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Abstract

We present a smoothed analysis of Gaussian elimination, both with partial pivoting
and without pivoting. Let A be any matrix and let A be a slight random perturbation
of A. We prove that it is unlikely that A has large condition number. Using this result,
we prove it is unlikely that A has large growth factor under Gaussian elimination
without pivoting. By combining these results, we bound the smoothed precision
needed to perform Gaussian elimination without pivoting. Our results improve the
average-case analysis of Gaussian elimination without pivoting performed by Yeung
and Chan (SIAM J. Matrix Anal. Appl., 1997).

We then extend the result on the growth factor to the case of partial pivoting, and
present the first analysis of partial pivoting that gives a sub-exponential bound on the
growth factor. In particular, we show that if the random perturbation is Gaussian
with variance or2, then the growth factor is bounded by (n/cr)(logn) with very high
probability.
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Title: Associate Professor of Applied Mathematics
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Chapter 1

Introduction

In this thesis, we present an analysis of the stability of Gaussian elimination, both
without pivoting and with partial pivoting. The analysis is carried out under the
smoothed model of complexity, as presented in [21]. We thus hope to explain the
experimental observation that Gaussian elimination is stable in practice, even though
it is extremely unstable in the worst case.

In the remainder of this chapter, we introduce the Gaussian elimination algorithm
along with associated definitions of condition number and growth factors, and describe
what is meant by a smoothed analysis of this algorithm.

1.1 Gaussian Elimination

Gaussian elimination is one of the simplest and perhaps the oldest numerical al-
gorithm. It can be looked at in two slightly different but equivalent ways. One
emphasizes the solution of the linear system of equations

Ax = b

and the other the LU-factorization of the coefficient matrix

A= LU

into a lower triangular matrix with unit diagonal, and an upper triangular matrix.
The algorithm consists of choosing one of the equations and one of the variables,

and using this equation to eliminate the variable from the remaining equations, thus
giving a smaller system to which Gaussian elimination may be applied recursively.
The choice of equation and variable is determined by which pivoting rule is being
applied.

The simplest case is when no pivoting is done, when the first equation and first
variable are chosen to be eliminated first.

The most commonly used pivoting rule is called partial pivoting, and it chooses the
variables in order, but at each step to pick the equation that has the largest coefficient
(in absolute value) of the variable to be eliminated. This leads to a matrix L in which
all entries have absolute value at most 1.
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A third pivoting rule is to choose the largest coefficient among the whole system,
and eliminate using the variable and equation to which it corresponds. This is known
as complete pivoting, and its worst case stability is provably better than that of
partial pivoting. In spite of this, it is not commonly used as it requires twice as many
floating point operations, and partial pivoting is usually stable enough.

It should be noted that the equation

A=LU

corresponds to no pivoting. For a general pivoting rule, the equation must be rewrit-
ten as

PAQ = LU

where P and Q are permutation matrices. Partial pivoting corresponds to Q = I
and Ljl < 1, while complete pivoting can be defined by

ILij < 1 and Uij < IUiil

1.1.1 Error analysis: condition number and growth factors

Wilkinson [24] showed that the relative error when a linear system is solved using
Gaussian elimination satisfies

Ix - x11 < no(l)K(A)pL(A)pu(A)e

where K(A) is the condition number of A, pL(A) and pu(A) are the growth factors,
e is the machine precision, and the polynomial factor depends on the norms in which
the condition numbers and growth factors are defined.

The condition number is an intrinsic property of the matrix, being defined as

K(A) = IIAII IA-1 11

and it measures how much the solution to the system Ax = b changes when there
are slight changes in A or b. Any technique to solve the system will incur this error.

The growth factors are a contribution to error that is specific to Gaussian elimi-
nation. They are defined as

PL(A) = IILI and pu(A) = ull
11AII

They measure how large intermediate entries become as Gaussian elimination is car-
ried out. Partial pivoting eliminates the growth in L, since its entries remain bounded.
However, pu(A) can grow exponentially with n in the worst case. In fact, Wilkinson
showed that a tight bound on pu(A) with the max-norm is 2

n -1 . On the other hand,
it is observed in practice that pu(A) is extremely well-behaved: for random matrices
it grows sublinearly [23]. We will give a partial explanation for this behaviour in
Chapter 3.
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1.2 Smoothed analysis

Spielman and Teng [21], introduced the smoothed analysis of algorithms as a means of
explaining the success of algorithms and heuristics that could not be well understood
through traditional worst-case and average-case analyses. Smoothed analysis is a
hybrid of worst-case and average-case analyses in which one measures the maximum
over inputs of the expected value of a function on slight random perturbations of that
input. For example, the smoothed complexity of an algorithm is the maximum over
its inputs of the expected running time of the algorithm under slight perturbations of
that input. If an algorithm has low smoothed complexity and its inputs are subject
to noise, then it is unlikely that one will encounter an input on which the algorithm
performs poorly. (See also the Smoothed Analysis Homepage [1])

Smoothed analysis is motivated by the existence of algorithms and heuristics that
are known to work well in practice, but which are known to have poor worst-case
performance. Average-case analysis was introduced in an attempt to explain the
success of such heuristics. However, average-case analyses are often unsatisfying as
the random inputs they consider may bare little resemblance to the inputs actually
encountered in practice. Smoothed analysis attempts to overcome this objection by
proving a bound that holds in every neighborhood of inputs.

1.3 Our results

For our analysis of Gaussian elimination, the model we use is that the input matrix A
has additive Gaussian noise. In other words,

A =A + G

where A is the "true" value of A, and aG represents noise. The matrix G is assumed
to be composed of independent standard normal variables, that is, G - 51 (0, I I).

We prove that perturbations of arbitrary matrices are unlikely to have large con-
dition numbers or large growth factors under Gaussian elimination, both without
pivoting in Chapter 2 and with partial pivoting in Chapter 3. In particular, we show
that

9.4n (1 + /log(x)/2n)
Pr [K(A) > x] <

xc7

Pr [pL(A) > x] < - - + V 2 2l og n +o

Pr [pu(A) > 1 + x] I< ( 
v2i xc

for Gaussian elimination without pivoting.
For partial pivoting, we prove

Pr[pu(A) >] x (1 ( n(l + c-V)) ) 2) gn) - g
A X 07

11



This is the first sub-exponential bound on the growth of partial pivoting, even in
the average case. Hence we feel that the result is important, even though the bound
of (rt/)()"(l °gn) it establishes on the growth remains far from experimental observa-
tions.
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Chapter 2

Smoothed Analysis of Gaussian
Elimination without Pivoting

2.1 Introduction

In this chapter, we consider the growth factor of Gaussian elimination when no piv-
oting is done. Since the matrix A has a Gaussian distribution, the event that a pivot
is exactly zero (in which case the LU-factorization fails) occurs with probability zero.
We will show that the growth factors Pu and PL have tail distributions (1 /x), that
is,

Pr [PL,U(A) > x] = (

We are able to show that the condition number of A has tail distribution

Pr [K(A) > x] = (logx)

a slightly weaker bound.
The remaining sections are organized as follows: in Section 2.2, we bound the tail

of the condition number. This section also contains the heart of the arguments we
make, Theorem 2.2 on the distribution of the smallest singular value of a non-central
Gaussian random matrix. We then bound the growth factor, in U and in L, and
combine these three results to give a bound on the expected precision of Gaussian
elimination without pivoting. We then extend the analysis to the case when A is
symmetric, and certain entries are known to be zero, in Section 2.5.

2.2 Smoothed analysis of the condition number of
a matrix

In his paper, "The probability that a numerical analysis problem is difficult", Dem-
mel [7] proved that it is unlikely that a Gaussian random matrix centered at the
origin has large condition number. Demmel's bounds on the condition number were
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improved by Edelman [10]. In this section, we present the smoothed analogue of this
bound. That is, we show that for every matrix it is unlikely that a slight perturbation
of that matrix has large condition number. For more information on the condition
number of a matrix, we refer the reader to one of [12, 22, 8]. As bounds on the norm
of a random matrix are standard, we focus on the norm of the inverse. Recall that
1/ IA-1 11 = minx IIAxII / Ixl.

The first step in the proof is to bound the probability that IIA- 1VII is small for
a fixed unit vector v. This result is also used later (in Section 2.3.1) in studying
the growth factor. Using this result and an averaging argument, we then bound the
probability that A-1 is large.

Lemma 2.1 (Projection of A-1 ). Let A be an arbitrary square matrix in Rlx"n,
and A a matrix of independent Gaussian random variables centered at A, each of
variance U2. Let v be an arbitrary unit vector. Then

Pr [IIA-'VI > x] < -

Proof. First observe that by multiplying A by an orthogonal matrix, we may assume
that v = e. In this case,

IA-vI = 11 (A-1 ):, 11,
the length of the first column of A- 1. The first column of A-1 , by the definition of the
matrix inverse, is a vector orthogonal to A 2:,,:, i.e., every row but the first. Also, it
has inner product 1 with the first row. Hence its length is the reciprocal of the length
of the projection of the first row onto the subspace orthogonal to the rest of the rows.
This projection is a 1-dimensional Gaussian random variable of variance 2, and the
probability that it is smaller than /x in absolute value is at most

1 [ / e-t2/2O2 dt < 1

which completes the proof. L

Theorem 2.2 (Smallest singular value). Let A be an arbitrary square matrix
in RI x , and A a matrix of independent Gaussian random variables centered at A,
each of variance cr2. Then

Pr [I A - 1 > x] < 2.35
X(Y

Proof. We apply Lemma 2.1 to a uniformly distributed random unit vector v and
obtain

Pr [A-'V|| > x] < I (2.2.1)
A,v[ 7Tl 

Now let u be the unit vector such that A-1uIu A -1 11(this is unique with proba-
bility 1). From the inequality

IIA-1vII > IIA-' J Ju,v)l,

14



we have that for any c > 0,

PA, [Av > > >Pr [IA-' > xl and (uiv)I > X

A: [' >-%||] Pr [(ujv) > 4]
A AVv Ti

So,

Pr [A-'WI > x] <PrA, [IIA 1VI Ž xV]
A - PrA,V [I(ulv) I > V/

< 
ITV

InI (by (2.2.1))

(by Lemma A.5)

where g is a standard normal variable. Choosing c = 0.57, and evaluating the error
function numerically, we get

Pr [IA- ' 1 > x] < 2.35 v .
A XO'

Theorem 2.3 (Condition number). Let A be an n x n matrix satisfying A < x/ni,
and let A be a matrix of independent Gaussian random variables centered at A,
each of variance cr2 < 1. Then,

Pr [K(A) > x] <
9.4n (1 + V/log(x)/2n)

X.

Proof. As observed by Davidson and Szarek [6, Theorem II.11], one can apply in-
equality (1.4) of [17] to show that for all k > 0,

Pr [|A - All > n + k] e-k2 /2

We rephrase this bound as

Pr [IIA- AI > v + v/2 1og(1/e)] < e,

for all e < 1. By assumption, ItAl < /iI; so,

Pr [IIAII 2/ + V/2 og(1/e)]

From the result of Theorem 2.2, we have

2.35V
CO'

< .

15

< e.
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7t xov/c-PrA, [I (UV) VQ

r _

,nxuv/-Pr, [IgI > v/c ]

P IA-'1l 



Combining these two bounds, we find

Pr IAII IIA- 1 , 4.7n + 2.35/2nlog(]/ ) 2c.

We would like to express this probability in the form of Pr [IlAII IA- 1 > x], for
x > 1. By substituting

4.7rt + 2.35 V/2rlog( 1/ c)
X--

we observe that

2 (4.7n + 2.35 /2nlog(1/e)) 9.4n (I + og(x)/)

for
9.4n (1 + /log(x)/2n)

1<

which holds here, since < 1.
Therefore, we conclude

9.4r (1 + /log(x)/2rn)
Pr [IIAll IIA-1 II %] X

We also conjecture that the 1 + V/log(x)/2n term should be unnecessary because
those matrices for which IIAII is large are less likely to have IIA-'I1 large as well.

Conjecture 1. Let A be a x n matrix satisfying JIAJJma < 1, and let A be a
matrix of independent Gaussian random variables centered at A, each of variance
C 2 < 1. Then,

Pr [K(A) > x] < 0 ((/xc).

2.3 Growth Factor of Gaussian Elimination with-
out Pivoting

We now turn to proving a bound on the growth factor. With probability 1, none of
the diagonal entries that occur during elimination will be 0. So, in the spirit of Yeung
and Chan, we analyze the growth factor of Gaussian elimination without pivoting.
When we specialize our smoothed analyses to the case A = 0, we improve the bounds
of Yeung and Chan by a factor of n. Our improved bound on Pu agrees with their
experimental analyses.

16



2.3.1 Growth in U

We recall that
__ tll llUi,:1 1 

pu(A)- l = max
I1^11. i IIAc 1

and so we need to bound the el-norm of each row of U. We denote the upper triangular
segment of the kth row of U by u = Uk,k:n, and observe that u can be obtained from
the formula:

u = a T - bTC-D (2.3.1)

where

T = Ak,k:n bT = Ak,:k- C = Al:k-l,l:k-1 D = Al:k-l,k:n

This expression for u follows immediately from

A1:k,: = (b 
aT - Lk,l:k-1 1 0 U

In this section, we give two bounds on pu(A). The first will have a better depen-
dence on o, and second will have a better dependence on n. It is the later bound,
Theorem 2.6, that agrees with the experiments of Yeung and Chan [25] when special-
ized to the average-case.

First bound

Theorem 2.4 (First bound on pu(A)). Let A be an x n matrix satisfying
IlAU < 1, and let A be a matrix of independent Gaussian random variables centered
at A, each of variance c(2 < 1. Then,

Pr [pu(A) > 1 + x] <(
27r xU

Proof. From (2.3.1),

|lull, = aT - bTC-'D il < Ila TI1 + IlbTC-'lD 

< Ila TI + IlbT C- 1 IIDllo
< IIo (1 + IlbTC- 1 1)

We now bound the probability IIbTC-' |l, is large. Now,

IlbTC-' l, < kc- IIbTC- 112

Therefore,

(as IIDIooI = IDTI 1)

(2.3.2)

Pr [b TC- II > ] < Pr [b TC-11 > x/-i]
b,C - b,C

<2 kc-i (k- )2 1
71 X(J

17
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where the second inequality follows from Lemma 2.5 below and the last inequality
follows from the assumption Cr2 < 1.

We now apply a union bound over the rt rows of U to obtain

Pr [pu(A) >1 +xx]< 
k=2

2k
r1 IX-V nxr

1 n(nT + 1)
/271 X

Lemma 2.5. Let C be an arbitrary square matrix in R d xd, and C be a random
matrix of independent Gaussian variables of variance u2 centered at C. Let b be a
vector in d such that b6 112 < 1, and let b be a random Gaussian vector of variance
y2 centered at b. Then

Pr [lbTC- 112
b,C

> X < 2 I2 d±
7r X0

Proof. Let be the unit vector in the direction of b. By applying Lemma 2.1, we
obtain for all b,

Pr [b T C-' 2 >x]=-Pr [TC-l >i libl1C Ci < lb1 2.-

Therefore, we have

Pr [bTC- 112 > x]
b,C

=Eb [r bTC 112 >]] 1 Eb [bI 2]1.
71X7

It is known [16, p. 277] that Eb [ b 2] < 2 d+ i 12 . As E [X] < / [X2] for

every positive random variable X, we have Eb [ lbll2] < V/ 2d + I|b6j1 '< /d 1.

Second Bound for pu(A)

In this section, we establish an upper bound on pu(A) which dominates the bound
in Theorem 2.4 for > n -3 / 2 .

If we specialize the parameters in this bound to A = 0 and (y2 = 1, we improve
the average-case bound proved by Yeung and Chan [25] by a factor of rt. Moreover,
the resulting bound agrees with their experimental results.

Theorem 2.6 (Second bound on pu(A)). Let A be an rt x n matrix satisfying
A < 1, and let A be a matrix of independent Gaussian random variables centered

at A, each of variance cr2 < 1. For n > 2,

Pr [pu(A) > 1 + x] < 721 (23/2 +-n 4 )

18



Proof. We will first consider the case k < n- 1. By (2.3.1), we have

tlull < liiall + IlbT C-'D I, < Ilall, + k- lb T C-'D 112
Therefore, for all k < n- 1,

lull <
IlAI -

Ilall, + k-T IIbTC-lD 12

llAIIl

<1 4- k- IIbTC-DI 2
- 11 1 A

Vk-i IbTC-lDK12
< + IA. 11

We now observe that for fixed b and C, (bTC-1)D is a Gaussian random vector of
variance IIbTC - 1

D12 I< 11 I2 <
II22 centered at (bTC-')D, where D is the center of D. We have
1, by the assumptions of the theorem; so,

IIbTC-lDII IIlbTC-'1 2IIDl 2< IlbTC-'l .

Thus, if we let t = (bTC-'D)/ IIbTC-' 112 then for any fixed b and C, t is a Gaussian
random vector of variance u 2 centered at a point of norm at most 1. We also have

Pr [Ib TC-'DI2 > x] = Pr [I]b T C- 1
2 >]tŽ2 > x].

b,C,D b,C,t

It follows from Lemma 2.5 that

Pr [IbTC- 11 > x 2 2 (k-1) + i
b,C A07T XY

Hence, we may apply Corollary A.10 to show

Pr [11b TC-' 112 tll2
b,C,t

>x] < (k- ) + 2(( k + )+
n7 XC

Note that An,: is a Gaussian random vector in IRn of variance Cr2 . As An,: is
independent of b, C and D, we can again apply Lemma A.9 to show

[ k- I lbTC-'D I
Pr lAnI:ll

> X
72

K I-
/ /--r - 2(k- ) + o 2 (- k + i) + 1i

xcT

xE [I1,:l]

. k--I + n2 
2 

V - Xc 
2

nu

by Lemma A.4.

19
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From the proof of Theorem 2.4, we have that for k = n

Pr [ull / [lAlo > 1 + x] < -1-. (2.3.3)
7T xc

Applying a union bound over the choices for k, we obtain

Pr [pu(A) > + x] < 2 (+ 2) 2 

+ -- - --

<- x + nx

=- 1 (2n 3/2 -)+-4n

2.3.2 Growth in L

Let L be the lower-triangular part of the LU-factorization of A. We have

L(k+l):n,k A k+l ):n,k/Ak,k 

where we let A(k) denote the matrix remaining after the first k columns have been
eliminated. We will show that it is unlikely that IIL(k+l):n,klKoI is large by proving that

it is unlikely that A (k+l)n k is large while A(kk1| is small.
it~ is UIIII~IY CIIIQI~I I11(k+1):n,k Ak Ij is smlk,k

Theorem 2.7 (pL(A)). Let A be an n-by-n matrix for which 1IIAl < 1, and let
A be a matrix of independent Gaussian random variables centered at A, each of
variance c 2 < 1. Then,

Pr [pL(A) > x] < ( + V 2 log + 2- log )

Proof. We have

(k+l ):n,k
L(k+l):n,k = A(k-1)

k,k

A(k+l):n,k - A(k+l ):n,l:(k - I )A:(k-1 ),l:(k-- )Al:(k-l),k

Ak,k -Ak,1:(k-1)Al(k-),l:(kl)Al:(k-1),k

A(k+l):n,k - A(k+l):n,l:(k-1 )V

Ak,k - Ak,l:(k-1)V

20
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where we let v = A-(k_1) I,(kl)Al:(k-l),k. Since AIIll < 1 and all the terms A(k+l):n,k,

A(k+l):n,l:(k-1), Ak,k, Ak,l:(k--1) and v are independent, we can apply Lemma 2.8 to
show that

Pr [L(k+1):nk11j0 > X] < £ ( 2 -ogu+ / logr)Tr > v/ 1g x/2- log n

The theorem now follows by applying a union bound over the rt choices for k and
observing that IIL] is at most n times the largest entry in L. O

Lemma 2.8 (Vector Ratio). Let

* a be a Gaussian random variable of variance uy2 with mean d of absolute value
at most 1,

* b be a Gaussian random d-vector of variance c 2 centered at a point b of norm
at most 1,

* x be a Gaussian random n-vector of variance uc2 centered at a point of norm
at most 1,

* Y be a Gaussian random n-by-d matrix of variance c 2 centered at a matrix of
norm at most 1, and

* let v be an arbitrary d-vector.

If a, b, x, and Y are independent and uC2 < 1, then

[ilx + YVII > < I (X+ I
Pr V2logn + /2- logn

la-bTv! > X X

Proof. We begin by observing that a + bTv and each component of x + Yv is a
Gaussian random variable of variance (y2(1 + 1lvll2) whose mean has absolute value at
most 1 + Ilvll, and that all these variables are independent.

By Lemma A.3,

E [lx + YvI] < 1 + lvli+( (1 +iiv lo2)) ( + og n I

On the other hand, Lemma A.2 implies

Pr [ + bT<>x] (2.3.4)
ja b vj 0xo 1 + ivii2

21



Thus, we can apply Corollary A.9 to show

Pr [ x + Yv ll 
1

<T

+ .lv.I + VII)
· · ·( J;;~~~~~~~;I;;)~~

( /2 logr + V/log )

x 1 + v 2

1

21
7TX

+ IIvII
B uv+ v 2±(

V2 log T +

2 log TV + 2 )log n)

2/7 log nJ2-/ log n1
]

2.4 Smoothed Analysis of Gaussian Elimination

We now combine the results from the previous sections to bound the smoothed pre-
cision needed to obtain b-bit answers using Gaussian elimination without pivoting.

Theorem 2.9 (Smoothed precision of Gaussian elimination). For n > e4 , let
A be an n-by-n matrix for which AIH <_ 1, and let A be a matrix of independent
Gaussian random variables centered at A, each of variance uc2 < 1/4. Then, the
expected number of bits of precision necessary to solve Ax = b to b bits of accuracy
using Gaussian elimination without pivoting is at most

b + 02, 3l 2 + log( + 2V ) + 10 2 3 log2 V + 1 + 5.04
2 T-1og 2 log T

Proof. By Wilkinson's theorem, we need the machine precision, mach, to satisfy

5 2btnpL(A)pu(A)K(A)emach < 1 >

2.33 + b + log2 n + log2 (pL(A)) + log2(pu(A)) + log2(K(A)) < log2(l/emach)

We will apply Lemma A.11 to bound these log-terms. For any matrix A satisfying
||A| < 1, Theorem 2.4 implies

E [log2 pu(A) ] < 21og 2 n+ log2 () + 0.12,

and Theorem 2.7 implies

E [log2 pL(A)] < 2og 2 T + log 2 + log (1 + 2 log n) +1.62'))g
using < and > e4 ,using(y <2

<21og 2 + log 2 () + log 2
1

lOgn - + g +1.62
log n

22



Theorem 2.2 implies

E [log 2A - ' I - log2 n + og2 + 2.68,

and,
E [log2(jlAII)] < log2( 1 2cr)

follows from the well-known fact that the expectation of -A is at most 2ii
(c.f., [19]) and that E [log(X)] < logE [X] for every positive random variable X. Thus,
the expected number of digits of precision needed is at most

7 .,,,,,,,(1\ 1
b + 2 3 2 log(1 + 2/ i,) + log2 lOgn + + 5.04

The following conjecture would further improve the coefficient of log(1l/o).

Conjecture 2. Let A be a n-by-n matrix for which lAl_ < 1, and let A be a matrix
of independent Gaussian random variables centered at A, each of variance cr2 < 1.

Then

Pr [PL(A)pu(A)K(A) > x] < C logc2 (X)
xcr

for some constants cl and c2.

2.5 Symmetric matrices

Many matrices that occur in practice are symmetric and sparse. Moreover, many
matrix algorithms take advantage of this structure. Thus, it is natural to study the
smoothed analysis of algorithms under perturbations that respect symmetry and non-
zero structure. In this section, we study the condition numbers and growth factors
of Gaussian elimination without pivoting of symmetric matrices under perturbations
that only alter their diagonal and non-zero entries.

Definition 2.10 (Zero-preserving perturbations). Let T be a matrix. We define
a zero-preserving perturbation of T of variance ur2 to be the matrix T obtained
by adding independent Gaussian random variables of mean 0 and variance a.2 to
the non-zero entries of T.

In the lemmas and theorems of this section, when we express a symmetric matrix
A as T + D + TT, we mean that T is lower-triangular with zeros on the diagonal and
D is a diagonal matrix. By making a zero-preserving perturbation to T, we preserve
the symmetry of the matrix. The main results of this section are that the smoothed
condition number and growth factors of symmetric matrices under zero-preserving
perturbations to T and diagonal perturbations to D have distributions similar those
proved in Sections 2.2 and 2.3 for dense matrices under dense perturbations.
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2.5.1 Bounding the condition number

We begin by recalling that the singular values and vectors of symmetric matrices are
the eigenvalues and eigenvectors.

Lemma 2.11. Let A T+D5 TT be an arbitrary n-by-n symmetric matrix. Let T
be a zero-preserving perturbation of T of variance u2, let GD be a diagonal matrix
of Gaussian random variables of variance 2 and mean 0, and let D = D + GD.
Then, for A = T+D+T T,

Pr [I A -1 II > x] < Til3/2/x

Proof.

Pr [I(T + D + TT )-1 1 > x] < max Pr [ ((T + + TT) + GDo)-I 1 > x]
- - T GD

The proof now follow from Lemma 2.12, taking T + D + TT as the base matrix. D

Lemma 2.12. Let A be an arbitrary n-by-n symmetric matrix, let GD be a diagonal
matrix of Gaussian random variables of variance o2 and mean 0, and let A A+GD.
Then,

Pr [IIA-1 > ] < n3/2/Xo.

Proof. Let x 1, .... x, be the diagonal entries of GD, and let

n
9 =- xi, and

i=l

Yi = xi- g

Then,

Pr [I1(A + GD)-l >X] = Pr [II(A + diag(yl,..., y)+gI)- >Lx]
.,...gn ,9 IjI...... , 9

< max Pr [II(A + diag(yl,...,yn) + gI) - > ] -.
91 ,-,gn 9

The proof now follows from Proposition 2.13 and Lemma 2.14. D

Proposition 2.13. Let xl,..., xn be independent Gaussian random variables of
variance u 2 with means a,..., a,, respectively. Let

n
9 =1- xi, and

i=l

Yi = xi - g

Then, g is a Gaussian random variable of variance 2 /n with mean (1/n) ai,
independent of y , ... , y.
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Lemma 2.14. Let A be an arbitrary n-by-n symmetric matrix, and let g be a
Gaussian random variable of mean 0 and variance cr2 /n. Let A = A + gI. Then,

Pr [A - 11 > x] < n3/2/Xcr.

Proof. Let A 1,..., An be the eigenvalues of A. Then,

II(A + gI)- t|-' = min lAi + g.

By Lemma A.2,

Pr [ - g < < -] < //o; so,

Pr min At-9 < < n3/2/u

7]

As in Section 2.2, we can now prove:

Theorem 2.15 (Condition number of symmetric matrices). Let A = T + D +
TT be an arbitrary n-by-n symmetric matrix satisfying JIIAI < 1. Let 2 < 1, let T
be a zero-preserving perturbation of T of variance cr2, let GD be a diagonal matrix
of Gaussian random variables of variance cr2 and mean 0, and let D = D + GD.
Then, for A = T D +T T ,

Pr [K(A) > x] _< 4 -n( + /log(x)/2n)

Proof. As in the proof of Theorem 2.3, we can apply the techniques used in the proof
of [6, Theorem II.7], to show

Pr [|A- A > v-d k] < e-k 2/2.

The rest of the proof follows the outline of the proof of Theorem 2.3, using Lemma 2.11
instead of Theorem 2.2. o

2.5.2 Bounding entries in U

In this section, we will prove:

Theorem 2.16 (pu(A) of symmetric matrices). Let A = T + D1 + T-T be an
arbitrary n-by-n symmetric matrix satisfying A < 1. Let 2 1, let T be a
zero-preserving perturbation of T of variance c 2, let GD be a diagonal matrix of
Gaussian random variables of variance c2 and mean 0, and let D = D + GD. Then,
for A = T + D + TT ,

2 /n 7 / 2

Pr [pu(A) > 1 +x] < - __7 xu

25



Proof. We proceed as in the proof of Theorem 2.4, where we derived (2.3.2)

IAooUkk:njI -

< I + k Ak:k-lA:k-1,1:k- 11

< 1 + -i Akl:k-112 Al:k-1,l:k-1112

Hence

Pr >1 + < Pr IjAkj:k-l12 |Al:k- ll:k-l2> I 2

< E [Ak,l:k-1112 (k- 1) 2, by Lemmas 2.11 and A.9,

72

< + j 2 (k - 1) 2

where j is the number of non-zeros in Ak,l:kl,

2 V/k(k - 1)2

'7t XO-

Applying a union bound over k,

1
Pr [u(A) > ] < - (k- 1

k=2

2 /r- 7 /2

< 7 xu

2.5.3 Bounding entries in L

As in Section 2.3.2, we derive a bound on the growth factor of L. As before, we
will show that it is unlikely that A(jk ) is large while kk-) is small. However, our
techniques must differ from those used in Section 2.3.2, as the proof in that section
made critical use of the independence of Ak,l:(kl) and Al:(k--1),k

Theorem 2.17 (pL(A) of symmetric matrices). Let cr2 < 1. Let A = T+ 1 +TT
be an arbitrary n-by-n symmetric matrix satisfying A| < 1. Let T be a zero-
preserving perturbation of T of variance c2, let GD be a diagonal matrix of Gaussian
random variables of variance c 2 < 1 and mean 0, and let D = + GD. Then, for
A =T + D + TT,

Pr [PL(A) > x] < 3 2 log3/2 (e / xy2)
X.2 lg
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Proof. Using Lemma 2.18, we obtain for all k

Pr [3j > k: Lj,kl > X] < Pr [IIL(k+):n,kl > X]

3.2n2
< 2 log3 / 2

-X~y2
(e 7T/x 2) 

Applying a union bound over the choices for k, we then have

Pr [3j,k: Lj,kl > x] < 3 23 log3 /2
Xoy2 ( e 7/2x02).

The result now follows from the fact that IIJoo is at most n times
in L.

the largest entry
l

Lemma 2.18. Under the conditions of Theorem 2.17,

3.2nt2

Pr [ L(k+l):n,k > X] <

Proof. We recall that

Lk+l:n,k --

log3 /2 (e /x02).

Ak+l:n,k - Ak+l :,1:k-lA-1:- Al:k-1,k

Ak,k- Ak,l:k-1A:- llklAl:k-l,k

Because of the symmetry of A, Ak,l:k--1 is the same as Al:k--l,k, so we can no
use the proof that worked in Section 2.3.2. Instead we will bound the tails
numerator and denominator separately.

longer
of the

Consider the numerator first. Setting v = A _l : 1k_1Al:k_1,k, the numerator can

be written Ak+l:,l:k (-VT). We will now prove

>X 2(2n2(
7rk-l,k l Ak+

1 + cr/2 log(xo )
XCF

It suffices to prove this for all x for which the right-hand side is less than
particular it suffices to consider x for which

X
> 1,

1 + U 2 og(x) -

and xcr > 2. We divide this probability accordingly to a
set so that l-c = /2log(x). We have

Co'

(2.5.2)

parameter c, which we will

Pr Ak+:
Ak+ :n, :k,Al:k- 1 :k

Al:(k- ),l:k I Oc

+ PrAk+ 1:r, k [ Ak+l:n,l:k

(-VT) > x

> cx]

(-VT) 1 (VT) (
-V

1 ) <cX
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) + n )

(2.5.1)
1, so in

(2.5.3)

(2.5.4)

-VT

I:nl:kI
00



Once v is fixed, each component of Ak+l ,l:k 1(-) is a Gaussian random vector

of variance
(1 + lv1 2 )c 2 < (1 + llVII) 2 C'2

and mean at most A k+lk ( )-V < (-V) SO

A >IC (_ )

implies some term in the numerator is more than 1/c - 1 standard deviations from
its mean, and we can therefore apply Lemma A.1 and a union bound to derive

r'- (lc)2 --

2Tie- 2 ( ca) 2 _

(2.5.4) < - < 
- To -and Corollary A1 imply

To bound (2.5.4), we note that Lemma 2.11 and Corollary A.10 imply

Pr [IIAlk_1: k1Al:k-l,kll > I] <
Al:(k-1),1:k

2n2

V Tcy

and so

Pr L (1)Al:(k-1),ITk I

> c < Pr [IIA:_1 ,1:klA1:k_,,klI > CX
Al:(k-l) l k k-

- V (cx - 1 )a

- 11

< 22n2 (1 + 2lg(x))
< ,/ by (2.5.2).

So,

(2.5.1) < n + 2( 1+ (v/2log() 

2 V(2r2(1 + 7xcj

<V (2n2(1+ 2n2 l og(xu)) + n)

by the assumption x > 2, which proves (2.5.1).
As for the denominator, we note that Ak,k is a independent of all the other terms,

and hence

Pr [ Ak,k - Ak,1:k-1 A ,1l:k _:k-,kl < 1/X] <

by Lemma A.2.
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Applying Corollary A.8 with

, = (2n 2 + )
Itn

to combine this inequality with (2.5.1), we derive the bound

2 (2n2 + rt
7TX(Y2 + ((2 4/3)

2ri2

2TCi2

t 2 ± rt) log3/ 2 (X- X 2 ))

(3 + 4iv'cr/3) (log3/2 ( 7XT/x2) + 1)

.2 Xy 2 og3/2 (e2)X0 o g V7TxC

as cy< 1.
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Chapter 3

Smoothed Analysis of Gaussian
Elimination with Partial Pivoting

3.1 Introduction

In this chapter, we consider the growth factor of Gaussian elimination with partial
pivoting. With partial pivoting, the entries in L are necessarily bounded by 1 in
absolute value, so the growth is confined to U. Thus

A = PLU

where P is a permutation matrix and Ltl < 1. We will usually assume that A has
been put into partial pivoting order, so that P = I. Recall that U is given by the
equation

Uk,: = Ak,: - Ak,l:k-lAl-_lYl :klAl:k-l,:

and the growth factor Pu by

mak IlUk,: I < 1 + Ak,:k_ ,:kl 1 
Pu =- 11k,:k- 1:k-

The remaining sections are organized as follows: in Sections 3.2 and 3.3, we estab-
lish a recursive formula for Ak,l:k-lAlklk-l . In Section 3.4 we give an outline of the
probabilistic argument that will follow. This is followed by Section 3.5, which proves
some technical results about Gaussian vectors and matrices. Sections 3.6 and 3.7
bound the tail distribution of two factors that appear in the recursive formula de-
rived in Section 3.3, and the final Section 3.8 puts everything together to prove the
main theorem, which we state below.

Theorem 3.1. If A E R txk is a random matrix distributed as (A, 2 I t ® Ik)
with |IAAI 1, and pu(A) is the growth factor during Gaussian elimination with
partial pivoting, then

Pr [p(A) > X] 1 ( n( + o) )A X (T
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In the theorems and lemmas below, we will assume that all matrices are of full
rank (in the probabilistic setting, this is true with probability 1).

3.2 Some algebraic results

First, we define some convenient notation.

Definition 3.2. Given a matrix A E R" x n , an index k and a submatrix X -
Akl :k2,1 :t2, define

(X)k = X- Ak :k2 ,l:kA ,lkAl:k,l :12

and

(X) = (X)min(kl,tl)- 1

Intuitively, (X)k is what remains of X after k steps of elimination have been carried
out.

Lemma 3.3 (Block-structured inverse). Consider an n x k real matrix with the
block structure

C
A 2

X2-

where A, A1 and A 2 are square matrices. Then

XA-' = [X1 X2] [ A2C]

= [(XI - (X2) (A 2
1 R) A ; (X 2) (A 2 -1]

Proof. Multiplying the RHS by A gives for the first component

X1- (X2) A 2)- R + (X2) (A 2)- 1 R = X1

and for the second

X1A'C - (X 2) (A 2 )-1 RA-' + (X2) (A 2 )-1 A 2 = X1A- 1C + (X2) (A 2 )-' (A 2)

= X2

Notice that XA- 1 gives the coefficients when rows of X are expressed in a basis
of the rows of A. According to the lemma, the coefficients of [R A 2] are given

by (X 2) (A2)-'. Hence
X- (X 2) (A 2)- [R A2]

is the part of X that is spanned by [Al C]. Let us write this matrix as

X- (X 2) (A 2)-' [R A 2 ] = Y [A1 C]

32
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Then if S is any subset of columns of this matrix containing at least Al I linearly
independent columns, the coefficients Y of [A1 C] will be given by

(Xs - (X 2 ) (A 2 )-1 [R A 2]S) ([A C]s)(r)

where M(r) denotes any right-inverse of M, i.e., MM(r) = I.
We restate this as a corollary to Lemma 3.3.

Corollary 3.4. With the same notation as in Lemma 3.3,

(X -(X 2) (A 2 ) -1 R) A- 1 = (Xs-(X2) (A 2) 1 [R A 2]s) ([Al C]S)(r)

= [- (X2) (A 2)- I] , A 2] ([Al C]S)()

for any subset S of the columns of A such that [A 1 C] s is right-invertible.

Corollary 3.5. Consider an nr x m real matrix with the block structure

Al C Y1

R A 2 Y2

X1 X2 Z

where Al and A 2 are square with dimensions k1 and k 2 respectively, with k +k 2 = k.
Let

A = [AC 
[RA 2j

X= [X1 X2]

Then

(Z)k = (Z)k1 - (XZ)k, (A 2 ) 1 (Y2)kl

Proof.

Z- XA-1 Y

=z- (x - ( 2) (A 2 ) R) A 1Y1 + (X 2) (A 2 )- Y2

= (Z - XA1 Y ) - (X2) (A 2 )-1 (Y 2 - RA 1 Y)

= (Z)k, - (X2) (A2)- (Y2 )

E]

Remark: Corollary 3.5 is the trivial fact that eliminating k1 rows, then the next k2 rows
is the same as eliminating k = k1 + k2 rows.

Definition 3.6. For any matrix A E R mxn, m < t, define the (right) pseudo-
inverse At E RI<nX m to be the matrix satisfying the conditions

AAt = I and AtA is an orthogonal projection.
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Given the singular value decomposition

A = UVT

with U C O(m, m), V E O(n, m) and Y an m x m diagonal matrix, At is given by

At = VE-1UT

The pseudo-inverse is undefined if A does not have rank m.
If m > n, we similarly define a left pseudo-inverse.

Lemma 3.7. For matrices X E Rkxm, Y E Rlxn, Z E R m x", such that m > n > ,

XY(r) = (XZt)(yZt) (r)

That is, X multiplied by any right-inverse of Y is equal to XZt multiplied by some
right-inverse of YZt and vice versa.

Proof. Since m > n, we have ZtZ = I. Hence

XY() = x (ztz) y(r) = (XZt) (ZY(r))

Also (YZt) (ZY(r)) = I which shows that ZY(r) is a right-inverse of YZt.
Conversely, since

Y (Zt(yZt) (r)) = I

we may write (XZt)(yZt)(r) = X (Zt(YZt)(r)) as XY(r). [

3.3 Recursive bound

Now we will apply the results of the previous section to derive a recurrence relation.

Lemma 3.8. Let A E Rnxk, and

1 < k1 <k 2 < k

be two indices such that k 2 < 2kl. Let S be a subset of (k 1 , k] such that

k 2 -k 1 _ ISI < k

Define

Ai = A(k,k],(k,k]

Xi A(k,n],(k,k]

B = A(k2,_],S

C = A(kl,k2],S
Z= A - A(Oks

(O,k, ],(O,kl ]A(Ok ],

Then

[-(X) (A,)-' I] =[-(X2) (A 2)- I] [-((B)kl Z t) ((C)k Z) t ; I]
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Proof. By Lemma 3.3 and Corollaries 3.4 and 3.5,

(X1) (A)-' =[[-(X2 ) (A 2) 1 I] (B)k1 (C)) ; -(X 2) (A 2)-']

and by Lemma 3.7,

[[-(X 2) (A 2)-' I] ((B)kl Z) ((C)k Zt) (r) ; (X 2) (A 2)']

The reason for choosing the matrix Z is that

(B)kl Zt = BZt - A(k2 ,],(o,kl]ZZt

and ZZt is a projection matrix. This will prove useful in bounding the norm of (B) Zt
(resp. ((C) Zt)t) even though the norm of (B) (resp. (C)t) is hard to bound directly.

Now we extend the idea of the preceding lemma to a whole sequence of indices k.

Theorem 3.9. Let A E RInxk, and

= ko < kl < k2 < ... < k < k < n

be a sequence of indices with the property

ki+l < 2ki for 1 < i < r.

Let Si be a subset of (ki, k] such that

ki+l- k < Sil < ki for 1 < i < r

and k1 < Sol. Define

Ai = A(k,k],(ki,k]

Xi = A(k,n],(k,k]

Bi = A(ki+, ,n],S

Ci = A(ktki+l],si

Zi = A-'(O,k],(,ki]A(o,k],si

We define Zi only for i > 1. Then

1

[-XoAo ' I] = [-(X,)(A)-' I] ~ [-((Bi)k Zt)((Ci)kZ) ; I] x
i------r--I

x [-BoC I]

Note that the index i in the product counts down.

Proof. Similar to Lemma 3.8 (except we do not apply Lemma 3.7 to rewrite BoC()),
we have

[-Xo A o1 I] = [- (X1) (A,)-' I] [-BoCt I]

The rest is immediate from Lemma 3.8 and induction. [1
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3.4 Outline of Argument

The idea now is to choose a suitable sequence of ki's in Theorem 3.9 and bound the
tails of each factor individually. In particular, we will want to limit r to (9 (log k).

In the next section, we will prove some probabilistic results about Gaussian
matrices and vectors, and use these to estimate the tail distributions of (Bi) Zt
and ((Ci) Zt)t

Once we have a handle on these two, it is a matter of nailing down appropriate
values for the ki and pulling everything together via a union bound over the r factors
in Theorem 3.9. The very first factor in it will be bounded by ensuring that k-kr =
0 (log k), so that in the worst case, it is still only polynomial in k.

3.5 Some probabilistic results

3.5.1 The smallest singular value of a scaled Gaussian matrix

We will need to investigate the smallest singular value of a Gaussian random matrix
that has been multiplied by a constant matrix. (For example, Zi has this form.)

Theorem 3.10. If Y E c In x is a matrix with singular values

9 < 52 < - < n

and X E Rnxk is a random matrix distributed as 92 (X, I, 0 Ik), then

7(k/2)(n-k+])/ 2 n-k-l 1
Pr [(5xtI >X < - 1X (n - k + ])F('(n -+k + 1)) , x n

7(k/2) (n-k+l )/2 1 n-kil

-(rn-k+1)'('2(n-k+ 1)) xcl

Proof. First, we will estimate

Pr [IIUT(EX) t > x]

for a unit k-vector u. Notice that rotating u, i.e., replacing u by Hu where H is a
square orthogonal matrix, is equivalent to replacing X by XH, since

(Hu)T(FX)t - uTHT(F-X)t - uT(YXH)t

Since this only changes the mean of X, and our bounds will be independent of this
mean, we will assume u = el. In this case, we want the probability that the norm of
the first row of (X)t is greater than x. The first row of (X)t is the vector that is
the relative orthogonal complement of the column span of EX:,2:k in the column span
of TX, and has inner product 1 with the first column of EX. Hence we are looking
for a bound on the probability that the component of the first column of X in the
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orthogonal complement of the span of the remaining columns has norm less than 1 /x.
Let V C Rnxn - k + l be an orthonormal basis for this vector space. Then we need to
bound

Pr [IIVTLX :,l I < 1/X]

If &1, &2, ... , rn-k+l are the singular values of VTy, then this probability is the same
as the probability that the component of X:,i in the row span of VTt is contained in an
ellipsoid with semi-axes 1 /x&ri, and hence is bounded by the volume of the ellipsoid,
times the maximal density of the Gaussian, (27c) - (n- k+ l )/2 . Thus

2 7(n-k + )/2 H(1/x ) 1Pr [UT(5X)tll > X <
X (n - k + )r((n- k + 1) (27) (n-k+l)/2

2 -(n-k-1)/2 H (1 /xvi)

(rT- k+ 1)r((rt- k+ 1))

2 -(n-k- )/2 H (f1 /xo)

(n- k + 1)Fr((n- k + 1))

since Pi > oi. Now let u be a random unit vector, and v be the right singular vector
corresponding to the smallest singular value of ZX (which is the same as the left
singular vector corresponding to the largest singular value of (X)t). Since

I1UT(Tx)tll > ||(yX)t | I(uV)l

we have

Pr [uT(Lx)t > x/ k] > Pr [(X)t ll > ]. Pr [(u,v) > 1/\/k]

or

Pr [I (X) I > ] <x (n -k + I)F( 1 ((n-k + 1)) I x x
1

x

Prxu [ (u v)l> 1/ I

7(k/2) (n - k + l )/ 2

-(n- -k+ 1)r(n-k+ 1)) I x.

3.5.2 The moments of a Gaussian matrix

Theorem 3.11. If X E RTnxn is a random matrix distributed as 9l (X, o 2 I' 0 In),
with X| •< 1 and a < 1/2, then

Ex [11X Ik] < 2kF(k/2)( 1 + cJr)k
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Proof. First, note that
lXI < 1 + o fll1

where G - (0, In, Ij). Hence

Ex [HIXlIk] < (1 + Cot)k dlilGil(t)

integrating by parts,

= 1 + k (1 + t)k- Pr [IGl > t] dt
G

applying the result of Theorem II.11 from [6] to bound the tail of IGII, we have for
any c > 0,

< 1 + kcj (l +ot)k- l dt +kT 
Cioo

=(1 C + CCV)k + kJ
(c-2)v/n

(1 + ot)k- 1 e - 2(t -2v)2 dt
( 1 2,,-,,, dt

(1 + co/- + t)k-1e -t 2/2 dt

setting c = 2 + v/-n,

( t) k - e- t2 /2 dt
1/

< (1 + uov)k-' (2 k(l + (oV) + k2k-1. ok-12k/2 -lF(k/2))

< 2kr(k/2)(1 + /-Jn)k

L]

3.5.3 Partial pivoting polytope

Definition 3.12. Given a matrix A E IRYxk, let B denote the result of ordering the
rows of A in the partial pivoting order. Define the partial pivoting polytope of A
to be the set of all points (row vectors) x e IRk such that

1Xi - x:i-B-1 :ij1 -Bi 1,i|< ,1 -Bi,i:i-iB- i- iill for 1 < i < k.

We will denote this polytope by the notation PP (A). Note that Bi,: E PP (A) for
all i > k, and that PP (A) = PP (B) = PP (B1:k,:).

Observe that PP (A) is symmetric about the origin. Define r(A) to be the
largest r such that the ball B(0, r) C PP (A). This can also be computed as the
minimum distance r from the origin to one of the defining hyperplanes of the poly-
tope, and is half the minimum width of the polytope.
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Theorem 3.13. Let A E RnIxk be a random matrix distributed as I9 (,, cr2IJ 0 Ik).
Then

Pr[(A) < r )< y -A (k ( T CT ( f7

Proof. Letting S be the subset of rows that are chosen by partial pivoting, we have

Pr [r(A) < r] = 7 Pr [r(As,:) < r and i S, Ai,: E PP (As,:)]
SE ( [n)

-< Pr [Vi S, Ai,: E PP (As,:) r(As,:) < r]
SE([n )

and since Ai,: is a Gaussian k-vector, and Ai,: E PP (As,:) implies that the compo-
nent of Ai,: along the normal to that defining hyperplane of PP (As,:) which is at
distance r(As,:) from the origin must be smaller in absolute value than r(As,:) < r,

(k)=() ( )n-k

3.5.4 Conditional Gaussian distribution

Lemma 3.14. If X, is a random variable with a density function of the form

p(x)e- ½(-i)2

with p(x) a symmetric function of x, then for any < r < R,

Pr [X, E [-r, r]I, [X [-R, RI] < Pr [X0 E [-r, rI lXo E [-R, R]]
X, X0

Proof. The logarithmic derivative (wrt t) of the conditional probability over X is

f p (X) (X _ ) e-I (X_)2 dx
lnPr [X E [-r, r]IX, E [-R,R]] = Sr p(x) (x -C 2 d

r Xp(x)e1 (X-)e-2 ( )d.fRP(xN(x - )e 4 (x 2 dx

f-R p(x) e- (x_-)2 dx

= Ex, [X IX. C [-r, ]]

- Ex, [X|X, E [-R R]
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Now, the logarithmic derivative of the first term on the RHS with respect to r is

- r (-)
2 (r-1) 2 + e(--r-- )2re ½ ¢_-)2 - Te - -2 e -e

J-rXp(X)e( )2 dx f-rp(x)e( )2 dx

Its sign is hence the same as that of

Ex, [XIX, E [-r, r]]

Clearly, -r < E [X,IX, C [-r, r]] < r, and the expectation will have the same sign
as Ft (this follows from the symmetry of p). Hence if I > 0, E [X,|X, c [-r, r]] is an
increasing function of r, which implies that

Pr [X. C [-r, r] X4 C [-R, R]]
X,

is a decreasing function of Bt, and if Bt < 0, the reverse holds. Thus the conditional
probability will be maximized at t = 0. O

Corollary 3.15. If X, is a normal random n-vector distributed as S (, In), and 0 <
r < R, then

Pr [lX,ll r< TI XI]l < R] < Pr [lxoll[ < rl [lXoll < R] < (•)n (R 2- 2 )

Proof.

B, e -½1-112 dX
Pr [X, l < | |XIJl < R] B(O,r) e x 2 dx
Pr SB(,R) 2

converting to polar coordinates,

jjllull=1 fi-r x-l e-2 (X-u)2 dx du

fJllull=1 JSR II- e- (x- u)2 dx du

by Lemma 3.14,

IR X e2 dx
r IxIne xd dx

(SR x e(e 2 dx
R -n-1 -I X)2 

(R) fRR IxI'l e 2x dx

< () max e ))2
R xE [-R,R]

)tle (R2--r2)

R
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Theorem 3.16. Let S be a closed, convex subset of RI. Let V be a k-dimensional
subspace of RI, and assume that the k-dimensional ball of radius R centered at the
origin Bv(O, R) is contained in S n V. Let 7rv denote the orthogonal projection map
onto V. Then

zPr ,In) [11v(z) < CZ E S]Z-'N(( CLI, 

1
<- (1 - A)-k AR - (1 - )e

e ((iR-(1 -A)e)2-e2) 2AII)l12

e½((--)F-2 ) e(-,

for all A such that 2c/(R + c) < A < 1.

Proof.

Pr [11rv(z)lI < Cez c S] =
e-2 I1Z_ 1 dz

fJzES:r (z)EBv(O,e) e z dz

J'zes e-- IIZWI2 dz

in the denominator, substitute z = T(z'), where T acts as the identity on V and the
contraction 1 - A on V', giving

1 fZES:7v (z)EBV(,e) e IIz-11t dz
(1 - )n - k

ST(z)Es e-IT(z)-112 dz

let z = x + y, where x = 7rv(z), and similarly L = v + Lv-L,

1 fx+yES,xEBv(O,e) e-2 Ix-v 2 e-H1-u I 12 d dy
(1 - A)-k -1 I11h e xv112 f1t )-v 112 d d

fX+(7--A)VES e 2I~-Li e 2 d- dl

the ratio of the two y-integrals can be bounded by the maximum of the ratio of the
integrands, giving

1
- (1 - )n-kX

x max
V

fxx+ES,xEBv (Oe) e 2X-v l2 dx

Sx-x+(l-;)yES e 2111ix-vll dx

Let S(y) denote the cross-section of S at y, i.e., the set of x such that x+y E S. By
convexity,

(1 - A)S(y) + ABv(O, R) C S((1 - A)y)

Hence as long as S(y) n Bv(O, c) $: 0, we must have

Bv(O, AR- (1 - A)c) c S((1 - )y)
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Thus applying Corollary 3.15 to the x-integrals, we obtain

Pr [7v(z) e< z EG S] <
;

K

1 (

A)n- -k(R - ( - A)c(1-

x max e-'y ((1-A/2)y-"v )

1 E

(1 -- A) - k AR-(1 - A)

k

If we choose A satisfying

1

A < ---1
h< vlll

A <
1

2e
- R+2c

(assuming, of course, that e is small enough that it is possible to satisfy these in-
equalities simultaneously), then we get

< ( - /n) - n < 4
;AR-(1 -\h)

e 2( (-(1-<
e2 )-l'·" - < e2

llV2(2- 11
e 2(2-N)

E

-AR - AR/2

1< e2

Hence for k > 4,

Corollary 3.17. For A = min(l/n, 1/R, 1/ IvlV112) and e < \R/2(1 - A),

Pr [ lIv(z) I < e ES] _ AR

3.6 Bound on (B) Zt l

We will first bound the tail distribution of BZ t .

Lemma 3.18. Let A a random matrix distributed as I9 (A, r2I, 0 Ik), permuted
into partial pivoting order. Let 0 < k1 < k, and S C (k 1 , k], with s = ISI. Define

B = A(k,n],S, A1 = A(o,k,],(,k,] and Z = A1'A(o,kl],s

Then

r)- rIID-7tl - ( 1lOkl(1
,I I [ L4 1 ,fl / J 

I+ /j) 2 kl-S+1

X(T
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Proof. Since IBztl < Bl IIiztllW,

Pr [BZt ll > x] < Pr [IBII lZtll > x]

Conditioned on A(o,n],(o,k,], JB118 and IZtll are independent, and we may apply Theo-
rem 3.10 to obtain

Pr [BII IlZtll > XjA(o,,],(ok, IBIl]

7(S/2) (k,-s+1)/2

(kl-s+) (1(kl-s+

and so

Pr [BZtll > x1A(o,n],(o,k,]] <
7(S/2) (k,-s+1)/2

(kl-s 1)r( ½(k,- s+ 1))

X
E [Ai, IIjk' - s+ IBII k-s+l Ao,n],(,kl]

(xOc)kl -s+l

applying Theorem 3.11 twice,

Pr [BZtl > x] <
7(S/2) (k,-s+1)/2 1

(k, -s + ) ((kl- s + 1)) (+-)kl-+ 

x (2k 1s+lfr ((k 1 - S + 1)) (1 + ov/)klS+1) 2

- 7r tu I ( 1- I 1 (2v2,F(1
Cl(

+ av) ]-A

kl -s+1

< Z14(1 + c(yX)2Y
X(T

( 10k l(1 + .Jr'/)2 kl-s+l

Xc_ )

Lemma 3.19. Let A, B and Z be as in Lemma 3.8, but with A a random matrix
distributed as I9 (, a2I, ® Ik) with c < 1, permuted into partial pivoting order.
Then

1 + yV/)2 kl -S+l

X' 

Proof. Since (B)k = B - A(k2 ,n],(O,k,]Z, hence

(B)k ' Z t = BZt - A(k2,,(O,k,]ZZ
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The norm of the second term is bounded by }JAlJ, because ZZt is a projection. Hence
for any c [0, 1], we have

Pr [r[IB)kZ Z > < Pr [ BZt cx] + Pr [IlA > (1 - c)x]

Now

IAlJJ < IlA + 11Gcl < + G11
where G -' (0, I, Ik), and so

1JA11 > (1 - c)x ==:= IG11 >(1 -c)x- 1
Il

Pr [Al > (1 - c)x] <

Choose c so that

exp - 1 ((1 -c)x- 1
2 

exp(
2

((1 -c)x-1
O7

C < 1- I + r
X

-2 )

2(k,

This will be true if, say,

c =I I + 4crvlnx
x

Suppose x is large enough that c > 2/3. Then we have

Pr [ (B)kl zt 1 > X] < 30k (1 + V2 k -s+

The statement of the lemma is vacuous unless

3nTi( + cVi) 2

which gives
3

~Zi-~ 3 ' ¥

< x- <(x - 30n1

-X < <-- +x -30n
4 1
30I< -30O 44 3

[
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3.7 Bound on ((C) zt)ti

Lemma 3.20. Let A, C and Z be as in Lemma 3.8, but with A a random matrix
distributed as 9I (A, U2I n 0 Ik), permuted into partial pivoting order. Then

Pr [,((C)k ' Zt)t >x] 10 (6 4n 3' 5+ 1/ 1 + Y i/4 ) min(kl-s+l,s-(k2 -kl)+1)

where 1 + o = s/(k2 - kl).

Proof. We will first bound the probability that i((C) Zt)tu[ is large, where u is a
fixed unit vector. Rotating u by an orthogonal matrix H is equivalent to rotating C
and A(k ,k 2 ],(O,kl,] by HT, since

((C) Zt)tHu = (HT (C) Zt)tu = (HTC - HTA(k ,k2],(O,k,lZ)Zt)tU

so we may assume as usual that u = el.
The first column of ((C) Zt)t has length equal to the reciprocal of the component

of the first row of (C) Zt orthogonal to the span of the remaining rows. Now

(C) = C- A(k,,k2],(0,kl]Z

We will use a union bound over the possible choices for A(kl,k2],(O,kl] from the n - k
rows that remain after the first k rounds of partial pivoting. For each fixed choice
of the subset of k 2 - k rows, the distribution of these rows is Gaussian conditioned
on being contained in PP (A(O,k,],(O,kl]). Hence, for any choice of R and M, we have

Pr [((C) zt)tul > x] < Pr [r(A(o,kl,,(o,kl]) < R] + Pr [1 + }lCZtl > M]

+ krn - k )Pr [((C) Zt)tull > xr(A(O,kl,(O,kl) > R, 1 + CZtll < M]

The first term on the RHS is bounded by Theorem 3.13,

Pr [r(A(o,k],(o,kl]) < R] ( J)tk

the second by Lemma 3.18,

Pr [1 CZt > M] < 10k(1 -+ _c)2 k -s+l 20(1 + V/) 2 k j- s +

r [ + > ] - (M- 1)cr J) Mc7 

(where we assume M > 2) and the third by Corollary 3.17,

(n k,) Pr [((C) Zt)tu > xr(A(,k,],(o,k,]) > R, 1 + CZt < M]

k2 -- kl- k2 - k xARJ
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where

=min k ' R M 2

and + ||CZt[I upper bounds the jjtHj that appears in Corollary 3.17. For the choice
of parameters that we will make, it will turn out that A - 2 /M 2 . Assume this for
now and set s = (1 + oc)(k 2 - kl), so that

nk2 - k Pr [|((C) Zt)tul > xIr(A(,k],(o,k]) > R, + IICZt II M]

4M2n1/aA s-(k2 -kl )+1

-< 2R

Now choose R and M such that

/nR 20n(1 + nx/n)2 4M 2nl/oc
VT (y Ma xc2R( 2r tR20n(1± C )2 2 M2.1 /o /4 T(3+1/c)/ 4(1 + o )

Tr C Moa Xr 2R - X1/45/4

This gives

M 1(n1-1/xcx)/4(1 + cV/) > ovn

M 2 5n3 / 4 (1-1/ac)(1 -+ oV/)X 3 /4

crR - 4o'1/4 -

for n'-'/aox > 1, which is true whenever the bound in the statement of the lemma
is non-trivial. So with this choice of R and M, in fact A - 2/M 2 .

Hence

Pr [ ((C) Zt)tu >x] < 3 (6T1 i ( +yi ± T) 4 in( -ss-(k 2 -k )1)

since n- kl > k- k l > s > s - (k 2 - kl) + l. By a now familiar argument (see proof
of Theorem 3.10, for example), this leads to

Pr[ ((C)Zt)t >x] <O(6 4 3. 5+1/U(l + )4) 4min(k-s+1,s-(k2 -k )+1)

I6
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3.8 Choosing parameters

In Theorem 3.9, we will choose

k = 2k/3

k - k+ =
2
2(k - ki)3

k, = log k

si = k-ki ~= Si = (ki, k]

This corresponds to having = 2 in Lemma 3.20. The number of factors r will be

log(k/3 log k) 2logk
log(3/2)

So for 1 < i < r -1, we have by Lemma 3.19 and 3.20,

Pr [ (Bi)k ZI >XI] < (
OrtL(1 +o sTC)2 2ki--k+l < (30n( +

6n(1 + ov/)

x /4 5/42

k-ki+ 1 +1

X2 )10n( + (l ( k-+ki+V

for k large enough. Since k - k+1 < 2k/9, we pick x and x 2 such that

+ 7VT) 2 (1On(1 + crV) 2/3

X1/4 F5/4
X2

- 'X1 J-

· 104 n5(1 +

X1 X2076
<

7nrt 5 /7 (1 + yV/-) 6/ 7

(X1X2) 1/76/7

and obtain

Pr [ ((Bi)k Zt) ((Ci)k zi)t >x < (7n 5/ 7(1 + cSYV) 6/77

which implies

Pr [1 + || ((Bi) I-. ,. ( On5/7 (1
1i , K 1,

""'J-= k X~'~~

+ tV/)6/ 7 k--k

'7C6/7 -j
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k
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for xi > 2. Choose the xi so that

1O0n5/ 7(1 + ov/T-) 6/7)

X 1/7 96/7

k- O1t5 /7 (1 + U)6/71 k-k2

1/7 6/7(1015/7(1 + ciT k-kr-i

_ (10T 5 / 7 (1 + roV/) 6/ 7 )

- /7 bx:

/> () -/7 EI k-ki

X ( t Xit

i

10n5/7(1 + 7V/T7) 6178

X

2 log 2 k ( -21 logk

41 i) 

Pr [ £ [-(((Ci)k Zi)t

We also have, from [6] and Theorem 3.10,

x-1
Pr [lBoll > x] <

Pr C > ] <

exp (
\

\2k/3 (
7(k/3)k/ 6

k/3) F(k/6) (xo.)k/3

and since Ar has only log k rows, we can use the worst-case growth of partial pivoting
to obtain

(Xr) (Ar) - ' I < k log k

Putting everything together, we get

Theorem 3.21. If A E Rtxk is a random matrix distributed as 9l (A, o2Ijt 0 Ik)
with ||AI| < 1, and pu(A) is the growth factor during Gaussian elimination with
partial pivoting, then

Pr [pu(A) > x] <
A

( (1+ c)))
12 k) logk12log k 7T
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Chapter 4

Conclusions and open problems

The most important contribution of this thesis is to establish a theoretical bound on
the growth in Gaussian elimination with partial pivoting that is better than 2 - l .

The bound that we have managed to prove is, however, still much larger than the
experimentally observed growth factors. In this chapter, we attempt to clarify the
limitations of the method used.

4.1 Limitations of the proof

The argument presented in Chapter 3 is remarkable in that very little use is made of
the improvement from partial pivoting that one expects and indeed, observes experi-
mentally. Most of the proof is in fact devoted to showing that rearranging the rows
does not significantly worsen the situation, as compared to not pivoting. We have
used a union bound in Lemma 3.20 to prove this, and this is the technical reason why
we require a logarithmic number of "stages" in the proof, and ultimately the reason
why our bound is of order (/cr) ( l°gn).

This technique thus does not take advantage of the fact that partial pivoting
appears to significantly mitigate the effects of a large pivot. That is, if A(o,k],(o,k] has
a small singular value, typically the next step chooses a row that removes this small
singular value, so that A(o,k+l],(,k+l] is much better conditioned. So the strength of
our method of argument, that it manages to get by only "touching" the algorithm at
a logarithmic number of places, is also its weakness, since it cannot take advantage
of the systematic improvement that partial pivoting produces.

4.2 Improvements

The most direct way of improving the bound we have proved is to reduce the number
of stages we use in Section 3.8. This in turn depends on improving the proof of
Lemma 3.20 so that we can make larger steps between stages. This will cut the
exponent in the bound for the growth factor, but ultimately cannot reduce it to a
constant.
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To get a polynomial bound on the growth factor it appears necessary to understand
better the effect of partial pivoting on the distribution of the remaining rows after
each step of elimination. This would appear to be the most fruitful area for future
research.
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Appendix A

Technical Results

A.1 Gaussian random variables

We recall that the probability density function of a d-dimensional Gaussian random
vector with covariance matrix 2 Id and mean it is given by

n Id) () -- dist(x,i) 2
n( , C2Id)(X)= (e272

Lemma A.1. Let x be a standard normal variable. Then,

1 e-½ k2

Pr [x > k] < 
2 k

for all k > 1.

Proof. We have

Pr [x > k] = e- 2X dx
v~J~: 

putting t = x2 ,

1 ooI I0

• J 72 k
et

dt
k

1 e k2

2~ k

Lemma A.2. Let x be a d-dimensional Gaussian random vector of variance 2 and
let J be a hyperplane. Then,

Pr [dist (x, ) < e] < 2/re/r.
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Lemma A.3. Let gl,..., g be Gaussian random variables of mean 0 and variance
1. Then,

E [maxIgil] /2logi +
1

2/-Ilogn'

E [maxigi] = J Pr [maxgil > t dt
t I I

< J=on
dt=O

1 dt + /g Ang nPr [Igl > t] dt

applying Lemma A.1,

< V/2 log +

< V2logn +

< 2logr +

= 2log rt +

2 e-t 2
---- dt

2 gan 27 t
oo

lo IJI-9n

1

ri e 21n)
2

Vlogn rv 7r log n
1

/2Itlog 

Lemma A.4 (Expectation of reciprocal of the L1 norm of a Gaussian vec-
tor). Let a be an n-dimensional Gaussian random vector of variance cr2, for n > 2.
Then

E [11 2

Proof. Let a = (a,...,an). Without loss of generality, we assume u2 = 1.
general , we can simply scale the bound by the factor 1/C. It is also clear that the
expectation of 1/ l all1 is maximized if the mean of a is zero, so we will make this
assumption.

Recall that the Laplace transform of a positive random variable X is defined by

T, [X](t) = Ex [e-tX]

and the expectation of the reciprocal of a random variable is simply the integral of
its Laplace transform.

Let X be the absolute value of a standard normal random variable. The Laplace
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transform of X is given by

C [X](t) = 1 

V /2 t2 J2z~

e-txe-x 2 dx

e- (+t) 2 dxe-2 dx

- e t2 te 1 2
e2- 0 dx

- e 2 erfc ( ) .

We now set a constant c = 2.4 and set oc to satisfy

1 - = e (/N erfc ( 7c/)

As e 2 t erfc (2) is convex, we have the upper bound

e2t erfc < I -

For t > c/i, we apply the upper bound

et2 erfc (-)
We now have

E[ 1 1I all ] J (e:t2 erf£

for O < t < /ic/t.

2 1
K /--

- It-T \t

C(t/v2)) ndt

t ) dt + dt< 1 -
J0

+ /2 (2/c) (n-)/ 2

- + it 7 n-1
2

-n-1'

for n > 2.

A.2 Random point on sphere

[

Lemma A.5. Let ul,..., ud be a unit vector chosen uniformly at random in R d .

Then, for c 1,

Prandom variable of variance 1 and mean 0.
where g is a Gaussian random variable of variance 1 and mean 0.
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Proof. We may obtain a random unit vector by choosing d Gaussian random variables
of variance 1 and mean 0, x l , ... , Xd, and setting

Xi
u i X

We have

Pr [u2 >] =Pr x++x 2

[,'> d X2 +.. 2 2
pr ( d - 1 ) x 2 >

x-xj >

x2. .. +x

(d-1)c 1

c , since c<l.

We now note that
def X 1

td def (d- 1)x]d 2 + X2

is the random variable distributed according to the t-distribution with d degrees of
freedom. The lemma now follows from the fact (c.f. [15, Chapter 28, Section 2] or [2,
26.7.5]) that, for c > 0,

Pr [td > X/] > Pr [g > ],

and that the distributions of td and g are symmetric about the origin. C]

A.3 Combination Lemma

Lemma A.6. Let A and B be two positive random variables. Assume

1. Pr [A > x] < f(x).

2. Pr [B > xA] < g(x).

where g is monotonically decreasing and lim,,,o g(x) = 0. Then,

Pr [AB > x] < f )(-g'(t)) dt

Proof. Let tA denote the probability measure associated with A. We have

oo
Pr [AB > x = J Pr [B > x/tIA] dA(t)

_ (t) d,,A(t)
0
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integrating by parts,

= Pr[A>t] 9 () dt

< f(t)dg ( dt

= J f (-g'(t)) dt

Corollary A.7 (linear-linear). Let A and B be two positive random variables.
Assume

1. Pr [A > x] < - and

2. Pr [B > xlA] < -

for some a, I3 > 0. Then,

Pr [AB > x] < c13 (1 +n ())

Proof. As the probability of an event can be at most 1,

Pr[A > x] < min ,1) f(x), and

Pr[B >x] <min ( ,1) def

Applying Lemma A.6 while observing

* g'(t) = 0 for t E [0, 13, and

* f(x/t) = 1 for t > x/cx,

we obtain

Pr [AB > x] < Odt + dt + dt

oc¢ --- dt +
x J3 t +[

- rf1 (I +1in ())

Corollary A.8. Let A and B be two positive random variables. Assume
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1. Pr [A > x] < min (1, o+3InxC).

2. Pr [B > xlA] < 

for some c > 1 and , y, > 0. Then,

Pr[AB>x]< C ( 1
Xc2

+ 213 + )
3c

-13/2 (X 2 ))

Proof. Define f and g by

f(X) def I{ 
xcr

g(x def 1
(X) r

r

for x < 

for x > ar

for x < Y
-- o'

for x> 
ca

Applying Lemma A.6 while observing

* g'(t) = O for t [0, f], and

* f(x/t) = 1 for t > xo/oc,

we obtain

Pr [AB > x] < + Y dt + dt
tJy/r xr/t t2 x/oc crt 2

x/C oc + c/ln(xcY/t) 'Y d cy

= /r X072 t dt + Xc 2

(substituting s = Vln(xc/t), t = xoe-S2 )

= x + g s r xc(-2se- S 2) ds + c-y
J ln(xo 2/y) XY 2 X(Te-S 2 Xc72

XY 2 n(xcr2/y)1nc

= M (1
xc 2

< a (1
-- XG2

2s(o +3s) ds + Y
X(

+ (X2)

+ 2+1
3Lx

2A3 (ln3/2 (x) -ln 3/2 ))

3 / 2 ( 2 ))

Lemma A.9 (linear-bounded expectation). Let A, B and C be positive random
variables such that

Pr [A > x] < -
x
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for some oc > 0, and
VA, Pr [B > xA] < Pr [C > x] .

Then,

Pr [AB > x] < E [C] .
x

Proof. Let g(x) be the distribution function of C. By Lemma A.6, we have

Pr [AB > x]< ( (-(1 -g)'(t)) dt

=-| t(g'(t)) dt

xOc=-E [C].
X

Corollary A.10 (linear-chi). Let A a be positive random variable such that

1. Pr [A > x]< '.x

for some > 0. For every A, let b be a d-dimensional Gaussian random vector
(possibly depending upon A) of variance at most o2 centered at a point of norm at
most k, and let B = lbll. Then,

Pr [AB > x] < d+ k
x

Proof. As E [B] < V/E [B2], and it is known [16, p. 277] that the expected value of

B 2 the non-central x 2 -distribution with non-centrality parameter b 112-is d+ 1b 112,

the corollary follows from Lemma A.9. 0

Lemma A.11 (Linear to log). Let A be a positive random variable. Assume

Pr [A > x] <-,
A X

for some > 1. Then,
EA [log A] < log a + 1.

Proof.

EA [logA] J Pr [logA > x] dx = min(1, -)dx
x=0 A = ex
log g+1

= adx + oce-Xdx = log o + .
x=O x=log t
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