
Restaurant Revenue Management

by

Romy Shioda

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Master of Science in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2002

) Romy Shioda, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author;

Sloan School of Management
May 17, 2002

Certified by..........
Dimitris Bertsimas

Boeing Professor of Operations Research
Thesis Supervisor

Accepted
7 James Orlin

Co-director and Edward Pennell Brooks Professor of Operations
Research

'r %414
1�1 --Z�)"r, ,

I .Is I

2

Restaurant Revenue Management

by

Romy Shioda

Submitted to the Sloan School of Management
on May 17, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science in Operations Research

Abstract
We develop two classes of optimization models in order to maximize revenue in a
restaurant, while controlling average waiting time as well as perceived fairness, that
mlay violate the first-come-first-serve (FCFS) rule. In the first class of models, we
use integer programming, stochastic programming and approximate dynamic pro-
gramming methods to decide dynamically when, if at all, to seat an incoming party
during the day of operation of a restaurant that does not accept reservations. In a
computational study with simulated data, we show that optimization based methods
enhance revenle relative to the industry practice of FCFS by 0.11% to 2.22% for low
load factors, by 0.16% to 2.96% for medium load factors, and by 7.65% to 13.13%
for high load factors, without increasing and occasionally decreasing waiting times
compared to FCFS. The second class of models addresses reservations. We propose a
two step procedure: use a stochastic gradient algorithm to decide a priori how many
reservations to accept for a future time and then use approximate dynamic program-
ming methods to decide dynamically when, if at all, to seat an incoming party during
the day of operation. In a computational study involving real data from an Atlanta
restaurant, the reservation model improves revenue relative to FCFS by 3.5% for low
load factors and 7.3% for high load factors.

Thesis Supervisor: Dimitris Bertsimnas
Title: Boeing Professor of Operations Research

3

4

Acknowledgments

Research supported in part by the Singapore-MIT alliance. I would like to thank

Mr. Sotohiro Kosugi, owner and chef of Soto's, a Japanese restaurant in Atlanta,

Georgia for sharing with us data from his restaurant and helping us better understand

restaurant operations. Most importantly, I thank my advisor, Professor Dimitris

Bertsimas, for all his support and encouragement over the years.

5

6

Contents

1 Introduction 11

2 The Basic Model 17

2.1 An Integer Programming Approach 17

2.2 The Simulation 25

3 Extensions of the Basic Model 27

3.1 A Stochastic Integer Programming Model 27

3.2 An Approximate Dynamic Programming Model 30
3.3 Comparison Models. 31

4 Models with Reservations 33

4.1 A Reservation Booking Model 33

4.2 Dynamic Seat Allocation with Reservations 39

4.3 Comparison Model46

5 Computational Results for models without Reservations 47

5.1 Data 47

5.2 Algorithms Tested and Parameter Settings 48

5.3 Results 50

5.4 Computational Results for Reservation Models 52

5.5 Data 52

5.6 Parameter Settings 53

5.7 Computational Results. 54

7

6 Summary and Concluding Remarks

8

57

List of Tables

5.1 Expected Duration (in minutes) of Service Phases. 48

5.2 Revenue, Average Wait and Percent Served Resulting from Static ca-

pacity Models 51

5.3 Run Time per Party in seconds for Static Capacity Models 51

5.4 Revenue, Percent Served and Average Waiting Time of Reservation

Models for Demand Level 90. 55

5.5 Revenue, Percent Served and Average Waiting Time of Reservation

Models for Demand Level 120 55

9

10

Chapter 1

Introduction

Maximizing efficiency is of utmost importance for large and popular restaurants to

increase their profits and to remain competitive. This can explain the surge in the

usage of POS (point of sales) softwares that track the arrival time, size and order of

each customer. Although floor managers can utilize these tools as an aid to better

estimate the remaining service time of the customers and to see which tables need to

speed up their service, their seating policy is mainly based on intuition brought on by

experience. In most cases, they follow a simple first-come-first-serve (FCFS) policy.

The challenge of a floor manager is to decide when and where to seat each arriving

customer. If there are only tables of four available and a party of two enters, does

he seat the party at the larger table or reserve if for a larger more revenue producing

party? In addition, if the restaurant takes reservations, he needs to further decide how

to seat walk-in customers so that they wculd not take away tables from the reservation

customers while considering the possibility of no-shows. These are important practical

issues for restaurant managers, where in some cases a good floor manager can make

the difference of couple hundred dollars per night [7]. Thus, a tool that can help floor

managers better make these decisions would be of significant value to a restaurant.

With all the data that is collected by the POS software, a revenue maximizing

seating policy can be utilized. We believe the key lies in nesting - where parties

are seated at tables that can seat larger parties. This thesis stems from the belief

that restaurants can increase their revenue by optimizing their nesting decisions, i.e.,

11

when to save tables in anticipation for larger parties, even when there are smaller

parties currently in queue. We develop two classes of optimization models in order

to maximize revenue in a restaurant, while controlling average waiting time as well

as perceived fairness, that may violate the first-come-first-serve (FCFS) rule. In

the first class of models, we use integer programming, stochastic programming and

approximate dynamic programming methods to decide dynamically when, if at all, to

seat an incoming party during the day of operation of a restaurant that does not accept

reservations. In the second class of models, we use a stochastic gradient algorithm to

decide when, if at all, to accept a reservation for a future time and also incorporate

reservations in a dynamic model. We illustrate using both simulated and real data,

that our models lead to significant revenue enhancements relative to FCFS.

Literature

Revenue management in general is the practice of maximizing a company's revenue

by optimally choosing which customers to serve. It has been used extensively in the

airline, hotel, and car rental industry. McGill and van Ryzin [10] give a comprehensive

overview of the history of revenue management in transportation, where it has had

the greatest impact.

In the case of restaurants, restaurant managers want to allocate their tables by

seating the largest possible party at each table - assuming the total bill increases

with party size. However, they need to also consider seating small parties at large

tables when the larger parties are not expected to arrive in the near future, because

they would rather seat them than having an empty table. Thus, the challenge is

to understand the demand flow throughout the day of each type of customer and

optimize the allocation of the tables among them.

Unlike the widespread application of revenue management methods in airlines,

hotels, and rental cars, the number and depth of studies on revenue management in

restaurants have been comparatively slim. Kimes et. al. [4], [5], [6] have been one of

the first to directly address the issue of restaurant revenue management. They built

12

a strategic framework for applying revenue management for restaurants to increase

demand, and thus revenue, by effective duration management and demand-based pric-

ing. They proposed using the revenue per available seat hour (RevPASH := revenue

accrued in a given time interval divided by the number of seats available during that

time) as the restaurant's performance metric. This value is calculated for each time

period of each day, in order to identify times that the RevPASH is low. Similarly, Sill

et. al. [13], [14] proposes the use of Capacity-management Science (CMS)® as a sys-

tematic method of assessing the restaurant's capacity potential and process efficiency.

CMS® involves monitoring every component of the service and production delivery

process with quantifiable measurements to improve customer satisfaction, enhance

employee work life and increase profit.

Although not specified under the name of revenue management, many other ap-

proaches have been proposed to increase the revenue of restaurants. Vakharia et.

al. [15] developed models and heuristics to find the best trade-off between wages

and hour preferences to minimize the cost of employees while maintaining employee

satisfaction. Quain et. al. [12] and Muller [11] addressed managerial factors that

may improve the efficiency of restaurants, such as realizing profit centers, dispers-

ing demand, decreasing operating hours and decreasing service time by making the

restaurant operational procedures as efficient as possible.

Most of the studies in this area address issues concerning the overall management

of the restaurant. However, to the best of our knowledge, there are no studies on a

mathematically rigorous dynamic seating model.

Our objective in the thesis is to develop and test using both simulated and real data

several increasingly sophisticated optimization based approaches to restaurant revenue

management (RRM) that address trade-offs between expected revenue, average waiting

time and perceived fairness, that may violate the FCFS rule.

Contributions

Our contributions are:

13

1. As an exact dynamic programming approach to RRM is infeasible due to "the

curse of dimensionality ", we develop mathematical programming based ap-

proaches of increasing sophistication in order to maximize expected revenue,

yet taking into account expected waiting time and associated fairness issues.

We develop integer programming, stochastic programming, and approximate

dynamic programming models to provide efficiently implementable policies for

RRM. These approaches are interesting in their own right and may find ap-

plication in revenue management in other contexts. A particularly promising

method is the approach of approximate dynamic programming based on an

integer programming model.

2. We propose a stochastic gradient algorithm motivated by the work by Karaes-

men and van Ryzin [3] to address RRM with reservations. We also apply ap-

proximate dynamic programming to make optimal seating decisions for both

reservation and walk-in customers online.

3. In computational studies involving both simulated and real data, we show that

our models improve revenue often substantially relative to the industry standard

of seating parties in a FCFS manner without increasing the average waiting

time.

Structure

The structure of the thesis is as follows: Chapter 2 describes the structure and compo-

nents of the basic model. Chapter 2.1 describes the integer programming approach,

while Chapter 2.2 outlines the simulation model. Chapter 3 elaborates on exten-

sions to the basic model. Two variations of the model are introduced in this section:

Chapter 3.1 describes the stochastic programming version of the basic model; Chapter

3.2 introduces an approximate dynamic programming approach for the basic integer

programming model; Chapter 3.3 describes first-come-first-serve models and the bid

pricing model used as a performance baseline for the previous models. Chapter 4

14

introduces reservations to our previous models. Chapter 4.1 describes the reservation

booking model that determines the optimal booking level using a stochastic gradi-

ent algorithm, while Chapter 4.2 describes a modified version of the approximate

dynamic programming model introduced earlier. In Chapters 5 and 5.4 we report

computational results for models without and with reservations, respectively. Chap-

ter 6 summarizes our findings and contains some concluding remarks.

15

16

Chapter 2

The Basic Model

2.1 An Integer Programming Approach

In this section, we develop an integer programming (IP) model that aims to maximize

the expected future revenue, while controlling for expected waiting time by deciding

when and where to seat each incoming party. We use a discrete time horizon of N

equal length periods so that the number of decision variables and constraints remain

tractable. We first introduce the data on which the model is based.

Data

We consider a restaurant that can seat parties of size k = 2, 4,.. ., K with K even.

For simplicity, parties of sizes 1,3,... , K - 1 can be considered to be one person

larger. There are k' = 2, 4,.. ., K different table sizes such that a party of size k

can sit at a table of size k', for k' > k. We assume that the total revenue gen-

erated by a party increases with the party size. Note that we do not necessar-

ily assume that the revenue per person is affected by party size. We model the

service time as a collection of SP service phases (for example: first course, sec-

ond course, dessert). By breaking up the service time and keeping track of how

many parties are in each phase, we can make a better estimate of the remaining

service time. Our model only uses information about expected values. In this re-

spect, our model is similar to network airline revenue management systems that

use a linear programming model (for example the widely used bid price control ap-

17

proach) to decide seat allocation. We assume the following information is known:

ck := the number of tables of size k available.

Dt,k := the expected number of size k parties arriving at time t.

Sk, := the expected duration of phase s for a size k party.
SP

Sk. : Sk,s, the expected total service duration of a size k
s-1
party.
SP

Sks := E Sk,n, the expected remaining service duration for a
n-=s
size k party entering phase s.

Rk := the revenue expected from a party of size k.

CostQt,k :- the cost of postponing service to a party of size k that

arrived at time t and currently in queue.

Cost Xt,k := the cost of postponing service to a party of size k that

is expected to arrive at time t.

The above data can be collected by many POS softwares. For example, Dt,k and

Rk can be estimated using historical data on customer arrivals and bills, which is

often kept track of by POS softwares. We have found there are several POS products

that have the ability to track service phases of customers with an electronic ordering

pad used by waiters when taking orders. Currently, these pads are used to send orders

to the kitchen, but we believe it can also be used to notify the floor manager on the

progress of the customers in their meals. With this added feature, it would be easy

for the POS software to estimate average service phase durations. Floor managers

would need to record arrival and departure times of parties, but that can be readily

linked to seating the parties and processing their bills, respectively. Finally, we set

the values for CostQt,k and CostXt,k in our computational experiments (see chapter

5) in order to capture the trade-off between quality of service (excessive waiting times

and denied service) and revenue.

In addition to revenue, important considerations in managing restaurants are the

control of waiting time and associated fairness issues. Thus, in the IP model we ex-

plicitly address these issues. For this purpose, we introduce the following parameters

that we adjust in order to achieve the "right" trade-off between revenue, waiting time,

18

and fairness.

Alax := the maximum number of periods that a party will wait.

n := a user-defined parameter that controls the trade-off be-

tween revenue and waiting time (the higher , the

higher the importance of the waiting time; See Eq. (1)).

V1 := a user-defined parameter that controls the trade-off be-

tween revenue and allowing flexibility in allocating a size

k party to a table of size k' > k; See Eq. (1).

In practice, the waiting time behavior of customers are complex. The amount

of time a party may wait in queue may follow a probabilistic distribution and may

be dependent on the size of the party and time of arrival. However, to simplify the

model, we assume that every party is willing to wait up to Max periods. If they are

not seated within Max periods, the model assumes that they automlatically renege

from the queue . It further assumes that parties can not renege earlier nor later than

Max periods. Appropriate values for Max, M and rn are discussed in the chapters 5

and 5.4.

State

The state of the system is described as follows.

now := the current time (in periods).

Qt,k := the number of size k parties that arrived at

rently waiting in queue.

Nk ,k := the number of size k parties in service phase

a size k' table.

To better utilize capacity, the IP model allows parties of

of size k' > k. The service state parameters Ni,k, keep track

Decision Variables

We introduce the following decision variables:

time t cur-

s seated at

size k to seat in a table

of these parties.

'In the language of queueing theory, reneging is when a customer prematurely leaves the restau-
rant, after waiting line, before receiving any service.

19

qt,t',kk,' :- the number of parties of size k, who arrived at time t

and currently in the queue, that should be seated at a

size k' table at time t'.

qdenyt.k := the number of party of size k, who arrived at time t and

currently in the queue, that are not currently allocated

a seat (i.e., not seated within Max periods).

Xt,t',k,k' := the number of parties of size k, out of Dt,k, that should

be seated at a size k' table at time t'.

xdenyt,k := the number of parties of size k, out of Dt,k, that are not

currently allocated a seat (i.e. not seated within Max

periods).

Z qk := the auxiliary variables that allows us to model fairness

in the seating decisions, captured in Eqs. (2.5) and (2.6)

below.

Zk := the auxiliary variables that allows fairness in the seating

decisions, captured in Eqs. (2.7) and (2.8) below.

Each time the IP model is formulated, there are two disjoint sets of customers

that it must consider; those that have already arrived and those that are expected to

arrive. qt,t',k,k' and qdenyt,k are seating decision variables corresponding to the former

type of customers and Xt,tl,k,k, and xdenyt,k are the seating decision variables for the

latter type. The parties represented by the qt,t,k,kk,'s and qdenyt,k's are parties that

have already arrived and thus known. However, the parties represented by Xt,t',k,k'S

and xdenyt,k's have not yet arrived and are thus uncertain. Partitioning the decision

variables in such a way allows for more dynamic and flexible modeling.

The model does not explicitly deny service to the customers, but it may not be

able to seat some parties within Max periods - the maximum number of periods

that a party would be willing to wait in queue. These parties that are not currently

allocated a table is captured by the decision variables qdenyt,k and xdenyt,k. The

use of the auxiliary variables Zqk and z4 will be described in more detail in the IP

formulation.

20

The Integer Program Formulation

We formulate and solve an integer program at each customer arrival and departure,

and determine whether a party should be seated from the optimal solution. Our ob-

jective is to maximize expected revenue while maintaining reasonable waiting times

and fairness in our seating decisions, by considering the state of the restaurant. We

can also maximize occupancy, by assuming that the revenue per person is indepen-

dent of the number in the party. Although we solve the IP to optimality, the data

we use, such as expected demand, expected service time and the simplified waiting

time behavior, are only estimations. Thus, the expected future state of the restau-

rant modeled by the IP are also estimations. However, capturing the states of the

system exactly in a stochastic dynamic programming sense would be computationally

intractable, thus making our IP model a viable heuristic. The proposed model is as

follows:

Objective Function

The objective is the maximization of expected future revenue while controlling waiting

time.

max (Rk - M(t' - t) - (k' -k))qt,t',k,k'
t=1,...,[nowJ

k=2,...,K t'=[nou,J ...,min(N,t+Max--1)

- CostQt,kqdenyt,k
t=l, ..., nowJ

k=2...., K

E Z (Rk - M(t' - t) - (k - k))xt,t',k,k'
t=LnowJ,...,N k'=k,...,K

k=2,...,K' tt=t,...,nin(N,t+Ma -)

- CostXt,kxdenytk (2.1)
t=-LnowJN

k=2,...,K

The first set of summations corresponds to the expected revenue that can be

attained from parties currently in the queue. The second set corresponds to the cost

of not allocating a table to parties currently in the queue. The third set corresponds

21

to the revenue from parties expected to arrive in the future and the last is the cost

of not allocating a table to those customers.

The term -M(t' - t) in the first and third coefficients is a cost again excessive

waiting time. The cost -(k' - k) encourages seating from the smallest available

table first. Without this term, the model may, for example, seat a party of size two

at a table of size eight if it does not expect larger sized parties in the near future.

However, since our expected demand data are only estimations and the actual demand

in uncertain, we want to be on the safe side and seat from the smallest available table

first.

The costs CostQt,k and CostXt,k are necessary for the model to give preference

to customers in the queue as well as those expected to arrive in the current period

over those expected to arrive in the future. Thus, the value of CostQt,k is higher

than CostXt,k for all t for each k, because postponing service to a customer already

in queue should be higher than postponing service to a customer expected to arrive

in the future. Also, CostXt,k for t = LnowJ is higher than that for t > [nowJ. If it

were the same, the model will consider postponing service to a party that arrives in

the current period versus seating that party and postponing service to an equal sized

future party as the same. We prefer the former solution, since there is a possibility

that a party will arrive in the current period and thus we want the model to give us

the ability to seat them. The exact numerical value of these weights are determined

by computational experimentation.

Constraints

(1) Demand Constraints:

qt,t,,k,k'+qdenyt,k = Qt,k, V t = 1,..., LnowJ; k = 2,..., K.
t'=LnouJ ,...,mn(N,t+fax- 1)

kt=k ,...,K

(2.2)

22

Xt,t',k,k' + xdenyt,k = Dt,k, V t = [no'wJ,..., N; k = 2,..., K.
t=t,...,mnln(N,t+Maa-1)

kt=k,..,h'
(2.3)

Constraints (2.2) insure that the model does not seat more parties than those cur-

rently in the queue. Constraints (2.3) insure that the model does not seat more

parties than currently expected.

(2) Seating Capacity Constraints:

This constraint characterizes the capacity constraint at each time r for each table

size k'. It also incorporates a nesting concept that allows parties of size k to sit at a

size k' table, where k < k'.

E _(E qt,t',k,k' + Xttkik')
k=2,...k t=max(l,t -Max+1),...,Lnowj t=max(LnowJ,t' -Max+l),...,t'
t'ET(t,k)

+ a IN(T) < Ck, , V T= [nowJ,...,N;k' = 2,..., K. (2.4)
k=2,...,kt

s=1 SP

where

T(t, k) = t': t < t' < t'+Sk., t E Z, IN() = k +
0, otherwise.

Note that the parameters N, k, allow for a more accurate estimation of the re-

maining service time of the parties currently being served. The last summation term

in Eq. (2.4) corresponds to the expected number of parties currently seated at table

k' who are still being served at time T.

(3) Fairness Constraints:

The model uses parameter MA to control waiting time in the objective function.

However, when this cost is added, the model would rather seat last-come-first-serve

within the same party size because the last customer to arrive would have less waiting

23

time, and thus a higher objective value. To avoid this problem, we add constraints in

the model that would seat the customers within the same party size in the order that

they arrived. By seating parties in queue by first-come-first-serve within the same

party size, the waiting time of the parties decrease and fewer parties will leave from

the queue. In particular, because of perceived unfairness, customers in a restaurant

would strongly complain if a same sized party that arrived after them were seated

before them.

The following constraint insures a FCFS seating policy within the same party

size for those in the queue that are able to be seated at the current time. It is not

extended to future periods due to the uncertainty of the future state of the queue.

E (Qk - qLnoulJ,k,k) (E Qi,k)Zt,k
t=max(I, [nowJ-Maa+l),.....,t- t=max(l,LnouJ --Max+),...,t-I

(2.5)

-S qt,[lnowJ,k,k < L(1 Zk, (2.6)
k=k,...,K

for t = max(2, [nowJ - Max + 2),..., Lnow; k = 2,..., K.

S (Qi,k - q,[lnowl,k,k) • (Qk)Z7
--na:(1 ,LnoutJ -Max+ 1)..., LnouJ t=max(1,[now -Max+ 1),...,t-1

k=k,....K

(2.7)

E X[nowJ,[nowJ,k,k < L(1- Zk), (2.8)
k=k,...,K

for k = 2,...,K.

Here Ztqk, Zk are auxiliary binary decision variables associated with each set of con-

straints. L is some large positive constant. Eqs. (2.5) and (2.6) state that if there

are parties of size k that arrived before time t still in queue (i.e., the LHS of (2.5) is

positive), then Zk has to be equal to 1. This implies that the LHS of (2.6) must be

zero. In other words, Eqs. (2.5) and (2.6) insure that a party of size k that arrived

at time t can be seated only when there are no parties of k that arrived before them

24

still in queue. Constraints (2.7) and (2.8) are analogous to parties of size k expected

to arrive at the current period.

(4) Integrality Constraints:

For t = 1,...,N;t' = t,...,N; k = 2,...,K; k' = k,..., K

qt,t',k,k' E Z, Xt,t',k,k' E Z+ , Zqk e {0, 1}, zk e {0, 1} (2.9)

2.2 The Simulation

The IP described in Eqs.(2.1)-(2.9) will be formulated and solved whenever the floor

manager needs to make a seating decision. When incorporated into a POS product,

the system would optimize the IP model with the current system data each time a

new customer arrives or when a customer exits. If the optimal solution of the model

indicates a party should be seated or not seated at that moment, the result is conveyed

to the floor manager who can act accordingly.

The implementation of the model is simple. There are very few or no added work

for the floor manager who uses most POS products. He or she needs only to input the

size of a newly arrived party and take note when a party exits. All the information

needed to run the model is already being collected in many large restaurants.

To summarize, there are three events that drive the model; (1) customer arrivals,

(2) service completion and (3) customer attrition from the queue. The model works

in the following way after each of these events:

1. Customer Arrives:

* Input the party size and time of arrival.

* Update appropriate Dt,k.

* Formulate and solve the IP model using current system data.

* Act according to the IP solution and update system data, i.e.,

- If the party is to be seated, seat them at the specified table. Update N,k,

accordingly.

25

- If the party is not to be seated, put them at the end of the line. Update

Qt,k accordingly.

2. Customer Exits After Service Completion:

* Exit the party from the table.

* Update appropriate Nk,k,.

* Formulate and solve the IP model using current system data.

· Act according to the IP output and update system data, i.e.,

- If a party currently in the queue is to be seated, take them off the queue

and seat them at the specified table. Update Nk,k, and Qt,k accordingly.

3. Customer Attrition from the Queue

* Update appropriate Qt,k-

We update Nk k, and Qt,k by incrementing or decrementing the appropriate term.

We do the same for Dt,k, the expected future demand, instead of using any probabilis-

tic approach to forecasting demand. The initial value of Dt,k is set to the expected

demand for each time period t and party size k calculated by a simple average of the

historical data. As arrivals are seen for a given t and k, Dt,k is decremented. If Dt,k

is 0 when an unexpected customer arrives, the simulation model automatically puts

them in the queue, the queue state is updated and the IP is optimized. Although the

party is theoretically put in the queue from the model's perspective, they often do

not have to wait to be seated. Though this is a simplified estimate of future demand

levels, it seems sufficient from our computational experimentations.

26

Chapter 3

Extensions of the Basic Model

In this chapter, we present several increasingly more sophisticated extensions of the

basic model.

3.1 A Stochastic Integer Programming Model

One of the shortcomings of the basic model is its sole use of the expected demand

values as an indication of future customer arrivals. The stochastic version of the

IP introduces various demand scenarios that the IP model can work with. Several

demand scenarios are generated similarly to the process of generating arrivals in

simulations. By using the generated scenarios with the expected demand values, the

IP attempts to more accurately capture the future demand characteristics.

The stochastic IP model works with demand scenarios (one of them being

the expected case), each with probability a;, where w - 1, 2, ... , Q. The objective

function is modified to maximize the expected revenue over the possible scenarios.

Additional and Modified Data and Parameters

To summarize the new parameters and data required:

27

fQ := the total number of scenarios.

a,, := the probability of scenario w.

Dw ' = the number of currently expected size k parties arriving

at time t in scenario w.

Modified Decision Variables

To summarize the modified decision variables:
Xt,t',k,k',w - the number of size k parties, out of Dt that should be

seated at a table of size k' at time t' in scenario w.

xdenyt,k,, := the number of size k parties, out of D , that are not

allocated a table in scenario w.

Zk mu := the auxiliary variables that allows fairness in the seating

decision, captured in Eqs. (3.5) and (3.6).

Stochastic Integer Programming Formulation

Objective Function

ax E
t=l .. ou . J kt=k,K

k=2,...,K tt=LnowuJ,...,mtn(N,

t=l.L,
k=2,...

t=LnowJ,.....,N k=k ...,K
k=2,...,K t'=t,..,min(N,t+Max-1)

w=l,...,Q

t=LnowJ ,...,
k=2,..., K
w=1,...,

(Rk - M(t' - t)- 1(k' - k))qt,t,k,k
,t+Maz--l)

CostQt,kqdenyt,k
ilowJ
.,h'

(R - M(t' - t) - (k' - k))xt,t',k,k,

acoCostXt,kxdenytk, ,
IV

Constraints

(1) Demand Constraints:

The first set of constraints insures that the IP model does not seat more customers

than those in the queue. The second set insures that the IP model does not seat more

parties than the demand for each scenario.

28

(3.1)

m.

t'= Lnou J ,...,min(N,t+MaX--1)
k'=k,...,K

qt,t',k,k' + qdenyt,k = Qt,k, V t = 1,..., [nowJ; k = 2,

E
t'=t,...,min(N,t+Manr-1)

kt=k,...,K

Xt,t',k,k',w + xdenytk, = Dtk,

(3.3)V t=[nowJ,...,N;k= 2,...,K; w = 1,...,fQ.

(2) Seating Capacity Constraint:

z
t=max(1,t'-AIax+ 1),...,[nowJ

qt,t',k,k' +
t=max([nowJ ,t' -Max+ 1),...,t'

+ IN(T) < Ck',
k=2,...,k t

s= ,...SP

V r = Lnowj,...,N;k' = 2,...,K;w = 1,...,fQ.

where T(t, k') and IN(r) are as in (2.4).

(3) Fairness Constraint:

Same as (2.5) and (2.6). In addition,

I=max(l,Lnow -Maz+1),... LnowJ
K=l,...,h

E
t=max(1,LnowJ-Max+1) ... t-1

(3.5)

(3.6)
E Xlnou)J,LnowJ,k,k < L(1- zk,),

k=k,...,K

for k = 2,... K, w = 1,...fQ.

(4) Integrality Constraints:

For t = 1,...,N;t' = t,...,N;k = 2,...,K;k' = k,...,K;w = 1,...fQ,

Xt,t',k,k',w E Z+, iq,k E {0,1) Zkew {O,1} (3.7)

29

(3.2)

k=2,...,k)
tt ET(t,k)

(3.4)

(Qi~k - q~nowj~k~k) :5 (

Ct,t',k,k E +

Xt"tlk'k',

The Simulation for the Stochastic Model

The simulation using the stochastic IP model is similar to that of the basic model.

The model follows the procedure described in chapter 2.2 using the stochastic pro-

gramming model instead of the deterministic IP model.

3.2 An Approximate Dynamic Programming Model

The approximate dynamic programming model solves for the maximum revenue pro-

ducing seating policy for each customer. We formulate and solve the IP under each

possible seating decision for a particular customer, and the decision that results in

the maximum revenue value is chosen.

Let S be a vector describing the current states of the system that can be affected

by a seating decision. In particular,

S = (Qt,k, N,k'), for (3.8)

t = max{l, nowJ - Max+l},..., [nowJ;k = 2,...,K;k' = k,...,K; s = 1,...,SP.

A decision time is when a party arrives or a party exits after service completion.

If an arrival of size k occurs, the following decisions are available:

1. Do not seat the incoming party. The new state is such that: Qt,k - Qt,k + 1.

2. For k' = k,.. ., K, seat incoming party at a table of size k'. The new state is

such that: Nk,k + Nk ,k + 1.

If a party of size k occupying a table of size k' exits from the restaurant, the following

decisions are available

1. Do not assign the table to a party from the queue. The new state is such that:

2. Assign the table to a party of size k" < k', who has been in the queue since

time t". The new state is such that: Qt",,k" +- Qt",k" - 1, Nk",k' Nk",k, + 1,

30

N skP +- N skP -1.

Let u be the decision taken, so that

0, Don't seat now,

U k', Seat at a table of size k'

for each of the events. Let Su be the updated state after a decision u is taken. Let

IP(S) be the expected future revenue resulting from the IP model (Eqs. (2.1) - (2.9))

as a function of the state S.

Under an approximate dynamic programming (ADP) framework, we choose the

decision u, corresponding to seating a size k party that arrived at time t, by solving:

max {ita omax [Rk - 7(u - k) + IP(Su)], IP(So)} (3.10)
u=k,...,/~

table of size u available

The first term in the maximization corresponds to the expected revenue of seat-

ing the party minus a nesting cost, and the second term corresponds to the expected

revenue of not seating the party. This method uses the ADP methodology by ap-

proximating the true value function (in a dynamic programming sense) by the value

of the IP model.

We note that the IP in (3.10) need not include the fairness constraints (2.5)-(2.8)

required in the previous models because ADP evaluates the value function of each

party in the order of their arrival and thus ensures FCFS seating within the same

party size.

3.3 Comparison Models

First-Come-First- Serve

We develop three first-come-first-serve models to compare their revenue with the

revenue generated by using the above models. The FCFS model seats the customers

in the order of arrival if there are tables available for them. The "Full Nesting" FCFS

31

Model incorporates full nesting of capacity, where a party of size k is allowed to sit at

a size k' table for k' > k. If there are several possible table sizes, the model would seat

them at the smallest of those tables. The "1 Up Nesting" FCFS Model allows a party

of size k to sit at either a table of size k or at the next largest table if size k tables are

saturated. The "No Nesting" FCFS Model allows no nesting. If there are no tables

for a particular customer of size k, but there are tables for smaller customers that

arrived after them, the model will seat those customers in order of arrival. Customers

who have waited longer than Max will automatically leave the queue. The average

of the simulated revenues over several iterations are compared to the revenue of the

IPs.

Bid Pricing Model

The bid pricing heuristic commonly applied in airline revenue management is run

as a performance benchmark. The linear programming relaxation of the basic IP

model is solved and the seating decisions are made based on the difference between

the immediate revenue and the sum of the dual prices corresponding to the utilized

capacity corresponding to the party's stay. Suppose Pt,k' is the dual value of the

seating capacity constraint corresponding to table of size k' at time t. The bid price

for seating a party of size k to a table of size k' > k is as follows:

[exitJ - I1

Rk - E Pt,k' - (now] - nOw)P[,oLJ,k, - (exit - exitJ)pl[itJ,k (3.11)
t= rnowl

where exit = now+Sk.. The term (nowl -now)p[nwJ,k, and (exit- [exitJ)Plexitj,k, are

to prevent over-estimation of the expected stay of the customer due to the discreteness

of time. ([now] - now) is the fraction of period [nowJ and(exit - [exitJ) is the

fraction of period [exit that the party is expected to be in service. If there are

positive bid prices, the party is seated at the table corresponding to the maximum

price. Otherwise, the party is not seated.

32

Chapter 4

Models with Reservations

The models in the previous two chapters assume that the restaurant does not accept

any reservations. Many high-end restaurants, however, do indeed accept reservations

for their customers' convenience. Such a policy introduces several decisions which

need to be addressed. For example, how much should they over-book and how should

they service walk-in customers? We will incorporate reservations in our previous

models by using two models: (1) A static reservation booking (RB) model and (2)

a dynamic seat allocation model with reservations (DSAR). The static reservation

booking model is an off-line model that is optimized using a stochastic gradient ap-

proach as in Karaesmen and van Ryzin [3]. The dynamic seat allocation with the

reservation model is an online model solved using an ADP approach as in chapter

3.2.

4.1 A Reservation Booking Model

In this section, we develop a model that determines how many reservations to accept

in prior days for a particular day in the future, given data regarding the expected

number of reservation requests, the expected number of walk-ins and the rates for

no-shows.

As before, we assume that there are N time periods in which reservations can be

accepted. We do not, however, consider nesting of table sizes, i.e., a party of size k can

33

only be assigned to a table of size k. Thus, the seating decisions are independent across

the party sizes so that the problem can be broken down into smaller sub-problems for

each party size. Since we are building a planning, as opposed to operational, model

in this section, we feel that this is justified. Methodologically, motivated by the work

of Karaesmen and van Ryzin [3] in a very different context, we solve the optimization

problem using a steepest descent algorithm with stochastic gradient estimation.

Data

The following are the data that we expect t- restaurant to have for each party size:

R := the expected revenue of the given party size.

p := the probability that a reservation party will show up.

ERt := the expected number of reservation requests for time t.

EWt := the expected number of walk-in parties that arrive at

time t.

Decision Variables

The key decision is the number of reservations ut to accept for time period t; t =

1, ... ,N.

Random Variables

We define

Zt :- the number of reservation parties booked for time t that show up.

wt := the number of walk-ins that show up at time t.

We assume that the probability of no-shows are independent and identically dis-

tributed across parties of the same size, as shown empirically by Martinez and Sanchez

[9]. We further assume that Zt obeys a binomial distribution with parameters (ut,

p). We approximate this distribution for time t as a non-homogeneous Poisson dis-

tribution of rate put for ease in numerical computation. We also model wt as a

,n-homogeneous Poisson with rate EWt for time t.

34

Objective Function

We maximize the following objective function RB(u), where u, ER, z and w are

N-dimensional vectors of elements ut's, ERt, zt's and wt's, respectively, t = 1., N.

max RB(u) (4.1)
u>O

such that

RB(u) = E [V(z, w)] - 0E [flu - ERII2] . (4.2)

The first term in Eq. (4.2) corresponds to the expected maximum revenue resulting

from having z reservation customers and w walk-in customers arrive on the requested

date. We will refer to the term V(z, w) as the the optimal OTD (on-the-day) revenue.

This value is calculated by solving a simplified version of the previously discussed

seating models of chapters 2.1-3.2 generalized for reservations. We describe this term

in further detail in the following section.

The second term is a regularizing term that discourages the decision variables

from straying too far from the expected reservation requests. Without this term,

the model may allocate no seats for the 6 o'clock time period and many for the 10

o'clock period, though the expected requests are mostly for 6 o'clock and hardly any

for the 10 o'clock period. Thus a policy that allocates significantly more (less) seats

for a particular period with few (many) reservation requests overestimates (underes-

timates) the possible expected revenue. The parameter 0 > 0 represents the trade-off

between the two terms.

Static On-the-Day Model

We calculate the value of V(z, w) for a given vector z and w by solving an integer

program that optimally allocates the tables to reservation and walk-in customers. The

OTD model is similar to the previous models with an additional class of reservation

parties. However, it does not consider nesting of party sizes and assumes that there are

no queues. By making each period large enough (e.g., half an hour), it is reasonable

35

to assume that after one period, both walk-in and reservation parties will renege.

Also, most reservation requests are on the half-hour. Thus, this simplification will not

significantly jeopardize the accuracy of the model. We will see that these assumptions

make the problem a single commodity maximum flow problem which aids us in the

convergence analysis of the stochastic gradient algorithm.

The OTD model is also a static model that is not updated dynamically because

it is solved before the day in question. It decides off-line how many of the reservation

and walk-in parties to seat and to deny service for each time period, t = 1,..., N.

We need to introduce some additional and modified notation:

Data

S := the expected service time for the given party size.

CostW := the cost of denying service to a walk-in party.

CostR := the cost of denying service to a party with reservation.

C := the total capacity (number of tables) for the given party size.

We assume that the expected revenue and service time distributions are the same for

walk-in and reservation customers of the same party size. CostW and CostR are qual-

itative values of the loss of goodwill and customer dissatisfaction. CostR should be

large relative to R, since not being' able to serve a customer with a reservation would

most likely entail losing that customer and garnering a negative reputation. How-

ever, CostW can be negligible since walk-in customers' expectation of being served

is significantly less.

Decision Variables

xwt := the number of walk-in parties that are seated at time t.

xrt := the number of reservation parties booked for time t that

are seated.

36

xw7denyt := the number of walk-in parties that arrive at time t that

are denied service.

xrdenyt := the number of reservation parties booked for time t that

are denied service.

Problem Formulation

Given a particular vector z and w, the OTD problem is as follows:

(OTD) V(z, w) - max y [R (xwt + xrt) - (CostIW) xwdenyt - (CostR) xrdenyt]
t=1,...,N

(4.3)

subject to xwt + xwdenyt = wt t = 1,..., N (4.4)

xrt + xrdenyt = zt t = 1,..., N (4.5)

Er=max{1,t-S+),....,t(xw, + xr,) < C t = 1,..., N (4.6)

xwt > 0 t = 1,...,N (4.7)

xrt >0 t = 1,...,N. (4.8)

The objective value is the net revenue cf seating xwt walk-ins and xrt reservation

parties and denying service to xwdenyt walk-ins and xrdenyt reservation parties for

t = 1,...,N. Eqs. (4.4) and (4.5) are the demand constraints for walk-ins and

reservations, respectively, for the particular realizations of demand zt and wt for

t = 1,...,N. Eq. (4.6) represents the capacity constraint for each time period,

t=1,...,N.
Eqs. (4.3)-(4.8) can be characterized as a single commodity minimum cost flow

problem, thus, the value of V(z, w) can be calculated by solving the OTD problem as

a linear program. It follows by the network structure of OTD and [3] that the function

V(z, w) is submodular and jointly concave with respect to zt and Wt, t = 1,... , N,

and RB(u) is component-wise concave, continuous and differentiable with respect to

ut, t = 1, . , N. As shown in [3], these properties allow convergence of the stochastic

gradient algorithm described in the next section.

37

Stochastic Gradient Algorithm

We solve the stochastic optimization problem (4.1) by estimating the stochastic gra-

dient of RB(u) as done in [3]. We apply this gradient to maximize RB(u) using a

steepest descent-like algorithm. We first calculate

a a
-RB(u) = -E[V(z, w)] - O(ut), t = 1,... N. (4.9)ant ant

When zt - Poisson(put) and wt Poisson(EWt), t = 1,... N, [3] shows that an

unbiased estimate of E[V(z, w)] is given by:

&uE[V(z, w)] = p(V(z + et, w) - V(z, w)), t N. (4.10)

The step sizes bk } satisfy

00 00

Ebk = +, E b < oo. (4.11)
k=1 k=l

Let MaxIt be the maximum number of iterations we allow.

The following is the stochastic gradient algorithm.

Step 0 Initialization. k-1, uk = ERt for t = 1,..., N.

Step 1 Generate VRB(uk):

* Generate new vectors zk Poisson(pu) and wt Poisson(EWt) for t =

1,..., N.

* Evaluate V(zk, w) using a network flow algorithm (for example the network

simplex algorithm).

* Evaluate V(zk + et, w) for t = 1, . . , N.

* Derive VRB(uk) such that, for t = 1,..., N:

t RB(uk) = p(V(z + et,) - V(z, w)) - O(ut - ERt).
Step 2 Compute

Uk +l = Project(uk + bk V RB(uk))

where Project(.) is the projection function to the feasible space uk > 0.

Step 3 If k > MaxIt, Exit. Else, set k := k + 1 and return to Step 1.

38

Theorem 1 (Kushner, Clark, Karaesmen, van Ryzin) Let KT be the set of

Kuhn-Tucker points of (4.1). If KT is a connected set and {uk} is the sequence

determined by the previous algorithm with step-sizes satisfying (4.11), then {uk} -

KT in probability as k -+ oo.

The proof is given Kushner and Clark [8] and [3], Theorem 3 and Theorem 6.3.1,

respectively. [8] also shows that a weaker convergence follows when KT is not a

connected set.

4.2 Dynamic Seat Allocation with Reservations

The DSAR model is the same as the previous dynamic seating models of chapters

2.1-3.2 but with reservation customers taken into account. It takes the reservations

accepted as input and determines the optimal seating policy for each arriving party

given the current state of service and queue. It does not, however, update the maxi-

mum reservation booking number produced by the RB model. As before, each time

the state changes (i.e., due to a customer arrival or customer exit), the state parame-

ters are updated and the model is continually re-optimized online. We apply the the

ADP approach as in §3.2 with a slight modification in the IP formulation.

The following are additional and modified notations for the DSAR model:

Input

vt,k := the number of reservations booked of size k for time t.

t,k is such that vt,k < ut,k where Ut*k is the optimal reservation booking value out-

putted from the RB model.

39

Data

CostQI'Vt,k

CostQRt,k

CostXWt,k

CostXRt,k

Pk

MaxW

ManxR

AnT

the cost of postponing service to a walk-in party of size

k that arrived at time t and currently waiting in queue.

the cost of postponing service to a party of size k with

reservations that arrived at time t and currently waiting

in queue.

the cost of postponing service to a walk-in party of size

k that is expected to arrive at time t.

the cost of postponing service to a party of size k with

reservations that is booked for time t.

the probability that a party of size k with reservations

will show up.

the maximum number of periods that a walk-in party

will wait.

the maximum number of periods that a reservation party

will wait.

a user defined parameter that controls the trade-off be-

tween revenue and waiting time for walk-in customers.

a user defined parameter that controls the trade-off

between revenue and waiting time for reservation cus-

tomers.

The quantities CostQWt,k, CostQRt,k, CostXWt,k and CostXRt,k are analogous to

CostQt,k and CostXt,k in chapter 2.1 which are split into walk-ins and reservation

customers (denoted by I'V and R, respectively). Similarly, MazxW and MaxR are

analogous to MAax and Mi and Mr are analogous to Ml in chapter 2.1.

40

State

The following are modified state parameters in addition to those described in chapter

2.1.

QWt,k := the number of size k walk-in parties currently in queue

that arrived at time t.

Qrt,k := the number of size k reservation parties currently in

queue that arrived at time t.

Dwt,k := the expected number of walk-in parties of size k that are

going to arrive in time t who have not already arrived.

Drt,k := the expected number of reservation parties of size k that

are going to arrive in time t who have not already ar-

rived.
When now < t, Dwt,k = EWt,k and Drt,k = PkVt,k. Each time a walk-in or reservation

party of size k arrives at time t, Dwt,k or Drt,k is decremented, respectively.

Decision Variables
qwtt,,kk :- the number of walk-in parties of size k, that arrived at

time t and currently in queue, that should be seat at a

size k' table at time t.

qr,t,k,k' := the number of reservation parties of size k, that arrived

at time t and currently in queue, that should be seat at

a size k' table at time t.

qwdenyt,k := the number of walk-in parties of size k, that arrived at

time t and currently in queue, that are not allocated a

table (i.e., are not seated within MaxW periods).

qrdenyt,k := the number of reservation parties of size k, that arrived

at time t and currently in queue, that are not allocated

a table (i.e., are not seated within MaxR periods).

XWt,t',k,k' :- the number of walk-in parties of size k, out of Dwt,k,

that should be seated at a size k' table at time t'.

41

xrLt,t,k,k' := the number of reservation parties of size k, out of Drt,k,

that should be seated at a size k' table at time t'.

xwdeny,k := the number of walk-in parties of size k, out of Dwt,k,

that are not allocated a table (i.e., are not seated within

MaxW periods).

xrdenyt,k := the number of reservation parties of size k, out of Drt,k,

that are not allocated a table (i.e., are not seated within

MaxR periods).

IP Formulation

DSAR uses a slightly modified version of the ADP model described in chapter 3.2 due

to its superior performance compared to the other models. The following describes

these modifications:

Objective

ax E
t=l ,LowJ

k=2,...,h
t'=LnouJ ,mixn(Nv,t+MazW-I)

k=k,.... ,K

+ z
t=l...,LnouJ

k=2,...,K
t'= nowJmin(N',t+MaxR-

k-=k,....,K

+ z
t=LnowJ,...,N

k=2,...,K
t=t,...,min(N,t+MaxW-1)

k'=k, .. ,K

t= Lnou J,N
k=2,...,K

tt=tmin(N,t+MaxR-1
k'=k.... K

Z (Cost QW',k
t=,.... lnowJ

k=2,...,K

_ Z (CostXWt,k
t=LnowJ ... ,N

k=2,...,K

(Rk - Mw(t' - t) - (k' - k))qwt,t',,,k'

(Rk - Mr(t'- t) - (k'- k))qrt,t',k,k

(Rk - A (t' - t) - i7(k' - k))XWt,t',k,k'

(Rk - AlIr(t' - t) - 7(k' - k))xrt,t,k,k'

qwdenyt,k + CostQRt,k qrdenyt,k)

xwdenyt,k + CostXRt,k xrdenyt,k)

42

(4.12)

m;

The first four sets of summations correspond to the expected revenue, waiting time

cost and nesting costs of seating (1) the walk-in parties currently in queue, (2) the

reservation parties currently in queue, (3) the walk-in parties expected to arrive in the

future, and (4) the reservation parties expected to arrive in the future, respectively.

The last two sets of summations correspond to the cost of postponing service to (1)

walk-in parties and reservation parties currently in queue and (2) walk-in parties and

reservation parties expected to arrive in the future, respectively.

Constraints

(1) Demand Constraints:

The following constraints are analogous to (2.2) and (2.3) in chapter 2.1.

t'=t...,mnn(N,t+MazW-1)
k=k ,...,K

tl=t,...,.n.n(N,t+MazR- 1)
kl=k,...,K

qwt,t',k,k' + qwdenyt,k = Qwt,k, V t = 1,..., [nowJ;k=2,...,K.

(4.13)

qrt,t',k,k' + qrdenyt,k = Qrt,k, V t=1,...,[nowJ;k=2,...,.

(4.14)

t'=t,....min(N,t+M axl'W-l)
k'=k..... K

t'=t,...,min(N,t+J]faxR-1)
k=k, ...,K

XWt,t',k,k' + xwdenyt,k = DWt,k, V t = [nowJ,...,N;k = 2,...,K.

(4.15)

xrt,t,,k,k' + xrdenyt,k = Drt,k, V t = LnowJ,..., N; k = 2,..., K.

(4.16)

43

(2) Seating Capacity Constraints:

The following constraint is analogous to the (2.4) in chapter 2.1 with reservation

parties.

qwt,t',k,k' +
k=2,...,k' \t=max(1,t'-MaxW+1),..now
t'ET(t,k)

E
t=max(LnowJ,t'-MaxW+1) ... t'

t=max(1,t'-MaxR+1),..., nowJ
qrt,t' ,k,k' +

XWt,t',k,k' + , aXrt,t',k,k'
t=max(Lnow ,t'-AfaxR+ l),.. .,t'

+ E IN(T) Ck,
k=2,...,k'
s=1,...,SP

V T = LnowJ,..., N; k' = 2,..., K.

where T(t, k') and IN(r) are as in (2.4).

(4) Integrality Constraints:

For t= 1,..., N; t' = t,..., N; k = 2,..., K; ' = k,... K,

qw t,t',k,k', qrt,t',k,k', XWt,t',k,k' , X?'t,t',k,k',

qrdenyt,k, xwdenyt,k,

Incorporating the ADP model

In the DSAR model, the state vector S is characterized by:

S (Qwtwk, Qrtn,,k V,k' 1),

t, = max(1, [nowj - MaxW + 1),.

for

.. , nowJ;

tr = max(l, nowj - MaxR + 1),..., nowj;

k = 2,...,K;k' = k, ... ,K;s = 1,...,SP.

44

(4.17)

qwdenyt,k, xrdenyt,k E Z+ (4.18)

(4.19)

The service state parameter Nk,k, remains the same as in chapter 3.2.

There are two types of arrivals: reservation customer arrivals and walk-in arrivals.

There is, however, no distinction between reservation and walk-in service comple-

tions. Thus, the decision times are when there is a reservation party arrival, walk-in

arrival, and a customer service completion. The decisions available at each event are

illustrated below:

* Reservation Arrival at time t of size k:

1. Do not seat the incoming reservation party. The new state is such that:

Qrt,k - Qrt,k + 1.

2. For k' = k, ... , K, seat incoming party at a table of size k'. The new state

is such that: N,k' + Nk,k' + 1.

* Walk-in Arrival at time t of size k:

1. Do not seat the incoming walk-in party. The new state is such that:

QWt,k +- Qwt,k + 1.

2. For k' = k, ... , K, seat incoming party at a table of size k'. The new state

is such that: Nk,k t +- N,k + 1.

* Party of size k Exits table for k' at time t:

1. Do not assign the table to a party from the queue. The new state is such

that: NSPk - NkSP - 1.

2. Assign the table to a reservation party of size k" < k', who has been in

the queue since time t". The new state is such that: Qrt,,k", - Qrt,,,k - 1,
Nk,, +- Vk",,k + 1, Nk , + NSk - 1.<-' ±r I 1 ,NSkk-Nk'

3. Assign the table to a walk-in party of size k" < k', who has been in the

queue since time t". The new state is such that: Qt,,,k +- QWt",kt - 1,

Nak",k' Nk,k' + 1, N e k- NSP k, 1.

Finally, the DSAR model uses the objective value of the IP described by (4.12)-

(4.18) for IP(S) in (3.10).

45

4.3 Comparison Model

First-Come-First-Serve Model with Reservations

We incorporate reservation customers to the FCFS model in chapter 3.3 which uses a

heuristic to seat walk-in parties within reservations by taking the optimal reservation

booking data output from the RB model of chapter 4.1. When a walk-in party

arrives, the model will check whether seating them would take away a table from

any outstanding reservations booked within a 15 minute (1 period) interval of the

current time. The three different nesting models (Full Nesting, 1 UP Nesting, and

No Nesting) as described in chapter 3.3 are tested.

46

Chapter 5

Computational Results for models

without Reservations

In this chapter, we present the performance of the non-reservation models of chapters

2 and 3 on simulated data.

5.1 Data

The test data for the capacity, service time, demand, and revenue are taken from a

contrived restaurant. The data is constructed from its dinner time operation, which

runs from 6PM to 10PM. We divide this time into 16 equal periods of 15 minute

durations.

Capacity Data

This is a small scale restaurant with four tables for two, two tables for four, one table

for six and two tables for eight. The restaurant allows nesting of the capacity, i.e., a

party of two call be seated at a table of two, four, six or eight.

Service Time Data

The meal duration is split up into three phases: appetizer (phase 1), entr6e (phase

2), and coffee and dessert (phase 3) '. The expected service durations are illustrated

'The probability distribution of the length of each phase for each party size is approximated by
a discrete distribution illustrated in an on-line appendix.

47

in Table 1. For this example, we have in mind a restaurant with faster than usual

turnover time.

Party Size
Phase 2 4 6 8

1 6 9 12 18

2 39 45 57 75
3 6 6 8 9

Total 51 60 77 102

Table 5.1: Expected Duration (in minutes) of Service Phases.

Demand Data

The restaurant does not accept reservations. We have tested the various methods for

three levels of demand; low, medium and high with average load factors 0.68, 0.93 and

1.542. Each demand level is split up to two demand distributions: constant, where

all parties arrive uniformly throughout the day, and varied, where the larger party

arrive mainly in the later part of the evening 3. We simplify the data so that there

are only four possible types of customers: parties of size two, four, six and eight.

We simulate the customer arrivals as a non-homogeneous Poisson process with rate

A(t, k) := expected demand of size k customers at time t.

Revenue Data

The expected revenue for parties of size two, four, six and eight are $50, $120, $210

and $320, respectively. We simplify the revenue function so that it is i..ne invariant.

5.2 Algorithms Tested and Parameter Settings

Using the above data, we tested the following algorithms: the first-come-first-serve

models (FullNest, 1Up and NoNest), the bid pricing model (BidP), the basic inte-

ger programming model (IP), the stochastic programming model using three scenar-
2The load factor Pk corresponding to party size k was calculated as Pk = (k),where Ak := the

expected rate of arrival of size k parties, Sk. := the expected service time of size k customers and
c(k) := the average number of tables of size k over all three configurations.

3 The on-line appendix contains an illustration of the expected demand for each period and party
size corresponding to each of the demand scenarios.

48

ios (STOCH) and the approximate dynamic programming model (ADP). We used

CPLEX to solve the optimization models. The models run on Dell Pentium II work-

station operating under LINUX.

Parameter Settings

For the STOCH model, we used a three scenario model (i.e., Q = 3) in which one of

the scenarios is the expected demand and the other two are randomly generated. We

assign the probability of 0.5 to the expected demand scenario and the probability of

0.25 to each of the generated scenarios. We tested models with larger Q and with

variations in the scenario probability, but the significant increase in the computation

time was not worth the small increase in the average revenue.

The value of M is set to 5 for all of the models. After running the models for

different values of M, M = 5 produced the highest revenue on average for most of the

models. Setting this value too high makes the model averse to seating customers that

have been waiting in the queue for a long time. When M is set to zero, the model

would give no consideration to waiting time when solving for the optimal solution.

For values of M between 0 and 5, the resulting average revenue actually increases

because the model is forced to seat a customer at a table which it was reserving for

a future customer. This may be beneficial because the model sometimes incorrectly

forecasts future demand, and keeps tables idle when they could have been used.

The appropriate values for seem to vary according to the model and the demand

level. For the IP and STOCH model, we set r = 4 and for ADP we set = 0.25.

These values were chosen from empirical testing, thus they may not be the optimal.

However, the differences in revenue and average waiting time were not significant for

slight changes in r/.

The value for Max is set to 3 for all models, thus we are assuming customers do

not wait for more than 45 minutes. The models automatically exit customers who

have been waiting for more than three periods.

For the IP and STOCH model, the values of CostQt,k are 2.5 for k = 2, 6.0 for

49

k = 4, 10.5 for k = 6 and 16.0 for k = 8, Vt. CostXt,k when t = [nowj are 0.5 for

k 2, 1.2 for k = 4, 2.1 for k = 6 and 3.2 for k = 8, and when t > nowj CostXt,k is

set to 0 for all k. The ADP model performed better with significantly higher values

of CostQt,k and CostXt,k than IP and STOCH. Thus these costs for ADP were set

to 10 times that of IP and STOCH.

Appropriate values for these parameters are clearly restaurant dependent. They

would depend on the demand level and characteristics, expected revenue, expected

service time, capacity and waiting time behavior of the customers of each restaurant.

We suggest testing for the right values for these parameters by simulation, using the

data and characteristics of each restaurant.

5.3 Results

Table 5.2 contains the average daily revenue, average waiting time per customer and

the percentage of customers served for all the algorithms we tested. Each sub-table

corresponds to a demand scenario, low and constant, low and varied, medium and

constant, medium and varied, high and constant, and high and varied. Table 5.3

contains the average run times per party for each model.

For smaller load factors, Full Nesting is better than the other FCFS models and

performs similarly to the IP, in general. This implies that the phenomenon that the IP

captures to increase revenue for small load factors is nesting. The No Nesting model

loses revenue by unnecessarily saving large tables for large parties. As demand level

increases, the nesting decisions become more complex. This explains the decrease in

the revenue gap across the FCFS models with higher demand.

We observe that increasing the sophistication of the models results in monotoni-

cally increasing revenue. There is a marginal revenue improvement of using stochastic

programming versus the deterministic IP. The ADP model outperforms the determin-

istic and stochastic model in all demand scenarios, with about 2% improvement from

FCFS in low and medium load factors and 12% improvement in high load factors in

revenue.

50

Load=0.68 Constant FullNest 1 Up NoNest BidP IP STOCH ADP
Revenue ($) 2351.94 2390.32 2125.46 2328.10 2354.46 2375.92 2401.56

% Difference 0.00% 1.63% -9.63% -1.01% 0.11% 0.98% 2.11%

Average Wait (min) 5.0 5.3 10.7 6.0 5.7 5.7 4.9
% Served 93.23% 93.08% 83.25% 90.89% 91.81% 91.94% 93.67%

Load=0.68 Varied FullNest 1 Up NoNest BidP IP STOCH ADP
Revenue ($) 2066.54 2031.18 1883.90 1997.86 2087.14 2077.30 2112.34

%Difference 0.00% -1.71% -8.84% -3.32% 1.00% 0.52% 2.22%
Average Wait (min) 7.7 7.5 13.1 6.0 8.3 7.8 7.5

% Served 88.11% 78.52% 90.89% 86.51% 87.35% 88.58%

Load=0.93 Constant FullNest 1 Up NoNest BidP IP STOCH ADP
Revenue ($) 2964.62 2928.98 2702.36 2822.12 2976.84 2969.50 3034.18

%Difference 0.00% -1.20% -8.85% -4.81% 0.41% 0.16% 2.35%
Average Wait (mil) 9.9 9.8 14.4 11.3 11.1 10.4 9.9

% Served 87.82% 87.69% 78.30% 83.35% 85.48% 86.26% 87.84%

Load=0.93 Varied FullNest 1Up NoNest BidP IP STOCH ADP
Revenue ($) 2624.94 2596.36 2391.00 2430.18 2610.06 2651.06 2702.71

%Difference 0.00% -1.09% -8.91% -7.42% -0.57% 1.00% 2.96%

Average Wait (in) 10.8 10.4 15.9 12.6 10.8 11.3 10.5

% Served 83.16% 83.96% 75.35% 78.22% 82.71% 82.08% 83.31%

Load=1.54 Constant FIuNest 1 Up NoNest BidP IP STOCH ADP
Revenue ($) 3409.82 3467.66 3498.8 3203.10 3676.74 3708.76 3857.36

%Difference 0.00% 1.70% 2.61% -6.06% 7.83% 8.77% 13.13%
Average Wait (min) 12.3 24.2 25.9 23.7 23.7 24.0 22.9

% Served 68.84% 68.70% 60.36% 57.85% 65.65% 64.02% 68.96%

Load=1.54 Varied FIlllNest 1 Up NoNest BidP IP STOCH ADP

Revenue ($) 3146.76 3154.98 3051.06 2902.52 3393.36 3387.42 3545.40

%Difference 0.00% 0.26% -3.04% -7.76% 7.84% 7.65% 12.67%

Average Wait (min) 24.0 23.7 27.5 24.3 24.0 23.7 23.4

% Served 67.83% 68.50% 57.16% 56.77% 64.25% 64.33% 66.56%

Table 5.2: Revenue, Average Wait and Percent Served Resulting from Static capacity
Models.

51

FCFS BidP IP STOCH ADP
Average Run Time (sec) 0.00 0.67 0.21 0.66 1.07

Table 5.3: Run Time per Party in seconds for Static Capacity Models.

We also observe that the models do not sacrifice waiting time for higher revenue.

The optimization models had comparable waiting times to the FCFS models, and in

most of the larger load cases had lower waiting time than the FCFS. Thus higher

revenue was achieved without any sacrifices and some improvements in the average

waiting time. When examining the waiting time for each party size separately, we see

that the optimization models have significantly lower waiting times for parties of size

six and eight while slightly higher for parties of two compared to the FCFS models.

Thus, our models have a smaller range of waiting times across party sizes.

In addition, IP and STOCH have a lower percentage of parties served than the

best performing FCFS models, while producing higher revenue. Overall the ADP

model seems the best performing method: it serves about the same per-

centage of parties as the FCFS models, does not increase and occasionally

decreases waiting time, and produces significantly higher revenue. This

implies that the optimization models are able to seat more of the "right" (higher

revenue producing) customers. The run times are also in a practical range for all of

the models. Thus any of these models can be run online with a POS system.

5.4 Computational Results for Reservation Mod-

els

In this section, we report computational results for the models with reservations.

We first run the static reservation booking model (RB) to decide a priori how many

reservations to accept, and we then run the dynamic seat allocation model with

reservations (DSAR).

5.5 Data

The test data was taken from Soto's, a Japanese restaurant in Atlanta, Georgia [7].

Similar to the previous data set, the data are taken from its dinner time operations of

16 periods, from 6PM to 10PM. The service time and revenue data are also identical

52

to that of Chapter 5.1.

Capacity

Soto's has many small tables that can be put together to accommodate large parties.

For the purpose of our model, we assume that the restaurant takes only one table

configuration. In this configuration, Soto's has 16 tables for two, 7 tables for four,

three tables for six and one table for eight. We allow nesting of capacity as before.

Demand Data

Soto's gets around a total of 90 customers on weekdays and 120 to 130 customers

on weekends. We test the models on these two demand levels, with corresponding

loads of 0.93 and 1.24, respectively. Around 30% of these customers are reservation

customers with a no show rate of 3 to 15%. We use a constant no show rate of 10%.

Out of the walk-in parties, 55% are of size two, 30% are of size four and 15% are of

size six. Out of the reservation parties, 40% are of size two, 43 % are of size four, 10

% are of size six and 7% are of size eight. The distribution of reservation customers

throughout the day is as follows: 20% during 6PM to 7PM, 40% during 7PM to 8PM,

30% during 8PM to 9PM, and 10% during 9PM to 10PM. The distribution of walk-in

customers is as follows: 30% during 6PM to 7PM, 35% during 7PM to 8PM, 25%

during 8PM to 9PM, and 10% during 9PM to 10PM.

5.6 Parameter Settings

We use the following values for CostQWt,k: 2.5 for k = 2, 6.0 for k = 4, 10.5 for

k = 6, and 16.0 for k = 8, Vt. The values for CostQRt,k are 150 for k = 2, 300 for

k = 4, 500 for k = 6, and 700 for k = 8, Vt. Distinction for the values for both

CostXWtk and CostXRt,k for t = Lnow are set higher than for t > now]. This

implies that parties expected to arrive in the current period is given more priority

that those expected to arrive later because the state of the distant future in more

uncertain than the near future. The values for CostXWt,k when t = [nowJ are 0.05

for k = 2, 0.12 for k = 4, 0.21 for k = 6, and 0.32 for k = 8. When t > nowj, the

values are set to 0 for all k. The values for CostXRt,k when t = nowJ are 101 for

53

k = 2, 241 for k = 4, 421 for k = 6, and 641 for k = 8. When t > nowj, the values

are 100 for k = 2, 240 for k = 4, 420 for k = 6, and 640 for k = 8.

The value of Mr was set to 8 and Mw was set to 3, reflecting higher cost for

keeping reservation customers wait. q' was set to 0.5. MaxR was set to 4 and MaxW

was set to 2, which reflects the customer behavior at Soto's.

5.7 Computational Results

The average revenue, percentage of customers served and average waiting time for

reservation and walk-in customers are illustrated in Table 5.4 and Table 5.5. Table

5.4 uses the demand data of 90 customers and Table 5.5 uses the demand data of

120 customers. In the low demand scenario of 90 customers, DSAR out-performs

all of the FCFS models by 3.5% to 6.9%. DSAR also serves a larger percentage of

both reservation and walk-in customers than the FCFS models. The average wait

for reservation parties is slightly higher for DSAR, but 0.27 periods (4.05 minutes) is

still a reasonable length of wait. The average wait for walk-in customers are lowest

using DSAR. The results for 120 customers are similar. DSAR out-performs the

FCFS model by 6.43% to 8.29%. It again has the best percentage seated for both the

reservation and walk-in customers. It also has the highest average waiting time (0.40

periods or 6 minutes) for reservation parties and the lowest average waiting time for

walk-in parties. Thus, the DSAR produces more revenue and serves more customers

than FCFS for both low and high demands. The results also imply that the DSAR

has a higher revenue impact with higher demand.

54

Table 5.4: Revenue, Percent Served and
for Demand Level 90.

Average Waiting Time of Reservation Models

Table 5.5: Revenue, Percent Served and Average Waiting Time of Reservation Models
for Demand Level 120.

55

Demand = 90 FullNest 1 Up NoNest DSAR
Revenue ($) 6944.68 6917.18 6777.02 7182.20
%Difference 0.00% -0.40% -2.41% 3.42%

% Reservation Served 95.96% 95.95% 96.02% 97.97%
Avg Wait Reservation (min) 3.0 3.2 3.3 4.0

% Walk-in Served 81.19% 80.90% 79.07% 85.02%
Avg Wait Walk-in (min) 11.1 11.3 12.3 8.6

Demand = FullNest 1 Up NoNest DSAR
120

Revenue ($) 8210.70 8274.82 8132.2 8806.60
%Difference 0.00% 0.78% -0.96% 7.26%

% Reservation Served 94.57% 94.42% 93.92% 97.39%
Avg Wait Reservation (min) 3.6 3.75 4.2 6.0

% Walk-in Served 53.97% 53.75% 50.39% 65.83%
Avg Wait Walk-in (min) 25.4 25.5 26.7 19.5

56

0

Chapter 6

Summary and Concluding Remarks

We feel we gained the following insights from the computational study:

1. For models without reservations, optimization based strategies outperform FCFS

based strategies for all low and medium load factors and significantly for high

load factors. Somewhat surprisingly optimization based strategies do not affect

adversely the service quality (waiting times either remain unchanged or decrease

somewhat, while FCFS is maintained within parties of the same size).

2. Increasing the sophistication in the models results in higher revenue without

sacrificing waiting time. We believe that the performance of the ADP model

represents the best trade-off between maximizing revenue and maintaining low

average waiting time and run time.

3. The reservation models we propose (using a stochastic gradient approach to

decide the reservations a priori, and ADP to implement it on-line) result in

a significant improvement relative to the FCFS models for both low and high

demand levels. The RB and DSAR models result both in higher revenue and

in lower customer attrition.

4. Overall we feel that optimization based models have a role to play in restaurant

revenue management.

There are many areas for future research:

57

1. Extending our model to support dynamic capacity - that is, allow restaurants

to move their tables around to better accommodate the demand at each time.

2. Incorporating balking and reneging.

3. Further empirical testing; this might be facilitated by combining algorithms

from this thesis with on-line restaurant reservation providers.

58

Bibliography

[1] Ahuja, Ravindra K.; Magnanti, Thomas L.; Orlin, James B., Network Flows:

Theory, Algorithms, and Applications, Prentice Hall, NJ, 1993.

[2] Erlenkotter, D. (1970), "Preinvestment Planning for Capacity Expansion: A Mul-

tilocation Dynamic Model," Ph.D. Thesis, Stanford University, CA.

[3] Karaesmen, I. and G. van Ryzin (1998), "Overbooking with Substitutable Inven-

tory Classes," Working Paper.

[4] Kimes, Sheryl E.; Chase, Richard B.; Choi, Sunmee; Lee, Philip Y.; Ngonzi, Eliza-

beth N., "Restaurant Revenue Management: Applying Yield Management to the

Restaurant Industry," Cornell Hotel and Restaurant Administration Quarterly,

Vol. 39 (3), June 1998, p 32-39.

[5] Kimes, Sheryl E., "Implementing Restaurant Revenue Management: A Five Step

Approach," Cornell Hotel and Restaurant Administration Quarterly, Vol. 40 (3),

June 1999, p 16-21.

[6] Kimes, Sheryl E.; Barrash, Deborah I.; Alexander, John E., "Developing a Restau-

rant Revenue-Management Strategy," Cornell Hotel and Restaurant Administra-

tion Quarterly, Vol. 40 (5), Oct 1999, p 18-29.

[7] Kosugi, Sotohiro. Owner and manager of Soto's in Atlanta, Georgia.

[8] Kushner, H.J.; Clark, D.S., Stochastic Approximation Methods for Unconstrained

Systems, Springer-Verlag, AMS vol.26, New York, 1978.

59

[9] Martinez, R. and M. Sanchez (1970), "Automatic Booking Level Control," Pro-

ceedings of the Tenth AGIFORS Symposium, American Airline, New York.

[10] McGill, Jeffrey I.; Van Ryzin, Garret J., "Revenue Management: Research

Overview and Prospects," Transportation Science, Vol. 33, No. 2, May 1999, p

233-256.

[11] Muller, Christopher C., "A Simple Measure of Restaurant Efficiency," Cornell

Hotel and Restaurant Administration Quarterly, Vol. 40 (3), June 1999, p 31-37.

[12] Quain, Bill; Sansbury, Michael; LeBruto, Stephen M., "Revenue Enhancement,

Part: A Straightforward Approach for Making Money," Cornell Hotel and

Restaurant Administration Quarterly, Vol. 39 (5), Oct 1998, p 41-48.

[13] Sill, Bill; Decker, Robert, "Applying Capacity-management Science," Cornell

Hotel and Restaurant Administration Quarterly, Vol. 40 (3), June 1999, p 22-30.

[14] Sill, Brian, "Capacity Management: Engineering the Balance Between Customer

Satisfaction, Employee Satisfaction and Company Profit," The Consultants, Sec-

ond Quarter 2000, p 72-81.

[15] Vakharia, A.J.; Selim, H.S.; Husted R.R., "Efficient Scheduling of Part-time

Employees," Omega, Vol. 20 (2), March 1992, p 201-13.

60

THESIS PROCESSING SLIP

FIXED FIELD: ill. name

index

* COPIES: Archives

Lindgren

TITLE VARIES: Pf-

) Aero

Music

biblio

Dew arker

Rotch Scienc,

Hum

e Sche-Plough

NAME VARIES: [~F

IMPRINT: (COPYRIGHT)

* COLLATION:

I ADD: DEGREE: _P DEPT.:

P ADD: DEGREE: P DEPT.:

SUPERVISORS:

NOTES:

cat'r:O DEPT: - _ -_ _
bYEAR: - CZ- DEGREE:

INAME: ! H O A

date:
page:

I5hll IiL
4 S c; M~

-

