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ABSTRACT

Metabolic flux and population heterogeneity analysis were used to develop relations
between mammalian cell physiology and specific culture environments and to formulate
strategies for increasing cell culture performance. Mitochondrial characteristics associated with
respiration, membrane potential, and apoptosis along with physiological state multiplicity
involving both metabolism and apoptotic death played a key role in this research.

Research involving the accurate calculation of metabolic flux and the analysis of cellular
behavior occurring in continuous cultures set the stage for subsequent research on physiological
state multiplicity. This phenomena was observed in continuous cultures when at the same
dilution rate, two physiologically different cultures were obtained which exhibited similar
growth rates and viabilities but drastically different cell concentrations. Metabolic flux analysis
conducted using metabolite and gas exchange rate measurements revealed a more efficient
culture for the steady state with the higher cell concentration, as measured by the fraction of
pyruvate carbon flux shuttled into the tri-carboxylic (TCA) cycle for energy generation. This
metabolic adaptation was unlikely due to favorable genetic mutations and was implemented in
subsequent research aimed at improving cell culture performance.

A hypothesis stating that mitochondrial physiology and cellular physiology are correlated
was tested and confirmed. A mammalian cell population was separated using FACS into
subpopulations based on their mean mitochondrial membrane potential (MMP) as measured
using the common mitochondrial stain, Rhodamine 123. The MMP sorted subpopulations were
subjected to apoptosis inducers, and the apoptotic death was characterized both morphologically
through the determination of apoptosis related chromatin condensation and also biochemically
through the measurement of caspase-3 enzymatic activity. The results showed dramatic
differences in apoptotic death kinetics with the higher MMP subpopulations demonstrating a
higher resistance to apoptotic death.

These results were applied in the development of novel fed-batch feeding and operating
strategies. The first strategy showed that overfeeding cells later in culture leads to an increase in
culture viable cell concentration, viability, and productivity. The second strategy showed that
cell populations with a higher mean MMP are able to resist apoptosis during fed-batch culture.
These results indicate that mammalian cell populations have considerable flexibility in their
ability to redistribute metabolic flux in central carbon metabolism. Furthermore, these cell
populations contain subpopulations that vary in their resistance to apoptotic death. The analysis
of mitochondrial physiology and metabolic flux led to these discoveries, and these areas will
play a key role in future mammalian cell culture research.

Thesis Supervisor: Daniel I. C. Wang
Title: Institute Professor
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1. INTRODUCTION

1.1 Historical Review

Jacob Bronowski cites the biological revolution as "the change from which civilization

took off."

It is usually called the 'agricultural revolution'. But I think of it as something

much wider, the biological revolution. There was intertwined in it the cultivation

of plants and the domestication of animals in a kind of leap-frog. And under this

ran the crucial realization that man dominates his environment in its most

important aspect, not physically but at the level of living things - plants and

animals (Bronowski, 1976).

This realization of mans' dominance over living things led to thousands of years of conscious

manipulation of biological systems though the domestication and selection of animals and crops.

However, man also unknowingly used unseen biological systems for his benefit as well as

demonstrated in the use of microorganisms in fermentation processes producing beer, wine, and

other products. Leeuwenhoek's observation of microscopic "animalcules" in 1676 and Pasteur's

discovery that "wine is a sea of organisms" in 1857 led the way for the scientific analysis of

these unseen biological systems through modem biology (Prescott et al., 1993).

Although fermentation is an ancient industry, when restricted to the production of

chemically defined biological substances, modem biotechnology is considered to be about 100

years old. Biotechnology's early efforts to produce organic chemicals such as acetone and citric

acid before and during the First World War led the way for antibiotic and secondary metabolite

production during and after the Second World War. The microorganisms used in these

production processes were obtained through "what G. Pontecorvo described as a 'prehistoric'
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technique: mutation and screening (selection) from the available gene pool" (Prescott et al.,

1993). Although these techniques are still used today, they are oftentimes complemented with

recombinant DNA technology. Developed in the 1970s, this technology gave scientists the

techniques to cut, join, and replicate DNA and reverse transcribe RNA giving them the

unprecedented ability to deliver and express foreign DNA in a host cell. In 1980, the first

recombinant DNA company, Genentech, announced an initial public offering on Wall Street that

resulted in a multimillion dollar market valuation. Soon after, the first recombinant therapeutic

protein, insulin, was marketed in 1982, and this opened the way for the modern biotechnology

industry.

Many therapeutic proteins are now produced in mammalian cell culture due to the ability

of these cells to properly perform post-translational modifications, such as glycosylation, on the

protein products. Interferon, tissue plasminogen activator, erythropoietin, and factor VIII are just

a few of the products that have helped propel mammalian cell culture derived therapeutic

production into becoming a multi-billion dollar industry.

1.2 Motivation

Biological systems in general, and their interaction with their environment,

abound with an overwhelming complexity of detail through which general

concepl 3 and relationships cannot readily be perceived. Because of this

complexity, many biologists are concerned with details, and have tended to

neglect problems associated with integrated systems. On the other hand,

engineers who have not yet encountered such complexity in manufacturing

facilities are concerned with integrated systems which are just beginning to

approach the complexity of biological systems (Tsuchiya et al., 1966).
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These comments are still relevant to biochemical engineering today as shown through the

differences in how scientific research is conducted in biology and engineering. Molecular

biology is still criticized for being too qualitative, detail oriented, and in need of a more

quantitative framework for analyzing biological systems (Bailey, 1999; Maddox, 1992).

Conversely, engineering is oftentimes not detailed enough for a proper analysis of the

complexity involved in biological systems. The current problems in biochemical engineering

concerning the minimization of cell death and the maximization of culture cell concentration and

productivity illustrate the need for quantitative methodologies designed for the analysis of

complex biological systems such as cellular metabolic pathways and regulatory networks and

their relations with cellular behavior.

These methodologies have been developed to describe a variety of biological phenomena

such as cell cycle control, cell migration, and receptor trafficking (Lauffenburger and

Linderman, 1993). In addition, metabolic flux analysis provides another such framework, and

cell culture performance can be further improved by analyzing carbon flux in central carbon

metabolism to determine key nutrient requirements, potential rate controlling biochemical

reactions, and mechanisms that regulate the control of metabolic flux flowing through metabolic

reaction networks. This thesis applies metabolic flux analysis to elucidate the physiological state

of mammalian cells at different continuous culture environmental conditions with the ultimate

goals of identifying environments and operating conditions that result in optimal culture

performance and factors that contribute to the regulation of metabolic flux distribution.

One significant source of complexity in biological systems is the tremendous amount of

physiological multiplicity and population heterogeneity that occurs even under constant

environmental conditions. In biochemical engineering, the observed variance in survival ability
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and metabolic adaptation in culture demonstrates the need to provide a methodology to analyze

this population heterogeneity. In this thesis, the technique of directed evolution through FACS

separation was utilized in order to characterize subpopulations that demonstrate variances in their

survival ability, and these findings were then applied in the creation of novel cell culture

processes.

1.3 Thesis Objectives

This research was conducted in an effort to quantitate and understand cultured

mammalian cell behavior with respect to metabolic flux distribution, population survival

heterogeneity, and cell death. In addition to studying the experimental data needed to calculate

accurate metabolic fluxes, the physiology and metabolic adaptation of cultured mammalian cells

at various growth rates was investigated. Of particular interest was the observed steady state

multiplicity, whereby drastically different cell concentrations were observed at the same growth

rate and viability. The observed variations in the efficiency of pyruvate utilization in the tri-

carboxylic (TCA) cycle for the multiple steady states led to the hypothesis that TCA cycle

efficiency variations could be used as a basis for developing strategies for feeding fed-batch

cultures and for selecting high mitochondrial activity (high TCA cycle activity) subpopulations

for culture inoculums. The presence of steady state multiplicity led to an investigation of culture

population heterogeneity, mitochondria, and apoptotic cell death, and subsequent experimental

work involved the use of FACS analysis of mitochondrial parameters as a basis for determining

the influence of mitochondrial properties on cell death. Since apoptosis accounts for a

significant amount of death in mammalian cell cultures, the link between mitochondrial

parameters and apoptosis was investigated under both short term conditions involving specific
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apoptosis inducing conditions and under the more general long-term apoptosis inducing

conditions found in fed-batch cultures.

Specifically, this thesis addresses these objectives:

*What experimental techniques and data are required for accurate metabolic flux

calculations?

*How does cellular metabolic flux distribution vary at different cellular growth rates?

-Can variance in metabolic flux distribution result in culture cell concentration and

viability variance?

*Does culture population heterogeneity exist with respect to apoptotic death?

*Are mitochondrial properties related to cellular physiology and susceptibility to

apoptotic death?

*Can metabolic adaptation and mitochondrial heterogeneity be used in the design of

novel fed-batch operational strategies?

1.4 Thesis Organization

This thesis consists of nine chapters. The first three chapters cover a brief discussion of

the motivation and objectives for this research, a detailed review of the literature (metabolism,

metabolic flux analysis, population heterogeneity, apoptosis, and mitochondria), and a

description of the materials and methods used in the research. The next five chapters describe

and discuss the experimental results. Specifically, the fourth chapter describes in detail the

methodology used in metabolic flux calculations including the formulation of the biomass

equation and the methods required for accurate flux calculations. In addition, the methodology

required to obtain accurate pentose phosphate pathway metabolic flux data is included in order to

demonstrate the additional effort required for accurate metabolic flux analysis tracer
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experiments. The fifth and sixth chapters cover the continuous culture experiments performed

using the Chinese hamster ovary and hybridoma cell lines. In particular, the fifth chapter

emphasizes the metabolic flux distribution around the pyruvate branchpoint at varying growth

and death rates, and the sixth chapter describes variances in flux distribution around the pyruvate

branchpoint and their relation to steady state multiplicity. The seventh chapter describes the

research conducted on the mitochondrial membrane potential sorted cell subpopulations that

were characterized for both their morphological and biochemical responses to apoptosis

inducers. The eighth chapter applies the results from the previous chapters in the design of novel

strategies for fed-batch culture operation. The ninth chapter reviews the main conclusions of this

research and gives recommendations for future work. The remaining two sections list the

nomenclature and references used in this thesis.
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2. LITERATURE REVIEW

2.1 Mammalian Cell Culture

Mammalian cells have been used extensively in the production of therapeutic protein

products due to their ability to produce properly folded and glycosylated versions of these

proteins which have been correlated with specific activity and circulatory half life (Goochee et

al., 1991; Kaufman, 1989; Kaufman et al., 1988). Although yeast, insect, plant, and mammalian

cells are capable of glycosylating proteins, only mammalian cells produce glycoforms similar to

those required for human therapeutics (Goochee et al., 1991; Kaufman, 1989; Kaufman et al.,

1988). Therefore, mammalian cells will undoubtedly serve as the preferred cell type for complex

therapeutic protein production.

However, mammalian cell cultures exhibit several complex problems not found in

microbial fermentations such as difficulty in achieving high cell concentrations and viabilities

and therefore high protein product concentrations. Some of these problems stem from the

sensitivity of fragile mammalian cells to their environment resulting in slow growth, poor

productivity, low cell concentrations, and necrotic cell death. Cell damage due to hydrodynamic

effects in the bioreactor has been shown to contribute to cell death (Hu and Peshwa, 1991). In

addition, sparging for bioreactor oxygenation has proven to be another problem resulting in cell

death (Jobses et al., 1991; Meier et al., 1999). Osmolarity, pH, and temperature can also

significantly affect the performance of a culture process (Borys et al., 1993; Miller et al., 1988;

Ozturk and Palsson, 1991; Xie, 1997). A variety of methods have been proposed to address

these problems such as altering the reactor system and reactor operating conditions (Avgerinos et

al., 1990; Batt et al., 1990; Hu and Peshwa, 1991).
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In addition, the cellular nutrient environment is critical in mammalian cell culture.

Mammalian cells need a complex mixture of glucose, amino acids, vitamins, trace metals, and

salts (Butler and Jenkins, 1989). In addition, they oftentimes require growth factors and other

serum components which activate cell proliferation and provide protection from apoptotic death

(Barnes and Sato, 1980; Chung et al., 1997; Glassy et al., 1988). These requirements are rather

specific and deviations can cause cell death. In addition, the metabolism of cultured mammalian

cells is atypical and can have high rates of aerobic glycolysis, glutaminolysis, and byproduct

production (Glacken et al., 1986; Lanks and Li, 1988; Xie, 1997). High glucose and glutamine

concentrations result in the production of high levels of waste metabolites such as lactate,

ammonia, and alanine illustrating the inefficient utilization of these substrates (Glacken et al.,

1986; Hansen and Emborg, 1994; Hassell et al., 1991; Xie, 1997). These factors all contribute to

the need to develop novel feeding strategies in order to improve culture viable cell

concentrations and to maintain cell viability.

Several hypotheses on the proper way to design and feed medium have been proposed to

satisfy mammalian cell culture requirements. Several researchers have suggested that cultures

should be controlled at low glutamine and glucose concentrations in order to reduce toxic lactate

and ammonium build-up. This strategy resulted in a lower lactate and ammonium production

and a subsequent increase in cell concentration (Glacken et al., 1986; Ljunggren and HaiggstrOm,

1994). Another strategy involved fortifying the medium with a balanced amount of nutrients in

order to achieve high cell concentrations in batch culture. This strategy resulted in an increase in

cell density to 1.0*107 viable cells/ml and a five- to eight-fold increase in product concentration

even though the lactate and ammonia concentrations were higher than those found in typical

cultures (Jo et al., 1990). Medium concentrates and on-line nutrient feeding have also been

28



utilized in fed-batch processes to improve cell culture performance (Bibila et al., 1994; Zhou et

al., 1995). Xie and Wang formulated a strategy that employed a stoichiometric approach toward

medium design. Characteristics of the cell line composition were used to formulate a medium in

a fed-batch culture. This culture was also controlled at low glucose and glutamine

concentrations to reduce byproduct production, and the nutrient feeding was based on the cell

growth in the culture. This strategy resulted in viable cell concentrations of up to 1.7* 107 viable

cells/ml, a twenty-fold increase in product concentration, and a substantial decrease in byproduct

concentrations (Xie and Wang, 1994c). These approaches all resulted in higher viable cell

concentrations. On the other hand, substantial cell death still occurred at the end of the cultures

indicating that these strategies have not completely solved the problem of cell death. In addition,

these complex feed medium and feeding strategies as well as the reduction in specific growth

rate contribute to the increased culture development and operation time.

The genetic background of the cell line has proven to be another critical parameter for

mammalian cell culture, and research has demonstrated the utility of enhancing the cellular

genetic controls of the cell cycle and apoptosis (programmed cell death). The expression of

recombinant cyclin E in CHO cells stimulated cell progression through the cell cycle and

resulted in enhanced proliferation that required no exogenous growth factors (Renner et al.,

1995). Furthermore, the addition of a cell cycle arresting agent, rapamycin, to a hybridoma cell

line with a deregulated cell cycle resulted in an increase in culture cell concentration, viability,

and productivity (Balcarcel, 1999). This strategy was similar to one proposed by Mosser and

Massie (Mosser and Massie, 1994) in which the proto-oncogene, c-myc, was downregulated to

prevent unregulated cell cycle entry. In addition, the overexpression of anti-apoptotic proteins

such as Bcl-2 in mammalian cell lines has also increased the culture viability by protecting cells
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from apoptotic death triggered by nutrient and growth factor limitations as well as other

proapoptotic signals (Adams and Cory, 1998; Chung et ai., 1998; Garland and Halestrap, 1997;

Goswami et al., 1999; Mosser and Massie, 1994; Simpson et al., 1999; Simpson et al., 1998).

2.2 Modeling Metabolism in Mammalian Cell Culture

2.2.1 Mammalian Cell Culture Modeling

Numerous efforts have been made to increase the efficiency of cell culture processes

through model-based culture design and control. The most common strategy involves utilizing

unstructured and structured models to optimize bioreactor operations. The unstructured or

empirical models have been used most often due to their simplicity, but they can only be used for

a limited range of operating conditions. Structured models are based on a detailed description of

cellular metabolism and can e employed for a wider range of process conditions. However,

these models are oftentimes both complicated and incomplete, and they do not describe the

complex and oftentimes unknown regulatory mechanisms that govern growth behavior (Portner

and Schifer, 1996; Tsuchiya et al., 1966). A few models, such as E-CELL, have attempted to

describe entire cells by including not only metabolic reactions but protein-DNA interactions and

gene expression, but these models are still too simplified to fully account for the regulation of

significant cellular processes (Tomita et al., 1999).

An example of unstructured cell culture model development was presented by Glacken et

al. (Glacken et al., 1988; Glacken et al., 1989a; Glacken et al., 1989b). This model was

formulated and optimized by combining an unstructured initial growth rate model with transient

data obtained through additional experiments. Fractional factorial experiments were used to

reduce the number of significant culture variables in the model. The chosen independent

variables: glucose, glutamine, serum, ammonium, lactate, and basal DMEM concentration, were
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reduced to two major factors: serum and ammonium. The initial growth rate was then expressed

as a function of these two major factors along with the glutamine concentration due to the

contribution of glutamine to ammonium levels through degradation. Ammonium was

determined to be a strong, noncompetitive inhibitor whereas lactate was observed to be a weak

inhibitor of the initial growth rate (Glacken et al., 1988). The model was then expanded to

include serum degradation which was attributed to thiol chemistry and the culture redox state

(Glacken et al., 1989a). Finally, this model was applied in the simulation of fed-batch reactor

runs. For these simulations, the unstructured model was modified with additional equations to

account for the time lag associated with medium composition changes. This model successfully

described the transient behavior of a fed-batch process, but was unable to predict productivity

(Glacken et al., 1989b).

Numerous other unstructured models have been formulated to describe cell culture

processes. Monod-type equations form the basis of these models with glucose and glutamine

serving as limiting substrates and lactate and ammonium serving as inhibiting compounds.

However, these models are generally criticized for their significant error and unpredictable

nature attributed to a lack of understanding about fundamental aspects of cellular metabolism

(Portner and Schlifer, 1996). In fact, this variability is most likely due to the unpredictability

associated with the general lack of understanding of metabolic regulation and its relations with

cellular physiology. Furthermore, this variability can be associated with physiological state

multiplicity, and this point is discussed in more detail in chapters six, seven, and eight.

Several structured models have been proposed in order to incorporate a more detailed

description of cellular metabolism. Batt and Kompala (Batt and Kompala, 1989) presented one

excellent example of such models. Their compartment-type structured model was based on
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cellular metabolic reactions and lumped intracellular constituents into metabolic pools expressed

as fractions of the biomass. This enabled them to calculate the instantaneous specific growth

rate. The pools consisted of cellular amino acids, nucleotides, proteins, and lipids, secreted

lactate, ammonium, and product, and substrate glucose, glutamine, and medium amino acids.

The system of dynamic equations was used to simulate mammalian cell culture growth

dynamics. Under both steady state and transient conditions, the researchers obtained good

agreement with experimental data although the accuracy could clearly be improved by adding

more metabolic regulatory information (Batt and Kompala, 1989).

Another structured modeling technique involves modeling cell growth as an optimum

process. This model assumes that organisms are optimal strategists that choose substrates that

will maximize their growth. The metabolic regulatory control is deduced as being the "optimal

solution to a problem of resource allocation for achieving maximal growth" (Bailey and Ollis,

1986). This "cybernetic model" has been applied successfully in describing and matching

experimental data for diauxic and triauxic microbial growth (Kompala et al., 1986).

The structured and unstructured models typically used to describe and rationalize culture

data and cell growth are oftentimes not clear due to the large number of parameters and are not

informative since they rely on assumptions concerning cellular behavior (Portner and Schifer,

1996; Zeng et al., 1998). In fact, the unpredictable nature of mammalian cell culture is

extremely difficult to model through current methodologies due to the lack of understanding of

actual in-vivo metabolism and metabolic regulation (Pbrtner and Schafer, 1996). In addition,

these models oftentimes make no attempts to incorporate or even recognize features of metabolic

regulation (Bailey and Ollis, 1986). Furthermore, cell death and its relations with metabolism

are still not addressed, particularly in the case of programmed cell death or apoptosis. Much of
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this understanding of actual in-vivo metabolism and metabolic regulation under culture

conditions can be obtained through a methodology that integrates metabolite exchange rates and

shows their relations to cellular physiology and behavior. The information obtained though this

framework could then be incorporated into more accurate metabolic models that would allow for

more realistic models designed for bioreactor operation optimization.

2.2.2 Metabolic Flux Analysis

Metabolic flux analysis provides such a framework, and cell culture performance can be

further improved by analyzing carbon flux in central carbon metabolism to determine key

nutrient requirements and potential rate controlling biochemical reactions. Prior metabolic

research has elucidated metabolic reactions in the framework of biochemical networks.

Metabolic flux analysis provides the methodology for analyzing these metabolic networks and

has been applied in the quantitation of physiological states and the interpretation of experimental

data in addition to metabolic engineering, optimal medium development, process design, and

process optimization (Varma and Palsson, 1994). In short, flux analysis provides researchers

with a useful tool to extract additional information from cell culture data that can be utilized in

cell culture modeling and design.

However, metabolic flux control is still poorly understood due to the complexity of

biological systems and the limited availability of in-vivo flux data. Previous research has

demonstrated that large variations in metabolic flux and flux distribution can result even when

in-vitro measured enzyme activities exhibit little change (Vriezen and van Dijken, 1998). This

shows a strong dependence of metabolic flux on the in-vivo regulation of enzyme activity and

not the in-vitro assayed activity. Dynamic models of in-vivo metabolism have been attempted,

but they require extensive enzyme kinetic and regulatory data (Joshi and Palsson, 1989a; Joshi
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and Palsson, 1989b; Joshi and Palsson, 1990a; Joshi and Palsson, 1990b). Furthermore, the

application of in-vitro enzyme kinetics to in-vivo kinetics ignores numerous in-vivo aspects of

enzyme regulation. Enzymatic specific activity can be regulated through allosteric effects,

activators, inhibitors, and covalent modification. The enzyme concentration can be controlled

through transcription and translation regulatory mechanisms. Finally, cellular

microenvironments involving multi-enzyme complexes and membrane associated enzymes and

enzyme complexes all contribute to the in-vivo regulation of metabolic flux (Liao and Delgado,

1993). Modeling and simulation environments for biochemical and genetic processes have been

developed, but these models describe only simplified, hypothetical cells (Tomita et al., 1999).

These observations caste doubt on the usefulness of strictly analytical approaches toward the

analysis of real biological systems.

Numerous attempts have been made to model in-vivo metabolic reaction dynamics

through empirical measurements to determine metabolic flux control. Recently, emphasis has

been placed not on the flux control exercised by individual enzymes but rather on metabolic

pathway flux control, and this systems approach has been termed metabolic control analysis

(Heinrich and Rapoport, 1974; Kacser and Bums, 1973). This method states that the key to

understanding metabolic network regulation is through the quantitation of a network's response

to a parameter perturbation (Liao and Delgado, 1993). Elasticity, response, and control

coefficients are all used to quantify these responses. Furthermore, these coefficients are related

to one another through various theorems. This methodology has been applied to obtain

metabolic network control data through genetic perturbations (gene dosage and expression level)

and environmental perturbations (chemical control of enzyme levels and inhibition titration).

These techniques were applied in the analysis of microorganism metabolism and mitochondria
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respiration (Liao and Delgado, 1993). This framework was extended through a top-down

approach in which groups of reactions are analyzed for their control on metabolic reaction

networks (Stephanopoulos and Simpson, 1997). These techniques provide a useful framework to

analyze metabolic regulation in real biological systems. However, a complete analysis requires a

considerable amount of experimental work to obtain network perturbations, and obtaining this

data has proven to be rather difficult (Liao and Delgado, 1993; Varma and Palsson, 1994).

Furthermore, these results are valid for a narrow range of operating conditions. Finally, large

flux control coefficient values do not imply that the specific enzyme controls regulation through

feedback control loops (Stephanopoulos and Vallino, 1991).

Metabolic flux analysis involving mass balances or metabolite balancing is particularly

useful in the investigation of regulated cellular metabolism under varying environmental

conditions when specific enzyme regulation is not known and one does not have the resources

for network perturbations to conduct metabolic control analysis. This framework involves the

steady state or pseudo steady state analysis of metabolic pathways where mass balances are

applied to a stoichiometric network model of major metabolic reactions. Measured extracellular

production and consumption rates are combined with this reaction network, a least squares

analysis is performed, and then the metabolic fluxes are calculated (Stephanopoulos et al., 1998).

This technique can yield a significant amount of information on metabolic fluxes, and enables

one to conduct principle node and flux distribution analysis. This technique has been applied in

a number of situations, and nutrient, waste metabolite, dissolved oxygen, and peptide hydrolysate

concentrations have all been shown to cause metabolic responses that can be quantitated using

flux analysis resulting in information concerning potential feeding strategies, medium
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formulations, and genetic manipulations necessary to improve cell culture performance

(Bonarius et al., 1996; Bonarius et al., 1998a; Nyberg et al., 1999a; Zupke et al., 1995b).

One significant problem encountered in metabolite balancing techniques involves the

analysis of cyclic metabolic pathways which result in linearly dependent or singular networks

(Bonarius et al., 1996; Bonarius et al., 1998b; Vallino, 1991). One method that solves this

problem is to measure co-metabolites produced in cyclic pathways. The pentose phosphate

pathway and the TCA cycle still pose a problem due to the fact that they both produce CO2, and

this requires the addition of constraints such as assuming a pentose phosphate pathway activity

or maximizing ATP or NAD(P)H production in the solution (Bonarius et al., 1998b).

One of the principle applications of metabolic flux analysis has been to not just obtain

metabolic fluxes but also to analyze branchpoint flux control through the calculation of flux split

ratios (Stephanopoulos and Vallino, 1991). A comparison of metabolic flux distribution for

various environments enables one to classify key network junctions as being either flexible,

weakly rigid, or rigid nodes (Stephanopoulos et al., 1998). Furthermore, alternative pathways

and maximum theoretical yields can be determined through flux analysis (Stephanopoulos et al.,

1998).

Metabolite balancing combined with isotopic tracers has also been devised for the

analysis of intracellular flux in-vivo (Mancuso et al., 1998; Mancuso et al., 1994; Portais et al.,

1993; Sharfstein et al., 1994; Wiechert and de Graaf, 1996; Zupke and Stephanopoulos, 1995a).

Isotopic tracers detectable either through radioactivity measurements or NMR are incorporated

into metabolites depending upon the fluxes of the corresponding biochemical reactions.

Therefore, the latter can be, in principle, determined from measurements of isotope enrichment

of selected metabolites.
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Isotope enrichment has been applied in the analysis of a number of metabolic networks.

For example, 3C enrichment of extracellular lactate was used to validate flux estimates obtained

through metabolite balancing (Zupke and Stephanopoulos, 1995a). Another set of experiments

utilized [1-' 3C]glucose to quantitate the effect of the medium glutamine concentration. This

work indicated that glutamine levels have a significant effect on energy metabolism only when

abruptly changed; the fact that no changes in energy metabolism occurred for gradual glutamine

level perturbations led to the hypothesis that futile cycles exist in metabolic networks (Mancuso

et al., 1998). In another series of experiments, researchers directly determined that lactate carbon

comes predominantly from glucose and that the pentose phosphate pathway flux is much lower

than the glycolytic flux when cells are cultured under low growth rate conditions. Additional

findings were that the malate shunt flux is high and that pyruvate carbon flows through the

pyrllvate dehydrogenase complex and not through pyruvate carboxylase. Other isotope

experiments yielded data on glycolysis, biosynthesis, and metabolite exchange with TCA cycle

intermediates (Mancuso et al., 1994; Sharfstein et al., 1994).

The data from '3C enrichment can be further analyzed for NMR spectrum fine structure

to determine isotopomer levels. This method can be extremely powerful due to the additional

information obtained by determining the actual position of a tracer molecule within a metabolite

(Christensen and Nielsen, 1999; Klapa et al., 1999; Park et al., 1999; Wiechert and de Graaf,

1996; Wittmann and Heinzle, 1999). These isotopomers can be distinguished from one another

through NMR spectrum fine structure analysis. A metabolite with n carbons can result in 2n

isotopomers resulting in a significant amount of data. Although more isotopomer fractions can

be analyzed through NMR, mass spectroscopy has become increasingly popular in the analysis

of these isotopomers (Christensen and Nielsen, 1999; Wittmann and Heinzle, 1999).
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Figure 2-1 summarizes the various experimental methods one can use to obtain metabolic

flux data through the use of a simple example metabolic network described in Wiechert and de

Graaf (Wiechert and de Graaf, 1996). In the first illustration, the production and consumption

rates of the metabolites A, F, G, H, and I can be used to obtain the network metabolic fluxes

through metabolite balancing techniques. The second illustration shows the fate of each carbon

in the reaction network as well as the fate of a substrate isotope tracer (A) when placed in the

network. The shading of the carbon atom represents the relative carbon enrichment and shows

how the various distribution of isotope enrichment can be used to determine metabolic flux.

Finally, the third illustration shows the various isotopomers that result from the addition of an

isotope tracer. These isotopomers can yield more detailed data due to the ability to determine the

exact fate of each isotope tracer carbon atom in the metabolic reaction network.

Although techniques that utilize isotope tracers are powerful in determining metabolic

flux, the low sensitivity of NMR as well as the difficulties posed by the analysis of radioactive

isotope incorporation into metabolites inhibit the general use of these methods for cell culture

flux analysis. High cell densities are required for isotope label analysis resulting in the need to

use hollow-fiber bioreactor systems (Mancuso et al., 1998; Mancuso et al., 1994; Sharfstein et

al., 1994). Additionally, the cellular growth rate in these reactors is extremely low which may

present metabolic flux information that is not relevant for cells growing under normal culture

conditions. Furthermore, reaction reversibility has been shown to complicate flux determination

in certain pathways due to label redistribution although this reversibility could be used to obtain

useful information concerning metabolic phenomena such as futile cycles (Follstad and

Stephanopoulos, 1998; Wiechert and de Graaf, 1997a; Wiechert et al., 1997b). This indicates
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Figure 2-1. Techniques for metabolic flux analysis. A simple example metabolic network
described in Weichert and de Graaf (1996) illustrates the three main techniques used for
metabolic network analysis: metabolite balancing, carbon isotope labeling, and isotopomer
analysis.
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that a complete and thorough analysis must be conducted whenever one uses isotope labeled

substrates in order to obtain valid data.

In general, for established metabolic networks, metabolite material balancing has proven

to be a quick and effective way to determine metabolic fluxes and flux distribution patterns while

requiring no kinetic or regulatory information. The use of redundant measurements enhances the

usefulness of metabolite balancing by enabling one to determine the consistency of a data set and

locate the source of gross inconsistencies among measurements or network bioreactions. This

technique verifies and improves the accuracy of metabolite balancing through the use of extra

constraints or measurements for a metabolic network. Statistical tests are utilized to not only

detect errors but also to diagnose the source of these errors (Nyberg et al., 1999a; van der

Heijden et al., 1994a; van der Heijden et al., 1994b; Wang and Stephanopoulos, 1983; Zupke and

Stephanopoulos, 1995a).

2.3 Mammalian Cell Continuous Culture

Although flux analysis can be carried out using data obtained during transients (Zupke et

al., 1995b; Zupke and Stephanopoulos, 1995a), continuous culture systems are preferable as they

allow one to study cultured cells in controlled, well-defined environments where they can reach a

metabolic steady state (Stephanopoulos et al., 1998; Wiechert and de Graaf, 1996). This

contrasts sharply with batch and fed-batch culture where the conditions are constantly changing

resulting in confusing data sets that can lead to incorrect conclusions concerning relations

between cellular physiology, metabolism, and other culture parameters. In continuous culture,

the various reactor residence times approximate the different environments that cells encounter

both in the early and late portions of batch and fed-batch culture runs which allow a more precise

determination of environmental influences on cellular physiology. Previous continuous culture
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work involving mammalian cells has covered a wide variety of conditions including nutrient

concentrations, dissolved oxygen levels, pH, dilution rate, and other variable reactor parameters

(Hayter et al., 1992a; Hayter et al., 1993; Hayter et al., 1992b; Jan et al., 1997; Martens et al.,

1993; Meijer and van Dijken, 1995; Miller et al., 1988). In addition, continuous culture has been

utilized in the formulation and testing of Monod unstructured models in order to obtain empirical

data describing cultured cell kinetic behavior (Frame and Hu, 1991a). Such work has yielded

considerable information on metabolite production and consumption rates, cellular growth, and

productivity at various reactor residence times and environmental conditions.

Perturbations involving the analysis of transients in continuous cultures were also

conducted in an effort to determine the regulatory architecture of cultured cell metabolism. In

theory, metabolic control analysis can be used with this transient data to determine this metabolic

regulation (Delgado and Liao, 1992b; Delgado and Liao, 1992a). Oftentimes, no metabolic

control analysis or flux analysis is performed in continuous culture research, but the effects of

transients in input glucose, glutamine, amino acids, and vitamins concentrations have all been

analyzed for mammalian cell continuous cultures (Hiller et al., 1994; Miller et al., 1989a; Miller

et al., 1989b). Metabolic flux analysis has been performed on some mammalian cell continuous

culture data that involved the analysis of peptide hydrolysates as well as the influence of

ammonia levels on cellular metabolism (Bonarius et al., 1996; Bonarius et al., 1998a; Nyberg et

al., 1999a).

Continuous culture reactor systems have also been utilized to examine cellular

productivity for various environments and residence times. Although several researchers have

indicated that specific productivity increases or remains constant with the specific growth, most

researchers have data that support the hypothesis that an increase in specific productivity results
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from a decrease in growth rate (Linardos et al., 1991; Miller et al., 1988). In addition, specific

productivity has been observed to decline over the course of a continuous culture, and this

decline was attributed to the formation of a nonproducing subpopulation of cells (Frame and Hu,

1991a; Frame and Hu, 1991b; Frame and Hu, 1990). Although the formation of nonproducing

cell lines is oftentimes attributed to chromosome deletions, other experimental data have

supported the hypothesis that mRNA translation is the source of the problem (Kohler et al.,

1976).

2.4 Physiological Multiplicity and Population Heterogeneity in Biological Systems

The loss of antibody productivity due to the rise of a subpopulation of non-producing

cells in continuous culture illustrates how selection dynamics can occur in a continuous culture

resulting in a potentially evolving biological system. Modeling the behavior of cells in

continuous culture has been performed since the 1960's, but only recently have studies presented

thorough theories that demonstrate the potential for sustained oscillations and multiple steady

states (Xiu et al., 1998). These modifications to the older theories involved the realization that

models based on Monod kinetics are not acceptable for all situations and that metabolic pathway

regulation must be taken into account. One recent theoretical analysis of continuous culture

demonstrated how multiplicity can exist in a continuous culture system where product inhibition

along with enhanced productivity under high substrate levels cause multiple steady states. In

addition, product formation and inhibition can lead to oscillatory behavior (Xiu et al., 1998).

This oscillatory behavior was also predicted using stability analysis performed on models that

contain more structure than the Monod models (Bailey and Ollis, 1986).

Competition for a limiting substrate, changes in clumping characteristics, and production

of an inhibitor are just a few of the ways subpopulations may compete with one another in
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continuous cultures. "Specific selection" refers to a known mutation in a cell line, whereas

"non-specific selection" or "periodic selection" refers to a situation in which the genes

responsible for the selection are unknown and its occurrence is partly unpredictable (Dykhuizen

and Hartl, 1983). Mutational changes in Escherichia coli and Saccharomyces cerevisiae are

reproducible in several cases in which the selected mutants obtained from replicate glucose

substrate continuous culture experiments have predictable changes with a defined genetic and

physiological basis (Appenzeller, 1999; Dykhuizen and Hartl, 1983). Furthermore, other

researchers discovered high temperature adaptation is reproducible even at the DNA sequence

level. However, other evolutionary forces such as maltose substrate feeding and bacteriophage

infection led to unpredictable phenotypes and genotypes suggesting that numerous complexities

are involved in this issue (Appenzeller, 1999; Dykhuizen and Hartl, 1983).

These observations point to one of the most important questions in research on evolution:

how much of the results of evolution are the consequence of either chance or adaptation? In

other words: is evolution reproducible? Oftentimes, at the level of adaptive performance and

phenotype, evolution appears to be reproducible with similar cellular physiologies resulting from

similar environmental stresses (Dykhuizen and Hartl, 1983). However, on the genetic scale,

evolution is less reproducible as demonstrated when the adapted subpopulations are exposed to a

new environment that results in variability in the survival for each subpopulation. However, in

some cases genetic changes that are a result of evolution and selection are predictable, even at

the DNA sequence level (Appenzeller, 1999).

Population heterogeneity can result from a number of mechanisms. Development or

differentiation can play a role in heterogeneity in which sister cells are not identical in

morphological and / or biochemical characteristics. This phenomenon, termed "asymmetric cell
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division," has been studied in a wide number of cell types such as Bacillus subtillis,

Saccharomyces cerevisiae, Caenorhabditis elegans, and Caulobacter crescentus. The

mechanism behind this developmental heterogeneity can involve intrinsic properties such as the

partitioning of molecules (membrane proteins or RNA) in specific cellular regions before cellular

division causing the sister cells to have different physiologies. In addition, asymmetry in the cell

division plane involving the orientation of the mitotic spindle can contribute to asymmetric cell

division as well. Cell signaling can also play a role in which cells differentiate after they have

divided (Horvitz and Herskowitz, 1992). However, determining the exact mechanism of

asymmetric cell division can be extremely difficult due to the complexity involved in keeping

track of individual cells (Jan and Jan, 1998).

Population heterogeneity can also result through non-developmental mechanisms.

Recessive mutants can form and survive although they are not as robust as the wild-type cell

line. Single nucleotide substitutions, DNA frameshifts, genetic "hotspots", and jumping genes

can all contribute to the formation of new mutant subpopulations (Crow, 1983). Subpopulation

selection can occur within the context of sexual reproduction according to the Hardy-Weinberg

rules of heredity with the resulting heterogeneous population forming as a result of the

equilibrium between the forces of selection and mutation (Crow, 1983). Additionally, a number

of biological phenomena have been attributed to threshold mechanisms in which a sensitive

biological switch converts a cell from one physiological state to another (Chung and

Stephanopoulos, 1996). Although theoretical deterministic models can explain population

heterogeneity, the non-uniqueness of the model solutions suggests that chance plays a role in the

appearance of heterogeneity in which slight changes in the levels of certain factors results in
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macroscopic physiological changes (Chung and Stephanopoulos, 1996; Spudich and Koshland,

1976).

Cell populations that are genetically homogeneous and contained in a homogeneous

environment still exhibit population heterogeneity which is not a function of variances in the

extracellular environment or cell cycle (Spudich and Koshland, 1976). Non-genetic population

heterogeneity is believed to be caused by differences in transcriptional state controlled by

threshold mechanisms resulting in the induction or repression of genes (Dykhuizen and Hartl,

1983). This hypothesis is supported by the recent finding that many genetic regulatory

compounds operate at low concentrations, and this results in large fluctuations in genetic

regulation and translation (McAdams and Arkin, 1999; McAdams and Arkin, 1998). Also, cells

characterized by specific morphological features still vary in functionality. For example,

pancreatic -cells demonstrate heterogeneity in glucose responsiveness in-vitro (Pipeleers,

1992). All of these observations indicate that the assumption that a cell culture contains a

homogeneous population lacks both experimental (Horvitz and Herskowitz, 1992; Jan and Jan,

1998; Pipeleers, 1992; Spudich and Koshland, 1976) and theoretical (Chung and

Stephanopoulos, 1996) support.

2.5 Mitochondria and Oxidative Phosphorylation

Virtually all eukaryotic cells contain mitochondria which are organelles that contain a

number of critical cellular components such as the respiratory chain and other enzymes required

for the TCA cycle and fatty acid oxidation. An endosymbiotic partnership involving the

combination of an oxygen-respiring ancestor of modem purple bacteria with mastigotes resulted

in the creation of a protoeukaryotic cell with the endosymbiotic bacteria eventually evolving into

mitochondria (Margulis, 1996; Margulis, 1998). These semi-autonomous organelles are
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responsible for a large number of important cellular functions such as the regulation of

metabolism and energetics as well as the regulation of apoptosis (programmed cell death). The

mitochondrial matrix contains the enzymes involved in the citric acid or tricarboxylic (TCA)

cycle, and mitochondria are responsible for the generation of the majority of cellular ATP

through oxidative phosphorylation carried out in the respiratory assemblies situated in the inner

mitochondrial membrane (Mitchell, 1979; Stryer, 1988).

Mitochondria contain both an inner and outer membrane. Inside the inner membrane is

the mitochondrial matrix which contains the enzymes required for pyruvate and fatty acid

oxidation. The inner membrane is folded into numerous ridges called cristae which allow for a

significant increase in membrane surface area which in turn allows for a high respiratory chain

activity. In fact, the total cellular inner mitochondrial membrane surface area can be over

seventeen times larger than the total plasma membrane area (Lodish et al., 1995). The outer

membrane is permeable to small molecules and ions whereas the inner membrane is virtually

impermeable to all ions and other polar molecules. Molecules and proteins can be transported

across the inner membrane through specific protein carriers (Stryer, 1988).

Mitochondria electron transport (oxidative phosphorylation) involves three main

complexes and is illustrated in figure 2-2. The first complex, NADH-Q reductase, accepts

electrons from NADH and transfers them to a second complex, cytochrome reductase, through

ubiquinone. Ubiquinone also accepts electrons from FADH2. Cytochrome reductase transfers

the electrons to cytochrome c which then transfers them to cytochrome oxidase. There, the

electrons are transferred four at a time to molecular oxygen resulting in the production of two

water molecules. The electrons are transferred though each complex and carried through iron-

sulfur and heme complexes. Electron transfer can be inhibited at each of the complexes through
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Figure 2-2. Mitochondria electron transport. In the inner mitochondrial membrane, electrons
are transferred through a series of protein complexes resulting in the pumping of protons out of
the matrix. ATPase uses the proton gradient to generate ATP. Various compounds can
specifically inhibit each protein complex.
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the use of the specific compounds shown in figure 2-2. The electron transfer occurring through

each complex causes the pumping of protons out of the mitochondrial matrix. These protons

flow back into the mitochondrial matrix through ATPase resulting in ATP generation (Mitchell,

1979; Stryer, 1988). Protons may also leak across the inner mitochondrial membrane resulting in

a lower effective ATP production efficiency (Brand et al., 1994).

Mitochondrial membrane potential (MMP) can not be measured using microelectrodes

due to their small size, but it can be measured using membrane permeable lipophilic cationic

dyes such as Rhodamine 123 (Rh123), 3,3'-dihexyloxacarbocyanine iodide (DiOC6), 5,5',6,6'-

tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), (Benel et al., 1989;

Juan et al., 1994; Salvioli et al., 1997). These dyes incorporate according to the Nemst equation

(equation 2.1).

RT
Ap = APm + ApH (2.1)

nF

The proton motive force (Ap) consists of both an electric (ATm) and chemical activity (ApH)

potential. The values for each potential are approximately 160 - 180 mV for the mitochondrial

membrane potential (AWm) and 60 mV for the pH gradient component (Kamo et al., 1979;

Lodish et al., 1995; Mitchell, 1979). Researchers have experimentally verified a direct

correlation between to the electric potential component of the proton motive force (mitochondrial

membrane potential) and Rh123 cellular uptake (Chen, 1988; Emaus et al., 1986). Electron

transport inhibitors, such as azide, antimycin A, or rotenone acting as shown in figure 2-2,

drastically reduce Rh123 uptake. In addition, azide and oligomycin together completely

eliminate Rh123 uptake unlike other mitochondrial membrane potential stains which can still

incorporate to some small degree into mitochondrial membranes without the presence of a

membrane potential (Chen, 1988). Rh123 is frequently used in experiments due to its low
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toxicity, and it has been utilized to develop relations between mitochondrial membrane potential

and cell growth, cell differentiation, cell motility, and concentrations of agents that influence

membrane potential (Chen, 1988; Ferlini et al., 1995).

Most eukaryotic cells have a mitochondrial volume of 15 - 25% (Bereiter-Hahn and

Voth, 1994; Lodish et al., 1995; Stryer, 1988). Mitochondria have been observed to associate

with energy consuming cellular structures such as the nucleus, rough endoplasmic reticulum, and

plasma membrane. This heterogeneity in cellular location indicates that adenine nucleotide

diffusion may be limiting resulting in cytoplasmic ATP gradients. This hypothesis is supported

by the fact that cells contain intracellular pH and 02 gradients and that mitochondrial activity can

vary for those mitochondria situated centrally in a cell versus those located peripherally. These

gradients may be beneficial in situations such as local hypoxia around the nucleus in order to

reduce the number of free radicals that can attack nucleic acids (Bereiter-Hahn and Voth, 1994).

In addition, this heterogeneity can vary as a function of cell-cell contact and intracellular acidic

vesicle location (Diaz et al., 1999). Mitochondria have also been observed to change shape and

location and can move at a speed of 2 - 30 ,gm/min (maximum speed of 100 m/min).

Mitochondria can respond to local changes in ATP levels induced through microinjection, and

this response varies depending on the cellular metabolic state (Bereiter-Hahn and Voth, 1994).

These observations illustrate the dynamic behavior mitochondria have which enables them to

respond to cellular needs.

Over the course of the cell cycle, mitochondrial mass and volume doubles.

Mitochondrial biogenesis occurs mostly in the G1 phase of the cell cycle but can occur in the late

S phase. Imbalances between mitochondrial proliferation and cell growth have been observed

indicating that the mitochondrial growth rate differs from the cellular growth rate. This
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mitochondrial growth rate can also vary with the cell cycle and cellular metabolic state (ames

and Bohman, 1981).

As mentioned previously, functional heterogeneity for mitochondria within a single cell

has been observed. This means that experimental data collected using one mitochondrial

subpopulation isolated from cells may not represent the actual intracellular distribution of the

mitochondrial properties being studied. For example, within the same mitochondrial population,

various subpopulations of mitochondria that were isolated through density gradient

centrifugation had different mitochondrial membrane potentials (MMP) and other morphological

and biochemical features that varied as a function of the metabolic state of the cell (Cossarizza et

al., 1996). At the single organelle level under membrane depolarization conditions, a small class

of mitochondria that still maintain a high membrane potential have been observed (Diaz et al.,

1999). Also, the physiological environment contributes to the appearance of various classes of

mitochondria that differ in membrane potential even when size and density changes are taken

into account (Cossarizza et al., 1996; Petit et al., 1990).

2.6 Apoptosis

Recently, cell death has received significant attention due to the discovery that apoptosis

or programmed cell death is accomplished through specialized and highly regulated cellular

mechanisms. This complex series of events involves the active participation of cell surface

receptors, proteases, organelles, and other cellular components. This active process contrasts

with the conventional view of cell death, termed necrosis, in which violent environmental

conditions cause plasma membrane rupture and disintegration. A typical pattern of necrosis,

coagulation necrosis, involves the denaturation and coagulation of cellular protein as a result of

ischemia, hypoxia, chemical toxins, infection, and trauma, whereas a different type of necrosis,
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colliquative necrosis, occurs when tissue becomes rapidly liquefied due to violent damage (Buja

et al., 1993). Apoptosis, on the other hand, causes distinct morphological changes in which

chromosomal DNA condenses and fragments, the cell membrane blebs, and finally apoptotic

vesicles begin to form causing the cell to fragment into numerous apoptotic bodies. Cellular

DNA is also cleaved at linker regions producing 180 base pair fragments which show up as a

DNA ladder on gels of extracts taken from apoptotic cells (Hale et al., 1996). Apoptosis can also

be characterized by additional, less obvious cellular changes. The mitochondrial membrane

potential drops early on in the apoptotic death pathway. In addition, the plasma membrane

asymmetry breaks down, causing phosphatidylserine to translocate to the outer cell surface.

Caspases, or intracellular proteases, are also activated which cleave specific sites on specific

proteins which cause apoptosis related morphological changes. Cytochrome c, apoptosis

inducing factor (AIF), and other proteins that are either activated in the cytosol or released from

mitochondria also contribute to the activation of caspases (Bedner et al., 1999).

Apoptosis can be triggered through a variety of cellular genetic or chemical perturbations

that affect the cell surface, cytosol, cytoskeleton, nucleus, and intracellular signaling pathways

(Wertz and Hanley, 1996). Tumor necrosis factor, reactive oxygen species, cytotoxic agents,

mitogenic oncogenes, and insulin and IGF-1 withdrawal are just a few of the vast number of

apoptosis inducing stimuli (Alnemri, 1999; Ashkenazi and Dixit, 1998; Wertz and Hanley, 1996;

Yang et al., 1996). In mammalian cell culture, nutrient deprivation as well as growth factor

deprivation contribute to apoptosis (Chung et al., 1998; Simpson et al., 1998). Mitochondrial

electron transport chain inhibitors also induce apoptosis (Wolvetang et al., 1994). The diversity

of apoptosis inducing stimuli and the prevalence of apoptosis occurring in a variety of cell types

have caused a dramatic rise in the study of this mode of cell death. Furthermore, research is

51



conducted not only on the prevention of apoptosis occurring in mammalian cell culture but also

in the induction of apoptosis in cancerous cell lines.

Several genes have been implicated in the mediation and modulation of apoptosis. The

initial research in this area that was aimed at determining the genetic players of apoptosis was

performed on the nematode Caenorhabditis elegans. The C. elegans genes, ced-3 and ced-4,

promote apoptosis and ced-9 prevents apoptosis, and a number of mammalian genes homologues

have been discovered (Hale et al., 1996; Steller, 1995). One of the first oncogenes that was

discovered to have proapoptotic activity was c-myc. Deregulated c-myc is associated with

cancer, cellular proliferation, and the loss of cell cycle control (Evan and Littlewood, 1998;

Williams and Smith, 1993). Experimental evidence indicates that cell renewal and cell death are

linked demonstrating that cell proliferative and apoptotic pathways are coupled. The p53 tumor

suppressor gene encodes for a DNA transcription factor that is inactive in numerous cancers

indicating that this gene is oftentimes required to prevent the proliferation of somatic cells. p53

activation causes one of two responses: growth arrest and apoptosis. This response depends

upon the cell type, cellular environment, and other factors (Evan and Littlewood, 1998). The

bcl-2 gene family is homologous to ced-9 in C. elegans and is linked to apoptosis. This gene

family contains both pro and antiapoptotic genes, and bcl-2 has been used extensively to enhance

cell resistance to apoptosis (Adams and Cory, 1998; Chung et al., 1998; Garland and Halestrap,

1997; Goswami et al., 1999; Hockenbery, 1995; Mosser and Massie, 1994; Simpson et al., 1999;

Simpson et al., 1998; Steller, 1995; Vaux et al., 1988; Williams, 1991).

The general mechanism of apoptosis is presented in figure 2-3. This figure illustrates the

basic outline of two apoptotic pathways that have been elucidated in the literature. The first

pathway involves death receptors, such as Fas, TNFR1, or DR3, in which a ligand binds to the
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Figure 2-3. General mechanism of apoptosis. Death receptor complexes and other cell death
triggers activate the caspase cascade. The effector caspases carry out the apoptotic death signal
by cleaving specific cellular protein targets resulting in the morphological and biochemical
changes associated with apoptosis.
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receptor causing receptor oligomerization and activation of apical caspases (caspase-2, -8, or -

10). These caspases then activate the effector caspases (caspase-3, -6, or -7) whose activity

results in the morphological features associated with apoptotic cells (Alnemri, 1999; Ashkenazi

and Dixit, 1998). The second apoptotic pathway involves the changes that occur in mitochondria

(Green and Reed, 1998; Kroemer et al., 1995; Petit et al., 1996; Petit et al., 1997; Susin et al.,

1998; Zamzami et al., 1996). A variety of cell death triggers result in the release of apoptosis

inducing proteins such as cytochrome c, Apaf-1, apoptosis inducing factor (AIF), and

procaspases from mitochondria which result in the activation of effector caspases (Alnemri,

1999). These two pathways are not independent, but rather they are interrelated through receptor

activated caspases that induce apoptotic changes in mitochondria (Bossy-Wetzel and Green,

1999).

The main component of the apoptosis pathway consists of a proteolytic cascade of

proteins termed caspases. This family of cysteine proteases cleaves specific proteins, activating

or deactivating them, resulting in the morphological and biochemical changes associated with

apoptosis (Cohen, 1997; Salvesen and Dixit, 1997; Thornberry and Lazebnik, 1998). Caspases

are originally expressed in inactive forms (procaspases) that are activated by apoptosis inducing

signals. The procaspase contains three domains: an -NH2 terminal region, a large subunit

(approximately 20 kD), and a small subunit (approximately 10 kD). The -NH 2 is highly variable

among the various caspases and is involved in the regulation of caspase activation (Cohen, 1997;

Thornberry and Lazebnik, 1998). Caspases are activated through the proteolytic cleavage of the

three domains followed by the association of the large and small subunits resulting in an active

heterodimeric enzyme (Thornberry and Lazebnik, 1998). The crystal structures of a couple of

caspases have also shown that these heterodimers associate to form a tetramer. The active
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caspase has a primary recognition pocket that specifically accepts the aspartic acid side chain

(SI). Additional amino acids surrounding the pocket are specific for a variety of other amino

acid residues (S2 - S4), and this specificity for a specific tetrapeptide sequence helps to

differentiate the various caspase enzymes from one another. The specificity of these caspases

enables them to cleave specific proteins resulting in aoptosis inhibitor deactivation, cell

structure cleavage, and specific protein deregulation (Cohen, 1997; Salvesen and Dixit, 1997).

Caspase cleavage is extremely efficient with a kat/Km constant value greater than 106 M s-'

(Thornberry and Lazebnik, 1998).

The apoptotic proteolytic caspase cascade can be divided into two main groups, one

consisting of initiator or apical caspases and one consisting of executioner or effector caspases.

Caspase-8, -9, -10, and -2 are in the apical caspase group and serve as regulators of the caspase

cascade. These caspases are activated through the binding of a specific cofactor such as the

FADD and DED domains of a death receptor complex as in the case of caspase-8 or through the

binding of Apaf-1, cytochrome c, and dATP as in the case of caspase-9 (Li et al., 1997;

Thornberry and Lazebnik, 1998). These activated apical caspases activate the effector caspases

through proteolytic cleavage. Caspase-3, -6, and -7 are in the effector caspase group, and they

carry out the execution of cell death through cell disassembly. This cascade model of effector

caspase activation is supported by a significant amount of experimental evidence obtained from a

variety of cell types which suggests that this mechanism exists in most cell types that undergo

apoptosis (Muzio et al., 1998; Salvesen and Dixit, 1997; Thornberry and Lazebnik, 1998).

The effector caspase, caspase-3, has been identified as one of the key caspases involved

in apoptosis. This particular caspase has been linked to the proteolytic cleavage of a number of

protein substrates including PARP (DNA repair), Acinus (chromatin condensation), DNA-PKcs
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(DNA double-strand break repair), lamins (nuclear structure), U1-70 kDa (RNA splicing), Fodrin

(cytosol structure), Protein kinase C, SREBP (sterol-regulatory element-binding protein), and

Gelsolin (actin modulating protein) in addition to the activation of CAD (DNase) and DNA

fragmentation factor (Cohen, 1997; Enari et al., 1998; Kothakota et al., 1997; Liu et al., 1997;

Sahara et al., 1999). Caspase-3 is specific for a DXXD-like substrate (Cohen, 1997). In

addition, procaspase-3 has been identified as having a cytosolic and mitochondrial distribution in

nonapoptotic cells and can be activated through either the receptor mediated apoptotic pathway

through caspase-8 or through the mitochondria mediated pathway involving the apoptosome

(procaspase-9, Apaf-1, and cytochrome c) or AIF (Li et al., 1997; Mancini et al., 1998; Stennicke

et al., 1998; Zou et al., 1997).

A number of inhibitors of caspases have been characterized. Several viral inhibitors,

including CrmA, p35, and a family of IAPs (inhibitors of apoptosis proteins), have been

discovered (Cohen, 1997; Deveraux et al., 1998). In addition, the peptide z-VAD-fmk

(benzyloxcarbonyl-Va!-Ala-Asp[OMe] fluormethyl ketone) irreversibly binds to the caspase

active site causing permanent loss of caspase activity (Cohen, 1997; Thornberry and Lazebnik,

1998). Researchers have applied inhibitors in an effort to prevent apoptosis in cultured cells with

varying degrees of success (Cohen, 1997; Goswami et al., 1999).

As mentioned previously, the caspase proteolytic cascade can be initiated through two

different mechanisms, and the first mechanism involves death receptor activation. Two well

characterized death receptors are CD95 (Fas or Apol) and TNFR1 (p55 or CD120a) with their

corresponding ligands termed CD95L and TNF respectively. Other death receptors are DR3

(Apo3 or TRAMP), DR4 (TWEAK) and DR5 (Apo2, TRAIL-R2, or KILLER). All of these

death receptors belong to the tumor necrosis factor (TNF) receptor superfamily (Ashkenazi and
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Dixit, 1998). These receptors contain an intracellular region termed the "death domain" through

which the receptor activates the cellular apoptotic pathway. This death domain (DD) has been

identified in both the TNFR1 and CD95 death receptors as a region of approximately 70 to 80

amino acids that is critical for the initiation of the apoptotic death signal (Tartaglia et al., 1993).

The ligand binding results in receptor-receptor coupling which results in a receptor trimer

complex. The death domains (DD) cluster and bind which in turn causes a series of additional

proteins to bind to the complex such as FADD, TRADD, and RIP (Fraser and Evan, 1996;

Wallach, 1997). This binding then activates the apical caspase, caspase-8, which in turn

activates the effector caspases that cause apoptotic morphology changes (Ashkenazi and Dixit,

1998).

Receptor activation has been linked to the loss of mitochondrial function. The

mitochondrial function of cells undergoing Fas-mediated apoptosis was examined through 

measurement of the oxygen consumption of mitochiondria isolated from the apoptotic cells.

These mitochondria were subjected to a series of substrates and inhibitors specific for various

parts of the electron transport chain. The results indicated that cytochrome c becomes either

inhibited or inactivated during apoptosis resulting a loss of electron transport chain function. In

addition, the caspase inhibitor, z-VAD-fmk, was shown to inhibit this cytochrome c inactivation,

indicating that a caspase proteolytic event must occur in order to explain this loss of cytochrome

c activity (Krippner et al., 1996). In addition, oxidative phosphorylation uncouplers were found

to enhance Fas receptor death signaling, and the maintenance of mitochondrial membrane

integrity was found to prevent TNF induced apoptosis (Linsinger et al., 1999; Pastorino et al.,

1996). The caspase proteolytic link to mitochondrial events was investigated in other work.

Caspase-8 was observed to induce the rapid release of cytochrome c from mitochondria although
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this reaction required the presence of unknown cytosolic factors indicating the indirect nature of

the caspase-8 interaction. Caspase-8 and -3 were observed to cleave Bid, a proapoptotic

member of the Bcl-2 family, which induced cytochrome c release. In addition, caspase-6 and -7

also induced cytochrome c release through the action of an unknown, bid-independent

mechanism (Bossy-Wetzel and Green, 1999).

The events associated with apoptosis all tend to focus on one key cellular organelle,

mitochondria, and a significant amount of experimental evidence supports the key role this

organelle plays in apoptosis (Earnshaw, 1999; Green and Reed, 1998; Kroemer et al., 1995; Petit

et al., 1996; Petit et al., 1997; Susin et al., 1998; Zamzami et al., 996). For several decades,

scientists hypothesized that endonuclease and caspase activation were the key players in the

apoptotic death pathway. The idea that mitochondria were not involved in apoptosis stemmed

from the observation that no significant morphological changes occur in mitochondria during

apoptosis and that cells with no mitochondrial DNA (po cells) can still undergo apoptosis.

However, this view has changed dramatically in the last several years as a consequence of a

significant amount of reproducible experimental observations that point to mitochondria as one

of the key players in apoptosis. These observations include events that occur during apoptosis

such as changes in mitochondria membrane potential (APm) and electron transport function and

the release of apoptosis stimulating compounds from mitochondria as well as the fact that

compounds that stabilize mitochondrial membranes inhibit apoptosis (Bedner et al., 1999; Petit

et al., 1997; Susin et al., 1998). Furthermore, the mitochondrial release of caspase activating

factors such as cytochrome c, AIF, and procaspases all support the central role mitochondria play

in apoptosis (Bossy-Wetzel et al., 1998; Earnshaw, 1999; Susin et al., 1999b; Susin et al.,

1999a). Additionally, the Bcl-2 family of proteins is predominantly located in mitochondria
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(Kluck et al., 1997; Mancini et al., 1998; Susin et al., 1999a; Susin et al., 1998; Wolter et al.,

1997; Yang et al., 1997). Finally, death signals from death receptors and caspases act on

mitochondria which indicates that apoptotic death pathways appear to all converge on the

mitochondria (Bossy-Wetzel and Green, 1999; Green and Reed, 1998).

Mitochondria are ideally situated for life and death signaling pathways due to the

importance of mitochondria in cellular energetics and their sensitivity to the cellular

physiological state. Mitochondria can trigger cell death through a variety of mechanisms.

Numerous kinetic studies have demonstrated that mitochondria lose their membrane integrity

early on in the apoptotic death pathway. Lipophilic cationic dyes that accumulate in the

mitochondrial matrix such as DiOC 6, Rhodamine 123, and JC-1 have been utilized to determine

the mitochondrial membrane potential (A'm) of cells undergoing apoptosis. In a majority of

cases, a decrease in the Atm precedes any biochemical and morphological changes associated

with apoptosis (Bedner et al., 1999; Susin et al., 1998). The disruption of the electron transport

chain and the generation of reactive oxygen species (ROS) and superoxide radicals accompany

this loss of (ATm) during the later stages of apoptosis. The formation of ROS has been linked to

necrosis type death morphology although a number of researchers have implicated ROS as a

signaling molecule for apoptosis (Goossens et al., 1996; Mignotte and Vayssire, 1998).

Antioxidant enzyme expression has been linked to the maintenance of mitochondrial membrane

integrity suggesting a link between ROS and apoptosis (Kowaltowski et al., 1998). The loss of

cytochrome c function has been observed to occur early on in apoptotic cell death resulting in the

loss of mitochondrial function (Heiskanen et al., 1999; Krippner et al., 1996). This evidence all

supports the hypothesis that mitochondrial membranes and electron transport function are

compromised during apoptosis (Susin et al., 1998).
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Cell-free systems also support the key role mitochondria play in apoptosis. The induction

of nuclear apoptosis characterized by DNA fragmentation and chromatin condensation requires

the presence of mitochondria or mitochondria products (Juin et al., 1998; Susin et al., 1998). In

addition, cytosolic extracts from cells dying from apoptosis can induce mitochondria extracted

from healthy cells to release proapoptotic factors such as cytochrome c. Furthermore, the

addition of mitochondria to apoptotic cytosol increases caspase-3-like activity (Juin et al., 1998).

Mitochondria release a variety of proteins that are linked to caspase activation and the

caspase cascade. Cytochrome c is released from mitochondria and forms part of the apoptosome

consisting of cytochrome c, Apaf--1, and procapase-9 (Li et al., 1997). This results in the

activation of capsase-9 which in turn activates caspase-3 and the caspase cascade. In addition,

mitochondria have been observed to release procaspases suggesting the presence of an inner-

mitochondrial pool of procaspases that are released upon receiving an apoptotic death signal

(Green and Reed, 1998; Mancini et al., 1998; Susin et al., 1999b). Furthermore, the release of an

apoptosis inducing factor (AIF) from mitochondria has been identified and linked to chromatin

condensation, DNA fragmentation, and cytochrome c release (Susin et al., 1999a).

The mitochondrial megachannel has also been linked to apoptotic events. The

permeability transition (PT) is associated with the opening of the mitochondrial megachannel

(PT pore) that is situated at the contact site between the inner and outer mitochondrial

membranes. The exact structure of the mitochondrial membrane megachannel is unknown but it

contains the inner membrane protein, adenine nucleotide translocator (ANT), and outer

membrane proteins such as porin (voltage dependent anion channel; VDAC). These proteins

work together and create a channel large enough for molecules less than 1.5 kD to pass through.

This PT pore helps to regulate mitochondrial matrix Ca++, pH, AYm, and volume. Inhibitors of
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the PT pore, such as bongkrekic acid and cyclosporins, prevent the loss of ATm and other

indicators of apoptosis (Fulda et al., 1998; Green and Reed, 1998; Pastorino et al., 1996; Susin et

al., 1998). Conversely, stimuli that disrupt the PT pore cause ATPm loss and the release of

cytochrome c and other proapoptotic factors (Green and Reed, 1998; Susin et al., 1998).

An additional link between mitochondria and apoptosis is formed through the relations

between the Bcl-2 family of proteins and mitochondria. The Bcl-2 family consists of three

subfamilies: a prosurvival Bcl-2 subfamily (Bcl-2, Bcl-XL, Bcl-w, etc.), a proapoptosis Bax

subfamily (Bax, Bak, and Bok), and another proapoptosis BH3 subfamily (Bid, Bad, etc.). The

Bcl-2 homology consists of four domains (BH1 to BH4), and all Bcl-2 family proteins contain at

least part of one of these domains. The prosurvival Bcl-2 proteins contain several of the domains

whereas the proapoptosis Bcl-2 proteins contain only part of the BH3 domain. The fact that pro

and antiapoptosis family members can heterodimerize indicates that their relative concentrations

may play a role in the regulation of apoptosis (Adams and Cory, 1998). Bcl-2, Bcl-XL, and Bax

all form channels in lipid bilayers in-vitro and are believed to be involved with pore formation in

mitochondria (Reed, 1997). Several Bcl-2 proteins contain membrane anchor regions that enable

them to be anchored in the outer mitochondrial membrane with the protein oriented toward the

cytosol (Green and Reed, 1998). Bcl-2 and its homologs have been linked to a number of

mitochondrial events associated with apoptosis, and can prevent the release of cytochrome c into

the cytosol and therefore inhibit caspase activation (Green and Reed, 1998; Kluck et al., 1997;

Reed, 1997; Yang et al., 1997). Bcl-2 was also found to inhibit Bax-induced apoptosis even after

cytochrome c was released revealing additional complexity concerning the role of Bcl-2 in the

inhibition of apoptosis (Ross6 et al., 1998). Bcl-XL binds with caspase-9 and Apaf-1 resulting in

the inhibition of apoptosis (Pan et al., 1998). Bcl-XL was also shown to regulate the
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mitochondrial membrane potential and volume homeostasis as well as prevent mitochondrial loss

of cytochrome c during apoptosis (Kim et al., 1997; Vander Heiden et al., 1997). The

proapoptosis Bcl-2 protein, Bax, moves from the cytosol to mitochondria during apopt'sis

resulting in an acceleration of death which can be inhibited by Bcl-XL and Bcl-2 (Antonsson et

al., 1997; Finucane et al., 1999; Wolter et al., 1997). Bcl-2 can also be converted into a Bax-like

death factor through caspase-3 cleavage under in-vitro conditions which can result in the

promotion of cytochrome c release from mitochondria (Cheng et al., 1997; Kirsch et al., 1999).

These observations all support the hypothesis concerning the key role mitochondria related

proteins play in apoptosis.

The overall apoptosis death pathway can be divided into three main phases. The first

phase is the premitochondrial phase during which signal transduction pathways are initiated. For

this phase, the PT pore is hypothesized to serve as the central site which allows mitochondria to

integrate a variety of proapoptosis signals. The second phase is termed the mitochondrial phase

that involves the apoptosis signal amplification process through the release of cytochrome c and

other factors. In addition, mitochondrial membrane integrity and function are lost during this

phase. The final phase is called the postmitochondrial phase during which caspases are

activated. This model summarizes the basic mechanism of apoptosis and emphasizes the central

role mitochondria play in programmed cell death (Susin et al., 1998).

2.7 Summary

Biochemical engineering has focused on developing techniques for increasing and

maintaining high viable cell concentrations in culture in order to produce higher concentrations

of therapeutic protein products. A number of beneficial bioreactor operation strategies have been

developed along with additional techniques for enhancing the robustness of cultured cell lines.
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However, cell death has proven to still be a significant problem for mammalian cell culture, and

the primary goal of this thesis was to development methods for reducing death in mammalian

cell culture.

The modeling techniques used to develop operating strategies for cell culture have not

addressed the extensive amount of regulation governing the flow and distribution of metabolic

flux in central carbon metabolism. Metabolic flux analysis coupled with continuous culture

experiments can provide a more rigorous platform not only for the analysis of cultured cells

subjected to various culture environments but also as a means of determining the true flexibility

and adaptability of cellular behavior in culture. Although these results would not necessarily be

directly relevant to industry, they could be utilized in the formulation of novel hypotheses that

could then be applied in the optimization of industrial culture operations.

Population heterogeneity has proven to be a significant but largely neglected section of

biochemical engineering. Cell selection dynamics, development, differentiation, and stability are

all involved in population heterogeneity. Furthermore, heterogeneous events occur not only at

the cellular level but also at the intracellular organelle and genetic regulation levels, resulting in

variability in intracellular rnicroenvironments and genetic expression. One goal of this thesis

was to address population heterogeneity within the context of biochemical engineering in order

to develop analysis methods and applications for the formulation of novel bioreactor operating

strategies.

Additionally, mitochondria play a fundamental role in this thesis. The TCA cycle,

respiration, and apoptosis are topics that all revolve around mitochondria. The research

presented in this thesis demonstrating physiological multiplicity involved the analysis of

mitochondrial respiration and TCA cycle activity. Furthermore, mitochondrial properties were
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used as the basis for analyzing population heterogeneity in mammalian cell culture with the

ultimate goal of utilizing these mitochondrial parameters for the optimization of cell cultures.
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3. MATERIALS AND METHODS

3.1 Cell Culture

3.1.1 Cell Lines and Media

The initial continuous culture experiments were performed using a Chinese hamster

ovary (CHO) cell line that produced recombinant human gamma-interferon (Devos et al., 1982;

Scahill et al., 1983). This y-CHO cell line was originally anchorage dependent and grown in

serum containing medium. For the continuous culture experiments, the cells were grown in a

serum-free medium that contained an animal tissue hydrolysate (Primatone RL; Quest

International, Norwich, NY). The final serum-free medium contained RPMI-1640 (Sigma

Chemical Co.) supplemented with 2.5 g/L Primatone RL, 0.4 g/L 2-hydroxypropyl--

cyclodextrin (Sigma), 1 g/L (0.1%) Pluronic F-68, 5 mg/L insulin (USB), 5 mg/L transferrin

(USB), 1 mM sodium pyruvate, 1 M putrescine, 11 mg/L choline chloride, 100 gAM

ethanolamine, 1.5 gM linoleic acid, 0.25 AuM methotrexate, 10,000 units/L penicillin - 10 mg/L

streptomycin (Sigma), 6.3 mg/L EDTA, and trace minerals (10 nM sodium selenite, 1 nM

manganese sulfate, 10 nM molybdic acid, 10 nM ammonium metavanadate, 10 nM cupric

sulfate, 3 gtM zinc sulfate, and 5 pgM ferric citrate).

The subsequent continuous culture, mitochondrial membrane potential FACS sorted cell

subpopulation, and fed-batch experiments were conducted using a murine hybridoma cell line

(ATCC CRL-1606) producing IgG against human fibronectin (Schoen et al., 1982). The

hybridoma cell line was grown in glutamine-free IMDM medium (Specialty Media, Inc.,

Lavallette, NJ) supplemented with 4.0 mM L-glutamine (Sigma Chemical Co.), 1 U/ml penicillin

- 1 /g/ml streptomycin (Sigma), 5 mg/L transfcrrin (USB), 10 mg/L insulin (USB), 2.44 UL/L 2-
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aminoethanol, 3.5 gtL/L 2-mercaptoethanol, and 7.5 mg/L protease free bovine serum albumin

(Sigma).

3.1.2 Culture Maintenance

The cell lines were obtained from frozen stocks stored in a liquid nitrogen cell bank. The

frozen cell stocks were prepared by centrifuging cells obtained from cultures that had a viability

greater than 95% at 200g for 8 minutes and resuspending them to a concentration of 7.0*106

cells/ml in freezing medium (7.5% DMSO, 46.25% fresh medium, 46.25% conditioned

medium). Cryogenic vials (Coming Inc., Coming, NY) containing lml of the cell suspension

were placed in a cryogenic freezing container (Cole-Parmer, Niles, IL) and then placed in a

-700 C freezer. The freezing container limited the freezing rate to -10 C/min. For a culture

inoculation, the frozen cell stocks were thawed rapidly and slowly resuspended dropwise into 19

ml of fresh medium. The cells were subcultured every 2-4 days (y-CHO) or 2-3 days (CRL-1606

hybridoma) at 2.0*105 cells/ml in a 370C humidified incubator (95% relative humidity) with

either a 5% (y-CHO) or a 10% (CRL-1606 hybridoma) CO2 atmosphere. The experiments were

performed when the viability was greater than 95%.

3.2 Analytical Methods

3.2.1 Cell Enumeration

The cell concentration and viability were determined using a hemacytometer and the

trypan blue dye exclusion method. In addition, the extent of apoptotic death was determined

using an acridine orange / ethidium bromide stain as described in Mercille and Massie (Mercille

and Massie, 1994). At least 200 cells were counted in each determination of the culture viability

and cell concentration.
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3.2.2 Metabolite Assays

The steady state samples taken from the reactor were centrifuged at 200g for 8 minutes,

and the supernatent was removed and stored at -200 C for future analysis. To deproteinate the

thawed samples, 100 l of 20% m/v trichloroacetic acid was added to 340 pl of sample. After

microcentrifugation at 7,000g for 10 minutes, 200 ,l of the deproteinated sample was neutralized

with 50 ,l of 25% m/v potassium bicarbonate. The deproteinated samples were used in

performing the lactate (826-UV Sigma assay protocol, Sigma) and glucose (16-UV Sigma assay

protocol, Sigma) assays.

Amino acid analysis was conducted for samples that were deproteinated using Ultrafree-

MC 5,000 MW cutoff ultrafilters microcentrifuged at 40C for 70 minutes at 4,000g (Millipore,

Bedford, MA). The samples were diluted to ensure that the maximum expected amino acid

concentration was less than 1 mM (the upper calibration limit). The amino acids were analyzed

using the AminoQuant protocol on an HP 1090 HPLC (Hewlett Packard, Palo Alto, CA) as

described in Nyberg et al. (Nyberg et al., 1999a).

3.2.3 Protein Product Measurement

Antibody concentrations were determined using a standard ELISA procedure. First, 100

,ul of a solution containing a capture antibody (Sigma M8770) diluted to 5 g/ml in a capture

antibody solution (Sigma C3041) containing 0.1% (w/v) sodium azide was added to a 96 well

plate and incubated at 370C for 30 minutes. Then, 200 Al of a blocking solution (SuperBlockTM ,

Pierce 37515) was added and removed three times. After that, 100 Al of either samples or

standards (Sigma M9269), diluted in a solution of 1 part blocking solution to 9 parts washing

solution (PBS with 0.05% w/v Tween 20), was added and incubated for 1 hour at room

temperature. Then, 100 Al of a detection antibody solution (sample and standard diluent solution
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with detection antibody Sigma A2304) was added and incubated for 1 hour at room temperature.

After each of the previous steps, the plate was washed three times in washing solution. Finally,

200 #l1 of a substrate solution (SigmaFASTT M OPD, Sigma P9187) was added and incubated for

30 minutes in the dark. The reaction was stopped with 3 M HCl and the absorbance was read at

492 nm on a microplate reader (Molecular Devices, Palo Alto, CA).

3.2.4 FACS Analysis and Mitochondria Staining

A fluorescence activated cell sorter (FACS, Becton Dickinson, FACSCAN) was used to

analyze cells stained for mitochondria potential using Rhodamine 123 (Rh123; Molecular

Probes, Eugene, OR). Cells were diluted with the appropriate medium to a concentration of 5-

6*105 cells/ml and stained with a final concentration of 2 ,gg/ml Rh123 and incubated for ten

minutes in a 370C incubator. The cells were microcentrifuged at 200g for 6 minutes,

resuspended in PBS, and stored on ice in the dark. The stained cells were analyzed on the FACS

within 15-30 minutes. The Rh123 fluorescence values were determined to be stable for up to an

hour after this staining procedure.

3.2.5 Cell Cycle Analysis

Cell cycle analysis was performed by fixing the cells in ethanol, staining them with

propidium iodide (PI), and then analyzing them on the FACS. Cell were collected in the

exponential phase at approximately 1.0*106 cell/ml, microcentrifuged at 200g for 6 minutes, and

then resuspended in 0.3 ml of PBS. Then, 0.7 ml of cold ethanol was added dropwise to the tube

while vortexing. After leaving the tube on ice for 15-30 minutes, the cells were

microcentrifuged at 2,000 rpm at 40C for 6 minutes. The supernatent was removed, and the cell

pellet was resuspended in 0.5 ml PBS with 50 gtl of 0.5 mg/ml RNase. After letting the mixture

stand at room temperature for more than 30 minutes, 0.5 ml of PI solution (20 mg/L in PBS) was
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added. The cells were then run through a fluorescence activated cell sorter (FACS, Becton

Dickinson, FACSCAN) and the raw data was analyzed using the Modfit Lt v.2 analysis software

(Verify Software House, Topsham, ME).

3.2.6 Caspase Enzymatic Activity

Caspase-3 (DEVDase) activity was measured using an assay that measured the amount of

p-nitroaniline (pNA) chromophore cleaved from the colorimetric substrate (Ac-DEVD-pNA).

The caspase activity was also inhibited using the peptide z-VAD-fmk. The sample where

apoptosis was not induced was referred to as the positive control whereas the apoptosis induced

sample (via. staurosporin or other compounds) inhibited by z-VAD-fmk was referred to as the

negative control. The difference between the apoptosis induced sample and the negative control

was the amount of caspase activity present in the sample.

The CaspACE assay kit (Promega, Madison, WI) was used to measure the caspase-3

activity. To prepare the sample extract, cells were grown under normal conditions until reaching

mid-exponential phase. Then, the cell concentration was adjusted to 1.0*106 cells/ml and then

the apoptosis inducer was added. After incubating the cells for the proper time required to

induce apoptosis, the cells were centrifuged at 200g for 10 minutes at 40C. The cells were then

washed once with ice cold PBS and kept constantly on ice. After the washing step, the cells

were resuspended in a cell lysis buffer (Promega, CaspACE assay system - colorimetric) at a

concentration of 1.0*108 cells/mi. The cells were lysed by freezing (-200 C) and thawing them

once. The cell lysate was incubated on ice for 15 minutes and then centrifuged at 15,000g

(13,000 rpm on 24 tube microfuge, Heraeus Biofuge 15) for 20 minutes at 40C. The supematent

was collected and stored at -800 C.
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The caspase-3 assay was performed using a 96 well plate (flat bottom, clear polystyrene).

The protein concentration of the extracts was determined using a Bradford protein assay (Bio-

Rad Protein Assay 500-0002, Bio-Rad, Hercules, CA) with a BSA reference standard. 50 pag of

extract protein was added to each well. The wells were prepared as described in Table 3-1.

Table 3-1. 100 l1 reaction preparation for the caspase-3 enzymatic activity assay
(CaspACE assay system, Promega, WI).

Blank Negative Induced Inhibited

Control Apoptosis Apoptosis

Caspase assay buffer 32 pl 32 xl1 32 pl1 32 pgl

DMSO 2 l1 2 l 2 1 2 pxl

100 mM DTT 10 l 10 10 l 10 10 l

Untreated cell extract - x l - -

Induced apoptosis cell extract - x l1

Inhibited apoptosis cell extract - - - x ll1

Add DI water to final volume 98 l 98 l.1 98 pl1 98 l

The cell extract protein concentration was identical for all reactions. The Caspase assay

buffer consisted of 315 mM HEPES (pH 7.5), 31.25% sucrose, and 0.3125% CHAPS. After the

wells were prepared, 2 al of the DEVD-pNA substrate was added to all of the wells which were

then incubated at 370 C for 3 hours. The absorbance for each well was measured at 405 nm using

a microplate reader (Molecular Devices). The pNA calibration curve was obtained using a pNA

standard that was diluted using DMSO. The pNA absorbance readings at 405 nm were linear up

to a concentration of 1 mM pNA.

The in-vitro induction of caspase-3 activity using cytochrome c was performed by

preincubating the samples with 10 aM cytochrome c (from rat heart; Sigma C7892) and 1 mM
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dATP (USB 14245) for 30 minutes at 320C. The caspase-3 enzymatic activity was then

determined according to the procedure described previously.

3.3 Continuous Culture

3.3.1 Culture Medium Conditions

The continuous culture reactor was operated under glutamine limited conditions (0.8 mM

L-glutamine) and inoculated at 2.0* 105 cells/ml.

3.3.2 Bioreactor Operation

The continuous cultures were performed in a 2.0 liter Applikon (Foster City, CA) reactor

with a 1.2 liter working volume and a heated water jacket. The temperature was maintained at

370C and the agitation was set at 200 rpm. An ML-4100 multi-loop process controller (New

Brunswick Scientific, Edison, NJ) was used to control the pH and dissolved oxygen in the

reactor using the AFS software from New Brunswick Scientific (Edison, NJ). The pH was

controlled at 7.20 + 0.05 using the addition of either 320 mM HC1 or a basic solution consisting

of 6.2 g/L NaOH and 0.4 g/L KOH (160 mM). Oxygen was supplied to the reactor through

surface aeration by adjusting an air mixture consisting of nitrogen and oxygen, and the dissolved

oxygen concentration was maintained at 50% of air saturation. The gas flow rate was controlled

using a mass flow controller set at 35 mol/day. The ML-4100 controller was also used to log

process data: time, temperature, dissolved oxygen concentration, pH, acid and base addition, and

headspace gas composition. After waiting 5 residence times at a particular dilution rate, the

reactor was assumed to be at steady state if the total cell density, viable cell density, glucose and

lactate concentrations, and oxygen uptake rate were steady within a 10% range for 48 hours.
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3.3.3 Gas Exchange Rate Measurement

Oxygen uptake rate (OUR) was calculated through a mass balance for reactor liquid

phase oxygen

OUR = kLa(C* -CR) + D(CF - CR) (3.1)

The first term accounts for the headspace aeration across the gas-liquid interface, and the second

term accounts for the net inflow of oxygen due to the liquid streams. The liquid phase oxygen

concentrations were measured using a blood gas analyzer (Ciba Coming Diagnostics, Medfield,

MA). The gas phase oxygen concentration was measured using a paramagnetic oxygen sensor

(Columbus Instruments, Columbus, OH), and the equilibrium oxygen concentration (C*) was

calculated based on the gas phase oxygen concentration at the reactor exit. The partial pressure

of oxygen was converted to a liquid concentration using Henry's Law.

Po
Co02 = 2 (3.2)

Ho 2

The Henry's constant was determined using correlations for determining gas solubilities in

medium (Schumpe et al., 1982).

The CO2 evolution rate (CER) was determined through a similar method involving a

mass balance for reactor carbon dioxide

ng 
CER = (Zo 2 oR F 2)D(CL-C) (3.3)

VR

The first term accounts for the net inflow of CO2 through the gas streams, and the second term

accounts for CO2 in the liquid streams. The mole fraction of CO2 was measured with a gas

analyzer with an IR CO2 sensor (Columbus Instruments, Columbus, OH). The CO2 levels in the

liquid streams were measured using a blood gas analyzer (Ciba Coming Diagnostics, Medfield,
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MA). Both the CO 2 and bicarbonate were determined using equilibrium relations (Nyberg et al.,

1999a).

3.4 Rhodaminel23 Sorted Subpopulations

The hybridoma cells were sorted into subpopulations based on their mitochondrial

membrane potential as measured using Rhodamine 123. A fluorescence activated cell sorter

(FACS, Becton Dickinson, FACSCAN) was used to sort the cells into high (H; top 15%) and low

(L; bottom 15%) fractions. The fractions were grown in 6 well plates and then subsequently

scaled up into T-flasks under normal growth conditions as described in the culture maintenance

section. The cells were frozen down when enough cells were grown for making five or more

stock vials (>35.0*106 cells).

3.5 Fed-Batch Cultures

The fed-batch cultures were performed in spinner flasks (250 ml total volume; 75 ml

working volume) using the stoichiometric feeding method developed by Xie and Wang (Xie and

Wang, 1994c; Xie and Wang, 1994b; Xie and Wang, 1994a)(1994). The spinners were agitated

at 70 rpm in a 370C incubator (95% relative humidity) in a 10% CO 2 atmosphere. The cells were

inoculated at 2.0* 105 cells/ml in either low glucose and glutamine IMDM medium as described

in the cell lines and media section or in the same medium with MOPS to enhance the buffering

capacity as indicated in the results section for these experiments. The medium osmolarity was

adjusted to 270 mOsm/kg using NaCI. The supplemental medium was designed as specified by

the software written by Mllborn (Mllborn, 1996). Samples and cell counts were taken

approximately every 12 hours, and then the cultures were fed according the stoichiometric

feeding protocol specified by the software developed by Xie (Xie, 1997) and Mbllborn

(Millborn, 1996).
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4. PATHWAY AND FLUX ANALYSIS OF CENTRAL CARBON METABOLISM

4.1 Central Carbon Metabolism Reaction Network

Cellular metabolism consists of a vast number of anabolic and catabolic enzymatic

reactions that produce cellular energy, reducing power, and biosynthetic precursors for cellular

growth and function. The metabolic reaction network for central carbon metabolism in

mammalian cells is shown in Figure 4-1. The main metabolic reactions are included such as

glycolysis, the tri-carboxylic acid (TCA) cycle, and glutaminolysis, and serial reactions were

lumped into single reactions. A more complete description of these reactions can be found in

Stryer (Stryer, 1988) and Zupke (Zupke, 1993). In addition, metabolite requirements for

biomass and product synthesis were considered as described in Zupke and Stephanopoulos

(Zupke and Stephanopoulos, 1995a) using the cell composition described in Xie and Wang (Xie

and Wang, 1994c) and Zupke and Stephanopoulos (Zupke and Stephanopoulos, 1995a). This

procedure is described in more detail in section 4.4. The pentose phosphate pathway was

analyzed by considering only the biosynthetic demand for ribose carbon skeletons. Although

obtaining pentose phosphate pathway metabolic fluxes could be useful, labeled substrates must

be used in order to obtain accurate flux data for this pathway. The methodology needed to obtain

this more accurate flux data is described later in this chapter, but due to the complexity involved

in these labeled substrate analysis techniques, this method was not utilized in the continuous

culture flux analysis experiments. In addition, the production of NADPH could not be used to

determine the pentose phosphate pathway recycle flux due to the uncertainty of transhydrogenase

activity in this cell line as well as the fact that the malic enzyme may use either NAD+ or NADP+

(Eigenbrodt et al., 1985). Therefore, reducing power was lumped into an NAD(P)H pool. This
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been included.
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may introduce some error in distinguishing CO2 released from the pentose phosphate pathway

and the TCA cycle.

4.2 Metabolic Pathway Analysis

Cellular metabolism contains an extensive number of enzymatic reactions that are

involved in numerous cellular activities, and organizing these metabolic networks into

independent pathways and key junction points is oftentimes difficult and conducted using

arbitrary methods. Metabolism contains several key junction points termed metabolic

branchpoints or nodes, and characterizing these nodes is critical for determining their influence

on the regulation of metabolic flux. These key link metabolites can be determined through the

analysis of the junctions between various independent pathways through a given reaction

network. These independent pathways can be determined by formulating a steady state internal

metabolite matrix (N) consisting of the reaction stoichiometry and then calculating the kernel

matrix (K) using equation 4.1.

NeK =O (4.1)

Link metabolites are identified as the metabolite that is located at the point of separation between

independent pathways (Stephanopoulos and Simpson, 1997). Although several link metabolites

exist for central carbon metabolism, only pyruvate is the one common metabolite for all

independent pathways (Simpson et al., 1999). Pyruvate serves as the major link between

glycolysis, the TCA cycle, and the production of lactate and several amino acids, and enzymatic

regulation partitions the metabolic flux around this branchpoint to satisfy the catabolic and

biosynthetic needs of a cell. The flexibility of this branchpoint will ultimately determine the

extent of control this branchpoint has over metabolic flux distributions in central carbon

metabolism (Stephanopoulos and Vallino, 1991). Therefore, the flux distribution around
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pyruvate for various physiological states serves as an indicator of the flexibility of this node.

Furthermore, if this node is somewhat flexible, one could exploit this flexibility in order to

increase the culture cell concentration and viability by diverting carbon away from waste

metabolite production pathways into biomass and energy production pathways.

4.3 Metabolic Flux Analysis

The metabolic fluxes were calculated for mammalian cells growing under continuous

culture conditions. Therefore, specific growth and death rates were determined from the total

and viable cell balances around the bioreactor:

dNv
diE = ugNv - kdNv - DN
dt (4.3)

yielding at steady state:

D N T

Nv (4.4)

kd = -D (4.5)

Similarly, specific rates of metabolite production or uptake were determined from the balance:

dC
- = DCin - DCout - qcNv
dt (4.6)

yielding at steady state:

D(Cin - Cout)

(4.7)

For the central carbon metabolic reaction network, the flux of each reaction i can be

represented as vi (mmole/ viable cell hr). The stoichiometric coefficient, cj, represents the

coefficient of metabolite j for reaction i. The specific consumption or production rate of
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metabolite j can be represented as qj. The resulting system of linear equations can be presented

as

qj = Y aijvi (4.8)
i

In matrix form, this equation can be written as

Av = r (4.9)

where the matrix of stoichiometric coefficients (A) times the vector of metabolic fluxes (v)

equals the vector of metabolite production and consumption rates (r). The stoichiometric

coefficient matrix is of dimension m x n, where n is the number of reactions and m is the number

of metabolites. Since the stoichiometry of the network is known along with the metabolite

production and consumption rates, one needs to invert equation 4.9 to solve for the metabolic

fluxes. Also, because the stoichiometry matrix is rarely square, a linear least squares estimate

must be calculated

v = (ATA)-lATr (4.10)

Finally, a variance-covariance matrix () can be added to weight the solution (Stephanopoulos

et al., 1998; Zupke and Stephanopoulos, 1995a; Zupke, 1993).

v = (ATT-IA)-l ATT-lr (4.11)

The sensitivity of the metabolic reaction network to changes in the metabolite production

and consumption measurements was also determined by calculating the condition number, c(A),

of the stoichiometry matrix

c(A) ||AII 9 ||A-1|| (4.12)

with II I| indicating the matrix norm. This condition number is used in order to determine the

upper bound of the potential magnification of error when solving equation 4.9. A reaction
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network is considered well posed if the value of the condition number falls below 100 whereas a

condition number that is above 1,000 indicates that the network can yield significant sensitivity

problems. For the metabolic reaction network shown in figure 4-1, the condition number was

calculated to be 69.

Redundant metabolite production and consumption measurements are necessary in order

to test the validity of the metabolic reaction network and of the measured data set. Several

methods have been proposed to elucidate whether a given data set is consistent (van der Heijden

et al., 1994a; van der Heijden et al., 1994b; Wang and Stephanopoulos, 1983) and consistency

analysis has been applied in a number of situations involving flux analysis (Nyberg et al., 1999a;

Vallino, 1991; Zupke and Stephanopoulos, 1995a). For the procedure described in Wang and

Stephanopoulos (Wang and Stephanopoulos, 1983), the redundant equations are written as

Er =0 (4.13)

in which the redundant equations matrix (E) times the vector of measurements equals the null

matrix. Since experimental data always contains some amount of error, equation 4.13 will rarely

be satisfied. Therefore, a statistical hypothesis testing method is utilized in order to determine if

the error is within the bounds expected for random error or if the error is in fact a gross error due

to inconsistent data. This hypothesis test involves the calculation of a consistency index, h,

defined as

h = T(p-IE (4.14)

where

= -Er (4.15)

p = ETTE (4.16)
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The consistency index, h, follows a 2 distribution where the number of redundant equations

determines the degrees of freedom. Therefore, h can be used to determine when the residuals of

equation 4.13 deviate from the expected distribution for a selected confidence level. When h is

greater than the X2 value, there is a certain confidence level percentage chance that the data set

contains either gross measurement errors or errors in the assumed metabolic reaction network

stoichiometry. The elimination of each measurement can be used as a method to determine

which measurement is incorrect (Wang and Stephanopoulos, 1983) although other techniques

have been developed for gross error diagnosis (van der Heijden et al., 1994a; van der Heijden et

al., 1994b).

4.4 Biomass Equation

The biomass equation involves the estimation of the amount of specific metabolites

required to produce biomass and protein product. Central carbon metabolism provides a number

of key metabolites that are used as biosynthetic precursors for the production of polysaccharides,

lipids, proteins, and nucleotides. The biomass macromolecular composition (DNA, lipids,

protein, and carbohydrate) is required in order to calculate the biomass equation. In addition, an

estimate of the amino acid composition of the cellular and product protein is required. Once

these compositions are determined, the overall amount of metabolites required to produce one

mole of biomass (carbon basis) is calculated. For metabolic flux calculations, the amino acids

required for protein production are subtracted from the metabolite production and consumption

rates. The resulting rates are only those that affect the central carbon metabolism metabolic

network. Then the biosynthetic precursor demands are factored into the flux calculations as

shown in Figure 4-1. The exact procedure used is described in more detail in Zupke (Zupke,

1993).
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4.5 Pentose Phosphate Pathway Analysis

4.5.1 Introduction

An important parameter in metabolic pathway analysis is the flux of carbon through the

pathway. Accurate determination of metabolic fluxes in-vivo is a critical step in elucidating flux

control in metabolic networks. Sensitive experimental techniques and rigorous modeling

methods are both required for the calculation of accurate flux values. Currently, the methods

used to calculate metabolic fluxes involve metabolite balancing and isotope labeled substrate

analysis techniques (Bonarius et al., 1996; Bonarius et al., 1998a; Bonarius et al., 1998b;

Mancuso et al., 1998; Mancuso et al., 1994; Marx et al., 1996; Park et al., 1999; Park et al.,

1997; Sharfstein et al., 1994; Vallino and Stephanopoulos, 1994b; Vallino and Stephanopoulos,

1994a; Vallino and Stephanopoulos, 1993; Wiechert and de Graaf, 1997a; Wiechert and de

Graaf, 1996; Wiechert et al., 1997b; Zupke et al., 1995b; Zupke and Stephanopoulos, 1995a).

Isotope labeling techniques are particularly useful due to the additional information contained in

the metabolite carbon label fractional enrichment values resulting from the scrambling of the

input substrate label. However, the models used to analyze these isotope distributions frequently

make assumptions about the reversibility of the reactions, and these assumptions can result in

errors concerning the estimated metabolic fluxes and isotope label scrambling. This section

concentrates on the development of a methodology that allows reaction reversibility to be

included in more accurate calculations of metabolic fluxes in metabolic networks by explicitly

accounting for the effect of reaction reversibility on metabolite labeling upon administration of

labeled substrates. In addition, it addresses a fundamental problem of flux analysis concerning

the uniqueness of flux estimates and the experimental measurements needed to obtain accurate

solutions. Although this analysis was not utilized in the flux calculations for the continuous
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cultures due to its complexity, it was performed in an effort to determine the data that are needed

for accurate flux calculation using isotope tracers and also the potential errors that can arise

when isotope tracer scrambling is not correctly analyzed.

Pentose phosphate pathway. The pentose phosphate pathway plays several key roles in

metabolism. It contributes to the redox potential in a cell through the maintenance of the

NADPH/NADP+ ratio and is also source of biosynthetic carbon skeletons (Stryer, 1988). Recent

research has demonstrated that the pentose phosphate pathway can carry a significant flux under

certain physiological conditions and in various cell types (Bonarius et al., 1996; Landau and

Wood, 1983). Finally, the pathway can redistribute metabolite carbon atoms leading to

difficulties in determining fluxes in other pathways using labeled substrates (Berthon et al.,

1993; Flanigan et al., 1993; Park et al., 1997). Therefore, the pentose phosphate pathway can

have a significant impact not only in the maintenance of cellular function but in the analysis of

isotope labeled substrate experiments as well.

The pentose phosphate pathway, commonly referred to as the classical pathway, was

elucidated in the late 1950's using data from labeled substrate experiments, in particular labeled

14CO2 evolution rates and metabolite conversion rates in tissue extracts (Katz and Wood, 1963;

Katz and Wood, 1960; Williams, 1980). This classical pathway is divided into two different

groups of reactions, the oxidative and nonoxidative branches. The oxidative branch begins with

the dehydrogenation of glucose 6-phosphate by glucose 6-phosphate dehydrogenase to form 6-

phosphogluconate and NADPH. An additional reaction produces another molecule of NADPH

along with ribulose 5-phosphate, which can then be isomerized to ribose 5-phosphate and used

for DNA and RNA nucleotide sugar biosynthesis. These reactions are all summarized in Figure

4-2 with vl representing the oxidative pathway and v4, v5, and v6 referring to the nonoxidative
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Figure 4-2. The classical pentose phosphate pathway reaction network. The oxidative
reactions are referred to as vl, and the nonoxidative reactions are denoted v4 , v5 , and V6. The
reactions that are part of the glycolytic pathway are vo, v2, and v3. The isomerase and epimerase
reactions (shown as E and I) between the hexose and pentose metabolites are considered to be
fast and in equilibrium.
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reactions. The isomerase and epimerase reactions between the hexose and pentose metabolites

(E and I in Figure 4-2) are fast and in equilibrium (Katz and Rognstad, 1967; Landau and Wood,

1983; Wood, 1985). Therefore, glucose and fructose 6-phosphate are treated as one hexose pool

(Hex6P), and the three pentose metabolites are treated as one pentose pool (Pen5P). Finally, the

reactions vo, v2, and v3 refer to the glycolysis reactions that are part of this network, and v7 refers

to the DNA and RNA biosynthetic pathway reactions (Stryer, 1988).

The reversible transketolase and transaldolase reactions in the nonoxidative pathway

redistribute metabolite carbon atoms in an organized manner through the enzyme transfer of two

and three carbon units to intermediate metabolites. The transfer scheme of the various

metabolite carbon atoms in these reactions is illustrated in Figure 4-3 with the circles

representing the various numbered metabolite carbon atoms. Since these reactions are all

reversible, they are split into a forward reaction (vi+) and a reverse reaction (vi-). This

reversibility can lead to further redistribution due to exchange with glycolytic intermediates, and

this redistribution must be analyzed in order to interpret pentose phosphate pathway

experimental data correctly.

Flux calculation - background. Isotopic labeling experiments have been performed and

analyzed since the late 1950's and early 1960's with the aim of verifying the biochemistry of the

classical pentose phosphate pathway (Katz and Wood, 1963; Katz and Wood, 1960). These

experiments have all been analyzed using a simplified general model which assumes recycling of

fructose 6-phosphate to glucose 6-phosphate through the isomerase reaction and also assumes

isotopic steady state. Furthermore, the model assumes no reversibility of the transketolase and

transaldolase reactions and thus no recycling of triose 3-phosphate and no label redistribution.

The overall reaction for this simplified view of the pentose phosphate pathway is given as:
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Figure 4-3. The nonoxidative pathway carbon atom redistribution scheme. The numbered
circles refer to the metabolite carbon atoms. The black carbon atoms denote either the two or
three carbon atom units that are transferred to the other metabolites in the reactions.
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3 Hexose 3c2 > 3 Pentose - 2 Hexose + 1 Triose (4.17)

To test this model, researchers used [1-'4 C]glucose and [6-'4C]glucose labeled substrates

which allowed them to differentiate between those glucose molecules metabolized through the

pentose phosphate pathway versus those that pass exclusively through glycolysis. This strategy

was also used in order to determine label loss and scrambling due to the tricarboxylic acid cycle.

[1-14C]glucose and [6-'4C]glucose both become [3-14C]glyceraldehyde 3-phosphate after the

aldolase glycolytic reaction, and the [3-14C]glyceraldehyde 3-phosphate labeled carbon is

subsequently scrambled and lost as '4 CO2 identically after this reaction. Therefore, any

difference between radioactive carbon activities of the hexose monophosphate pool upon using

[1-'3 C]glucose and [6-13C]glucose was assumed to be due to the pentose phosphate pathway.

Observed differences between activities of the Hex6P pool for the two cases was used to

determine the fraction of input hexose that flows through the nonoxidative branch of the pentose

phosphate pathway (P) (defined as v4/vo):

-a (4.18)
a 6 (1 + 2P)

ai denotes the specific activity of the hexose 6-phosphate pool when [i-' 4C] labeled glucose was

used. The derivation of equation 4.18 (Follstad and Stephanopoulos, 1998) accounts for the

outflow of labeled carbon via the pentose phosphate pathway versus other pathways

(tricarboxylic acid cycle, etc.). This model can also be used to formulate equations to compare

triose carbon label enrichment or the amount of labeled '4CO2 released for cells fed with [1-14C],

[2-t3C], and [6-' 4 C]glucose (Katz and Wood, 1963; Katz and Wood, 1960; Landau and Katz,

1964).

Other models have been used to determine the pentose phosphate pathway flux. One

model used a black-box approach to determine a lower limit to the pathway flux by measuring
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labeled CO2 release (Larrabee, 1989). Another model employed [3- 3C]lactate labeling resulting

from [1-13C] and [6-'3 C]glucose to determine the pathway flux (Kingsley-Hickman et al., 1990;

Willis et al., 1986). However, when these models were applied to experimental data of specific

carbon activities of metabolites such as glucose 6-phosphate, glycogen, or lactate in various

tissues, they could not fully account for the observed label distributions.

Disagreement between predictions of these simplified models and experimental data led

researchers to propose alternative explanations for the observed labeling patterns.

Inconsistencies in gluconeogenic rat liver data led to the hypothesis of an alternative L-type

pentose phosphate pathway that contains several new intermediates resulting in a different

carbon redistribution scheme (Williams, 1980; Williams and Blackmore, 1983; Williams et al.,

1978). This hypothesis is still refuted in the literature by several researchers (Landau and Wood,

1983; Rognstad, 1995). Yet another hypothesis included fructose futile cycles to allow for

carbon label scrambling. Finally, although researchers have included nonoxidative reaction

reversibility in their models to account for label redistribution (Katz and Rognstad, 1967), the

calculation of the individual extents of reaction reversibility using a general model is still not

adequate. In summary, despite numerous hypotheses proposed to reconcile observed

inconsistencies between models and experimental data in the pentose phosphate pathway, a

method for the systematic quantitation and tracking of isotope labels has yet to be presented.

4.5.2 Theory

A general model utilizing mass balance equations can be formulated for any reaction

network and then be used to analyze carbon label redistribution and extents of reaction

reversibility. Other flux analysis models presented in the literature utilize similar basic concepts

of mass balances for flux determination (Wiechert and de Graaf, 1997a; Wiechert et al., 1997b).
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The model of this paper is based on the work of Park (Park, 1996) and Katz and Rognstad (Katz

and Rognstad, 1967) and is applied to the pentose phosphate pathway reaction network

illustrated in Figure 4-2. The metabolite pools are assumed to be well-mixed. Also, since the

isomerase and epimerase pentose phosphate pathway reactions (E and I in Figure 4-2) are

considered fast, they are assumed to be at equilibrium, hence the three pentose metabolites are

treated as one pentose pool (PenSP). Similarly, glucose and fructose 6-phosphate are treated as

one hexose pool (Hex6P) due to the isomerase reaction. The nonoxidative reactions are assumed

to follow the carbon redistribution scheme shown in Figure 4-3. Finally, the reaction velocity for

DNA and RNA biosynthesis reactions (v7) is assumed to be small and is neglected in this

analysis. If this assumption proves to be incorrect in some systems, the addition of this reaction

to the model equations will result in the need to calculate one additional parameter.

Mass balances. The model utilizes two types of mass balances, one of reaction network

metabolite pools, and a second of metabolite carbon atoms. The first, (equation 4.19), describes

the overall balance of network metabolite pools:

dxj
=t = 10ijivi (4.19)

In the above equation, xj refers to the concentration of metabolite j (mole/cell), ji is the

stoichiometric coefficient for reaction i for metabolite j, and vi refers to the velocity of reaction i

(mole/hr/cell). For the pentose phosphate pathway depicted in Figure 4-2, the metabolite balance

equations are listed in the appendix along with the steady state solutions. The value P represents

the ratio of the nonoxidative reaction flux to the glucose uptake rate (v4/v) as defined in Katz

and Rognstad (Katz and Rognstad, 1967). For example, when P equals one, the oxidative flux is

3vo and v2 equals zero resulting in one glucose molecule being converted into three CO2

molecules and one glyceraldehyde 3-phosphate molecule. Note that rates of reactions appearing
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in the metabolite balances of equation 4.19 refer to the overall (or net) flux through the pentose

phosphate pathway; no measure of reversibility can be calculated from these rates. The

calculated flux values show that, at steady state, the net fluxes through the nonoxidative pathway

reactions are equal.

Reaction reversibility can be accounted for by recognizing a forward (vi+) and reverse

(vi-) reaction, with the extent of reaction reversibility represented by ai which is scaled by the

glucose uptake rate v0:

vi = vi - (4.20)

v i = Vi + aiv0 (4.21)

vi = aiv0 (4.22)

The extents of reaction reversibility may all vary but still result in a constant steady state net

flux. For example, Figure 4-4 shows two different cases for a metabolite pool (M). Here, the

length of the arrows refers to the relative value of the flux (a large arrow depicting a large flux).

In both cases, the net flux through the metabolite pool (vl=v2) is the same; however, reaction

extents of reversibility may be different. Case I illustrates the pool at steady state with the same

extents of reversibility for the two fluxes. Case 2 illustrates the same net flux, but the extents of

reversibility for the two reactions are different. In this case, the values for v2
+ and v2- are much

greater than the values for vl+ and v although the difference between the two is the same.

Differences in extents of reversibility affect the label redistribution of the intermediate

metabolites. Therefore, assuming equal extents of reversibility for the transketolase and

transaldolase reactions of the pentose phosphate pathway could lead to errors in the data

analysis.
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Figure 4-4. The extent of reaction reversibility can vary without altering the net flux.
Here, the metabolite pool (M) has equal net input and output fluxes vl and v2 with the length of
the arrow referring to the relative value of the flux. Each net flux can be divided into a forward
and reverse flux (ex. v and v-) with the extent of reversibility denoting the relative sizes of
these two fluxes. In case 1, the extents of reversibility are equal, but the extents for case 2 are
significantly different with reaction 2 having a larger reversibility that reaction 1.
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Figure 4-5. [1-13C], [2-13C], and [3-'3C]glyceraldehyde 3-phosphate fractional enrichments
plotted as a function of a (a4=as=a6) resulting from [1- C]glucose input. The fractional
enrichments vary with reaction reversibility and approach various asymptotic values as the
reversibility becomes either small (<0.1) or large (>10).
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The introduction of reversibility is accompanied by an increase in the number of

unknown fluxes that must be determined for the complete description of the pathway. These

additional unknowns can be determined from measurements of metabolite label distributions

upon administration of labeled carbon substrates in conjunction with a second set of mass

balance equations. These equations reflect overall balances on each carbon atom in the reaction

network:

d(xy (m))_ E , iviyl(n)- yj(m)ji ivi (4.23)
dt i I i

Here yj(m) denotes the fractional enrichment (13C) or specific activity (14C) of the mth carbon

atom of metabolite j. In addition, n denotes the carbon atom of metabolite I mapped to carbon

atom m of metabolite j in reaction i (Follstad and Stephanopoulos, 1998). The above equation

applied to the carbon atoms of the pentose phosphate pathway metabolites yields the equations

given in Follstad and Stephanopoulos (Follstad and Stephanopoulos, 1998). At steady state,

unknown metabolic fluxes (vi) and nonmeasured fractional enrichments (yi(m)) can be calculated

from a sufficient number of extracellular metabolite fluxes and label fractional enrichments using

a mathematical software program such as Mathematica or Matlab.

Algorithm for solving the balance equations. The mass balance equations (4.19 and

4.23) can be cast in the following matrix form (equation 4.24):

· = I j 1 (4.24)

Ai,,(Pa,a,a) Ai,(P,a4,a5,a 6) .. bi

The matrix elements Aij represent coefficients in the metabolite carbon balance equations, yj

stands for the nonmeasured carbon atom label fractional enrichments or activities, and the bj

values refer to the fractional enrichments of the labeled input substrate. If the fraction of input
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hexose flowing through the nonoxidative pathway (P) and the three nonoxidative pathway

extents of reversibility (a4, a5, and a6) are known, the linear system of equations can be solved

easily for the fractional enrichment values. This method was used to perform the variational

studies presented in the results section. However, the determination of these variables from

experimental fractional enrichment measurements is in general a non-trivial issue, for it entails

the solution of nonlinear carbon atom balance equations. For the case of a small number of

unknown reaction reversibilities, the following iterative procedure can be used: a) formulate the

matrix A = A(P, a4, a, a6) of equation 4.24; b) guess a set of initial values for a4, as, and a6; c)

determine P from the overall metabolite balance and ensure that matrix A is invertible (detA 7 0)

for the guessed values of a4, as, and a6; d) determine y by solving Ay = b; e) adjust the values of

a4, as, and a6 by applying typical gradient methods with the ultimate goal of matching the

experimental data (yi,meas.) with the calculated values yicac. (i.e. iterate the algorithm and adjust

the values until Yicalc. equals yi,meas.).

In this paper, this iterative procedure was employed to calculate the extents of reaction

reversibility for sets of experimental data obtained from the literature. Other solution methods

can also be used to solve this nonlinear system of equations, such as the Newton-Raphson

method or nonlinear regression methods.

4.5.3 Results

The above method was applied to the classical pentose phosphate pathway reaction

network to study the effect of varying extents of reaction reversibility on label distribution and

achieve the reconciliation of published data sets.

Effect of reaction reversibility. Label enrichments of intermediate metabolites were

calculated first as a function of two parameters: the fraction of the input glucose utilized through
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the nonoxidative pathway (P), and the extent of reversibility in the transaldolase and

transketolase reactions (a). Figure 4-5 shows the labeling of [1-' 3C], [2-13.C], and [3-

'3C]glyceraldehyde 3-phosphate resulting from [1-'3C]glucose input for varying values of the

extent of reversibility a, initially assumed to be the same for all reactions. These figures show

that the enrichment approaches different asymptotic values for very small reversibilities (<0.1)

but converges to the same value as the reversibility becomes large (>10). Figure 4-6 shows the

label enrichment of [3-13C]glyceraldehyde 3-phosphate resulting from [1-13C]glucose, as a

function of both P and a. As P increases, the fractional enrichment decreases and becomes less

sensitive to the extent of reaction reversibility. The use of [2- 3C] and [3-' 3C]glucose input

yields more complicated enrichment patterns due to more extensive label scrambling (data not

shown), while [4-'3C], [5-' 3C], and [6-'3C]glucose input results in no change in output

glyceraldehyde 3-phosphate labeling when the extent of reversibility varies. For example, the

labeling of [3-'3C]glyceraldehyde 3-phosphate resulting from [6-'3C]glucose input is shown in

Figure 4-7 as a function of P and a. The fractional labeling in this case does not depend on the

extent of reversibility but rather on the net flow through the pentose phosphate pathway due to

the loss of CO2.

The previous plots illustrate the effects of reaction reversibility when the extent of

reversibility is the same for all nonoxidative pathway reactions. Since these extents can vary

independently, their individual effects on label distribution was further investigated. There are

four adjustable parameters in this case, (P, a4, as, and a6), and pictorial representations of the

numerical variation studies are shown in Figures 4-8 through 4-11 for the case where P is fixed

and two of the extents of reversibility are identical. The data shown here are for [1-'3C]glucose

feeding with P equal to 0.50. Although varying P does affect carbon labeling (as shown
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previously in Figure 4-6), this effect is not shown in Figures 4-8 through 4-11. In general, a

lower value for P results in greater label variation.

The determination of three extents of reversibility requires that a minimum of three label

measurements be obtained. It is not a priori obvious which label enrichment measurements

would provide the most information in resolving a set of three reaction reversibilities. The

determination of the particular label enrichments that optimize the observability of reaction

reversibilities is a separate problem that is not addressed in this paper. Here we limit our

investigation to a variational study where the effect of reversibilities on different metabolite

enrichments is presented. Figure 4-8 illustrates the results for the expected labeling of [6-

'3C]Hex6P. The curves of this plot show the resulting '3C enrichment when one extent of

reversibility is varied while the other two are held fixed at the indicated value. For example, the

leftmost curve shows the variation in [6-' 3C]Hex6P when a4 is varied from 0.0001 to 10000

while a5 and a6 both equal zero. The three sets of curves illustrate the effects that each individual

transketolase and transaldolase reaction reversibility can have on labeling. The figure also shows

some problems that could arise when one attempts to experimentally determine these

reversibilities. The relative flatness of the a6 curves suggests that the measurement of the

enrichment of this metabolite would not be particularly valuable in determining a6 accurately.

Also, the similarity between the curves for a4 and a6 points out that some difficulty could arise in

distinguishing between these two variables with this particular measurement.

Figure 4-9 shows carbon enrichment values for [1- 3C]Pen5P and Figure 4-10 shows

values for [5-'3C]Pen5P. Figure 4-9 shows that this particular carbon enrichment measurement

would lead to difficulties in differentiating a4 from a5 but might be helpful in determining a6.

Figure 4-10 illustrates that small differences result when the three extents of reaction
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Figure 4-8. [6-13C]Hex6P fractional enrichments plotted as a function of ai with P equal to
0.50 resulting from [1-' 3C]glucose feeding. For each curve, one extent of reaction reversibility
is varied while the other two are fixed at the specified values. For this case, varying a6 results in
small changes in enrichment, and differences between variations in a4 and a6 may be difficult to
resolve. Varying as, however, results in different behavior helping to resolve this reaction
reversibility.
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Figure 4-9. [1-'3C]Pen5P fractional enrichments plotted as a function of a; with P equal to
0.50 resulting from [1-13C]glucose feeding. For each curve, one extent of reaction reversibility
is varied while the other two are fixed at the specified values. For this case, variances in a4 and
a5 lead to identical or overlapping curves which leads to difficulty in resolving these
reversibilities individually. The fact that varying a6 leads to a different set of curves aids in the
determination of this reversibility.
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reversibility are varied separately. Therefore, the information content if Pen5P label

measurements is not particularly high and could lead to inaccurate reversibility estimates.

A key metabolite in this pathway is erythrose 4-phosphate (Ery4P). Although Ery4P is

difficult to isolate and analyze with NMR, the labeling of this metabolite can be determined

indirectly through aromatic amino acid analysis since Ery4P is a precursor in the biosynthesis of

these amino acids (Szyperski, 1995). Figure 4-11 illustrates the effects of varying each extent of

reversibility on [4-' 3C]Ery4P enrichment. The carbon enrichment of this metabolite shows

significant dependence on reversibility extents, with little curve overlap. This indicates that this

measurement is quite valuable in the determination of accurate extents of reaction reversibility.

The above figures illustrate the effects reversible reactions can have on metabolite carbon

label fractional enrichment. These effects become particularly important when the overall flux

through the pathway is low but the reversible reactions carry a high exchange flux. In such

cases, ignoring carbon label scrambling brought about by reaction reversibility in the pentose

phosphate pathway would affect the determination of the fluxes in other parts of the metabolic

network such as the tricarboxylic acid cycle, and lead to discrepancies between model

predictions and experimental data. The variational studies also show that the reversibility extent

and accuracy of flux determination depend on the particular choice of metabolite carbon

enrichments measured. For example, [6-'3C]Hex6P and [4-]3C]Ery4P are particularly important

measurements due to the fact that they are sensitive to variations in each of the reversible

reactions. On the other hand, [1-13C] and [5- 3 C]Pen5P are not as useful, but they could still be

used along with other metabolite carbon enrichment values, such as [3- 3C]Gra3P, to add

redundancy to the data set and help determine the three extents of reversibility with a higher

degree of accuracy.
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Figure 4-10. [5-13C]Pen5P fractional enrichments are plotted as a function of ai with P
equal to 0.50 resulting from [1-13 C]glucose feeding. For each curve, one extent of reversibility
is varied while the other two are fixed at the specified values. In this case, nearly all of the
curves are identical and overlap leading to virtually no way to determine individual
reversibilities.
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Figure 4-11. [4-1 3C]erythrose 4-phosphate fractional enrichments are plotted as a function
of ai with P equal to 0.50 resulting from [1-13C]glucose feeding. For each curve, one extent of
reversibility is varied while the other two are fixed at the specified values. For this case,
variations in each of the three reversibilities results in curves that all differ helping to resolve
these reversibilities. This demonstrates that [4- 3C]Ery4P is a key enrichment measurement and
should be included in the experimental measurement data set if one wants to calculate accurate
reversibility values.
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A similar exercise can be performed for the use of other labeled substrates in analyzing

the pentose phosphate pathway. For example, in the case for [2- 3 C]glucose feeding, large '3C

enrichments are localized in [5-13C]Hex6P, [2- 13 C]Pen5P, [4-13C]Pen5P, and [3- 3C]Ery4P. In

addition, variations in [5- 3C]Hex6P and [3-'3C]Ery4P enrichments are also valuable due to their

different response to each of the non-oxidative reaction reversibilities (data not shown) which is

a result similar to that obtained for these two metabolites with [1-'3 C]glucose feeding.

Comparison with literature data. The method presented in this paper yields theoretical

predictions that are in agreement with those of other models in the literature such as that of

Wiechert et al. (Wiechert and de Graaf, 1997a) for glyceraldehyde 3-phosphate and erythrose 4-

phosphate labeling obtained upon xylose feeding to cultures of Zymomonas mobilis (data not

shown). In addition, this method was applied to the analysis of several sets of published 4C

specific activity and 13C fractional enrichment data for Hex6P, Pen5P, Ery4P, and Gra3P

metabolite carbons. Although these data sets do not contain the ideal set of enrichment

measurements for Hex6P and Ery4P described previously, one can still obtain estimates of

reaction reversibility. These data sets covered a wide range of tissue types and cell culture

conditions. We omitted data involving the analysis of gluconeogenesis, such as that from rat

liver, due to the fact that the reversibility of reaction v2 introduced by gluconeogenesis involves

the addition of another variable in the model.

In two studies (Hostetler et al., 1966; Landau and Katz, 1964), the distribution of '4C in

glycogen from rat epididymal adipose tissue and goosefish islet cells incubated with [2-

'4C]glucose was tabulated. Tables 4-1 and 4-2 show the specific activities of each glycogen

(Hex6P) carbon atom relative to the C-2 glycogen label. The value for P was estimated using

equation 4.18 and variations of equation 4.18 due to the limited metabolite data. Assuming no
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Table 4-1. Rat epididymal adipose tissue'
from rat epididymal adipose tissue supplied v
(Ins-) and with [2- 4C]glucose substrate.
predictions assuming no reversibility and
reactions (Landau and Katz, 1964). At lox
concentration, P = 0.23.

4 C label data. 14C label data for Hex6P (glycogen)
vith either a high (Ins+) or low insulin concentration
Experimental values are compared with model
reversibility for transketolase and transaldolase

v insulin concentration, P = 0.13; at high insulin

Method Insulin Relative 14C specific activity of Hex6P at

C-1 C-2 C-3 C-4 C-5 C-6

Experimental low 15.2 100 12.8 1.9 13.9 2.9

high 30.7 100 17.9 3.5 14.8 5.3

Model: no reversibility

(a4 =a5=a6=0.0) low 20.6 100 11.5 0.6 5.4 1.1

high 31.5 100 18.7 1.5 8.1 2.5

Model: reversibility
(a4=0.5, a5=0.2, a6=0.0) low 18.8 100 15.8 2.1 13.4 2.5

(a4=0.8, a5=0.08, a=0.0) high 30.5 100 20.9 2.7 13.1 4.0

Table 4-2. Goosefish islet cell 14C label data. '4 C label data for Hex6P (glucose
polysaccharide) from goosefish islet cells supplied with [2-I4C]glucose. Experimental values
compared with model predictions assuming no reversibility and reversibility for transketolase and
transaldolase reactions (Hostetler et al., 1966). P = 0.075.

Method Relative 14C specific activity of Hex6P at

C-1 C-2 C-3 C-4 C-5 C-6

Experimental 11.1 100 8.3 1.3 15.0 1.7

Model: no reversibility

(a4=a5 =a6=0.0) 12.0 100 7.0 1.0 3.0 1.0

Model: reversibility
(a4=0.005, as=0.5, a6=0.005) 13.0 100 7.2 1.0 15.5 2.0
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reversibility, the model underestimates the relative specific activity at C-5 for both studies. In

the rat adipose tissue study, a moderate reaction 4 (v4) extent of reversibility (a4 = 0.5), a smaller

reaction 5 (vs) extent of reversibility (a5 = 0.2), and virtually no reaction 6 (v6) reversibility

results in closer agreement with the experimental data. Also, an insulin effect on the extents of

reversibility is revealed. The study with goosefish islet cells shows similar improvement in the

resolution of C-5 specific activity with rather low reaction 4 and 6 extents of reversibility

(a4=a6=0.005) and a higher reaction 5 extent of reversibility (as=0.5). No reversibility estimates

were presented in these papers, however, the results of Tables 4-1 and 4-2 show that the

agreement of the experimental data improved with the addition of non-zero extents of reaction

reversibility.

Another study reported 3C fractional enrichment for several metabolites from steady

state C. glutamicum chemostat cultures (Marx et al., 1996). Table 4-3 compares the

experimental fractional enrichments for erythrose 4-phosphate and glyceraldehyde 3-phosphate

with the ones predicted by the model. In this case, the value for P was calculated from the

metabolite balance data. Assuming no nonoxidative pathway reversibility, the model is unable

to determine values consistent with the experiments, particularly for the C-4 carbon of erythrose

4-phosphate. However, adding reversibility to the model improves the estimates of fractional

enrichment, lowers the C-3 value for glyceraldehyde 3-phosphate, and increases the values for

the other carbons. The relatively high value of the C-3 carbon enrichment of glyceraldehyde 3-

phosphate could be explained by adding another flux from the glyceraldehyde 3-phosphate pool

to amino acids synthesis such as serine or glycine, two reactions not covered in the reaction

network considered. Note that the extents of reversibility are all different, and that the

measurement of erythrose 4-phosphate carbon atom fractional enrichment is particularly useful
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Table 4-3. C. glutanzicum 13C label data. 13C label data for Ery4P and Gra3P intermediates
taken from C. glutamicum growing in a chemostat culture with l1-'3C]glucose substrate.
Experimental values compared with model predictions assuming no reversibility and reversibility
for transketolase and transaldolase reactions (Marx et al., 1996). The corresponding reversibility
values calculated by Marx et al. (1996) for this study were comparable to those presented here
with values of 0.23 for a5, 0.0 for a6, and 0.20 for P (scaled to the same flux basis used here)
compared to our value of 0.22. However, the value for a4 was 9.74 which deviated somewhat
from our value of 0.5, and possible sources for this deviation are discussed in Results.

Method Metabolite Metabolite carbon atom

C-I C-2 C-3 C-4

Experimental Ery4P 2.5 2.0 1.9 15.3

Gra3P 2.7 2.6 26.3 -

Model: no transketolase and transaldolase reversibility
(a4=as=a6=0.0) Ery4P 0.0 0.0 0.0 5.2

Gra3P 0.0 0.0 32.4

Model: transketolase and transaldolase reversibility
(a4=0.5, a5=0.1, a6=0.2) Ery4P 3.7 0.9 0.3 15.6

Gra3P 1.9 0.6 31.0

Table 4-4. E. coli 14 C label data at slow growth conditions. '4C label data for Hex6P and
Pen5P from E. coli at slow growth conditions supplied with [2-'4C]glucose substrate.
Experimental values compared with model predictions assuming no reversibility and reversibility
for transketolase and transaldolase reactions (Katz and Rognstad, 1967). The reversibility values
calculated by Katz and Rognstad 1967) are comparable to those presented here with a value of
0.06 for the transaldolase reaction (as), a value of 0.05 for the transketolase reactions (a4 and a6),
and an identical value of 0.02 for P.

Method Metabolite Metabolite carbon atom

C-I C-2 C-3 C-4 C-5

Experimental Hex6P 4 100 4 - 4

Pen5P 100 107 - 74 -

Model: no reversibility Hex6P 4 100 2 - 1

(a4=a5a=a6=0.0) Pen5P 100 2 - 1 -

Model: reversibility Hex6P 4 100 2 - 3
(a4=0.05, a5=0.03, a6=0.05) Pen5P 100 111 - 68 -
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due to the low fractional enrichments of C-1 and C-2 for glyceraldehyde 3-phosphate. In other

words, one could not calculate accurate reversibilities based on the low glyceraldehyde 3-

phosphate fractional enrichment values without adding the erythrose 4-phosphate measurements.

In addition, the reversibility results shown here are fairly cnsistent with those calculated by

Marx et al. (Marx et al., 1996) for this study (see Table 4-3). The approximately ten-fold

difference in the values for a is most likely due to the fact that the ribose metabolites were

treated individually by Marx et al. (Marx et al., 1996) and not as one pool, and this would affect

reversibilities involving the reactions with these metabolites, particularly for reaction a4.

Finally, the data of a study that measured polysaccharide glucose and RNA ribose

labeling in E. coli cultures incubated with [2-'4C]glucose under different growth conditions were

analyzed (Katz and Rognstad, 1967). Tables 4-4, 4-5, and 4-6 show the specific activities of

each polysaccharide glucose carbon atom relative to the C-2 label and each ribose carbon atom

relative to the C-1 label. In these cases, the value for P was determined from the metabolite

balance data. Again, these tables show that the addition of reaction reversibility dramatically

improves the agreement of the experimental data with values calculated using the model. Also,

the ribose measurements increased the redundancy of the system improving the resolution of the

data. For example, using the hexose carbon atom specific activities alone cannot resolve all

reaction reversibilities due to the low enrichment values calculated for C-1, C-3, and C-5.

However, the addition of the C-2 and C-4 specific activities from ribose 5-phosphate

measurements improved the resolution of flux determination by providing additional

measurements with high specific activities. In addition, the reversibilities calculated by Katz and

Rognstad (Katz and Rognstad, 1967) are comparable to those calculated here (see Tables 4-4, 4-

5, and 4-6).

104



Table 4-5. E. coli 14C label data at log growth phase. 4C label data for Hex6P and Pen5P
from E. coli at log growth phase supplied with [2-' 4C]glucose substrate. Experimental values
compared with model predictions assuming no reversibility and reversibility for transketolase and
transaldolase reactions (Katz and Rognstad, 1967). The reversibility values calculated by Katz
and Rognstad (1967) are comparable to those presented here with a value of 0.06 for the
transaldolase reaction (a5), a value of 0.12 for the transketolase reactions (a4 and a6), and a value
of 0.08 for P, compared to our value of 0.09.

Method Metabolite Metabolite carbon atom

C-1 C-2 C-3 C-4 C-5

Experimental Hex6P 15 100 10 - 8

Pen5P 100 53 - 48 -

Model: no reversibility Hex6P 15 100 8 - 4

(a4=a5=a6=0.0) Pen5P 100 8 - 4 -

Model: reversibility Hex6P 16 100 8 - 10
(a4=O.105, a5=0.065, a6--0.11) Pen5P 100 57 - 37 -

Table 4-6. E. coli 14 C label data at stationary phase.
E. coli at stationary phase
with model predictions

supplied with [2-'4C]glucose
assuming no reversibility

14C label data for Hex6P and Pen5P from
substrate. Experimental values compared
and reversibility for transketolase and

transaldolase reactions (Katz and Rognstad, 1967). The reversibility values calculated by Katz
and Rognstad (1967) are comparable to those presented here with a value of 0.71 for the
transaldolase reaction (as), a value of 0.46 for the transketolase reactions (a4 and a6), and a value
of 0.13 for P, compared to our value of 0.16.

Method Metabolite Metabolite carbon atom

C-1 C-2 C-3 C-4 C-5

Experimental Hex6P 24 100 17 - 24

Pen5P 100 150 - 97 -

Model: no reversibility Hex6P 24 100 14 - 6

(a4=a5=a6=0.0) Pen5P 100 14 - 6 -

Model: reversibility Hex6P 26 100 25 - 25
(a 4=0.6, a 5=0.8, a6=0.6) Pen5P 100 147 - 82
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4.5.4 Conclusions

A variety of methods have been employed in the past to determine pentose phosphate

pathway fluxes. One method assumed that pentose phosphate pathway flux equals that required

for ribose carbon skeletons for DNA and RNA biosynthesis (Xie and Wang, 1994c; Zupke and

Stephanopoulos, 1995a). Another method used the ratio of specific activities of metabolite

carbons resulting from the addition of [1-'4C] and [6- 4C]glucose to calculate pentose phosphate

pathway activity (Katz and Wood, 1963; Katz and Wood, 1960; Kingsley-Hickman et al., 1990;

Larrabee, 1989; Willis et ai., 1986). A third method used 13C labeling to determine the amount

of pentose phosphate pathway flux in cells under low growth conditions and assumed that the

flux equaled the amount needed for biosynthesis with no scrambling due to this pathway

(Mancuso et al., 1994; Sharfstein et al., 1994). All of these methods may be accurate under

certain conditions (such as low growth rates) but in general, they only represent the net fluxes

through the corresponding pathways. These approaches are not general and do not take into

account the resulting label redistribution caused by reaction reversibility which could lead one to

calculate incorrect fluxes in other parts of the metabolic network.

The general metabolic reaction network model presented here includes not only overall

carbon redistribution balances but also accounts for varying extents of reaction reversibilities.

This general approach applied to the pentose phosphate pathway illustrated that varying extents

of reaction reversibility can have a dramatic influence on fractional enrichment data. In addition,

the accuracy of reversibility calculation depends on the choice(s) of specific metabolite carbon

enrichment measurement as illustrated with the [6-'3C]Hex6P and [4-'3 C]Ery4P enrichment

values in the variational study for [1- 3C]glucose feeding.
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Fractional enrichment measurements of intermediate metabolites present at small

concentrations may be difficult to obtain due to low sensitivity of NMR spectroscopic

measurements. A compound usually produced in larger amounts in cultured cells is lactate

which could be used to obtain an analyzable NMR spectrum. Lactate carbon atoms are all

derived from the pyruvate pool which is usually formed from glycolysis and thus glyceraldehyde

3-phosphate. However, it is also possible that a fraction of the lactate production is the result of

glucose carbon cycling from pyruvate via anapleurotic reactions into the tricarboxylic acid cycle

and then back into pyruvate via the malic enzyme. Therefore, in order to properly account for

lactate labeling, one needs to account for the tricarboxylic acid cycle recycle labeling effect

added to the lactate carbons. This analysis can be done using [4-'3 C], [5-'3 C], and [6-

13C]glucose, since the pentose phosphate pathway does not scramble these labeled carbon atoms

in a particular metabolite, although fractional enrichment values for the labeled carbon atoms

may vary (data not shown). In other words, each metabolite would have one labeled carbon

atom with a variable fractional enrichment. Using the carbon enrichment labeling of the [1-13C],

[2-13C], and [3-' 3C]lactate carbon atoms, the tricarboxylic acid recycle effect can be calculated

using a procedure described in (Klapa et al., 1999; Park, 1996; Park et al., 1999; Park et al.,

1997).

When applied to literature data sets, the modeling approach was successful in explaining

the appearance of label on several metabolite carbon atoms. This was demonstrated with data

sets for the rat adipose tissue and goosefish islet cells in which the high experimental specific

activity at the C-5 carbon in the analyzed glycogen was explained by introducing reaction

reversibility to the model. The need for reaction reversibility was also clearly shown in the

analysis of the C. glutamicum and E. coli data sets. Finally, the variability in the extents for all
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of these data sets suggested that each transketoiase and transaldolase reaction may have a

different extent of reversibility depending on the cell type, medium environment, or culture

growth conditions.
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5. METABOLIC FLUX IN CHINESE HAMSTER OVARY CONTINUOUS CULTURE

5.1 Introduction

Two of the most important parameters in metabolic pathway analysis are the flux through

various biochemical reactions and the distribution of this flux at key nodes within a biochemical

reaction network. The accurate calculation of these fluxes is required in order to elucidate

relations between metabolic fluxes and physiological states. Metabolic flux analysis was applied

to elucidate these relations for Chinese hamster ovary cells at different growth rates for several

continuous culture steady states. These various steady states are representative of the bioreactor

environments and cellular physiological states encountered under batch and fed-batch culture

conditions. A low residence time (high growth rate) correlates with the initial time points of a

batch or fed-batch culture, whereas a high residence time (low growth rate) correlates with the

later stages of batch or fed-batch culture. In addition, the low growth rates correlate with the

higher cellular death rates observed during the late stages of a batch or fed-batch culture.

Theilc;ore, the analysis of the cellular physiology encountered in continuous culture steady states

can yield a significant amount of information concerning the cellular control of metabolic flux

distribution occurring in various bioreactor environments. Furthermore, this information could

be applied in not only process design but also in the modeling of batch or fed-batch processes.

The cellular and environmental conditions that result in metabolic flux and flux

distribution variations as well as those that trigger apoptosis were analyzed under steady state

conditions. In addition, protein product glycosylation was investigated, and these results are

discussed elsewhere in Nyberg et al. (Nyberg et al., 1999b). Specifically, the cellular

physiological state was characterized not only through measurements of viability but also

through the calculation of metabolic fluxes and variations of flux distribution around the
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pyruvate branchpoint. This metabolite was chosen due to the fact that it is the most important

branchpoint in metabolism as demonstrated through theoretical analysis of the central carbon

metabolism network (Simpson et al., 1999). The results indicated that metabolic flux

distribution around pyruvate fluctuates as a function of the cellular growth rate with a higher

TCA cycle and respiration activity occurring at the lower growth rates. At these low growth

rates, the onset of lactate consumption coincided with the rapid rise in the cellular death rate.

These results correlate with the metabolic changes that occur over the course of a fed-batch and

illustrate the metabolic regulation occurring as cells attempt to satisfy energetic and biosynthetic

requirements as well as the flexibility of the pyruvate branchpoint. In addition, these results

indicate that an operating window of growth rates exists for this cell line where cell death can be

minimized, and this result could be utilized in the design of a batch or fed-batch culture process.

5.2 Results

The continuous culture runs for the Chinese hamster ovary cell line involved four steady

states operated under glucose limiting conditions and one glutamine limited steady state. These

reactor runs were initially operated in batch mode and then switched to continuous mode. The

culture was determined to be at steady state when the cell density, viability, and key metabolite

production rates did not vary for more than 10% for 48 hours. The specific cell growth rates and

death rates were calculated using equations 4.4 and 4.5, and the results for the four glucose

limited steady states and one glutamine limited steady state are shown in Figure 5-1. As the

residence time increased (dilution rate decreased), the specific growth rate decreased while the

specific death rate increased. Furthermore, at high dilution rates, large changes in the growth

rate resulted in only minor changes in the death rate. This contrasts with the lower dilution rates
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Figure 5-1. Specific growth and death rates versus dilution rate. The specific growth and
death rates for the Chinese hamster ovary cell continuous cultures were determined using
equations 4.4 and 4.5. As the dilution rate decreased, the death rate increased resulting in lower
viabilities at these higher residence times.
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which showed large increases in the death rates with only minor changes in the growth rates.

This phenomenon has been described in the literature before (Hayter et al., 1993; Lee et al.,

1995). Metabolite production and consumption rates were calculated using equation 4.7 and are

summarized in Table 5-1 along with the calculated biomass demands. A significant amount of

cell aggregation was observed, particularly at the low dilution rates, and the dry cell weight was

measured in an effort to obtain accurate biomass concentrations. The errors presented in the

table are the propagated errors that include not only metabolite measurement errors but biomass

concentration and dilution rate errors as well. The cellular consumption of peptides was

measured due to the presence of 2.5 g/L of peptide hydrolysate in the medium (Nyberg et al.,

1999a). In addition, the biosynthesis demands for each amino acid were considered in the

calculation of each of these values. Therefore, the final values are the metabolite production and

consumption rates directly affecting the metabolic network shown in Figure 4-1.

The consistency of the data was evaluated by calculating the consistency index values (h)

listed in Table 5-2 as described previously (Nyberg et al., 1999a; Zupke and Stephanopoulos,

1995a). The first and third glucose limited steady states as well as the glutanmine limited steady

state initially failed the consistency check. However, these data sets became consistent upon the

elimination of specific measurements. In particular, the glucose limited steady state became

consistent after the elimination of the oxygen measurement. Furthermore, the third glucose

limited and the glutamine limited steady states became consistent upon the elimination of the

leucine consumption rate. The error in the leucine consumption rate was connected to the OUR

and CER measurements and TCA cycle flux as described in Nyberg et al. (Nyberg et al., 1999a).

The final calculated metabolic fluxes were obtained for these data sets after the elimination of

each of these inconsistent measurements.
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Table 5-1. Measured metabolite production and consumption rates (mmole/gDcw d). Tlse
values were calculated taking into consideration the biosynthesis demand for amino acids .d
other metabolites. Positive values indicate metabolite production whereas negative values
indicate metabolite consumption.

Metabolite Steady State Steady State Steady State Steady State Steady State

Glc-limited 1 Glc-limited 2 Glc-limited 3 Glc-limited 4 Gn-limited

Glucose
Lactate

CO 2

02
Ala
Asn
Asp
Gln
Glu
Gly
Ile

Leu
Lys
Pro
Ser
Thr
Val

Biomass
AcetylCoA

a-KG
CO 2

G6P
GAP

NADH
OAA
R5P

-2.71_-0.15
0.87±0.35

15.89+1.37
-20.54±1.46

0.52+0.04
-0.25+0.02
0.00±0.02

-2.31+0.14
0.05_0.02
0.09±0.04

-0.06+0.02
-0.15+0.03
0.01l0.11
0.27±0.03
0.36+0.03
0.05±0.02

-0.01+0.04

4.296
-0.354
-0.035
0.248
0.226

-0.346
0.094
0.188

-1.71-+0.10
0.22-0.09

17.23±1.30
-15.52±1.30

-0.17-+0.02
-0.23-0.03
-0.06_+0.02
-1.67±0. 10
-0.02-+0.01
0.06+0.03

-0.11+0.02
-0.29±0.02
0.06±0.05
0.09±0.03
0.19±0.02
0.04±0.01

-0.12_0.02

4.296
-0.354
-0.035
0.248
0.226

-0.346
0.094
0.188

-1.28-+0.04
0.04±0.11

14.15+0.77
-13.76+0.76
-0.16_-0.02
-0.21+0.02
0.00±0.02

-1.25+0.06
0.08+0.02
0.17+0.03

-0.07+0.01
-0.21-+0.01
-0.01+0.05
0.04+0.02
0.15+0.02
0.06+0.02

-0.07+±0.02

4.296
-0.354
-0.035
0.248
0.226

-0.346
0.094
0.188

-1.27±0.06
-0.08_-.02
12.82+0.85

-12.70±1.04
-0.22+0.02
-0.19+0.02
-0.01+0.02
-1.18_-0.07
0.10±0.01
0.22±0.05

-0.07-0.01
-0.22+0.02
0.010.14
0.04_0.07
0.15±0.02
0.08±0.01

-0.07-0.02

4.296
-0.354
-0.035
0.248
0.226

-0.346
0.094
0.188

-8.14-+035
9.19±0.49

i8.68±1.15
.16.02±1.09

0.07+0.03
-0.26-0.03
-0.19-+0.03
-0.04+0.03
-0.27+0.03
-0.05+0.04
-0.13+0.02
-0.34+0.03
-0.04+0.05
0.02+0.06
0.06+0.04
0.04±0.02

-0.13+0.02

4.296
-0.354
-0.035
0.248
0.226

-0.346
0.094
0.188
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Table 5-2. Calculated consistency index values. Consistency index (h) values were calculated
to determine the consistency of the metabolite production and consumption rate data sets.
Values lower than the 2 distribution value (90% confidence interval, 2 degrees of freedom)
indicate that the data set was consistent. The three data sets that were inconsistent were modified
through the elimination of the specified measurements resulting in consistent data sets (90%
confidence interval, 1 degree of freedom).

Steady State h Z2 Pass / Fail

Glc-limited 1 22.04 4.60 Fail

-OUR 0.60 2.71 Pass

Glc-limited 2 0.02 4.60 Pass

Glc-limited 3 13.84 4.60 Fail

-leucine 0.03 2.71 Pass

Glc-limited 4 1.31 4.60 Pass

Gin-limited 1 6.53 4.60 Fail

-leucine 0.08 2.71 Pass
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Metabolic fluxes for the network in Figure 4-1 are listed in Table 5-3 for each of the five

steady states. The four glucose limited steady states demonstrated that as the specific growth

rate was decreased, several key metabolic fluxes varied uniquely as shown in Figure 5-2. The

flux of pyruvate into the TCA cycle via pyruvate dehydrogenase (PDH) decreased, but at a rate

lower than that for the influx of pyruvate from glycolysis. This variation in the slopes of the

best-fit lines in Figure 5-2 indicates that the flux distribution around pyruvate changes as a

function of growth rate with the TCA recycle flux showing the least amount of variation with the

growth rate. Figure 5-3 illustrates these flux distribution changes more clearly, and figure 5-3b

shows values for the ratios of several calculated metabolic fluxes around the pyruvate

branchpoint. As mentioned previously, pyruvate is a key branchpoint in central carbon

metabolism linking glycolysis with the TCA cycle, overflow metabolism, and transamination

reactions. As mentioned in chapter four, it has been shown through theoretical analysis to be the

main link metabolite in this biochemical reaction network (Simpson et al., 1999). Plotted in

figure 5-3b are the ratios of the sum of the glycolytic flux (reaction 3) plus the TCA recycle flux

(reaction 12) divided by the TCA cycle inlet flux (reaction 6) as a function of specific growth

rate. For this ratio, deviations from the value of unity are indicative of waste metabolite

production (lactate and alanine). Therefore, high values of the ratio correspond to a large

amount of carbon influx, secretion of large amounts of lactate and alanine, and a small carbon

flux entering the TCA cycle. Lower values, however, correspond to more efficient utilization of

pyruvate for energy generation in the TCA cycle. As the dilution and specific growth rates

decreased for the four glucose limited steady states, the pyruvate ratio decreased indicating a flux

distribution shift around pyruvate. This shift involves the shuttling of more pyruvate carbon into

the TCA cycle as opposed to being converted to lactate. The two lowest steady states were

115



Table 5-3. Calculated metabolic fluxes (mmole/g viable DCW). The metabolic fluxes were
calculated using equation 4.11 and the data listed in Table 5-1.

Reaction Steady Steady Steady Steady Steady
State State State State State

Glc-lim 1 Glc-lim 2 Glc-lim 3 Glc-lim 4 Gln-lim

1 Glc -- G6P 4.96 4.05 3.80 4.26 13.67
2 G6P - 2 GAP 4.52 3.62 3.37 3.82 13.24
3 GAP --> Pyr 7.98 6.42 5.56 6.23 26.22
4 Pyr ---> Lac 1.89 0.51 0.11 -0.27 15.44

5 G6P -> BiomassRsp + CO2 0.19 0.19 0.19 0.19 0.19

6 Pyr -> AcCoA + C0 2 9.53 11.50 10.37 11.95 12.55

7 Pyr + Glu --> ocKG + Ala 0.95 -0.41 -0.47 -0.75 0.12
8 OAA + AcCoA - - 6.03 9.24 8.17 10.68 10.33

ocKG + CO 2

9 aKG -> SuCoA + CO2 10.02 13.40 11.88 14.58 11.18
10 SuCoA --> Fum 10.05 13.85 12.08 14.79 11.55
11 Fum ---> OAA 10.05 13.85 12.08 14.79 11.55
12 OAA --> Pyr + CO 2 4.38 5.18 4.44 4.70 1.89
13 Gln --> Glu 4.67 4.51 4.33 4.60 0.50
14 Glu -- ocKG 2.31 4.29 3.50 3.78 1.12
15 GAP + Glu - Ser + cKG 0.66 0.45 0.46 0.49 0.11
16 GAP + Glu - Gly + KG 0.17 0.15 0.49 0.70 -0.09
17 Lys -4 2 AcCoA + 2 CO2 -0.05 -0.14 0.04 0.30 0.07
18 Ile -- AcCoA + SuCoA 0.11 0.25 0.19 0.23 0.22
19 Leu --> 3 AcCoA 0.27 0.69 0.61 0.73 0.57
20 Glu --> Pro 0.49 0.20 0.12 0.08 0.03
21 Thr ---> SuCoA -0.09 -0.10 -0.19 -0.26 -0.06
22 Val ---> SuCoA + CO2 0.01 0.29 0.20 0.24 0.21
23 OAA + Gin --> Asn + cKG -0.45 -0.54 -0.62 -0.65 -0.44
24 OAA + Glu -> Asp + caKG 0.00 -0.13 0.00 -0.03 -0.32
25 G6P --> BiomassG6p 0.25 0.25 0.25 0.25 0.25
26 GAP -> BiomassGAp 0.23 0.23 0.23 0.23 0.23
27 AcCoA - BiomassAccA 4.31 4.29 4.30 4.28 4.30
28 BiomassKGO -- ccKG 0.35 0.35 0.35 0.35 0.35

29 OAA ---> BiomassoAA 0.09 0.09 0.09 0.09 0.09
30 CO2 -> Biomassco2 -0.22 -0.22 -0.22 -0.22 -0.22
31 NADH --> BiomassNADH 5.38 5.38 5.38 5.37 5.38
32 0.5 02 + 3 ADP + NADH - 40.40 56.32 50.43 63.56 55.09

3 ATP + NAD+

33 0.5 02 + 2 ADP + FADH 2 - 10.39 14.94 13.12 16.29 12.63

2 ATP + FAD
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Byproducts
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Figure 5-2. Calculated metabolic fluxes (mmole/gDcw hr) versus growth rate. Metabolic
fluxes decrease as the growth rate decreases. However, these fluxes decrease at different rates,
and the glycolytic metabolic flux drops faster than the TCA cycle flux.
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Pyruvate 1
Rxn 3+12

Pyruvate
Rxn 6 1.

0.
0.016 0.018 0.02 0.022 0.024

Growth Rate (hr-1)

Figure 5-3a,b. Metabolic flux distribution around the pyruvate branchpoint. The values
plotted in (5-3b) are the ratio of the sum of glycolytic flux (reaction 3) and the TCA recycle flux
(reaction 12) divided by the TCA cycle inlet flux (reaction 6), (reactions shown in 5-3a).
Deviations from unity represent waste metabolite (lactate and alanine) production. High values
of the ratio indicate a condition of high waste metabolite production, whereas lower values
indicate more efficient utilization of pyruvate carbon. The metabolic flux distribution around
pyruvate shifted with a higher fraction of pyruvate flowing into the TCA cycle as the growth rate
decreased. The condition of lactate consumption (ratio less than 1.0) coincided with a noticeable
increase in the death rate and decrease in culture viability.
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also situations in which the medium lactate was consumed with a significant increase in the

cellular death rate (pyruvate flux ratio less than unity; Figure 5-3b). This net lactate

consumption was a result of the fact that the peptide hydrolysate present in the medium

contained a small amount of lactate.

The glutamine limited steady state resulted in a higher glucose consumption and lactate

production with a higher glycolytic activity as demonstrated by the inefficient metabolism as

measured using the technique described in Figure 5-3. The ratio described in Figure 5-3 was

calculated to be 2.23 or almost twice the value for the high growth rate steady state under

glucose limited conditions. Glucose limitation clearly has a stronger effect on the flux

redistribution around pyruvate.

5.3 Discussion

The data presented in this chapter demonstrate that cells underwent changes in their

metabolic flux distribution and physiological state in response to progressively lower dilution

and growth rates until reaching a point of high cellular death. At the progressively lower growth

rates, the utilization of pyruvate carbon became more efficient with more pyruvate flowing into

the TCA cycle for respiration and biomass production. This adaptation enabled the cells to

maintain energy production as well as meet the requirements for cell biosynthesis.

These results match the behavior observed in batch and fed-batch cultures. At high

growth rates, a significant amount of lactate is produced indicating that the TCA cycle is not

extremely active and does not demand much pyruvate carbon for energy production. However,

over the course of a culture, the lactate to glucose ratio decreases indicating that metabolism is

becoming more efficient with more pyruvate carbon flowing into the TCA cycle (Glacken et al.,

1986; Hansen and Emborg, 1994; Hassell et al., 1991; Lanks and Li, 1988; Xie, 1997). Feeding
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low amounts of glucose and glutamine substrate also results in a lowered lactate to glucose ratio

indicating that TCA cycle demand for carbon is a major determinant for byproduct production as

demonstrated in the comparison between the glucose and glutamine limited steady states

(Glacken et al., 1986; Ljunggren and Higgstr6m, 1994; Xie, 1997). In addition, lactate

consumption correlates with the time in a culture at which the cell death rate becomes significant

(Xie, 1997).

These results reveal an operating window one should maintain when growing this cell

line. Cells should be maintained at a growth rate that is not too high which results in inefficient

metabolism but also not too low resulting in cell death. In addition, the fact that flux distribution

can change significantly around pyruvate as a function of both the growth rate and the culture

limiting substrate indicates the flexibility of this metabolic node. However, the pyruvate node is

not completely flexible due to the extensive regulation of the pyruvate dehydrogenase complex

(PDH) (Behal et al., 1993). Therefore, this node could be classified as a weakly rigid node that

is dominated by PDH activity (Stephanopoulos and Vallino, 1991). PDH is one of the most

complex enzymes known, and the PDH enzyme complex consists of sixty subunits, three

different enzyme groups, and several separate regulatory proteins and requires five different

coenzymes (Lodish et al., 1995). PDH is regulated through separate enzymes involving both a

kinase (inactivates PDH) and a phosphatase (activates PDH) that are in turn regulated by NADH,

ATP, pyruvate, and acetyl CoA. Figure 5-4 illustrates the enzymes around the pyruvate

branchpoint. Lactate dehydrogenase, malic enzyme, pyruvate kinase, and transaminase are not

nearly as regulated as pyruvate dehydrogenase. The flux distribution around pyruvate in cultured

mammalian cells appears to be dominated by the activity of PDH. Typically, only a minimal

amount of pyruvate is allowed through PDH resulting in excess pyruvate flowing through lactate
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Figure 5-4. Pyruvate branchpoint flexibility. The pyruvate branchpoint is a weakly rigid
branchpoint. A significant amount of the regulation around pyruvate occurs at the pyruvate
dehydrogenase complex, and this enzyme dominates the partitioning of metabolic flux.
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dehydrogenase. However, since the TCA cycle generates a significant amount of energy due to

the more efficient respiration process, enhancing the metabolic flux to the TCA cycle in the

pyruvate branchpoint could result in increased cellular energy and biomass production.

Engineering the metabolic flux distribution around this branchpoint would be a difficult if

not impossible task. Even with enzymes that are easy to transfect and overexpress within a cell

line, metabolic engineering oftentimes results in little enhancement of the desired metabolic flux

(Bailey, 1999). An easier solution would be to define cell culture operating conditions that

would cause the cells to increase their PDH activity while continuing to grow at a high rate. This

form of inverse metabolic engineering involves the identification of environments that result in a

desired phenotype, and this strategy has proven to be an effective method to enhance desired

traits in cultured cell lines (Bailey et al., 1996).

122



6. STEADY STATE MULTIPLICITY IN HYBRIDOMA CONTINUOUS CULTURE

6.1 Introduction

The previous chapter demonstrated the importance of the pyruvate branchpoint in the

identification of cellular phenotypes associated with efficient metabolic patterns. The PDH

enzyme was identified as a potential site for metabolic engineering techniques. However,

inverse metabolic engineering could provide a more useful method for enhancing this cellular

flux by identifying operating conditions that lead to enhanced PDH activity.

Metabolic flux analysis was applied to elucidate the physiological state of hybridoma

cells at different continuous culture steady states. Of particular interest is the observed steady

state multiplicity, whereby drastically different cell concentrations were observed under the same

dilution rate. The specific steady state obtained depended on the operating path that was

followed in reaching the steady state. Metabolic flux analysis applied to these multiple steady

states provided a framework for the rational integration of a multitude of metabolic rate data and

also showed that cell concentration multiplicity was the result of physiological state multiplicity,

as measured by the fraction of carbon flux shuttled into the TCA cycle for energy generation.

Elucidation of cellular physiological states provided the basis for designing operating and cell

strain selection strategies to reproduce the high efficiency physiological states in industrial cell

applications.

6.2 Results

The total and viable cell concentrations, as well as the dilution rate for the continuous

culture run are presented in Figure 6-1. Cell physiology of each of the five steady states was

characterized by analyzing the last few data points in each of the sections marked as A, B, C, D

and E on Figure 6-1. After the reactor run was initiated, the dilution rate was set at 0.04 hr-'. At
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Figure 6-1. Cell concentration and dilution rate versus time. Viable (open circles) and total
(closed circles) cell concentrations for the hybridoma continuous culture run as well as the
dilution rate for each time period. The five sections marked A, B, C, D, and E represent the five
time periods with different dilution rates. Flux analysis was carried out for the last few data
points in each time period.
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Figure 6-2. Cell viability versus time for each time period. The five sections marked A, B,
C, D, and E represent the five time periods with different dilution rates. Flux analysis was
carried out for the last few data points in each time period.
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each dilution rate, the reactor was determined to be at steady state after five residence times as it

satisfied the steady state criteria previously mel:ioned. The dilution rate was decreased in

increments of 0.01 hr' for each of the next three steady states after a steady state had been

reached. At the end of the period corresponding to a dilution rate of 0.01 hr', the dilution rate

was stepped back up to 0.04 hr '1 over a period of approximately 100 hours. The viable cell

density ranged from 5*105 to 9*105 cells!ml in the first four steady states (A, B, C, and D) and

increased further to 1.3*106 cells/ml upon return to a dilution rate of 0.04 hr'1 in the last steady

state (E). Even though the dilution rates for steady states A and E were the same, the viable cell

concentrations for steady state E were approximately two-fold higher compared to steady state

A. Therefore, the culture can reach different viable cell concentrations at the same operating

conditions, indicating steady state multiplicity. Figure 6-2 shows the cell viabilities for the

various steady states. As the dilution rate decreases, the viability drops, ranging from 95% to

approximately 42% at the lowest dilution rate examined. Upon stepping the dilution rate back up

to 0.04 hr-', the viability returned to 95% similar to that obtained at the first steady state (A).

The specific cell growth rates and death rates calculated from equations 4.4 and 4.5 for

the five steady states are shown in Figure 6-3. As the dilution rate decreased, the specific growth

rate decreased while the specific death rate increased. At a hybridoma steady state, a condition

of abortive proliferation eventually is reached where cell growth is exactly balanced by cell death

and cell dilution at steady state as described previously by Chung et al. (Chung et al., 1998) for

this cell line. Most of the death occurring at the low dilution rates was by apoptosis as shown in

Figure 6-4. Most of the apoptotic cells were found to be in the late apoptotic phase (data not

shown) which explains the agreement between the fraction of apoptotic cells measured by

acridine orange / ethidium bromide with the fraction of dead cells determined by trypan blue.
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Figure 6-3. Specific growth and death rates versus dilution rate. The specific growth and
death rates were determined using equations 4.4 and 4.5. As the dilution rate decreased, the
death rate increased resulting in lower viabilities at these higher residence times.
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Figure 6-4. Acridine orange / ethidium bromide stain for each steady state. Nearly identical
death characteristics were observed for steady states A and E. Also, apoptosis was the
predominant type of death for the low growth rate steady states.
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The specific productivity of IgG is shown in Figure 6-5. An intermediate dilution rate

(steady state B) yielded the largest specific productivity compared to the other steady states. As

the dilution rate was reduced to 0.02 and further to 0.01 hr-', the specific productivity also

decreased and remained low, even after the dilution rate had been increased back to 0.04 hr'

(steady state E). Even though the specific productivity was lower compared to steady state A,

the final product concentration was higher for steady state E due to the higher cell concentration

at this steady state (data not shown). The observation of an increasing specific productivity at

lower dilution rates has been recorded (Linardos et al., 1991). However, in the case of CRL-

1606 cells, a maximum specific productivity is obtained at an intermediate growth rate. One

possible explanation may be that previous work did not investigate dilution rates and cell

viabilities as low as the one presented here. However, the maintenance of the low specific

productivity upon return to the high dilution rate steady state of 0.04 hr- was never observed in

previous continuous culture experiments. The fact that in the experiment reported here the

specific productivity was not found to be a function of the specific growth rate suggests that

metabolism and other factors may play a role in IgG productivity.

Metabolite production and consumption rates calculated using equation 4.7, as well as

calculated biomass demands are summarized in Table 6-1. The errors presented in the table are

the propagated errors that include not only metabolite measurement errors but cell concentration

and dilution rate errors as well. In addition, the biosynthesis demands for each amino acid were

considered in the calculation of each of these values. Therefore, the final values are the

metabolite production and consumption rates directly affecting the metabolic network shown in

Figure 4-1.
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Figure 6-5. Specific productivity of the IgG product for each steady state. A maximum
specific productivity was achieved at the intermediate growth rate in steady state B. The
subsequent reduction in specific productivity observed at the lower growth rates was maintained
at the last steady state (E). However, the final product concentration was higher in steady state E
as compared to steady state A due to the differences in cell density (data not shown).

129

T

--7
I

---r-



Table 6-1. Measured metabolite production and consumption rates (*10-10 mmole/viable
cel/hr). These values were calculated taking into consideration the biosynthesis demand for
amino acids and other metabolites. Positive values indicate metabolite production whereas
negative values indicate metabolite consumption.

Metabolite Steady State Steady State Steady State Steady State Steady State

A B C D E

-3.54_-0.32
6.71+0.61
2.28±0.21

-2.69+0.24
0.13+0.01

-0.04+0.03
0.00±0.00

-0.38+0.10
0.01±0.01
0.07+0.00

-0.13+0.04
-0.12-+0.04
-0.09-+0.10
-0.02+0.11
-0.02±0.03
-0.03+0.03
-0.10-+0.03

0.66±0.05
-0.12+0.01
0.01-0.00
0.05+0.00
0.06+0.00
0.83-0.06
0.04+0.00
0.07_0.01

-3.62+0.52
7.23+0.79
3.57±0.41

-3.41-0.39
0.12+0.01

-0.04+0.03
-0.01+0.02
-0.35+0.09
-0.05+0.02
0.05±0.01

-0.14+0.03
-0.13+0.04
-0.16_0.09
-0.03-0.10
-0.02+0.02
-0.05+-0.02
-0.11+-0.02

0.55+0.06
-0.10_0.01
0.01+0.00
0.04_0.00
0.05±0.01
0.69+0.07
0.04_0.00
0.06-0.01

-1.81_0.20
2.70+0.31
3.40_+0.41

-3.92±+0.47
0.03_0.00

-0.02+0.01
0.01±0.00

-0.12-+0.03
0.03_0.00
0.02±0.00

-0.08_0.01
-0.08_0.02
-0.05_0.03
-0.03+0.03
-0.02_0.01
-0.01±0.01
-0.05+0.01

0.39_0.04
-0.07_0.01
0.01_0.00
0.03_0.00
0.03_0.00
0.49_0.05
0.03_+0.00
0.04_0.00

-1.21_+0.15
1.63-0.14
3.02+-0.24

-3.54+0.28
0.01±+0.00

-0.01_+0.01
0.00±0.00

-0.06+0.02
0.01+-0.00
0.01_0.00

-0.05-0.01
-0.05±+0.01
-0.03+0.02
-0.02+0.02
-0.02_0.01
-0.02_+0.01
-0.04_0.01

0.36±0.02
-0.07+0.00
0.01+0.00
0.03+0.00
0.03_0.00
0.45_0.03
0.02+0.00
0.04_0.00

-3.89+0.37
5.71_0.54
3.10±+0.31

-3.53_0.36
0.06±0.01

-0.03±_0.02
-0.02+-0.01
-0.21_0.05
-0.04-0.01
0.00±+0.00

-0.11_-0.02
-0.10_0.02
-0.10±0.05
-0.04_0.05
-0.08_+0.02
-0.02_0.01
-0.08_0.02

0.64±0.06
-0.12_0.01
0.01_+0.00
0.05_0.00
0.05_0.00
0.80±0.07
0.04+0.00
0.07-0.01
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The consistency of the data was evaluated by calculating the consistency index values (h)

listed in Table 6-2 as described previously (Nyberg et al., 1999a; Zupke and Stephanopoulos,

1995a). All of the consistency indexes passed the X2 distribution test with a 90% confidence

interval indicating that all data sets are consistent and unlikely to contain gross measurement

errors.

Metabolic fluxes for the network in Figure 4-1 are listed in Table 6-3 for each of the five

steady states. At the first four steady states (A, B, C, and D), as the specific growth rate was

decreased, the glycolytic flux decreased. Additionally, the flux of pyruvate into the TCA cycle

increased, but the flux of glutamine was reduced. The consumption of branched chain amino

acids (lysine, isoleucine, and leucine) was reduced as well at the lower growth rates.

Flux distributions varied for the different steady states, and Figure 6-6 shows values for

the ratios of several calculated metabolic fluxes around the pyruvate branchpoint. Plotted in

Figure 6-6 are the ratios of the sum of the glycolytic flux (reaction 3) plus the TCA recycle flux

(reaction 12) divided by the TCA cycle inlet flux (reaction 6) as a function of specific growth

rate. High values of this ratio represent a large amount of carbon influx with the secretion of

large amounts of lactate and alanine. Only a small amount of carbon flux enters the TCA cycle.

Conversely, lower values represent the more efficient metabolic states with high TCA cycle

activity. As the dilution and specific growth rates decreased at the first four steady states, the

pyruvate ratio decreased indicating a flux distribution shift around pyruvate shuttling more

pyruvate carbon into the TCA cycle as opposed to being converted to lactate. Upon return to a

high dilution rate at the fifth steady state (E), cells maintained this efficient utilization of

pyruvate in contrast to the physiology observed at steady state A. The fact that more pyruvate

was shuttled into the TCA cycle for steady state E as opposed to being converted to lactate as in
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Table 6-2. Calculated consistency index values. Consistency index (h) values were calculated
to determine the consistency of the metabolite production and consumption rate data sets.
Values lower than the X2 distribution value (90% confidence interval) indicate that the data set
was consistent.

h Z2 Pass / Fail

Steady State A 0.68 4.60 Pass

Steady State B 0.74 4.60 Pass

Steady State C 0.43 4.60 Pass

Steady State D 2.10 4.60 Pass

Steady State E 3.93 4.60 Pass

132



Table 6-3. Calculated metabolic fluxes (*10'10 mmole/viable cell/hr). Metabolic fluxes
calculated using equation 4.11 and the data listed in Table 6-1.

Reaction Steady Steady Steady Steady Steady
State State State State State

A B C D E

I Glc - G6P 3.53 3.63 1.81 1.21 3.84
2 G6P 2 GAP 3.38 3.52 1.73 1.16 3.56
3 GAP -- Pyr 6.64 6.98 3.42 2.29 7.03
4 Pyr -- Lac 6.72 7.24 2.70 1.62 5.74
5 G6P --- BiomassRsP + CO2 0.08 0.06 0.04 0.03 0.12
6 Pyr - AcCoA + C0 2 0.36 0.59 0.89 0.81 1.15
7 Pyr + Glu -- aKG + Ala 0.13 0.12 0.03 0.01 0.09
8 OAA + AcCoA -- 0.42 0.66 1.06 0.96 0.91

cKG + CO2
9 KG --- SuCoA + CO 2 0.86 1.25 1.21 1.06 1.06
10 SuCoA Fum 1.11 1.50 1.37 1.23 1.12
11 Fum - OAA 1.09 1.52 1.36 1.21 1.07
12 OAA - Pyr + CO2 0.59 0.97 0.21 0.16 -0.02
13 Gln --) Glu 0.38 G.42 0.12 0.05 0.14
14 Glu - cKG 0.16 0.40 0.04 0.03 0.03
15 GAP + Glu - Ser + aKG -0.01 -0.02 -0.01 -0.01 -0.05
16 GAP + Glu - Gly + aKG 0.08 0.04 0.03 0.02 0.03
17 Lys -> 2 AcCoA + 2 CO, 0.12 0.10 0.09 0.09 0.09
18 Ile -- AcCoA + SuCoA 0.13 0.11 0.10 0.08 0.07
19 Leu --- 3 AcCoA 0.12 0.10 0.09 0.08 0.06
20 Glu - Pro -0.01 -0.03 -0.03 -0.02 0.00
21 Thr -- SuCoA 0.03 0.05 0.01 0.02 -0.01
22 Val - SuCoA + CO2 0.10 0.09 0.07 0.07 0.05
23 OAA + Gln -- Asn + aKG -0.03 -0.06 -0.01 0.01 0.02
24 OAA + Glu -- Asp + aKG 0.02 -0.03 0.02 0.02 0.02
25 G6P --> BiomassG6p 0.06 0.04 0.03 0.02 0.10
26 GAP -- BiomassGAp 0.06 0.05 0.03 0.03 0.08
27 AcCoA --> BiomassAcCoA 0.67 0.55 0.39 0.36 0.66
28 BiomassaKG -> cXKG 0.10 0.12 0.06 0.05 0.06
29 OAA -- BiomassoAA 0.07 0.01 0.05 0.05 0.09
30 CO 2 -- Biomassco2 0.03 -0.01 0.02 0.03 0.03
31 NADH -- BiomassNADH 0.83 0.70 0.48 0.44 0.80
32 0.5 02 + 3 ADP + NADH -- 3.79 4.97 6.08 5.49 5.64

3 ATP + NAD+

33 0.5 02 + 2 ADP + FADH 2 - 1.58 1.90 1.73 1.55 1.39
2 ATP + FAD
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Figure 6-6. Metabolic flux distribution around the pyruvate branchpoint. The values
plotted in (6-6) are the ratio of the sum of glycolytic flux (reaction 3) and the TCA recycle flux
(reaction 12) divided by the TCA cycle inlet flux (reaction 6). Deviations from unity represent
waste metabolite (lactate and alanine) production. High values of the ratio indicate a condition
of high waste metabolite production, whereas lower values indicate more efficient utilization of
pyruvate carbon. For the first four steady states when the growth rate was progressively reduced,
the metabolic flux around pyruvate was redistributed in favor of more efficient metabolism. This
efficient metabolism was maintained during the subsequent increase in growth rate to the final
steady state (E).
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steady state A, explains the nearly two-fold increase in cell concentration for steady state E. In

addition, less branched chain amino acids and glutamine were metabolized in the TCA cycle for

steady state E as compared to steady state A. In short, flux analysis reveals a more efficient

utilization of substrate carbon associated with steady state E which was reached after the cells

were first adapted to lower growth rate conditions.

6.3 Discussion

The data presented in this chapter demonstrate that two steady states can be obtained for

the same dilution rate, exhibiting similar specific growth rates and cell viabilities but drastically

different cell densities and metabolic flux distributions. After the first high dilution steady state

(A), cells underwent changes in their metabolic flux distribution in response to progressively

lower dilution and growth rates until reaching a point of near abortive proliferation (D). At the

progressively lower growth rates, the utilization of pyruvate carbon became more efficient with

more pyruvate flowing into the TCA cycle. This adaptation enabled the cells to maintain energy

production as well as meet the requirements for cell biosynthesis at the last high dilution steady

state (E). This efficient metabolic pattern was maintained resulting in a higher cell density.

The observation of multiple steady states with different metabolic flux distributions was

observed previously by Hayter et al. (Hayter et al., 1992a). This glucose limited continuous

culture of Chinese hamster ovary (CHO) cells was grown under varying glucose concentrations.

The first and last steady state sections of the run were performed at a glucose concentration of

2.75mM. Although the glucose uptake rates for these two sections were similar, the specific

lactate production rates differed by nearly a factor of two. This demonstrates that this cell line

also underwent a metabolic shift to a metabolically more efficient state where less glucose

substrate carbon was released as lactate. Although the cell densities in these two cases did not
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vary by a significant amount, this may have been due to the low growth rate and the fact that

these cultures were glucose limited and unable to consume higher amounts of this substrate for

biomass production.

The metabolic shifts observed in the reported continuous culture run could be due to a

favorable genetic mutation, a change in the genetic expression of particular metabolic enzymes,

or a change in the regulation of these enzymes. A favorable genetic mutation causing the higher

cell concentration and metabolic flux redistribution is highly unlikely due to the rather long time

period it would take for a favorably mutated cell to become a noticeable fraction of the reactor

cell population. For example, if an identically favorable mutation occurred in one of every 107

cells (a high mutation rate) that resulted in a growth rate advantage of 20% over the wild-type

cell line, 100 cell doublings would be required in order for the cell population to reach a

contamination level of 10%. This value increases to 199 doublings for a 10% growth rate

advantage. For the continuous run reported, doubling times ranged from 16 hours to 30 hours

yielding a total of approximately 70 cell doublings before reaching steady state E. In addition,

since selection in chemostats typically results after cells have grown for several hundred

generations (Dykhuizen and Hartl, 1983), the hypothesis that the cells in this study underwent a

favorable random mutation around the pyruvate branchpoint is unlikely.

The metabolic shift could also be due to a phenomena connected to asymmetric cell

division. At the low viability steady state (D), for every cell that divides, approximately one of

the two daughter cells must die before it can divide. One could hypothesize that the dividing cell

does not equally distribute its cellular resources to the two daughter cells but rather it favors one

over the other following a stochastic process. An unequal distribution of mitochondria could aid

in the maintenance of the culture cell population at the expense of the culture viability under the
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more stressful environmental conditions. This increase in population heterogeneity could be

used as a way for cell populations to increase their chances for survival at the expense of

individual cell survival by attaching critical cell survival parameters to a stochastic genetic

regulatory mechanism that is induced under stressful conditions. Unequal mitochondrial

inheritance has been observed for a variety of cell types (McConnell et al., 1990; Rappaport et

al., 1998; Smirnova et al., 1998). This would also explain the increase in mitochondrial or TCA

cycle activity at the lower dilution rates. At the second high growth rate steady state (E), a cell

subpopulation with this history of adaptation to higher mitochondrial activity could maintain this

physiology as a result of the population now expressing a new genetic regulatory state

(McAdams and Arkin, 1999).

The operation pathway followed to reach steady state E suggests potential feeding

strategies and fed-batch reactor operations to achieve high cell densities. Typically, fed-batch

cultures are run under glucose and/or glutamine limitation in order to reduce the production of

toxic byproducts such as lactate and ammonia. This nutrient limitation results in lower growth

rates but more efficient substrate utilization with lower conversion of glucose into lactate (Xie

and Wang, 1994c). Alternatively, the results from this paper suggest that an initial adaptation

phase in a fed-batch could be used as a means of shifting cells to a more efficient state of

pyruvate utilization. After this adaptation is achieved, the cells could then be grown under

conditions of higher nutrient concentrations at a higher growth rate resulting in the maintenance

of the lower lactate production but with a higher viable cell concentration. This new approach

toward fed-batch operations may prove to enhance not only industrial cell culture performance

but fundamental knowledge concerning cell behavior and metabolism as well.
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The utilization of bioreactor operating conditions to induce the appearance of a desired

phenotype differs from the typical approach used in metabolic engineering to achieve modified

flux distributions. In this case, the cell concentration was doubled and flux distribution was

altered dramatically without the transfection of any enzyme involved in the altered metabolic

branchpoint. The success of this type of inverse metabolic engineering could be applied in other

situations where knowledge about the metabolic network regulatory architecture could allow for

the perturbation and adaptation of cells that express more desirable phenotypes without using

transfection techniques. In addition, knowledge concerning the physiological characteristics of

desirable phenotypes could also be used in the isolation of subpopulations that express these

desirable traits, and this strategy was employed in the experimental work covered in the next

chapter.
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7. MITOCHONDRIAL MEMBRANE POTENTIAL SORTED SUBPOPULATIONS

7.1 Introduction

The continuous culture steady state multiplicity results indicate that the enhancement of

TCA cycle activity and the flux through PDH could be beneficial for cultured mammalian cells

resulting in increased culture viable cell concentrations and viabilities. The observed changes in

metabolic flux distribution that involved a higher production of energy generated through the

oxidative phosphorylation pathway and a higher production of biomass were hypothesized to be

reproducible under either batch or fed-batch culture conditions. The oxidative phosphorylation

respiratory chain located in the inner mitochondrial membrane is a significant contributor to

cellular energy production, and therefore, the characterization of mitochondrial activity was

hypothesized to be a strategic cellular target for the development of novel strategies aimed at

improving viable cell concentration and culture viability.

The characterization of oxidative phosphorylation and TCA activity along with the

metabolic flux distribution around the pyruvate branchpoint requires metabolic flux analysis

calculations that need accurate gas exchange measurements (OUR and CER). These flux

analysis techniques, however, require extensive amounts of experimental and computational

effort. In addition, obtaining accurate redundant gas exchange measurements under transient

culture conditions is extremely difficult (Bonarius et al., 1995; Stephanopoulos et al., 1998;

Zupke and Stephanopoulos, 1995a). Therefore, a quicker technique was developed in order to

obtain data that characterize the physiological state of mitochondria in-vivo. Since oxidative

phosphorylation is driven by the proton-motive force across the inner mitochondrial membrane,

the mitochondrial membrane potential (MMP; A'm) was used as a measure of the mitochondrial
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physiological state. This membrane potential was experimentally determined using the

commonly used lipophilic cationic dye, Rhodamine 123 (Rh123). FACS techniques provided a

quick and simple method for obtaining membrane potential values for a significant number of

cells in culture resulting in a statistically significant measure of mitochondrial physiology.

Fluorescent dye characterization of ATm has been used extensively in a large number of cell

lines for mitochondrial membrane potential measurement and mitochondrial physiology analysis

(Bereiter-Hahn and Vth, 1994; Chen, 1988; Petit et al., 1990). Unlike other dyes that stain

mitochondrial membrane potential such as JC-1 and DiOC6 (see Literature Review), Rh123 has a

low toxicity at low concentrations, enabling one to stain cells and then perform long-term

experiments on these stained cells (Bereiter-Hahn and Voth, 1994; Chen, 1988).

Cells with different mitochondrial physiologies, as determined through the measurement

of ATPm, were hypothesized to have different cellular physiologies. The experimental strategy

designed to test this hypothesis consisted of several stages. The first stage involved the

development of a staining procedure using Rhodamine 123 and then checking the dye specificity

by subjecting stained cells to mitochondrial membrane uncouplers. The second stage involved

the separation of a population of stained cells using FACS techniques in order to obtain several

subpopulations of cells that varied in their mean mitochondrial membrane potential as

determined using Rh123. The third stage involved the development of methods for killing cells

through apoptosis induced through specific mechanisms. The mitochondrial membrane potential

sorted subpopulations were subjected to these apoptosis inducers, and the apoptotic death was

characterized both morphologically through the measurement of apoptosis related chromatin

condensation and also biochemically through the measurement of caspase-3 enzymatic activity.

In addition, cytochrome c was added to cytosolic extracts obtained from these apoptotic cells in
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order to obtain more insight concerning the differences between the mechanisms of apoptosis for

the various mitochondrial membrane potential sorted subpopulations.

The results from these experiments demonstrated that a population of wild-type cells

contains subpopulations that vary in their resistance to apoptosis. Furthermore, these apoptosis

resistant subpopulations could be separated based on their mitochondrial membrane potential

with significant differences between the measured membrane potentials being maintained even

after numerous generations. The differences in apoptosis resistance involved not only

morphological variances as demonstrated by their different chromatin condensation kinetics but

also biochemical variances as shown by their different caspase-3 enzymatic activities.

7.2 Results

7.2.1 Staining for Mitochondrial Membrane Potential

The hybridoma cells were stained with a final concentration of 2 gg/ml Rhodanline 123

for 10 minutes, washed with PBS, and analyzed on a FACS machine according to the procedure

described in Materials and Methods. An example histogram of the resulting cellular

fluorescence is shown in Figure 7-1. The histogram of an unstained control showed a

distribution of fluorescence values between 1 and 10 (mean fluorescence of approximately 3 to

4) whereas the stained cells resulted in a distribution of values centered above 1,000 (Figure 7-

1). In cultures with a high dead cell fraction, as measured using the trypan blue dye exclusion

method, a smaller peak was observed that had a fluorescence value distribution lower than the

viable fraction (Figure 7-1). The appearance of this lower dead cell peak has been observed

previously (Ferlini et al., 1995). The mitochondrial membrane potential was the driving force
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Figure 7-1. Rhodamine 123 staining of mitochondrial membrane potential. The hybridoma
cells were incubated with Rh123, washed, and then analyzed on a FACS. The resulting
histogram of fluorescence values is shown. A dead cell peak is observed in cultures with a low
viability as measured using the trypan blue dye exclusion method.
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Figure 7-2. Rhodamine staining of mitochondria subjected to a membrane potential
uncoupler (CCCP). The hybridoma cells were subjected to CCCP for 10 minutes and then
stained with Rh123. The resulting histograms of fluorescence values showed a dramatic drop in
Rh123 uptake indicating the specificity of Rh123 for mitochondrial membrane potential.
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behind the cellular uptake of Rhodamine 123 as demonstrated in Figure 7-2. A dramatic loss of

Rh123 uptake was observed when the cultured cells were incubated with a specific

mitochondrial membrane uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), for 10

minutes at a working concentration of 2 ptg/ml. This result has been repeatedly shown in the

literature for this uncoupler as well as for a variety of other mitochondria specific depolarizing

agents (Chen, 1988; Emaus et al., 1986; Juan et al., 1994). Furthermore, researchers have

analyzed compounds that collapse the mitochondrial proton gradient (Ap) and hyperpolarize the

electrochemical potential (ATm) which result in an increased uptake of Rh123. This result

demonstrates that this stain serves primarily as an indicator of the mitochondrial membrane

potential (Am) component of the proton motive force (Emaus et al., 1986).

Although Rh123 can be used to determine the overall cellular mitochondrial activity and

membrane potential, it can not effectively distinguish between an increase in either the specific

mitochondrial activity or the overall mitochondrial mass. Other stains such as 10-n-nonyl

acridine orange are not incorporated according to the electrochemical potential but rather through

interactions with specific mitochondrial membrane proteins and lipids. Although not used in this

research, these stains could be used to determine these other mitochondrial parameters in order to

obtain more detailed data describing mitochondrial physiology (Benel et al., 1989).

7.2.2 Sorting Cells Based on Mitochondrial Membrane Potential

The low toxicity of Rh123 enables one to separate and then grow cells stained with this

dye. The Rh123 stained hybridoma cells were separated into various subpopulations using a

FACS (FACSCAN, Becton Dickinson) based on their individual fluorescence values (Figure 7-

3). These sorted mixed-culture cell subpopulations were passaged for several generations until

enough cells were grown to permit the freezing of several vials for cell bank storage. These
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Figure 7-3. FACS sorting of cells separated based on mitochondrial membrane potential.
The hybridoma cells were stained for mitochondrial membrane potential using Rh123 and then
separated into subpopulations using FACS. Here, the low (L) and high (H) fractions each
represent approximately 15% of the total population. These sorted cells were passaged for
numerous (10-20) generations and then restained with Rh123. The resulting histogram of
fluorescence values showed a distinct difference between the two subpopulations with respect to
mitochondrial membrane potential.
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passaged cells maintained a significant mitochondrial membrane potential fluorescent staining

differential, as measured by restaining with Rh123, even after passaging for approximately 10-20

generations. The sorted cell populations were named high (H) and low (L) with respect to their

mean fluorescent values when stained with Rh123. Additional enrichment was also performed

on these high and low populations in an effort to increase their mean Rh123 fluorescence

staining differential by resorting them in a FACS. In other words, the high fraction from the

high subpopulation (H) was separated and passaged, and this resulted in even higher mean

Rh123 fluorescence values and mitochondrial membrane potential differentials.

The cell populations were analyzed not only for their mean Rh123 fluorescence values

but also for their cell cycle and DNA content properties as well. Table 7-1 lists the results for

cells that were stained with propidium iodide and then analyzed using FACS to determine the

cell cycle properties for both the high (H) and low (L) populations. These cells were all taken

from cultures that were growing at mid-exponential phase. Although the two subpopulations

listed in Table 7-1 had Rh123 mean fluorescence values that differed by over one third, the cell

cycle values were virtually identical. In addition, no differences in DNA content were observed

(data not shown) indicating that the observed differences in Rh123 staining could not be

attributed to cell cycle variances or the appearance of multiple chromosomes.

7.2.3 Apoptosis Induction

Apoptosis is the primary cause of death for cultured mammalian cells (Goswami et al.,

1999; Mercille and Massie, 1994; Mosser and Massie, 1994; Simpson et al., 1998). Therefore,

the Rh123 sorted subpopulations were characterized for their differences in resistance to

apoptosis as determined by their responses to incubation with specific apoptosis inducers. A

mitochondria specific apoptosis inducer, rotenone, and another more commonly used apoptosis
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Table 7-1. Comparison of cell cycle data for MMP sorted subpopulations. Cells stained
with propidium iodide were examined using FACS. The high (H) and low (L) staining
subpopulations had similar cell cycle characteristics indicating that these cells do not vary
significantly in their DNA content or cell cycle. The relative fluorescence (mean signal to noise
ratio) for the high subpopulation was 39% higher than that for the low subpopulation.

Cell Cycle Phase Low (L) High (H)

Go/Gl 24.5 -+ 0.5 24.5 + 0.9

G2/M 13.6 + 0.6 12.5 + 0.3

S 61.9 + 1.1 63.1 ±+ 1.1
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inducer, staurosporin, were both utilized in these experiments. Numerous electron transport

chain inhibitors have been implicated in apoptosis induction (Kroemer et al., 1995; Susin et al.,

1998; Wertz and Hanley, 1996)], and rotenone specifically inhibits the NADH dehydrogenase

complex (Krippner et al., 1996; Stryer, 1988; Wertz and Hanley, 1996). Staurosporin is another

potent apoptosis inducer that is believed to inhibit protein serine / threonine kinases that affect

protein phosphorylation and survival factor signaling (Wertz and Hanley, 1996). The wild-type

unsorted hybridoma cells were subjected to each of these inducers, and the resulting kill curves

are shown in Figure 7-4 along with their point of action in the mitochondria related apoptosis

pathway. The viable and apoptotic fractions were differentiated by determining the degree of

chromatin condensation shown using the acridine orange and ethidium bromide stain described

in Materials and Methods. Since these compounds induce apoptosis within a few hours, they can

be used in experiments that are aimed at determining specific differences between apoptotic

death mechanisms and kinetics in various cell populations. This method contrasts with long-

term experiments which are subject to variable culture conditions in which additional inducers of

apoptotic death exist such as glucose and amino acid nutrient limitation or growth factor

depletion. Since the cells for these apoptosis induction experiments were taken from mid-

exponential growth cultures, these additional apoptosis inducing factors can be ruled out as

significant sources of apoptosis, leaving the apoptosis inducers as the primary source of the

observed apoptotic cell death. This was supported by the fact that virtually no apoptotic death

was observed in the uninduced control cultures.

Figure 7-5 illustrates a more specific quantitation of the effect of rotenone on viable cells

(determined using the trypan blue exclusion method). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl

tetrazolium bromide (MTT) measures mitochondria dehydrogenase activity and has been
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Figure 7-4. Apoptosis induction using staurosporin and rotenone. The hybridoma cells were
subjected to th2se two apoptosis inducers in order to characterize the responses of the Rh123
sorted subpopulations to defined apoptotic stimuli. The specific point of action of each apoptosis
inducer within the overall apoptotic pathway is shown in the figure along with the corresponding
kill curves.
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Figure 7-5. MTT measurement of cells undergoing rotenone induced apoptosis. Cells taken
from the same culture were incubated either with or without 30 lM rotenone for two hours. The
resulting MTT assay measurement of mitochondrial dehydrogenase activity is shown for each of
the viable cells concentrations (viability was measured using trypan blue).
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used extensively to measure surviving and proliferating cells (Mosmann, 1983; Slater et al.,

1963). These results indicate that rotenone caused a dramatic loss of mitochondrial

dehydrogenase activity after the cells were incubated with rotenone for only two hours. These

results show that mitochondrial dehydrogenase activity was affected by apoptotic death and that

the trypan dye exclusion method does not necessarily correlate with the MTT method for cells

undergoing apoptosis (Knorr, 1999; Mosmann, 1983).

7.2.4 Characterizing Apoptosis for Mitochondrial Membrane Potential Sorted Cells

The Rh123 sorted hybridoma cell subpopulations were characterized for both key

morphological and biochemical features of apoptosis resulting from the apoptotic death inducers.

The cell subpopulations were all taken from frozen cell stocks and cultured until they reached

mid-exponential phase. The subpopulations were stained for mitochondrial membrane potential

using Rh123 and FACS. Then, the apoptosis inducers were added to the cultures (30 M

rotenone and 1 laM staurosporin). Dimethyl sulfoxide (DMSO) was added to the control cultures

to account for the DMSO present in the apoptosis inducer stock solutions. The apoptosis related

chromatin condensation was assessed at various time points using the acridine orange and

ethidium bromide stain. Figure 7-6 shows the compiled results from three separate experiments

for the rotenone induced apoptosis with the percentage of viable cells containing intact

chromatin plotted versus the mean Rh123 fluorescence signal to noise ratio (S/N) for the various

inoculum subpopulations. All of these mean Rh123 fluorescence values refer to the values for

the inoculum; no time course of Rh123 uptake was taken for these experiments. Initially, the

cultures all started out with a viability of approximately 95%. Even after two hours, no

significant differences between the subpopulations were observed. Beginning at four hours,

however, a significant deviation between the various subpopulations was observed. After eight
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Figure 7-6. Apoptotic death kinetics for Rhodamine 123 sorted subpopulations subjected
to 30 lM rotenone. The hybridoma cell subpopulations were stained with Rh123 and then
analyzed on a FACS. Then, they were given either rotenone (30 AM) or DMSO (the rotenone
stock contained DMSO). The chromatin condensation apoptotic morphology was measured at
the indicated time intervals using the acridine orange and ethidium bromide stain. The Rh123
fluorescence values refer to only the initial values taken for the inoculum; no Rh123 fluorescence
value time course data was taken. This plot is a compilation of data taken from three separate
experiments.
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hours, the highest Rh123 staining subpopulation was still 70% viable as compared to the lowest

Rh123 staining subpopulation that was only 25% viable. This indicates that subpopulations with

a higher mean mitochondrial membrane potential as measured using Rh123 have an enhanced

ability to resist apoptotic death. Furthermore, these results were reproducible as demonstrated

with the cells subjected to staurosporin induced apoptosis (Figure 7-7). This result indicates that

these subpopulations vary in their resistance to multiple apoptosis inducers, and a feature of the

apoptotic pathway related to mitochondria physiology may be the source of this resistance.

Effector caspase activity causes the apoptosis related chromatin condensation

morphology. Caspase-3 has been shown to be a potent effector caspase that targets a number of

specific cellular proteins, causing a significant number of changes associated with apoptotic

death. Therefore, biochemical differences between the Rh123 sorted subpopulations were

determined by measuring the caspase-3 enzymatic activity. For this experiment, the cells were

again taken from the frozen cell stock and cultured until they reached mid-exponential phase.

The mean Rh123 fluorescence values were determined using FACS, and then the subpopulations

were subjected to each of the apoptosis inducers described previously (30 gM rotenone and 1

,gM staurosporin). After several hours (3 hours for staurosporin and 4 hours for rotenone), the

cellular apoptotic morphology was determined using acridine orange and ethidium bromide

measurement of apoptosis related chromatin condensation, and the results are shown in Table 7-2

for rotenone and Table 7-3 for staurosporin. Then, cytosolic extractions were performed for each

set of apoptosis inducers as described in Materials and Methods. The protein content of the

extracts was measured using the Bradford assay with a BSA standard. The caspase-3 enzymatic

activity was then determined colorimetrically by incubating 50 ptg of extract protein with DEVD-

pNA and then by measuring the amount of free pNA (cleaved DEVD-pNA substrate). Figure 7-
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Figure 7-7. Apoptotic death kinetics for Rhodamine 123 sorted subpopulations subjected
to 1 iM staurosporin. The hybridoma cell subpopulations were stained with Rh123 and then
analyzed on a FACS. Then, they were given either staurosporin (1 M) or DMSO (the
staurosporin stock contained DMSO). The chromatin condensation apoptotic morphology was
measured at the indicated time intervals using the acridine orange and ethidium bromide stain.
The Rh123 fluorescence values refer to only the initial values taken for the inoculum; no Rh123
fluorescence value time course data was taken. The constant value data points refer to the
controls that were not subjected to staurosporin.
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Table 7-2. Data for rotenone induced caspase-3 enzymatic activity. Cytosolic extracts were
taken from cells subjected to 30 tM rotenone for 4 hours and assayed for caspase-3 activity
using DEVD-pNA.

Low (L) High (H)

Percent Viable 76.5 92.5
(AO / EB)

Rh123 (S/N) 562 886
(Relative Fluorescence of inoculum)

Caspase-3 Activity 3.17 1.10
(gmonle / hr gprotein)

Table 7-3. Data for staurosporin induced caspase-3
were taken from cells subjected to 1 tM staurosporin
activity using DEVD-pNA.

enzymatic activity. Cytosolic extracts
for 3 hours and assayed for caspase-3

Low (L) High (H)

Percent Viable 64.5 83.5
(AO / EB)

Rh123 (S/N) 562 886
(Relative Fluorescence of inoculum)

Caspase-3 Activity 5.38 1.92
(gmole / hr Jgprotein)
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8 shows the caspase-3 enzymatic activity results for rotenone induced apoptosis and these data

demonstrate a significant difference in the enzymatic activity for this critical caspase. The fact

that the z-VAD-fmk inhibited caspase-3 activity matched the activity for the uninduced control

indicates that the extraction procedure did not inadvertently cause the activation of any caspase-3

activity. These results were also repeated in the staurosporin induced apoptosis cell extracts, and

the caspase-3 enzymatic activity is shown in Figure 7-9. Again, a significant difference in

caspase-3 activity is shown for the two Rh123 sorted subpopulations. The specific caspase-3

enzymatic activities are tabulated in Tables 7-2 and 7-3. The specific caspase-3 enzymatic

activities differ by nearly three-fold between the two subpopulations. This supports the

morphological differences observed previously and provides a more fundamental biochemical

basis for these observations.

Additional experiments were also conducted in an effort to determine more fundamental

aspects of the observed variance in apoptotic resistance for these Rh123 sorted subpopulations.

Since cytochrome c has been implicated in the activation of apoptosis and caspase activity

(Bossy-Wetzel et al., 1998; Green and Reed, 1998; Krippner et al., 1996), cytochrome c (10OM)

was added along with dATP (mM) in order to activate the apoptosome in-vitro. Figure 7-10

shows the results for cytochrome c induction of capsase-3 activity for various experimental

cases. These results indicate that caspase-3 activity was inducible in the control cells, but again

this activity was different for each of the Rh123 sorted subpopulations. In addition, extracts

taken from the Rh123 sorted cells subjected to rotenone and incubated with cytochrome c and

dATP did not yield a significant increase in caspase-3 activity.
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Figure 7-8. Caspase-3 enzymatic activity for Rhodamine 123 sorted subpopulations
subjected to 30 ptM rotenone. Cytosolic extracts were collected from cells subjected to
rotenone. The caspase-3 enzymatic activity was measured using DEVD-pNA substrate
incubated with 50 pgg of extract protein. The caspase inhibitor, z-VAD-fmk was also added to
the apoptosis induced extracts in order to demonstrate the absence of caspase activity in the
control.
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Figure 7-9. Caspase-3 enzymatic activity for Rhodamine 123 sorted subpopulations
subjected to 1 M staurosporin. Cytosolic extracts were collected from cells subjected to
staurosporin. The caspase-3 enzymatic activity was measured using DEVD-pNA substrate
incubated with 50 jtg of extract protein. The caspase inhibitor, z-VAD-fmk was also added to
the apoptosis induced extracts in order to demonstrate the absence of caspase activity in the
control.
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Figure 7-10. Caspase-3 enzymatic activity for Rhodamine 123 sorted subpopulations
subjected to 30 p.M rotenone, cytochrome c, and dATP. Cytosolic extracts were collected
from cells subjected to rotenone. Cytochrome c (10 p.M) and dATP (1 mM) were preincubated
with the control and induced extracts before incubation with the DEVD-pNA substrate. Then,
the caspase-3 enzymatic activity was measured using DEVD-pNA substrate incubated with 50
glg of extract protein.
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7.3 Discussion

Apoptosis is a significant problem for mammalian cell culture (Goswami et al., 1999;

Mercille and Massie, 1994; Mosser and Massie, 1994; Simpson et al., 1998). Nutrient

limitations, death receptor activation, as well a vast number of other factors Jl1 trigger apoptotic

cell death (Simpson et al., 1998; Wertz and Hanley, 1996). Previous strategies aimed at

preventing apoptotic cell death have involved either eliminating the apoptosis triggers from the

culture environment or creating more robust cell lines through the over-expression of

antiapoptosis genes. The results from this research suggest an additional strategy. Selecting for

subpopulations present within the wild-type subpopulation that are resistant to apoptosis could

provide an additional means of reducing apoptosis in culture. As demonstrated in the research

presented in this thesis, this selection process could be based on mitochondrial properties. The

link between mitochondria and apoptosis has been established in the past several years by a

number of researchers (Green and Reed, 1998; Susin et al., 1998). The release of numerous

mitochondrial factors, such as cytochrome c, procaspases, and AIF, upon stimulation of the

apoptosis pathway in addition to the presence of Bcl-2 family members residing in mitochondrial

membranes all support the hypothesis that mitochondria play a key role in orchestrating

apoptotic death.

The results from this research support the hypothesis concerning the importance of

mitochondria in apoptotic death. Cell populations sorted based on mitochondrial membrane

potential result in subpopulations that vary in their resistance to apoptosis as determined using

both morphological and biochemical measures of apoptosis. The molecular biology behind the

differences between these subpopulations was investigated in an effort to determine the exact

molecular differences between these subpopulations through cytochrome c induction of caspase-
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3 activity. The results showed that caspase-3 activity differed even in the uninduced control

cells, suggesting an endogenous heterogeneity with respect to base cytosolic levels of

procaspase-3 . Mitochondria have been shown to contain a number of procaspases, including

procaspase-3, and one hypothesis could be that the increased level of inducible caspase-3 activity

in the control extracts was caused by mitochondria with lower membrane potential resulting in

the release of procaspase-3. Since the subpopulations originated from a single wild-type culture

and were sorted based only on their mitochondrial membrane potential, these variances are likely

related to some basic mitochondrial properties. The collapse of the mitochondrial membrane

potential and the opening of the nmitochondrial permeability transition pore may play a role in the

observed differences between these sorted subpopulations (Green and Reed, 1998). Research

has shown that the voltage-dependant anion channel (VDAC) switches between an open and

closed state when subjected to a 30 mV potential difference (Martinou, 1999). Using equation

2.1, one can approximate the potential differences measured between the mitochondrial

membrane potential sorted subpopulations by assuming that the concentration difference is the

same as the Rh123 fluorescence signal to noise ratio. For these subpopulations, these values

differ by approximately 20 mV, and this suggests that mitochondrial channels could be operating

differently for these two subpopulations.

Virtually all cell culture researchers have observed cell death heterogeneity in which

certain subpopulations of cells assume the morphological and biochemical features associated

with either necrotic or apoptotic death sooner than other subpopulations. Why do these cell

subpopulations die faster than others? This question concerning population heterogeneity is not

trivial and unimportant. Physiological heterogeneity can result from asymmetric cell division in

which membrane proteins and RNA associate with specific cellular regions before cellular
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division (Horvitz and Herskowitz, 1992; Jan and Jan, 1998). Furthermore, cells characterized by

specific morphological features can vary significantly in their functionality as demonstrated in P-

cell responsiveness to glucose levels in-vitro (Pipeleers, 1992). Additionally, organisms can

create physiological heterogeneous populations even when they are genetically identical and

grown in identical environments (Spudich and Koshland, 1976). Theoretical deterministic

models have been successfully utilized to explain population heterogeneity in a number of

biological systems (Chung and Stephanopoulos, 1996).

Heterogeneity also occurs intracellularly with respect to organelle function. For example,

within the same mitochondrial population, various subpopulations with different membrane

potentials exist. Under membrane depolarizing conditions, subpopulations of mitochondria have

been observed to maintain a high membrane potential despite the appearance of a significant

number of depolarized mitochondria. Furthermore, the physiological environment contributes to

the appearance of various classes of mitochondria that differ in mitochondrial membrane

potential even when size and density changes are considered (Cossarizza et al., 1996; Diaz et al.,

1999; Petit et al., 1990).

As was previously shown, the appearance of steady state multiplicity in continuous

culture in which drastically different cell concentrations were observed to occur at virtually

identical growth rates was attributed to physiological multiplicity as measured through the

determination of the metabolic flux distribution occurring around the pyruvate branchpoint. In

this section, sorting based on mitochondrial membrane potential led to correlations between

physiological heterogeneity, measured using Rh123, and differences in both morphological and

biochemical features associated with apoptosis. Heterogeneity clearly plays a significant role in

mammalian cell culture and could be utilized in the formulation of novel culture strategies.

161



162



8. APPLICATIONS TO FED-BATCH CULTURE

8.1 Introduction

Industrial mammalian cell culture has typically been conducted in batch mode. However,

fed-batch cultivation has proven to be a more effective method for increasing the culture cell and

product concentrations. This bioreactor operational mode prevents nutrient depletion that

oftentimes occurs late in a batch culture. The maintenance of proper nutrient levels allows cells

to continue to grow which could result in a higher product concentration. High product titers are

desirable not just because of the obvious increase in the amount of product that can be sold but

also due to the fact that high product concentrations improve downstream separation process

efficiency. This contrasts with other operational modes, such as continuous or perfusion mode,

which produce large amounts of product but typically at low concentrations (Hu and Peshwa,

1991; Xie and Wang, 1994c).

Novel strategies have been developed as modifications of the basic fed-batch cultivation

mode. Feeding medium concentrates, utilizing stoichiometric feeding protocols, and designing

feeding strategies based on cell culture models have all been applied to fed-batch culture

processes (Glacken et al., 1989b; Hu and Peshwa, 1991; POrtner and Schafer, 1996; Xie and

Wang, 1994c). The results from the previous chapters suggest two additional novel strategies for

fed-batch culture operation. The multiple steady state continuous culture results dramatically

illustrate the potential for mammalian cells to operate at a high growth rate with an increase in

efficiency in their utilization of nutrients as demonstrated by the lower lactate production and

higher respiration. Therefore, one hypothesis would be that fed-batches that are initially put

through an adaptation phase of low nutrient feeding would increase the cellular metabolic

efficiency. Then the culture could be switched to a higher feeding rate to increase the growth
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rate while maintaining the higher metabolic efficiency. This strategy was tested using a

modification of the stoichiometric feeding strategy developed by Xie and Wang (Xie, 1997; Xie

and Wang, 1994c). The results clearly show that this new strategy resulted in a higher viable cell

concentration, culture viability, specific productivity, and culture product concentration when

compared to the conventional stoichiometric feeding method.

The second new fed-batch operational strategy involved using the mitochondrial

membrane potential sorted subpopulations in order to increase the culture viable cell

concentration. The previous results concerning the Rh123 sorted subpopulations indicate that

higher mitochondrial membrane potential subpopulations are able to resist apoptosis when

induced by specific factors under short-term conditions. Therefore, these sorted subpopulations

were hypothesized to be able to resist the other various apoptosis inducing influences present in a

typical cell culture. This strategy was implemented, and the results demonstrated that the cell

populations with a higher mitochondrial membrane potential were able to resist the general

apoptosis inducing conditions encountered during fed-batch culture. Consequently, these more

resistant cell populations reached higher viable cell concentrations and maintained culture

viabilities for an extended period of time. These results could provide for a new approach

toward culture operation in which inoculums and cultures are analyzed using FACS techniques

to determine cellular physiological states that would in-turn dictate the feeding strategy. In

addition, this method may also result in culture processes becoming more predictable in terms of

knowing relations between cellular death kinetics and cellular physiology.

8.2 Feeding Strategy and Design of Fed-batch Cultures

The first variation of fed-batch operation involved adjusting the feeding during a culture

in order to account for altered metabolic behavior with the goal of increasing the culture viable
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cell concentration and viability. The fed-batches were labeled X, X-2X, and 2X in reference

to the feeding protocol used for each culture. The X fed-batch refers to the control culture that

was fed the regular stoichiometric amount as prescribed by Xie (Xie and Wang, 1994c) and

Mo11born (Mijllborn, 1996). The 2X fed-batch refers to the second control culture that was fed

twice the stoichiometric amount. The 1X-2X fed batch refers to the experimental culture that

was initially fed the low stoichiometric amount and then later on overfed with twice the

stoichiometric amount after the mitochondrial activity was determined to be different for the two

IX and 2X control cultures. The fed batches were all inoculated with cells taken from a common

stock and suspended in IMDM medium containing low concentrations of glucose and glutamine:

glucose (IX: 1 g/L; 1X-2X: 1 g/L; 2X: 2 g/L) and glutamine (1X: 0.5 mM; lX-2X: 0.5 mM; 2X:

1.0 mM). In addition to the stoichiometric feeding of nutrients, growth factors were also fed

everyday (10 mg/L insulin and 5 mg/L transferrin) in order to prevent the possible degradation of

these medium proteins, particularly insulin, as demonstrated by Goswami (Goswami, 1998).

The viable cell concentrations and percent viabilities for these three cultures are shown in

Figures 8-1 and 8-2. In addition, the lactate/glucose ratio is shown for time points up to the point

at which the feeding rate was switched for the experimental lX-2X fed-batch. The vertical lines

on these two figures refer to the time at which the mitochondrial membrane potential was

determined (dashed line) along with the time at which the feeding rate was switched for the 1X-

2X fed-batch (solid line). The 2X culture reached the highest viable cell concentration, but this

concentration dropped rapidly after reaching this peak. The culture viability was maintained the

longest in the X-2X fed-batch with a higher viability ranging from 10 to over 40 percent over

the 2X culture. The 2X culture also had a higher lactate/glucose ratio as compared to the 1X fed

cultures which indicates that these cells growing under low nutrient levels had a more efficient
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Figures 8-1 and 8-2. Viable cell concentration and percent viability versus time for the
feeding strategy test fed-batch. The fed-batch experiment involved two control cultures (1X
and 2X) and one experimental (X-2X) culture. The term "X" refers to the fed-batch feeding
amount prescribed in the stoichiometric feeding protocol (Xie, 1997). The dashed and solid lines
refer to the times at which the MMP was measured and the time at which the feeding was
switched respectively.
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utilization of glucose as compared to the 2X culture. The IX cultures also had a 20% higher

mean Rh123 fluorescent value for the mitochondrial membrane potential as compared to the 2X

culture. The Rh123' fluorescence values along with the lactate/glucose ratios suggest that the 2X

fed-batch culture had a lower level of mitochondrial activity. The medium used in these fed-

batches was relatively rich as compared to other fed-batches, and these differences would most

likely increase under leaner medium conditions in the 1X fed-batch culture.

The glucose consumption and lactate production profiles are shown in Figure 8-3. In this

figure, the integrated viable cell density is used in order to enable one to visualize the specific

consumption and production rates (slopes in the plot). The specific lactate production rate is the

highest in the 2X fed-batch at the initial stages of the culture. As the culture progresses, the

lactate production profiles all level off, indicating that the cells have all shifted their metabolism.

The 1X-2X fed-batch, however, did continue to produce some additional lactate when the

feeding rate was switched to the 2X feeding schedule. This indicates that the metabolism of the

pre-adapted cells could still switch to a somewhat more inefficient metabolic state for a short

period of time. The lactate concentrations for the 1X and 2X all appear to drop indicating lactate

consumption. However, the 1X-2X fed-batch does not show a noticeable amount of lactate

consumption. The 2X and X-2X cultures appear to end with a similar overall yield

(lactate/glucose). However, this is misleading due to the fact that lactate was consumed in the

2X culture. The glucose consumption profiles show that the 2X fed-batch consumed the most

lactate, but the specific glucose consumption rates all appeared to be similar. The main

observation for Figure 8-3 is that the initial behavior of the metabolism for 1X fed-batches

differs from the behavior for the 2X fed-batches
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Figure 8-3. Glucose consumption and lactate production versus the integrated viable cell
concentration. The fed-batch experiment involved two control cultures (1X and 2X) and one
experimental (1X-2X) culture. The term "IX" refers to the fed-batch feeding amount prescribed
in the stoichiometric feeding protocol (Xie, 1997).

o
7:$

0
0

"-.

0-

A

ff
. V.4

a.)!:0
0
U

0 1 10 2 10" 3 10"
Integrated Viable Cell Concentration

(cells hr / ml)
Figure 8-4. Monoclonal antibody concentration versus the integrated viable cell density for
the feeding strategy test fed-batch. The fed-batch experiment involved two control cultures
(1X and 2X) and one experimental (X-2X) culture. The term "1X" refers to the fed-batch
feeding amount prescribed in the stoichiometric feeding protocol (Xie, 1997).
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The monoclonal antibody concentrations versus the integrated viable cell concentrations

for the three cultures are shown in Figure 8-4. The antibody concentration reached the highest

value of approximately 350 mg/L for both the 2X and IX-2X cultures as compared to less than

200 mg/L for the X culture. In addition, the highest specific antibody productivity occurred in

the 2X and 1X-2X fed-batches. The plots are more linear for the X and 2X fed-batches when

compared to the X-2X fed-batch, and this suggests that the switch in feeding rate had a direst

influence on the cellular specific productivity.

8.3 Rhodamine 123 Sorted Subpopulations in Fed-batch Culture

In chapter 7, subpopulations with a higher mitochondrial membrane potential, as

measured using Rh123, were demonstrated to have a higher resistance to apoptosis induced with

various compounds. This enhanced apoptosis resistance was hypothesized to be applicable in

fed-batch cell cultivation. The fed-batches were inoculated with cells that had been previously

sorted according to their Rh123 fluorescence as described in chapter 7 and Materials and

Methods. The initial and supplemental medium for these fed-batches was identical. The initial

medium was IMDM with low glucose (2mM) and glutamine (0.5mM) with 8.36 g/L of MOPS to

increase the medium buffer capacity (osmolarity adjusted accordingly). The conditioned

medium was also identical because it was prepared by mixing the conditioned medium obtained

from each of the two Rh123 sorted subpopulation inoculums. The fed-batches were fed

according to the stoichiometric feeding protocol. The 1X, 2X, and 1X-2X feeding strategies

described previously were all used to determine differences between the behavior for the Rh 123

sorted subpopulations.
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8.3.1 1X-2X Fed-batches With Rh123 Sorted Subpopulations

The results for the viable cell concentrations and culture viabilities for the X-2X fed-

batch are shown in Figures 8-5 and 8-6. The cultures labeled L and H refer to the cell

populations that have either a low or high mean Rh123 fluorescence value respectively. The fed-

batch culture with the higher mitochondrial membrane potential maintained a higher percent

viability and reached a higher viable cell concentration as compared to the low membrane

potential culture. This viability difference ranged from 10 to 20% and was maintained for a

period of almost 70 hours. The error bars on the plots refer not to the measurement error but to

the error between duplicate fed-batch cultures containing each subpopulation.

Figure 8-7 shows the mean Rh123 fluorescence values for the fed-batch cultures. The

mitochondrial membrane potential difference was maintained between the two cultures for the

entire length of the experiment. Also, the membrane potential increased at 90 hours in both sets

of cultures. This increase could potentially be attributed to a number of phenomena. However,

since this increase occurred after the onset of cell death in the culture, it could be due to the

higher death rate of subpopulations that have a lower mitochondrial membrane potential as

shown previously in the apoptosis induced death experiments. In other words, over the course of

the culture, the cell population was enriched with the higher membrane potential cells that had

the lower death rate.

The glucose consumption and lactate production profiles are shown in Figure 8-8. The

metabolic behavior for these different fed-batches does not differ significantly from one another.

This suggests that the differences in Rh123 staining indicate the ability for a cell population to

survive when apoptosis begins. In the fed-batches with different feeding strategies, differences

in Rh123 staining were observed, but this data indicates that the reverse may not be true.
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Figures 8-5 and 8-6. Viable cell concentration and percent viability versus time for
Rhodamine 123 sorted subpopulations (high (H) and low (L) MMP). The fed-batches were
fed according to the 1X-2X feeding protocol.
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Figure 8-7. Rhodamine 123 relative fluorescence values versus time for Rhodamine 123
sorted subpopulations (high (H) and low (L) MMP). The subpopulation MMP values
remained separate over the course of the experiment. In addition, the values increased when the
cells began to die.
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fed according to the 1X-2X feeding protocol. The subpopulation with the higher MMP had a
lower productivity.
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Although metabolic changes involving mitochondria cause changes in Rh123 staining, these data

suggest that even without metabolic changes, the mitochondrial membrane potential could

indicate additional physiological properties of the mitochondria that are related to the cell

population's response to apoptotic stimuli.

The monoclonal antibody concentrations versus the integrated viable cell concentrations

for the 1X-2X fed-batches are shown in Figure 8-9. The specific productivity was higher for the

culture containing the low mitochondrial membrane potential subpopulation. This phenomena

has been observed previously for this same hybridoma cell line. Chang (Chang, 1994)

demonstrated that cultures subjected to sodium butyrate, a known apoptosis inducer, increased

their specific productivity despite causing lower viable cell concentrations. A lower growth rate

sometimes correlates with an increase in specific productivity. The IgG product from this

hybridoma cell is oftentimes approximately 15% of the total protein produced by the cell. One

hypothesis could be that these cells shift their protein production away from product protein and

into biomass protein in the higher Rh123 staining subpopulations.

8.3.2 1X and 2X Fed-batches With Rh123 Sorted Subpopulations

Additional data were collected for fed-batches conducted using the two control feeding

strategies that were described previously in the Feeding Strategy section (8.2). The results for

the X and 2X fed-batch culture viable cell concentrations and viabilities are shown in Figures 8-

10 and 8-12 respectfully. These figures all demonstraLe the fact that the culture inoculums with

the higher mitochondrial membrane potential subpopulations result in higher culture viable cell

concentrations and viabilities as was the case in the X-2X fed-batch cultures. Furthermore, the

drop in specific monoclonal antibody production was also observed for each fed-batch culture as

shown in Figures 8-11 and 8-13.
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batches were fed according to the X feeding protocol.
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In addition, the low mitochondrial membrane potential subpopulations always consumed

lactate at the end of cultures unlike the high mitochondrial membrane potential subpopulations.

This occurred even when the viability for both subpopulations dropped to approximately the

same value. This phenomena was most dramatic in the 2X fed-batch as shown in Figure 8-14.

From 80 hours to the end of the culture, the lactate concentration dropped from 20 to 16 mM for

the L subpopulation whereas the lactate levels for the H subpopulation remained relatively

constant. Lactate consumption has been observed in a number of mammalian cell cultures, and

is generally attributed to the onset of cell death in the culture (Bibila et al., 1994; Xie and Wang,

1994c). This observation combined with the observation that cells with a higher mitochondrial

membrane potential can resist apoptosis suggest that the mitochondrial integrity changes that

occur during apoptosis may be associated with lactate consumption.

8.4 Discussion

A vast number of fed-batch feeding strategies have been proposed for mammalian cell

culture over the past twenty years. Controlling fed-batches at low glutamine and glucose levels

in order to reduce the build up of lactate and toxic ammonium has been one of the most

commons strategies proposed and applied in cell culture (Glacken et al., 1986; Ljunggren and

Haggstr/im, 1994). Medium concentrates have also been fed to cultures to improve culture

performance (Bibila et al., 1994; Zhou et al., 1995). The stoichiometric feeding protocol

developed by Xie and Wang (Xie and Wang, 1994c) and utilized in this work involved reducing

the glucose and glutamine concentrations while feeding just the amount of supplemental

nutrients required to produce biomass and protein product.

This work presents two new strategies for fed-batch operation. The first strategy involves

the optimization of the stoichiometric feeding process by taking into account the changes in
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metabolic behavior that occur over the course of a typical fed-batch. The increase in feeding rate

resulted in higher viable cell concentrations, viabilities, and productivities, and this indicates that

the stoichiometric feeding strategy may in fact lead to cell starvation and suboptimal culture

performance. Later in the culture when the metabolic behavior of the cells changes to a more

efficient utilization of glucose, cells respond positively to slight overfeeding. In addition, the

maintenance of a healthy nutrient level to avoid starvation has a higher priority over the

prevention of supposed toxic by-product build-up. Although ammonium is a definite threat to

cell survival, researchers should focus on the cellular nutrient needs and not necessarily on

lactate build-up.

The second strategy was an extension of the mitochondrial membrane potential sorted

cell population results that demonstrated increased resistance to apoptosis. The high Rh123

sorted subpopulations were able to resist the various bioreactor stimuli that cause apoptosis.

This adds yet another method one can use to prevent apoptosis in culture. The observations that

a wild-type subpopulation contains cells that vary in their resistance to apoptosis may suggest a

number of new novel views towards mammalian cell cultures. Heterogeneity will almost

inevitably occur in a culture with respect to any number of cellular properties. Physiological

heterogeneity could provide a basis for survival in which individual cell survival is not optimized

but rather the survival of the cell population is key. A cell population that has a robust ability to

survive would demonstrate heterogeneity toward a variety of death inducers with the surviving

cells determining the new population's adaptation to new environments. Understanding these

variances in responses to various bioreactor environments could be a dramatic step forward in

understanding heterogeneity with respect to bioreactor performance. Furthermore,

understanding the death kinetics for a given subpopulation may enable researchers to predict the
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death rate for a mammalian cell culture. An inoculum with a high mitochondrial membrane

potential would be preferred over one with a lower potential, and this physiological parameter

could be used as a way to screen for optimal inoculum cultures.
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9. CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

The goals outlined in the introduction of this thesis included the desire to contribute to

the continual development of quantitative methodologies that analyze complex biological

systems and illustrate relations between cellular physiology and behavior. Analyzing metabolic

fluxes are not enough for metabolic engineering to become an effective tool for mammalian cell

culture analysis, but rather, fluxes must be combined with observations of cellular physiology.

Furthermore, all biological systems must be analyzed with the thought that heterogeneity almost

undoubtedly exists within these systems. The analysis of multivariable and nonlinear dynamic

biological systems must be done within a mathematical framework and not the "mental model"

framework that currently dominates much of the biology literature (Bailey, 1999). This thesis

employed mathematical techniques to analyze experimental data that was then, most importantly,

used to formulate hypothesis concerning relations between mitochondria and cell death.

The findings from this research helped strengthen the field of metabolic flux analysis by

showing how this analysis technique can be employed in the quantitation of cellular physiology.

The analysis of metabolic pathways formed the basis for much of the work described in this

thesis. The theoretical analysis of central carbon metabolism led to the confirmation that

pyruvate is the most important flux distribution point within this biochemical reaction network,

enabling one to focus efforts on this branchpoint and direct research efforts toward the analysis

of factors that affect this branchpoint. Redundant data, collected in the continuous culture

experiments from the gas exchange rate measurements, resulted in the ability to not only

determine errors within data sets but also to generate confidence in the relevance of these

calculated metabolic fluxes to the true physiological and metabolic state of cultured cells. The

181



mathematical analysis of the pentose phosphate pathway improved upon over forty years of

research in which experimental data could be resolved through the recognition that the previous

"mental models" and simplified mathematical models could not completely describe this small

yet complex part of central carbon metabolism. Furthermore, it demonstrates how a seemingly

complex reaction pathway could be simplified through the use of metabolic flux analysis

techniques.

Metabolic flux analysis applied to continuous culture experiments using both Chinese

hamster ovary and hybridoma cells resulted in numerous conclusions concerning the metabolic

and physiological behavior of these cells lines. The ability to use flux analysis to determine the

actual flux distribution around pyruvate resulted in the determination of the flux distribution as

related to cellular physiology parameters such as the death rate and metabolite production or

consumption rates. Factors related to respiration that appeared to correlate with physiology were

the common thread throughout this flux analysis research, leading to the hypothesis that

respiration, oxidative phosphorylation, and other factors related to mitochondria are critical

parameters that contribute to mammalian cell culture physiology.

This conclusion was further supported by the result concerning steady state multiplicity

in which cells that were pre-adapted to a high respiratory physiological state were able to

maintain this high respiratory flux leading to a dramatic increase in cell density. Since most

mammalian cultures are inefficient with respect to their ability to convert glucose into carbon

dioxide through the respiratory chain, this finding that cells can become more efficient even

when at high growth rates indicates the definite potential for cell cultures to reach more efficient

physiological states. In other words, this result shows the potential for cell cultures to
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dramatically increase their respiratory capacity. The question now is, how can one reach these

efficient metabolic states consistently?

The hypothesis concerning the important role of mitochondria in mammalian cell culture

was also supported through the research involving the cell populations sorted based on

mitochondrial membrane potential. The fact that cell populations with a higher mean

mitochondrial membrane potential resist apoptosis was demonstrated through measurements of

both the morphological and biochemical characteristics associated with cells undergoing

apoptosis. This result is reasonable since mitochondria have proven to be one of the key players

involved in orchestrating the apoptosis mechanism.

Finally, these results were applied in the development of two new strategies for fed-batch

operation and design. The first strategy showed that overfeeding cells later in a culture leads to

an increase in culture viable cell concentration, viability, and productivity. The second strategy

showed that cell populations with a higher mean mitochondrial membrane potential are able to

resist apoptosis stimuli encountered in typical bioreactor fed-batch conditions. These results

indicate that mitochondrial physiology plays a significant role in cell culture performance.

9.2 Recommendations

Mammalian cell culture modeling and flux analysis should continue to play a significant

role not only in he development of bioreactor operations such as for feeding strategy

formulation, but also as a means of obtaining a fundamental understanding of biological

mechanisms related to cell death and productivity. Previous work using metabolic fluxes has

resulted in several novel hypothesis concerning these biological mechanisms. Peptide

hydrolysate metabolism and product glycosylation have been two areas of research covered in

other work, and the role of mitochondria in mammalian cell culture was covered in this work.
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Future work should continue to examine central carbon metabolism flux distribution when cells

are subjected to changes in controlled environmental conditions. Typical biological research

does not adequately provide an experimental framework through which one can examine the

complex multivariate dynamical systems present in biological systems. For example, the effects

of a growth factor are almost always conducted in experiments that measure only a few

parameters such as gene expression or cell growth. This contrasts dramatically with a

continuous culture experiment in which the withdrawal or supplementation of a key medium

component provides information concerning the overall physiological effects of these

compounds and their relations with central carbon metabolism and enzyme and gene regulatory

networks.

Population heterogeneity is also another significant area of research in biochemical

engineering that has not been adequately explored. Issues such as genetic instability and

bioreactor performance heterogeneity are considered a significant problem in the field of

biochemical engineering, and effort should be directed toward solving these issues. FACS is an

excellent tool for population heterogeneity hypothesis testing, and it will most likely become a

standard piece of equipment for all biotechnology labs. For example, a therapeutic drug

undergoing testing may result in little overall stimulation of a target cell population. Through

ordinary, whole-population analysis such as gel electrophoresis, true effects that influence a

small subpopulation of cells would be masked. FACS could detect these subpopulations, allow

one to isolate them, and then allow one to perform additional testing on this cell subpopulation

which could lead to the development of a more potent therapeutic. The laser scanning

cytometer, the gene chip, and other technologies would also play a major role in this analysis of

population heterogeneity leading to more effective therapeutics aimed at a more select cell or
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patient subpopulation. The downside to this research will be the now unavoidable truth that

heterogeneity exists in places where it was previously either unknown or ignored. Commonly

used cell lines will likely show considerable population heterogeneity and this will add another

dimension to biological research by requiring not only the specification of the cell line being

used but also the exact experimental background of that cell line.

Apoptosis research has made considerable progress in the last few years. The future

work in this area, though, is still limitless due to the fact that research in this field is still in the

basic discovery stage. The recent understanding that mitochondria play a fundamental role in the

apoptotic mechanism still leaves scientists without a basic understanding of the translocation

process of mitochondrial based apoptosis inducing factors to the cytosol for activation of the

effector caspases.

Mitochondria research has not been given as much attention as it deserves during the last

thirty years. In the past, the Mitchell hypothesis was the major driving force behind research on

mitochondria. Only recently through apoptosis research has the behavior of these critical

organelles been appreciated. Research demonstrating their ability the move, change shape, and

respond to cellular physiological changes illustrate how these "organisms within an organism"

operate. Inverse metabolic engineering strategies that focus on the development of cell lines

with desirable mitochondrial physiology should play a definite role in future biochemical

engineering research.
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NOMENCLATURE

A Matrix of biochemical reaction network stoichiometry

ai Extent of reaction reversibility

bj Fractional enrichment of labeled input substrate

Ci Metabolite or nutrient concentration (mmole/L)

D Dilution rate (hr l')

E Matrix of redundant equations

Hi Henry's law coefficient for species i (Pa/mole L)

h Consistency index

K Kernal matrix for N

kd Death rate (hr' l)

kLa Mass transfer coefficient

m Number of metabolites in a reaction network

N Steady state internal metabolite matrix

NT, Nv Total and viable cell density (cells/ml)

n Number of reactions in a reaction network

P Pentose phosphate pathway non-oxidative reaction flux

Pi Partial pressure of species i

Ap Proton motive force (mV)

qc Metabolite or nutrient uptake rate (mmole/cell/hr)

r Vector of metabolite production and consumption rates

vi Reaction velocity or metabolic flux for reaction i (mmole/cell hr)

v Vector of reaction fluxes

VR Reactor volume (L)

xi Concentration of metabolite i (mmole/cell)

yi Jsotope fractional enrichment of metabolite i

zi Gas phase mole fraction of species i
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Greek Letters

aCij, ij Stoichiometric coefficient for metabolite j and reaction i

E Defined in equation 4.15

(P Defined in equation 4.16

A'm Mitochondrial membrane potential (mV)

fT Variance-covariance matrix for the measurement vector, r

At Growth rate (hr' l)

Abbreviations

CER Carbon dioxide evolution rate

Ery4P Erythrose 4-phosphate

Gra3P Glyceraldehyde 3-phosphate

Hex6P Hexose pool consisting of glucose 6-phosphate and fructose 6-phosphate

MMP Mitochondrial membrane potential

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

OUR Oxygen uptake rate

Pen5P Pentose pool consisting of ribulose 5-phosphate, ribose 5-phosphate, and

xylulose 5-phosphate

Sed7P Sedoheptulose 7-phosphate.

Rh123 Rhodamine 123

RQ Respiratory quotient
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