-5 (a), where P = s, r, )}, is

taken to be:

q = qt t(s) + q n(s) + qK m(s), (2.26)

with q K = q =K . The magnitude of qK depends on the distance of point P from

the crack, r, and on the position, s, of P* with respect to node K, the center of the

crack perturbation (see figure 2-5 (b). We express qCJ as

qn = fr(r) f (), (2.27)

where fr and f must be continuous functions within the domain of integration and

must vanish at the boundary of the domain. Consistent with the definition of the

qK-functions, f(s) = 61K(s) and fr(r = 0) = 1 for each perturbation. For clarity,

we have used the notation 61K(s) in the evaluation of 7rrK by the crack-front integrals,

and fXH(s) in the evaluation of 65rK by the 3-D volume integral.

To evaluate 67rK, numerical integration of (2.19) is performed using 4-point quadra-

ture [13] within each element of QK. Any nodal variable "g" can be interpolated at the

integration points of the tetrahedral element j by means of the quadratic tetrahedral

shape functions N.I and nodal values < g' >j as

g(cm) = JlM (Cm) < g >j, (2.28)
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where Cm are the natural coordinates, and the implied sum on I extends from 1

to 10. The field variables W and aij are available at the integration points of the

tetrahedral element from the finite element solution of the boundary value problem.

The displacement gradient ui,k is evaluated at the integration points of element j, in

terms of nodal values of the cartesian components of the displacement field, < ui >j,

as

Ui,k = Ck < u >j, (2.29)

where the coefficients Ck are obtained through a shape function based procedure

detailed in the appendix.

The specific technique used to evaluate the gradient of the qK-functions affects

the effectiveness of the procedure in certain topologies of FE meshes of a cracked

structure, as discussed in chapter 5. We have found that a direct evaluation of

the derivatives qjp, based on nodal interpolation of q followed by shape function

differentiation, is not adequate for certain tetrahedral FE meshes, as further detailed

in chapters 3 and 5. A superior technique to evaluate q, independent of the mesh

topology, is described in chapter 4.

2.3.3 Evaluation of the point-wise J-values

Equations (2.19) and (2.25) are equivalent representations of the energy release asso-

ciated with the K-th perturbation pattern. Equating the RHS of (2.19) and (2.25) for

each pattern of perturbation, we obtain a system of N equations in N in unknowns

JI,

[AK]{J} = {67rK}. (2.30)

Solving the system of equations (2.30) gives the nodal values of the J-integral, which

provide point-wise definition of J on C through (2.23) .
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(a)

Figure 2-1:
integral. (b)

Definition of the J-integral. (a) Cc
Crack-front perturbation field i6(s).

(b)

)ntour for the evaluation of the J-

e
2

Figure 2-2: Two-dimensional formulation. Domain of integration Q .
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S

(a) (b)

Figure 2-3: Three-dimensional formulation. (a) Surfaces So and S enclosing the
crack-front. (b) 3-D domain of integration, Q in the limit Fo -+ 0.
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(a)

(b)

(c)

Figure 2-4: Definition of the crack-front. (a) Toroidal coordinate system localized at
position K along the crack-front. (b) Projection of location P onto the crack-front.
(c) Definition of the domain of integration for evaluating the energy release rate.
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(a)

(b)

Figure 2-5: Definition of the perturbation field q(X).
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Chapter 3

A "straightforward" method for

computing point-wise J-values, or

how not to proceed

3.1 Finite element formulation

The details specific to the FE formulation of a "straightforward" implementation of

the domain integral method are discussed in this section. A toroidal coordinate system

is defined at each of the N nodes along the crack-front as described in chapter 2.

3.1.1 Crack-front integral representation of the energy re-

lease

To evaluate (2.25) for each of the N perturbation patterns, we use quadratic shape

functions Nr (r7) along the crack-front element-edges defined by

I (y) -{

0.5 77(1 - 7)

(1 - 72)

0.5 77(1 + )

if I= 1,

if I = 2,

if I = 3.
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We define the K-th perturbation pattern 61K(s) in terms of nodal perturbation based

on the location of the Rth node as

1 if K=R,

< 0 if K R.

When interpolated using quadratic shape functions, the perturbation pattern centered

on a corner node is spread over two adjacent element-edge crack-front segments, while

the perturbation pattern centered on a mid-side node is spread over one element-edge

crack-front segment. Perturbation patterns 61K(s) and 6 1L(s) centered on corner node

K and mid-side node L, respectively, are shown in figure 3-1 (b). Equation (2.25)

can be written more compactly as

Af

T = < l >j< Jp >j< so >j BLPQ, (3.1)
j=l

where

BLPQ - NL(iq) Np()NQ) di (3.2)
Q - dr/

can be explicitly evaluated for all combination of indices. Writing (3.1) for all the

N perturbation patterns, we obtain a system of N equations in N unknown nodal

values of J1, as expressed in (2.30). The term A ' can be evaluated as

A ' = < 61 >j< SQ >j BLPQ, (3.3)
ml

where P(I) = 2 if I is a mid-side node, and either 1 or 3, depending the position

of corner node I in element j, and ml denote the crack-front element segment[s] to

which node I belongs.
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3.1.2 Domain integral evaluation of the energy release

The radial and tangential variation of qK = fr(r)f 1'^(s) associated with the K-th

perturbation are defined as (see figures 3-1(a) and 3-1(b)):

fr(r) = e- [ r/ (r- p) (3.4)

and

fs(s) - 61K(s), (3.5)

where p is the nominal radius of QK'. A radial variation of the form e-[r/(r-p)12 has

been selected because this function has unit value and zero derivatives at r = 0, and

vanishes along with its derivatives at the boundary of the domain, r = p.

In the "straightforward" procedure, the gradients of the qK-functions, OqK/aXrk

are evaluated at the integration points by the same procedure used to evaluate the

displacement gradients (2.29), based on the nodal values within element j of the

qK-field and the derivatives of the quadratic shape functions:

qi,k = Ck < q >j, (3.6)

where the coefficients Ckl are obtained through the shape-function-based procedure

detailed in the appendix.

3.2 Results and discussion

The performance of the "straightforward" procedure was evaluated on an edge-cracked

model in plane strain subjected to uniform remote tension. The crack geometry is a

straight through-thickness crack with a/b = 0.5, h/b = 3.0 and a/W = 0.5, as shown

in figure 3-2. Commercially-available packages ABAQUS/Pre [14] and Pro/MESH

[15] were used to create the meshes, and ABAQUS/Standard [17] was used as the

FE solver. Two tetrahedral meshes, a regular mesh from ABAQUS/Pre and an ir-

regular mesh from Pro/MESH, as shown in figures 3-3 (a) and 3-3 (b), respectively,
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were created for this crack geometry. Second-order isoparametric (10-noded) tetrahe-

dral elements were used. A mesh using 20-noded brick elements of comparable mesh

density was also created for the cracked geometry, as shown in figure 3-4 (c). To

incorporate the square-root singularity at the crack tip, quarter-point elements [16]

were used along the crack-front in all the meshes. Nodal J-values were obtained for

both tetrahedral meshes using the "straightforward" procedure. As a comparison,

nodal J-values were also obtained from the brick mesh using the domain integral

option available for brick elements in ABAQUS/Standard. The J-values were nor-

malized with respect to the plane-strain values reported by Tada, et al. [19], which

we denote as "Jth" (see also subsection 5.1.1). In figure 3-2, the normalized point-

wise J-values, J/Jth, are shown as a function of the normalized curvilinear coordinate

(x/'V) for all three cases. While the brick mesh provides predictions in good agree-

ment with the theoretical estimate, the regular and irregular tetrahedral meshes give

very unsatisfactory results.

3.3 Reasons for the poor performance

The poor performance of the "straightforward" implementation on the irregular tetra-

hedral mesh can be attributed to the reasons elaborated below.

Firstly, different mesh connectivity at crack nodes introduces artificial oscillations

in energy release rate. Figures 3-4 (d) and 3-4 (e) show crack-plane mesh connectiv-

ity at the crack-tip, and schematically indicate the location of integration points for

tetrahedral and brick meshes. For the irregular tetrahedral mesh, there are elements

which have an edge along the crack-front, while others have only a vertex on the

crack-front. The locations of the integration points, relative to the node about which

the perturbation is centered, are inherently different for these two cases. The relative

positions of the integration points in the tetrahedral mesh do not provide a "firewall"

for spatially localizing the perturbation field and its discontinuous tangential gradi-

ents, as in the brick mesh. This causes artificial oscillations in the calculated energy

release rate, and the base of the perturbation field is not wide enough to average out
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these oscillations.

Secondly, in the irregular tetrahedral mesh we have a fine mesh along the crack-

front, but substantially larger elements in the far-field. For this mesh topology, the

quadratic shape functions produce large discontinuous gradients of the crack-front

perturbations. These are distorted within the crack-front elements by the intrinsically

unstructured topology of the irregular tetrahedral meshes with a steep mesh gradient

perpendicular to the crack-front. Figure 3-4 (a) shows the perturbation field which

results from interpolating the nodal qK values using 3-D quadratic shape functions.

The quadratic tetrahedral shape functions form artificial "pockets" in the q-field,

thereby leading to undesirable representation of the gradients of the perturbation

field. This problem is largely confined to the irregular mesh with a topology similar

to the one used in the study and is a relatively smaller effect compared to the effect

of using node-based perturbation pattern with quadratic shape-functions. A study of

the relative effects of the problems described above is presented in chapter 5.

It can be summarized that using a node-based crack-front perturbation pattern

with quadratic shape-function interpolation is the main problem with the "straight-

forward" method. In irregular tetrahedral meshes with the mesh topology used in the

study, we also have the relatively minor issue of obtaining accurate gradients of the

perturbation field using the node-based approach. In the next chapter we propose

an alternative method to obtain the point-wise J-values. We use piece-wise linear

perturbation patterns centered at every alternate node on the crack-front and obtain

J-values at these nodes along the crack-front. This is the major expedient which

significantly increases the accuracy of the computed J-values. To obtain accurate

gradients of the perturbation field in the extreme but representative cases of tetra-

hedral meshing, we also propose to compute the gradients of the perturbation field

analytically and to evaluate the 2omain integral, we identify a core domain QtK and

a periphery domain QK, within QK. We use "analytical-gradients" within QK, and

within OK, we use a node-based method for computing the gradient as detailed in

this chapter, with a minor modification by using linear shape-functions instead of

quadratic shape-functions. The details of the proposed method are presented in the
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next chapter. We then proceed to examine other alternative perturbation patterns

and also compare the methods of evaluating the domain integral in chapter 5.
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fr (r) = expf-[ r/(r-p)] 2

fr(r)

(r/p)

(a) (b)

Figure 3-1: Components of the perturbation field for the "straightforward" method.
(a) Radial variation of qK(s, r), fr(s). (b) Schematic of tangential variation of

q (s, r), f (s).
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Figure 3-2: Point-wise J-integral values obtained by the "straightforward" method.
The edge-crack in plane strain is subjected to uniform remote tension of magnitude
a00
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(a) (b)

Figure 3-3: Crack-plane view of the finite element meshes for the edge-crack in plane
strain. (a) Regular tetrahedral mesh obtained from ABAQUS/Pre. (b) Irregular
tetrahedral mesh obtained from Pro/Mesh.
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Figure 3-4: J-integral evaluation by the "straightforward" method for the edge-crack
in plane strain. (a) Undesirable interpolations of the qK function by the quadratic
tetrahedral shape functions. (b) Crack plane view of the irregular tetrahedral mesh
generated by Pro/MESH. (c) Crack plane view of the brick mesh. (d) Integration
points for the tetrahedral elements at the crack tip. (e) Integration points for the
brick elements at the crack tip.
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Chapter 4

Proposed method for computing

point-wise J-values

4.1 Finite element formulation

An alternative method is proposed in this section to overcome the difficulties encoun-

tered with the "straightforward" method. A comparison of other possible alternative

methods is presented in chapter 5. The inherent oscillations present due to the mesh-

ing property detailed in section 3.3 can be suppressed by considering nodal J-values

at every alternate corner node. This also provides a well-conditioned [A]-matrix, as

defined in (2.30), which can be easily inverted to obtain the nodal J-values.

While no perturbation fields are centered at the mid-side nodes, the mid-side

nodes are still used in order to obtain accurate deformation fields and to accurately

define curved crack-fronts. We extend the base of each perturbation pattern to span

four adjacent crack-front element-edges, as shown in figure 4-1. Hence we now have

NJ = (N + 3)/4 perturbation patterns centered on every alternate corner node along

the crack-front. This introduces the modest restriction that an even number of

element-edges should be used to define the crack-front, in order to obtain a com-

plete set of perturbation patterns.
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4.1.1 Crack-front integral representation of the energy re-

lease

To evaluate (2.25) for each of the NJ perturbation patterns, we use piecewise linear in-

terpolations for the crack perturbation patterns instead of quadratic shape functions.

The use of linear interpolation functions for 61K(s) and J(s) reduces the number

of locations having discontinuous gradients in the perturbation field and minimizes

the distortion of the perturbation field by the intrinsically unstructured tetrahedral

meshes, as shown in figure 4-1. The nodes forming the crack-front are sequentially

numbered from 1 to N. The K-th perturbation pattern, 61K(s), is defined in terms

of its value at nodes along the crack front:

<j>=- Iif I = K,
0 V nodes I on the crack-front such that I < K - 4 and I > K + 4,

and a linear variation (with respect to s) from unity at node K to zero at nodes (K+4)

and (K - 4). The perturbation pattern 1IK( 5 ) = f (s) centered on node K is shown

in figure 4-1. Expression (3.3) still holds, but it is now evaluated only at alternate

corner nodes, with BLPQ re-computed using the linear interpolation functions, and the

index P being either 1 or 3, depending on the position of corner node I in element j.

4.1.2 Domain integral representation of the energy release

We define the core domain QK as the union of all elements which have all their nodes

within radius p from node K. We also define a periphery domain QK as the union

of elements which have at least one node within distance p from node K and at

least one node further than p from node K, as shown schematically in figure 4-2.

The domain of integration is defined as QK = K U QK. The radial and tangential

variation of qK associated with the K-th perturbation are still defined as detailed in

subsection 3.1.2, except that 6 1 K(s) = ff (s) is now a piecewise linear function spread

over four crack-front element-edges, as shown in figure 4-1.

Expression (2.19) is then evaluated via element-by-element numerical quadrature
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over QK. The field variables W and aij are available at the integration points of the

tetrahedral element from the finite element solution of the boundary value problem.

The displacement gradient, i,k is evaluated at the integration points, through the

shape function procedure described in subsection 3.1.2 and detailed in the appendix.

Different procedures are used to evaluate the gradients of the qK-function for

elements in the core domain, fK, and for elements in the periphery domain, QK. For

elements within the core domain QK, we evaluate the gradients of the qK-functions,

at each integration point, analytically, by differentiating expressions (3.4) and (3.5).

Details of the derivation of analytical expressions for aqK / x j are given in appendix.

For each element within the periphery domain OK, we evaluate Oq/laxj based on

the value of the qK-field at the four corner nodes, and using linear shape functions

to interpolate qK, so that the resulting perturbation gradient is constant over the

element. This method overcomes undesirable effects linked to the interpolation of

the perturbation gradient by the quadratic tetrahedral shape functions in tetrahedral

meshes with a topology similar to the irregular tetrahedral mesh used in the study

in chapter 3 (Fig. 3-4 b). This approach leads to a significant improvement in

the accuracy of the results, especially in the irregular tetrahedral mesh, as shown

in chapter 5. Note that we continue to use nodal interpolation for qK within OK.

The nodal basis is particularly useful when the boundary of QK meets a free surface

or a bounding surface of the model, where it is necessary to impose the constraint

.- qK = 0, where is the outward normal to the surface.

47



V

(a) (b)

Figure 4-1: Crack-front perturbation for the proposed method, with 61(s) spread over
4 adjacent crack-front element-edges. (a) Schematic of integration points for irregular
tetrahedral elements at the crack tip. (b) Tangential variation of q f(s, r), f (s).

- K

K .. " K' K

Figure 4-2: Schematic illustration of domain of integration QK for the proposed
method. Core domain QK and periphery domain Kh' are schematically identified.
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Chapter 5

Comparison of alternative

methods for computing nodal

J-values

A "straightforward" method to obtain nodal J along the crack-front was discussed in

chapter 3, and possible reasons for the poor performance were also detailed. A method

to compute the nodal J-values accurately was proposed in chapter 4. In this chapter

we examine the relative merits and demerits of alternative schemes for computing J

and also attempt to provide a relative basis for the choice of a computation scheme.

5.1 Crack-front perturbations

For a crack-front comprised of N nodes, the method to obtain NJ values of the

J-integral along the crack-front J1, J2, .. , JK, .. , JN } requires the definition of NJ

perturbation patterns, {6ll(s), 612(s),.., 5lK(s),.., lNJ(s)}, centered on each of the

Nj nodes as discussed in section 2.3. In the "straightforward" implementation in

chapter 3, NJ = N perturbation patterns were defined at all the N nodes forming the

crack-front. These perturbation patterns were formed by quadratic shape functions

(see section 3.1.1). Subsequently, from the analysis of the straight through-thickness

crack in plane strain (see section 3.2), it was observed that different mesh connectivity
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at crack nodes introduced artificial oscillations in energy release rate, and the base

of the perturbation field was not wide enough to average out these oscillations. Also,

the quadratic shape functions produce large discontinuous gradients of the crack-front

perturbations. A factor accounting for the poor performance of the "straightforward"

implementation is the perturbations based on quadratic shape functions. Hence, we

consider piece-wise linear crack-front perturbations as an alternative. The primary

form of these piece-wise linear perturbation patterns is one whose base is spread over

two element-edges, as shown in figure 5-1 (a). We center these perturbations on

every corner node, thus defining NJ = (N + 1)/2 perturbation patterns and hence

obtain NJ = (N + 1)/2 values of J along the crack-front. The perturbation patterns

are centered on corner nodes only, as this provides a well-conditioned [A]-matrix, as

defined in (2.30), which can be easily inverted to obtain the nodal J-values. While no

perturbation fields are centered at the mid-side nodes, the mid-side nodes are still used

in order to obtain accurate deformation fields and to accurately define curved crack-

fronts. This perturbation pattern is referred as "two-element-linear" in our further

discussion. The finite element implementation of this perturbation pattern is similar

in all respects to the implementation detailed in section 4.1.1. The performance of

this perturbation pattern is discussed at the end of this chapter. The next alternative

crack-front perturbation is to spread the base of the piece-wise linear perturbation

pattern to four element-edges as in the proposed method (see section 4.1) and to

obtain a well-conditioned [A]-matrix, as defined in (2.30), we define NJ = (N + 3)/4

perturbation patterns centered on every alternate node on the crack-front, and hence

obtain NJ = (N+3)/4 values of J along the crack-front. This pattern is referred to as

the "four-element-linear" in our further discussion. The finite element implementation

of the "four-element-linear" pattern is detailed in section 4.1.

5.2 Evaluation of the domain integral

To evaluate the energy release, 61rK, for each perturbation pattern, numerical inte-

gration of (2.19) is performed using 4-point quadrature [13] within each element of
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UK (see section 2.3.2). In a "straightforward" implementation, the displacement gra-

dients and the gradients of qK are evaluated at the integration points, in terms of

nodal values of the cartesian components of the displacement field and perturbation

field qK, respectively. The procedure uses the tetrahedral quadratic shape functions

and is detailed in the appendix. The summation is then carried out in the domain

QK, with the field variables W and aij obtained at the integration points of the tetra-

hedral element from the finite element solution of the boundary value problem. This

"node-based" computation of the gradient of qK based on the quadratic tetrahedral

shape functions led to the formation of pockets for certain mesh topology, as dis-

cussed in section 3.3. We refer to this method of evaluating the domain integral as

"node-based-quadratic" in our further discussion. An alternative method to compute

to the domain integral is to obtain the gradients of qK using the same "node-based"

approach, but using linear tetrahedral shape functions in the procedure detailed in

the appendix. Hence we now have constant gradients of qK within an element. We

refer this method using linear shape functions for qK as "node-based-linear" in future.

Another alternative method, which eliminates all the undesirable interpolations, is to

compute the gradients analytically and then use them in the quadrature, as discussed

in the proposed method in section 4.1.2. This requires the definition of the two sub-

domains f 2 K and QK, use of the analytical gradients within fK, and computation of

the gradient of qK based on nodal interpolation, using the procedure detailed in the

appendix; in particular, linear shape functions were used, as discussed in section 4.1.2.

We denote this method of evaluating the domain integral as "analytical-gradients" in

our further discussion.

5.3 Results and discussions

The performance of the two crack-front perturbation patterns-"two-element-linear"

and "four-element-linear", along with the three possible methods of evaluating the do-

main integral- "node-based-quadratic", "node-based-linear" and "analytical-gradients"

was evaluated on an edge-cracked model in plane strain subjected to uniform remote
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tension. The crack geometry is a straight through-thickness crack with a/b = 0.5,

h/b = 3.0 and aW = 0.5, as shown in figure 5-2. One-half of the specimen ge-

ometry was modeled, and commercially-available packages ABAQUS/Pre [14] and

Pro/MESH [15] were used to create the meshes. ABAQUS/Standard [17] was used

as the FE solver. Three tetrahedral meshes, a regular mesh from ABAQUS/Pre and

two irregular meshes from Pro/MESH, as shown in figures 5-3 (a), (b) and (c), re-

spectively, were created for this crack geometry. The first irregular tetrahedral mesh

is one in which the far-field element size is of the order of 2 times the crack-tip ele-

mnent size. The second irregular tetrahedral mesh is one in which the far-field element

size is of the order of 8 times the crack-tip element size. These two meshes were

used to study the effect mesh gradient perpendicular to the crack-front in obtaining

accurate J-values along the crack-front. Second-order isoparametric (10-noded) tetra-

hedral elements were used. To incorporate the square-root singularity at the crack

tip, quarter-point elements [16] were used along the crack-front in all the meshes. The

J-values were normalized with respect to the plane-strain values reported by Tada,

et al. [19], which we denote as "Jth" (see also subsection 5.1.1).

5.3.1 Two element-edge crack-front perturbation patterns

The J-profile obtained using the "two-element-linear" crack-front perturbations are

shown in figures 5-4, 5-5 and 5-6 for the regular, irregular and irregular mesh with a

steep mesh gradient perpendicular to the crack-front, respectively. In all the cases,

the domain of integration was taken as p/a = 0.4, so that it extends to the far-field

in all the meshes. In each of the figures, the profiles obtained by the three domain

integral options are also shown. We can observe from figure 5-4 that when the mesh-

ing is structured and regular, as in the case of the regular tetrahedral mesh from

ABAQUS/Pre [14], there are strong corner-node to corner-node oscillations in the

computed J-values. Typical J-oscillations are +/- 5% of the mean value. Topolog-

ically, this can be attributed to the fact that the two adjacent corner nodes on the

crack front are not really identical [they alternately attach to 4 or 8 tetrahedral ele-

ments with faces on the crack plane], and the oscillations support that notion. The
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J-profile for the irregular tetrahedral mesh does not show as pronounced an oscil-

lation as does the regular mesh (compare figure 5-5 or 5-6 with 5-4). This can be

attributed to the fact that, while two adjacent crack-front corner nodes are topologi-

cally different, the difference tends to "even out" in the far field, where each node in a

tetrahedral element is topologically similar. We do not observe this "evening out" in

the regular mesh because of the structured nature of the mesh. When we consider an

extreme case of tetrahedral meshing, we do observe substantial oscillations as shown

in figure 5-6. Hence we conclude from the above results that the "two-element-linear"

perturbation patterns have pronounced shortcomings in computing J-values for reg-

ular meshes and produce inherent oscillations in other cases. Focusing on figure 5-5

and figure 5-6, we see that computing the domain integral by "analytical-gradients"

yields slightly better results than from either node-based interpolation of qK, at least

for the two element-edge crack-front perturbations.

5.3.2 Four element-edge crack-front perturbation patterns

Figure 5-7 shows the J-profile for the regular tetrahedral mesh using the three meth-

ods of evaluating the domain integral, but this time for four-element-edge crack-front

perturbations; again we consider the domains of p/a = 0.4 for computing J. We

observe that the mean values of J are accurate to 99% of the theoretical value of J,

with essentially zero gradient. All three domain integration methods produce very

similar results. From result of the irregular tetrahedral mesh shown in figure 5-8, we

can observe slight variation in the J-profile, but the variation is less than 1 % using

all the three options of evaluating the domain integral. Results from the irregular

tetrahedral mesh with steep mesh gradients are shown in figure 5-9; we can observe

that evaluating the domain integral by "analytical-gradients" produces a more ac-

curate values of J than the other methods. For this method, the computed J is

approximately 97% of Jth.

Hence we conclude from these numerical experiments that the "four-element-

linear" crack-front perturbation pattern is necessary for obtaining accurate J-values.

While the "best" choice of the method for evaluating the domain integral may not
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be obvious from this study, nevertheless the "analytical-gradients" produces results

which are quite accurate in most cases. Especially in the extreme but presumably

representative of a tetrahedral mesh of a cracked body with very fine mesh along

the crack-front, but substantially larger elements in the far-field (e.g., with linear

dimensions of 8 or more times larger than those of the crack-front elements), the

"analytical-gradients" method has been shown to be effective and superior in obtain-

ing accurate J-profiles. We now proceed to use the "analytical-gradients" method,

in conjunction with the "four-element-linear" crack-front perturbation pattern in our

further analyses in the next few chapters.
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(a) (b)

Figure 5-1: Piece-wise linear crack-front perturbation patterns. (a) Perturbations
with base spread over two element-edges. (b) Perturbations with base spread over
four element-edges.

a/b=0.5

I1 h/b=3.0

a/W=0.5

x

a0 0

Figure 5-2: Model of the edge-crack in plane strain. The straight through-thickness
crack is subjected to a uniform far-field normal traction a'. The dimensional ratios
are a/b = 0.5, h/b = 3.0 and a/W = 0.5.
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(a) (b)

Figure 5-3: Tetrahedral finite element meshes of the straight though-thickness crack
in plane strain. (a) Regular mesh from ABAQUS/Pre. (b) Irregular mesh from
Pro/MESH. (c) Irregular mesh from Pro/MESH with steep mesh gradient perpen-
dicular to the crack-front.

(x/W)

Figure 5-4: Straight through-thickness crack in plane strain. J-profile for the two
element-edge based crack-front perturbation for the regular tetrahedral mesh (Fig.
5-3 a) from ABAQUS/Pre. The domain radius p/a = 0.4.
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Figure 5-5: Straight through-thickness crack in plane strain. J-profile for the two
element-edge based crack-front perturbation for the irregular tetrahedral mesh (Fig.
5-3 b) from Pro/MESH. The domain radius p/a = 0.4.

(x/W)

Figure 5-6: Straight through-thickness crack in plane strain. J-profile for the two
element-edge based crack-front perturbation for the irregular tetrahedral mesh (Fig.
5-3 c) from Pro/MESH. The domain radius p/a = 0.4.
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Figure 5-7: Straight through-thickness crack in plane strain. J-profile for the four
element-edge based crack-front perturbation for the regular tetrahedral mesh (Fig.
5-3 a) from ABAQUS/Pre. The domain radius p/a = 0.4.
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Figure 5-8: Straight through-thickness crack in plane strain. J-profile for the four
element-edge based crack-front perturbation for the irregular tetrahedral mesh (Fig.
5-3 b) from Pro/MESH. The domain radius p/a = 0.4.
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Figure 5-9: Straight through-thickness crack in plane strain. J-profile for the four
element-edge based crack-front perturbation for the irregular tetrahedral mesh (Fig.
5-3 c) from Pro/MESH. The domain radius p/a = 0.4.
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Chapter 6

Elastic analysis

The proposed method detailed chapter 4 is validated on well-known crack geome-

tries. Commercially-available packages ABAQUS/Pre [14] and Pro/MESH [15] were

used to create the meshes, and ABAQUS/Standard [17] was used as the FE solver.

Two tetrahedral meshes-a regular mesh from ABAQUS/Pre and an irregular mesh

from Pro/MESH, were created for each of the crack geometries, and the method was

validated on both meshes. The tetrahedral mesh results were also compared to the

predictions obtained with brick meshes of comparable mesh density, using the domain

integral option in ABAQUS/Standard.

6.1 Edge-cracked model under uniform remote

tension

An edge-cracked model with characteristic dimensional ratios (a/b) = 0.5, (h/b) =

3.0, and (a/W) = 0.5, as shown in figure 6-1, was considered. The model was sub-

jected to uniform far-field tension (mode I). Second-order isoparametric (10-noded)

tetrahedral elements were used to mesh this geometry. To obtain the square root

singularity at the crack tip, quarter-point elements [16] were used at the crack tip in

both the tetrahedral meshes. A finer mesh was used near the crack, with crack-tip

elements ten times smaller than far-field elements. The fine mesh at the crack tip
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was used to better capture the steep crack-tip gradients. The point-wise J-integral

values were calculated for two lateral boundary conditions: (1) plane-strain, and (2)

traction-free lateral surfaces, resulting in a fully 3-D solution.

6.1.1 Plane strain

The model was subjected to plane strain boundary conditions, and uniform remote

tension was applied (mode I). The results were compared with the plane strain so-

lution of Tada, et al. [19]. For the single edge-notch specimen, the stress intensity

factor is given by

KI = ' %a F(a/b), (6.1)

where aO is the applied remote tensile stress, and the geometry correction factor

F(a/b) = 2.83 for (a/b) = 1/2. For plane strain, the point-wise J-integral is constant

along the crack-front. Hence the expression for the J-integral becomes

Jth = (1 - v2)KI/E = 8.0 * [(c°) 2(Tra)(1 - v2)]/E, (6.2)

where E is the modulus of elasticity and is the Poisson's ratio. Figure 6-1 shows

the plot of nodal J-values obtained for the tetrahedral elements using the proposed

method for domain size p/a = 0.7, normalized by the values quoted by Tada, et al.

We define ave = f Jdx/W to represent the average value of J along the crack-front.

The Jave/Jth obtained from the regular mesh was accurate to 0.5% of the theoretical

value, and the oscillations were within 0.5%, while values of Jave/Jth obtained from

the irregular mesh were accurate to 0.5% of the theoretical value, with oscillations

within 1%. The values obtained via the proposed technique were in close agreement

with those obtained using second-order brick elements of equivalent mesh density,

also with quarter-point elements at the crack tip. To verify domain independence of

the J-integral [7], three contours of radii p varying from 50% to 80% of the crack

length, were considered in the irregular mesh. The corresponding results in figure 6-2

clearly demonstrate the domain-independence of the J-integral.
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6.1.2 3-D analysis with one free surface

The model was subjected to a 3-D stress state, with one of the lateral surfaces being

traction-free and the other a symmetry plane, as shown in figure 6-3. Nakamura and

Parks [22] have described the three-dimensional stress state near the free surface from

very detailed full-field finite element analysis of the near-tip region of a thin isotropic

plate. The obtained J-values were normalized with respect to the theoretical plane

strain J-value. The J profiles from all three meshes are shown in figure 6-3. The

local value of J theoretically vanishes at the free-surface, as the corner singularity

is weaker than 1//fr [22], but to capture this behavior very fine meshes are needed.

The irregular tetrahedral mesh closely follows the J values from the brick mesh, and

the variations are within 2-3 %.

6.2 Penny-shaped crack in a round bar

The method was further validated on a circular crack front. A penny-shaped crack

of radius a, in a round bar of radius b, as shown figure 6-5, was subjected to far-field

tension. One-eighth of the specimen geometry was modeled. Crack-plane details of

the displaced meshes for the circular crack, meshed with bricks, as well as regular

and irregular tetrahedral elements, are shown in figure 6-4. Quarter-point crack tip

elements were again used. The point-wise J-values are compared to the axisymmetric

solution quoted by Tada, t al. [19], for which

KI = (2/7r) a f'7;· F(a/b), (6.3)

where a is the applied uniform remote tensile stress, and the factor .F(a/b) = 1.09

for (a/b) = 1/2. Due to symmetry, J remains constant along the crack-front, with

magnitude

Jth = (1 - 2)KI2/E = 4.75 -[(a°°)2(a/r)(1 - 2)]/E. (6.4)

The results obtained using the brick meshes and the regular and irregular tetrahedral

meshes were normalized with respect to the theoretical value (6.4), and are shown
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in figure 6-5. The mean values of the solutions obtained with the two tetrahedral

meshes agree with (6.4) to 0.5% for the regular tetrahedral mesh, and to 1% for the

irregular tetrahedral mesh. The oscillations for the regular mesh were within 1% of

the mean value, while for the irregular mesh we observe oscillations within 3% of the

mean value.

6.3 Semi-elliptical surface crack in a

finite-thickness plate

Surface cracks are an important class of crack geometries which are crucial to life

prediction in aircraft, pressure vessels and other structures. Typically, surface cracks

propagate sub-critically by fatigue, with semi-elliptical or near-semi-elliptical crack

fronts. A crack with a semi-elliptical front has varying local radius of curvature

along the crack front, thus representing a good test to assess the performance of the

proposed method on a general 3-D curvilinear crack-front in space. Hence, a planar

semi-elliptical surface crack is considered here to further validate the accuracy of the

method. A comparison of the relative user-time needed to generate brick, regular

and irregular tetrahedral meshes for this geometry is shown in table 6.1. For this

relatively simple 3-D crack configuration, a reduction factor in user time between 15

and 20 is evident for automatic tetrahedral meshing; the speed-up factor for more

complex geometries can be much larger.

Newman and Raju [20] have obtained stress-intensity factors from detailed finite

element models of semi-elliptical surface cracks using a nodal force method. Here, a

semi-elliptical surface crack with aspect ratio a/c = 1/3 and maximum relative depth

a/t = 0.5 was considered for analysis. The crack was subjected to uniform remote

tension in Mode-I loading. Displaced meshes of the FEM models for the semi-elliptical

surface crack are shown in figure 6-6. The stress intensity factor Kl, at any point 0
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along the semi-elliptical crack, can be expressed as

K, = , [( )] F(, 0)1 (6.5)

where a' is the applied stress, a is the crack depth, 0 is the parametric angle of the

ellipse, Q is the shape factor of an ellipse and is given by the square of the complete

elliptical integral of the second kind [21]; for (a/c) = 1/3, Q = 1.123. The value

of the boundary correction factor F for the specific crack geometry (a/c = 1/3 and

a/t = 0.5) was obtained as a function of 0 from Raju and Newman [20]. Results from

the FEM models using brick elements, regular and irregular tetrahedral elements,

along with the reported values of Newman and Raju, are shown in figure 6-7, using

(1 - v2)K2 = EJ.
An accurate solution to this crack configuration presents a rapid variation in Kl

near the boundary layer of the corner singularity created by the orthogonal intersec-

tion of the crack-front with a traction-free surface [22]. The effect of this boundary

layer on the KI-field was not considered in this study, as it has been shown that the

mesh refinement at the surface required to capture the boundary layer does not the

affect features of the general K solution in the interior [20]. The maximum value of

K1 occurs at = 7r/2, in agreement with Newman and Raju's observations. The av-

erage value of the Kj-solution was in agreement to within 2% of Newman and Raju's

findings (which have been reported to be accurate to 1- 3% [20]), and the oscillations

were within 2% and 4% of the mean value for the regular and irregular tetrahedral

meshes, respectively.
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MESH NUMBER OF NODES TOTAL TIME

Meshing Setting up Running

Irregular tets 10,000 20 sec 30 min 10 min
(Pro/MESH)

Regular tets 28,000 10 min 1 day 30 min
(ABAQUS/Pre)

Bricks 15,000 20 min > 2 days 2 hours

Table 6.1: Approximate total user mesh generation time and size of the problem for
the semi-elliptical surface crack in a finite thickness plate.
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Figure 6-1: Point-wise J-integral values obtained by the proposed method. The edge-
crack in plane strain is subjected to uniform remote tension of magnitude a°°. Radius
of the domain integral used in the tetrahedral meshes is p/a = 0.7.
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Figure 6-3: Point-wise J-integral values obtained by the proposed method. The edge-
crack is subjected to uniform remote tension of magnitude oa. Face (1-2-5-6) is a
free surface, and face (4-3-7-8) is a symmetry plane.
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(a) (b) (C)

Figure 6-4: Displaced meshes of the penny-shaped crack in a round bar. The model
with symmetry planes at 900 is subjected to uniform remote tension. (a) Brick mesh.
(b) Regular tetrahedral mesh obtained from ABAQUS/Pre. (c) Irregular tetrahedral
mesh obtained from Pro/Mesh.
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(a) (b) (C)

Figure 6-6: Displaced meshes of the semi-elliptical surface crack in a finite thick-
ness plate. The models are subjected to uniform remote tension. One-quarter of
the plate is modeled. (a) Brick mesh. (b) Regular tetrahedral mesh obtained from
ABAQUS/Pre. (c) Irregular tetrahedral mesh obtained from Pro/Mesh.
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Figure 6-7: Point-wise J-integral values for semi-elliptical surface crack in a finite
thickness plate. The semi-elliptical crack is subjected to uniform remote tension of
magnitude a°°.
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Chapter 7

Elastic-plastic analysis

7.1 Elastic-plastic fracture mechanics

In the previous section we were in the regime of linear elastic fracture mechanics

(LEFM). Linear elastic fracture mechanics is valid as long as the non-linear material

deformation is confined to a small region (relative to the in-plane dimensions) sur-

rounding the crack-tip. Elastic-plastic fracture mechanics (EPFM) is to be used under

circumstances depending on geometry, loads and material which exhibit substantial

plastic deformation. Two parameters: J and crack tip opening displacement (CTOD)

are commonly used as a fracture criterion. The J-integral has been widely accepted

as a fracture characterizing parameter for non-linear materials, and its applicability

to elastic-plastic crack configurations is detailed below.

7.1.1 Nonlinear fracture mechanics

Consider the uniaxial stress-strain behavior of elastic-plastic and nonlinear elastic

materials. The loading behavior of the two materials is identical, but the materials'

responses differ when each is unloaded. While the elastic-plastic material follows a

linear unloading path with slope equal to the Young's modulus, the nonlinear elastic

material unloads along the same path as it was loaded. There is a unique stress-

strain relation for an elastic material, whereas in an elastic-plastic material, a given
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strain can correspond to more than one stress level when the material is unloaded

or cyclically loaded. Hence it is much easier to analyze an elastic material. As long

as there is monotonic loading, the mechanical responses of both the materials are

the same. In three-dimensions, even though it does not necessarily follow that the

loading behaviors of nonlinear elastic and elastic-plastic material are identical, it is a

very good approximation, as detailed later in the next subsection. Many monotonic

loading problems in plasticity can be dealt with by treating the material as non-linear

elastic through the deformation theory of plasticity (i.e., nonlinear elasticity) [7].

Hutchinson [23] and Rice and Rosengren [24] independently showed that J charac-

terizes crack-tip conditions in a nonlinear material. Hutchinson had used a Ramberg-

Osgood power law hardening material of the form

- = - + Ct )n, (7.1)
0o go 0 o

where 60 is a reference strain, ao is a reference stress ao = (Eco), is a material

constant and n the strain hardening exponent. Rice and Rosengren had used a power

law hardening of the form

e if < 1, (7.2)
010 (7.2)

( )n if > 1.

Both of them independently showed that in order for J to remain path-independent,

a e must vary as 1/r near the crack-tip. Also, at distances very near to the crack-tip

the elastic strains are small in comparison to the total strain, and the stress-strain

behavior reduces to a simple power law. The asymptotic stresses and strains ahead

of the crack-tip, as r -+ 0, were obtained by Hutchinson [23] from the solution of the

nonlinear eigen value problem as

EJ 
ij =- o( nr 1 ij(n, ) (7.3)
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and

Eij E (ad Ir ) -n4l eij (7)

where In is an integration constant that depends on n, and ij and ij are dimen-

sionless functions of n and 0. These parameters also depend on the stress state ( i.e.,

plane stress or plane strain). The above equations are called the HRR singularity

fields. A detailed discussion on the HRR fields is in [5].

7.1.2 Plasticity theories in elastic-plastic fracture mechanics

The deformation theory of plasticity was proposed by Hencky in 1924. In this theory

the plastic strain tensor itself is assumed to be determined by the stress tensor,

provided the yield condition is met. The deformation theory is a total strain theory,

and since the strains depend only on the final stress, the strain state is independent of

any particular loading path. In general, however, the deformation theory cannot be

used for problems in which unloading occurs, for the obvious reason that unloading in

a real material follows a different stress-strain curve. A more detailed discussion on

the deformation theory is in [25]. For the uniaxial deformation of a Ramberg-Osgood

material with a stress strain relation as given by (7.1), we have the plastic strain P

as

(P = a( )n-- (7.5)
iF E'

Differentiating (7.5), we get the increment of plastic strain as

deP = an(-)n-2 E . (7.6)
t0 1 E t7

The incremental theory of plasticity is widely used in mechanics, and in this theory

the increment of the total strain, de, is written in terms of its elastic and plastic

parts as d = de' + dep , where dee - dalE. Now for the uniaxial case, (7.6) is

also the expression for dep from the incremental theory. Hence there is no difference

between the theories for monotonic loading in the uniaxial case. Equation (7.5) can

be generalized to three dimensions by assuming deformation plasticity and isotropic
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hardening:

e = 2 a(e)nao Ej' (7.7)

where a, = (3SijSij/2)/ 2 is the effective (von Mises) stress, and Sij is the deviatoric

component of the stress tensor, defined as

1
Sij = oij - (kkij, (7.8)

3

where 6ij is the Kronecker delta. Equation (7.7) is the deformation theory flow rule

for a Ramberg-Osgood material. The flow rule for incremental theory is given by

dePj = 3 an(e n-2 Sij dae (7.9)

The two theories of plasticity coincide only if (7.9) can be integrated to obtain (7.7).

This happens when there is proportional loading in the deviatoric stresses 1. Budian-

sky has shown that the deformation theory is still acceptable when there are modest

deviations from proportionality [26]. Further discussion on these theories of plasticity

can be found in [5]. In conclusion we can say that the deformation theory and the

incremental theory are equivalent in most cases for purpose of elastic-plastic fracture

mechanics computation (with stationary crack fronts).

7.2 Elastic-plastic formulation of the domain in-

tegral method

The J-integral is an energy-related quantity as described in section 2.1. It has also

been shown earlier (see section 2.1) that for a virtual crack extension 61 as shown in

figure 2-1, the J-integral around the crack tip is the change in potential energy (per

unit thickness) :

J = (7.10)

'The total stress components need not be proportional for the two theories to coincide, as the
flow rule does not depend on the hydrostatic part of the stress tensor.
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under conditions of the equivalence between 5 and J described in section 2.1. Equa-

tion (7.10) is also valid for a non-!,i:Aar elastic material. Recall the definition of J

from (2.1)

J fr[Wal - aiia ldY (7.11)

where W, the strain energy density, is defined as

W(4k1) = j aijde2ij. (7.12)

We also have the Cauchy stress ij as

ij = - (7.13)

In the context of incremental theory, in (7.12), the integral is taken along the actual

path of loading and (7.13) becomes a formal definition of "W/Ocij" as "aij". We

can now rewrite (7.12) as

W(E6k) = j aij (de + dep), (7.14)

where d and d p are the elastic and plastic parts of the total incremental strain,

deij respectively. Equation (7.14) now becomes

W(Ekl) = We + Wp, (7.15)

where We is the elastic strain energy and WP is the plastic dissipation. Hence we

obtain the volume integral expression for the energy release for the elastic-plastic case

from (2.17) as

6- 7 =/[(We + WP)6kj - mj au ]qk dV . (7.16)
&xjiw. n)l-a(16)
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7.3 Finite element implementation of the domain

integral method

To compute the J-values along the crack front, we use the finite element implementa-

tion of the domain integral method exactly as described in section 2.3. The crack-front

integral expression remains the same as (2.25) in subsection 2.3.1 and is evaluated

using the proposed crack-front perturbation pattern described in subsection 4.1.1.

The volume integral expression for the energy release is now evaluated using (7.16).

The evaluation of (7.16) is similar in all respects to FE evaluation of (2.19) using

the proposed method as described in subsections 2.3.2 and 4.1.2, except that now

both We and WP have to be read at the integration points of the 3-D elements in

the domain Q. The point-wise J values are obtained using the procedure detailed in

subsection 2.3.3.

7.4 Edge-cracked model in plane strain

7.4.1 Description of the model

A straight through-thickness crack is considered in a body with characteristic dimen-

sional ratios (a/B) = 0.5, (h/B) = 3.0, and (a/w) = 0.5, as shown in figure 7-1. The

model is constrained to plane strain boundary conditions. Begley and Landes [27]

have shown that J can be evaluated experimentally using tensile loading of a cracked

specimen. The aims of this exercise are to study the accuracy of the method proposed

in chapter 4 in obtaining J-values under fully-plastic conditions and the effect of ma-

terial model and plasticity theories in obtaining accurate fully-plastic J values. The

analysis is performed on two material models - an elastic/perfectly-plastic material

model using the incremental theory of plasticity and a Ramberg-Osgood hardening

behavior using deformation theory. The elastic/perfectly-plastic model is loaded with

a far-field uniform relative displacement A, and the Ramberg-Osgood model is loaded

with a uniform far-field tensile stress a. The elastic/perfectly-plastic material model
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is considered, so that the results can be conveniently compared to the rigid-plastic

theoretical predictions [28], as detailed below.

7.4.2 Finite element modeling

As in the elastic case, ABAQUS/Pre [14] and Pro/MESH [15] were used to create the

regular and irregular tetrahedral meshes respectively, and ABAQUS/Standard [17]

was used as the FE solver. One-half of the specimen geometry was modeled, and

second-order isoparametric (10-noded) tetrahedral elements were used to mesh this

geometry with quarter-point elements [16] at the crack tip. The tetrahedral mesh

results were also compared to predictions obtained using brick meshes of comparable

mesh density with the quarter-point elements at the crack tip, using the domain

integral option in ABAQUS/Standard. A finer mesh is used near the crack to capture

the steep crack-tip gradients. The crack plane view of the tetrahedral meshes is shown

in figure 7-2. The results are also compared with a 2-D plane strain analysis using

2-D 8-noded quadrilateral plane strain elements with reduced integration (CPE8R)

from ABAQUS/Standard [17]. A focussed mesh is also used at the crack tip. The

2-D FE mesh is shown in figure 7-3.

7.4.3 Results and discussion

Elastic/perfectly-plastic material model

The one-half specimen is loaded with a far-field displacement of A/2. Elastic/perfectly-

plastic material model is used with Y/E = 0.0011, where Y is the tensile yield strength

of the material and E is the Young's modulus. For a rigid-plastic model in plane

strain, we have from limit analysis [29], the limit load PL -:, as

PL' v2Yw (B - a), (7.17)

where a tlhe crack length and B, w are dimensions as shown schematically in figure 7-

1. Schematic load-displacement curves for crack lengths of a and (a + Ja) are shown
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in figure 7-4. From the definition of J as the energy difference, we have

= f -(hPa) (a) d,J (6a)-i; -( a ) (da) Oa, (7.18)

where P(6; a) is the load at displacement 6 and crack length a. For a rigid-plastic

formulation, we can write (7.18) as

PLIM
J = JPastic = A. (w Oa (7.19)

and hence from (7.17)
dJPlastic _ PLIM 2Y

w Oa ~ * (7.20)
dA w Oa

Hence the slope of the J-A curve is constant in the fully-plastic, non-hardening

regime, which can be used to verify the FE results.

Figure 7-5 shows the plot of normalized load PIPLIM versus the normalized far-

field displacement (103- A/2h). We can observe from figure 7-5 that the finite element

solutions overshoot the limit load of (7.17). This can be attributed to the fact that

the classical solution to the plane strain problem is the sliding off along two 450 slip

planes. The FE solutions for elastic-plastic materials exhibit too stiff a response in

the fully plastic range. Nagtegaal, et al. have studied the accuracy of finite element

solutions in the fully plastic range. They observed that a cause of this problem is that

the deformation state of an elastic perfectly-plastic material is highly constrained at

limit load, and, for the usual material idealization, deformation increments at limit

load will be strictly incompressible [30].

The values of J obtained are normalized using EJ/Y 2 a, and the far-field dis-

placement A is normalized to EA/YI, where E is the Young's modulus, Y the yield

strength and 1 = (B - a) is the ligament length as shown in figure 7-1. The J-profile

along the crack-front is shown in figure 7-6 for three domains of integration at the

last increment of loading (i.e., at EA/YI = 32), corresponding to the fully-plastic

case. The values of J are normalized by the J-value obtained from the 2-D plane

strain solution at the same load-level (i.e., at EA/YI = 32). We observe some path
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dependence of the computed J-values along the crack-front for the domain close to

the crack tip (i.e., p/a = 0.4, p/a = 0.5 and p/a = 0.6). This is because of the basic

nature of the incremental theory of plasticity as detailed in earlier sections. Also,

the general trend of the modest path-dependence is consistent with reported results:

J monotonically increases with distance from the crack-tip to a far-field saturation

value. In our further analysis, for the 3-D meshes, we consider the average value of J

along the crack-front, J = f Jdx/w, to represent the J for a load-level. To validate

the elastic-plastic analysis, we consider the slope of the normalized J-A curve from

(7.20) under fully plastic conditions. We now have the slope of the normalized J-A

curve (under fully plastic conditions), denoted (Slope)th as

d(J/Y 2 a) =(Slope)t 2 (7.21)
d(EA/YI) (o3 a

Figure 7-7 shows the plot of normalized J (J for the 3-D meshes) versus normalized

A. Calculating the slope of the curves from the FE computations from figure 7-7, we

have (Slope)Reg.tet. = 1.131, (Slope),,r.tt. = 1.120 and (Slope)Brik = 1.134. We also

have, for the geometry modeled, (Slope)th = 1.155. Thus the slope of J - A curve

has a variation of 3 % from the theoretical value for the irregular tetrahedral mesh

and 2 % for the regular tetrahedral mesh.

Ramberg-Osgood material model

The straight through-thickness crack in plane strain is also analyzed using the Ramberg-

Osgood law with n = 5 and a = 0.5. The one-half model is loaded with a uniform

far-field tensile stress a °° . The Electric Power Research Institute (EPRI) J-estimation

scheme [31] provides a means for computing the J integral for a hardening behavior

represented by the Ramberg-Osgood material model. The total J is given by sum of

the plastic and the effective elastic J; i.e., Jtot = Jel + Jpl.

The fully-plastic J-integral in the EPRI J-estimation scheme, for the geometry
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and loading considered, is expressed as

la P
Jpj = Oao( l) h ( +, (7.22)

where 1 = (B- a) is the ligament length and a is the crack length, as shown in figure 7-

1. The dimensionless factor h (a/B, n) is tabulated in [31] for various configurations.

In our case, hi = 0.928, for n = 5 and a/B = 0.5. In (7.22), P is the tensile load and

is computed as ° ° Bw. The reference load P0 is given by

Po = 1.455?rwlao, (7.23)

where

77= 1 + (a/1) 2 - (a/l). (7.24)

For the geometry under consideration, with a/ll = 1, 7 = 0.414.

The effective elastic J is computed from

K2
Jel- E (7.25)

where E' = E/(1 - 2) for plane strain, and KI is a function of the effective crack

length (aeff) which is given by

a = 1 1 n-1 K(a) 2 (726)
eff + 1 + (Po) 2 / 7r ( n +- 1) ( o 

where Kl a) implies that KI is a function of the crack length a, and P = 6 for plane

strain conditions. The values of K can be obtained from

P
K = f(a/B), (7.27)

where f(a/B) is a function of the geometry of the crack that is tabulated in [5].

The same FE meshes as in the elastic/perfectly-plastic case are used, and the

J-profile along the crack-front is shown in figure 7-8 for three domains of integration
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at the last increment of loading (i.e., at a°°/ao = 1.36), corresponding to the fully-

plastic case. The values of J are normalized by the J obtained from the EPRI

reference solution at the same load-level (i.e., at r°°/ro = 1.36). Three domains

(i.e., p/a = 0.4, p/a = 0.5 and p/a = 0.6) are considered, and they exhibit path

independence. In our further analysis, we consider the average value of J along

the crack-front, J = f Jdx/w, to represent J for the 3-D meshes at a given load-

level. Figure 7-9 shows the variation of normalized J (J for the 3-D meshes) versus

normalized load level, a°°/ao, for both the tetrahedral meshes along with bricks and

the 2-D plane strain result. The EPRI solution is also shown in the figure. We can

observe from figure 7-9 that the variation in the computed J-values for the tetrahedral

elements is less than 2-3% of the EPRI reference solution.

7.5 Surface cracks in a semi-infinite body

The predictions of fracture strengths and fatigue lifetimes of components require

accurate solutions of singularity strengths (J, K, etc.) for small surface cracks. For

these cracks, crack geometry and material non-linearity must be considered along with

the three-dimensional nature of the surface crack. These studies often involve material

behavior in the elastic-plastic regime. Trantina, et al. [32] have done 3-D elastic-

plastic FE studies on surface cracks for two geometries; namely, semi-circular and

semi-elliptical surface cracks. These studies were done using brick elements and the

deformation theory of plasticity, and J-profiles along the crack-front were computed

using the virtual crack extension method.

We have analyzed similar crack geometries using our J calculation procedure and

have done elastic-plastic analysis on two crack geometries: semi-circular and semi-

elliptical surface cracks in a semi-infinite body. The analysis was performed for all

the three FE meshes as before: a regular tetrahedral one from ABAQUS/Pre [14],

an irregular one from Pro/MESH [15] and a brick mesh from ABAQUS/Pre [14].

Quarter-point elements were also used at the crack-tip [16] along with a finer mesh

at the crack-tip. The Ramberg-Osgood deformation plasticity material model was
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considered for the analysis using the in-built material model in ABAQUS/Standard

[17]. The analysis was performed for n = 10 and tr = 0.25.

7.5.1 Semi-circular surface crack

A semi-circular surface crack has been considered, as shown in figure 7-14. The radius

of the half cylinder which represents the infinite body is 10a, where a is the crack

depth. Hence we can be assured that there is a uniform stress field in the model except

near the crack tip, and that the crack is unaffected by the boundaries. The model is

loaded to a far-field relative displacement of A. One-fourth the specimen geometry

is modeled, with all = 1/20. The irregular tetrahedral mesh from Pro/MESH and

the brick mesh ABAQUS/Pre for the specimen geometry are shown in figure 7-10.

Close-up views of displaced meshes of the the crack tip region are shown in figure

7-11. The model was loaded to a nominal strain e = /L = (6 - 7) x e0, so that we

are near the fully plastic regime. A lower bound for the limit load can be computed

as PLB = ao7r(100a2 - a2) from [29]. The variation of load P, normalized with PLB,

versus the nominal strain = A//L is shown in figure 7-12. We can observe from

figure 7-12 that we are well into the plastic regime. Figure 7-13 shows the variation

of J at the symmetry plane (which is the = 90° plane) with the normalized far-

field displacement for all the FE meshes. The values of J are normalized using using

a2a/E. The plot on figure 7-13 has a parabolic variation at low nominal strains,

corresponding to the dominance of the elastic J. Trantina, et al., have reported

values for only nominal strains up to 1.35co. The results of the analyses for all three

FE meshes at a nominal strain c = 1.35eo, along with the values reported by Trantina,

et al., are shown in figure 7-14. The values of J() are normalized with J= 90 . The

900 plane corresponds to the symmetry plane, as shown in figure 7-14. The variation

along the crack-front of J(q)/JO= 9oo, at different load levels, is shown in figure 7-

15. Three load levels at nominal strains = 0.34e0, corresponding to an elastic

state; = 1.200o, representing yield and elastic-plastic behavior; and e = 6.82eo,

corresponding to a fully-plastic state, are considered. In the elastic region, J at the

surface is 30 % greater than J at the center. This is in agreement with the results
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reported by Trantina, et al. [32]. With increasing strain, J at the surface decreases

(to about 90 % of the J at the center at e = 1.20c0), and there is peak which

develops at 0 = 15 - 200. This unique variation of J along the crack front is due to

a combination of increased J due to plasticity and the loss of plane strain constraint

at the free surface. Further discussion on the plane strain constraint can be found in

[32]. In the fully-plastic case, J at the surface is smaller than J at the center by 25%.

7.5.2 Semi-elliptical surface crack

A semi-elliptical surface crack of aspect ratio a/c = 0.7 is considered next, as shown

in figure 7-20. The radius of the half-cylinder which represents the infinite body is

again 1Oa, where a is the crack depth. The model is loaded to a far-field displacement

of A, and one-fourth the specimen geometry is modeled, with all = 1/20. For the

semi-elliptical surface crack, the irregular tetrahedral mesh from Pro/MESH and the

brick mesh from ABAQUS/Pre are shown in figure 7-16. Figure 7-17 shows close-up

views of the displaced meshes near the crack tip region. The model is again loaded

to a nominal strain = A/L = (6 - 7) x 0. A lower bound for the limit load in

this case can be computed as PLB = aO7r(100a2 - ac) from [29]. The variation of load

P, normalized with PLB, versus the nominal strain = A/L is shown in figure 7-18.

Figure 7-19 shows that variation of J at the symmetry plane (which is the 90° plane)

with the normalized far-field displacement for all the FE meshes. The values of J

are normalized by r02a/E. Again we observe the parabolic variation at low nominal

strains from the plot on figure 7-19 due to the dominance of the elastic J. For

E/e0 = 1.35, figure 7-20 shows the variation along the crack-front of J, normalized

with J,=90oo for all the three FE meshes, along with the values reported by Trantina,

et al. [32]. The 90° plane again corresponds to the symmetry plane, as shown in

figure 7-20. The crack-front variation of J, normalized by J at the symmetry plane,

is shown in figure 7-21 for different load levels. Three load levels at nominal strains

e = 0.34Eo, = 1.20co and = 6.82Eo are again considered, as in the semi-circular

case. From figure 7-21 we see J at the surface is 10 % smaller than J at the center at

low nominal strains, and that there is a local minimum at around 15 - 20° . This is
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again in agreement with the results reported by Trantina, et al. [32]. J at the surface

decreases to about 30 % less than J at the center for E = 1.20Eo. The J-variation along

the semi-elliptical crack-front, in the elastic-plastic regime has an increasing profile,

unlike the corresponding elastic-plastic J-distribution for the semi-circular case. In

the fully-plastic case (at E = 6.82Eo), J at the surface is smaller than the J at the

center by 50 %, and again J increases monotonically as the crack-front is traversed

from the surface to the center.

7.6 Semi-elliptical surface crack in a finite thick-

ness plate

A semi-elliptical surface crack in a finite thickness plate is considered. Full three-

dimensional elastic-plastic analysis of semi-elliptical surface cracks under tensile load-

ing have been done by Wang [33]. Similar crack geometry has been considered here.

The geometry of the plate with a part-through surface crack is shown in figure 7-22.

A semi-elliptical crack with a maximum penetration a and a total surface length of 2c

is in the middle of the plate. The plate has a thickness of t, total width 2b and total

height 2h. The dimensional ratios of the crack and plate arc given by a/c = 0.24,

a/t = 0.6, b/t = 8 and h/t = 16. These ratios are same as the crack geometry analyzed

by Wang [33]. The model was loaded by a far-field uniform relative displacement A.

One-fourth of the specimen geometry is modeled, and the brick, regular tetrahedral

and irregular tetrahedral finite element meshes of the one-fourth model are shown in

figure 7-23. The Poisson's ratio was set to 0.3, and the Ramberg-Osgood material

model was used with a = 1. Two general cases, high strain hardening (n = 5) and

moderately low strain hardening (n = 10) were an. yzed. The variation of' far-field

stress a normalized by ao, versus far-field strain e6 normalized by E0, for n = 5

and n = 10, are shown in figures 7-24 and 7-26, respectively. The far-field strain is

given by e =- A/2h, and the far-field stress is given by oa = P/bt, where P is the

total nodal reaction force acting on the half-specimen, applied at the plantr enforcing
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the far-field relative displacement A. Figure 7-25 shows the variation of J at the

symmetry plane, normalized by ao0 ot, versus normalized far-field stress, along with

the results obtained by Wang [33], for n = 5. We can observe from figure 7-25 that

the variation in J at the symmetry plane is less than 3% of the values reported by

Wang [33]. The values of J at various load levels for high strain hardening exponent

(n = 10) are shown in figure 7-27. Again we can see a close match with the values

reported by Wang [33]. Comparisons of J values at different load levels for the two

cases (n = 5 and n = 10) are shown in figure 7-28. At low stress levels, a°°/ao < 0.5,

the curves for n = 5 and n = 10 are indistinguishable. The crack-tip fields are essen-

tially in small-scale yielding. At intermediate stress levels, 0.5 < a°°/a 0o 0.8, the J

values for a material with n = 5 is greater than that for a material with n = 10. At

still higher levels, /aoo > 0.9, the normalized J values for a material with n = 10

increases faster than that for a material with n = 5. The cross-over occurs at a load

level of a°°/co = 0.85. These are also consistent with the observations reported by

Wang [33]. The J-profile for a low stress level of a°°/ao = 0.30, normalized by J at

the symmetry plane, is shown in figure 7-29 for n = 10. As stated before, at low load

levels, the profile for n = 5 coincides with the one for n = 10. At this load-level, J

at the free surface is 37% of the J at the symmetry plane. Figure 7-30 shows the

J-profile for a high stress level of a°°/ao = 0.975, normalized by J at the symmetry

plane, for n = 5 and n = 10. There is a slight variation in the J profiles for the two

cases, but J at the free surface is essentially the same, about 20 % of the J at the

symmetry plane. These profiles are also plotted along with the profiles obtained by

Wang [33].
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Figure 7-1: Model of the straight through-thickness crack in plane strain subjected
to a uniform far-field relative displacement \. The dimensional ratios of the model
are (a/B) = 0.5, (h/B) = 3.0 and (a/w) = 0.5
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(a) (b)

Figure 7-2: Crack plane view of the tetrahedral meshes for the straight through-
thickness crack in plane strain. (a) Regular tetrahedral mesh from ABAQUS/Pre.
(b) Irregular tetrahedral mesh from Pro/MESH.
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Figure 7-3: Finite element mesh for the 2-D analysis of the straight through-thickness
crack in plane strain. (a) FE mesh of the entire model. (b) Detail of the crack-tip
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Figure 7-4: Schematic load versus displacement curve for two crack lengths, a and
(a + 6a), for an elastic/perfectly-plastic material. The area under the curve is J6a.
The limit load PLmI(a + a) = PLUM(a) + (PLIi/a)6a.
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Figure 7-5: Variation of normalized load with normalized far-field displacement for
the straight through-thickness crack in plane strain. Elastic/perfectly-plastic material
model was used with Y/E = 0.0011.
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Figure 7-6: Normalized J profile along the crack-front for the straight through-
thickness crack in plane strain. Elastic/perfectly-plastic material model was used
with Y/E = 0.0011. The values of J are normalized using the J-value obtained from
the 2-D plane strain solution for the load level E//(YI) = 32. The values are shown
for three domains of integration; p/a = 0.4, p/a = 0.5 and p/a = 0.6, for the irregular
tetrahedral mesh.
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Figure 7-7: Variation of normalized J (J for the 3-D meshes) with normalized dis-
placement for the FE meshes for the straight through-thickness crack in plane strain.
Elastic/perfectly-plastic material model was used with Y/E = 0.0011.
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Figure 7-8: Normalized J profile along the crack-front for the straight through-
thickness crack in plane strain. Ramberg-Osgood material model was used with n = 5
and a = 0.5. The values of J are normalized using the J-value obtained from EPRI
solution for the load level a°'/ao = 1.36. The values are shown for three domains of
integration; p/a = 0.4, p/a = 0.5 and p/a = 0.6, for the irregular tetrahedral mesh.
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Figure 7-9: Variation of normalized J (J for the 3-D meshes) with normalized load
level a°/ao from various the FE meshes for the straight through-thickness crack in
plane strain. Ramberg-Osgood deformation plasticity is used with n = 5 and c = 0.5.
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(a) (b)

Figure 7-10: Finite element meshes for the semi-circular surface crack, in a semi-
infinite plate under tension. (a) Brick mesh from ABAQUS/Pre. (b) Irregular tetra-
hedral mesh from Pro/MESH.
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(a) (b)

Figure 7-11: Close-up view near the crack-tip of the displaced meshes for the semi-
circular surface crack . (a) Brick mesh from ABAQUS/Pre. (b) Irregular tetrahedral
mesh from Pro/MESH.
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Figure 7-12: Variation of load P, normalized with PLB = o07r(100a2 - a2 ), versus
normalized far-field displacement 103 A/L for the semi-circular surface crack in a
semi-infinite plate. Ramberg-Osgood deformation plasticity is used with n = 10 and
a = 0.25.
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Figure 7-13: Variation of normalized J at the symmetry plane with normalized
displacement for the semi-circular surface crack in a semi-infinite plate. Ramberg-
Osgood deformation plasticity is used with n = 10 and a = 0.25.
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Figure 7-14: Variation of J normalized by J at the symmetry plane, along the crack
front for the semi-circular surface crack in a semi-infinite body at a nominal strain 
= 1.35 e0. Nominal strain = A/L. Ramberg-Osgood deformation plasticity is used
with n = 10 and = 0.25.
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Figure 7-15: Variation of J normalized by J at the symmetry plane, along the crack
front for the semi-circular surface crack in a semi-infinite body at different load levels.
Nominal strain e = A/L. Ramberg-Osgood deformation plasticity is used with n = 10
and a = 0.25.
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(a) (b)

Figure 7-16: Finite element meshes for the semi-elliptical surface crack in a semi-
infinite plate under tension. (a) Brick mesh from ABAQUS/Pre. (b) Irregular tetra-
hedral mesh from Pro/MESH.
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(a) (b)

Figure 7-17: Close-up view near the crack-tip of the displaced meshes for the semi-
elliptical surface crack. (a) Brick mesh from ABAQUS/Pre. (b) Irregular tetrahedral
mesh from Pro/MESH.
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Figure 7-18: Variation of load P, normalized with PLB = a07r(100a2 - ac), versus
normalized far-field displacement 103i - A/L for the semi-elliptical surface crack in a
semi-infinite plate. Ramberg-Osgood deformation plasticity is used with n = 10 and
a = 0.25.
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Figure 7-19: Variation of normalized J at the symmetry plane with normalized dis-
placement for the semi-elliptical surface crack in a semi-infinite plate. Ramberg-
Osgood deformation plasticity is used with n = 10 and a = 0.25.
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Figure 7-20: Variation of J, normalized by J at the symmetry plane, along the crack
front for the semi-elliptical surface crack in a semi-infinite body at a nominal strain e
= 1.35 e0. Nominal strain e = A/L. Ramberg-Osgood deformation plasticity is used
with n = 10 and ar = 0.25.
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Figure 7-21: Variation of J, normalized by J at the symmetry plane, along the crack
front for the semi-elliptical surface crack in a semi-infinite body at different load
levels. Nominal strain = A/L. Ramberg-Osgood deformation plasticity is used
with n = 10 and ca = 0.25.
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2h

A/2
Figure 7-22: Model of the semi-elliptical surface crack in a finite thickness plate. The
dimensional ratios are a/c = 0.24, a/t = 0.60, bt = 8 and hit = 16. The model is
loaded by a uniform far-field relative displacement A.
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(a) (b) (c)

Figure 7-23: Finite element meshes for the semi-elliptical surface crack in a finite
thickness plate. (a) Brick mesh generated using ABAQUS/Pre. (b) Regular tetrahe-
dral mesh from ABAQUS/Pre. (c) Irregular tetrahedral mesh from Pro/MESH.
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Figure 7-24: Variation of normalized far-field stress versus normalized far-field strain
for the semi-elliptical surface crack in a finite thickness plate. Ramberg-Osgood ma-
terial model is used with n = 5 and a = 1. The far-field nominal strain e°° = A/2h.
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Figure 7-25: Variation of normalized J at the symmetry plane for the semi-elliptical
surface crack in a finite thickness plate at different load levels. Ramberg-Osgood
deformation plasticity is used with n = 5 and a = 1.
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Figure 7-26: Variation of normalized far-field stress versus normalized far-field strain
for the semi-elliptical surface crack in a finite thickness plate. Ramberg-Osgood ma-
terial model is used with n = 10 and a = 1. The far-field nominal strain e° =
A/2h.
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Figure 7-27: Variation of normalized J at the symmetry plane for the semi-elliptical
surface crack in a finite thickness plate at different load levels. Ramberg-Osgood
deformation plasticity is used with n = 10 and a = 1.
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Figure 7-28: Comparison of normalized J at the symmetry plane at various load levels
for hardening exponents n = 5 and n = 10. Ramberg-Osgood deformation plasticity
is used with c = 1.
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Figure 7-29: Variation of J, normalized by J at the symmetry plane, along the crack-
front for the semi-elliptical surface crack in a finite thickness plate at load level °°/oo0
= 0.30. Ramberg-Osgood deformation plasticity is used with n = 10 and a = 1.
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Figure 7-30: Variation of J normalized by J at the symmetry plane, along the crack-
front for the semi-elliptical surface crack in a finite thickness plate at load level a°/ao
= 0.975 for hardening exponents n = 5 and n = 10. Ramberg-Osgood deformation
plasticity is used with = 1.
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Chapter 8

Guidelines for obtaining accurate

results

A parametric study on the accuracy achievable with the method proposed in chapter

4 was performed using the irregular tetrahedral meshes obtained from Pro/MESH

[15]. Mesh convergence, and the effect of the size of the far-field element relative to

the crack tip element were studied.

Based on the mesh-generating capabilities of Pro/MESH [15], we define two rel-

evant parameters, P1 and P2, to study the above-mentioned factors. The parameter

Pt is defined as

P1 - average element length along the crack-front
P1 relevant macroscopic crack dimension

where the macroscopic crack dimension could be the dominant in-plane or out-of-

plane crack dimension 1. The parameter P1 represents crack-front mesh refinement.

We define a second parameter, P2, as

P2 maximum length of a far-field element
average element length along the crack-front

where the length of a far-field element could be the "global maximum size" of the

element as defined in Pro/MESH [15]. P2 is an indication of the scale of typical

far-field meshes, relative to the crack tip mesh, needed to obtain accurate results.

'For curved crack-fronts, the local radius of curvature must also be considered.
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The parametric study was performed on the edge-crack in plane strain, with

(a/b) = 1/2, subjected to uniform remote tension. The macroscopic crack dimen-

sion was chosen as the crack length, a. The elements along the crack-front were of

uniform length. The parameter P2 depends, implicitly, on the radius p, of the com-

putational domain. This has not been addressed here, due to the limitations of the

mesh generator chosen for the study. For advanced mesh generators having addi-

tional mesh gradation controls, the parameter P2 can be readily redefined based on

the maximum size in the domain radius. For all the cases, quarter-point crack-front

elements were used, to obtain the square-root singularity as described earlier. We de-

fine Jvar = (Jmax - Jmin)/Jmean, where Jmean = f Jdx/W is the average of the nodal

J-values along the crack-front (see figure 5-2), with Jmax and Jmin being, respectively

the maximum and minimum of these values.

Figure 8-1 gives the variation in Jvar as a function of the parameters P1 and P2,

for a domain size of p/a = 0.7. The variation in Jme,an was observed to be within

1 - 2% of Jth (see subsection 5.1.1) for all the cases. From figure 8-1, we note that to

obtain results to an accuracy of 1 - 2%, the parameter P2 has to be less than 4. The

factor of 4 arises from the fact that the base for the perturbation field spans 4 crack-

front elements 2. The factor P2 also directly correlates with the number of elements

required in the model to obtain accurate results. This follows from the fact that P2

relates the global mesh size to the mesh at the crack-front. Suppose a finer mesh is

desired at the crack tip; then for accuracy in the calculated J-values, the factor P2 has

to be within the prescribed bounds (namely P2 < 4 in this case), implying far-field

mesh refinement as well. The results in figure 8-1 also give an idea of the effects of

crack-front mesh refinement. For this specific problem, we found that, in order to

obtain fairly accurate results, P1 should not exceed a value of, approximately, 0.25.

The accuracy of the results increases with crack tip mesh refinement, as expected,

indicating mesh convergence. For the edge-crack in plane strain, a study was also done

on the accuracy of the computed J values obtainable without the use of quarter-

2The perturbation patterns, 61K(s) = f< (s) need not be restricted to a piece-wise linear variation
spanning four crack-front element-edges. See also chapter 9.
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point crack-tip elements. It was observed that for P 0.01 and P2 4, both

(IJmean -Jthl)/Jth < 0.02 and J,,ar < 0.02. In summary, although crack-front refine-

ment and P1 must be decided based on the desired accuracy and refinement of the

results, the parameter P2 is crucial for accuracy, and has to be within the prescribed

bound.
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Figure 8-1: Sensitivity of the computed J-values, Jvar = (Ja - Jmin)/Jmean. P1 =
(Average crack-front element-edge length) / (Crack length); P2 = (Maximum far-
field element length) / (Average crack-front element-edge length). Edge-crack in
plane strain subjected to uniform remote tension.
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Chapter 9

Conclusions and future work

9.1 Conclusions

With the development of CAD packages which can create complicated models and

mesh them with tetrahedral elements with relative ease, there is a need for a general

method to obtain crack-front singularity strengths from irregular tetrahedral element

meshes so that the developments in the CAD systems can be directly extended to the

whole class of fracture and fatigue crack propagation prediction problems. The prac-

ticality of the proposed method lies in its ability to obtain accurate results from rather

irregular tetrahedral meshes readily obtained from commercially-available CAD pack-

ages possessing fairly good meshing capabilities.

A "straightforward" implementation failed to produce acceptably accurate results

because of the large gradients within crack-front elements (both those having edge-

coincidence with the crack front and those making only vertex contact) introduced by

node-based interpolation of domain perturbations of highly localized support. This

problem is offset by using perturbations of "extended support", numerical quadrature

using analytically-calculated gradients of the perturbation vector field, and interpo-

lation with the use of the nodal support at the boundaries of the model. The expo-

nential radial variation also contributed to obtain a smooth perturbation field. On

the meshes used, the method was shown to be accurate to 3 - 4% of the theoretical

predictions for a wide range of problems. Guidelines to obtain accurate results using
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the method have been inferred from a parametric meshing study; they can be sum-

marized by two useful parameters, P1 and (more importantly) P2, both of which must

be suitably bounded, depending on the level of accuracy required. The correlation

of the number of elements in the model required to obtain accurate results with P1

and P2 has been established, and the trade-off between accuracy and cost must be

considered in selecting the values for these parameters.

9.2 Future work

9.2.1 Crack-front perturbations

A method of computing nodal J-values along the crack-front has been detailed in this

thesis based on a four-element base piece-wise linear crack-front perturbation pattern

that has been shown to work on a variety of crack geometries. The computation pro-

cedure has been developed for both elastic and elastic-plastic analysis. Various other

related alternative schemes have been discussed in chapter 5, and their drawbacks

have also been detailed. The piece-wise linear crack-front perturbation, though it has

produced acceptable results for the cases studied, has an inherent discontinuity in the

tangential derivative. The perturbation patterns need not be restricted to a piece-

wise linear variation. An area of future research would be to develop more general

perturbation patterns which would have continuous tangential gradients. Splines, for

example, would be an ideal choice. But, implementation difficulties in using splines

as perturbation patterns constitute impediments which have to be overcome, as the

implementation of a spline-based perturbation pattern within a finite element scheme

is not obvious. Another issue involves the accuracy on the proposed method, as dis-

cussed in chapter 8. A perturbation and domain integral evaluation scheme which

produces good results from a mesh of a cracked structure which has far-field elements

much larger than the crack-front elements (say a factor of 8-10) would be handy. This

would be especially useful when fracture analysis (i.e. computation of J, K, etc.)

has to be performed using a pre-existing mesh of a cracked structure obtained using
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commercially-available CAD packages. This may again be related to the use of more

"smooth" crack-front perturbation fields.

9.2.2 Two-parameter fracture mechanics

The correlation of macroscopic fracture behavior among various cracked configura-

tions, such as initiation of crack growth and the onset of unstable crack propagation,

is based on the "similarity" of crack-tip stress and deformation fields. Conventionally,

these fields are represented by dominant singular fields whose magnitude is charac-

terized by a single parameter such as K in linear elastic fracture mechanics (LEFM)

or the J-integral in elastic-plastic fracture mechanics (EPFM). These representations

are valid only as long as the singular fields dominate the crack-tip region and are

the only dominant singularities. Larsson and Carlsson [34] showed from 2-D plane-

strain elastic-plastic finite element analysis that the plastic-zone sizes of actual spec-

imens were substantially different from the boundary layer solution at the same Kl.

Hence to resolve the difference the modified boundary layer formulation (MBL) was

applied using the second term in the Williams expansion (1.1) called the T-stress.

Bilby, et al., [35] showed that the two-parameter (KI and T) approach characterizes

the stress fields at a non-hardening blunted crack-tip better than K alone.

Fracture mechanics computation using tetrahedral elements can be extended by

observing the ability of tetrahedral elements to accurately represent the crack tip

stress and strain fields, with relevance to the two-parameter characterization of crack-

tip fields. It has been shown that the elastic T-stress [36], especially negative T-stress,

has a strong effect on the near-crack-tip fields. Wang [36] has performed an analysis

of the effect of the T-stress on surface-cracked plates using brick elements. In order to

perform such a two-parameter characterization study using tetrahedral elements, the

stress fields, especially the crack-opening stress need to be accurately determined from

the FE solution of the cracked model. To facilitate such an analysis, very fine meshes

are needed at the crack-tip. To give an idea of the crack-tip mesh refinement, Wang

[36] had used elements at the crack-tip which were 4 orders of magnitude smaller than

the thickness of the plate, in his study of surface-cracked plates with a semi-elliptical
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crack-front. Further he had also used sub-modeling and mapped a coarse mesh for the

cracked plate to a fine mesh of a semi-elliptical region surrounding the crack-front.

Current commercially-available automatic mesh-generators are based on a fixed

precision and and are suited to mesh geometries with meshes which vary to a maxi-

mum of 2 orders of magnitude. Detailed crack-front fracture mechanics computations

usually involve crack-tip mesh refinements of up to 4 orders of magnitude. Also, in

most fracture computations, we have a situation in which gradients of deformation

or stress fields in one direction (i.e., radial) dominates. In such cases, 3-D fracture

studies performed using brick elements, have crack-tip elements with very high as-

pect ratios. Even though the tetrahedral elements are isotropic in nature, a crack-tip

tetrahedral element having a high aspect ratio similar to the bricks, may be good

enough. In any case, the effects of (geometrically) anisotropic tetrahedral crack-front

elements have to be studied.

A scheme to build a mesh-generator suited for fracture computations is detailed

below. The crux of the algorithm would be to mesh concentric tubular domains

around a curve in space with tetrahedral elements. An ideal way to do this would be

to mesh the surfaces of these domains first, and then build tetrahedra into the domain.

To do this, one could start from the inner-most domain and progressively map the

surface of the domain surrounding it, and then build tetrahedral elements for each

of the domains. In summary, the key feature needed in a tetrahedral mesh generator

to create fine crack-front meshes is to be able to map the surfaces of two adjacent

concentric tubular domains, and mesh each of them with different element sizes. This

way, we could progressively build a mesh with the required mesh-refinement at the

crack-tip. While one could build such a mesh using brick elements, if the study has

to conducted on a complex structure, then it maybe worthwhile (or needed in some

cases) to mesh entire structure with tetrahedral elements.

9.2.3 Modeling crack-growth using tetrahedral elements

Ductile materials usually fail as the result of nucleation, growth and coalescence of

microscopic voids that initiate at inclusions and second phase particles. Mathematical
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models have been proposed for void growth and coalescence, and the most widely-

referenced model is the Gurson model [37]. The Gurson model analyzes plastic flow

in a porous medium by assuming that the material behaves as a continuum. One

of the key parameters of the Gurson model is the void volume fraction. The Gur-

son model was modified by Tvergaard and Needleman [38], who replaced the void

volume fraction by an effective void volume fraction. Ductile crack-growth has been

modeled using 2-D FE analysis by Xia, et al. [39], using the void growth criteria

through the Gurson model, in an elastic-plastic continuum model. The model uses a

traction-displacement law on element faces spanning the separation plane, which is

generally presumed to be known a priori. Crack-growth is modeled when the stress

along element faces drop down to zero through the traction-displacement law. Three-

dimensional crack-growth modeling using tetrahedral elements would be a very use-

ful tool in modeling crack-growth. There exist limitations in modeling crack-growth

through a traction-displacement law, as we have zero work-conjugate nodal forces

for a 6-noded triangle subjected to constant stress. A modified tetrahedral element

(C3D1OM) has been developed by HKS, Inc. [40] to overcome this problem in large

deformation and contact problems. Details of the modified tetrahedral element are

not available at this time.

All of the above-mentioned issues, when incorporated into a robust computation

scheme, would make fracture mechanics analysis using tetrahedral elements more ac-

curate and convenient, when used in conjunction with CAD packages having superior

tetrahedral meshing capabilities.
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Appendix

Gradient of a node-based vector field

We define the vector quantiuy f in the element j by its nodal values at the Kth

node, FK, and the bi-quadratic shape functions AfK(Cm) as

fi(cr) = JK(Cm) < F >j, (A.1)

where < FK >j is the value of the ith cartesian component of F at the Ktl node in

the element j, and Cm are the natural coordinates. We write the derivative of f as

afi(cm) _ aJK (cm)
=m< F >j. (,4.2)

dOtm aCm

Also, we have
Ofi(cm) Ofi a afi 9AK(C)X (A.3

9Cm - atCm -'9 - C (A.3)C
where xi are the global coordinates, and XlK are the nodal coordinates. WVe can write

(A.3) in matrix notation for fi,k as

OAXK KK OAK KXK 1A K gf XACK
9cl 1i acl Oc 2 ac1 3 aIcl

a9K . K c2K A aX XAK FK>
ac2 1 ac 2 2 c2 3=

,9,KXK aK .K aVK _K __V
ac l1 aC3 .2 ac 3 C aC3

Inverting this system of equations, the derivatives Ofi/Oxk within element j can be

expressed as

fi,k = Ck < F >j . (A.4)

Gradient of analytically-defined q-functions

Consider the point P= {s, r, 0} inside the domain QK associated with the K-th

perturbation pattern, as shown in figure 2-4. The position of P can be identified by

the position of its projection, P* on the crack front, and by the vector r. We indicate
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by X the position of P relative to a reference cartesian coordinate system. We can

decompose the change in position dX into two components

dX = (t dX)t + dr, (A.5)

so that the change in curvilinear coordinate s, associated with dX is

ds = (dX t). (A.6)

Rearranging (A.5), we can write

dr = [I - (t t)]dX, (A.7)

and we have
r drdr= = r

r [I - (t t)]dX
r

(A.8)

Also, the change in the normal vector n at P* can be expressed as

dn = (ds)t = (dX t)t
Pc Pc

(A.9)

where Pc is the local radius of curvature of the crack-front in the plane of the crack.

Now we have from (2.26) and (2.27)

qK(r, s) = f (s) fr(r) n(s). (A.10)

Hence we can write

dqK = [fsK( )dr + fr(s )d.s]n + f

Using (A.6), (A.8) and (A.9), we can write (A.11) as

fr dn. (A.11)

= [fK(af, r [I - (t t)]dX
Or r fr( f; )(t dX)]n+ff fr

19S
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Rearranging, we obtain

rfr r afK ff' frdq K = [f K(fr)n0-+ fr( -s)n t+ t t®t].dX = (qK) dX. (A.13)
Or Ir Os Pc

Hence we obtain the gradient of qK as

afr r 9fK fK frvq "= f'(')n -+fr( )n t+ f t + t. (A.14)r - s Pc

Recalling section 6, to obtain accurate results we require the typical crack-front ele-

ment length to be much less than the characteristic crack dimension. The term "ds"

is of order element-length, while Pc is of the order of the macroscopic crack dimen-

sion; hence OfK/Os >> f,'/Pc. Therefore, for evaluating (A.14), the third term has

been neglected in our calculations.
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