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Abstract

This paper addresses the frequency-domain characterization of electrical

noise in linear time-invariant distributed networks. A new general inequality

is derived. The flow of noise power from one source to another through a

lossless coupling network is shown to obey a relation analogous to the second

law of thermodynamics. The noise sources can be essentially any stationary

random processes; in particular they need not be Gaussian and need not repre-

sent thermal noise. In this sense the inequality is quite general. Proofs

are based on standard techniques from the theory of linear circuits and random

signals; thermodynamic concepts are used only for motivation and interpretation.

I. Introduction

Unlike a block diagram for a control system or the flow chart of a computer

program, a circuit diagram inevitably represents energy flow and dissipation as

well as signal propagation. It is therefore not surprising that.circuit theory

and thermodynamics should, on occasion, join hands. One of the earliest

examples is the Maxwell 'minimum heat' theorem [1], which describes the distri-

bution of current in a linear resistive reciprocal network. Applied to a larger

class of physical systems, this result has re-emerged as Prigogine's "principle

of minimum entropy production" in nonequilibrium thermodynamics [2]. Another

example is the classical Nyquist-Johnson model for thermal noise in a resistor

[3, 4], which was derived using a mixture of circuit-theoretic and thermodynamic

concepts.

We believe that some aspects of the noise behavior of electrical networks

can best be understood using the concepts (but not necessarily the analytical

techniques) of statistical physics, even in cases where the noise is not thermal
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in origin. More recent research on the thermodynamic behavior of noisy

electrical networks includes [5..-16].

The main result of the present paper is the general frequency-domain

inequality (2.14) describing the steady-state flow of noise power in distri-

buted linear networks. The noise signals can be essentially any stationary

random processes, and the proof uses only standard concepts from the theory

of random signals and linear systems. In the special case that the noise

sources represent thermal noise in a linear resistor, the inequality has

a natural interpretation in terms of the second law of thermodynamics (increase

of entropy). Therefore one can view the result as a generalization, within

the linear time-invariant framework, of the second law. The result also

suggests that, if we view equivalent noise temperature as a driving force

analogous to voltage, then lossless systems act as "passive" conductors of

noise power.

II. Definitions, Assumptions, and Statement of the Main Result

2.1) Definitions and Assumptions

Definition 2.1

Let E be the expectation operator. A random process x is said to be

wide-sense stationary [17] if its mean and variance are finite and time-

independent and E{x(t)x(s)} depends only on t-s. Two random processes x and

y are said to be jointly wide-sense stationary if each is wide-sense

stationary and E{x(t)y(s)} depends only on t-s.

Definition 2.2

Let x and y be two jointly wide-sense stationary random processes. The
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cross-correlation function R and the cross-spectral density S are definedxy xy

as usual by

Rxy(T) - E x(t+T)y(t) 

(2.1)

sxy(:) T _wRxXY (T)e-wdT = F{Rxy}

where F is the Fourier transform. If x and y are identical, then Rxx is

called the autocorrelation function and S is called the power spectral

density of x. We assume that all spectral densities encountered in this

paper are well-defined, i.e. that the integral in (2.1) exists and is finite

for each w.

The standard Nyquist-Johnson model [3, 4] for the thermal noise in a

linear resistor R at a temperature T degrees Kelvin is obtained by adding a

noise voltage source n(t) in series with R as shown in Fig. la. The power

spectral density Snn is flat, at least out to optical frequencies, with

magnitude Snn(W)l = 2kTR, where k is Boltzmann's constant.

More general 1-ports can be assigned an "equivalent noise temperature"

on the basis of a Thevenin equivalent network as shown in Fig. lb. The

following definition is standard [18].

Definition 2.3

For the 1-port in Fig. lb assume that n is wide-sense stationary and

Re{Z(jw)} > 0 for all w. The frequency-dependent equivalent noise temperature

T(w) is defined by

The early references, e.g. [3, 4], define power spectral density only for
A > 0 and hence write S nn(w) = 4kTR.-nn
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T(w) = Snn ()/2kRe{Z(jw)}, (2.2)

where k is Boltzmann's constant.2

This definition is physically reasonable, since for the Nyquist-Johnson

model in Fig. la the equivalent noise temperature is equal to the physical

resistor temperature, i.e. T(w) - T, at least out to optical frequencies.

The results in this paper concern a linear time-invariant network

consisting of noisy dissipative elements and noise-free lossless elements.

The noisy dissipative elements have been extracted and displayed separately

in Th6venin equivalent form in Fig. 2.

Let P represent the average power entering noise source #m in Fig. 2.

If Sv i (') is integrable, then
mm

Pm = -E£vm(t)im(t)} = -R vmim (O)
~~~~~mm ~~(2.3)

j S -i(w)dw FJ-Re Svi(w)fdw

where the last equation holds because Im{Svmi (w)} is an odd function and

hence integrates to zero. This motivates the following definition.

Definition 2.4

The average power per unit bandwidth entering noise source #m is denoted

Pm(w) and defined by

Pm(w) 2Re {S (}, 1 < m < N. (2.4)

2Since k = 1.38 x 10 16erg/°K, T(w) has units of degrees Kelvin provided we
assign Re{Z(jw)} the units of ohms,



Therefore, from (2.3),

m j )d. (2.5)

Assumptions on the Noise Sources

The noisy dissipative elements (i.e. the noise sources) are represented

in Thevenin form in Fig. 2, where the noise source characteristic impedances

Zm(s), 1 < m < N, appear in series with noisy independent voltage sources

nm(t), 1 < m < N. The voltage sources are zero mean, uncorrelated, wide-sense

stationary random processes with autocorrelation functions Rnn () and

continuous3 power spectral densities S (w). It is a standard fact thatn n

all power spectral densities are real and nonnegative: we assume further in

this case that

S (M) > O, w, 1 < m< N. (2.6)n n-
m m

With the noise voltage source nm set: to zero, let gm(t) be the voltage

response of dissipative element #m to an impulse of current applied at t = 0.

In general gm(®) may contain singularity functions and need not be causal,

but we assume gm(. ) real and that for all m c {1,..., N} the bilateral

Laplace transform

Zm(S) gm(t)e Stdt (2.7)

A number of technical assumptions in this section are used only in the proof
of Prop. 1, which appears in the Appendix. Among them are i) the continuity
of the power spectral densities S (w) and the cross-spectral densities

mnm
Svi (w), ii) the existence of an impedance matrix for L and the assumption
m m

that it can be defined on D by analytic continuation, and iii) the assumption
that the scattering matrix can be defined for all w by analytic continuation.
These restrictions have mathematical, but little or no engineering significance,
and can be ignored in reading the body of this paper.
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exists and is analytic in the closed right half plane Re{s} > 0, and that

Re{Zm(j)} > O, Vw, 1 < m< N. (2.8)

Assumptions on L

In Fig. 2 all the lossless elements in the circuit have been collected

in the lossless multiport L for convenience. Assume that L has a current -

controlled representation,3 and let hij(t), 1 < i, j < N represent the voltage

response at port #i of L to an impulse of current applied at port #j at t = 0

when all other ports are left open circuited, i.e. {hij(.)}is the impulse

response matrix of L. In general {hij(')} may contain singularity functions

and need not be causal, but we assume Thij(.)} real, and that for all i, j e

{1,..., N} the bilateral Laplace transform

kij(s) 2 J_ hij(t)e Stdt (2.9)

exists and is analytic in some maximal open right half plane Re{s} > O0x. Let

L(s) - {aij(s)} be the impedance matrix of L. Since L is lossless we expect

to encounter jw-axis poles, and hence typically ao > 0. We assume,3 however,

that L(.) can be analytically continued to a region of the complex plane that

includes a dense subset D of the jw-axis. By a slight abuse of notation we

denote this portion of the analytic continuation of the impedance matrix by

L(jw),tjw e D.

Notation

Let M* denote the complex-conjugate tranpose of a matrix M, and {M}ij

denote its (i, j) entry.
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Definition 2.5

Our definition of losslessness for L is the standard frequency domain

condition

L(jw) = - L*(jw), jwE D. (2.10)

The Scattering Representation

Let Z(s) be the diagonal N x N matrix containing the noise source impedances

along its diagonal, and define R(w) by

R(w) a Re{Z(jw)j. (2.11)

The scattering matrix for L (normalized to the port impedances Zm) is defined

as usual [19] by

(jw) = R1/ 2 ()[L(jw) + Z(jW)] [I(jw) - Z*(jw)R (1 ). (2.12)

We show in the Appendix that [L(jw) + Z(jw)]- 1 exists for all jw C D, so it

follows that (2.12) defines a(jw) throughout D.

Finally we assume3 that -f(jw) as defined above can be analytically continued

to some neighborhood of the jw-axis, that the entire network has evolved to a

steady state in which the random processes v, i and n are jointly Wide-sense

stationary, and that the cross-spectral densities Sv i (M), 1 < m< N, exist
mm

and are continuous for all w.

It would have been sufficient to impose the stronger requirement that L(-)

and Z(.) be positive real, for then many of the specific assumptions listed in
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this section would have followed automatically. But the weaker assumptions

given are actually all that is needed. Note that L and the noise source

impedances need not be lumped, passive or causal, L need not be reciprocal,

and the noise voltage sources need not be Gaussian in nature or thermal in

origin.

2.2) The Main Result

Let the equivalent noise temperature of noise source #m in Fig. 2 be

denoted Tm(w), 1 < m < N. Assumptions (2.6) and (2.8) imply that Tm(w) > 0,

V¥w, 1 < m < N. The main result of this paper is (2'.14) below.

Theorem 1

For any network of the form shown in Fig. 2, under the assumptions given,

N
X Pm(@) = 0, ¥ c ER. (2.13)

m=l

N
! (Pm(w)/Tm(w)) >_ 0, V E JR. (2.14)

m=l

III. Proof of Theorem 1

We first develop some preliminary machinery.

Definition 3.1

Let Snn () be the cross-spectral density matrix of the noise voltage

sources, i.e.

nn(w) i j = S n (w) (3.1)
13
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Extending Def. 2.3, define the equivalent temperature matrix T(w) by

T(w) A 1 Sn n()R-1 (W), (3.2)

where k is Boltzmann's constant, and R(w) is as defined in (2.11). Since

Snn and R are diagonal, T is also.

For jw e D; we let B'(jw) denote the analytic continuation of the

scattering matrix for L, as defined in (2.12) for jw £ D.

Proposition 1

Using the notation above, the average power per unit bandwidth entering

port #m of L in Fig. 2, denoted -P m() for consistency with Def. 2.4, is given

for all real w by

-Pm(W) {T(w) (jmT(w) W)(j))}m,m , 1 < m N. (3.3)

The diagonal entries of T(w) are the power spectral density analogs of

the "incident waves" in scattering theory, and the diagonal entries of

~i(jw)T(w)S*(jw) are analogous to the reflected waves. This analogy can be

used to arrive at a brief heuristic "derivation" of (3.3), but the rigorous

proof, given in the Appendix, is somewhat involved.

Notation

The following notation and terminology apply to square matrices. If

A = A*, then A is said to be Hermitian. If A is invertible and A 1 = A*,

then A is said to be unitary. Let tr{A} denote the trace, i.e. the sum of

the diagonal entries, of A, and det{A} denote the determinant of A.



-10-

Proposition 2

Let P and U be complex N x N matrices. If P is positive definite and

Hermitian and U is unitary, then

trIp-1UPU*} > N. (3.4)

Proof of Proposition 2

It is a standard result in linear algebra that the trace of a matrix is

the sum of its eigenvalues, and that the eigenvalues of a matrix are invariant

under similarity transformations. Therefore

tr/2(p-PU*) = tr {p1/2 - 1 UPU*)-1/2 P 1 (3.5)

But P-1/2 UPU*P -1/2 = (P-1/2 U)* is Hermitian and positive definite,

so its eigenvalues xi, 1 < i < N, are real and positive. By the standard

inequality of arithmetic and geometric means [201,

-N i>__l i >l (3.6)

It is also a standard result in linear algebra that the product of the eigenvalues

of a matrix is equal to its determinant, and that the determinant of a product

of matrices equals the product of the determinants. Using these facts in (3.5)

and (3.6), we have

tr{P-lUPU*} > N(det{P -1UPU*})l/N = N,



since det{P-1 =(detP}) - 1 and det{U*} = det{U-l1 = (det{U)- 1 .

Proof of Theorem 1

Since L is lossless, it is a standard fact of circuit theory [19] that

N(jw) is unitary ',Vw c R. Using this fact in (3.3) we have

X Pm(w) = tr{T(w)) - tr{S(jw)T(w)S*(jw)}] = 
m=l 

since the trace is invariant under similarity transformations. This proves

(2.13).

Since the noise voltage sources are zero mean and uncorrelated, it

follows from (2.6) that S (w) is diagonal and positive definite. And since

R(w) is diagonal and positive definite, it follows from (3.2) that T(w) is

also diagonal and positive definite. Referring to (3.3), we see that

N k t 1

(P tr{T-( )(&(j)T(w)&*(jw) - T(w))}
m=l .

(3.7)

k tr T -l(w)s( j )T()j ) - It} = k[tr{T- 1()s(jw)T(w)*(jw)}- N].

Since &(jw) is unitary, it follows from Prop. 2 that the right hand

side of (3.7) is nonnegative. This proves (2.14).

4The reader can also prove this fact directly from eqs. (2.10), (2.12) and (A.3).
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IV Concluding Remarks

4.1) Interpretation of Theorem 1 and its Relation to Known Results

In Theorem 1, (2.13) merely says that the average power leaving Llthrough

all its ports is zero in each portion of the spectrum. Since Llis

lossless, this is merely a restatement in the stochastic domain of the well-known

"zero average power" interpretation of losslessness [21]. It can also be

viewed as a "per unit bandwidth" statement of the first law of thermodynamics

(conservation of energy) for linear time-invariant systems.

Equation (2.14) is the new result in Theorem 1. It can be viewed as a

generalization, within the linear time-invariant framework, of the second law

of thermodynamics (increase of entropy). The physical grounds for this inter-

pretation become apparent in the special case that each noise source is a Nyquist-

Johnson model for resistor thermal noise,as in Fig. la. Then each noise source

represents a resistor of value Rm in contact with a constant temperature reservoir

at a temperature Tm. And from classical thermodynamics [22], Pm/Tm is the

rate of increase of the entropy of the m-th constant temperature reservoir (see

(2.3) and (2.5)). The sum of all N such terms is then the total rate

of increase of entropy, and hence

N
X (Pm/Tm) > (4.1)

m=l

by the second law5. The inequality (2.14) is a generalization of (4.1) in that

i) it holds at each point of the spectrum separately, and ii) it holds for

non-thermal noise sources as well.

5The electrical variables of the circuit are assumed to be in steady state, so
the entropy contribution arising from electrical signals is independent of
time. iTherefore the second law asserts that the remaining entropy terms, i.e.
the entropies of the constant temperature reservoirs, must increase as claimed.
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In the special case N=2, Theorem 1 predicts that at each frequency noise

power flows from the "hotter" source to the "colder" one. To see this, renumber

the ports if necessary so that T1(w) > T2(w), where w is any frequency of inter-

est. Equation (2.13) states that P2(L) = -P1(W), and (2.14) then predicts that

P2(w)/T 2(w) + Pl(w)/Tl(e)

(4.2)

:P2M( ) /T2(w) - l/T l (w) > 0,

i.e. that P2(w) > 0 whenever Tl(w) > T2(w) > O.

A particularly simple "passivity" interpretation is also possible in

this case. If we multiply the left hand side of (4.2) by T1(w) T2(w) and

substitute -Pl(w) for P2(w), etc., we have

Ti (w)(-P ()) + T2(W)(-P 2(W)) >, w s R. (4.3)

Recall from our sign conventions that (-Pm(,.)) is the averaae power Der unit

bandwidth flowing into port #m of L. With this sign convention and the fact

that T(w) and P(w) are real taken into account, (4.3) is analogous to the

following necessary condition for passivity of an LTI dynamic 2-port:

Re{Vl(jw)Iil(j) + V2(w)I2(jW)} > O, *w.

sarrx ------- ~ ~ ~ ~ ~ 1 wI +V2 
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In circuit theory terms the significance of (4.3) is that a difference

in equivalent noise temperature acts as a "driving force" or an "across

variable" for noise power flow separately at each frequency, just as a

thermodynamic temperature difference acts as a driving force for heat flow.

Furthermore the lossless (but possibly active) 2-port L acts as a "passive"

conductor of noise power flow. But note that (4.3) cannot be extended to

cases where N> 2. However in the general case (2.14) tells us that the N-port

L acts as a "passive" system with respect to the driving forces {(-Tm(w))l}.

Note that (-Tm.(w)) is a monotone increasing function of Tm(w) for Tm(w) > 0.

Another result in the literature also suggests that lossless (but possibly

active) networks act like passive systems with regard to equivalent temperature.

Suppose we extract an arbitrary pair of nodes from L to form a new port,

shown as port #0 in Fig. 3. Then it turns out that at each w the equivalent

noise temperature observed at port #0 will lie between the highest and the

lowest of the noise source equivalent temperatures, i.e.

mi n {Tm(}) < T0(w) < max TNm( )} 4W.
1< m< N 1 <m< N

This inequality follows immediately from results given in [23, 24], and the

present interpretation was.suggested in [25, p. 78]. It is identical in form

to the classical "no gain" theorem [25, p. 42], [26] for networks of passive

2-terminal resistors.
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4.2) Directions for Further Research

It should be possible to generalize this result to include systems in

which equivalent temperatures can be negative. It might also be possible to

allow for correlated noise voltage sources or coupled noise source impedances.

If L is nonlinear and lossless it is plausible that (2.14) holds when integrated

over the whole spectrum even though it may not hold for each L separately.

However, the Manley-Rowe formulas [27], appropriately generalized to the

stochastic case, may enable one to establish bounds on the noise power flow

at individual frequencies.
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Figure Captions

Fig. 1 a. The Nyquist-Johnson model for thermal noise in a resistor of
value R at a temperature T°K. The voltage source is Gaussian
white noise with the flat spectral density Snn(w) = 2 kTR.

b. A more general system in that the noise voltage spectrum need
not be Gaussian or flat and the impedance need not be real or
constant. The frequency-dependent "equivalent noise temperature"
T(w) is defined by analogy with the Nyquist-Johnson model.

Fig. 2 Figure for Theorem 1. Noise power flows from one noise source to
another through the lossless N-port L, subject to the constraints
of Theorem 1.

Fig. 3 The same network as in Fig. 2, but with an arbitrary pair of nodes
extracted from L to form port #0. Existing results show that the
equivalent noise temperature at port #0 is a convex combination of
the noise source temperatures, establishing a "no gain" type condi-
tion on equivalent noise temperature.
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Appendix: Proof of Proposition 1

A.1) Preliminary Results

Let jw be an arbitrary point in D. To simplify notation we will write

Snn, Z, R, T, L, R and Pm in place of )nn(w), Z(jw), etc. For a complex matrix

M we define MR A Re{M}, MI = IM}.

Fact 1

The matrix (L + Z) is nonsingular.

Proof

Define A L + Z. The goal will be to show that BA = I, where the N x N

matrix B is defined by

BR R + AIAR

(A.1)

-B TAlI
PI BR8I-R

It then follows that det(A)det(B) = 1 and hence that det(A) f 0.

We must first establish that all the matrix-inverses appearing in (A.1)

exist. By (2.10) LR is antisymmetric. And ZR = R is diagonal and positive

definite by assumption. Therefore AR = (LR + ZR) is positive definite and

hence nonsingular. Similarly, {AR + ATAR1AI lis positive definite and hence

nonsingular. Therefore BR and BI are well-defined.

To show that BA = I we calculate

Re{BA} = Re{(BR + jBI) (AR + I)

= RAR - BIAI = BR(AR + AIAR AI )

= B RBR1 = I,
R R
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Im{BA} = Im((BR + JBI)(A R + jAI)

= BIAR + BRAI = BRAIRAR R + RAI

= BR(-AT + AI) = 0

since AI LI + ZI is symmetric.

Fact 2

T - T8* = 2R1/2(L + Z)-1(TL* + LT)(L + Z)- *R1/ 2 (A.2)

Proof

Using the definitions of T and S we expand the left hand side of (A.2)

as follows:

{T - ST*} ={T- R1/2(L + Z)-1(L - Z*)R-1/ 2 TR- 2 (L - Z*)*(L + Z)- 1*R/ 2 } 

R1/ 2( L +)-I{(L + Z)R-/2TR-/2(L + Z)* - (L - Z*)R-1/2TR-/2(L - Z*)*}(L + Z)- 1*R1/2

(using the fact that R-1/2TR- 1/ 2 TR-1 since T and R are diagonal)

R1/2(L + Z)-{LTR-lL* LTRTR-1Z* + ZTR-1L* + ZTR-lz*

-LTR-1L* + Z*TR -1L* + LTR 1 Z - Z*TR 1Z}(L + Z)-*R 1/2

(using the fact that Z, T and R are diagonal and hence ZTR-1Z*= Z*TR-1Z, and

the fact that LTR 1(Z + Z*) = LTR-1(2R) = 2LT, etc.,)
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R1/2(L + Z)- 1{2TL* + 2LT}(L + Z)- *R 1/2

as claimed.

Notation

Define X Im{Z} and M (L + jX). Then (M + R) = (L + Z) and hence is

invertible by Fact 1.

Fact 3

R1/ 2 (M + R)- R- M + R)- R. (A.3)

Proof

Begin with the identity

MR M + M = MR M + M,

factor both sides as follows

MR- 1(M + R) = (M + R)R-1 M,

multiply each side on the right and left by (M + R)- 1 to obtain

(M + R)-I MR- = R-1M(M + R)-1

then multiply each side on the left by R1/ 2 and on the right by R, yielding
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R1/2(M + R) 1 = R-1/2M(M + R)-1R,

as claimed.

Fact 4

Define

P a (L + Z)-1RT(L + Z)-1

W R1/2(L + Z)-XT(L + Z )- 1R1 /2 (A.4)

Q R1/2(L + Z)- 1LT(L + Z)- 1R1/2

Then

= R-/2LR/ 2 + jXR-1/ 2pR1/ 2 - jW (A.5)

Proof

Since (M + R) = (L + Z), Q can be written as follows

Q = R1/2(M + R)-1(M - jX)T(M + R)-1*R 1 /2

= R1/2(M + R) 1MT(M + R) 1*R1/2 (A.6)

jR1/2(L + Z)-1 XT(L + Z)- R

We expand the first term on the right of (A.6):

R1/2 (M + R)MT(M + )-*R/2 =
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(using Fact 3)

R- 1/2M(M + R)-1RT(M + R)- 1R1/2

(substituting L + jX for M, using M + R = L + Z, and noting that X and 8- 1 / 2

commute since both are diagonal)

R-1/ 2 L(L + Z)-1RT(L + Z)-I*R 1 / 2

+ jXR-1/2(L + z)-lRT(L + z)-l*R1 / 2

(using (A.4))

R-1/21pR / 2 + jXR-/2p1/2

Thus the first term on the right of (A.6) equals the sum of the first

two terms on the right of (A.5). Since -jW, the last term on the right of

(A.5), equals the last term on the right of (A.6), the proof is concluded.

Fact 5

Let F and G be complex N x N matrices with F nonsingular and diagonal.

Then

{ FGF}mm ={G}mm 1 < m < N. (A.7)

This is a straightforward calculation.
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Notation

If f, g:'R + IR , then f*g represents convolution. If x and y are real,

n-dimensional wide-sense stationary random processes, then R xy is their

cross-correlation matrix and S is their cross-spectral density matrix, i.e.

IRxy(T)}ij= E{xi(t + T)Xj(t)}

{S(w)iJj F{Rxy(T)}ij,

where F is the Fourier transform.

If A(t) is an n x m matrix of time functions, then A(jw) represents the

Fourier transform of A(t), i.e.

{A(j)}ij i= aij(t)e- Wtdt.

Finally, if u, y· IR + lRn, and A(.) is an n x n matrix of real valued time

functions, we use the notation

y = A*u

n
to mean = a.*u., 1 < i < n.

j 1 3 -

Fact 6

Let u be a real, n-dimensional, wide-sense stationary random process,

and A, and B be n x n matrices of real-valued time functions, possibly

including singularity functions, such that x a A*u and Y - B*u are jointly
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wide-sense stationary random processes. Then

Sx (W) = (j)S uu(w)*(jw),

provided all terms exist.

This is a straightforward calculation.

A.2) Conclusion of the Proof of Proposition 1

We will first show that Prop. 1 holds for each jwED, i.e. that

-P 4 {T - T8T*}m m, 1 < m < N. (A.10)
m 4,T m,m -

Let S y represent S v(jw). Using Def. 2.4 we can restate (A.10) as follows

Re{Svi mm k I{T - TS*}mm, 1 < m < N. (A.11)

To prove that (A.11) holds, we first rewrite its left hand side as follows.

Note from Fig. 2 that the transfer function mapping n + i is (L + Z)- 1 and the

transfer function mapping n v v is L(L + Z)- 1. Therefore

(using Fact 6)mm

(using Fact 6)

Re L(L + Z)- lSn(L + z)- 1 *m =
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(using (3.2))

2kRe{L(L + Z) 1RT(L + Z)-1 mm

(using (A.4))

2kRefLP}mm, 1 < m < N. (A.12)

We now expand the right hand side of (A.11). Using the definition of Q in

(A.4), Fact 2, and the self-adjointness of T we obtain the first equality

below. (The second equality is trivial.)

- STS*}mm k{Q + Q*}

(A.13)
= 2kRe{Q}mm .

Using (A.12) and (A.13), we can restate (A.11) as follows:

Re LP}mm = Re Q}mm, 1 < m < N. (A.14)

To show that (A.14) holds, consider the expansion of Q given in (A.5).

The third term is -j times the self-adjoint matrix W. Since the diagonal

elements of any self-adjoint matrix are real, Re{-W}mm = O 1 < m < N. Now

consider the second term on the right hand side of (A.5). The matrix P is

self-adjoint, so by Fact 5 the diagonal elements of R 1/2PR 1/2 are real.

Since X is real and diagonal, Re{jXR '/2pR1/2}X = 0 1 < m < N.

Finally, the first term on the right hand side of (A.5) has the same

diagonal elements as LP by Fact 5. This proves (A.14) and hence (A.10).

Therefore (3.3) holds for all jweD.
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To see that (3.3) must hold for all jw\D as well, note that P (.) is

defined for all X and continuous by assumption. Since R(-) is defined by

analytic continuation on the entire jw-axis it is also continuous there, and

the diagonal entries are strictly positive by assumption. Also Snn(.) is

defined and continuous on the entire jw-axis by assumption. Therefore

T(M) A S nn() (2kR(w))-1 is defined and continuous on the jw-axis. Similarly

8(jw) is defined by analytic continuation on the entire jw-axis, so it is

also continuous. Therefore the right hand side of (3.3) is defined and

continuous on the entire jw-axis. Since D is dense in the jw-axis and (3.3)

holds on D, (3.3) must hold for all jw. 
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