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ABSTRACT

The sample disturbance problem for different geomaterials is reviewed in this thesis. A
general discussion on the disturbance sources and complexities of the disturbance problem is
followed by detailed reviews on disturbance mechanisms and effects in soil and rock. This
investigation leads to the conclusions that the combination of theoretical and physical
modeling is an effective way to study the disturbance problem. Following the discussion of
sample disturbance in soil and rock, the main aspects of shale behavior and shale sample
disturbance are introduced in order to evaluate the applicability of theoretical and physical
modeling in shale. It is shown that the coupled chemical - thermal - poromechanical effects
of shale behavior may be a major barrier to a successful application of these modeling
methods and to a better handling of sample disturbance.
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1. Introduction

This thesis deals with the disposal of radioactive wastes in shale formation in

Switzerland. Radioactive substances are widely used in power production, medicine,

research and industry. However, the use of radioactive substances produces a

substantial amount of nuclear waste each year. During the operation of a nuclear

power plant, highly active substances are generated in the fuel elements. The

so-called "spent fuel" has to be replaced after a period of around four years in the

reactor. For instance, the operation of the nuclear power plants in Switzerland for a

40 year lifetime will produce around 3000t of spent fuel (Geological Problems in

Radioactive Waste Isolation: Second Worldwide Review, 1996). These radioactive

wastes must be properly disposed so that they won't endanger the environment and

people's health.

Disposing the nuclear waste in deep geological repository has been found to

be an attractive solution. To ensure that the radioactive waste does not pollute the

groundwater, and does not transfer into the groundwater, geological formations

with low permeability are attractive for repositories of radioactive waste disposal.

Therefore, shale formations have been found to be good candidates for such disposal

repository.

Based on the previous investigations made by the Swiss NAGRA (National

Cooperative for the Disposal of Radioactive Waste), the Opalinus shale which exists

in northern Switzerland is a potential host formation for nuclear wastes. In order to
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further assess the suitability of Opalinus shale formation to be the host rock of the

waste repository, different in-situ and field tests are necessary to characterize the

formation. Among the many parameters characterizing Opalinus clay shale,

permeability is probably the most important. However, it has been found that it is

extremely hard to measure the in-situ permeability of Opalinus shale or to back

figure it from laboratory tests. The reason why laboratory tests do not work well is

sampling disturbance. When samples are taken from rock formation, various

disturbance effects can be introduced by the sampling process. For example, the

existing cracks in the sample may be opened, and new cracks may be created.

Therefore, the measured permeability can be much larger than the in-situ

permeability.

In view of this fact, NAGRA sponsored this research project to study the

sources, mechanisms and effects of sample disturbance in Opalinus shale. This thesis

presents a preliminary study on this topic. It summarizes the knowledge on sample

disturbance in general (including sample disturbance in soft soil and rock), and

provides possible ways of specifically studying sample disturbance in Opalinus

shale.
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2. Overview of Sample Disturbance

Sampling disturbance is a very important problem, and it has long been a

research topic for the geotechnical profession. It is so important because reliable

application of any analytical or numerical methods requires reliable parameters, but

the parameters of a geomaterial measured in the lab usually deviate from the in-situ

parameters due to sample disturbance. Therefore, the ultimate objective of studying

the sample disturbance problem is to find a way either to eliminate sampling

disturbance, or to back-calculate the in-situ parameters based on the disturbed

behavior or state. However, it has also been realized that sample disturbance is a

very complex problem, and the ultimate objective may not be achievable. This

section will offer an overview of the disturbance problem and current research on it.

Before further discussions on this topic, some terms need to be defined, and some

concepts need to be clarified.

2.1. Definition of Terms

Geomaterials refer to various natural materials that are involved in

geotechnical engineering. Being natural materials, they are quite often multi-phase

materials that have many different components. Usually, geomaterials have porous

structures. The pores in a geomaterial are often filled with liquid or gas.

The State of a sample is a collection of properties that describe the current

internal conditions of the sample. To completely define the state of a sample, the
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number of necessary properties can be very larger. However, only some of them are

important for the problem of sample disturbance. These important properties can be

categorized as follows:

" Compositional Properties: This refers to the properties that describe the

type, quantity, distribution and geometry of different components of the

sample. For example, if a soil sample is composed of the solid, liquid and

gas phases, then the compositional properties of this soil sample may

include: grain size distribution, pore size distribution, fabric of soil

particles, porosity, water and gas content, degree of saturation, void ratio,

etc.

" Mechanical Properties: These properties describe the mechanical

interactions between the different components of the sample. For a soil

sample, the mechanical properties may include: total stresses, effective

stresses, true stresses in soil grains, pore liquid pressure, pore gas

pressure, etc.

When the sample is located in the ground before any sampling process has

been performed, its state is called the In-situ State. At its in-situ state, the sample is in

balance with its environment. For example, the stress within the sample is in

equilibrium with the external load from the surrounding materials; the volume of

liquid that flows into the sample in a period of time equals the volume that flows out;

the ion concentrations inside the sample equals to the ion concentrations outside of

the sample. If the environment of the sample is changed, then this balance will be
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disturbed and the state of the sample will be changed. The Behavior of a sample is

defined as the collection of many different parameters that describe how the state of

the sample changes with the variation of its environment.

During the sampling process, the environment of the sample are changed by

the sampling operations, the balance is disturbed and the state of the sample is

changed. The factors that cause the disturbance are called the Sources of Disturbance.

The state of the sample after being changed by disturbance is called the Disturbed

State. Each disturbance source may change the balance in a different way and cause

the sample's state to change differently. The change of state caused by a particular

disturbance source is called the Mechanism of Disturbance of the disturbance source.

The Severity of Disturbance is defined as the extent to which the in-situ state is

changed by the disturbance.

The behavior of a sample also changes with its state. The behavior of the

sample after disturbance is called the Disturbed behavior. The difference between the

disturbed behavior and the in-situ behavior shows how the disturbance changes the

behavior of the sample, and this is called the Effects of Disturbance.

2.2. General Description of Disturbance Sources

This section will give a step by step description of the sampling process in the

most general sense. The possible sources of disturbance will be identified based on

this description. It should be noted that the disturbance sources listed here are by no

means a complete set. During sampling, many factors may change the state of the
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sample, some of which we may not even know. On the other hand, some of the

sources listed here may only be applicable when particular conditions are met. These

conditions will be pointed out in the following description.

Disturbance starts from the in-situ state of the sample, which is shown

schematically in Figure 2.1. As has been said previously, the state of the sample is

determined by all the properties that describe the current conditions of the sample.

Ground

r-n

Sample -+
LJ

Figure 2.1 The In-situ State of the Sample

2.2.1. Making a Borehole

Usually the geomaterial to be sampled is located at some depth in the ground,

as shown in Figure 2.1. Therefore, it is necessary to make a borehole to the elevation

of the sample. In essence, this is achieved by breaking and taking the material away.

In order to prevent the borehole wall from caving in, a borehole fluid and/or

borehole casing are typically used to support the borehole wall. The most frequently

used borehole fluid is drilling mud. In rare cases, compressed air may be used as the

borehole fluid.
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L-J L-J

(a) Advancing of Borehole (b) Bottom of Borehole Reaches the Sample

Figure 2.2 Making a Borehole in the Ground

Several possible disturbance sources may be introduced at this step:

1. Drilling Machinery:

" Vibration by Drilling Machine: Drilling machines will cause vibration of

the material in the sample.

" Loading by Drilling Machine: When the machine touches the surrounding

material, it exerts forces on the material. This load will change the stress

field near the contact area. If the sample is within the range of influence, it

will be disturbed.

* Heat Generation: During drilling, heat can be generated by the friction

between the drilling tool and the material being sampled. The

temperature of the sample can be changed.

2. Remove of Original Material

* Contact with Borehole Fluid: As the material on top of the sample is

removed, the sample will be in contact with the borehole fluid (Figure 2.2
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(b)). This may cause disturbance in the following ways:

+ Stress Change: At the boundary where the sample is in contact

with the borehole fluid, the stress will be changed to the pressure

of the borehole fluid, which is usually different from the in-situ

stress.

- Temperature Change: The temperature of the borehole fluid is

usually not the same as the in-situ temperature. Therefore, the

temperature of the sample will be changed by heat conduction.

* Capillary Effects: This only occurs if the borehole fluid is air, and

the sample contains free water. Negative pore pressure can develop

at the liquid-air interface.

+ Composition Change: If drilling mud is used as the borehole fluid,

the composition of the sample can be changed by pore liquid

exchange and mud penetration. Pore liquid exchanged between the

mud and the sample is caused by the hydraulic gradient between

the mud and the sample. Mud penetration occurs when the pore

size of the sample is large enough. If compressed air is used as the

borehole fluid, the composition change will mainly be caused by

pore liquid evaporation and air entry.

< Chemical Change: The sample originally is at chemical balance

with its surrounding material. When it is in contact with borehole

fluid, this balance will be disturbed and chemical reactions may
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occur between the sample and the borehole fluid. If drilling mud is

used as the borehole fluid, then ion exchange may occur due to the

different ion concentrations in drilling mud and in the sample;

water migration may occur due to osmotic pressure. If compressed

air is used, then oxidation may occur.

* Stress Relief: When the material originally in the borehole is taken away,

the wall and the bottom of the borehole are unloaded. The stresses that

originally acted on the sample will also be relieved. This unloading may

be partly compensated by the pressure of borehole fluid. The stress relief

at the wall and bottom of the borehole will cause the stress field around

the borehole to change, which also affects the stress state of the sample.

2.2.2. Taking Samples with Samplers

After the borehole is made to the depth of the sample, the sample can then be

cut out from the surrounding material and detached from it (Figure 2.3). This is

usually achieved by using samplers with suitable cutting devices. Some of the

cutting devices may remove the surrounding material (Figure 2.3 (a)). These devices

are often used to sample very hard materials. Some of the cutting devices may

simply penetrate into the bottom of the borehole, and isolate the sample from the

surrounding material. This is usually applied in soft material sampling.
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(a) Cut by Removing Material (b) Cut by Displacing Material

Figure 2.3 Cutting out the Sample from the Material Body

During the cutting of the sample, the sample is isolated from the original

material surrounding it. The possible disturbance sources during the cutting are:

1. The Cutting Process

The cutting process can be a very important source of disturbance since it is

conducted very close to the surface of the sample. The sample might be disturbed in

the following ways during the cutting process:

* Vibration: The cutting process may cause vibration in the sample and the

surrounding material.

* Loading by Cutting Tools: When the cutting tool touches the side of the

sample, it directly exerts forces on the sample surface.

" Heat Generation: The breakage of the surrounding material and the

abrasion of the cutting tool may generate heat, which will change the

temperature of the sample.

" Contact with Borehole Fluid or Sampler: Depending on the sampling
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method, the sample may be in contact with the borehole fluid or the

sampler during the cutting process. Again, the possible disturbance may

include Stress Change, Temperature Change, Capillary Effects,

Composition Change, and Chemical Change. The details of these changes

have been listed in Section 2.2.1. When the sample is in contact with the

sampler, stress changes in the sample will be mostly affected by the force

exerted by the sampler, while the temperature and chemical changes of

the sample will be dependent on the temperature and the material of the

sampler.

* Stress Relief: If an opening is cut around the sample (Figure 2.3(a)), the

stresses on the boundary of the opening will be relieved. Again, this

changes the stress field around the opening and affects the stress state of

the sample. If no opening is left behind the cutting tool (Figure 2.3(b)), the

stresses in the sample will be determined by the force exerted by the

sampler (see above).

2. Detaching the Sample

When the sample is cut out, it is then broken at the bottom so that the sample

can be detached completely from the native formation. This is usually achieved by

applying a torque or an extraction force on the sample. The possible disturbance

sources are:

0 Torsion or Tension at the Bottom: It is clear that in this process, the bottom
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of the sample will be disturbed.

* Forces on the Sample: In order to generate the torsion or tension at the

end of the sample, some force must be applied on the sample. This also

acts as a possible disturbance source.

2.2.3. Move the Sample to the Ground Surface

When the sample is detached, it will be taken out of the borehole to the

ground surface (Figure 2.4).

U

Figure 2.4 Taking the Sample to Ground Surface

During this step, disturbance may occur if the sample is at least partly

exposed to the fluid, which is usually the case. The possible sources of disturbances

are:

* Contact with Borehole Fluid: The sample is still in contact with the

borehole fluid when it is pulled out from the borehole. Therefore, possible

disturbances still include: Stress Change, Temperature Change, Capillary
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Effects, Composition Change and Chemical Change. However, in this step

the sample is rising in the borehole and its depth is constantly changing.

The change of depth may affect sample disturbance in the following

aspects:

- Stress Change: When the sample is rising in the borehole, the

pressure of borehole fluid becomes smaller and smaller, which

means that the sample is experiencing stress relief. This stress relief

is very significant when drilling mud is used as the borehole fluid

and the borehole is very deep.

+ Temperature Change: Due to geothermal effects, the temperature

of borehole fluid may vary with depth. The temperature of the

sample thus will also be affected when it is rising in the borehole.

+ Composition Change: In case that drilling mud is used as the

borehole fluid, its composition may vary with depth due to gravity.

Hence the composition of the sample may be changed differently

with decreasing depth. In addition, the amount of mud that

penetrates into the sample may decrease as the mud pressure

decreases with decreasing depth.

+ Chemical Change: Since the composition of drilling mud may vary

with depth, different chemical reactions may occur when the

sample is at different depths.
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2.2.4. Sample Transportation and Storage

When the samples are taken to the ground, they usually will be put into

special containers (or in samplers) and properly sealed. Then they are transported to

the laboratory where they will be stored up until they are tested.

The possible sources of disturbance during transportation and storage of the

sample are listed below:

* Random Bumping: During the transportation, the sample may be subject

to random bumping.

* Temperature Change: During transportation and storage, the temperature

of the sample will be affected by the environmental temperature.

* Contact with Air: If the sample is not properly sealed, it may be in contact

with air. The sample will then be affected by the properties of the air. The

following disturbances are possible:

- Stress Change: Where the sample is in contact with the air, the

pressure on the sample will be the atmospheric pressure.

+ Temperature Change: The temperature of the sample will be affected

by the air temperature.

- Capillary Effects: Negative pore pressure may be generated at the

interface of pore liquid and air.

- Moisture Loss and Air Entry: The water in the sample may evaporate.

When the moisture of the sample is lost, air enters the pores of the

sample to occupy the space originally occupied by water.
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- Chemical Change: Chemical reactions may occur between the sample

and the air.

* Time Dependent Effects: The state change of the sample caused by the

disturbance sources may not be completed immediately. The sample's

state will continue to change during the time of storage although the

source of disturbance may not be present already.

2.2.5. Sample Preparation

When the samples are ready for different kinds of tests, they must be

extruded from the sampler (or other containers) in which they were stored, and be

prepared into suitable geometry for the testing apparatus. The possible sources for

this step are:

* Stress Relief: During this process, any stresses that were locked in the

sample container will be relieved. The pressure that is acted upon the

sample will be the atmospheric pressure.

* Cutting of the Sample: The sample must have suitable geometry to fit in

the testing apparatus. This is usually done by cutting. For example, soft

materials are usually cut by wire saws or cutting rings; hard materials are

usually cut by a lathe or a laboratory core drill. The cutting process may

disturb the sample through vibration, loading by cutting tools, heat

generation, etc (refer to Section 2.2.2).

* Contact with Air: Cutting creates new surfaces on the sample, and the
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material on the new surfaces is then in contact with air. Again, Stress

Change, Temperature Change, Capillary Effects, Moisture Loss and Air

Entry, and Chemical Change may occur. The details have been described

in Section 2.2.4.

* Installation of Sample: After cutting, the sample must be installed in the

testing apparatus. This installation process can be very complicated for

some tests, for example, in triaxial tests. Specific disturbance sources are

quite different for different tests. Therefore, the details will not be

presented in this general outline.

2.3. Complexity of Sample Disturbance Problem

Based on the definitions of Section 2.1 and the description of Section 2.2, it is

evident that sample disturbance is a complex problem with the following

characteristics:

1. Disturbances seem to be unavoidable.

The purpose of taking a sample is to put the sample into the testing

equipment and measure its behavior. In this process, it is inevitable that the

surrounding material of the sample will be removed, and the balance between the

sample and its environment will be disturbed. Therefore, sample disturbance seems

to be unavoidable.
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2. The state of the sample is difficult to determine.

The only way of determining the state of a sample is to measure its properties.

However, some of the properties of the sample cannot be easily measured and

quantified. In addition, the measurement of one property may introduce

disturbances so that other properties are changed. Therefore, obtaining the state of

the sample is still a formidable task. It has been said that the in-situ state is the

starting point of the state change caused by disturbance. If this starting point is not

clearly known, then how the sample's state is changed during the sampling process

will be difficult to follow. The mechanism of disturbance is then very difficult to

quantify.

3. Characterizing the disturbance sources may be a difficult task.

It is difficult first because the great variety of disturbance sources. This is

evident simply by looking at the list of disturbance sources provided in Section 2.2.

Besides this variety, many disturbance sources in the list involve large uncertainties.

For example, while cutting the sample from its native formation, the cutting device

of the sampler is very close to the sample. The disturbance on the sample is then

greatly dependent on the operator's skills. When the temperature of the sample is

affected by the environmental temperature, the disturbance is clearly dependent on

weather conditions. As a result, the disturbance sources involve great uncertainty

and it is very difficult to characterize them.
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4. The disturbance mechanisms are different for different geomaterials.

Based on the definitions of Section 2.1, the behavior of a sample defines how

the state of the sample changes when its environment is changed. Therefore, the

change of the sample's state by disturbance is determined by the behavior of the

sample. For example, during the stress relief in borehole drilling, if the material

being sampled is soil, then the effective stress of the soil sample will be changed.

This in turn will cause deformation and strain of the sample. However, if the

material being sampled is rock, stress relief may cause the opening and propagation

of cracks in the sample. This example clearly shows that for different materials, the

mechanisms of disturbance may differ greatly for the same disturbance source. As a

result, the understanding of the mechanism of disturbance is restricted by the

understanding of the material behavior. However, since geomaterials are mostly

multiphase natural materials, our understanding of their behavior is still quite

limited. Therefore, a thorough understanding of disturbance mechanisms seems to

be impractical.

5. The disturbance mechanisms and effects are always coupled.

According to the general list of disturbance sources in Section 2.2, several

disturbance sources often affect the sample's state simultaneously. For example,

during borehole drilling, the sample is simultaneously disturbed by temperature

changes, chemical reactions, static stress state changes, and dynamic vibration.

Given that the geomaterial is usually a porous material, it is then necessary to
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understand the coupled porous, thermal, chemical, dynamical behavior of the

geomaterial. This seems to be quite difficult with the current analytical and

numerical methods.

Based on the discussion above, sample disturbance seems to be unavoidable.

The sources of disturbance involve significant uncertainties and the mechanisms of

disturbance are very difficult to quantify. Therefore, it is practically impossible to

achieve the ultimate objective (eliminate disturbance or back-calculate in-situ

behavior from measured behavior) based on our present level of understanding of

sampling disturbance.

2.4. Status of Current Research

Realizing that the disturbance problem is so complicated, current research

usually introduces various assumptions to simplify it. Based on the complexities

described in the previous section, the assumptions are often used to:

" Simplify the characterization of disturbance sources;

" Simplify the behavior of the geomaterial;

" Decouple the simultaneous mechanisms and effects of disturbance

sources.

With these simplifications, the mechanisms and effects of disturbance can be

understood. The severity of disturbance can then be evaluated, and measures can be

proposed to minimize disturbance.

This section outlines the common structure of current research, and describes
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how the assumptions or simplifications are introduced. The structure of current

research on the disturbance problem can be presented step by step:

Step 1. Understand the disturbance mechanisms, and identify the important

disturbance sources.

A general list of possible disturbance sources has been presented in Section

2.2. In order to understand the mechanism of them, the disturbance sources must be

characterized, and the state change caused by these disturbance sources can then be

predicted based on the behavior of the material being sampled. As has been said,

simplifications will be introduced regarding the characterization of disturbance

sources and the material behavior. In addition, it is probably necessary to assume

that different disturbance sources are not coupled.

With these simplifications, the state changes caused by some of the

disturbance sources can be obtained. The mechanisms of other disturbance sources

may remain unknown. However, with this understanding of the disturbance

mechanisms, it may be possible to judge which disturbance sources account for the

majority of the total state change, i.e. which disturbance sources are the most

important ones and considering them is sufficient to approximate real disturbance.

Step 2. Understand the effects of disturbance.

Another important aspect of the sample disturbance problem is trying to

understand how the behavior of the sample changes with disturbance, i.e. the effects
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of disturbance. Based on the definition of Section 2.1, two methods can be used to

obtain the disturbance effects:

1) Comparing the disturbed behavior with the in-situ undisturbed behavior.

This actually requires the knowledge of the in-situ behavior. Since the

in-situ behavior of natural materials is not readily obtained, this method

can only be used with artificial materials whose "in-situ" behavior can be

controlled.

2) Comparing slightly disturbed behavior with heavily disturbed behavior.

In this case, the ability of producing different disturbance severities is

necessary. This is only possible for the disturbance sources whose

mechanisms are well understood. However, if the disturbance sources

under consideration are the important disturbance sources, then the

disturbance effects obtained may be a good approximation of the entire

disturbance.

Step 3. Proposing measures to minimize the effects of disturbance.

With the knowledge of the mechanisms and effects of various disturbance

sources, current research also seeks to propose measures that can be used to

minimize the effects of disturbance.

Among all the geomaterials, the one that was most intensely researched

regarding sample disturbance is probably soft soil. The disturbance sources in soft
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soil sampling are relatively well known. Carefully devised theoretical models have

been established and analytical methods have been applied to understand the

disturbance mechanisms. Based on the results of these studies, it is even possible to

simulate the effects of some disturbance sources in the laboratory. This has led to

many recommendations on how to improve the design of the sampler, the sampling

procedures and soil testing to minimize the effects of disturbance.

Some research has also been conducted on the sample disturbance in rock.

The sampling process in rock has been analyzed and possible disturbance sources

have been identified. In order to understand the mechanisms of disturbance in rock,

numerical methods have been applied with simplified models. The effects of

disturbance on the behavior of rock samples have also been examined, for example,

how the P-wave velocity, Uniaxial Compressive Strength, Stiffness change with

increasing disturbance. Based on these research results, some measures that can be

used to minimize the disturbance effects in rock sampling and testing have been also

proposed.

However, it seems that there is very little research performed on the sample

disturbance in shale, the objective of this research. Compared with soil and rock,

shale is a more intricate material. This is because it has two peculiar characteristics:

1) In terms of mechanical behavior, shale is a transitional material between

soil and rock. Thus a thorough understanding of its mechanical behavior

will require both Soil Mechanics and Rock Mechanics.

2) Shale usually has high clay mineral content, which makes it chemically
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active. Its mechanical properties are significantly affected by various

chemical effects. Therefore, the coupled chemical-mechanical effects may

have to be considered.

These peculiarities make the problem of sample disturbance in shale even more

complicated than in soil and rock. Therefore, a preliminary study is necessary to

propose applicable methods to understand the disturbance mechanisms and effects

in shale sampling, and to identify the important disturbance sources.

2.5.Outline of This Study

Eventually, one would like to study the sample disturbance problem in shale

by following the structure that is described in Section 2.4. However, due to the

scarcity of literature in shale sample disturbance, it is necessary to collect

information from a wide range of sources. Thus the first step of this preliminary

study is an extensive review of the literature of sample disturbance in general. Since

shale is considered as a transitional material between soil and rock, it may bear some

similarity with both soil and rock. As a result, the papers on the sample disturbance

problem in soil and rock constitute an important part of the literature review.

In order to obtain an elementary understanding of the behavior of shale,

technical reports from Mont Terri Project were reviewed, together with some past

research performed at MIT. In addition, papers from the domain of borehole stability

were also reviewed to understand the coupled chemical-mechanical behavior of

shale.
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Based on the behavior of shale and the general list of disturbance sources in

Section 2.2, general predictions are made on the disturbance mechanisms in shale

sampling. Also, rigorous methods that can be used to understand the disturbance

mechanisms and effects in shale are proposed based on the information collected

from soil and rock sampling.

2.6. Structure of the Thesis

This thesis will cover the information of sample disturbance in soil, in rock,

and what we think is important in shale. For each of these geomaterials, we try to

follow the structure presented in Section 2.4 but mostly focus on Step 1 and Step 2.

Specifically, this thesis contains:

* Review of Sampling Disturbance in Soil:

+ Section 3 describes the disturbance sources in soil sampling and their

mechanisms (Step 1 of Section 2.4). This section focuses on how

disturbance changes the compositional properties and the mechanical

properties of soil samples. Based on the understanding of disturbance

mechanisms, tube sampling is found to be an important source of

disturbance in soil sampling.

* Section 4 presents the effects of disturbance on the behavior of soil

samples concentrating on the mechanism of tube sampling

disturbance (Step 2). Some of the methods that can be used to

evaluate the severity of disturbance are also discussed.
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- Section 5 describes a simple soil model, and shows how the

mechanisms and effects of disturbance can be predicted by this

simple soil model (both Step 1 and Step 2 of Section 2.4). Again, this

analysis assumes that tube sampling is the only disturbance source.

* Review of Sampling Disturbance in Rock:

+ Section 6 first describes the sampling methods that are used in rock.

The mechanisms of disturbances are then discussed with a numerical

model. Numerical modeling is applied to help quantify the

disturbance mechanisms. According to the results of numerical

modeling, it is found that stress relief is an important disturbance

source (Step 1). The mechanisms of stress relief indicate that deeper

lying samples should be subject to more severe disturbance in a

uniform rock formation, which is confirmed by the results of a

research project involving laboratory and field testing (Step 2).

* Preliminary Research of Sampling Disturbance in Shale:

+ Section 7 of this thesis first describes shale behavior by comparing it

with the behavior of soil and rock. Based on the behavior of shale and

observations on shale sampling, predictions are made on the

disturbance mechanisms in shale.

+ Section 8 summarizes the methodology that was used to understand

disturbance mechanisms and effects in soil and rock is then

summarized. Suggestions on how this methodology can be applied to
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study shale sample disturbance are proposed.
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3. Mechanism of Disturbance in Soil

Sampling

This and the following several sections (Section 3, 4, and 5) will focus on the

sample disturbance problem in soil. Since taking samples of sand without major

disturbance is impossible, these sections will mostly focus on the sampling of soft

clay. Hence the term soil in these sections will refer to soft clay if not otherwise

specified. According to Leroueil and Vaughan (1990), the behavior of soil is only

dependent on its fabric and stress history. Samples of soil are usually taken by tube

sampling because of the low strength of soil.

According to the structure presented in Section 2.4, the first and most

fundamental step in the study of the disturbance problem is to identify disturbance

sources and understand their mechanisms. A general description of disturbance

sources in sampling geomaterials has been given in Section 2.2, which also covers

the disturbance sources in soil sampling. This section describes how these

disturbance sources change the state of the soil. For each sampling procedure, the

composition changes and the mechanical property changes will be discussed. The

order in which these two types of state changes are described varies since sometimes

one must be introduced first in order to understand the other.

Several points need to be noted before further discussion:

* The sampling process can be considered as undrained process if it is

performed very quickly. This is because we are mostly focused on the
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sampling of soft clay. With the very low permeability of clay, the sampling

processes that are finished in minutes or hours are essentially undrained.

* It is practically impossible to discuss the change of all the composition

and mechanical properties of the soil sample. Therefore, the following

discussion only focuses on the most important properties of soil. For

example, the void ratio, water content, and effective stresses.

The starting point of all the state changes is the in-situ state of the sample,

which will be introduced first.

3.1. In-situ State of Soil

Before any sampling is performed, a soil element in the ground is in its intact

state or in-situ state (Figure 3.1). The in-situ state of the sample is determined by the

deposition history and loading history of the soil formation.

Ground

Sample -

Figure 3.1 The In-situ State of the Sample

Among all the in-situ properties of the sample, the most important yet

intricate one is the in-situ stress state. Suppose a soil element is subject to the in-situ
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total stresses GJho and avo (Figure 3.2). If we denote the in-situ pore pressure to be uo,

the effective stresses can be obtained by the effective stress principle:

G vO = avO - Uo; C'hO = ahO - UO

It follows that if the total stress state is isotropic, then the effective stress must also

be isotropic, and vice versa.

Ground Surface

0
v0

ahh

ChO

Figure 3.2 In-situ Stress State (Total Stress)

Due to the depositional characteristics of natural soil, usually the vertical

stress avo is a principal stress. The other two principal stresses are in the horizontal

direction and usually have the same magnitude Cmo. Therefore, any horizontal

direction is also a principal direction and this stress state is axi-symmetric. This

property of soil's stress state is very important since it makes it possible to model the

behavior of soils with standard triaxial tests. According to the Effective Stress

Principle, these statements are also true for effective stress &'vo and a'ho.

The vertical effective stress a'vo is imposed on the soil element by the

overlying deposits. At the depth of the soil element, a'vo is usually uniformly

distributed on a large area and the deformation of the element is restricted to the

vertical direction with no lateral movement. In nature, the deposition goes on very
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slowly and the soil element is compressed vertically without generating any

excessive pore pressure. Therefore, the one dimensional compression of the soil

element is also called one dimensional consolidation.

In one-dimensional consolidation, the ratio between the horizontal effective

stress and the vertical effective stress is defined as Ko:

Ko = a'ho/'vo

The one-dimensional consolidation is also called "Ko consolidation". It has been

found that during one-dimensional consolidation, if a'vo increases monotonically, Ko

is roughly constant and the soil element is said to be "normally consolidated". The

value of normally consolidated Ko is different for different soil types but usually is

less than 1. It ranges from 0.4 for low plasticity clayey silt to 0.7 for plastic clay.

If for some reason, e.g. erosion of overlying soil, c'vo is decreased, the element

will extend or swell in the vertical direction. This swelling is still one-dimensional

and it is termed "one dimensional swelling" or "Ko swelling". The soil element is

then called to be "over-consolidated". The ratio between the past maximum vertical

effective stress a'p and the current vertical effective stress G'vo is defined as the Over

Consolidation Ratio (OCR):

OCR = a'p/a'vo

a'p is often called "pre-consolidation pressure". During this unloading process, it is

found that the rate of decrease of horizontal effective stresses is smaller than that of

the vertical effective stresses, which means that Ko value increases during swelling.

Eventually, a'vo may become smaller than a'ho and Ko becomes larger than 1 for
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heavily over-consolidated soil.

It is apparent that the in-situ stress state is isotropic if Ko = 1. This case is rare

and the in-situ stress state is anisotropic for most natural deposits.

3.2. Making a Borehole

Before the sample located at a certain depth in the ground can be taken, a

borehole must be made (Figure 3.3). Since the strength of soil is small, drilling mud

is usually used as the borehole fluid to increase borehole stability. Therefore, the

following description will assume that drilling mud is used as the borehole fluid. In

Section 2.2.1, the known disturbance sources in borehole drilling have been listed.

The state of the soil will be changed by these disturbance sources, and the changes

are described in this section.

I I I I

LJ L-J

(a) Advancing of Borehole (b) Bottom of Borehole Reaches the Sample

Figure 3.3 Making a Borehole in the Ground

3.2.1. Change of Mechanical Properties

According to the definitions in Section 2.2, the mechanical properties of the
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sample include total stresses, effective stresses, pore pressure, etc. These mechanical

properties of soil are prone to change during the borehole drilling process. These

changes may include:

1. The vibration of the drilling machine can cause excess pore pressure in

the surrounding soil. The amount of excess pressure varies with the

in-situ state of soil. For normally and slightly over-consolidated soil, the

pore pressure may be increased. If total stresses remain unchanged, then

the effective stress will be decreased. In addition, when the drilling

machine is in contact with the wall or the bottom of the borehole, it exerts

forces on the soil and directly changes the effective stresses and the pore

pressure of the soil.

2. It has been shown that the temperature of the sample may be changed by

the friction between the drilling bit and the soil, and by the temperature

difference between the drilling mud and the sample. Since the thermal

expansion factors of the soil matrix and the pore liquid are usually

different, they have different thermal strains under the same amount of

temperature change. As a result, excessive pore pressure may be

generated and the effective stresses are changed.

3. When the soil above the sample is removed, the stresses on the wall and

bottom of the borehole are relieved. With the presence of the drilling mud,

the pressure on the wall and bottom of the borehole will finally become

the mud pressure. Since the mud pressure is usually smaller than the
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in-situ stress, the net effect of the stress change would still be a relief of

stresses.

It has been found that stress relief may considerably change the effective

stress of the soil sample. Therefore, the rest of this section will mainly focus on the

quantification of the stress relief mechanism.

Since the soil sample is at the bottom of the borehole (Figure 2.2 (b)), the effect

of stress relief will be the reduction of its vertical total stress cTv. For normally and

slightly over-consolidated soil, the in-situ vertical stress av is larger than the in-situ

horizontal stress Gh. Therefore, decreasing the vertical total stress will reduce the

deviatoric stress the sample is subjected to. The stress state of the sample then

gradually approaches the Ko = 1 line and may finally cross it. In order to quantify the

effective stress change by this deviatoric total stress relief, Ladd and Lambe (1963)

proposed the Perfect Sampling Approach (PSA) to conceptually represent this

process.

3.2.1.1. Perfect Sampling Approach

PSA assumes that deviatoric stress relief is an undrained process, and that

during deviatoric stress relief the minor principal total stress is kept constant while

the major principle total stress decreases monotonically until the isotropic stress

state is reached. For normally and slightly over-consolidated soil samples, av is

decreased until c = av (Figure 3.4). Since this is an undrained process, the

magnitudes of effective stresses are dependent on the pore pressure generated.
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V

Figure 3.4 Assumption of Stress Change of Perfect Sampling Approach

If we suppose that the problem of borehole drilling can be treated as an

axi-symmetrical problem, then a soil element located beneath the bottom of the

borehole but on the axis of it also has an axi-symmetric stress state. In this case, the

effective stress change of the soil element due to borehole drilling can be simulated

in triaxial tests. However, before the simulation of deviatoric total stress relief can be

described, some basic knowledge of triaxial tests and the interpretation of the test

results must be introduced.

3.2.1.2. Triaxial Test and Interpretation

Triaxial tests are very widely used in the simulation of sample disturbance.

This section offers a brief introduction of the apparatus and interpretation of triaxial

tests, which is very important to understand the results of simulation. A typical

triaxial cell is shown in Figure 3.5.
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Cell Liquid

Piston

Rubber
Membrane Sample

Porous Stone

Cell Pressure Pore Pressure Supply
Supply and Drainage

Figure 3.5 illustration of a Typical Triaxial Cell

The soil sample in triaxial tests is usually cylindrical. It is put on the pedestal

above a porous stone. A piston is in contact with the sample and exerts the total axial

stress ca on the sample. The sample is sealed by a rubber membrane that separates

the liquid system of the sample from the liquid in the cell. During the test, the cell is

filled with cell liquid. The cell liquid is pressurized so that the sample is acted upon

by axi-symmetric horizontal pressure. This pressure is the total radial stress ar.

Meanwhile, the pore pressure u in the sample can be controlled or measured.

It is clear that the radial pressure Gr can be used to simulate the total

horizontal stress cm, and the axial pressure aa can be used to simulate the total

vertical stress av. Correspondingly, the axial and radial effective stresses are obtained

by:

a= a a - u; a'r = ar - u

Two quantities are defined for an axi-symmetric stress state, namely p' and q:
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p'= (a'a + cy'r)/2; q= (G'a - c',)/2

p' and q can also be expressed in terms of vertical and horizontal effective stress:

p' = (a'v + &'h)/2; q =(G'v - G h)/2

It can be seen that p' is related to the magnitude of the true mean effective stress p'm,

which is defined as:

p'm= (a'a + 
2 a'r)/3

Since p' is very widely used, it is called "mean effective stress", and p'm is called

"true mean effective stress" to show the difference. The value of q stands for the

magnitude of deviatoric stress.

q Effective Stress Path

q ----------------------------- A (p', q)

//1

Figure 3.6 Plotting Effective Stress State in p' - q Space

A certain effective stress state (a'a, a'r) in a triaxial test corresponds to a point

(p', q) in the p' - q stress space, for example, Point A in Figure 3.6. With the values of

a'a and c'r, the values of p' and q are readily obtained and Point A can be located. If

only p' and q are known for Point A, the a'a and G'r values can be obtained by

drawing two lines from Point A with the slope of 1 and -1 respectively as shown in

54



Figure 3.6.

The results of triaxial tests are often shown in a p' - q plot rather than in a c'a

- a'r plot. During a triaxial test, the effective stress state of a sample is constantly

changing. The trace of corresponding (p', q) usually forms a curve in p' - q stress

space, which is called the "effective stress path". The curve shown in Figure 3.6 is an

effective stress path starting from an isotropic stress state where q =0 and G'a = &'r.

3.2.1.3. Simulation of PSA with Triaxial Tests

To simulate the deviatoric stress relief assumed by the PSA with a triaxial test,

a soil specimen can be installed in the triaxial cell with certain amount of deviatoric

stress imposed on it. The drainage boundary must be closed in order to simulate the

undrained behavior. This state of the sample is defined as the "intact state". The

deviatoric stress is then decreased by either decreasing G'r or a'a, whichever is larger,

until they are equal to each other.

The total stresses and pore water pressure in the sample can be recorded

during this process, so that the effective stress path of the sample can be obtained.

The effective stresses in the sample after deviatoric stress relief can be compared

with the effective stresses of the "intact state", and the change of effective stresses

can be obtained. By performing this simulation, it has been found that the change of

effective stresses caused by deviatoric stress relief is dependent on both OCR and the

plasticity of the soil.
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1. Effect of OCR on Effective Stress Path

The deviatoric stress relief has been simulated with triaxial tests on samples

of a reconstituted low plasticity clay, the Lower Cromer Till, with different OCR

(Hight, 2001). The results are shown in Figure 3.7, where &'ac stands for the axial

effective stress when the specimen is normally consolidated (OCR =1).

-. 0.2
'1.25

K., consolidation, whn~.

O-2 0.4 0.6

OCR=7

Figure 3.7 Effective Stress Paths Perfect Sampling Process vs. OCR (Hight, 2001)

Normally consolidated samples whose stress states are located on the Ko

consolidation line are first unloaded along the Ko swelling line to generate different

OCRs, which are marked along the swelling line. The deviatoric stress q is then

relieved to zero. Figure 3.7 shows the effective stress paths followed by these

samples during the perfect sampling process.

It can be seen that when the soil is normally or slightly over-consolidated, the

relief of deviatoric stress causes the mean effective stress p' to decrease from the Ko

stress state. With increasing OCR, the decrease of mean effective stress gets smaller.
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For heavily over-consolidated samples, deviatoric stress relief causes a slight

increase of the mean effective stress. For the soil tested (Lower Cromer Till), OCR = 4

separates the behavior with decreasing p' from that with increasing p'. This value

may be different for other soils.

2. Effect of Plasticity Index on Effective Stress Path

The effective stress path that a soil element follows during deviatoric stress

relief is also dependent on its plasticity, as shown in Figure 3.8 (for normally

consolidated or slightly over-consolidated soils). The deviatoric stress relief is

simulated in triaxial tests on samples with different plasticity, and the corresponding

effective stress paths are plotted in Figure 3.8.

p'/N

Lodo Pj 47% ;

C ~ 0 04 0 ~ 0

P kac

Figure 3.8 Effective Stress Change vs. Plasticity (Hight, 2001)

It is clear that the mean effective stresses for all the samples are decreased by

deviatoric stress relief since all of them are normally or slightly over-consolidated.

Soils with smaller plasticity have a larger decrease of the mean effective stress than

soils with high plasticity. Therefore, after deviatoric stress relief the decrease of the

mean effective stress in soils with high plasticity index is smaller.
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From what has been said, we can see that the deviatoric stress relief assumed

in the PSA can be simulated in laboratory tests. The change of effective stress during

deviatoric stress relief can be quantified and better understood. Although PSA

simplifies the real situation, the trends it predicts are reliable.

The above discussion about stress relief assumes that av > (Yb in the in-situ

state of the sample, i.e. the sample is normally or slightly over-consolidated. For soil

elements that are heavily over-consolidated, the horizontal stress may originally be

larger than the vertical stress (as shown in Section 3.1). In this case, decreasing the

vertical stress actually increases the deviatoric stress and the sample is sheared.

According to soil mechanics, negative pore pressure is generated and the effective

stress increases in heavily over-consolidated soil. In this case, PSA cannot be used

since it only considers deviatoric stress relief.

3.2.2. Change of Composition

Based on the definitions of Section 2.1, the composition properties of soil

include the void ratio, water content, fabric etc. Disturbance also changes these

properties.

1. The vibration of the drilling machine can change the fabric of soil. For

example, soil particles that are originally loosely packed may change their

arrangement to become tightly packed. Since soil is a soft material, when it is loaded

by the drilling machine excessive deformation will occur, which clearly changes the

soil's composition properties.
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2. The composition change of a soil sample is also caused by the pore liquid

exchange between the sample and the drilling mud. The amount of liquid exchange

is dependent on the hydraulic gradient in the soil sample and in the mud. Drilling

mud penetration may occur if the pore size of the sample is large enough. Hence, the

amount of mud penetration depends on the mud pressure and the pore size of the

sample.

3. The composition of the soil sample may also be changed by various

chemical effects. For a soil sample, the drilling mud is an alien material. When the

sample is in contact with the drilling mud, chemical reactions may occur between

the sample and the mud. For example, if the ion concentration of the liquid in the

soil is not the same as that in the liquid of the drilling mud, ion exchange may occur.

Water migration may occur due to the osmotic pressure. If the soil sample contains

expansive clay minerals, then the sample may expand when the minerals are

hydrated. In this case, the water content and void ratio of the sample will increase.

3.3.Tube Sampling

Since the strength of soil is usually small, the samples of soil are usually taken

by tube samplers. A tube sampler is pushed into the bottom of the borehole to obtain

a sample (Figure 3.9).
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Figure 3.9 Taking Soil Sample with Tube Sampler

3.3.1. Change of Composition Properties

During the process of tube penetration and retrieving, very complex forces

are exerted by the tube on the soil. As a result, very complex fabric distortion may

take place. However, since the tube penetration process is performed very quickly, it

can be considered an undrained process. Therefore, no change of void ratio and

water content occurs during tube penetration.

Following the work of Hvorslev (1949), the fabric changes of soil samples can

be described by the illustration in Figure 3.10.
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Figure 3.10 Interaction between Tube and Soil (Hvorslev, 1949)

According to Figure 3.10 (a), the sampler wall exerts forces on the soil during

penetration, specifically the inner and outer normal force Ni, Ne and the inner and

outer friction force Fi, Fe. The soil inside the sampler is also subject to the pressure of

drilling fluid Ut on the top, the resistance Pr from the soil below, and its own weight

W. During tube driving, the forces on the soil below the cutting edge and the areas
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they act on are shown in the lower half of Figure 3.10 (a). Pe is the pressure on area

Ae due to the reaction force Pr. Pp which acts on the ring area Ap is due to the

pushing force Qp. Finally, Po is the overburden pressure exerted by the overlying soil,

which is the in-situ vertical effective stress.

At the beginning of penetration, the sample length inside the sampler L is

small. The weight of sample W and the internal friction Fi are also small. Therefore,

Pr and Pe must be small. However, since the cutting shoe is trying to displace the soil

below it, Pp is generally large. Chances are that some soil under the cutting shoe is

squeezed inside, which is called the entrance of excess soil. Figure 3.11 shows a

picture of the fabric distortion on soils originally have horizontal thin layers.

Figure 3.11 Fabric Distortion Caused by Entrance of Excess Soil (Hvorslev, 1949)

As more soil enters the sampler, Pe becomes larger and finally it reaches

equilibrium with Pp. No entrance of excess soil occurs. At the end of sampling, W
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and Fi may be very large to cause Pe to exceed Pp. The soil layers below the sampler

will be compressed and deflected downward. This is called overdriving, and

examples are shown in Figure 3.12 (a). In extreme cases when Pe exceeds the bearing

capacity of soil, a permanent cone may form below the sampler, as shown in Figure

3.12 (b).

(a) Deflection of Soil Layers (b) Forming of Cone

Figure 3.12 Fabric Distortion Caused by Overdriving (Hvorslev, 1949)

The sample inside the sampler is subject to the inner friction Fi between the

sampler wall and its boundary which may also cause fabric distortion of soil. Some

examples are shown in Figure 3.13. The friction the soil sample is subject to can be so

large that the periphery of the sample may be sheared to failure. To reduce this

friction, most samplers are designed with an internal clearance and a very smooth
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internal liner. It is clear that the internal clearance must not be too large to avoid

excessive swelling of the sample.

Figure 3.13 Fabric Distortion Caused by Internal Friction (Hvorslev, 1949)

When the sample is detached from the underlying soil, it is important that the

sample be retained inside the tube. However, cohesion at the bottom of the sample

may prevent the sample from being removed. Suction may also be generated when

the sample is detached from the soil. These forces are denoted by force Pt in Figure

3.10 (b), and they must be overcome for the sample to be retrieved. On the other

hand, the inner wall friction Fi is reversed during sampler withdrawal. There is also

water or air pressure at the bottom of sample, which is denoted by Ub. When the

force Fi + Ub is large enough to overcome the force Ut + W + Pt, the bottom of the

sample can be broken and the sample can be retrieved. Therefore, during sample

retrieving a large internal friction Fi is desired in order to retain the sample. This is in
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contrast to the requirement of a small internal friction during tube penetration. In

practice, the operator always leaves the tube in the ground for several minutes after

full penetration. This allows the sample to swell and in contact with the internal wall

of the sampler to increase the friction.

As a result, during the sample detachment, the periphery of the sample is

sheared in the reverse direction, and the bottom of the sample is subject to tension.

Both of them may cause fabric change of the sample.

3.3.2. Change of Mechanical Properties

The forces exerted by the tube on the soil also change its mechanical

properties. This section will focus on how the effective stress of the sample is

changed by tube penetration.

It is well known that Baligh's Ideal Sampling Approach offers insight to

understand the tube sampling process. With this approach, the strains of the sample

that are caused by tube penetration can be quantified. This is a major improvement

since it enables us to either simulate the effects of tube sampling in the laboratory or

by numerical methods given a suitable soil model. The changes in effective stress can

thus be obtained.

3.3.2.1. Ideal Sampling Approach

Due to the cutting of soil by the tip of the tube, and the friction caused by the

wall of the tube, the soil sample is subject to very complicated stress boundary
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conditions during the tube penetration. However, this problem can be considered as

axi-symmetric. The possible deformation can be caused by the tubed penetration are

shown in Figure 3.14:

r dr

(b)

r' dr'

(a) (c)

Figure 3.14 Possible Strains Caused by Tube Penetration

Figure 3.14 (a) shows the sketch of a soil sample. One element of it is taken

out to show the different strain components in Figure 3.14 (b) and (c). Figure 3.14 (b)

shows the original geometry of the element. When the tube penetrates the soil next

to the element, the shape of the element is distorted, which is shown in Figure 3.14

(c). Since this is an axi-symmetrical problem, there are four possible strain

components:

.dr -dr'
0 Radial strain r - dr

"dr
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rd9-r'dO r-r'
" Tangential strain 6e = -

rd9 r
1

* Shear strain 6,2 = -r
2

dz - dz'
" Vertical strain e =

"Z dz

With the Strain Path Method developed by Baligh (1985), the Ideal Sampling

Approach is able to quantify the strain field around the tip of the tube. In the

analysis of the ISA, the relative movement of soil to tube during tube penetration is

equivalent to a uniform incompressible, inviscid, irrotational fluid flow. Therefore,

the analysis is applicable to soft clay that is (Clayton et al, 1998):

* Saturated and undrained

* Homogeneous and isotropic

" With no shear strength

The geometry of the cutting edge of the sampler is modeled by a rounded tip, which

is called a Simple Sampler (S-sampler). The penetration of the sampler is modeled by

superimposing a single ring source on the soil flow.

For a sampler with external diameter (B) to wall thickness (t) ratio B/t = 40, the

strain field in the surrounding soil during tube penetration can be summarized as

shown in Figure 3.15, where the four strain components are shown:

(a) radial strain crr;

(b) tangential strain -oo;

(c) shear strain srz;

(d) vertical strain szz (or axial strain since the axis direction of the sampler is

vertical).
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(a) Radial Strain, C, (b) Tangential Strain. C.

Sarhple 10

(c) Meridional Shear Strain U fd) Vertical Strain, C,

Sarple

0 0-5%

1

Figure 3.15 Strain Patterns at the Tip of Sampler (Baligh, 1987)
(a) Radial Strain err (b) Tangential Strain See (c) Shear strain E, (d) Vertical (Axial) Strain EZ2

Clearly, large strains and strain gradients exist at the periphery of the sample.

In the central part, the magnitudes of strains are smaller, and the axial strain Czz is the

dominant strain component. For a soil element in the centerline of the sampler, the

change of szz during the tube penetration can be obtained based on Figure 3.15 and is

shown in Figure 3.16. When the tube is advancing toward the soil, the strain is

compressive until it reaches a maximum value (Ezz)max. When the cutting edge passes

the soil, the compression strain decreases to 0 and then extension strain develops.

The extension strain continues until the total strain reaches -(Szz)max. Finally when the

soil is inside the tube, a compressive strain brings the total strain back toward zero.

The final axial strain of the soil element depends on the length the soil element
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travels inside the tube. The magnitude of peak axial strain (Ezz)max is dependent on

the ratio of B/t, and indicates the intensity of disturbance.

B~2.0
B
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Figure 3.16 Strain History at Centerline of the Sampler (Baligh, 1985)

Baligh's Simple Sampler has a rounded tip which facilitates the analysis.

However, real samplers often have a sharp cutting edge to minimize disturbance.

Clayton et al. (1998) extended Baligh's solution and analyzed the variation of

centerline strain ,zz under different cutting edge geometry.

An illustration of a typical cutting edge is shown in Figure 3.17. The following

parameters are defined to describe its geometric properties:

R2 -R 2

" Area Ratio AR = -R 1
R12

" Inside Clearance Ratio ICR = R 2 - R
R r

" Inside Cutting-Edge Angle ICA = arctan 2HI
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* Outside Cutting-Edge Angle OCA = arctanr R 2

R

R 2

Figure 3.17 Tip Geometry of Real Tube Samplers (Clayton et al, 1998)

The research of Clayton et al. shows that the patterns of Fzz variation for

centerline soil element are roughly the same for different cutting edge geometries.

Axial strain Ezz always follows the compression - extension - compression strain

cycle, although the maximum strain may not be the same for compression and

extension. Varying the geometry of the cutting edge mainly changes the peak value

of gzz. The influence of different geometry parameters on peak axial strain is shown

in Figure 3.18. Please note that the Inside Cutting Angle is not shown in Figure 3.18

because the peak 6zz hardly changes with variation of ICA.
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Figure 3.18 Change of Peak Centerline Axial Strain with Geometric Parameters
(based on Clayton, 1998)

From the results shown in Figure 3.18, it can be concluded that to reduce the

disturbance, the sampler geometry should be carefully designed so that:

* Area Ratio is minimized, which means that the diameter of the sampler

should be large and its wall thickness should be small.

" Inside Clearance Ratio is reasonably small. According to Figure 3.18,

smaller ICR will always give a smaller disturbance. However, if no
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internal clearance is left, the sample may be subject to serious disturbance

because of internal friction. Therefore, ICR should be controlled so that

internal friction is effectively reduced while no excessive lateral swelling

of the sample occurs.

* The Outside Cutting Edge Angle should be minimized, which means the

cutting edge should be as sharp as possible.

3.3.2.2. From Strain to Stress

Uptill now, the results obtained with the ISA are the strain history of the

sample during tube penetration. To obtain the effective stress history of the sample

based on this strain history, two methods are possible.

The first method is to use a constitutive model to describe the behavior of the

soil being sampled. Based on the strain history predicted from the ISA, the effective

stress change in the sample can be obtained by the stress strain relationship of the

constitutive model. Hight (1993a) actually has achieved this based on a simple soil

model, which will be introduced in Section 5.

The other method is to simulate the strain history in the laboratory on an

actual soil specimen and measure the effective stresses. This section introduces how

to simulate the centerline strain history with triaxial tests and obtain the effective

stress history of the sample during tube penetration. The basic knowledge of triaxial

tests and the interpretation of its results have been introduced in Section 3.2.1.2. It

should be noted that since triaxial tests can only create axi-symmetrical stress state,
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they can only be used to simulate the disturbance of centerline soil elements.

0

B

;Z z

(a)

0

(b)

&zz

End of End ofStrain Deviatoric Intact State
Cycle Stress

Relief

P

(c)

Figure 3.19 Triaxial Simulation of Tube Disturbance
(a) Definition of Geometry Parameters; (b) Strain Cycle Predicted by ISA; (c) Measured

Effective Stress Path

Figure 3.19 shows the principles of simulating the centerline strain cycle with

triaxial tests. A simplified version of centerline strain cycle is shown in Figure 3.19

(b). This strain cycle is then imposed on the specimen to simulate the tube sampling

process as if the specimen were in the centerline of a tube sample. Different

severities of disturbance can be modeled by different magnitudes of the peak axial
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strain (8zz)max. After imposing this strain cycle, the specimen is supposed to be

disturbed by tube sampling according to the ISA. The effective stress of the soil

specimen subject to this "disturbance" can be measured to reveal the effective stress

path the specimen follows. The effective stress path of a normally consolidated soil

sample is shown in Figure 3.19 (c). Different stages of "disturbance" are clearly

marked on the graph. The effective stress path starts from its "Intact State", and ends

up at the "End of Strain Cycle".

Usually, a deviatoric stress relief is performed following the strain cycle to

simulate the deviatoric stress relief caused by sample extrusion, which brings the

effective stress path further to the End of Deviatoric Stress Relief. It must be noted

that performing the deviatoric stress relief after imposing the strain cycle may not be

very reasonable. The deviatoric stress relief aims at simulating the disturbance

caused by sample extrusion. However, between tube sampling and sample extrusion,

there is the transportation and storage period of the samples. During this period, the

effective stress may be changed by bumping and shanking in transportation, or by

pore pressure equalization in sample storage. Apparently, triaxial simulation does

not take these factors into consideration.

3.3.2.3. An Example of Simulation and Its Results

The triaxial simulation of tube sampling disturbance and deviatoric stress

relief has been performed at MIT on Resedimented Boston Blue Clay (RBBC) by

Santagata (Santagata, 1994). RBBC is an artificial soil produced in the laboratory.
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Since its condition of sedimentation and stress history can be well controlled, the

effective stress at its "intact state" or "in-situ state" can be obtained with relatively

small uncertainty. Part of the results of these simulations is presented here to show

the change of effective stress during the tube sampling process and the following

deviatoric stress relief.

It has been shown that the severity of disturbance by the centerline strain

cycle is determined by the magnitude of peak axial strain (Ezz)max. Therefore, (szz)max is

varied in these simulations to get different levels of disturbance. The simulation with

(6zz)max = N% is denoted "ISA±N" in the following discussion. Based on what has

been said, a larger N means more serious disturbance.

The effective stress paths of RBBC samples in the simulations are shown in

Figure 3.20. Figure 3.20 (a) shows the effective stress paths of normally consolidated

RBBC samples. Three different levels of disturbance, i.e. ISA±1, ISA±2 and ISA±5 are

simulated. Figure 3.20 (b) shows the effective stress paths for OCR = 4

over-consolidated RBBC samples. Only the ISA±1 and ISA±2 cases are shown. In

both plots, a'vc stands for the vertical effective stress of the "in-situ" stress state, i.e.

of Point 1. The values of p' and q plotted in Figure 3.20 are actually normalized by

a'vc.

75



b

rrr

cc
C)
-4

(12

S..

0

U)

C)
N

'-4
-4

S
'.4

0
z

0.4

0.3

0,2

0.1

0.0

-0.11

-0,2
0.

1.0

0.8

0.8

0,4

0.2

0.0

-0,2

I i I

0 1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Normalized Effective Stress, p'/ofl

(b) Effective Stress Paths for OCR = 4

Figure 3.20 Effective Stress Path to Simulate Disturbance (Santagata, 1994)

In both graphs, the effective stress paths from 1 to 4 simulate the tube

sampling strain cycle. 1-+2-+3 simulates the compressive strain when the cutting

edge is approaching the soil element. At Point 3, the compressive strain reaches its
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maximum (Ezz)max. 3-+4--+5 simulates the extension strain when the cutting edge

passes the soil element. At Point 5, the extension strain reaches -(Szz)max. 5->6

simulates the final compression when the soil element is inside the tube. The

effective stress path from 6 to 7 simulates the final stress relief due to sample

extrusion. Although Point 4 and Point 5 seem to be the same, this is not necessarily

so. The details of this problem will be discussed later in Section 5. The numbers are

only marked for the solid line for clarity. Equivalent points can be easily identified

on other stress paths.

It is clear that the mean effective stress in the sample is reduced for normally

consolidated (OCR = 1) RBBC samples. It is also shown that the reduction of mean

effective stress increases with the severity of disturbance. More detailed simulations

on normally consolidated RBBC have been performed, and the percentage loss of the

true mean effective stress Ap'm/p'mo is plotted in Figure 3.21 against the magnitude of

(6zz)max (shown as "strain cycle amplitude &c"). p'm is the true mean effective stress

which is defined by:

p'm = (c-'+ 2a'h)/3

and p'mo is the value of p'm at the "intact" stress state. Clearly, higher levels of

disturbance cause larger decrease of the true mean effective stress.
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Figure 3.21 Loss of Mean Effective Stress vs. Severity of Disturbance
(Santagata, 1994)

It can be concluded from Figure 3.20 (b) that the disturbance also cause the

mean effective stress to decrease for OCR = 4 RBBC samples. Comparing Figure 3.20

(a) with Figure 3.20 (b), it can be found that the same level of disturbance causes

smaller reduction of mean effective stress for OCR = 4 soil. This means that samples

with higher OCR values are less sensitive to disturbance in terms of effective stress

change. Actually, if the sample is very heavily over-consolidated, the effective stress

may even increase after the "disturbance".

3.4. Move the Sample to Ground Surface

3.4.1. Change of Mechanical Properties

It has been shown in Section 2.2.3 that when the sample is pulled out of the

borehole, the pressure acting on the sample is the mud pressure, which decreases

78



with the decreasing depth (Figure 3.22). A very simple analysis of the change of

effective stresses is presented below.
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Figure 3.22 Mud Pressure on Soil Sample

The pressurepmud shown in Figure 3.22 is the total pressure acting on the

sample. At the surface where the sample is in contact with the mud, the total stress

in the sample should be equal to the mud pressure. Therefore:

Pmud'-- CY I +U

based on the effective stress principle. As the sample rises in the borehole, pmud Will

decrease. Since the permeability of the soil is very small, no drainage will usually

occur during the pulling up of the sample. Thus the effective stress a-' will remain

constant. It follows that the pore pressure decreases with the mud pressure.

However, since the soil sample is actually confined by the tube sampler, its

stress state might be very complicated. The results of the above analysis can only be
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considered as indicating a trend. To accurately quantify the change of pore pressure

and effective stress of the sample, more rigorous analysis is necessary.

In addition, the mud temperature usually varies with depth. When the

sample is rising in the borehole, its temperature will be constantly changed by the

changing mud temperature. This also causes the effective stress and the pore

pressure of the sample to change.

3.4.2. Change of Composition

The composition of the sample is mainly changed by contact with the drilling

mud when the sample is retrieved. However, since the mud pressure on the sample

is decreasing, the amount of liquid exchange and mud penetration varies with the

depth of the sample.

It has been shown in Section 3.4.1 that the pore pressure of the sample is

reduced during the pulling up of the sample. Gas exsolution may occur during this

pore pressure decrease. The pore pressure at which gas exsolves depends on the

temperature, the type of gas and its solubility. For fine grained soils with very small

permeability, the exsolved gas is trapped inside the soil (Hight, 2001). Diffusion may

take place with time, so that the exsolved gas gathers in larger pores, forming gas

bubbles. Coarse grained soils usually have larger permeability. The exsolved gas is

drained directly from the soil into the drilling mud.
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3.5. Sample Transportation and Storage

3.5.1. Change of Composition Properties

After the samples have been retrieved, they must be transported to the

laboratory for testing. This subjects the samples to shaking and bumping. These

factors may act on the sample similarly to the drilling machine vibration. However,

since these disturbance sources are very difficult to quantify, no systematic studies

on transportation induced disturbance appear to have been conducted.

In case that the soil sample is not well sealed, the sample may be in contact

with air. As a result, the free water in the sample may evaporate, and the water

content of the sample will be decreased. The space that was originally taken by the

evaporated water will be taken by air instead. Negative pore pressure may be

generated by capillary effects at the interface of water and air. Depending on the

pore size of the sample, the effective stress of the sample can be smaller or larger

than the original effective stress. Therefore, the void ratio of the sample will be

changed. A more detailed description about the negative pore pressure will be given

later (Section 3.6.1.1).

A change in chemical composition of the sample may also occur. According to

Hvorslev (1949), in soils consisting primarily of quartz and similar relatively inert

minerals, the chemical changes which may occur consist mainly of deposition of

chemical compounds in the voids and the formation of a bond between the soil

grains. In soils containing clay minerals the principal change is a base exchange or
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an exchange of cations at the surface or corners of the crystal lattice of the minerals

with ions in the pore water. The corresponding changes in physical properties

depend on the types of ions which have been exchanged. Organic compounds in the

soil may be subject to both oxidation and base exchange. The contact with the

sampler may in special cases also cause chemical changes in the soil. The presence of

acids or bases in the soil or pore water may produce chemical reaction or electrolytic

action. Therefore, the containers and testing equipment should preferably be of

electrically inert materials or be made with only one kind of metal to avoid

electrolytic action.

During sample storage, the state of the sample may continue to be changed by

disturbance sources from borehole drilling, tube sampling, and moving the sample

to the ground surface. Although these sources are not acting on the sample any more,

the changing of state caused by them lasts for a long time. In Section 2.2, this has

been listed as the Time Effect.

The most significant time effect is probably caused by tube sampling. As

described earlier, tube sampling may disturb the sample in many ways. Based on the

analysis of the tube sampling process, the disturbance is not uniform. Across the

cross-section of the sample, disturbance is more serious at the periphery than at the

center since the periphery is subject to serious shearing by the internal friction. This

non-uniformity causes the state of the sample to continue changing even a long time

after the tube penetration. A segment of a sample is shown in Figure 3.23 to illustrate

how this non-uniformity of disturbance causes void ratio change and water
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redistribution during sample storage. In the in-situ state, the pore pressure and

water content of the soil element are uniform; they are denoted uo and wo. After tube

penetration the pore pressure at the periphery and at the center become up and uc

respectively, and the corresponding water contents become wp and wc. The

corresponding void ratios are denoted ep and ec.

Initial State Immediately after Tube Pore Pressure Equilibruim

U, W O\, W U I W C

w =w, w > wWC P WC >Wp

u < U u = u

Figure 3.23 Water Migration Due to Tube Disturbance (modified from Hight, 2001)

Since the sampling process is treated as an undrained process, the fabric

distortion does not immediately change the void ratio since the volume is constant.

Therefore wp = wc and ep = ec at the end of tube sampling. However, excessive pore

pressure will be generated by the excessive shearing of soil at the periphery.

For normally and slightly over-consolidated soil, pore pressure rises as a

result of excessive shearing, i.e. up increases after tube penetration. Since the center

part of the sample is disturbed to a smaller extent, up becomes larger than uc

immediately after tube sampling. During the storage of the samples, the

non-uniformity of the pore pressure will be equalized. The periphery consolidates
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since it has higher pore pressure. Water is squeezed out and the void ratio is

decreased. In contrast, the center swells since water migrates in, and the void ratio

increases. After equalization of pore pressures, one will find that wp < wc and ep < ec,

i.e. the water content and void ratio at the periphery decrease, while those of the

center increase for normally and slightly over-consolidated soil.

For heavily over-consolidated soil, shearing causes the pore pressure to

decrease because of dilatant behavior. Thus up is smaller than the original pore

pressure uo immediately after tube sampling. uc, the pore pressure at center, may be

larger or smaller than uo depending on the behavior of the soil. However, since the

disturbance is much smaller at the center, the difference between uc and uo should be

small. Therefore, it is reasonable to assume up < uc after tube penetration. This will

cause migration of water to the periphery and it can be expected that wp > wc and ep

> ec when pore pressure reaches equilibrium. Consequently, the water content and

void ratio at the center decrease, while those at the periphery increase for heavily

over-consolidated soils.

The water content distribution across the diameter of the tube has been

measured for normally and slightly over-consolidated soil and heavily

over-consolidated soil (Vaughan, 1993). The diameter of the measured tube samples

was 100mm, and the measured distributions of water content across the diameter are

shown in Figure 3.24. As has been discussed, the water content at the center is higher

than at the periphery for normally and slightly over-consolidated soils, and the

reverse is true for heavily over-consolidated soils.
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Figure 3.24 Measured Water Content Across the Diameter of Tube (Vaughan, 1993)

3.5.2. Change of Mechanical Properties

During transportation and storage of the samples, the temperature of the

samples is easily affected by the temperature of the environment, which in turn is

determined by the weather conditions. It is known that the temperature change of

the sample will cause the change of pore pressure and effective stress in the sample.

However, since the temperature of an area is a random variable, the stress changes

caused by the temperature change also involves great uncertainties.

If the sample is not properly sealed and it is in contact with air, negative pore

pressure can be generated at the boundary where the sample is in contact with air.

The effective stress of the sample can be changed by this negative pore pressure.

However, it is likely that the generation of negative pore pressure is only locally at
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this stage.

Based on Section 3.5.1, pore pressure equalization occurs during sample

storage as the time effect of tube sampling. The areas with higher pore pressure will

consolidate, causing the effective stress to increase. The areas with lower pore

pressure will swell, corresponding to the decrease of effective stress. For normally or

slightly over-consolidated soil, pore water redistribution causes the effective stress in

the center to decrease. For heavily over-consolidated soil, pore water redistribution

causes the effective stress in the center to increase. Given that the decrease of the

mean effective stress during tube penetration is smaller for high OCR soil (Figure

3.19) compared to normally and slightly over-consolidated soil, the final mean

effective stress may be higher than the in-situ mean effective stress.

3.6. Sample Preparation

3.6.1. Change of Mechanical Properties

3.6.1.1. Sample Extrusion

The first step of sample preparation is to extrude the sample out of the tube.

At this time, the total stress on the sample that is locked in the tube will be suddenly

relieved to the atmospheric pressure. Although the real process of how the stress is

changed to atmospheric pressure remains unclear, the total stress relief is usually

divided into two components: the deviatoric stress relief and the isotropic stress

relief.
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The deviatoric stress relief during extrusion is different from that caused by

borehole drilling, in that it is not started from the in-situ state. The effective stress in

the sample has already been changed by borehole drilling, tube sampling, sample

transportation and storage, and possibly other factors that are not yet known. Recall

that in the simulation of tube sampling on RBBC samples, deviatoric stress relief

caused by sample extrusion is also simulated for the centerline strain cycle. From the

effective stress paths the RBBC samples followed during the deviatoric stress relief

(Point 6->7 in Figure 3.20), it can be seen that the mean effective stress for all OCR =

1 and OCR = 4 samples decreases. Therefore, it may be reasonable to say that the

deviatoric stress relief during sample extrusion reduces the mean effective stress for

normally and slightly over-consolidated soil. However, the magnitude of reduction

is very small compared with the mean effective stress reduction caused by tube

penetration.

Upon removal of the isotropic stress component of a soil element, the state of

the sample will be determined by the balance of the swelling of the soil skeleton and

the negative pore pressure that the soil can sustain. On the one hand, elastic rebound

occurs due to the stress relief and the volume of the soil element tends to increase.

On the other hand, the compressibility of soil skeleton is generally larger than that of

water. The pore volume tends to get larger and the pore water tends to retreat into

the soil element. Since the sample is in direct contact with the atmosphere, water

menisci will form and negative pore pressure is generated. The negative pore

pressure keeps the water menisci from retreating into the soil and prevents the
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sample from swelling. The effective stress change during this process can be

analyzed below:

Suppose the atmospheric pressure is taken as 0, and the negative pore

pressure is -pw, then the total stresses on the sample are:

Oh = Gv = 0

According to effective stress principle, the effective stresses are:

G' h = 0' = pw

Therefore, the final effective stresses in the sample are the same as the negative pore

pressure that can be sustained.

Clearly, sustainable negative pore pressure varies with different kinds of soils.

Soils with smaller pore size can sustain larger negative pore pressure. The

relationship between the maximum sustainable negative pore pressure and the pore

diameter of soil is shown in Figure 3.25. Consequently, the effective stress changes

must be discussed for different soils.

500-

CL
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0
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Figure 3.25 Sustainable Soil Suction vs. Pore Diameter (modified from Hight, 2001)
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* Fully saturated clays and other fine-grained soils with a large content of

sheet mineral particles often have a great tendency to expand. On the

other hand, they have very small pore space, allowing large negative pore

pressures to be generated. Therefore, the effective stresses in the removed

sample can reach considerable magnitude, even approaching the mean

effective in-situ stress if the soil has not been subject to structural

disturbance.

" For coarse grained soil, the pore sizes are usually large enough so that the

sustainable negative pore pressure is very small. Therefore, the water

menisci are generally drawn into the soil and air is admitted to the outer

pores. Water may only be retained in the smallest pores of the sample,

and the effective stress produced by the negative pore pressure only

exists locally. As a result, the overall effective stresses in these soils will

usually decrease so that the soil grains may actually fall apart.

" The situation is more complicated in stratified soils, where fine grained

soils and coarse grained soils are interlayered (Figure 3.26). Upon stress

relief, the different soils sustain different negative pore pressures. The

negative pore pressure generated is much larger in fine grained soil than

in coarse grained soil. Due to this pore pressure imbalance, water

migrates from higher pressure in the coarse grained soil to lower

pressures in the fine grained soil. As a result, the effective stresses in both

the fine grained and the coarse grained soils decrease.
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3.6.1.2. Sample Trimming

Different sample trimming methods are applied in different tests. For triaxial

tests, the samples are cut with wire saw (Figure 3.27 (a)). Samples for oedometer

tests are prepared by a cutting ring (Figure 3.27 (b)). This cutting ring is forced into

the original tube sample much like the penetration of a smaller tube. Compared with

the wire saw preparation, the disturbance caused by the cutting ring is much larger.

(a) Wire saw (b) Cutting Ring

Figure 3.27 Tools Used for Sample Preparation

If the sample is trimmed by a wire saw the disturbance is usually small and

the effective stress change is not much. If it is cut by a ring cutter, then the

disturbance is larger. Based on the analogy between a cutting ring and a tube
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sampler, it may be reasonable to say that the cutting decreases effective stress for

normally consolidated samples, and may slightly decrease or even increase the

effective stress for heavily over-consolidated samples.

3.6.2. Change of Composition

It has been shown in Section 3.6.1 that for fine grained soil, the sustainable

negative pore pressure is very large, and the effective stress after stress relief can

even approach the mean effective in-situ stress. As a result, the swelling of the soil

skeleton due to stress relief should be very small. The change of void ratio and water

content is small too.

However, the existence of large negative pore pressure in fine grained soil

means that the pore pressure decreases due to stress relief. During the pore pressure

decrease, gas exsolution again can occur. In extreme cases the absolute pore water

pressure may become negative, i.e. tensile stress is generated in the pore water.

When this tensile stress exceeds the tensile strength of water, water cavitation may

occur. The theoretical value for the tensile strength of water is 500MPa. However,

due to the existence of dissolved gas and impurities, the tensile strength is usually

decreased. When the tensile stress exceeds the tensile strength, tensile failure may

occur in pore water and cavitation takes place.

For coarse grained soil, it has been shown in Section 3.6.1 that air will be

admitted and water can be drained. The remainder water will retreat to the smallest

pores. Since the sustainable negative pore pressure is very small, the sample is then
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free to expand. However, coarse grained soils usually have small tendency to

expand due to their low compressibility. Hence the change of void ratio is also small,

but the water content is decreased due to water drainage.

For stratified soils, it has been shown in Figure 3.26 that water will migrate

from coarse grained soil to fine grained soil. Since pore water is lost in the coarse

grained soil, air entry may occur. The void ratio and water content in fine grained

soil become larger due to water coming in.

If the sample is trimmed with a wire saw, the soil at the surface of the triaxial

sample will be smeared by the wire saw and the clay particles are reoriented. If a

cutting ring is used to cut the sample instead, the composition changes of the sample

may be similar to the changes caused by tube sampling. According to the description

in Section 3.3.1 and Section 3.5.1, these changes may include fabric change during

the cutting and the following void ratio change and water migration.

3.7. Summary

This section analyzed the mechanisms of the disturbance sources listed in

Section 2.2 in soil sampling. Generally, the descriptions in this section assume that

the soil being sampled is soft clay. The analysis of disturbance mechanisms is mainly

focused on how the void ratio, water content, fabric and effective stress are changed.

It can be seen that after sampling, the state of the sample has been changed in many

aspects from its in-situ state. This again shows that sample disturbance is an

important yet unavoidable problem.
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As has been said in Section 2.4, various simplifications have been introduced

in order to understand the disturbance mechanisms. Each disturbance source is

discussed separately, and the coupling of disturbance sources has not been

considered. Simplifications are also used to characterize the disturbance sources and

the soil behavior. For example, the ISA assumes the tip of the sample tube is rounded,

and the behavior of soil is equivalent to the behavior of ideal fluid. However, there

are still some disturbance sources whose mechanisms are not clearly understood,

such as the vibration of the drilling machine, the temperature change, etc. This is

either because the disturbance source is difficult to characterize, or because of the

difficulty of considering coupled behavior.

A very important result of this section is the effective stress change in a

centerline soil element during the sampling process. The effective stress changes in

different stage of sampling can be summarized in the following table:

Table 3.1 Effective Stress Change in a Centerline Soil Element

Mean Effective Stress Change
Stage of Sampling Normally and Slightly Heavily

Over-Consolidated Over-Consolidated
Borehole Drilling Decrease Increase Slightly

Tube Sampling Decrease Greatly Increase Slightly

Transportation & Storage Decrease Increase

Sample Extrusion (Deviatoric Stress Relief) Decrease Slightly Small Change

Sample Extrusion (Isotropic Stress Relief) Decrease Decrease

Sample Preparation Decrease

Resultant Effect Decrease Greatly -

From what is shown in the table, one can conclude that after disturbance, the

effective stress in normally and slightly over-consolidated soil will be reduced. For

heavily over-consolidated soil, no simple conclusions can be made.
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In our analysis, each sampling procedure has been analyzed separately, and

only the effective stress paths of stress relief and tube sampling are shown (see

Figure 3.7, Figure 3.8, and Figure 3.20). In order to show the whole story of effective

stress change, the hypothetical effective stress path presented by Ladd (2003) is also

shown here (Figure 3.28).

A h Ekivnt

1 -2 Drilling
2-3-4-5 Tube Sampling

5-6 Tube extraction

6-7 Trans. & storage

7-8 Sample extrusion
8-9 Soec. preparation

Kf Line

In Situ CKOUC

1In Situ K0
Lab UUC 3

0 s U Ch0 aps a'V0

p = (a'v + cr')/ 2

Figure 3.28 Hypothetical Effective Stress Path for a Centerline Soil Element
(Normally or Slightly Over-Consolidated) (Ladd et al., 2003)

The numbers on the effective stress path marks different sampling procedures.

Comparing Figure 3.28 with Table 3.1, it can be seen that the trends shown in Table

3.1 for normally and slightly over-consolidated samples are correct, i.e. all the

sampling procedures decrease the mean effective stress in the sample.

Based on the preliminary understanding of the disturbance mechanisms in

soil sampling, it is possible for us to judge which disturbance sources are important

and which are not. Then the significant disturbance sources can be used to

approximate the real disturbance problem.

94



Since the effective stress is probably the most important mechanical property

in a soil sample, it is chosen as the criterion to judge which disturbance sources are

important. For centerline soil elements, the effective stress changes at different stages

of sampling have been summarized in Table 3.1. Based on the discussion and

simulations presented in Section 3.3.2, the reduction of effective stress in normally

and slightly over-consolidated soil by tube sampling accounts for a major portion of

the total mean effective stress decrease. Therefore, the disturbance caused by tube

sampling can be considered to be a first approximation of the complex disturbance

problem in normally and slightly over-consolidated soil.
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4. Effects of Disturbance on Soil Behavior

The previous section analyzes the mechanisms of the disturbance sources

listed in Section 2.2. From the understanding of the disturbance mechanisms, one

can conclude that tube sampling is an important disturbance source for normally

and slightly over-consolidated soils.

Following the structure outlined in Section 2.4, this section will study the

effects of disturbance in soil sampling. Taking the research on Resedimented Boston

Blue Clay (RBBC) in MIT as an example (Santagata, 1994), this section shows how

these effects are obtained and how they affect the consolidation and shearing

behavior of RBBC samples. The whole research is based on the principles of the Ideal

Sampling Approach since only the tube sampling disturbance is considered.

4.1. Methodology

The research on RBBC at MIT was conducted by Santagata (Santagata, 1994)

based on the principles of Ideal Sampling Approach. According to the ISA principles

described in Section 3.3.2, the disturbance of tube sampling process (and the sample

extrusion) on centerline soil elements can be simulated by reproducing the centerline

strain cycle with triaxial tests. The simulation of tube sampling disturbance on RBBC

samples of this research has been described in Section 3.3.2.3.

In Santagata's research, the following steps are then followed to obtain the

effects of tube sampling disturbance (Santagata, 1994):
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1) A large RBBC soil cake is artificially made (Santagata, 1994). This soil cake

is made to be very uniform. Therefore, any triaxial specimens cut from

this soil cake are supposed to have the same initial state.

2) Standard triaxial specimens are cut from this soil cake and installed in the

standard triaxial cells following exactly the same procedures. When these

specimens are installed in the triaxial cells, their states should still be the

same, although probably not quite the same as their initial state.

3) These specimens are supposed to be centerline soil elements in a tube

sample, and the disturbance caused by tube penetration is simulated by

imposing the centerline strain history (Figure 3.16) on them. The details of

simulation process have been introduced in Section 3.3.2.3. For different

specimens, different peak axial strain (Czz)max is applied, so that these

specimens are subject to different disturbance severities.

4) Consolidation tests or shear tests are then performed on these disturbed

samples, again following the same procedure, to obtain their behavior.

Based on the procedures described above, it can be seen that (Fzz)max is

controlled to produce different disturbance severity. Everything else is the same for

all the specimens, including their initial state, the cutting and installing procedure,

the testing procedure, etc. Consequently, the only difference for these specimens is

that they have been subject to different severities of tube sampling disturbance.

Finally, the difference of their behavior can be solely attributed to the different
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severities of disturbance. Comparing the behaviors of these specimens, the trend of

behavior change with increasing (or decreasing) disturbance can be obtained.

In the research on RBBC, the one-dimensional consolidation tests and

undrained shear tests have been conducted on "disturbed" RBBC specimens. The

effects of disturbance on the consolidation behavior and shearing behavior of RBBC

specimens are summarized below.

4.2. Effects on Consolidation Behavior

The consolidation behavior of the soil can be obtained by one-dimensional

consolidation (or Ko consolidation introduced in Section 3.1) tests performed with a

triaxial cell. The consolidation stress G'v is increased step by step, and the height of

the sample after consolidation at each stress level is recorded. The results of an

one-dimensional consolidation test are usually presented by the compression curve,

which plots the change of the sample's void ratio e at each stress level (calculated

from the height of the sample) against the corresponding logarithm of compression

stress log(a'v) (see Figure 4.1 for example curves). If the soil sample is

over-consolidated, then the maximum consolidation stress it has been subject to is

usually denoted a'p, which is often called "pre-consolidation pressure". Before the

consolidation stress a'v reaches a'p, the sample is said to be in "recompression", and

the slope of the compression curve is usually small. When a'v exceeds a'p, the sample

is said to be in "compression" and the slope of the compression curve increases

dramatically.
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Figure 4.1 Effects of Disturbance on the Shape of Compression Curve

Disturbance usually changes the shape of the compression curve. Therefore,

all the consolidation parameters obtained from the one-dimensional compression

curve will be affected accordingly. The effects of disturbance on the shape of

compression curve obtained from Santagata's research are shown by comparing two

hypothetical curves of different sample quality in Figure 4.1. The solid curve

represents the behavior of a high quality sample, while the dashed curve a low

quality sample. For the consolidation of the low quality sample, unloading is

performed when the consolidation stress reaches a'A until the stress level decreases

to a'. G' then becomes the pre-consolidation pressure for the low quality sample.

When the consolidation stress is again increased from a's, the sample is in the
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recompression state before GA is reached. The recompression slope of the

compression curve in the unload-reload cycle may not be the same as the initial

recompression slope.

There are several parameters that are usually obtained by measuring the

geometry of the compression curve. They are very important for the engineers since

they are vital for settlement prediction. Therefore, the attention should be focused on

the effect of disturbance on them. The parameters shown in Figure 4.1 are:

1. The in-situ vertical stress &'vo;

2. When the samples are consolidated to G'vo, the corresponding void ratio

for the high quality sample is eo(1), for low quality sample is eo(2).

3. The pre-consolidation pressures for both curves are determined by

graphical construction methods (e.g. the Casagrande Method,

Schmertman Method, Strain Energy Method, etc.). They are marked in

Figure 4.1 with a'p(1) for the high quality sample, and G'p(2) for the low

quality sample.

4. The compression ratio Cc = de/d(loga'v) is the slope of the curve in

compression. Again Cc(1) is for high quality sample and Cc(2) is for low

quality sample.

5. The recompression ratio Cr = de/d(logu'v) is the slope of the curve in

recompression, with Cr(1) for high quality sample and Cr(2) for low

quality sample. For the low quality sample, the recompression slope

determined from the unload-reload cycle is denoted Cr'(2).
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The following conclusions are obtained from Santagata's research, which are

also shown in Figure 4.1.

" The transition between recompression and the compression becomes

more gradual with increasing disturbance, and the location of

pre-consolidation pressure becomes obscured. Usually the

pre-consolidation pressure measured from low quality sample (a'p(2)) is

smaller than that measured from high quality sample (a'p(l)).

" The initial recompression ratio tends to increase with disturbance, i.e.

Cr(2) > Cr(1). However, the recompression rate determined from

load-unload cycle is less affected, which means that Cr'(2) ~ Cr(1).

Therefore, a load-unload cycle should be included in the one-dimensional

compression test to get a meaningful Cr value.

" When the consolidation stress is brought back to the in-situ vertical stress,

the void ratio is smaller for the low quality sample, i.e. eo(2) < eo(1).

" Usually the rate of compression Cc will be reduced by larger disturbance,

so Cc(2) < Cc(1).

4.3. Effects on Shear Behavior

Many aspects of the shear behavior of soil are affected by disturbance. In this

section, these effects will be presented based on the results of laboratory tests

performed on Resedimented Boston Blue Clay at MIT. After being "disturbed" in the

triaxial apparatus, these samples are subject to undrained shearing following the
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steps outlined in Section 4.1. The following description compares the shear behavior

of the specimens subject to different severities of disturbance.

4.3.1. Effect on Undrained Shear Strength

It has already been shown that the disturbance of tube sampling can be

simulated by triaxial tests based on the principles of Ideal Sampling Approach, and

the severity of disturbance is determined by the magnitude of (Ezz)max. Figure 4.2

shows the stress-strain curves of these samples for OCR = 1 and OCR = 4 specimens.

ISA±N means that the sample is "disturbed" based on the ISA and the magnitude of

(Czz)max is N%. The larger N is, the higher the disturbance severity. One can see that

more disturbed samples have smaller strength.

4.3.2. Effects on Strain at Peak

Figure 4.2 also shows the effect of disturbance on the strain at peak stress. The

strain at peak stress increases with increasing disturbance, both for normally and

over-consolidated RBBC samples. For intact normally consolidated RBBC sample,

the strain at peak stress is about 2%. After the disturbance of ISA±5, the strain at

peak stress becomes 12 - 14%, which is a great increase.

This means that after disturbance, the soil becomes less brittle and more

ductile.
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Figure 4.2 Stress Strain Curves for Disturbed RBBC Samples (Santagata, 1994)

4.3.3. Effects on Soil Stiffness

Due to the very high non-linearity of soil, the stiffness of soil changes

significantly during the shearing process. At very small strain levels, soil may have a

linear stress strain relationship and its stiffness has the maximum value. The

stiffness decreases with the increase of strain level and becomes 0 at the peak stress.

To compare the stiffness of disturbed samples, Eu5o is taken to be a representative

average value. It is defined as the undrained modulus at 50% peak stress.
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For normally consolidated samples, the ratio of Eu5o of disturbed samples

((Euo)Dist.) to that of intact samples ((Eu5o)Intact) is plotted against the peak axial strain

(8zz)max (shown as "Strain Cycle Amplitude 6c") in Figure 4.3 (a). Note that since the

scale for (Eu5o)Dist./(Eu5o)Intact is logarithmic, even very small disturbance has a very

severe effect.
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Figure 4.3 Effects of Disturbance on Eu 50 (Santagata, 1994)
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Figure 4.3 (b) shows the change of Eu5o vs. disturbance for different OCR

values. This time, Eu5o is normalized to the vertical effective stress of the "in-situ"

stress state, a'vc. For a certain peak axial strain (again shown as strain cycle

amplitude sc), the tendency is that the Eu5o/a'vc value for OCR = 1 RBBC is always the

smallest, and that for OCR = 2 is the second smallest. The Eu50/a'vc values for OCR = 4

and OCR = 8 RBBC almost coincide with each other and are the largest. Therefore, it

can be concluded that increasing disturbance causes the Eu5o to decrease, and the

rate of decrease is smaller for higher OCR soils.

Based on these different effects that disturbance exerts on soil samples, it can

be concluded that the more disturbed soil becomes softer and more ductile. Strain

softening behavior following peak stress gradually disappears with increasing

disturbance. It is also worth pointing out that since ISA only covers the disturbance

caused by tube sampling and subsequent stress relief, the real effects of disturbance

are still larger.

4.4. Evaluation of Disturbance Severity

It has been shown that sampling disturbance has many effects on the

behavior of the samples. According to what has been said about the effects of

disturbance, the following methods can be used to evaluate the severity of the

disturbance.
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4.4.1. Visual Examination

Section 3.3.1 shows the possible fabric distortion that sampling disturbance

may cause on sample. Therefore, the first step of identifying sampling disturbance

and its severity is to examine the extruded sample carefully and see whether there is

detectable fabric distortion. Sometimes the distortion is hard to detect when the

sample is wet. Slices of the sample can be taken and air dried. Usually the fabric is

revealed when the slice is half dried.

4.4.2. Radiography

Radiography has been used in MIT for more than 20 years to evaluate the

quality of soil samples. As a non-destructive method, radiography allows one to

evaluate the quality of sample without cutting the tube and extruding the sample. In

addition, it can also capture features that cannot be detected by simple visual

examination.

4.4.3. Initial Effective Stress Measurement

It has been shown that the more severe the disturbance is, the greater the

effective stress loss for normally or slightly over-consolidated soil (Figure 3.20 (a)).

Hence, the initial effective stress in the sample could be measured and compared

with its in-situ effective stress, to judge the severity of disturbance.
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4.4.4. Volumetric Strain at In-situ Stress

When the disturbed sample is brought back to its in-situ stress state, the void

ratio is usually smaller than that of the in-situ value (Section 4.2). This means that

volumetric strain has been generated. Consequently, the magnitude of this

volumetric strain is also an indication of the severity of disturbance. In other words,

the void ratio for low quality samples brought back to in-situ stress state is smaller

than that of high quality samples, larger volumetric strain will indicate a more

severe disturbance.

4.4.5. Compression and Shear Behavior

In general, a straight or slightly concave virgin compression curve and a fairly

sharp transition between this curve and the initial recompression curve with a good

definition of the preconsolidation pressure will usually indicate that the sample has

not been subjected to appreciable disturbance.

For the shearing behavior, Hvorslev (1949) suggested that when the

stress-strain curve is straight until the stress reaches 30 to 50 percent of the shear

strength, it will usually indicate that the sample is not seriously disturbed. While a

stress-strain curve which is curved from the start and which falls close to the curve

for remolded soil usually indicates serious disturbance.

4.5. Summary

In this section, the effects of disturbance on the behavior of the samples were
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studied. To simplify the disturbance problem, only the disturbance caused by tube

sampling is considered by using the ISA principles. Examples were shown on how

tube sampling disturbance changes the consolidation and shearing behavior of soil.

Based on these studies, possible ways of evaluating the disturbance severity are

proposed. Although the research presented in this section is simplified compared

with the real situation where all the disturbance sources are present, it offers a first

approximation and the methodology used may be also applicable to other materials

like rock or shale.

In order to study the effects of disturbance, it is necessary to focus on specific

disturbance sources which can be controlled to get different disturbance severity.

The disturbances caused by the controlled sources are then simulated on samples

whose internal states are identical, so that the difference between the disturbed

states of these samples can be solely attributed to the difference of disturbance

severity. Then laboratory tests with the same procedure can be performed on these

samples to get their disturbed behavior. The differences of their disturbed behavior

can also be solely attributed to the difference of disturbance severity.

In this section, the behavior of the disturbed specimens is obtained through

different soil tests. As an alternative, their behavior can also be predicted by a

behavioral model. The next section will show how one can obtain the effective stress

paths and predict the disturbed behavior of the specimens based on a simple soil

model.
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5. Study Disturbance Problem in Soil with a

Simple Soil Model

The simulation of tube sampling disturbance on RBBC specimens was

described in Section 3.3.2.3. The effective stress path during the simulation of

disturbance and the consequent effects on consolidation and shearing behavior were

presented in Section 3.3.2.3, 4.2 and 4.3. All these results come from laboratory

measurements. Based on the principles of ISA, the mechanism and effects of tube

sampling disturbance can also be predicted by a soil model, which will be described

here.

This section first introduces a simple behavioral framework of soil which was

proposed by Hight (1993). "Imaginary tests" are then conducted whose outcomes

are predicted based on this framework. The steps for an "imaginary test" are as

following:

1) Imagine there is a sample whose initial state is known.

2) The centerline strain cycle (Figure 3.16) is imposed on this sample to

simulate tube sampling disturbance. The effective stress path that the

sample follows can be predicted by the behavioral framework. After

imposing the centerline strain cycle, the sample is in its disturbed state,

which is also known based on the framework.

3) The behavior of the sample in one-dimensional consolidation and

shearing test can then be predicted by the framework based on the
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disturbed state of the sample and its stress history.

Changing the magnitude of (Czz)max of the centerline strain cycle in step 2), the

effective stress paths and the behavior for samples with different disturbance

severity can be obtained.

In this framework, the behavior of soil is governed by several surfaces in the

triaxial stress space, namely the bounding surface and the yield surfaces.

5.1.Bounding Surface and Yield Surface

The bounding surface is the boundary of possible stress states of soft soil in

undrained condition. The effective stress paths of the soil during undrained shearing

cannot reach the area outside of the bounding surface. In this section, the bounding

surface is defined in the normalized p' - q space (Figure 5.1). Both p' and q are

normalized to a reference stress a'ap, which is the maximum vertical effective stress a

point on the bounding surface could have. According to what has been said about

the p' - q stress space, the corresponding axial (or vertical) effective stress G'a of a

point can be obtained by drawing a line with the slope of -1 from that point, and

getting its intersection with the p' axis (Figure 3.6). Specifically, &'ap can be obtained

by drawing a line with slope -1 that is tangential to BS and taking its intersection

with p' axis (Figure 5.1). After normalization, a'ap becomes 1.0.

As shown in Figure 5.1, the bounding surface is composed of three parts: a

very curved cap, which is convex to the top right direction; and the upper and lower

boundary that are relatively close to straight.
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Figure 5.1 Effect of Soil Plasticity on Bounding surface

For reconstituted soils, the bounding surface can be defined using the

effective stress paths from undrained triaxial compression and extension tests on Ko

normally consolidated soil. The bounding surface of reconstituted soil, which is

called the intrinsic bounding surface, is a lower bound for the intact natural soil. The

reason is that many post-depositional processes such as aging increase the strength

of natural soil and expand the bounding surface. The process of sampling

disturbance acts in the opposite direction, i.e. the structure of the soil is destroyed

and the size of the bounding surface is reduced.

The position of the bounding surface is greatly affected by the plasticity of the

soil. This is also illustrated in Figure 5.1. Compared with high plasticity soil, the

bounding surface of low plasticity soil is higher but much narrower, i.e. the distance

between the lower and upper boundary is much smaller. The lower boundary of the

bounding surface swings more to the origin of the stress space.
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Figure 5.2 Yield Surfaces and Bounding Surface of the Framework (Hight, 1993)

In addition to the bounding surface, yielding surfaces are another important

component of the behavioral model. The yield surfaces defined here are not exactly

the same as the yield surfaces defined in the mechanics of plasticity. Instead of only

one yield surface, three different yield surfaces are defined. They are shown in

Figure 5.2 as Y1, Y2 and Y3.

Y1 and Y2 are two kinematic yield surfaces that follow the current stress state

of the soil. Y1 marks the boundary to linear elastic behavior, and Y2 is the boundary

to non-linear elastic behavior. Stress-strain behavior within Y1 is linear and

reversible. Once the effective stress exceeds Y1 but not Y2, the behavior becomes

non-linear but still reversible. Due to very high non-linearity and plasticity of soil,

the sizes of both Y1 and Y2 are very small.

Y3 is the large scale yield surface (Jardine et al., 1991) that marks large scale

fabric distortion. Y3 is located inside the bounding surface and its shape is very
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similar to that of the bounding surface. It can be seen from Figure 5.2 that the cap of

Y3 is very close to the cap of the bounding surface. The upper and lower boundaries

of Y3 are at a certain distance inside the bounding surface but nearly parallel to

those of the bounding surface.

The critical state line is also shown in Figure 5.2 (the straight line marked #'cv).

After extreme shearing, most soil samples will reach their critical state and their

effective stress paths finally end up on this line. 4'cv stands for the friction angle of a

soil sample in its critical state.
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Figure 5.3 Typical Effective Stress Path for NC and Heavily OC Soil in Undrained Shear

Figure 5.3 illustrates the typical effective stress paths of normally

consolidated soil and heavily over-consolidated soil with regard to the position of

the Y3 surface and the bounding surface. Shearing is performed by increasing the

vertical stress. As a result, the deviatoric stress q is increased and the stress paths

shown in Figure 5.3 go upward from their starting points.
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Normally consolidated soil have only experienced loading, therefore its

in-situ stress state is located near the cap of the bounding surface, marked by Point A

in Figure 5.3. During undrained shearing, the effective stress path first reaches the

bounding surface at Al. Since it cannot exceed the bounding surface, it goes along it

and finally reaches the critical failure envelope at Point A2. The cap of the Y3 surface

and the bounding surface are very close to each other. Thus the point at which the

effective stress path crosses the Y3 surface is very close to Point Ai.

For heavily over-consolidated clay, unloading has occured along the Ko

swelling line. The in-situ state has retreated so much that it is located between the

upper and lower boundary at Point B. During undrained triaxial compression, the

effective stress path first reaches Point B1 where it crosses Y3 surface. Since it cannot

exceed the bounding surface, it then changes its direction and proceeds between Y3

and the bounding surface, until finally reaches the critical state line at B2.

For both normally consolidated soil and heavily over-consolidated soil, the

direction of the effective stress changes significantly after reaching Y3 surface.

5.2. Strain Limits for Different Surfaces

The strains that need to be mobilized in order for the effective stress path to

reach different surfaces are quite different.

Y1 marks the boundary of linear elastic behavior. For normally consolidated

soil, the strain limit for Y1 surface is very small. Hight (1993) proposed that in

compression tests, cYl< 0.001% for uncemented soil and gyi < 0.01% for cemented soil.

116



Y2 is the limit for non-linear elastic behavior. According to Jardine et al. (1991), EY2

tends to increase with soil plasticity but generally is less than 0.04% for clays.

For normally consolidated soil, the strain that needs to be mobilized to reach

the bounding surface Ebs is similar to the axial strain at peak deviatoric stress (Hight,

1993), which is denoted Cap. The measurements of Cap for some clays with different PI

and OCR are presented in Figure 5.4.

10;
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Figure 5.4 Strain at Peak Stress in Triaxial Compression Tests (Hight, 1993)

It is clear that Cap (thus Ebs) increases with plasticity and OCR of the soils. For

most of the soils presented in Figure 5.4, Cap is less than 1% when the soil is normally

and slightly over-consolidated (OCR < 4). Therefore, it is reasonable to take 1% as the

strain limit Ebs for normally and slightly over-consolidated soils.

For heavily over-consolidated soil, usually the effective stress path intersects

the Y3 surface and then goes between the Y3 surface and the bounding surface
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(Figure 5.3). Hight (1993) proposed that for heavily over-consolidated soil, EY3 is

roughly between 0.7% and 1%.

Generally, very large strains must be mobilized for the effective stress path to

finally reach the critical state line (Point A2 and B2).

5.3. Predict Effective Stress Path during Tube Sampling

With the framework introduced above, the effective stress path that a

centerline soil element follows during the tube sampling process can be predicted.

Suppose a soil element is located at the centerline of a tube when the tube

sampling process starts. In Section 3.3.2.1, the strain history that this centerline soil

element is going to experience has been introduced (Figure 3.16). Basically, it is a

compression - extension - compression strain cycle, with the peak value of (Ezz)max in

compression and -(Ezz)max in extension. The tube sampling process can be simulated

by imposing this strain cycle on the centerline soil element. Based on the framework

introduced in Sections 5.1 and 5.2, the response of this soil element when the strain

cycle is imposed can be predicted, and the effective stress path it follows can be

obtained.

In Section 3.3.2.3, the triaxial simulation of the centerline strain cycle on RBBC

samples have been presented. The measured effective stress paths for RBBC samples

of OCR =1 and OCR = 4 have been shown in Figure 3.20. The measured effective

stress paths can be compared with the predicted ones for verification:
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5.3.1. Predicted Effective Stress Path (NC Soil)

Figure 5.5 shows the predicted effective stress path of a centerline soil element

that is normally or slightly over consolidated. Different strain levels are marked

along the effective stress paths by numbers.

0.4-

0s2

Figure 5.5 Predicted Effective Stress Path for NC and Slightly OC Soil (Hight, 1993)

The in-situ state of the sample is marked as Point 1. Denote the horizontal and

vertical effective stress at this in-situ state to be a'vo and 0'ho. For normally and

slightly over-consolidated soil, &'vO is generally larger than c'ho.

When the tube starts to penetrate, compressive strain is first imposed on the

centerline soil element. To generate this compression, the vertical effective stress 0'v

on the sample must be increased. From Figure 5.4, the strain limit of the bounding

surface Cbs for normally and slightly over-consolidated soil is less than 1%. However,

from Figure 3.16, the peak axial strain (Ezz)max caused by tube penetration is roughly

1% for the B/t = 40 sampler. Given that the strain value in Figure 3.16 is only a lower
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bound for real cases, it is reasonable to assume that in most cases (Czz)max > 6bs.

Therefore, the compression strain caused by tube sampling is large enough to bring

the effective stress path to the bounding surface at Point 2. Then the effective stress

path can only go along the bounding surface but cannot go outside of it. The

effective stress goes along the bounding surface until it reaches Point 3, where the

imposed strain reaches (Ezz)max.

Following compression, extension strain increments are imposed by the tube

sampling process. To generate this extension, the vertical effective stress a', must be

decreased. Due to the strong non-linearity of the soil, a major part of the

compressive strain (Fzz)max may be plastic strain. When &'v is brought back to G'vo, the

plastic strain cannot be recovered and the total strain of the sample is still in

compression. However, the extension caused by tube penetration not only brings the

total strain of the sample back to zero, but also brings it to -(Ezz)max. Therefore, y'v

must decrease strongly, and it is possible that G'h will have to increase substantially.

As a result, the deviatoric stress q = (C'v - 'h)/2 will decrease and even become

negative. The mean effective stress p' = (C'v + G'h)/ 2 should also decrease since the

decrease of a'v is greater compared to the increase of cT'h. The effective stress path

thus moves down to within the bounding surface and to the left side.

During this extension, the soil specimen may or may not reach the lower

bounding surface. This is determined by whether the magnitude of maximum

extension strain -(zz)max is large enough to bring the effective stress to the lower

boundary of the bounding surface. Suppose the effective stress path reaches the
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bounding surface at Point 4 before the imposed extension strain reaches -(Ezz)max,

then it will still go along the bounding surface until the imposed strain reaches

-(zz)max at Point 5.

Finally, a compression strain is imposed on the specimen, which means the

vertical effective stress is again increased. The effective stress path goes up again and

back to the inside of the bounding surface. At the end of this strain cycle, the stress

state of the soil element ends at Point 6.

The prediction of this simple framework (Figure 5.5) can be compared with

the effective stress path obtained from triaxial tests for normally consolidated RBBC

(Figure 3.20 (a)):
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Figure 5.6 Comparison between Effective Stress Paths in Figure 3.20(a) and Figure 5.5

The effective stress path in the simulation and the predicted effective stress path are

quite similar at corresponding strain levels. Two differences can be identified

though:

1) In Figure 3.20(a), a segment of the effective stress path that goes along the

lower boundary of the bounding surface (Point 4->5 in Figure 5.5) cannot

be identified. It is reasonable to say that the effective stress path of
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normally consolidated RBBC in the simulation does not reach the

bounding surface in extension. Therefore, Point 4 and Point 5 end up

being the same point, as shown in Figure 3.20(a).

2) The predictions of the effective stress path do not include the final relief

of deviatoric stress, which is shown in Figure 3.20(a) from Point 6 to Point

7.

5.3.1.1. Effects of Soil Plasticity

Suppose there are three centerline soil elements that are all normally

consolidated but with different plasticity, non-plastic, low plastic and medium to

highly plastic. The behavior framework can be used to predict the effective stress

these soil elements follow when identical centerline strain cycles are imposed. Figure

5.7 shows the predicted effective stress paths. The bounding surfaces for these soil

elements are shown by dashed lines. Based on the analysis in Section 5.3.1, Points AN,

AL, and AM mark the position on the effective stress paths where the compression

strain reaches (szz)max; Points BN, BL, and Bm mark the position on the effective stress

paths where the extension strain reaches -(zz)max.
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Figure 5.7 Effects of Soil Plasticity on Effective Stress Path (Hight, 1993)

The effects of soil plasticity on the behavior of soil can be explained below:

1. In Figure 5.1, it has been shown that the shape and location of the bounding

surface is changed by soil plasticity. The bounding surface for low plasticity soil is

higher and the lower boundary swings more to the origin of the stress space. The

bounding surfaces shown in Figure 5.7 are constructed based on this conclusion.

2. The strain limit of the bounding surface 6bs for low plasticity soil is much

smaller than that of high plasticity soil (Figure 5.4). Since (Czz)max is the same for the

three centerline soil elements, the effective stress path of a soil element with low

plasticity is more likely to be brought to the bounding surface (Point 2 in Figure 5.5)

and travels longer (from Point 2 to Point 3 in Figure 5.5) on the bounding surface.

This explains why the effective stress path for the non-plastic soil element travels the

longest before reaching Point AN (corresponding to Point 3 in Figure 5.5), and that of

the medium-high plasticity soil element travels the shortest to reach AM.

3. Compared with high plasticity soil, low plasticity soil is usually less
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compressible. Therefore, to cause the same amount of volumetric strain svoi, the

change of mean effective stress is much larger for low plasticity soil than for high

plasticity soil. For a centerline soil element, the vertical strain 6,, is dominant

compared with the horizontal strain Err as shown in Figure 3.15. Since the volumetric

strain can be expressed by:

Evol =zz + 2 Err

Thus:

Ezz ~ Evol

As a result, if the vertical strain szz is changed by the same amount for both high

plasticity soil and low plasticity soil, the change of mean effective stress must be

larger for low plasticity soil than for high plasticity soil.

In Figure 5.7, the vertical strain changes from AN to BN, from AL to BL, and

from Am to BM are all the same, because in all cases the strain changes from (Ezz)max to

-(Ezz)max. Therefore, the mean effective stress change is the largest for the non-plastic

soil element, and the smallest for the medium-high plasticity soil element. This

explains why the slope from AN to BN is the smallest, while the slope from Am to BM

is the largest.

From Figure 5.7, it is evident that for the same disturbance severity, low

plasticity soil will have much larger decrease of mean effective stress than high

plasticity soil.
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5.3.1.2. Effects of Different Disturbance Severity

Other parameters being constant, changing disturbance severity also changes

the effective stress path that the centerline soil element follows during tube sampling.

This can also be predicted by the behavior framework.

Suppose there are three centerline soil elements which are originally identical.

They are subject to the centerline strain cycle to simulate the disturbance of tube

sampling. Since the tube sampling process is simulated by the centerline strain cycle,

more disturbance means larger (Fzz)max. The element disturbed with the least (Fzz)max

simulates the behavior of a high quality sample. Increasing (Czz)max, the behavior of a

medium quality and a low quality sample can be simulated. In the following

discussion, we will call these element low quality element, medium quality element

and high quality element for simplicity. Figure 5.8 shows the predicted effective

stress paths during the simulation of low, medium, and high quality samples.

0,4 - Increasing

Initial
0.2- State
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Figure 5.8 Effects of Severity of Disturbance (Hight, 1993)
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Since the three elements originally are identical, they have the same bounding

surface, yielding surfaces and the in-situ stress state (starting point of their effective

stress paths). Increasing (Ezz)max increases the length the effective stress path travels

on the bounding surface. As a result, the effective stress path of the low quality

element travels the longest along the bounding surface, and is the left most among

the three samples, while the effective stress path of the high quality element is the

right most.

Since the three specimens are originally identical, they should have the same

compressibility. Therefore, the effective stress paths are roughly parallel when the

strain is changed from (Szz)max to -(Fzz)max. Since the effective stress path of the low

quality sample is the left most, the intersection of it with the lower boundary of the

bounding surface is still the left most. The intersection for the high quality sample is

still the right most. After imposing the final compression strain, the relative positions

of their effective stress paths remain unchanged.

For the soil elements that are originally at identical state, it is clear from

Figure 5.8 that more severe disturbance causes larger mean effective stress loss.

5.3.2. Predicted Effective Stress Path (Heavily OC Soil)

The predicted effective stress path for heavily over-consolidated soil is shown

in Figure 5.9. When the centerline soil element is heavily over-consolidated, its Ko

value may become larger than one, i.e. a'vO < C'hO. Thus the in-situ state shown in

Figure 5.9 is below the p'-axis. Again a compression - extension - compression strain
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cycle is imposed on this soil element. Its effective stress path is predicted based on

the framework.

S.0.4

0.2
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Figure 5.9 Predicted Effective Stress Path for Heavily OC Soil (Hight, 1993)

It has been shown in Figure 5.3 that typically, the effective stress path of

heavily over-consolidated clay crosses Y3 and then proceeds between Y3 and the

bounding surface. Since EY3 is usually between 0.7% and 1.0%, it is also surpassed by

the maximum compressive strain (Fzz)max, which is around 1.0%. Therefore, the

compression strain (Fzz)max caused by tube sampling is large enough to bring the

effective stress path of heavily over-consolidated soil to the Y3 surface (Point 2 in

Figure 5.9). After reaching Point 2, the effective stress path travels between Y3 and

the bounding surface until Point 3, where (Fzz)max is reached.

When extension strain is imposed from Point 3, the effective stress path may

or may not reach Y3 surface on the lower side. Again it depends on if -(Szz)max is large

enough to bring the effective stress path to the lower side of Y3. If it reaches Y3 at

Point 4 before the extension strain reaches -(Szz)max, as shown in Figure 5.9, it will
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travel between Y3 and the bounding surface until the extension strain is -(Ezz)max

(Point 5). The final compressive strain will bring the effective stress back to Point 6.

It can be seen from Figure 5.9 that the mean effective stress in the soil

specimen may increase after tube penetration. This is entirely possible although in

the test on OCR = 4 RBBC (Figure 3.20(b)) the mean effective stress decreases.

However, both Figure 3.20(b) and Figure 5.9 show that the effective stress change of

heavily over-consolidated soil after tube penetration is much smaller than the

change for normally and slightly over-consolidated soil.

5.4. Prediction of Disturbance Effects on Mechanical

Behavior

The simple framework of soil behavior can explain not only the effective

stress path during tube sampling, but also some of the disturbance effects on the

mechanical behavior of disturbed sample. This section describes the predictions the

simple model can make regarding the effects of tube sampling disturbance on

normally consolidated samples. The effects of tube sampling disturbance on the

shearing behavior and consolidation behavior of RBBC samples have been studied

by simulating the disturbance with triaxial tests (Section 4.3). The major effects for

shear behavior are:

* Disturbance decreases the shear strength;

" Disturbance increases the strain at peak stress;

" Disturbance decreases the stiffness of the samples.
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The major effects on consolidation behavior are:

* The pre-consolidation pressure measured on the low quality sample is

smaller than that measured on the high quality sample;

* The initial recompression ratio tends to increase with disturbance;

* When the consolidation stress is brought back to the in-situ vertical stress,

the void ratio is smaller for the low quality sample.

* Usually the rate of compression Cc will be reduced by larger disturbance.

These conclusions will be used in this section to check whether the predictions are

correct. However, it should be noted that since the simple behavior model does not

describe anything about stress strain relationships, its ability of predicting

disturbance effects is limited. Although stress-strain curves are also shown in the

following description, they are only provided since they were also in the graphs of

the original papers. They actually cannot be predicted from the behavior model.

5.4.1. Shearing Behavior

The shearing behavior for samples subject to different levels of disturbance

can be roughly outlined with the framework, as illustrated in Figure 5.10.
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Figure 5.10 Shearing Behavior Predicted by the Framework (Hight, 1993)

In Figure 5.10, the bounding surface, effective stress path, and the stress

strain curve for the in-situ behavior are shown with solid lines. The dashed lines

represent those of a high quality sample, and the dash-dot lines represent those of a

poor quality sample.

Since the bounding surface shrinks with disturbance severity, the in-situ

bounding surface is the largest, and the bounding surface of the poor quality sample

is the smallest, as shown in Figure 5.10 (a).

Point I Figure 5.10 (a) represents the in-situ stress state, while Point H and

Point P stand for the initial stress state of the high quality sample and the poor

quality sample respectively. The initial stress state of the in-situ state is Ko

consolidated and Ko < 1. Therefore it is located above p'-axis. For the disturbed

samples, since the deviatoric stress has been relieved, their initial stress states are

located on the p'-axis. Based on what has been said on the effective stress change
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during sampling in Section 5.3.1.2, poor quality samples have lower initial mean

effective stress than high quality samples. Hence both Point P and Point H are

located on the p' axis but Point P is to the left of Point H.

If shearing is performed by increasing the axial stress, then the deviatoric

stress q is increased and the stress paths go upward and reach their corresponding

bounding surfaces. Since the intact soil element has the largest bounding surface, the

point at which its effective stress path reaches the bounding surface is the highest.

Similarly, this point is the lowest for the poor quality sample, and intermediate for

the high quality sample. Therefore, the framework correctly predicts the decrease of

strength with increasing severity of disturbance.

The possible stress-strain curves for the three cases are shown in Figure 5.10

(b). As has been said, they are not predictions of the behavior model.

Shearing can also be performed by reducing the vertical stress. In this case,

the deviatoric stress q will be reduced and the effective stress paths are heading

downward. Figure 5.10 also shows the effective stress paths and the corresponding

stress-strain relationships for such shearing.

5.4.2. Shearing after Consolidation

Before shearing is performed, the samples are sometimes consolidated to their

in-situ stress. Suppose both the high quality sample and the poor quality sample are

brought back to the Ko state before shearing, then all three cases share the same

initial stress state (Point I in Figure 5.11 (a)). Again, the solid lines show the in-situ
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behavior; the dashed lines are for a high quality sample; and the dash-dot lines are

for a poor quality sample.

0

In situ

Tube samples: - - - High quality --- Poor quality

--

0

ci~i~-
ea

(a) Bounding Surfaces and Effective Stress Paths (b) Stress Strain Curves

Figure 5.11 Shearing Behavior after Consolidation to In-situ Stress (Hight, 1993)

Again we can see that the strengths of these three cases are determined by the

size of the bounding surface. The intact soil element still has the highest strength,

and the poor quality sample still has the lowest one. However, since the initial stress

states of the samples are the same as the intact soil element, the differences between

these strengths are reduced. Thus this framework predicts that by bringing the

sample's stress state back to its in-situ stress state the detrimental effect of

disturbance on strength can be reduced.

Figure 5.11 (b) shows schematically the stress-strain curves that correspond to

the effective stresses shown in Figure 5.11 (a).
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5.4.3. Compressive Behavior

This simple framework can also explain why high quality samples usually

give higher pre-consolidation pressure cY'p. For one-dimensional compression, U'p is

the dividing point between recompression and virgin compression (Figure 4.1). It

can be seen that when vertical effective stress exceeds a'p, the slope of the curve

suddenly becomes steep, indicating a decrease of stiffness. Therefore, O'p can be

treated as the yield stress during one-dimensional compression. The location of U'p

should roughly be at the intersection of the effective stress path and Y3 surface.

In situ

Tube samples: - - - High quality --- Poor quality

0 a

- p H 's /

(a) Bounding Surfaces and Effective Stress Paths (b) Compression Curves

Figure 5.12 Prediction of Compression Behavior (Hight, 1993)

Figure 5.12 shows the one-dimensional compressive behavior of the intact soil

element and the disturbed samples. Since drainage occurs in consolidation, the

effective stress paths cross the boundary surfaces. From Figure 5.12, it can be seen

that the place where effective stress paths in one dimensional compression cross the
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bounding surface is on the cap of the bounding surface, where Y3 surface and the

bounding surface are very close to each other. Therefore, G'p can be roughly

determined by the intersection of effective stress path with the bounding surface.

Since high quality samples have a larger bounding surface, it follows that c'p thus

determined is higher for high quality samples. As a result, this framework correctly

predicts the relative magnitudes of a'p for samples with different levels of

disturbance.

Possible compression curves are shown in Figure 5.12 (b). Again, they are not

predictions of this simple model.

5.5. Summary

This section shows how to study the mechanism and effects of disturbance by

means of "imaginary tests" based on a simple soil model. The imaginary tests are

performed based on the principles of the ISA, i.e. the only disturbance source is tube

sampling.

It can be seen that the framework works very well in predicting the effective

stress path a sample follows during the disturbance. It even predicts the effective

stress paths of samples with different plasticity. Clearly, the laboratory tests did not

show this particular result since they are all performed on the same soil. However, in

terms of the disturbance effects, the ability of the framework seems to be limited.

This is because the framework does not describe the stress-strain relationship of soil.
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6. Sample Disturbance in Rock

Disturbances that may be caused during rock sampling are discussed in this

section. The term "rock" is defined as materials that are very strong and brittle so

that failure is caused mostly by the development and coalescence of cracks. Rock

Mechanics, which studies the crack initiation and propagation, is the technical

domain considering these materials.

In some extreme cases, for example very high confining pressure or very high

temperature, rock may also show a ductile behavior. However, in conventional

laboratory tests on rocks, neither the confining pressure nor the temperature will be

high enough to induce this ductile behavior. Therefore, it is reasonable to assume

that ductile behavior does not play a role in the sampling process and in the

sampling disturbances that we are going to examine in this section.

Sampling in rocks is much different from sampling in soil due to the basic

difference of their properties. Some of the important differences are:

" Due to the very high strength of rocks, it is no longer possible to push a

sampling tube into this material. Rocks are usually sampled by coring.

* Samples of rock may be taken from thousands of meters depth in the

ground, which is much deeper than conventional soil sampling. The

in-situ stresses in rock can be very complex because of the great variety of

geological features and tectonic effects.

* As said above, the rock matrix is usually strong and brittle. The sample
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disturbance of rock usually does not involve yielding and plastic flow of

the rock matrix, but involves the propagation and development of cracks.

Therefore, crack opening and propagation is the direct and most

important disturbance effects.

The development of this section also follows the structure outlined in Section

2.4. However, before the disturbance mechanisms can be analyzed, it is necessary to

first introduce the samplers and procedures of rock coring.

6.1. Coring Process

Due to the very high strength of rock, it is impossible to push a sample tube

into the rock mass to get samples. Most of the time, samples of rock are taken by

coring. The coring devices can be classified as Single Tube Core Barrel and Double

Tube Core Barrel (Under very rare circumstances, triple tube core barrels may also

be used).

A typical single tube core barrel is shown in Figure 6.1 (a). It has the following

components from top to bottom: Core barrel head, Tube body, Drilling bit. Hardened

metal teeth are equipped at the end of the drill bit. During drilling, the core barrel is

rotated and the metal teeth cut into the rock to isolate a rock core from the rock body.

Borehole fluid is fed in through the head of the core barrel, to take out the heat,

lubricate the teeth-rock interface and take away the cuttings. It flows inside the tube

until it reaches the metal teeth, where the cuttings are taken away. Then the borehole

fluid flows to the outside of the tube for circulation.
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(a) Single Tube Core Barrel (b) Double Tube Core Barrel

Figure 6.1 Single & Double Tube Core Barrel (Hvorslev, 1949)

Single tube core barrels are easily manufactured and operated. The rate of

progress is generally higher than for a double tube core barrel of equal outside

diameter. Satisfactory cores can be obtained with single tube core barrels in sound

and uniform rock body. However, when it is used to core stiff soil, soft or broken

rock, the material can be seriously disturbed by the cutting and breaking effect of the

metal teeth. In many cases the core may be broken up and partly removed by the

circulation of borehole fluid (Hvorslev, 1949). In addition, such materials are often
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prone to slaking or swelling in contact with free water, which is a source of serious

disturbance for soft rock and stiff soil.

To reduce the disturbance to the core by borehole fluid, and to minimize the

breaking and cutting effect on the core, double tube core barrels are often used. The

structure of a double tube core barrel is shown in Figure 6.1 (b). The inner tube has a

swivel head and it is connected with the outer tube by a ball bearing. Therefore, it

does not rotate with the outer tube so that the torsion that the inner tube might

apply to the core is very small. The outer tube is also composed of tube head, tube

body and drill bit. During drilling, the borehole fluid flows through the space

between the inner and the outer tube (flow passage marked in Figure 6.1 (b)),

washes the cuttings away at the drilling teeth, and finally flows to the outside of the

outer tube for circulation. The contact between the core and the borehole fluid is

thus minimized.

In addition to drilling bits with metal teeth, diamond drilling bits are also

quite often used in core drilling. The old diamond drilling bits were manufactured

by embedding diamond stones in a blank drilling bit (i.e. drilling bit without teeth).

Nowadays, polycrystalline diamond coating is widely used in the drilling bit

technology. This is an approximately 100nm thick coating of polycrystalline

diamond with super-high hardness. The polycrystalline diamond coating has

improved both the performance and the longevity of the drilling bits. The principle

of metal and diamond drilling bits is the same, i.e. while the coring barrel is rotating,

the diamond drilling bit grinds the rock below it and thus isolates the rock core.
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Different types of drilling bits may be used for different rocks. According to

Hvorslev (1949), a small number of relatively long teeth are preferable for coring of

soft and sticky formations which tend to ball up the bit; while a large number of

small teeth or cutters provides a greater rate of progress and causes less disturbance

of the material when coring in hard formations. Diamond drilling bits are another

alternative in hard rocks. It provides a greater rate of progress in hard rock. By

grinding the rock instead of breaking, smaller disturbance may be achieved.

Therefore, it is possible to use the diamond drilling bit to get cores with smoother

surface, larger length and smaller diameter. However, there appears to be no

systematic guidance regarding the selection of different drilling teeth.

6.2. Mechanism of Disturbance in Rock Coring

6.2.1. In-situ State of Rock

Ground Surface

CYH H

Figure 6.2 In-situ Stress State in Rock

Natural rock in its in-situ state can be subject to very complicated stress fields

due to the great variety of geological conditions. A crude but useful approximation is
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to assume that the vertical stress Ov is one principal stress and that the other two

principal stresses are horizontal (Figure 6.2). However, the two horizontal principal

stresses may or may not be equal to each other. They are therefore denoted cm and cH.

In natural rock formations, the horizontal stresses are frequently much larger than

the vertical stress.

6.2.2. Making a Borehole

Suppose there is a rock element at certain depth in the natural rock body, a

borehole must be made to reach this rock element. The borehole can be made by

coring, or non-core drilling (cone, percussion, etc.).

I I I I
I I I I
Li i

(a) Advancing of Borehole (b) Bottom of Borehole Reaches the Sample

Figure 6.3 Making a Borehole in the Ground

When the borehole is made and the overlying rock is taken away, the stress on

the wall and the bottom of the borehole is relieved. Due to this stress relief, the stress

field around the borehole will be disturbed and stress concentration will occur. An

example of stress concentration on the wall of the borehole is shown in Figure 6.4.

The in-situ stress field is supposed to be the one shown in Figure 6.2. If the borehole
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is long enough, then the stress state in a cross-section at the middle of the borehole

can be considered as plane strain state (Figure 6.4 (a)). For simplicity, the two

horizontal principal stresses are supposed to be equal, i.e. aG = GH. In a cylindrical

coordinate system, this means cr = Co for the in-situ stress state. When the borehole is

made, stress concentration occurs at the wall of the borehole (Figure 6.4 (b)). If the

behavior of the rock is linear elastic, ao is doubled and ar becomes zero. The effect of

stress concentration decreases with the radial distance from the borehole and finally

converges to the original stress field in the far field.

CH GH

ar = 2 aH
G 0r

(a) Original Stress Field (b) Stress ConcentrILIation

Figure 6.4 An Example for Stress Concentration

The simple example shown in Figure 6.4 assumes that (Th is the same as GH,

and the cao caused by stress concentration at the wall of the borehole is still

compressive stress. However, when there is a large difference between ah and cH, Go

may become tensile (Obert and Duvall, 1967). Since the tensile strength of rock is

usually relatively small, this might cause crack opening in the surrounding rock and

further change the in-situ stress field in the rock.
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Suppose the rock element ABCD (Figure 6.5) is to be cored, and the borehole

has advanced to the top of it, then the stress state in element ABCD will be disturbed

by the stress relief on the wall of the borehole. In addition, the element is also

disturbed by the stress relief at the bottom of the borehole, as shown in Figure 6.5.

CYV CrV v Pmud
A B A B

h Oh I IT

C D C DC fD

(a) (b) (c)

Figure 6.5 Total Stress Relief

Figure 6.5 (a) shows the in-situ stress state of the element. When the borehole

is advancing toward this rock element, the total vertical stress, av, is decreased due

to the removal of overlying rock (Figure 6.5 (b)). At the time the bottom of the

borehole reaches the top of this rock element (Figure 6.5 (c)), av is decreased to the

mud pressure pmud at the bottom of the borehole (suppose mud pressure is less than

the original overburden pressure). The change of total horizontal stress cm is very

complicated and difficult to predict. However, due to the stress concentration

around the borehole wall, it is likely that cm will be increased. Therefore, the

magnitude of deviatoric stress (cm - av) becomes larger and larger during the stress

relief. At some point, horizontal cracks may start to develop in the rock element
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ABCD. This may cause core discing if the horizontal cracks are developed across the

whole cross-section of the element.

Apart from the stress relief, the element ABCD may also be disturbed by the

vibration of drilling or coring, by the load the drilling machine or coring bit exerts

on the rock body. The temperature of the sample may be changed due to the heat

generated by the drilling or coring process, or simply by the temperature of drilling

mud. This temperature change may induce thermal stresses in the surrounding rock

and disturb the stress state of the sample. If the rock contains chemically active

components, then chemical effects may also come in and disturb the sample.

6.2.3. Coring Process

When the borehole advances to the top of the sample, a core barrel is used to

remove the rock beside the sample and collect the sample (Figure 6.6).

Cv Pmud Y Pmud UvPmud
A B

Gh Pmnd rh Pmud

C- C - D C D

(a) (b) (c)

Figure 6.6 Stress Relief on a Rock Element during Coring

As has been described in Section 6.1, the coring bit will break and remove the
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rock around the rock core (Figure 6.6 (a)). During this cutting process, vibration and

the load exerted by the coring bit may disturb the sample. Temperature change and

chemical effects may again come in.

When the rock around the element ABCD is removed, stress relief will cause

the stress field around the cutting to change. Since the geometry of the surface on

which the stress is relieved is very complicated, numerical analysis seems to be

necessary. To study this stress field change, Santarelli (1991) reported the results of a

numerical simulation based on a finite element program named PETRO-CESAR

(Humbert, 1989). The numerical model used in the simulation is shown in Figure 6.7.

Axis of Borehole
r

Z.

p d

Core-

*-- 4-Semi-Circle Coring Front G1- -O O.05 h

1.0

Figure 6.7 Numerical Models for FEM Simulation (Santarelli et al, 1991)

The following simplifications are made in this numerical model:

" The coring bit is supposed to have a semi-circle shape. Hence the coring

front it produces also has a semi-circle shape, as indicated in Figure 6.7.

" In this model, great simplifications are made regarding the in-situ stress
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state. It is assumed that a', = v'h = CT'H. It is also assumed that the mud

pressure, pmud, balances the pore pressure in the formation pform, i.e. p'mud =

pmud - pform = 0, so that hydrodynamic and transient effects can be ignored.

Under this stress state, the problem becomes axi-symmetrical with regard

to the borehole axis. A cylindrical coordinate system is used so that the

z-axis is located in the axis of the borehole, as shown in Figure 6.7.

S The constitutive model for the rock is isotropic and elastic. No yielding

and plastic flow is involved.

Although the model has been much simplified, meaningful results can be

obtained. A zone of tensile stress and a zone of high compressive stress are identified

from the results of the finite element program. They are shown by shaded areas in

Figure 6.8. Two points Mt and Mc marks the location of maximum tensile and

compressive stress.

ylAl
Zone of Tensile Stress

M Zone of High Compressive Stress

Borehole Axis

Figure 6.8 Stress Concentration around the Coring Front (Santarelli et al., 1991)

The tensile stress zone is located at the external surface of the core, just beside
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the coring bit. According to the analysis shown in Figure 6.4, 'O at the wall of the

borehole should be twice the original value due to stress concentration. The high

compressive stress zone in Figure 6.8 marks the area where cr'o is even larger than

this value.

Due to the low tensile strength of rock, the presence of an area with tensile

stress may cause serious disturbance to the core. Small tensile stresses can cause

tensile cracks on the surface of the core, or cause the existing cracks to propagate.

Large tensile stresses may break the whole cross-section of the core. The geometry of

the coring front is a very important factor in determining the shape and location of

the tensile stress zone, and the magnitude of the tensile stress.

The simulation that was described above is for an isotropic in-situ stress state.

More detailed simulations have been conducted by Santarelli et al. (1991) for

anisotropic in-situ stress states and different mud pressure. The results of these

simulations are presented below.

6.2.3.1. Effects of In-situ Stress Anisotropy

The numerical models used in the simulation of in-situ stress anisotropy are

almost the same as the one shown in Figure 6.7. However, it is assumed that in the

in-situ stress state, (7'h = (H = Ko-av'. An anisotropic in-situ stress state means that Ko

# 1. Suppose the maximum tensile stress in the tensile stress zone is (Cyt)max, it has

been found that the stress concentration factor (Ut)max/G'& is directly related to the Ko

value in the in-situ stress state. The results of these simulations are plotted in Figure
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6.9 to show the variation of (Gt)max/O'v versus the in-situ Ko value.
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Figure 6.9 Maximum Tensile Stress in the Core vs. Stress Anisotropy (Santarelli et al, 1991)

Figure 6.9 clearly shows that the magnitude of (at)max/a'v is smallest when Ko

is around 0.6, where the magnitude of (at)max is slightly greater than 30% of U'v. The

magnitude of (at)max/a'v increases when Ko deviates from 0.6, i.e. the magnitude of

(at)max becomes larger. As has been said, usually Ko is much larger than 1 in natural

rock. According to the trend shown in Figure 6.9, the magnitude of (at)max may

approach the magnitude of &'v or even exceed it.

6.2.3.2. Effects of Mud Pressure

The maximum tensile stress (at)max is also dependent on the mud pressure

during coring. Again, numerical simulations are performed based on the basic

configuration shown in Figure 6.7 to show the effects of different mud pressures. In

these simulations, it is assumed that the in-situ stress state is isotropic (i.e. a'v = G'h =

a'H), but the mud pressure is varied. The stress concentration factors (at)max/a',
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obtained from the simulations vary with the mud pressure. The values of (at)max/a'v

are plotted against corresponding p'mud/a'v in Figure 6.10.
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Figure 6.10 Maximum Tensile Stress in the Core vs. Mud Over-pressure
(Santarelli et al, 1991)

Figure 6.10 shows quite clearly that increasing mud pressure will decrease the

magnitude of (at)max. When p'mud/a'v ~ 0.28, the magnitude of (yt)max becomes 0, which

means no tensile stress is generated by stress concentration and the zone of tensile

stress disappears. Further increase of the mud pressure ensures that only

compressive stress is acting on the core during coring process.

If the anisotropy of the in-situ stress field and the mud pressure are both fixed,

the value of (Gt)max/G'v is also fixed based on the simulation discussed. In this case,

the magnitude of (at)max depends solely on the magnitude of Y'v. Since a'v usually

increases with depth, (Ut)max also increases with depth.

When the element is isolated from the rock body and enters the core barrel

(Figure 6.6 (b)), a torque is applied on the sample to break its end and detach it from
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the underlying rock body (Figure 6.6 (c)). Since the torque is used to break the rock,

its magnitude might be very large. Therefore, the torque itself can be a source of

disturbance.

6.2.4. Moving the Sample to the Ground Surface

0=0

C D

Figure 6.11 Moving the Sample to the Ground

When the element is detached successfully, it is then subject to an isotropic

stress state, in which Gv = Gh = pmud (Figure 6.6 (c)). The core must be moved to the

ground surface by pulling it up in the borehole (Figure 6.11). During this operation,

the total stress on the core is always equal to the mud pressure pmud, which decreases

with the elevation of the core. Suppose the pore fluid pressure in the rock core is u

when it was at its original depth H. This u may be very large if H is very large. The

effective stress in the element can be expressed as:

G'v = G h = pmud - u
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Usually the rock core is pulled up very quickly and hence pmud decreases very

quickly. However, the pore pressure u that was locked in the rock core may not be

able to decrease as quickly if the rock element has low permeability. It thus follows

that for rock cores taken from large depth and with small permeability, the effective

stress keeps on decreasing during the pulling up. At some point the effective stress

may become tensile and causing crack development or failure in the core.

Gas exsolution may also disturb the sample. Pore fluids in rock often contain

dissolved gas which starts to exsolve when the fluid pressure is decreased to some

point. The rapid decrease of pore pressure during pulling up may allow gas to

exsolve very quickly. The exsolved gas can form gas bubbles, the volume of which

continues to increase with further decrease of pore fluid pressure. If the matrix of

rock is not strong enough, structural damage can be caused by the expansion of

these gas bubbles.

6.2.5. Sample Transportation and Storage

After the core is retrieved from the borehole, disturbance can still occur

during transportation and storage.

During the transportation of the rock cores, they may be subject to random

bumping and shaking. The temperature of the core may be changed, which in turn is

determined by weather conditions. Both these disturbance sources can change the

stress state in the core.

If the cores are not properly sealed, they will be in contact with air and
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disturbance may be introduced. The pore water in the core can evaporate and

negative pore pressure may develop. Chemical reactions may occur between the

rock core and the air. Different kinds of rocks may require different handling

processes and storage environments to minimize disturbance. Some

recommendations for core handling process are presented by the API (Skopec, 1991).

6.2.6. Sample Preparation

As has been described in Section 2.2.5, sample preparation is different for

different tests. In order to obtain specimens with suitable geometry, the rock cores

can be cut by a lathe or by a laboratory core drill. Different sample preparation

methods will introduce different disturbances.

6.2.7. Identification of Important Disturbance Source

Based on the descriptions in the previous sections, a certain understanding

has been gained about the disturbance mechanisms in rock sampling. Therefore it is

possible now to identify the relative importance of the disturbance sources.

It is well known that rocks have relatively small tensile strength, and they are

vulnerable to crack opening when subject to tensile stresses. Therefore, the

disturbance sources that can generate tensile stress in the rock core can be

considered as important ones. The descriptions of Section 6.2.2, 6.2.3 and 6.2.4

clearly show that stress relief is capable of causing tensile stress in the core.

Consequently, stress relief can be identified as an important disturbance source.
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6.3. Effects of Disturbance on Rock Behavior

This section will describe a testing program that was performed on the Lac du

Bonnet granite (Martin et al., 1994; Eberhardt et al., 1999) to show the effects of

disturbance on the mechanical behavior of rock. This testing program was

performed on the samples of Lac du Bonnet granite by the Underground Research

Laboratory (URL), which is owned by Atomic Energy of Canada Limited. This test

program is based on the assumption that stress relief is the major disturbance source.

Before introducing how this assumption is applied in this testing program, it is

necessary to first introduce the site conditions.

6.3.1. Site Descriptions

According to Martin et al. (1994), the URL site where the granite cores are

taken is situated in southeastern Manitoba. It is located within the Lac du Bonnet

granite batholith, which is considered to be representative of many granitic

intrusions of the Precambrian Canadian Shield. The batholith, dated as late Kenoran

age, lies in the Winnepeg River plutonic complex of the English River gneiss belt of

the western Superior Province. The batholith is a relatively undifferentiated massive

prophyritic granit-granodiorite. The massive, medium to coarse grained prophyritic

granite is relatively uniform in texture and composition through the entire batholith,

although locally it displays subhorizontal gneissic banding. The URL shaft intersects

two major thrust faults that dip about 150 - 300 southeast. They are shown as the

Fracture Zone 2 and Fracture Zone 3 in Figure 6.12, and their splays are referred to
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as Fracture Zone 2.5 and 1.9.
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Figure 6.12 Site Overview and Stress Domains (Martin et al, 1994)

According to the in-situ stress level, three stress domains have been defined.

The separation of the stress domains and their in-situ stress levels are also shown in

Figure 6.12. In all three stress domains, the major principal stress is horizontal, i.e. ui

= GH and G3 = Gv.

Stress Domain I extends from the surface to Fracture Zone 2.5 at the depth of

200m. The maximum horizontal stress in this stress domain is within the range of 10

~ 20MPa and increases with depth. The in-situ stress state is anisotropic, with Ko =

GH/v ~- 2. In Stress Domain II, which is located from depth 200m to about 300m, the

maximum horizontal stress is around 25MPa, and also increases with depth. The

anisotropy of this stress domain also has Ko = GH/Gv ~ 2. Stress Domain III occupies

depth 300m through depth 500m, where the maximum horizontal stress is around

55MPa and does not vary very much with depth. The anisotropy of the in-situ stress

state is stronger, with Ko = 3 ~ 4. Based on these data, the horizontal and vertical

stress levels of these three stress domains are listed below (cv is calculated from GH
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and Ko):

Table 6.1 In-situ Stress Level of the Stress Domains

Stress Domain KO Maximum Horizontal Stress Vertical Stress Level

aH (MPa) Gv (MPa)
I 2 10-20 5-10
II 2 25 12-13
III 3-4 55 14-18

6.3.2. Methodology of the Testing Program

The testing program is based on the assumption that stress relief is the major

disturbance source. Generally, in a rock formation, the in-situ stress level increases

with depth. Therefore, a rock core taken from deeper location will have larger stress

relief. According to the analysis of Section 6.2.2, 6.2.3, and 6.2.4, larger stress relief

means:

* The deviatoric stress (cm - av) will be larger when the borehole reaches the

top of the sample (Figure 6.5);

* The maximum tensile stress (at)max will be larger during coring of the rock

sample (Figure 6.8);

* The reduction of mud pressure when the core is moved to the ground

surface will be larger (Figure 6.11).

If the rock formation is very uniform, e.g. the grain size, crack density, mineral

composition are all very uniform and do not change with depth, then it is reasonable

to say that the ability of two rock cores taken from different depths to withstand

disturbance is the same. Finally, one could reach the conclusion that deeper rock

cores will have larger disturbance provided that:
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* In-situ stress level increases with depth;

* The rock formation is uniform.

For the URL site described in 6.3.1, it is evident from Table 6.1 that the in-situ

stress level increases with depth. However, for such a natural rock formation, the

condition of uniformity is a big question. In this testing program, at least two

parameters of the samples were checked to ensure uniformity.

The first parameter is the in-situ P-wave velocity. Since P-wave velocity is

very sensitive to crack density, it can be used as a good indicator of in-situ crack

density distribution with depth. Figure 6.13 shows the measured in-situ P-wave

velocity variation with depth.

P-Wave Velocity (km/s) Stress
3 4 5 6 Domain

0

URL6 Sonic L

100. Fracture
Zone 3

Fracture Zone 2.5-7
200 2

Seismic Tomopram-
240 Leve

Fracture Zone
Fracture Zone 1.9

300 AE/MS
Velocity
Survey

400
Cross-hole

Seismic Survey--
Mine-by Panel

Figure 6.13 In-situ P-wave Velocity Measurements (Martin et al, 1994)

The results shown in Figure 6.13 are actually a compilation of the results of several
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in-situ velocity borehole surveys carried out at the URL site. It can be seen from the

graph that different geophysical techniques are used, including Sonic Velocity Log,

Seismic Tomogram, and Cross-hole Seismic Survey. All geophysical techniques give

almost constant P-wave velocity with depth except in the fracture zones. Therefore,

it is reasonable to conclude that the in-situ crack density is relatively uniform along

the depth.

The other parameter used to check uniformity is the grain size and mineral

component of rock cores. It has been found that the rock cores taken from the Lac du

Bonnet site mainly have two grain sizes. Most of the cores have an average grain size

of 3mm, while the rest have an average grain size of 1mm (Eberhardt et al., 1999).

Although their mineralogy is similar, it has been noticed that cores with smaller

grain size are less vulnerable to disturbance. Therefore, only cores with 3mm grain

size are tested in this testing program.

With these measures, it is then reasonable to say that the cores taken from

deeper locations will be subject to larger disturbance due to stress relief effects. In

this testing program, the rock cores are grouped by the stress domains shown earlier.

Cores of Stress Domain I have the smallest in-situ stress level and the smallest

disturbance. Cores from Stress Domain III have the largest in-situ stress level and

disturbance severity. Cores from different stress domains are tested, and the

difference of their behaviors can then be correlated with the disturbance severities.

The testing results presented in this thesis are collected from two different

research reports: Martin et al (1994) and Eberhardt et al (1999). Eberhardt's research
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is performed on samples from depths of 130m, 240m and 420m to represent the three

stress domains. In Martin's research, the cores are only grouped by stress domains,

and the specific depths of them are unavailable. Besides, there are other differences

between these two research reports, which are listed below:

Table 6.2 Differences between the Two Researchs

Martin et al. (1994) Eberhardt et al. (1999)
Borehole Diameter 75mm

Sample Diameter 45mm 61mm

Length/Diameter 2.5 2.25
Loading Rate 0.75MPa/s 0.25MPa/s

The effects of disturbance on the properties of the rock cores from different

stress domains are compared to see how these properties are changed by increasing

disturbance.

6.3.3. Effects of Disturbance

6.3.3.1. Visual Evidence of Sample Disturbance

The visual evidence of sample disturbance includes cracking and core discing.

When the disturbance effects are slight, they cause the formation of smaller cracks in

the sample. These smaller cracks are called microcracks hereafter. Microcracks are

distributed throughout the sample.

When the disturbance effects are very severe, core discing may occur. Core

discing has been observed in core samples ranging in diameter from 18mm to 1.25m

in the samples from Lac du Bonnet granite. According to Martin (1994), these discs

were observed immediately upon core retrieval and are believed to have formed
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during the sampling process. During the drilling of the 1.25m diameter core, the

discing occurred continuously as the core barrel advanced several millimeters. The

thickness of the discs varies from a few millimeters (grain size) to several

centimeters depending on in-situ stress magnitudes. Core discing has been observed

only in Stress Domain III and near fracture zones. This indicates the higher level of

disturbance in Stress Domain III. An example of core discing is shown in Figure 6.14.

31 32 33

Figure 6.14 An Example of

34 35 36

Core Discing (Martin et al, 1994)

6.3.3.2. Density of Microcracks in Samples

Thin sections have been obtained from the samples retrieved from different

depths. SEM analysis is performed on these thin sections to measure the density of

observed microcracks. The results of these measurements are shown in Table 6.3.

Table 6.3 Density of Microcracks in Samples (Eberhardt et al, 1999)

Sample Depth Minimum Count Maximum Count Average Count

No. (m) (cracks/mm 2) (cracks/mm2) (cracks/mm2)

1 130 0.005 0.01 0.0075

2 240 0.01 0.05 0.03
3 420 10 20 15

Table

microcracks

6.3 shows that the sample from 420m depth has developed much more

than samples from 130m and 240m depths. Based on the measurements
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of in-situ P-wave velocity (Figure 6.13), it can be shown that the in-situ crack density

is almost constant with depth. Therefore, the variation of crack density with depth

shown in Table 6.3 must be caused by sample disturbance. This confirms that the

disturbance severity increases with depth.

6.3.3.3. P-wave Velocity

Based on the field measurement of P-wave velocity shown in Figure 6.13, the

in-situ P-wave velocity can be roughly taken as 5900m/s for the depths. Eberhardt et

al. (1999) also reported the in-situ S-wave velocity, which is roughly 3440m/s.

The P-wave and S-wave velocities on samples taken from 130m, 240m and

420m depths have also been measured with the AE transducers across the samples.

The measured results are shown in Table 6.4, together with the average microcrack

densities at these depths (from Table 6.3).

Table 6.4 Measured P-wave & S-wave Velocities on Samples from Different Depths
(Eberhardt et al, 1999)

Depth Average Crack Density P-wave Velocity S-wave Velocity VpNs
(m) (cracks/mm 2) VP (m/s) VS (m/s)

In-situ - 5900 3440 1.72
130 0.0075 4885 (±190) 3030 (±115) 1.61
240 0.03 4445 (±295) 2905 (±85) 1.53
420 15 3220 (±100) 2160 (±55) 1.49

Comparing the P-wave velocity measured in the laboratory and in-situ, it can

be seen that the P-wave velocity measured on the samples is consistently lower than

the in-situ P-wave velocity and decreases with depth. Since the velocity of P-wave is

smaller in the air than in the rock matrix, the decrease of P-wave velocity then

indicates more opening of microcracks. Therefore, the decrease P-wave velocity is
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consistent with the increase of microcracks with depth.

A similar statement is also applicable to the decrease of S-wave velocity with

depth. It seems the S-wave velocity is not as sensitive to disturbance as P-wave

velocity. Although it also decreases with increasing depth, the rate of decrease for

the S-wave velocity is smaller. The ratio of P-wave velocity VP to S-wave velocity Vs

decreases with increasing depth.

Figure 6.15 plots the P-wave and S-wave velocities vs. the logarithm of the

average crack density. It can be seen that the relationships are close to linear.
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Figure 6.15 Correlation of P-wave and S-wave Velocity with Crack Density

6.3.3.4. Threshold Stresses in Uniaxial Compression

The behavior of a typical rock sample in the uniaxial compression test is

illustrated in Figure 6.16. On the left of Figure 6.16, the axial stress - axial strain

behavior is plotted; the axial stress - volumetric strain behavior is plotted on the
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right. It can be seen that the behavior of the rock sample can be divided into several

stages that are separated by so called "threshold stresses". These stages, together

with the threshold stresses, are briefly discussed below.

aaxial aaxial

Failure

Cd ---- ------------------------------------------------------Crack CoalescenCe
CS Crack Propagation

Elastic Zone

a---------------------------------------------
cc ~ Crack Closure

6
axial evol

Figure 6.16 Typical Rock Sample Behavior in a Uniaxial Compression Test

" Crack Closure. The curvature of the curves at the beginning is caused by

the closure of the existing cracks in the sample. Strictly speaking, this

curvature can also be caused by the seating problem of the testing

apparatus. However, Figure 6.16 presents a conceptual model rather than

a real test curve. Thus it is assumed that the curves show the real behavior

of the sample and no testing problem is considered. The limit axial stress

for this stage is called crack closure stress acc.

" Elastic Zone. The axial stress Caxial is now larger than Ucc, so that all the

open cracks have been closed. Increasing the magnitude of Gaxial may

cause the two sides of some of the cracks to slide against each other.

However, the displacement caused by sliding can be recovered upon

unloading. The overall behavior of the sample is linear elastic. The limit
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for this stage is called crack initiation stress Tci.

* Crack Propagation. When Gaxial is larger than aci, maximum friction is

mobilized on some cracks. Sliding occurs along these cracks and they start

to propagate one after another. With the increase of aaxial, more and more

cracks are mobilized and start to propagate. The crack propagation in this

stage is stable, and the axial stress - axial strain behavior is still close to

linear. However, the axial stress - volumetric strain behavior starts to

show some non-linearity, which means that dilation component is

introduced although the total volume change is still contraction. The limit

stress of this stage is called crack coalescence stress acs.

* Crack Coalescence. Due to further increase of aaxial, the cracks grow longer

and longer. They may intersect each other in this stage, and seriously

decrease the stiffness of the sample. Therefore, the axial stress - axial

strain behavior deviates from linearity. In terms of the volumetric strain,

the dilation component keeps on increasing so that the rate of volume

contraction gradually decreases and finally contraction stops. The limit

stress of this stage is called crack damage stress acd.

* Failure. When axial stress Gaxiai exceeds acd, the crack propagation is no

longer stable. The elastic energy that has been stored in the sample is

sufficient for the cracks to continue propagating even without increasing

the axial stress. The cracks will keep on propagating until the sample fails

and falls apart.
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Based on these descriptions, it is clear that the threshold stresses mark the

different stages of crack propagation. Since disturbances on rock samples cause

crack opening and propagation, they must influence the value of these threshold

stresses. These threshold stresses have been measured for rock samples of 130m,

240m and 420m. The results are shown in Table 6.5 and plotted in Figure 6.17.

Table 6.5 Measurements of Threshold Stresses (Eberhardt et al, 1999)

Depth (m) aC0 (MPa) ac (MPa) a0S (MPa) acd (MPa)
130 47.3 81.5 132.8 156.0
240 55.6 79.6 127.6 147.4
420 74.8 76.4 85.5 100.4
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Figure 6.17 Stress Threshold Values (Data from Eberhardt et al, 1999)

Increasing the severity of disturbance (i.e. increasing sample depth) has

different effects on different threshold stresses. The crack initiation stress aci seems

to be the least affected. It has very small decrease with increasing disturbance.

Below acd, the crack closure stress acc increases with increasing disturbance. A

possible explanation is that, since increasing disturbance causes more microcracks to

open, larger stresses are necessary to close all of the microcracks. Above aci, the crack
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coalescence stress ac, and crack damage stress Gcd all decrease with increasing

disturbance. This is readily explained by the opening of microcracks. The more

microcracks there are, the larger the possibility that they cross and interfere with

each other, and the rock is more likely to fall apart.

By definition, we should have:

Gcc < 7ci < acs < Ycd

Since aci almost remains constant, the effect of increasing disturbance is that the

other three threshold stresses converge to the value of aci. The following conclusion

can be obtained based on the definition of these stress thresholds:

" From Figure 6.16, the linear behavior of rock sample is between occ and acs.

Increasing disturbance then reduces the range of this linear behavior, and

the sample will have stronger non-linearity.

* Still based on Figure 6.16, when aaxiai exceeds ccd, the crack propagation

will be unstable and the sample will fail. ccd can thus be treated as the

indication of the sample's strength. Increasing disturbance means the

strength of the sample is decreased.

6.3.3.5. Axial Stiffness in Compression Tests

The axial stiffness of the rock samples can be calculated based on the axial

stress - axial strain curve obtained from the compression tests, either performed

unconfined or with confining pressure.

The axial stiffness of samples taken from 130m, 240m and 420m depths in the
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unconfined compression tests are plotted against the axial stress level in Figure 6.18.

It can be seen that stiffness decreases with depth no matter how high the axial stress

level is. Therefore, one can conclude that increasing disturbance will decrease the

axial stiffness of the sample.
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Figure 6.18 Axial Stiffness vs. Axial Stress Curve (Eberhardt et al, 1999)

The decrease of stiffness with depth is also consistent with the increase of

microcrack density. The stiffness of the rock samples in compression tests is

determined by two components: one is the stiffness of the rock matrix; the other is

the behavior of the cracks. When there are few cracks in the rock sample, the rock

matrix is continuous. Hence the measured stiffness is close to the stiffness of the rock

matrix, which usually is very large. With increasing number of cracks, the rock

matrix becomes less continuous and crack sliding and propagation is more likely to

occur, which increases the deformation and decreases the stiffness of the rock

165



sample. Since samples taken from larger depth are more severely disturbed and

have more microcracks, their stiffness must be lower.

The curves shown in Figure 6.18 show the stiffness of the samples from crack

closure to failure. If we only focus on the behavior in the elastic zone (refer to Figure

6.16), their behavior can be described by two elastic parameters: the Young's

Modulus E, which is defined as the slope of the axial stress - axial strain curve

within the elastic zone; and the Poisson's Ratio v which is defined as the ratio

between horizontal and vertical strain. Both E and v can be measured during the

compression tests. In the unconfined compression tests, the measured E and v for

samples of 130m, 240m and 420m depths are listed in Table 6.6.

Table 6.6 Measured E and v from Lab Tests (Eberhardt et al, 1999)

Depth (m) Young's Modulus Poisson's Ratio
E(GPa) v

130 66.5 0.31
240 63.8 0.33
420 51.9 0.38

It can be seen that the value of Young's Modulus decreases with the depth of the

samples, which conforms to the trend shown in Figure 6.18. Based on the previous

analysis, the decrease of Young's Modulus is also caused by the increase of crack

density with depth. Figure 6.19 shows the correlation of the Young's Modulus with

the crack density in a semi-logarithmic plot. The relationship is also very close to

linear.
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Figure 6.19 Correlation of Young's Modulus with Crack Density

In compression tests that are conducted with confining pressures, it has been

found that the measured Young's Modulus E may also change with the confining

pressure. Figure 6.20 shows the variation of E with the confining pressure for a

sample from Stress Domain I and a sample from Stress Domain III at 420m depth.
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Figure 6.20 Young's Modulus vs. Confining Stress (Martin et al, 1994)

Several observations can be made from Figure 6.20:

1. The Young's Modulus E of the sample from Stress Domain III (denoted Em
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in the following discussion) is smaller than the Young's Modulus of the sample from

Stress Domain I (denoted Ei in the following discussion). Again, this can be

explained by the larger density of microcracks in the sample taken from Stress

Domain III.

2. Ei only changes slightly with the confining pressure, i.e. it is largely

pressure independent. On the contrary, Eii is strongly pressure dependent. This is so

because increasing the confining pressure closes microcracks, and makes crack

sliding and propagation less likely to occur. The sample from Stress Domain III has a

large number of cracks due to strong disturbance, thus increasing confining pressure

has very significant effects on the recovery of the Young's Modulus. On the other

hand, the sample from Stress Domain I has fewer cracks since the disturbance level

is low. As a result, its Young's Modulus does not change much with the confining

pressure.

3. Em remains lower than Ei even if the confining stress reaches 55MPa, where

the maximum in-situ horizontal stress of 420m depth is fully restored. It seems that

the loss of stiffness caused by microcracking can not be fully recovered by applying

the in-situ confining stress.

By comparing Figure 6.20 with Table 6.5, a very interesting inconsistency can

be found. Based on the previous analysis, when the Young's Modulus becomes

constant for the sample at 420m level, the closure of the cracks should have been

completed by the confining pressure. Since the modulus becomes constant at about

20MPa, the crack closure stress for the sample of 420m level must be smaller than
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20MPa according to Figure 6.20. However, Table 6.5 clearly shows that the crack

closure stress for the sample at 420m depth is 74.8MPa, which is much greater than

20MPa. The following explanations may be possible for this inconsistency:

" The results presented in Figure 6.20 and Table 6.5 are from two different

research projects. The sample size, loading rate and some other

parameters are different for the two projects (Table 6.2). Therefore, the

threshold stress they measured cannot be identical.

" The results in Table 6.5 are measured from uniaxial compression tests,

and the crack closure stress is the axial stress. The results in Figure 6.20

are measured from triaxial tests, and the crack closure stress is the radial

stress. Due to the anisotropy of the material, the crack closure stress in the

axial and radial directions may be different.

However, a clear and conclusive explanation is still not available before more

detailed investigation.

6.3.3.6. Permeability

Katsube (1981) conducted a series of permeability tests on Lac du Bonnet

samples taken from boreholes that are 14km away from the URL site. The samples

are taken from depth up to 1000m. These tests are conducted on samples with 45mm

in diameter and 20~30mm in length. Tests were conducted on samples under

unconfined and confined conditions. For confined conditions, the confining pressure

is set to be 22.6 (kPa/m)xD, in which D is the depth of the sample. The results of
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Katsube are shown in Figure 6.21, where AK is the difference between the confined

and unconfined permeability.
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Figure 6.21 Permeability Change vs. Depth (1l.D = 9.87x10-19m2) (Martin et al, 1994)

It is clear from Figure 6.21 that the permeability increases with depth, no

matter confined or unconfined. However, the in-situ permeability for Lac du Bonnet

granite is essentially constant with depth, except in the vicinity of fracture zones

(Davison, 1984). Therefore, it can be concluded that increasing sample disturbance

increases permeability.

The variation of measured permeability from samples is directly related to the

opening of microcracks. Apparently, as more cracks are opened, the permeability of

the sample increases. Therefore, the measured permeability of the unconfined

samples increases greatly with depth. Applying confining pressure forces some of

the cracks to close and thus decreases the permeability of the samples. The

permeability measured on confined samples only changes slightly with depth and is

closer to the in-situ case.
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6.3.3.7. Strength

In order to study the effects of disturbance on compressive strength of rock,

samples are taken from Stress Domain I, Stress Domain II at 240m level, and Stress

domain III at 420m level. Triaxial tests are conducted on these samples, and the

strength envelope for samples of each stress domain is worked out separately. The

results of trixial tests are analyzed using the Hoek-Brown failure criterion (Hoek

1983), which is expressed by:

C1 =U 3 + VmO-T +Sc'2

where ai is the axial stress at failure;

C73 is the confining stress;

ac is the uniaxial compressive strength of intact rock;

m and s are empirical constants.

The Hoek-Brown parameters for samples from different stress domains are

summarized in Table 6.7. The failure envelopes are shown in Figure 6.22. It must

be noted that Martin et al. (1994) only reports the results of the strength curve and

the parameters. The original data points are not available from their paper.

Table 6.7 Strength Parameters of Samples (Martin et al, 1994)

Stress Domain m s ac (MPa)
1 47.3 81.5 213.2

11 55.6 79.6 193.5
III 74.8 76.4 149.6
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Figure 6.22 Hoek-Brown Failure Envelope for Samples from Different Stress Domains
(Martin et al, 1994)

These envelopes are close to each other, indicating that the strength of rock is

not sensitive to disturbance. It seems that the strength envelopes for the three stress

domains are roughly parallel. Therefore, they should have similar friction angles.

However, the location where the envelope intersects the ai axis is lower for Stress

Domain III than for Stress Domain II, which is still lower than for Stress Domain I. It

appears that the disturbance reduced the "cohesion" component of the strength, but

the frictional component is not affected.

The tensile strengths of samples from Stress Domain II and Stress Domain III

were also measured in direct tension test. It has been found that the mean direct

tensile strength is 3.5±0.3MPa for Stress Domain II and 1.5±0.7MPa for Stress

Domain III, i.e. the direct tensile strength for Stress Domain III is only 42% of that of

Stress domain II. Clearly, the tensile strength is seriously reduced by disturbance.
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6.4. Summary

In this section, the disturbance mechanisms of the sources listed in Section 2.2

are applied to rock sampling. Stress relief is found to be a very significant

disturbance source. It is then concluded that in a uniform rock formation, the cores

taken from larger depth will be subject to larger disturbance.

A testing program performed on the Lac du Bonnet granite is then described,

which illustrates the conclusions described above. Through the results of this testing

program, it has been found that crack opening and propagation due to stress relief is

the most significant disturbance effect in rock sampling. Most of the other effects, for

example the decrease of P-wave velocity, the decrease of stiffness, the increase of

permeability etc., seem to be caused by the opening and propagation of cracks and

are thus secondary.

With the understanding of the disturbance mechanism and effects, it is

possible to come up with ways to evaluate the disturbance severity. For example,

since P-wave velocity is a good indication of the crack density, it can also be used as

a good index for disturbance severity. In addition, since stress relief is an important

disturbance source in rock sampling, any devices that decrease the stress relief will

decrease the disturbance effects. Therefore, the study of the mechanisms and effects

of rock sample disturbance provides a direction of how to minimize the disturbance

effects.

It should, however, be kept in mind that some of the other disturbance effects

such as temperature changes and chemical changes may also play a role and need to
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be further investigated. Also, disturbance effects may be greatly different for

different rock types and different geological conditions in general.
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7. Preliminary Study of Sample Disturbance

in Shale

Since the sampling of shale also follows the steps outlined in Section 2.2, the

disturbance sources listed there will again be used as a template to consider the

sample disturbance problem in shale.

In the previous sections, the sample disturbance problem in soil and rock has

been described in detail following the structure developed in Section 2.4. The first

and most fundamental step of this structure is to understand the disturbance

mechanism and identify important disturbance sources. As a transitional material

between soil and rock, shale has similarities with both soil and rock. Therefore,

predictions can be made on shale sample disturbance based on the disturbance in

soil and rock whenever the similarities allow us to do so. On the other hand, the

behavior of shale has its own distinctive features. The methods that are used to

describe and analyze soil and rock disturbance may have to be modified so that they

are applicable to shale.

This section will first present some shale characteristics and behavior as the

basis for further discussion. The sources and mechanisms of disturbance will then be

analyzed using the list in Section 2.2 as a template. The methods that were used to

investigate the mechanisms and effects of soil and rock sample disturbance are then

summarized. Suggestions on how to modify these methods to investigate shale

sample disturbance are proposed.
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7.1.Characteristics of Shale

According to Aristorenas (1992), shale is a term used by geologists and

engineers to refer to a vast group of clastic sedimentary rocks composed of

fine-grained particles of silt and clay size, indurated by consolidation stresses much

larger than the present overburden and by diagenetic bonding of particles. Natural

shale often has a bedded structure due to its depositional character. Some of the

most important characteristics of shale are described in more detail below.

7.1.1. Clay Content and Plasticity

Shale usually has high clay mineral content. As a sedimentary rock, the

minerals of shale are derived from other sedimentary rocks or from igneous and

metamorphic rocks through erosion and weathering processes (Aristorenas, 1992).

Although many types of minerals may be present in shale, clay minerals usually

predominate. The clay minerals that often exist in shale include: Kaolinite, Illite,

Smectite, Chlorite, etc. The clay mineral content of some shales are listed in Table 7.1.

It can be seen that most of the shales listed have high clay mineral content (>30%).

The Atterberg Limits of shale can be measured after deaggregation of shale.

The plasticity charts for the shales listed in Table 7.1 are plotted in Figure 7.1. The

areas of data points for most of the shales are above A-Line and fall to the right of

50% liquid limit. Therefore, these shales have medium to high plasticity.
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Table 7.1 Clay Fraction of Some Shales (Hsu et al., 1993)

Formation Clay (%) Reference

Bearpaw (Canada) 30-65 Ringheim (1964); Eigenbrod (1972)
Bearpaw (USA) 61 Townsend & Gilbert (1974)

Claggett 50 Townsend & Gilbert (1974)

Colorado 45 Townsend & Gilbert (1974)
Eagle Ford 38-88 TETC (1990)
Edmonton (clayey) 30-50 Sinclair & Brooker (1967)

Edmonton (bentonite) 30-55 Thomson (1970)

Pepper 28-56 Stroman & Feese (1984)

Pierre 34-85 Scully (1973)

Taylor 28-90 TETC (1990)
*: Percentage of smectite and mixed layer illite and smectite of clay fraction.
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Figure 7.1 Plasticity Chart for Some Shales (Hsu et al., 1993)
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However, it should be noted that Atterberg limits are only of limited value for

materials like shale, because the measured value of Atterberg limits are greatly

affected by sample preparation methods (Aristorenas, 1992). For example, the

energy used in deaggregation determines the particle size and thus the specific

surface area. Therefore, the less energy used in the deaggregation, the larger the

particle size and the smaller the plasticity measured.

7.1.2. Heavily Over-Consolidation

The shale formations encountered in engineering practice are usually exposed

on the ground surface. A very important characteristic of these shale formations is

the very high degree of over-consolidation. This is determined by the geological

history of the shale formations (Figure 7.2).
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will be larger and larger. Therefore the element will be subject to one-dimensional

consolidation, and its void ratio and water content will be decreased. Eventually,

unloading may occur due to erosion, and the vertical stress on the element will also

be reduced. The element then becomes over-consolidated, and the

over-consolidation ratio is:

OCR = c'vm/a'vc

For shale formations, the OCR value can be very high.

One the other hand, the element at maximum overburden (Figure 7.2 (b)) is

also highly compressed. However, by definition its OCR equals 1. Whether it can be

called shale at this stage is a very interesting philosophical question.

7.1.3. Very Small Pore Size

It has been shown that shale is usually composed of silt or clay sized particles.

These particles are very closely packed, and diagenetic bonding or cementation may

further reduce the interparticle spaces. Therefore, the pores in shale are usually

extremely small. To illustrate this, the pore size distribution of a North Sea shale

sample is shown in Figure 7.3.
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Figure 7.3 Pore Size Distribution of a North Sea Shale Sample (Horsrud et al., 1998)

Based on the description of Horsrud et al. (1998), the pore size distribution is

measured by mercury injection (up to 200MPa pressure). To measure this

distribution, small samples (about 3g) are first dried at 60 0 C and the cumulative

injected volume of mercury is recorded versus injection pressure. The test is run

until no more mercury can be injected. The pore radius r can be related to the

injection pressure P by:

P = 2ycos0/r

in which: y is the interfacial tension between the wetting and non-wetting phase;

0 is the contact angle between the solid surface and the wetting surface.

The percentage of cumulative volume is then plotted against pore radius for the

shale sample.

From Figure 7.3, it can be seen that 90% of the pore volume is occupied by

pores with radii less than 0.02ptm. Such a small pore size implies that capillary
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effects may significantly change the effective stress of the sample. When a shale

sample loses water due to evaporation, air entry will occur and the rest of the water

in the sample will be drawn to smaller pores since smaller pores can generate larger

negative pore pressure. The result is that the negative pore pressure in the pore

water increases and the effective stress in the sample will be increased accordingly

(refer to Section 3.6.1.1). If the shale sample absorbs water, then the reverse will

occur.

In fact, this has been proven by the saturation and desaturation experiments

performed on the Opalinus Shale cores from Mont Terri Rock Laboratory (TN

2003-46). When the shale core is put in a humid environment and it can absorb

moisture from air, expansion of the shale core was measured in different directions.

When the shale core is then put in a dry environment, it loses its water by

evaporation and contracts in different directions.

7.1.4. Particle Bonding

It has been shown that due to continuing deposition, the pressure on an

element keeps increasing and can reach a very high value. The temperature of the

element will also increase with its burying depth. With the increase of pressure and

temperature, many physico-chemical processes will occur between component

minerals so that bonds between them may be formed. These processes are called

diagenesis.

It has been found that under high pressure and temperature, re-crystallization
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of the minerals may occur so that true adhesion can develop between particles. Also,

cementing agents contained in the groundwater can precipitate in the

intercrystalline interstices, and further strengthen this interpartical bonding.

Although the processes of re-crystallization and precipitation are extremely slow,

their effects are remarkable given the scale of the geological time of deposition.

Consequently, the strength of shale is increased by the diagenetic bonds.

However, it should be noted that the strength of shale, although much higher

than that of soft soil, is generally lower than for typical rocks, for instance, granite.

More importantly, the diagenetic bonds of shale can be easily broken by various

physico-chemical processes that occur when shale is in contact with free water.

7.1.5. Characteristics of Opalinus Shale

After the general introduction of some characteristics of shale, it is necessary

to briefly comment on the Opalinus Shale, which is the objective of the work for

NAGRA.

Opalinus Shale is of marine origin, and is usually of dark-grey color (Bellwald,

1990). Although the shales listed in Table 7.1 mostly have medium to high plasticity,

Opalinus shale is a low plasticity shale. The index properties of Opalinus shale are

shown in Table 7.2:

Table 7.2 Index Properties of Opalinus Shale (TN 2000-02)

Liquid Limit wL (a) 38 5
Plastic Limit wp (%) 23i2
Plasticity Index Ip (%) 1_15±3

The dominant clay minerals of Opalinus shale are illite and kaolinite, as listed in
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Table 7.3:

Table 7.3 Mineral Content of Opalinus Shale (Bellwald, 1990)

Quartz (%) 6-25

Noin-Clay Carbonate (%/) 6-25
M~inerals

Siderite (%/) 0-6

Smectite (/) -

Elite (%) 28-32

Clay Minerals Illite&Smectite (%) 10-18

Kaolinite (%) 21-28

Chlorite (%) 7-14

7.2. Shale Behavior

Based on the description of the mineral components and geological history of

shales, it is not surprising that shale has long been considered to be a transitional

material between soil and rock. According to Bjerrum (1967), over-consolidated clays

are clays with weak or no bonds having a current consolidation stress less than its

maximum past pressure; clay shales are over-consolidated clays with well developed

diagenetic bonds; and shales are over-consolidated clay shales with strongly

developed diagenetic bonds. These definitions clearly show that when the diagenetic

bond is weak, shale is more similar to over-consolidated clay; when the diagenetic

bond is strong, shale is more similar to rock.

It is then evident that the behavior of shale can be best introduced by

comparing it with the behavior of soil and rock. Therefore, this section will first

present how shale behavior is similar to that of soil and rock. The distinctive aspects

of shale behavior will be introduced afterwards.
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7.2.1. Similarities with Soil Behavior

Due to the inherent similarity of shale and over-consolidated clay, their

behaviors are also similar in certain aspects. Based on the research of Bellwald (1990)

and Aristorenas (1992), the similarities may reside in the following aspects:

7.2.1.1. Applicability of Hyperbolic Model

The hyperbolic curve is often used to approximate the shear behavior of clay

before it reaches failure. The mathematical expression of a hyperbolic curve is:

2q r

a m+ny

in which: q is the shear stress;

cY'c is the consolidation stress;

y is the shear strain;

m and n are constants that are used to fit the test curve.

This equation can also be written as:

= m + ny
2q

Therefore, the plot of yu'c/2q vs. y should be a straight line with the slope n and the

intercept m if the behavior of clay can be described by the hyperbolic model.

Shear tests on Opalinus shale samples have been performed by Bellwald

(1990). In Bellwald's tests, the Opalinus shale samples were first isotropically

consolidated at 3'c = 5.OMPa, and then sheared in pure shear compression. A typical

stress-strain curve obtained from the tests is shown in Figure 7.4:
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Figure 7.4 Stress Strain Curve of Opalinus Shale Samples in Shearing (Bellwald, 1990)

Based on the curve shown in Figure 7.4, the plot of yG'c/2q vs. y can also be obtained,

which is shown in Figure 7.5. It can be seen that the plot of ya'c/2q vs. y is very close

to a line, i.e. the shear stress-strain relationship of Opalinus shale can be well

approximated by the hyperbolic model. This may be one similarity between the

behavior of over-consolidated clay and the behavior of shale. The constants m and n

are shown in Figure 7.5, with m = 0.38 and n = 0.42.

0 0.25 0.5 0.76 1 1.25 1.6

*r(%)

1.75 2 2.25 2.5 2.76 3

Figure 7.5 Plot of y&'c/2q vs. y for Opalinus Shale Sample (Bellwald, 1990)
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7.2.1.2. Applicability of SHANSEP

The research of Bellwald (1990) shows that the SHANSEP (Stress History And

Normalized Soil Engineering Properties, Ladd et al., 1977) Equation is also

applicable to the shear strength of shale. The SHANSEP Equation is used in

over-consolidated clay to correlate the undrained shear strength with the stress

history of clay (i.e. OCR). It can be expressed as:

= S(OCR)'
cc

in which: su is the undrained shear strength;

a'c is the consolidation stress;

OCR is the over-consolidation ratio;

S and m are constants to be determined by the test data.

Bellwald (1990) found that this equation can also be applied to the undrained

shear strength of shale. Since one basic assumption of this equation is that the

behavior can be normalized by the consolidation stress a'c, this indicates that shale

may also have normalized behavior. However, this conclusion still needs to be

confirmed by more experimental data.
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7.2.1.3. Negative Pore Pressure during Shear
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Figure 7.6 Pore Pressure Change during Shearing for Shale Samples (Aristorenas, 1992)

It is well known that during undrained shearing of over-consolidated clay, the

volume of the clay sample tends to increase and negative pore pressure will be

generated. Undrained shearing tests have been performed on samples of Opalinus

shale and Lias a shale, and the changes of pore pressure Auw are plotted against

shear strain y in Figure 7.6 (23-1, 23-5 and 23-6 are Opalinus shale samples, 23-9 and

23-10 are Lias ca samples). It can be seen that negative pore pressures are generated

for most of the samples during shearing.

7.2.1.4. Linear e vs. Iog(a',) Relationship in Recompression

According to the descriptions of Section 4.2, in one-dimensional consolidation,

the e vs. log(a'v) curve of soil is composed of two parts: the recompression part when

G'v is smaller than the pre-consolidation pressure &'p, and the compression part
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when Y" is larger than a'p. The two parts are very close to straight lines with a

curved transition connecting them.

Ko consolidation tests have also been performed on shale samples, and the e

vs. log(a'v) curves for two samples are shown in Figure 7.7 (26B-4 and ERZ4 are both

Opalinus shale samples). Since shale has been subject to very large overburden

pressures, the shale samples at the stress level shown in Figure 7.7 (y'v < 2MPa) are

still in recompression. Clearly, the two e vs. log(a'v) curves shown in Figure 7.7 are

very close to straight lines, and this is similar to the one-dimensional consolidation

of soil in recompression.

0.35

0.3 1

7.2..- k-B

0.20 -- -EZ

0.1 1

01V (MPa)

Figure 7.7 e vs. Iog(cy') Curve for Shale Samples in K0 Consolidation (Aristorenas, 1992)

7.2.2. Similarities with Rock Behavior

Due to the strong diagenetic bonding of shale, it also shares similarities with

rock. In the material realm of rock, crack opening and propagation becomes the

major mechanism of deformation and failure. In Section 6.3.3.4, the major features of

the stress-strain relationship of rock in uniaxial compression tests are presented
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based on the analysis of crack opening, propagation, and coalescence. It has been

found that the behavior of shale samples in uniaxial compression tests is quite

similar to rock behavior presented in Section 6.3.3.4. This can be shown through the

test results on Opalinus shale samples.

TStn
9

Figure 7.8 shT ypical stress-strain urve of theiu Shl nUniaxial Compression tests57

performed on Opalinus shale samples. It can be seen that the stress-strain curve is

very similar to the typical behavior of rocks in uniaxial compression tests (Figure

6.16). The stages of crack closure, elastic range and the final brittle failure can be

clearly identified. Therefore, it is reasonable to say that the mechanism of

deformation and failure in the uniaxial compression tests of shale may involve the

opening and propagation of cracks. This needs to be further investigated, however.

It is worth noting that the shear behavior of shale in triaxial tests (Figure 7.5)
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and in uniaxial compression tests (Figure 7.8) are quite different. It seems that in the

triaxial tests, the shear behavior of shale is similar to that of over-consolidated clay,

and the stress-strain curves can be approximated by the hyperbolic model (before

the peak is reached). In uniaxial compression, however, the stress-strain curve of

shale is more similar to typical rock behavior, which is shown in Figure 6.16. More

detailed investigations are necessary before the origination of this difference can be

revealed.

7.2.3. Distinctive Aspects of Shale Behavior

Besides the similarities with soil and rock behavior, shale also has its

distinctive aspects.

7.2.3.1. Bedded Structure

Most shale formations have a bedded structure (Figure 7.9 (a)), the bedding

planes are formed by the discontinuity in the deposition process, and they usually

form weak connections between two layers.

z

Y

x

(a) Bedding Planes (b) Definition of Directions

Figure 7.9 Bedding Planes of Shale
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Due to this bedded structure, shale is usually strongly anisotropic. Very often

the properties in the x, y directions are similar, but quite different from the

properties in z direction. Therefore, the mechanical behavior of shale is better

approximated by a transverse isotropic model.

This anisotropy is evident from testing results on Opalinus shale samples.

Table 7.4 compiles some measurements made on Opalinus shale samples in uniaxial

compression tests, including the modulus at 50% peak stress E5o, the Poisson's Ratio

and the Uniaxial Compression Strength. It can be seen that all these parameters are

different in the directions parallel and perpendicular to the bedding planes.

Table 7.4 E50, v and UCS of Opalinus Shale in Different Directions (TR 2000-02)

E50 (GPa) v UCS (MPa)
E5oX & E5oy E5oz vx & Vzy vxy UCSx & UCSy UCSz

8.5±3.7 3.6±1.0 0.24±0.08 0.33±0.05 10.5±6.5 25.6±2.5

The bedded structure also causes anisotropy in crack opening and

propagation. Since the bedding plane represents weak planes and discontinuities in

shale, crack generation and propagation may be facilitated along these bedding

planes.

7.2.3.2. Physico-Chemical Effects

Usually, the particles of shale are heavily compacted and bonded, and shale in

its natural, undisturbed state has relatively high strength. However, when shale has

access to free water, various physico-chemical effects will occur and the diagenetic

bonds in shale can be easily broken by these effects. If these effects are very strong

and the diagenetic bonds are completely broken, disintegration occurs and shale will
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decay into smaller pieces and particles. The mechanical properties of shale can thus

be greatly changed. Such a disintegration phenomenon is called slaking.

According to Moriwaki (1974), four modes of slaking are possible. They are:

" Swelling: described as an increase in bulk volume without visible

cracking or significant loss of material;

" Body slaking: which appears to originate from internal processes and

which rapidly traverses large portions of mass with no apparent

deterioration between cracks;

" Surface slaking: characterized by loss of mass due to "sloughing" of tiny

flakes of grains from the entire surface with no apparent cracks in the

underlying material;

" Dispersion: characterized by loss of mass resulting from the separation of

clay-sized grains which go into spontaneous suspension, rather than

settling.

Slaking of shale can be caused by several different mechanisms. It can be

caused by the addition of water to clay minerals. When shale has access to free water,

the double layer will develop further on the surface of clay particles. Since the

particles in shale are originally very closely packed, there is not enough space for the

double layer to expand. Repulsion between particles occurs due to the expansion of

double layer. This repulsion can be so large that the diagenetic bonds between

particles will be broken and the particles will be pushed apart.

192



Figure 7.10 Compression of Trapped Air in Shale

The slaking of shale can also be caused by the compression of trapped air

(Figure 7.10). When shale is not fully saturated and it is immersed in water, the air in

shale will be trapped. Since the pore sizes of shale are very small, very strong

capillary force will be generated to pull the water toward the trapped air (shown by

arrows in Figure 7.10). The trapped air in shale will then be compressed by this

water infiltration, until finally the air pressure and the capillary pressure balance. As

a result, the air pressure will be greatly increased and the shale matrix around the air

pocket will be subject to tension, which may cause the disintegration of the shale

sample.

It must be noted that the definition of "slaking" and "swelling" and their

underlying mechanisms are still controversial. According to ISRM (1983), slaking "of

swell susceptible rocks can occur if they are subject to swelling-drying cycles or

intensive air-drying". Swelling is defined as "the time dependent volume increase

involving physico-chemical reaction with water". According to these definitions,

swelling is not a type of slaking as described by Moriwaki (1974).

As has been said, slaking disintegrates shale and changes its mechanical
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behavior. Therefore, it is necessary to consider the coupled chemical-mechanical

effects in shale.

7.3. Disturbance Sources and Mechanisms in Shale

Based on the behavior of shale and the analysis of the disturbance

mechanisms of soil and rock sampling, the disturbance mechanisms of shale

sampling can be roughly predicted. The disturbance sources presented in Section 2.2

will be used as a template.

7.3.1. Borehole Drilling

During the drilling of the borehole in shale, the following disturbance

mechanisms may be important:

The in-situ stress in shale formation will be relieved by borehole drilling. Due

to this stress relief, crack opening can be initiated (refer to Figure 6.5). As has been

said, the opening and propagation of cracks in shale will be affected by its bedded

structure.

The temperature of shale can be changed by the heat generated in drilling and

the temperature difference between shale and borehole fluid. In addition, if

compressed air is used as the borehole fluid, the evaporation of pore water also

contributes to the temperature change. Since shale is a relatively hard material, the

friction between the drilling machine and shale may generate a significant amount of

heat. The change of temperature in shale can cause different thermal strains in shale
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matrix and the pore liquid due to their different reactions to temperature change. As

a result, excessive pore pressure will be generated in shale.

If compressed air is used as the borehole fluid, then the pore water evaporates

at the surface (i.e. the wall and bottom) of the borehole. Based on the description in

Section 7.1.3, very large negative pore pressure will be generated. Therefore, the

effective stress of shale will increase and shale at the surface of the borehole is then

subject to contraction. However, for shale very close to the surface but not exposed

to the air, no negative pore pressure is generated and no contraction occurs. This

strain incompatibility can cause stress changes within shale. In addition, since

negative pore pressure is generated at the borehole surface, a hydraulic gradient will

exist and water will migrate to the surface of the borehole.

If drilling mud is used as the borehole fluid, then various physico-chemical

effects introduced in Section 7.2.3.2 are likely to occur. The water in the drilling mud

may cause swelling and slaking of shale, and the mechanical properties of shale are

changed. With the change of mechanical behavior, the stress and strain field around

the borehole will also be changed.

7.3.2. Coring Process

Since natural shale has relatively high strength, it is usually sampled by

coring. Some information on coring barrels and coring procedures has been

provided in Section 6.1. The possible disturbance mechanisms during coring are

listed below.
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Stress concentration may occur due to the stress relief in coring. Based on the

results of the FEM analysis presented in Section 6.2.3, a zone of tensile stress may

also be generated in the coring process of shale (refer to Figure 6.8). However, due to

the bedded structure of shale, the consequences of this tensile stress zone on the

shale core will be much larger than in rock.

During coring, temperature changes, capillary pressure, and

physico-chemical effects also occur. The details have been presented in Section 7.3.1.

When the shale sample has completely entered the core barrel, a torque will be

applied to detach it from the native shale formation, which will also disturb the

sample.

7.3.3. Move Shale Core to Ground Surface

While shale core is pulled up in the borehole, the mud pressure on it

decreases with decreasing depth. The pore pressure that was originally in shale also

decreases with the mud pressure. In this case, gas exsolution may occur due to the

decrease of pore pressure. In addition, the pore pressure in shale may not decrease

as quickly as the mud pressure due to its very low permeability, and tensile stresses

can be generated in the shale sample by the rapid decrease of mud pressure.

7.3.4. Transportation and Storage

During the transportation and storage of shale, the temperature of the shale

sample can be changed with the environment temperature. The mechanism of
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temperature change was presented in Section 7.3.1.

If the sample is not properly sealed, it may be exposed to air, and water

evaporation will occur, producing negative pore pressures. The effective stress in the

shale sample is then changed and contraction of the sample can occur (see Section

7.1.3). Water will migrate to the surface of the sample due to the hydraulic gradient.

In addition, oxidation may also occur when a shale sample is in contact with

air. For example, if the shale being sampled contains pyrite, then pyrite can be

oxidized to ferrous sulphate FeSO4, which in turn oxidizes to goethite (at relatively

high pH) (Brookins, 1988). Both oxidation processes need water to proceed, and they

generate free sulphuric acid. Any calcium carbonate in shale will then be altered by

the sulphuric acid to sulphate (gypsum) in the presence of water:

H2SO4 + CaCO3 + H20 -> CaSO4.2H20 + C02

The formation of gypsum causes an increase of 23% in volume (Blatt, 1982). If shale

is exposed in air for a long time, then gypsum will continue to grow, causing

deformation in the surrounding shale matrix.

7.3.5. Sample Preparation

Sample preparation of shale is also different for different kind of test apparati.

Since sample preparation is generally performed in air, the mechanisms introduced

in Section 7.3.4 are still applicable. However, a step which is extremely important for

shale is the resaturation.

Due to water evaporation, cracking and other effects of sampling, the shale
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samples that are originally fully saturated in-situ are usually more or less

desaturated. Therefore, they need to be resaturated before testing. The resaturation

process must be performed very carefully so that the addition of water to clay

minerals will not cause slaking of shale, and no air is trapped in the sample.

7.4. Summary

This section basically outlines the study of shale sampling disturbance

following the structure presented in Section 2.4. It has been shown that to

understand the mechanism and to identify the important disturbance sources, the

behavior of the material being sampled must first be understood. Therefore, this

section first presented several important points of shale behavior. Based on this and

the information collected for soil and rock sample disturbance, the sampling process

in shale is outlined and the mechanisms of some disturbance sources are evaluated

for shale.

However, the understanding of disturbance mechanism in shale presented in

the section is still very crude. More rigorous investigations are necessary to gain

refined understanding, which will be presented in next section.
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8. Suggestions and Conclusions

The disturbance mechanisms shown in Section 7.3 are based on the behavior

of shale introduced in Section 7.2, the general listing of disturbance sources in

Section 2.2, and our knowledge on the disturbance mechanisms of soil and rock

sampling. Therefore, the mechanisms presented in Section 7.3 are all qualitative

predictions. In order to obtain a deeper understanding of the disturbance

mechanisms and effects in shale, rigorous analyses are necessary.

8.1. Improve the Understanding of Disturbance

Mechanisms and Effects in Shale

Based on the information collected from soil and rock sample disturbance,

better understanding of the disturbance mechanisms and effects can be obtained

either by theoretical modeling, physical modeling, or a combination of both.

Theoretical modeling includes analytical methods and numerical methods. Typical

examples are the Strain Path Method in soil (analytical) and the Finite Element

Method (numerical). Physical modeling involves the use of artificial material and the

simulation of disturbance. Likewise, the disturbance mechanisms and effects in shale

can also be analyzed by these methods.

8.1.1. Theoretical Modeling

Before the theoretical modeling methods can be applied, a behavior model of
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shale must first be provided. A good theoretical model for shale should be able to

cover the major aspects of its behavior. With the characteristics and behavior of shale

described in Section 7.1 and 7.2, the following aspects may need to be taken into

consideration:

" Anisotropy: Natural shale has inherent material anisotropy, i.e. the

bedded structure. Due to this inherent anisotropy, the mechanical

properties of shale are also anisotropic.

" Crack opening and propagation: It has been shown in Section 6.3 that

crack opening and propagation is the direct and most important effect of

disturbance in rock. Other effects, for example the decrease of P-wave and

S-wave velocity, the decrease of stiffness, the increase of permeability etc.

can all be explained by increasing microcrack density. Therefore, the

theoretical model should be able to characterize the development of

microcracks and how the different parameters of the behaviors are

affected.

" Physico-chemical Effects: The importance of physico-chemical effects in

shale behavior has been described in Section 7.2.3.2. In order to analyze

the slaking process and its influence on the mechanical behavior of shale,

shale is usually modeled as a semi-permeable membrane which isolates

the pore liquid in shale from the external liquid. Osmotic pressures can be

generated due to the different ion concentrations on the two sides of this

membrane, and water exchange is then driven by this osmotic pressure.
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For better handling of the problem, this osmotic pressure is often

converted into a hydraulic gradient. On the other hand, this

semi-permeable membrane of shale is not perfect, i.e. it also allows ions to

cross and ion exchange may occur between shale and the external liquid.

However, the mechanisms related to the physico-chemical effects are still

controversial.

" Thermal Effects: When the temperature of shale changes, different phases

of shale will have different thermal strains. The incompatible thermal

strains cause thermal stresses to be generated. For the liquid phases in

shale, this thermal stress is essentially the excess pore pressure. When

there is a temperature gradient in shale, the excess pore pressure

generated will also have a gradient, which again causes water migration.

It has been found that since shale has very small permeability, water

migration in shale is chiefly driven by chemical gradients and thermal

gradients.

" Poromechanics: Shale is a multi-phase system, and a theoretical model

should be able to describe the behavior of each phase and their interaction.

This requires that poromechanics must be included in the model.

* Dynamic Response: Since shale is subject to dynamic disturbance, e.g. the

vibration of the drilling machine and the core drilling bit, the dynamic

response of shale should be covered by the model.

However, a theoretical model that incorporates all of these factors will
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certainly become very complicated. In addition, the number of material parameters

will be extremely large. For example, 31 parameters were used by Chen et al. (2001)

to calculate the well bore stability by considering the coupled chemical - thermal -

poroelastic effects (not all the parameters are material parameters).

Since our objective is to evaluate the disturbance severity, a simplified

behavioral model should be sufficient. Based on the descriptions of shale behavior, a

transverse isotropic linear elastic model is probably a good first approximation for

the mechanical behavior of shale. On the other hand, numerical methods are usually

more versatile than analytical methods in complicated problems. Therefore, we

recommend the analysis be performed using numerical methods based on the

transverse isotropic linear elastic model. However, generally the direction of the

borehole axis is not normal to the bedding planes and the problem is no longer an

axi-symmetric problem. Figure 8.1 illustrates this point.

Borehole
Axis

Figure 8.1 Orientation of Bedding Planes and Borehole Axis in Shale Coring

The advantage of the theoretical modeling is that, as long as the behavioral
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model is suitable for shale, the stress and strain fields of the whole range considered

can be determined, and they can be traced for the entire coring process. However,

the accuracy of the stress and strain fields is restricted by the ability of the behavior

model. For example, the transverse isotropic linear elastic model can never consider

crack opening and the consequent stress redistribution.

8.1.2. Physical Modeling

Another way to gain understanding of the disturbance mechanism in shale is

to use an artificial material as a physical model of natural shale, similar to what has

been done in soil with Resedimented Boston Blue Clay (see Section 3.3.2.3). As a

matter of fact, artificial materials were used in the modeling of rock and shale

sample disturbance. For example, Holt et al. (2000) made use of artificial sandstones

to study the disturbance effects caused by stress relief. Regarding shale, Niiesch

(1991) actually has produced artificial Opalinus Clay Shale and tested it extensively.

If artificial shale is to be used, an important problem is the representativeness

of the artificial shale. In general, the representativeness means that the artificial

material and the natural material must be similar in the following aspects (Holt et al,

2000):

* The mechanical behavior must be similar.

* The petrophysical properties must be similar (porosity, elastic wave

velocities, permeability etc.).

* The visual appearance should be similar.
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* The microstructure should be similar.

Once the problem of representativeness is solved, artificial shale can be made

at the in-situ stress level at which the real sampling is performed. The "in-situ" state

and behavior of the artificial shale can be measured at this stage. Then the coring

process can be simulated on the artificial material in the laboratory. The state change

of the artificial material can be measured by proper instruments. Comparing the

initial state of the artificial shale and the state of the core, the mechanism of

disturbance can be obtained. Comparing their behavior with the "in-situ" behavior,

the disturbance effects can be obtained.

Clearly, physical modeling can simulate the entire process of shale sampling.

The state of the sample can be measured all through the sampling process, and the

disturbance effects are also readily obtained. However, all the information obtained

is restricted by the measuring capabilities. For example, strain measurements may be

only possible on the surface of the artificial material. More importantly, the

representativeness of the artificial material determines how well the physical model

simulates the real situation. If the artificial material is only similar with the natural

material in mechanical properties, then it can definitely not be used to model the

coupled chemical - mechanical behavior of the natural material.

8.1.3. Discussion

Through the description of Section 8.1.1 and Section 8.1.2, it can be seen that

both modeling methods can be used to gain better understanding of disturbance
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mechanisms and effects. Each modeling method has it advantages and

disadvantages. In order to make best use of both of them, it is probably wise to

combine both of them.

It is worth noting that coupled chemical - thermal - poromechanical problem

is not easily solved by either of the modeling methods. For theoretical modeling,

coupling leads to an overly complex model and too many material parameters need

to be determined. For physical modeling, the simulation of this coupled process

requires many similarities between the artificial material and the natural material,

including the mechanical properties, chemical properties, thermal properties,

petrophysical properties, etc. This is probably too difficult to achieve.

However, once the mechanisms and effects of disturbance in shale can be

understood, measures can be developed to minimize the disturbance effects.

8.2. Conclusions

Sample disturbance has long been a research topic for the profession.

However, it remains one of the most difficult problems posing major challenges.

Through an extensive literature review, this thesis first examined to what

extent the disturbance problem is understood by examining sample disturbance step

by step in well researched geomaterials, such as soft soil and rock. Specifically, this

review looked at sample disturbance sources starting with borehole drilling, over

sample retrieval to preparation for laboratory tests. Although all these sources do

have an effect, some are much more important than others and one can, as a first
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approximation, concentrate on them. It was found that both theoretical modeling

and numerical modeling can be used to understand disturbance mechanisms and

effects.

The sample disturbance problem in soil was reviewed first. Through the

analysis of disturbance mechanisms, it seems that the most important disturbance

source in soil is tube sampling. Stress relief may be another important disturbance

source. Both theoretical modeling and physical modeling are applied to understand

sample disturbance in soil. For example, in order to understand the mechanism of

tube sampling disturbance, the Strain Path Method, a theoretical method, is used to

determine the strain field caused by tube penetration. Based on the strain pattern

obtained from the Strain Path Method, Resedimented Boston Blue Clay can then be

used, for instance, as a physical model of natural soft clay to simulate the

disturbance effects.

An alternative way of studying disturbance mechanisms and effects is

through a simple theoretical behavioral model which can predict the principles of

the disturbance mechanisms and effects. The results are meaningful but limited.

The sample disturbance problem in rock was then reviewed. The most

important disturbance source in rock seems to be the stress relief caused by borehole

drilling and coring. The literature again shows that the theoretical and physical

investigations are used to understand the mechanisms and effects of disturbance.

For instance, Finite Element modeling can provide reasonable approximation of the

coring process. The physical investigation discussed in this thesis concentrated
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mainly on the URL research in which rock cores from different depths showed

significantly different sample disturbance effects.

Finally, sample disturbance in shale was investigated mainly by looking at

similarities and differences with soil and rock sampling. Due to the limited

understanding of shale behavior and sampling disturbance, only qualitative

predictions were made on the disturbance mechanisms in shale. Based on the

discussion, however, stress relief and various chemical effects are likely to be the

most important disturbance sources. According to what has been described on soil

and rock sample disturbance, a combination of both theoretical and physical

modeling should be applied to analyze the disturbance mechanisms and effects in

shale. However, due to the importance of the coupled chemical - thermal -

poromechanical effects in shale behavior, there are still fundamental difficulties in

the application of these modeling methods. Therefore, understanding this coupled

behavior should be the focus of further research.
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