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ABSTRACT

A multivariable sampled-data feedback system contains an analog plant
controlled by a sampled-data compensator. Conic sectors that can be
used to analyze sampled-data feedback systems are presented and then

proved to be valid. Also included is the gain of the sampled-data
operator.
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1. INTRODUCTION

The usefulness of conic sectors for analyzing feedback systems [1,2,3,4]

depends on the determination of a particular conic sector for the feedback

system of interest. Conic sectors that are useful for the analysis of sampled-

data feedback systems are now described. These results are compared with

previously reported results for analog feedback systems [3,4].

Preliminaries are presented in Section 2. Conic sectors useful for

analog feedback system are reviewed in Section 3. The major results of this

paper are the new conic sectors useful for sampled-data feedback systems

presented in Section 4. Proofs of the new results are in Section 5, and

a summary in Section 6.
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2. PRELIMINARIES

The notation leading up to and including conic sectors is now defined.

The use of conic sectors for determining closed loop stability and robustness

is reviewed. For more detail see [1] to [5].

r m r
A relation K is any subset of the product space L x L where L is the

2e 2e 2e

extended normed linear space of square integrable functions e: R +Rr

(from the set of real numbers > 0 to the set of r-dimensional vectors) that

have finite truncated norms for all T e R:

I lell l I | (t) II dt (1)

The subscript "E" indicates the Euclidean vector norm. In the limit as

T +-X the truncated norm is the L2 function norm denoted by I e| I L
The inverse relation always exists and is defined by

K (u,e)e L x Lr (e,u)e K (2)
2e 2e ~

The gain of the relation K is defined by

I K| |L sup IT (3)
2 

where the supremum is taken over all nonzero e in the domain of K., all

corresponding K e in the range of K, and all T e R+. The relation K is

L2e-stable if I IKI IL <- . An operator K is a special case of a relation

NOTE TO PRINTER:

Use script boldface for symbols e, u etc.
Use roman boldface for symbols e A, H etc.
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that satisfies the two conditions (1) the domain is equal to Lr and
2e

(2) for each e in the domain there exists a unique u in the range such

that (e,u)e K.

Define K to be a relation and C and R to be operators. If

I1u - C e112 < R el | 2 - lel2 (4)T ~ T ~ :

for all (e,u)e K, T e R.+, and some E>O then K is strictly inside cone

(C, R.) with center C and radius R. On the other hand, if

lie - C U 112 I> R ul 2 (5)

for all (u,e)e - KI and all TeR+, then -KI is outside cone (C, R).

A general feedback system is shown in Figure 1. It is defined

algebraically by

(e,u)e K

(u,y)e G

e=r-y (6)

where e,r,y e Lr and u e Lm
- - - 2e 2e

Define the closed loop relations

(r,e)e E
(7)

(r,u)e U
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The feedback system is closed loop stable if E and U are L2 -stable. A

sufficient condition for this to be true [1,3] is that a cone (C, exists

such that

K is strictly inside cone (C,1 )

-G is outside cone (C,R)

Alternatively, a sufficient condition for E and U to be L2e-stable is that

a cone (G,R) exist such that

-KI is outside cone (GR)

G is strictly inside cone (G R)

This completes the preliminary section. Now it is reviewed how conic

sectors are applied to analog feedback systems.



3. ANALOG FEEDBACK SYSTEMS

For an analog feedback system the relations K and G of Figure 1 are

causal linear time invariant (LTI) operators, and hence can be represented

by the Laplace transform matrices K(s) and G(s). Lemma 1 gives sufficient

conditions for a LTI operator to be strictly inside of a cone. Lemma 2 (which

can be considered a corollary of Lemma 1) gives the gain of a LTI operator,

and Lemma 3 gives sufficient conditions for the inverse of a LTI operator to

be outside of a cone.

Lemma 1 [4, Lemma A4] Define the LTI operators K, C, and R. Assume that

RI is also a LTI operator, and that K-C, R, and RI are L -stable. K is
2e

strictly inside cone (C,R) if

[R(jW)]> 1 a [K(jw)-C(jw)] (10)
min - i1/2 max - _

for all w and some s>O.

Lemma 2 [e.g. 2] The gain of the LTI operator K is

I IKI IL max KmaxLK(jw)] (11)
2 w
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Lemma 3 [4, Lemma A2] Define the LTI operators K, C, and R. Assume that

R is also a LTI operator, and that K(I+CK) , R, and R are L -stable. Then,
2e

-KI is outside cone (C,R) if

a [R K(I+C K) (jo)]< 1 for all X (12)
max

The minimum and maximum singular values of a complex-valued matrix

are denoted by & . and a , respectively. For scalars both a . and a
mmn max min max

are equal to the absolute value. See [6,7] for more information about

singular values.

In Lemma 1 it is not necessary that K be L2e -stable, but K-C must be.

Stability is determined by the location of the open-loop poles. In Lemma 3

the open-loop stability requirement is replaced by the closed-loop stability

requirement that K(I+CK) is L2 -stable. This is determined by the location

of the closed loop poles or by the multivariable Nyquist criterion.

Lemmas 1,2, and 3 can be used to analyze analog feedback systems, in

particular to determine multivariable robustness margins. See, for instance,

[5]. Our attention now shifts to sampled-data feedback systems. Results

similar to these three lemma are now presented.
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4. SAMPLED-DATA FEEDBACK SYSTEMS

For sampled-data feedback systems the relation G of Figure 1 is a

causal LTI operator and the relation K is a causal sampled-data operator.

A block diagram of K is shown in Figure 2. The prefilter and hold are

represented by Laplace transform matrices F(s) and H(s), respectively; and

the digital computer is represented by the z-transform matrix D(z). The

star notation [8] is defined:

D (s) = D(z)

jWT
z=e

(13)

[F e(s)]* X T F e(s-jw n); W -
T s s Tn

The input-output transformation of the sampled-data operator is

u(s) = H D* [F e(s)] * (14)

The sampled-data operator K is a linear time varying (LTV) operator. It

cannot be represented by a transfer function matrix.

Results analogous to Lemmas 1,2, and 3 are now presented. Theorem 1

gives sufficient conditions for a sampled data operator to be strictly inside

of a cone. Theorem 2 gives an upperbound for the gain, and Theorem 3 gives

sufficient conditions for the inverse of a sample-data operator to be outside

of a cone. The proofs are presented in Section 5.

The abbreviation Z is short for Z
n n=-_
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Theorem 1: Define the sampled-data operator Kand the LTI operators

C and R. Assume that RI is also a LTI operator, and that K, C, R and R.I

are L -stable. Then K is strictly inside cone (C,R) if
2e

a. [R~jw)] 1 r2 2 1
a R(jw)]> (H2 I 2 ClI2IL D(*F )+ C H D*F -C)min1- max -k -- n max 2 -k- k -k

(15)
for all w and some £>0

Furthermore, the choice of center C = 1 H D*F (called the "optimal center")
- T-- -

minimizes the lower bound for C i [R(jw)].
mn --

Theorem 2: An upperbound for the gain of the sampled-data operator is

11KII. < max M C 2 (H k) (16)
O<w<< T k n max

T

Furthermore, this upperbound equals the gain when H, D*, and F are single-

input single-output (SISO).

Theorem 3: Define the sample-data operator K and the LTI operators C

and R. Assume that RI and (I+CK ) are also operators, and that

K(I+CK) , R and R are L2stable. Then -KI is outside cone (C,R) if

a [R(jW)]< 1 (H D* F 1/2 for all w (17)
max - max k--cZ"-k

where
DC (s) = D [I+(F C H)* D*(s)]- 1 (18)

In Theorem 1 it is assumed that both K and C are L -stable, which is
2e

an open-loop stability assumption. The center C is otherwise arbitrary,
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though poor choices result in large radii; and the optimal center

minimizes the radius. In Theorem 3 the less restrictive assumption is

made that K(I+CK ) is L2 -stable, which is a closed loop stability as-

sumption. This closed loop system has the input-output transformation

y(s) = H D* [F r(s)]* (19)
CZ cA

which is similar in structure to the open-loop sampled-data operator

(14), and is stable if the poles of D (z) are inside the unit circle.

After some thought (possibly after considerable thought) Theorems 1,

2, and 3 should appear to be natural extensions of Lemmas 1,2, and 3. This

is easiest to visualize when F(jw) is bandlimited to Iwl< T , in which case

the lemma and theorems give the same results, except that for the latter the

radius is periodic. When F(jw) is not bandlimited,then the radii and gain

increase depending on the amount of aliasing.



5. PROOFS

Theorems 1,2, and 3 are proved in this section. Use will be made of

the Laplace transform matrices

H(s)D*(s)F(s)-C(s) ; n=0

K (s) =
--n = (20)

1 H(s)D*(s)F(s-jW n) n?0
T - - - s

for the following manipulation of equation (14):

u(s) - C(s)e(s) = E Kn(s)e(s-jW n) (21)

n

A critical step used in the proofs is highlighted in the following lemma.

Lemma 4: Define the K (s) of (20) and assume that for Ijw sufficiently

large that1

X I IK (jw)i < for some a,3 > 0 (22)

n -- 'n ~an I- 1+1B

Then it follows that

00

21 / |Iy Kn(jn)e(jw-jw n) 1 2 d
2T -- s E

-00
00

< -- X IIK (Jw-Jw k) 112IJle(jW) I d (23)
-2 Lk n E

Proof of Lemma 4: Use is made of the Cauchy-Schwartz inequality

[9, p.30] and Lebesque Dominated Convergence [10, p.44].

1The matrix norm I IA = o (A).
max -
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00

< I || d |K (jew) I (24)

-00

1 27T s-2. I[n -n ( I I I2 1 se(je-Je k)| IIde (25)

(By the Cauchy-Schwartz inequality. Define a = IIK (jw)lI,

b = Ie(jw-jw n) E Define a and b as Z2 vectors

with components an and b for all integers n. Then,

n n

2~ri-c [I I K(26)= 27 J [ I I K (jw) II] Ile(j(- jws k)|| dw (26)

[By Lebesque Dominated Convergence, which is guaranteed
by the assumption (22)].

-00oo

This completes the proof.

Remark: The assumption (22) used to guarentee Lebesque Dominated

Convergence is true if F(s) and H(s) each have at least a one-pole rolloff,

i.e., for wlj sufficiently large, IIF(j) |i and IIH(jw) Ii are bounded by

-a- for some 5>O.
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Proof of Theorem 1: The objective is to show that K is strictly inside

cone (C,R). Except for the use of Lemma 4, this proof is similar to

[4, Lemma A4]. Define the truncated function

_ (R e)(t) ; t<T
e (t) (28)
--T (28)

For all e e L2e and all T e Rt:

|I (K-C)el 12 = I (K-C)RI
e Ii (29)

rl 2:2~- I IZ e (30)

I f K -nR 1 e (jw)l dw (by Parsevals' theorem) (31)
2TF E

2--cn

<2 | [ Z II I K (j-jw- k)I ]IR-1 (jW) I I dw (32)

(by Lemma 4)

00

< f (1-) e (jw) |E dw [by (15)] (33)

-00

= (1-) Ile 1 IL (by Parsevals' theorem) (34)

< IIR el - £' lel l2 where E' = EIIRI L (35)

This verifies the inequality (4), which determines strict inequality,

and completes the proof.
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Proof of Theorem 2: The objective is to verify the upperbound for the

gain of the sampled-data operator and to show that the upperbound actually

is the gain for the SISO case. The upperbound is a special case of Theorem 1

when the center C(s)=O, and a separate proof is not included. For the SISO

case the following input signal achieves the upperbound as the truncated time

e(t) = X la ncos [ (w -wsn)t + Arg(an)] (36)
n

where

a = d*(-jw )f(-jw +W n) (37)
n o o s

X = frequency that maximizes (16)

This complete the proof.

Remark: The gain of the multivariable sampled-data operator remains

to be found. We conjecture that the gain is given by (16), but we have been

unable as of yet to find a signal [i.e. a vector version of (36)] that

achieves the upperbound given by (16).

Proof of Theorem 3: The objective is to show that -KI is strictly outside

cone (C,R). This is true if and only if the composite operatorRK(I+CK )I

has gain < 1. This proof shows the latter. The assumption that (I+CK)

guarantees that the feedback system with the closed loop operator RK(I+CK)I

is well-posed [11]. Let

K (s) = - R(s)H(s)D* (s)F(s-jw n) for all n (38)
-h T -- - c -- s

and
e(t) ; t<

e (t) = (39



then for all e e L2e and all T e Rt:

IIRK(I+CK) e l < RK( I+CK) Ie 12 (40)
2

-CO 

00

1< - e (j W) I2d [by (17)] (43)

= 1e|l 2 (44)

This completes the proof.
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6. CONCLUSIONS

Conic sectors that are useful for the analysis of multivariable

feedback systems are presented in this paper. The conic sectors are

analogous to those for multivariable analog feedback systems, and are

distinguished by the use of the frequency domain inequality of Lemma 4.

The usefulness of the new conic sectors is demonstrated in [5], where

it is shown how they can be used to determine closed loop stability,

robustness margins, and steady state response to commands in sampled-data

designs.
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Compensator Plant

FIGURE i: The general feedback system.
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FIGURE 2: The hybrid compensator.


