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Abstract

A mathematical analysis of ultra-narrow ferromagnetic domain walls was undertaken,
with graphical plots coded in the programming language TrueBASIC. An intrinsic inter-
atomic potential stemming from the breakdown of the continuum approximation of matter
is calculated and its contribution to the coercive force of hard materials is depicted. The
interaction of a very narrow domain wall with a similarly narrow planar defect is analyzed.
Time-dependent motion of such walls is modeled for various external driving forces and in
different combinations of material parameters.

This work was completed in parallel with a study of narrow crystallographic magnetic dis-
continuities known as twin boundaries, and was designed to gain an intuition into the con-
trol of high-anisotropy magnetic recording devices. The equations developed here would
be particularly useful as a basis for approaching the calculations of the stability of high-
density storage media.
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Chapter 1

Introduction and Background

Ferromagnetic domain walls are of continuing importance to magnetic recording media
and high-performance films. Mathematical analysis of narrow ferromagnetic domain walls
was undertaken in order to quantify the degree of approximation inherent in the continuum
model of a crystal lattice. In a very narrow domain wall of width =(8/(/)) equal to about
nine (see Chapter 2, where O is a normalized halfwidth equal to the square root of the
ratio of the exchange energy to the anisotropy and / is the lattice spacing), the idealized
picture of matter as having a uniform potential field begins to break down. This is mathe-
matically represented by a change from integration to summation over the atomic ener-
gies. The geometry has one-dimensional functional variance in space but models a three-

dimensional crystal by assuming a plane wall with magnetization distribution as follows:

Huw///////&\\\\\\\mWTT,

-X

The dependence of the angle of magnetization on position is conformationally analo-
gous to a travelling soliton, of which helpful reviews can be found in Fogel et al. [1] and

Currie et al. [2].

1.1 Of Philosophical Interest

Of primary concem in this exercise have been 180° ferromagnetic domain walls, where
there is no crystallographic divide between regions of different anisotropy directions and
the equations are thus determined only by the boundary conditions. It was shown in Quat-
trochi and Paul [3] that the contribution to the energy from the change in anisotropy direc-

tion is large when compared with the intrinsic energy or the energy from the material



defect, and so is neglected in order to isolate the effect of the narrowness of the wall. The
possibility of multiple walls has also been discounted, since a domain wall, unlike a dislo-

cation, can be stable without a complement of opposite “handedness” (see Nabarro [4]).

Quantum mechanics and quantum mechanical operators are largely ignored in this
treatment, despite being the favorite of some very successful theoreticians (Winter [5],
Krumhansl and Schrieffer [6], Fogel et al. [7]). For the time-dependent analysis, true per-
turbation theory is circumvented as in previous wﬁrk by Paul [8] on the grounds that an
extemnal field would cause decisive rotation of the magnetizations and render a complex
treatment unnecessary.

In defining the dynamic physical problem, one encounters the dilemma of whether to
give the discrete lattice an intrinsic stiffness or to define the wall as possessing an intrinsic
mass. Doering [9] proposed that the mass of a wall was inversely proportional to its thick-
ness, which suggests that at least for a narrow wall, the mass therein dominates any inertial
forces form the lattice. A revision of Doering’s theory would not significantly affect the
results here. It should also be noted that since the inertial term is dependent upon the
kinetic energy, there is an implicit temperature dependence in the equations presented.

The interatomic potential was chosen to be sinusoidal for simplicity as Egami and
Graham [10], while presumably maintaining to a large extent the detail seen in models
employing the double-well potential (e.g. Krumhansl and Schrieffer [6]). Extensive use of
the Tuble of Integrals, Series, and Products by Gradshteyn and Ryzhik [11] has been made
in the calculations.

Below is a table of material parameters used in all graphs and numerical calculations.
The unit system is cgs, in deference 1o magneticians. The relevant conversions are:

10 ergs/cm3 = 1 Joule/m>, 10* Oersteds [Oe] =Tesla [T].
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Hypothetical materials Future 1 and Future 2 have parameters selected on the basis of
overall averages of other hard ferromagnetic materials in terms of Curie temperature to
determine the exchange and lattice spacing. Kittel [12] showed that the magnitude of the
exchange was linearly related to T C’ and iron was chosen as the reference energy. How-
ever, an elevated value of the anisotropy energy will be needed to show the full rangé of
these calculations, and so values of two and three times the highest commonly reported
were chosen to balance the need for reasonably low coercivities in order to be processable
by current methods and the mathematical requirement of a high enough anisotropy o dem-
onstrate the attributes of the narrow wall.

The K parameter for the anisotropy, in units of energy density, is slightly misleading.
According to Neumann’s principle, materials properties (including magnetocrystalline
anisotropy) have to have at least the symmetry of the material itself. This is written sym-
bolically as a series representing the symmetry, of which the K, are the fitting parameters.
However, when considering only uniaxial anisotropy, as in this Work, the numbers
reported record not an absolute value but the difference in energy between the easy and

hard directions.

Table 1.1: Material Properties, actual and projected

SmCos | SmyCo; | NdyFe 4B Fe Future 1 | Future 2
A [erg/cm] 1.9e-6 2.1e-6 1.1e-6 2.0e-6 | 1.5e-6 1.3e-6
K [erg/cm?’] 1.7¢8 3.3¢7 4.9¢7 4.8¢5 | 5.0e8 3.0e8
spacing [10 cm] | 5 8.4 8.8 29 |70 5.0
M 700 1030 700 1200 | 800 800

A is the coefficient of the exchange energy, linearly related to the Curie temperature of the material,
typically on the order 2x107* . K is more properly K1, the anisotropy energy in the easy direction,
to some degree forcing each material to be cubic by declaring the K independent of direction. The
units of M are such that MHcos @ has units of energy density in the Hamiltonian to be defined.
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9
The coefficient of kinetic energy is taken for all materials to be 610", as a compro-

mise between the papers of Enz [13]and Doering [9].

1.2 Structure of the Thesis

This thesis will consist of three main divisions: first, the intrinsic interatomic potential
of arnarrow domain wall is calculated to quantify the effect of a periodic atomic imped-
ance to wall motion; second, the intefaction of such a narrow domain wall with a similarly
narrow planar defect is analyzed to find consistent static solutions leading to a coercive
force; finally, an ad hoc viscosity is added to account for damping in the time-dependence
of the motion, and then said motion is calculated and plotted.

Also included are a basic introduction to the mathematics used in this paper and fully

commented copies of the TrueBASIC code.

12



Chapter 2

Properties due to Effective Discreteness
Beginning with a Hamiltonian that includes terms for the exchange and anisotropy, a solu-

tion is obtained in a manner similar to Paul [8]. Substituting this solution back in to the
energy formulation of each atom and summing gives a mathematical series, one term of
which can be physically interpreted as the energy arising from the discreteness of the lat-
tice. This is where the moving domain wall feels the effect of individual atoms instead of
the bulk continuum potential that has heretofore been so successful in materials with much_
wider walls.

Egami and Graham [10] have noted that “the potential barrier can be expressed as a
single sinusoidal function of the position of the wall, with the periedicity of the interlayer
spacing,” and determined that true energy minimization always leads to the a reasonably
narrow wall being centered between atoms, rather than evenly on top of those sources of

potential.

2.1 Energy

Time-dependent terms are for the moment ignored, and as such we are left with an energy

Hamiltonian on each atom equal to

r = A(A—e)z + K(sin0,)” -
5

Ais the coefficient of the nearest-neighbor exchange, and K is the magnitude of the
anisotropy. A differential change of magnetization angle with respect to position is inap-
propriate here, since the limit cannot be taken with the distance between points approach-

ing zero. The careful reader will also have noticed that the units on both terms are a

volumetric energy density, where certain other authors report energies in areal density
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[erg/cmz]. This was intentional, as it becomes more relevant in our case to consider the
total volume between atoms as well when an areal density would only have accounted for
the value at each atom and not through the space between.

Finding the minimum of the similar Euler equation with respect to 8 by setting the

variation in I equal to 0 gives

, X, —X
. 0
0, = asm(sech 5 ) : (2.2)
where the derived characteristic length & = «/1% The wall width, or the region over
which the majority of the magnetic rotation takes place, can be taken as nd . The shift fac-
tor x, accounts for a wall centered close to an atom other than at the origin. This solution
can not blindly be taken as true, as one must be careful in computer coding to use the cor-
rect value of the inverse sine, but the function produces a curve of intuitively correct
shape. It is also possible to use the equivalent solution presented in Bishop and Lewis [14],
of the form atan(exp(*wx)), where (0 is some frequency under a Lorentz transforma-
tion. Such a transform was deemed a needless complexity for this work, where domain
walls are always assumed to be moving at much less than the speed of light. In another
simplification, this work will consider only domain walls with boundary conditions
enforcing a rotation between zero and 180° as previously mentioned, but a simple scaling

factor is all that would be required to bring the solution to complete generality,
0. = G)A + ——— - asin| sech———— (2.3)

! s )

The center of the domain wall is taken to be at x = 0 with no loss of generality in the

reference frame being considered. Substituting our solution for the differential equation

back in to the Hamiltonian, it reduces to

14




2.4)

xi—x0 2
)

In summing over all space we employ Poisson’s sum formula which states

Fi = 2K(sech

ZI"I. = EZK(sech((n%)——lDz = 2 ]:JI"(n)cos(Znsn)dn (2.5)

The offset € is added to allow for a non-integer equilibrium position of the domain wall,-
and is retained throughout the calculations as the basis by which to take the derivative in
converting between energies and forces. With a change of position variables to a tempo-
rary p = (n+¢)l, dp = ldn, carefully noting the cancellation of odd terms in an integration

over all space, we obtain an expression for the total energy of the domain wall as

An’sK &>
Z 3 - COS2TsE (2.6)
s lzsinh(n 55)
]

of which the s = 0term gives the expected continuum contribution, calculated previously,

4JAK
[

or ,and the s = 1 term gives

A’ K>
1_1:2_6)
]

which can be interpreted as the energy arising from the intrinsic potential that a domain

* COS2TE 2.7

l2 sinh(

wall must overcome in order to move. The s > 1 terms are vanishingly small, with the
linear dependence on s of argument of the sinh in the denominator. It is apparent from the
implicit dependence of & on K that it should be possible and informative to plot the intrin- 7
sic wall energies as direct functions of K, for which see Figure 2.1. While 82 = [?, and

it is possible to simplify the term to a dependence on A alone, the dependence on K is

15



retained, again in the argument of the hyperbolic function. It is also evident from the pair-

ing of & and the lattice spacing ! that it is the relative and not the absolute wall width

which has any bearing on the transition between a material that is well approximated by

the continuum model and a material that requires intrinsic terms.

Ensrgy as Anisotropy
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Figure 2.1: Maximum energy inherent in an atomically periodic (as opposed to uniform)

lattice potential as a function of the anisotropy energy K.

Several interesting aspects of this can already be extracted, namely that for a domain

wall any wider than about four lattice constants, as determined for the relevant material,

the contribution from the discreteness becomes largely negligible (See Figure 2.2)
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Figure 2.2: The cutoff between energies considered “high” and negligible is taken where
the lines converge, or where the magnitude of the ficld becomes less important than the
potential inherent in the lattice. The Hamiltonian is on the ordinate axis and includes terms
for applied field, anisotropy, and exchange, but excludes time-dependence.

2.2 Coercivity

We determine a coercivity due to the discreteness and, below a wall width of a few lattice
constants, find it to be substantial (See Figure 2.3). Coercivity is defined here to be the
maximum field in which there are static solutions to the problem, e.g., the position of the
wall does not tend to infinity. This is equivalent to finding the field required to make the
Zeeman term of M e [ equal in magnitude to the intrinsic lattice energy. It can also be
thought of as the maximum depth of the potential well due to the atoms. Any external field
of magnitude less than the coercivity will instead have the effect of starting the wall oscil-

lating within the atomic potential well.

For a similar treatment of dislocations in metals, see also Nabarro [4].
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Analogous to Eqn. 1.1, the Hamiltonian is now defined as

I'. =4 a9 2+K(sine )Z—HM cosO 2.8

i = A 75 i i i 23
I

Summing over all space in a 27 periodic medium and taking the derivative with

respect to the dimensionless € representing the position in the argument of the cosine, one

obtains a minimum H-field due to discreteness of

2
8n3K (?)
H = (2.9}

C 28 ’

The fit of the experimental data to the following empirical equation is remarkable. In

some highly abstract sense, the coercivity can be thought of as showing the mass, or iner-
tial strength of the wall. Kittel and Galt [15] showed this to be inversely proportional to the
thickness of a wall in a continuum model, although here we see that the dependence has

.. 2
transitioned to the form 1/7" .

6 -4 8
HC = 10" x exp(—§— - 7) (2.10)

For comparison, consider the poor fitting of the energies to a line based on what was
once considered to be the sole dominant parameter, the absolute wall width, without cor-
recting for the lattice parameter of the material (Figure 2.4). An intriguing feature of this
plot is the relative magnitudes of neodymium--iron--boron and SmCo5. The samarium
cobalts have long been considered ferromagnetically “harder” than Nd2Fel4B, and so we
confirm that the relative wall width over lattice spacing 1s indeed the dominant parameter
in some materials. In others, domain wall pinning is the primary mechanism of coercivity,

not nucleation as above, and no theory is proposed for these.

18
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Figure 2.3: Intrinsic coercivity as a function of wall width. Note the remarkable adher-
ence to simple fitting equation (2.9).

Figure 2.4: Intrinsic coercivity plotted for comparison against the absolute wall width. It
is informative to notice that the absolute wall width of neodymium--iron--boron is in fact
less than that of SmCos, since it is considerably less effectively “hard”.

Figure 2.5: Relative magnitude of the coercivity and the total wall energy with contribu-
tions from the boundary conditions and the intrinsic term, plotted against the relative wall
width which has been shown to be the relevant abscissa.
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Chapter 3

Defect Interaction

In previous chapters we only considered domain walls moving in a perfect medium. In this
part we discuss the static solutions to a narrow wall in a medium with a planar defect of a

certain width, and compare these solutions to those obtained using a continuum picture.

Only planar inhomogeneities are analyzed here, and not precipitation defects proposed
.by Kersten to reduce total wall energy [16]. In brief, Kersten states that there is some criti-
cal defect size above which the additional energy from the interface with the defect is bal-
ance by the reduction in energy coincident with the decreased total length of the domain
wall. It can be assumed that there will be a functionally similar critical size faced by

defects in a medium containing very narrow magnetic walls.

3.1 Geometry and Mathematics of the Problem

Following Paul and Quattrochi [3], space is divided into three regions, two infinite perfect
grains of anisotropy angles perpendicular to the x-axis and a defect region of inconsistent
properties. In the reference provided, a more generalized formulation was used, with
anisotropy axes at & 4 and 7T — (C) 4 » Where it was shown that the contribution for marked
change in anisotropy directions, the energy change over a defect dwarfed the change in
direction of anisotropy energy. Therefore, in order to examine the effect of magnetic
changes, we have considered only walls with a complete reversal, or no change in anisot-
ropy angle. In addition to complicating the influence of the narrowness of the wall, a
change in anisotropy angle any amount other than 180° requires yet another boundary in
the crystal where the favored direction changes. When the shift is a reversal, the fact that
the magnetization vector has neither head nor tail works to the advantage of the modeler

by allowing the conditions to be set only at infinity. There is no conceptual difference,
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only more algebra. One small approximation that is made in both the previous argument
and this entire thesis, which is that anisotropy can change abruptly at an edge, when phys-
ically it must change smoothly and continuously. However continuity is maintained by
imposing apparent interface boundary conditions.

Chemical composition is not necessarily constant over the entire crystal, although the
magnetic properties are constant across the perfect grains. The defect can be considered to
be an absent monolayer, a slight dislocation, or a diffusion grain boundary. Tﬁe size of the

unit cell is presumed constant.

h -
N ' ‘'8
| ) B
A LA ~
0(—) , @ O(+-)
 f
/
w
Region ] Region II Region III

Figure 3.1: Regions I and I are considered the perfect grains, differing only in the
boundary value of the direction of magnetizationd, but having the same anisotropy energy,
exchange energy, and magnitude of magnetizations. The field is applied parallel to the

anisotropy axis. '

The Hamiltonian is again formulated as in Chapter 2, with the subscripts on the mate-

rials parameters indicating the value in RI, 11, or IIL
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o= 4 (39 k (sin6 )2 — M cosd 3
Y Ax, J t OOV G0

Three integral equations are now formulated, with

FRI = Z 1"1. (3.2)
Ppi = 2 I, (3.3)

Crir = 2 I, (3.4)

right
x 72

Continuity is applied at the left and right sides of the defect, x; and X3, so that the
value of both 8 and 4 jG' are equal across each boundary. Manipulation of the resultant

equations confirms the expression presented in full generality in [3],

2 2
b(cosB,) +ha(cos81)—-b(cosez) ~ha(cosb,) = 0. (3.5)
The dimensionless parameters are the same as in that reference, or
AIM] AIKI MZH
a = —1,b = | ——| -1, and normalized field 4 = —=— . The inte-
A M 4K " K ‘
2772 2742 2
gral equation that must be solved is

-1
X 0 =

2
%"E - jde{(sine)z ~ h(c0s8) + b(sin6)° - ha(cos®,) + h(a + 1))}
X 0,

Xn—X
The relative defect width w = 5 is found when x is set equal to x, in the inte-
2
gral, and is normalized by the projected domain wall halfwidth in the defect region,
5, = |2
2 -_ - .
K 2

23



3.2 Results and Plots

Code was written (sce Appendix B) to find combinations of 8, 8, , and A consistent
with a static solution to the problem. The width of the defect having such properties was
then calculated, and a width in lattice constants was inferred. A complete set of solutions
is not necessarily found by this method, but any finer resolution of the iterations would
take prohibitively long on the computers used, and would add little information to the

trends to the trends already observed.

Difference in angle over defect
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Figure 3.2: Note the monotonically increasing change in magnetization angle across the
defect with increased applied field (normalized). This shows that for increasing magnetic
field energies, the material concentrates more rotation in an already imperfect region,
maximizing the volume of the medium that can be considered perfect. a=0.1, b=0.294.
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Figure 3.2 shows the correlation between increasing change in magnetization angle
over the defect with increasing applied field for a and b values corresponding to approxi-
mately a ten per cent change across the defect region. For each increase in Zeeman energy,
the material concentrates more of the rotation (which can be thought of as a huge increase
in the exchange correlation energy from the misalignment of neighboring atoms) in the
defect region.

Figure 3.3 uses the material parameters of SmCos and the same values of the defect
strength indicating a ten percent change in the magnetic properties. Note that the estima-
tion by integration of the energy of interaction between a domain wall and a defect is
always lower by about a factor of two. This is most true at the narrowest defect widths,
seeming to taper as the effect of individual atoms is smoothed out over a wider imperfec-
tion in the crystal.

It is not a trivial solution when in high strength defects @ = b = 0.5, the energy
calculation based on summation produces a smaller result than that based on integration,
although this is only true for defectwidths of less than one lattice constant. Exchange is a
correlation term that affects not just the atom in question but its neighbors, which means
that even the narrowest defect will jog the equilibrium of both the domain wall shape and
its position: at minimum, three atoms are forced to an unstable state, which has more of a

direct effect on the terms in the summation.
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Figure 3.3: Again for a=0.1, b=0.294, the relative heights of the energy calculations from
integration and summation are shown. The estimation of the domain wall energy from dis-
creteness is always larger in a relatively weak defect such as this than from integration.
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Chapter 4

Time Dependence
A viscosity term is now added to the energy Hamiltonian and the slight perturbation in the

argument of the O is defined to have a time-varying part. For a thorough treatment of the
mathematics in this section refer to Titchmarsh [17] or Watson [18], and for a basic cover-
age of the main points, see Appendix A.

The form of the unperturbed domain wall can be recognized mathematically as a soli-
ton wave, explained succinctly in Trullinger et al. [1,7]. In our work, the most important
aspect of a true soliton wave is that it retains its shape during propagation. Nakajima [19]

described the properties of solitons and the small perturbations thereof.

4.1 Formulation

The definition over all space of the energy now includes a viscosity term, which can phys-
ically be thought of as representing eddy currents (Kittel and Galt [15]), demagnetization
fields from time-lagged precession of the spins (Boutron [20]), and/or microdefect interac-
tions (Kittel [12]).

The equation of small-amplitude motion of the 180° wall problem has previously

been described in a linear model by Kittel and Galt [15], of the form

mzZ+PBz+oz = 2IH (4.1)

where m is the mass of the wall, 3 is the viscosity, and O is a reasonably arbitrary lattice
stiffness. The right-hand side of the equation is the pressurc on the wall, and H is the
applied field. As an aside, wall energy in this reference is also reported in areal density.
This is equivalent to an electrical circuit of net resistance m, total inductance 3, and
effective capacitance C¢. In large enough fields the inertial term becomes negligible and

the equation reduces to a differential equation of first order. However, in our formulation
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this results in an inappropriate oversimplification of the form of the response of the

domain wall in the presence of such atomic potential changes.

Our total Hamiltonian in a perfect lattice becomes

202 _ 00 aei 2
A(a—x) +K(sm9i) —~ MH (cos6,) - n( at) C(T)_t_) =T, (4.2)
H

where O is no longer a direct function of x + € but is instead

0= 90 + €0’ 4.3
as explained in the Appendix, where the second term is in total equal to ¢. In addition,
one must be careful with the units on the kinetic energy term, as O is dimensionless where
a length is expected. This is avoided by redefining the coefficient C to include a character-
istic length (in units of length squared) of the wall. The coefficient of the prime term
includes a Legendre polynomial as a function only of (—tanh g) and a time-dependent

solution only of time, T(t).

a8, 2
4(ﬁ+j—¢J +K(sin(8, +0))° ~ MH cos(8y +0) - nd"’ C(‘;‘l’) @

The intrinsic potential is included in the manipulations of the term e 0 Substituting

the full expression for the angle dependence into the Hamiltonian, one arrives at an inte-

gral equation, and proceeds using

¢ = Ptotathotal 4.5
Plll = é sech%l (4.6)

[} : .
(Higher order polynomials P1 a are ignored as representing radiative spin waves,

which are encompassed in the viscosity term.) Manipulating and multiplying each term in
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the perturbed Hamiltonian by P 1 : , then integrating over all space (in a process called
projecting out), one 1s left with only terms of the first kind, the orthogonality of the higher
order polynomials with each other having cancelled each one. The assumption is made
that { is of a size that the small angle sine approximation can be made. The second-order
differential in time is the result:
2
F+L.7 = nd L HM @.7)

2C 2. 2C
ClzsinhnTa

This is solved using the boundary conditions of 7 = 7' = 0 at t=0, and obeys the

canonical solution

T = sexp[—;{}+ 22 (4.8)
: n H

2’Kp® HM
where n = N/(2C), p = 8/1, and the coefficient s is equal to 2L+ Z
nsinh(n'p) N
From this expression one sees that at some time large enough, the assumption that the
perturbation € is small becomes invalid. However, the solution maintains its physical real-
ism when it is remembered that this equation of motion is for a perfect crystal, and in real
matter with a dislocation density of 10%cm?, there would be only a finite small distance a
domain wall would travel unhindered. Figure 4.1 confirms that the size of the perturbation

is small for all relevant times on the scale of a material response to a magnetic field by

comparing the size of €/6,, at x=0.
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Figure 4.1: Relative magnitude of the perturbation compared with the size of the equilib-
rium angle distribution at a given point. This confirms our assumption that it is smail and
allows us to make some necessary simplifications in the integration.

4.2 Results

Figure 4.2 shows the evolution of the shape of the wall at different times. The reference
frame is always centered at the midpoint of the wall which is defined to be symmetric.
Figure 4.3 models the effect of an increasing intrinsic viscosity (representing eddy cur-
rents, spin waves, etc.) on the motion of the wall in a given time. Only the T part of the
perturbation is plotted, as the maximum distortion from the equilibrium distribution with
time is felt at the midpoint of the wall because of the hyperbolic secant coefficient which

falls off to zero away from the center.
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Figure 4.4 has been run at great patience from the author on a stepsize requiring sev-
eral hours to calculate, and yet the general shape is the same, which we postulate to show
the effect of individual atoms on the motion of the domain Wall. Again only the motion at
the center of the wall is shown as it is the most significant. A viscosity any larger begins to
smooth out the visible effects from each single atom and instead merely show the cumula-

tive effects of damped motion.

Maguetization distribution vs x at different times. H+10 {0e]

5 + t=0. no perturbation % 6#107(=5) &  10°(-4)
L) T L} L] ] T T T T T L]

T L T

PO N oD D

B r—g o

-7 1 Ny ) i n A A 'l X 4 1 A
-6 —4 -2 ] 2 4 &
position in lattice spacings from center of moving wall

.

Figure 4.2: Shows the evolution of the shape of the wall at times 0 seconds, 6x10™ sec.,
and 10" sec. Notice the instability around the center.

Figure 4.3: Showing the effect of an increasing viscosity on the ability of the domain wall

to move in response to an applied field. Zero viscosity is not shown since there is no static

solution; an infinitesimally small field applied to a domain wall in a perfect crystal will set
1t moving forever.

Figure 4.4: Proposed to show the effects of individual atoms on the movement of the
domain wall in a medium with viscosity near zero, increasing the effect of the intrinsic
potential on the equation of motion of the wall.
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Chapter 5

Conclusions and Future Direction
Currently, materials that require such narrow-wall analysis can not be processed. How-

ever, with the advancing technology of hard magnetic materials, it will not be too far in the
future before these mathematical results have the opportunity to prove useful.

It has been seen that as processing catches up with the symbolic ability to achieve ideal
crystals and ultra-narrow walls, the continuum approximation of matter will break down,
and will do so significantly (orders of magnitude). Defects of known widths and strengths
will be able to pin narrow walls reliably under appropriate field conditions, which will be
extremely useful for high-density magnetic recording or other applications.

A magnetization profile over time, to an external field with a shape other than har-
monic, should be solvable with these equations, Multiple walls must be considered for
their interactions with each other and the magnetization history of the material as each
passes through even a perfect crystal.

Future work includes the extended calculations, most probably with numerical (non-
analytic) approximations, correlated to domain walls of rotations other than 180 degrees.
A more thorough but less intuitive result might also be reached using the full power of

quantum mechanics or spin-polarized computation.
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Appendix A

Review of Relevant Mathematics

A.1 Legendre polynomials
Legendre polynomials are more expertly addressed in Boutron [20], Morse and

Feshbach [18], or Titchmarsh [18], and the truly mathematically inclined are directed
there. However, a three-minute overview is presented for the casual reader.

The premise is that of stability and time evolution. A static solution 90 15 discussed
here, as a function directly of x + €, and occasionally of time as well. Somewhat akin to

the separation of variables procedure in solving differential equations, it is decided that

0(x+8)=60(x)+860', (1.1)
for small enough values of the offset €. Here, the second term of the righthand side of
the equation is written as the first term of the Legendre polynomial multiplied by whatever

time-dependent part solves the relevant mathematical formulation.

¢ = Pll(u)Tl. (1.2)

where P(u) represents our mythical Legendre polynomial in its entirety, although the u

in our case must equal —tanhg, in order to conform to the terms in the Legendre equa-
tion. We assume that P 1 is the only important term in the series, and that the P, " rep-
resent radiative spin waves which contribute to the viscosity of the lattice, already
accounted for here by the ad hoc viscosity term and are of no additional concern to our
current problem. Conveniently, the polynomials are all orthogonal, which means that the

integral over all space of their product is zero if you multiply any two of them together that

have different sub- and superscripts.
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Substituting the above equations into the Hamiltonian for the domain wall, we obtain
the integral equation similarly to before, and multiply each series by the P1 1 in a proce-
dure called projecting out. This exploits the orthogonality of our terms and leaves oﬁly
terms of the first kind. (Incidentally, what we work with in this thesis are true Legendre
polynomials, but there exist associated Legendre polynomials, denoted Q1 1 , which con-
form to a different expression. Again, see Watson (¥*) for a more technical treatment).
The terms are then iﬁtegrated as usual to produce an equation of the first and second time
derivatives of T|. This is then solved, using boundary conditions at the crystal edges, for

an expression for the time dependent part of the perturbation.

A.2 Hyperbolic functions

The trigonometric functions cosine and sine have counterparts in the hyperbolic functions
cosh() and sinh(), as do the tangent, secant, etc. Where the trigonometric functions con-
sider only the unit circle, hyperbolic functions parametrize the standard hyperbola of
)c2 - y2 = 1. Hyperbolic identities are often similar, although not identical, to the trigo-

nometric fundamentals. Inverse hyperbolic functions are obtained by reflecting the rele-

vant operator about the y=x line. Major functions have form as follows:

[
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Appendix B
Code
Included are the following files, compiled using the TrueBASIC Silver Edition on an

IBM ThinkPad laptop.

‘Table 2.1: Code inclusions.

‘ Final Used to
Filename Revision # of pages generate
Date which figures

Energy-using-scigr--30-06-03. TRU 1-Jul-2003 | 5 2.1
Htotal-vs-delta--5-11-03.TRU 5-Nov-2003 | 2 2.2
Real-lattice-const--12-11-03. TRU 4-Feb-2004 | 9 2.3,2.4
Coercivity--04-02-04. TRU 9-Feb-2004 | 3 2.5
Defect-quattrochi--06-02-04. TRU 8-Feb-2004 | 7 32,33
Theta-vs-x--28-10-03. TRU 3-Mar-2004 | 5 4.1-4

39



4 &



ENERGY-USING-SCIGR--printable Page 1 10:54:04 03/08/2004

Catherine Jenkins, elidorBmit.edu
!'8M thesis work under David Paul, dipaul@mit.edu

! Btarted 26th June 2003
! Last mod 1lst July 2003

Program to calculate and graph the variation

in wall energy for a wall of halfwidth delta as

a function of the perturbation alpha (dimensionless)
anisotropy energy K in ergs/cm”~3 and the

exchange energy A in ergs/cm.

! For analytic derivations of energies found here,
! refer to CAJ notes of 22-26/6

I Defaults to a lattice constant of 2*107-8 cm,
! exchange energy of 2*10”-6 ergs/cm, and anisotropy
' of 2*10"8 ergs/cm"3.

library "sglib.trc"
library "framelib.trc”
library "sgfunc.trc"

OPTION NOLET

! A dummy variable used for future loops to
! test logically for whether a command has
! been executed. Clearly unimportant.
done=0

DO
INPUT prompt "Defaults ok? (y or n)": default$

IF default$="y" THEN
spacing=2+*10" (-8)
A=2*10"(-6)
K=2*10"(4+8)
done=1
PRINT
PRINT "spacing [cm]="; spacing
PRINT "A [erg/cm]"™; A
PRINT "K [erg/cm~3]}"; K

ELSEIF default$="n" THEN

INPUT prompt "spacing=": spacing
INPUT prompt "A=": A
INPUT prompt "K=": K
done=1
ELSE
done=0
END IF

LOOP while done=0

! The Hamiltonian is summed over all space but in

! practice only the s=0 and s=1 terms are visible.

! The variables alpha, s, and delta are introduced.
! An approximatiocn for small alpha and s is used to
! overcome the exception evaluating SINH(0}

alpha=0.1
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ENERGY-USING-SCIGR--printable Page 2 10:54:04 03/08/2004

5=0
delta=(A/K)"0.5

DEF FNHamiltonian (delta, spacing, s, alpha)= &
& (2*PI"2*delta”2*spacing”(=2)) * s * &

& COS(2*PI*s*alpha) / &

& SINH(PI"2*delta*s/spacing) * (2*K)

DEF FNHamilException (A, K, spacing)=4*(A*K)"(C.5)/spacing

PRINT
restenergy=FNHamilException (A, K, spacing)
PRINT "The s5=0, alpha=0 term is"; restenergy

! The rest energy is the Hamiltonian evaluated
! at s, alpha=0, with the physical meaning that
! it is in its lowest energy state at zero perturbation.

! The barrier height is the s=1 term evaluated at some
! small alpha plus the 5=0 term at some small alpha,

! minus the rest energy, although in this case the two
! cancel and it can be written as just one term.

PRINT
PRINT "Pomain wall halfwidth in cm is";delta
PRINT "Domain wall halfwidth in lattice constants is"; delta/spacing

PRINT

barrier = FNHamiltonian (delta, spacing, 1, alpha)
PRINT "The energy barrier at alpha=";alpha;é&
&"and s=1 is";barrier

PRINT
PRINT "Continue. "

GET KEY null
CLEAR
SET MODE "Graphics"

!Defining matrices for alpha and the energy Hamiltonian.
DIM x(100), y(100)

FOR dog=1 to 100

x (dog)=dog/100 ! a desperate way of declaring alpha proporti
yi{dog)=FNHamiltonian (delta, spacing, 1, dog/100)

NEXT dog

!Syntax DataGraph(x(), y{), pstyle, lstyle, col$)

CALL SetText ("Energy Change With Static Offset", "alpha", "Energy Barrier")

CALL DataGraphi{x(),y!(), 6,4, "black black red")
GET KEY null
The following graph watches the change in
the value of the s=1 term as delta 1s varied

|
!
! directly as 1. Necessary values of A and K are stated.
! Initial values were defined in the first section.
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ENERGY-USING-SCIGR--printable Fage 3 10:54:04 03/08/2004

| It is important to remember that delta does not
| automatically adjust with changing values of its
| defining parameters, A and K.

CLEAR
DIM w(l00), v{100)

alpha=0.1
xmin=0.1
xmax==6

FOR foo=1 to 100
delta= spacing* (xmin +foo/100* (xmax — xmin})
w(foo)=delta
v(foo)=delta !FNHamiltonian (delta, spacing, 1, alpha)
NEXT foo

CALL SetText ("Energy vs Domain Wall Halfwidth”, "Halfwidth [cm]","s=1 term")

CALL SetGraphType ("LOGY")
CALL DataGraph(w(),v(),2,2,"black black blue")

GET KEY null
CLEAR

| The next graph shows the variation in the energy

| as the anisotropy K is varied directly, which

! produces largely the same results as varying delta,
| given the elementary relation between the two.

xmin=1/1000
xmax=1
Kmin=5*10"6
Kmax=5.3*10"8

DIM t{100), u(l1l00), r{100), g(100)

FOR krotus=1 to 100

xax=Kmin+ (Kmax—-Kmin) *krotus /100

L (krotus)==xax

yvax=30R (A/xax)

u{krotus)=FNHamiltonian (yax, spacing, 1, alpha}
NEXT krotus

CALL SetText ("Energy as Anisotropy","K l[ergs/cm~3]", "Energy due to Discrete
CALL SetGraphType ("XY")

CALL SetGraphType ("LOGX™)

CALL DataGraph(t(),u(),3,2,"black black green")

DIM bear(2), var(2), bunny(2}, Jjimbo(2)

bear(l)= 4.9*10"7

var(1l)=.0003

bear (2)=4.9*10"7

var (2)=.0008

PLOT TEXT, at 0.35,0.2: "Nd2Fel4B"

CALL AddDataGraph (bear,var,0,1, "black")



ENERGY-USING-SCIGR--printable Page 4 10:54:04 03/08/2004 J

bear(l)= 4.5*10"8

var(l)=.0075

bear (2)=5*10"8

var (2)=.008

PLOT TEXT, at 0.75,0.73: "Future 1"

CALL AddDataGraph (bear,var,0,1,"black")

bear(1)=3.3*10"7

var(l)=.0003

bear{2)=3.3*10"7

var (2)=.0008

PLOT TEXT, at 0.25,0.2: "Sm2Col7"

CALL AddDataGraph{bear,var,0,1, "black")

bear(l)= 1.7*10"8

var (1)=.0003

bear(2)=1.7*10"8

var (2)=.0008

PLOT TEXT, at 0.6,0.2: "SmCob5"

CALL AddDataGraph (bear,var,0,1,"black™)

bear{(l)= 3.0*10"8

var(1)=.0003

bear{(2)=3.0*10"¥

var{2)=.0008

PLOT TEXT, at 0.7,0.2: "Future 2"

CALL AddDataGraph (bear,var,0,1, "black")
GET KEY null

xmin=.5
Xmax=2

FOR florey=1 to 100 '
delta=spacing* (xmin+florey/100* (xmax-xmin) )
one=FNHamiltonian (delta, spacing, 1, alpha)
zero=FNHamilException (K*delta”2, K, spacing)
r{florey)=PI*delta/spacing
g{florey)=one/zero

NEXT florey

CALL SetText ("Relative magnitudes of s=1/5=0 terms vs width”,"Wallwidth [la
&"Correction From Discreteness")

CALL SetGraphType{"XY")

CALL DataGraph(r(), g(), 2,4,"black black magenta™)

GET KEY null

!'This graph plots the s=1 term of the domain wall,
! allowing for the center to be shifted x 0 away

! from a lattice constant in addition to the

! perturbation alpha against the s=1 term unmodified.

CLEAR
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DIM n(100), p(100)

FOR beer=1 to 100
x O=spacing*beer/100
n(beer)=x 0
p(beer)=(COS (2*PI*x 0/spacing)*COS(2*PI*alpha)+SIN({2*PI*x_0/spacing

&*SIN(2*FPI*alpha)) /COS(2*PI*alpha)
NEXT beer

CALL SetText ("s=1 energy term vs shift x 0 in addition to alpha", &
£"x 0 in lattice constants”,"s=1 term")

CALL DataGraph(n(),p(), 8,3,"black black cyan")

GET KEY null

END
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HTOTAL-VS-DELTA--5-11-03.TRU Page 1 10:54:58 03/08/2004 ’

!Catherine Jenkins, elidor@mit.edu
! 8M Thesis work under David Paul, dipaul@mit.edu

' Plots H total including intrinsic resistance,

! applied external field, anisotropy, kinetic,

! and exchange energies on the atomic scale.

! Going to try two things, 1) using the new values
! of A and K to define delta, and 2) declaring the
! number of lattice constants without respecting
! their cobedience to A and K

!Started 5/Nov/03
!'Last Mod 5/Nov/03

OPTION NOLET
library "sglib.trec"

-library "sgfunc.trc"
library "framelib.trc"

A=2*10"(-6) lergs/cm

K=5*10"8 lergs/vol

C=10~(-10) lergs*s~2/vol
1=2+*10"(-8) 'em, lattic spacing
M=5*10"(2)

DEF FNHtotal (epsilon, delta, t, H)=
4*PI"2*A*cos (2*PI*epsilon)/
M*H/COSH (epsilon*1l/delta) +&
M*H*tanh (epsilon*1l/delta) /cosh{epsilon*l/delta) &
*exp((=1)* (M*H*PI/(B*c)) " (0.5)*t) +&
M*H*PI*exp((—2)* (M*H*PI/(8*C) )~ (0.5)*t) /&

(8% (cosh(epsilon*1l/delta))"2)

&
(1"2*5INH(PI"2*delta/l)) +&

ol 2K S E - B SR w2

! Plotting Htotal vs epsilon for a few lattice
! constants with a few arbitrary delta/l ratios.
' All at t=0 for now.

DIM d(3,100), e(3,100), legendS$(3)
steps=100

epsmin=-5

epsmax=5

HO=10

FCR pink=1l to steps
epsilon=epsmin+pink* {epsmax-epsmin) /steps
d(l,pink)=epsilon
d!{2,pink)=epsilon
d(3,pink)=epsilon
prvni=(A/K)~(0.5)
e(l,pink)=FNHtotal (epsilon,prvni, 0,H0)
druhy=2.65*1
e{2,pink)=FNHtotal (epsilon,druhy, 0, H0)
treti=2.5*1
e(3,pink)=FNHtotal (epsilon, treti, 0, HD)
NEXT pink

legendS$S {1)="SQORT (A/K)"
legends{2)="2.7*1"

4e
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legend$ (3)="2.5*1"

colors$="black black magenta cyan"”

CALL SetText ("Htotal vs epsilon for different wall widths”, &
& "epsilon in lattice spacings","Htotal")

CALL ManyDataGraph(d,e,2,legend$,colorss$)

GET KEY null

Htotal,max vs the ratio delta over 1 to see where
is reasconable, where counts as "narrow", etc
Plotted just at epsilon=0. On the grounds that
PI*delta is the width, more or less, and that
walls would have a hard time switching in *less*
that one lattice constant, let the smallest

ratio be delta/1=1/PT.

! At epsilon=t=0 and varying H
DIM f(3,100), g{3,100), label$(3)

iterations=100
ratiomax=2
H1=0

H2=5

H3=50

FOR count=1 to steps
ratio=1.05+count*ratiomax/ (2*steps)
delta=ratic*1l
f(1,count)=PI*ratio
g(l,count)=FNHtotal (0,delta, 0, 1)
f(2,count)=PI*ratio
g (2, count)=FNHtotal (0,delta,0,H2)
f(3,count)=PI*ratio
g (3, count)=FNHtotal (0,delta, 0, H3)

NEXT count

labelS (1}="H=0 [Oel"

label$ (2)="H=5"

label$ (3)="H=50"

colors$="black black red blus"

CALL SetText ("Max total energy vs wallwidths at varying external field", &
& "Wallwidth [Lattice constants]","Maximum Energy [(ergs/volume]l")
CALL SetGraphType ("LOGY")

CALL ManyDataGraph (f,g,4,1label$, colorss)

GET KEY null

END

4%
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iCatherine Jenkins, elidor@mit.edu
] SM thesis work under David Paul, dipaul@mit.edu

Started 12/11/03

Last Mod 04/02/04

Longer scale from the intrinsic resistance to
movement graph. Plot critical wallwidths vs real
lattic parameter for Fe, NdFeB, SmCo.

OPTION NOLET

library "sgfunc.trc”
library "sglib.txrc"
library "framelib.trc"

A=2*10"(-6) lergs/cm

K=5*10"86 !\ More even than SmCob5 but for future...

M=500 ! About half that of iron, ¢gs units
C=6*10"(-9)

K1=5*10"8 | Future

K2=1.7*10"8 ' SmCob5

K3=4.9*10"7 INd2Fel4dB

K4=4.8*10"5 IFe

K5=5.3*10"6 ICobalt

K6=(4.5)*10"4 'Nickel: maybe going to be a slight

'problem. Don't know what to do with
! negative sign. Should look up somewhere
! other than E du Tremolet de Lacheisserie

K7=3.3*10"7 15m2Col7

K8=3*10"8 'Future 2

A1=(800/1043)*2.00%10~(-6) !Fxn of curie temp. As kittel.
A2=1.91*%10"(-6) | (Tc,matl/1043[K]=Pmatl/2.00%10"(-6)
A3=1.12*10"(-6)

Ad4=2.00*10"(-6) 'Reference

A5=(1388/1043)*2.00*10" (-6)
B6=(627/1043)*2.00*10" (-6)
A7=(1073/1043)*2.00*10" (-6)
AB=(700/1043)*2.00*10"(-6)
spacingl=7.0%10"(-8) ! [em]
spacing2=5.0*10"(-8)
spacing3=8.8*10"(-8)
spacing4=2.9%*10"(-8)
spacingh=2.5*10"(-8)
spacing6=3.5*10"(-8)
spacing7=8.4*10"(-8)
spacingB8=5.0*10"(-8)

| Snlve for the field to overcome the intrinsic,

| anisotropy, and exchange energies. Ignore kinetic
! on the assumption that it is still to start with.
I All with relation to delta/spacing ratio and as

{ a function of the relevant properties for a given
| material (viz B du Tremclet de Lacheisserie, 2002)

DEF FNField(delta, A, K, M,spacing)=4*PI“2*A/&
& (M*spacing”2*SINH(PI"2*delta/spacing))

IDIM 3(4,70), n(4,70), titleS(4)
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DIM j(3,70), n(3,70), titles(3)
Amin=1*10"(-10)

Bmax=1*10"(—~6)

amount=70

! I happen to know the magnetisation of iron to be
! 1200, and it would be good if future materials

! would have slightly lower than our current top-of
'-the-line of around 500. Ish.

FOR book=1 to amount
Anow=Amin+ (Amax-Amin) *book/amount
deltal=(Anow/K1l) "~ (0.5)
delta2=(Anow/K2)"~ (0.5}
delta3=(Anow/K3) " (0.5)
deltad=(Anow/K4)" (0.5)
j (1,book)=PI*deltal/spacingl
n(l,book)=FNField(deltal, Anow, K1,400, spacingl)
j(2,book)=PI*deltaz/spacing?2
n{2,bock)=FNField(deltaZ, Anow, K2,M, spacing2)
j{3,book)=PI*delta3/spacing3
n{3,book)=FNField(delta3, Anow, K3, M, spacing3)
! j(4,book)=PI*deltad/spacing4
! n(4,book)=FNField{delta4, Anow,K4, 1200, spacingd)
NEXT book

title$ (1)="Future hard materials a~0.7nm"
title$ (2)="SmCo5 a=0.5nm"
title$(3)="Nd2Fel4B a=0.88nm"
ftitle$(4)="Iron a=0.29%nm"

colors$="black black green magenta"

CALL SetText ("Minumum field to overcome different deltas for real materials
& "Relative Wallwidth: PI*delta/spacing”,"Field [0e]™)

CALL ManybataGraph(j,n,1,title$, coloxrs$)
DIM - X(2), yi(2)

x(1
® (2

)=
)=
y(1)=10“7
y(2) =10"7
CALL AddDataGraph (x,y, 0,1, "black")
GET KEY null
! Define new fxn of delta/spacing ratio along ordinate,
! field to overcome discreteness along yax, and as a
! fxn of K along the curve.
DEF FNEasyField (ratioc, anisotropy, magnetisation)=&
& 4*PI~Z*anisotropy*ratio”~2/&
& (magnetisation*SINH (PI~2*ratio))
’As the first graph, but on a much longer scale

DIM s(3,40),t{(3,40)

Amin=(0.1)*10"~ (-6

“9
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Amax=(2.3)*10"(-6)
amount=40

FOR book=0 to (amount-1)
Anow=Amin+ (Amax-Amin) *book/amount
deltal=(Anow/K1)"({0.5)
delta2=(Anow/K2)"~{0.5)
delta3=(Anow/K3)"(0.5)
s(1,book+1l)=PI*deltal/spacingl
t(1,book+1)=FNField(deltal,Anow,K1,0.B*M,spacingl)
s (2,book+1l)=PI*delta2/spacing2
t (2,bock+1l)=FNField(delta2, Anow,K2,M, spacingz)
5 (3,book+1l)=PI*delta3/spacing3
t(3,book+1)=FNField(delta3, Anow, K3,M, spacing3)
NEXT book

title$ {1)="Future hard materials a~0.7nm"

title$ (2)="SmCo5 a=0.5nm"

title$ (3)="Nd2Fel4B a=0.88nm"

Ititle$(4)="Iron a=0.29nm"

colors$="black black blue red”

CALL SetGraphType ("LOGY")

CALL SetText ("Minumum field to overcome different intrinsic deltas for real
& "Relative Wallwidth: PI*delta/spacing”, "Field [Oe]")

CALL ManyDataGraph(s,t,2,title$, colors$)

iAdd a line to show minimum reasonable field anyone
lwould bother applying, at 10 Oe

|CALL AddDataGraph(x,vy,0,1,"yellow")

| Adding three points to show where real materials
{ currently are on each graph. At some point I suppose
! I should bother to learn the syntaxz for MAT READ
!

'DIM u(3), v{3)

ldeltal=(A1/K1)~ (0.5} I Future
'n(l)=deltal*PI/spacingl
lv(l)=FNField(deltal,Al,K1,0.8*M, spacingl)
ldelta2=(A2/K2)"(0.3) ! 8mCob
tu(2)=delta2*PI/spacingZ
lv{2)=FNField(delta2,A2,K2,M, spacing2)
tdelta3=(A3/K3)"(0.5) INd2Fel4B
tu{3)=delta3*PI/spacing3
lv(3)=FNField{delta3, A3,K3,M, spacing3)

|

|CALL AddbataGraph (u,v,3,0, "black")

GET KEY null

| More comprehensive materials data comparison graph

| incl. elemental cobalt, nickel, iron, and Sm2Col7.

| Specifically shewing sensitivity in K, so add "future
! materials" with different constants. Key:

SO
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11 Future 1

12 SmCo5

13 Nd2Fel4B

!4 Iron v
'5 Cobealt

16 Nickel

17 8Sm2Col7

'8 Future 2

M1=800
M2=700
M3=700 .
M4=1200
M5=1370
M6=485
M7=1030
M8=800

DIM b(5,30),e(5,30), label$(h)

Amin={(0.4}*10"{-6)
Amax=(2.3)*107(-6)
amount=30

FOR book=0 to {amount-1}

Anow=Amin+ (Amax-Amin) *book/amount

deltal=(Anow/K1})~(0.5)

delta2=(Anow/K2)"(0.5)

delta3=(Anow/K3)"(0.5)

deltad=(Anow/K4)"(0.5)

delta5={Anow/K5) " (0.5)

deltab=(Anow/K6)~{0.5)

delta’=(Rnow/K7)~(0.5)

deltaB={Anow/KB8)"(0.5)

b(l,book+1)=PI*deltal/spacingl
e (l,book+l)=FNField(deltal, Anow,K1,M1, spacingl)
{2,book+1l)=PI*deltaZ/spacing2
(2, book+1l)=FNField{delta2, Anow,K2,M2, spacing?2)
(3, book+1l)=PI*deltal3/spacing3
(3,book+1l)=FNField{delta3, Anow, K3,M3,spacing3)
! b(4,book+1l)=PI*deltad/spacing4
i el(4,book+l)=FNField(deltad, Anow,K4,M4, spacingd)
! b(5,book+1l)=PI*delta5/spacingb
I
|
1

b
e
b
e

e(5,book+1)=FNField(delta5, Anow, K5, M5, spacing5)
b{6,book+l)=PI*deltab6/spacingé
e{6,book+1l)=FNField(delta6,Anocw,K6*100, M6, spacingb)

b(4,book+1l)=PI*delta7/spacing?

e (4,book+l)=FNField{delta”,Ancw,K7,M7, spacing7)

b (5,book+1)=PI*deltaB/spacing8
e(5,book+1l)=FNField(delta8, Ancw, KB, M8, spacing8)

NEXT book

label$ (1)="Future hard materials"
label$ (2)="5SmCob"

label$ (3)="Nd2Feld4B"

l1abel$ (4)="Iron"

'lakbel$ (5)="Cobalt"

tlabels (6)="Nickel"

label$ (4)="5m2C017"

label$S {(5Y="Future (K=3+*10"8)"

S
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legend$="black black magenta green”

CALL SetGraphType ("LOGY")

CALL SetText {"Comparison of real Materials”, &

& "Relative Wallwidth: PI*delta/spacing”,"Intrinsic Coercivity")
CALL ManyDataGraph(b,e,2,label$, legend$)

IAdd a line to show minimum reascnable field anyone
'would bother applying, at 1 Qe

IDIM x=(2),yl(2)

CALL AddbataGraph(x,vy,0,1,"yellow")

! Adding three points to show where real materials
! currently are on each graph. At some point I suppose
! I should bother tc learn the syntax for MAT READ

DIM f(5), g{3)

deltal=(Al1/K1)"(0.5) I Future 1
f(l)=deltal*Pl/spacingl
g(1l}=FNField(deltal,Al,K1l, M1, spacingl)
delta2=(A2/K2)"(0.5) I SmCob
f(2)=delta2*PI/spacingZ
g(2)=FNField(delta2,A2,K2,M2, spacingl)
delta3=(A3/K3)"(0.5) INd2FeldB
f(3)=delta3*PI/spacing3
g(3)=FNField{delta3,A3,K3,M3, spacing3)
ldeltad=(R4/K4)"~(0.5) ! Iron
1f(4)=deltad*PI/spacingd
!g(4)=FNField{deltad,Ad4,K4,M4, spacingd)
ldeltab=(A5/K5)y"{0.5) ! Cobalt
1£(5)=deltab*PI/spacing5
lg(5)=FNField{delta5,A5, K5, M5, spacing5)
ldelta6=(A6/K6) " (0.5) Nickel
' f(6)=delta6*PI/spacingb
!g(6)=FNField(delta6,A6,KG,MG,spacing6)
delta7={A7/K7)"(0.5) I 8m2Col7
f(4)=delta7*PI/spacing?
g(4}=FNField{delta7,A7,K7,M7, spacing7)
delta8=(A8/K8)" (0.5) | Future 2
f(5)=delta8*PI/spacing8 '
g(5)=FNField(delta8, A8, K8,M8, spacings)

CALL AddDataGraph{f,qg, 3,0, "black™)
CALL AddLSGraph(f,qg,1l,"black")

GET KEY null

|Same as above but against absolute delta and not
' PI*delta/spacing

!l Future 1

12 SmCob

!3 NdZFel4B

'4 Iron
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!5 Cobalt
!'6 Nickel
17 S8m2Col?
'8 Future 2

Amin=(0.4)*10" (-6}
Amax=(2.3)*10"(-6)
amount=30

FOR book=0 to (amount-1)

Anow=Amin+ (Amax-Amin) *book/amount

deltal=(Anow/K1)"{0.5)

deltaz2=(Anow/K2) "~ (0.

delta3=(Anow/K3)" (0.
deltad4=(Anow/K4)"~ (0.

delta5=(Anow/K5) " (0.
deltab={Anow/K6) " (0.5)

delta7={({Anow/K7) " (0.5)

deltaB=(Anow/K8)"~(0.5)

b(1,book+l)=deltal*10"8
e(l,book+1l)=FNField(deltal, Anow,Kl,M1l, spacingl)

b(2,book+l)=delta2*10"8

e (2,book+1l)=FNField(delta?, Anow, K2,M2, spacing2)
b (3,book+1l)=delta3*10"8

e (3,book+1l)=FNField(delta3, Anow, K3,M3, spacing3)
b(4,book+l)=deltad*10"8

;1 gragrin

b{5,book+l)=delta5*10"8

b({6,book+l)=delta6*10"8

b(4,book+l)=delta7*10"8

e (4,book+1l)=FNField(delta’, Anow,K7,M7, spacing?)

b(5,book+l)=deltag*1l0"8

e (5,book+1)=FNField(delta8, Anow, K8, M8, spacing8)
NEXT bcok

labels (1)="Future hard materials"
label$ (2)="SmCo5"

label$ (3)="Nd2Fel4B"
!labels$(4)="Iron"

!label$ (5)="Cobalt"

!labelS$S (6)="Nickel"

labels (4)="5m2C017"

label$ (5)="Future (K=3*10"8)"
legend$="black black cyan magenta”
CALL SetGraphType ("LOGY")

CALL SetText ("Comparison of real Materials", s

e (4,book+]l)=FNField(deltad, Anow, K4,M4, spacingd)

e (5,boock+l)=FNField(delta5, Anow, K5,M5, spacing5)

e{6,book+]l)=FNField(delta6,Anow,K6*100,M6, spacing6)

& "Absolute Wallwidth [Angstroms]",”Intrinsic Coercivity")

CALL ManyDataGraph(b,e,2, label$, legend$)

'Add a line to show minimum reasonable field anyone
'would bother applying, at 1 Oe

1)=0
2)=40
l)=1
2)=1

(
{
(
(

M X X

CALL AddDataGraph(x,vy,0,1,"yvellow")
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! Adding three points to show where real materials
! currently are on each graph. At some point I suppose
! T should bother to learn the syntax for MAT READ

DIM ff(5), gg(5)

deltal=(A1/K1)"~{0.5) I Future 1
ff{l)=deltal*10"8
gg(l)=FNField(deltal,Al,Kl,M1, spacingl)
deltaz=(A2/K2)"~{0.5) I SmCob5
ff(2)=deltaz*10"8
gg(2)=FNField(deltaz2,A2,K2,M2, spacing2)
delta3={A3/K3)"(0.5) 'Nd2FeldB
ff(3)=delta3*10"8
gg{3)=FNField(delta3,A3,K3,M3, spacing3)
'deltad=(R4/K4}*(0.5) ! ITron
'ff(4)=deltad*10"8
'gg(4)=FNField(deltad,A4,K4,M4, spacingd)
'deltaS=(A5/K5) "~ (0.5) ! Cobalt
1ff{5)=delta5*10~8

'gg (5)=FNField(delta5, A5, K5,M5, spacing5)
'deltaé=(A6/K6)"(0.5) 'Nickel
'f£(6)=deltab6*10"8

l'gg (6)=FNField(delta6,A6,K6,M6, spacingb)
delta?7=(A7/K7)"(0.F) I Sm2Col?
ff{d)=delta7*10"8
gg{4)=FNField(delta7,A7,K7,M7, spacing7)
delta8=(RAB/K8)~(0.5) ! Future 2
ff(5)=deltaB*10"8

gg (5)=FNField(delta8,AB,K8,MB, spacing8)

CALL AddDataGraph (ff,gg, 3,0, "black")
CALL AddLSGraph (ff,gqg, 1, "black")

GET KEY null

! Addendum to earlier printing:

! Referring to earlier definition of single f and g
! when *relative* was called for.

deltal=(Al1/K1)~(0.5) ! Future 1
f{ly=deltal/spacingl
g({l)=FNField(deltal, Al,K1,M1, spacingl) *spacingl/ (4* (A1*K1)"~(0.5))
delta2=(A2/K2)"(0.5) ! SmCob5

f(2)=deltaZ/spacing2
g(2)=FNField(deltaZ2,AZ,K2,M2, spacing2) *spacing2/ (4* (A2*K2)"(0.5))
delta3={A3/K3)" (0.5} INd2FeldB
f(3)=delta3/spacing3
g(3)=FNField{delta3,A3,K3,M3, spacing3) *spacing3/ (4* (A3*K3)"~(0.5))
ldeltad={A4/K4)" (0.5} ' Iren
'f(4)=deltad*PIl/spacing4

'g(4)=FNField(deltad,B4,K4, M4, spacingd)

ldeltaS5={(A5/K5)"~(0.5) I Cobalt

1 f(5)=deltab*PIl/spacingb

!g(5)=FNField(deltab5,A5,K5, M5, spacing5h)

ldelta6=(A6/K6)"(0.5) INickel
lf(6)=deltat6*PI/spacing6

St
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lg(6)=FNField(delta6,A6,K6, M6, spacing6)

delta7=(A7/K7)"(0.5) ! Sm2Col7
f({4)=delta7/spacing?
g(4)=FNField(delta7,A7,K7,M7,spacing7)*spacing7/(4*(A7*K7)A(0.5))
delta8=(AB/KB)"(0.5) ! Future 2
f{5)=deltaB/spacing8
g(5)=FNField(delta8,A8,K8,M8,spacingB)*spacingB/(4*(AB*KB)"(0.5))

CALL SetText ("Real Materials; Least Squares fitting”,&
& "Wallwidth delta/spacing", &

& "Energy due to Discreteness[Oe]")

CARLL Datagraph!f,g, 3,0, "black"”)

CALL AddLSGraph(f,g,1,"red")

.1,0.9: "Future 1, K=50 MJ/m*3"
.3,0.75: "Future 2, K=30 MJ/m"3"
.45,0.57: "NdZ2Feld4B K=4.9 MJ/m"~3"
.6,0.47: "SmCo5 K=17 MJI/m"3"

.77, 0.13: "Sm2Cel7 K=3.3 MJI/m"3"

PLOT TEXT, AT
PLOT TEXT, AT
PLOT TEXT, AT
" PLOT TEXT, AT
PLOT TEXT, AT

o OO0

.3,0.3: "4*pPI~2*K* (delta/spacing)"2"
.21,0.28:"H_crit= --—--—=-—r—--—— s mm oo s s "
.3, 0.26:"M*SINH(PI"2* (delta/spacing))"”

PLOT TEXT, AT
PLOT TEXT, AT
PLOT TEXT, AT

leNeNe]

GET KEY null

deltal=(A1/K1)"(0.5) ! Futrure 1
ff(l)=deltal/spacingl
gg (l)=FNField(deltal,Al,K1,M1, spacingl)/deltal

delta2=(R2/K2)"(0.5) ! SmCob5
ff(2)=delta?/spacing?2
gg{2)=FNField(delta2,A2,K2,M2, spacing2} /delta?2

delta3=(A3/K3)"(0.5) INd2FeldB
ff{(3)=deltal/spacing3
gg (3)=FNField(delta3, A3,K3,M3, spacing3) /deltal

delta?7={(A7/K7)"~(0.5) ! Smz2Col7
ff{4)=delta’/spacing’
gg(4}=FNField (delta7,A7,K7,M7,spacing7)/delta’

deltaB=(AB/K8)"~(0.5) ! Future 2
ff(5)=delta8/spacing8
gg(5)=FNField(deltaB, A8, K8, MB, spacing8) /deltaB

CALL SetText ("Relative Magnitude of Coercivity due to Discreteness vs Total
& "Relative Wallwidth delta/spacing”, &

& "Discreteness / Wall Energy")

CALL Datagraph(ff,gg, 3,0, "black")

CALL AddLSGraph(ff,gg,1, "blue")

PLOT TEXT, AT
PLOT TEXT, AT
PLOT TEXT, AT
PLOT TEXT, AT
PLOT TEXT, AT

.1,0.9; "Future 1, K=50 MJ/m~3"
.3,0.75: "Future 2, K=30 MJ/m~3"
.45,0.57: "Nd2FeldB K=4.9 MJ/m*3"
.6,0.47: "SmCo5 K=17 MJ/m"3"

.77, 0.13: "Sm2Col7 K=3.3 MJ/m~3"

[N eReNo Nl

[ ¥4
L
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GET KEY null

deltal=(A1/K1l)"(0.5) I Future 1
ff(l)=deltal*10"8
gg(1)=FNField(delta1,A1,Kl,Ml,Spacingl)*Z*PI*Ml/deltal

delta2=(A2/K2)"(0.5) I SmCo5
f£f(2)=delta2*10"8
gg(2)=FNField(deltaZ,AZ,K2,M2,spacing2)*2*PI*M2/delta2

delta3=(A3/K3)"(0.5) INd2FeldB
ff(3)=delta3*10"8
gg(3)=FNField(deltaB,AB,K3,M3,spacingB)*2*PI*M3/delta3

delta7=(A7/K7)"(0.5) ! 8Sm2Col7
ff(4)=delta’7*10"8
gg(4)=FNField (delta7,A7,K7,M7, spacing7)*2*PI*M7/delta’

delta8=(AB/K8)"(0.5) ! Future 2
ff(5)=deltag*10"8
gg(5)=FNField(deltaB,AB,KB,MS,spacingS)*2*PI*M8/deltaB

CALL
CALL

CALL
&

CALL
CALL

PLOT
PLOT
PLOT
PLOT
PLOT

END

AddDataGraph (ff, gg, 3,0, "black")
AddLSGraph (ff, gg, 1, "black")

SetText ("Coercive Force", "delta", &
"Coercive force")

Datagraph(ff,gg, 3,0, "black")

AddLSGraph {ff, gg, 1, "green")

TEXT, AT 0.1,0.9: "Future 1, K=50 MJ/m"~3"
TEXT, AT 0.3,0.75: "Future 2, K=30 MJ/m"3"
TEXT, AT 0.45,0.57: "Nd2FeldB K=4.9 MJ/m"~3"
TEXT, AT 0.6,0.47: "SmCo5 K=17 MJ/m” 3"
TEXT, AT 0.77, 0.13: "Sm2Col7 K=3.3 MJ/m"3"
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'Catherine Jenkins, elidor@mit.edu
! S8M thesis work under David Paul, dipaul@mit.edu

OPTION NOLET

library "sgfunc.trc”
library "sglib.trc”
library "framelib.trc"

K1=5*10"8 'Future 1
K2=1.7*10"8 ISmCo5
K3=4.9*10"7 INdZ2Fel4B
K4=3.3*10"7 !'SmzCol7
K5=3*10"8 'Future 2

=(800/1043)*2.00*10"(-6) !Fxn of curie temp. As kittel.

A2=1.91*10"(-6) I (Tc,matl/1043 [K]=Amatl/2.00*10" (-6)
A3=1.12*10"(-6)

A4=(1073/1043)*2.00*10~(-6)

A5=(700/1043)*2.00*10" (-6)! With a medium but arbitrary Curie temp
spacingl=7.0*10" (-8} ! [cm)
spacing2=5.0*10"(-8)
spacing3=8.8*10"(-8)
spacing4=8.4*10"{-8)
spacing5=5.0%10" (-8)

M1=800 'Magnetisation of iron=1200. Numbers chosen fairly randomly
M2=700
M3=700
M4=1030
M5=800

deltal=(A1/K1)"(0.5)
delta2=(A2/K2)~{0.5)
delta3=(A3/K3)~(0.5)
deltad=(Ad/K4)"{0.5)
deltaS=(A5/K5)"(0.5)

ratiol=deltal/spacingl
ratio2=delta2/spacing2
ratio3=delta3/spacing3
ratiod4=deltad /spacingd
ratiob=deltab/spacingb

! The problem here is that currently there are choices as

! to defining the coercive force at all. Friedberg and Paul (10)
! define it as the "maximum height of the energy barrier™, but

! conversations with Paul (see notes 2/2/04-5/2/04) suggest the

! coercive force to be merely the maximum DERIVATIVE of the

! 5=1 term cof the energy barrier. This cannot be true, since

! a true derivative would also include the s=0 terms, unless

! we are only considering the coercive force DUE TO DISCRETENESS,
! in which case the s=0 argument is null but the fact remains

! that using the height of the energy barrier makes more sense.
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_l*****‘k*************************************

! GRAPH #1, Coded in RED

e e e e e e e e e

! This graph plots the values of wall energy frcm discreteness
! using the equation B*PI"2*K*ratio”2/SINH (PI~Z2*ratio). The

I x-axis is the *relative* wallwidth

DIM b(5), c(5)

b{l)=ratiol
b(2)=ratio?
b(3)=ratio3
bl(d)y=ratiod
b({5)=ratiob

Discretel=B8+PI"2*Kl*ratiol”2/SINH(PI~Z2*ratiocl)
Discretez=8*PI1"2*K2*ratio2”2/SINH(PI"2*ratic2)
Discrete3=8*PI"2*K3*ratio3"2/SINH(PI"2*ratio3)
Discreted4=8*PI~2*K4*ratiod~2/S5INH(PI1~2*ratiod)
Discrete5=8+PI"2*K5*ratio572/SINH (PI~2*ratiaob)

c(1l)=Discretel
c(2)=Discrete2
c{3)=Discretel3
c({4)=Discreted
c(5)=Discreteb

CALL SetGraphType ("LOGY")

CALL SetText ("Energy due to discreteness (s=+/-1 terms)", &
& "Relative wallwidth”,"[ergs/cm”~3]")

CALL DataGraph(b,c,4,0,"black")

CALL AddLSGraph(b,c, 3, "red")

.1,0.9: "Future 1, K=50 MJ/m"3=5*10"8 erg/cm"3"
.3,0.75: "Future 2, K=30 MJ/m"3=3*10"8 erg/cm~3"
.45,0.57: "Nd2Fel4B K=4.9 MJ/m"3=4.9*10"7 erg/cm”3"
.6,0.48: "SmCob5 K=17 MJ/m"3=1.7*10"8 erg/cm”3"

.65, 0.,15: "Sm2Col7 K=3.3 MJI/m"3=3.3*10"7 erg/cm"3"

PLOT TEXT, AT
PLOT TEXT, AT
PLOT TEXT, AT
PLOT TEXT, AT
PLOT TEXT, AT

OO C OO

GET KEY null

BEEEEEASESESEESEE ISR SRS SRR SRR EREEEEE EEEE]

'GRAPH #2, coded BLUE
! This is the (reasonably indisputable) rest wall energy

b(l)=ratiol
b(2)=ratic2
b(3)=ratio3
b{4)=ratio4
b(5)=ratiocb
Restl=4+* (A1*K1) " (0.5) /spacingl
RestZ2=4+* (A2*K2)~(0.5) /spacing2
Rest3=4* (A3*K3)"(0.5) /spacing3
Restd=4* (A4*K4)"(0.5) /spacing4
Rest5=4* (R5*K5) ~(0.5) /spacingh

c(l)=Restl
c(2)=Rest?2
c(3)=Rest3
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c(4)
c(9)

CALL
CALL
CALL

PLOT
PLOT
PLOT
PLOT
PLOT

GET

| * * %

=Rest4
=Rest5
SetText ("Rest Energy","Relative Wallwidth","[erg/cm“B]")
DataGraph(b,c, 4,0, "black™)
AddLSGraph (b, c, 3, "blue”}
TEXT, AT 0.1,0.55: "Future 1, K=50 MJ/m~3=5*10"8 erg/cm™~3"
TEXT, AT 0.3,0.65: "Future 2, K=30 MJ/m~3=3+10"8 erg/cm”3"
TEXT, AT 0.35,0.25: "Nd2FeldB K=4.9 MJ/m”*3=4.9*10"7 erg/cm”™3"
TEXT, AT 0.55,0.50: "SmCo5 K=17 MJ/m"3=1.7*10"8 erg/cm”~3"
TEXT, AT 0.65, 0.35: "Sm2Col7 K=3.3 MJ/m"~3=3.3*10"7 erg/cm”3"
KEY null
******************************************

'!GRAPH #3, coded GREEN

! Th

is is the ratio of the discreteness to the rest mass

=Discretel/Restl
=Discrete?2/Rest2
=Discrete3/Rest3
=Discreted4/Restd
=Discrete5/Rest5

SetText ("Ratio of Energy from Discreteness to Rest Energy”,&
"Relative Wallwidth", "[Dimensionless]")

DataGraph(b,c, 4,0, "black™)

AddLSGraph (b, c, 3, "green”)

TEXT, AT 0.1,0.9: "Future 1, K=50 MJ/m"3=5*10"8 erg/cm”3"
TEXT, AT 0.3,0.75: "Future 2, K=30 MJ/m"~3=3*10"8 erg/cm”3"
TEXT, AT 0.45,0.57: “"Nd2Feld4B K=4.9 MJ/m"3=4.9*10"7 erg/cm”3"
TEXT, AT 0.6,0.48: "SmCo5 K=17 MJ/m"3=1.7*10"8 erg/cn”3"
TEXT, AT 0.65, 0.15: "Sm2Col7 K=3.3 MJ/m"~3=3.3*10"7 erg/cm"~3"

sS4
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!Catherine Jenkins,

elidor@mit.edu

!{5M thesis work under David Paul, dipaul@mit.edu

OPTION NOLET

library "sgfunc.trc"”
library "sglib.trc"
library "framelib.trc"

!The idea here is to solve for values of Thetal and
! ThetaZ (the magnetisation directions at the boundaries
consistent with an applied little-h

i of the defect)

land Egn 4, Ref

(11) .

INPUT prompt "Use a IBOdegreé wall in SmCo5 (Y or N)? ":jamaica$
SELECT CASE jamaica$

CASE "Y", Ilyll

Material$="5mCo5"
Al=1,21*10"(-6)

Kl1=1.7
M1=700

*10"8

spacing=5+10~(-8)

CapThe

CASE ELSE

END SELECT

PRINT
INPUT

PRINT
INPUT

PRINT
INPUT

PRINT
INPUT

PRINT
INPUT

PRINT
INPUT

taA=0

"Whalt Material?"

Material$

"With what value of exchange energy (A)?"

Al

"And the anisotropy in the perfect medium (K)?2?"

K1

"Magnetization:"

M1

"Lattice spacing (constant over defect)"

spacing

"CapTheta& (Anisotropy Direction in Region I)"

CapThetahA

PRINT "Okay. Materials parameters inputted."

PRINT ""

CapThetaB=PI-CapThetal

INPUT prompt

SELECT CASE choice$§

CASE "Y", "y"
a=0.,1

b=0.294

CASE ELSE
PRINT
INPUT

PRINT
INPUT
END SELECT

'We are in RADIANS.

"Dimensionless number defaults (a=0.1, b=0.294) okay? (Y or N)

"Dimensionless a (A1*M1/ (A2*M2)-1) "

a

"Dimensionless b

b

(B1*K1/ (B2*K2)-1"

cO
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!Figure A2 and K2 here for width later:
A2=A1/{a+1)

K2=(A1*K1l)/(A2* (b+1l))

delta2=SQR(A2/K2)

ITt isn't technically possible to have Thetal
lexactly egual to Thetal without the wall being
lof infinite width.

DEF FNThetaSolve (Thetal, Theta2, CapThetad, a,b,h)=4&
b* (CO5{Thetal-CapThetal) ) "2+&

h*a*COS (Thetal-CapThetadA} -&

{b+1)* (COS (CapThetaA-PI+Theta2)) "2+&

{COS (ThetaZ2-CapThetaB) ) "2-&

h*a*COS (Theta2-CapThetaA) -&

h* (a+1)* (1-COS (PI-2*CapThetahA))

SRR R

!****'&*#**************************Ank**#**************i—**

! Three different loops to avoid the problem of needing
! higher dimensions.

PRINT "Okay. Continue."

GET KEY null

CLEAR

. Outputfile$="0Output-"&Date$&"-"&MaterialSa".TXT"
'Filenamel$="Filelof2-" & Date$ & "-" & Material$ & ".TXT"
OPEN #1: name Outputfile$, create new
ERASE #1

PRINT #1:Date$

PRINT #1:"CapThetaA=";CapThetal
PRINT #1:"Al";Al

PRINT #1:"K1";K1l

PRINT #1:"M1";M1

PRINT #1:"a'";a

PRINT #1:"b";Db

PRINT #1:"spacing";spacing

PRINT #1:""

PRINT #1:"Count, Thetal, Theta?2, h'
DIM e (200), f(200), g(200)

count=1

PRINT "Thinking..."
PRINT ™"

FOR h=0.001 to 0.35 step 0.001
FOR Thetal=(CapThetaA+PI/100) to CapThetaB step PI/300

FOR ThetaZ=Thetal to (CapThetaB-PI/100) step PI/300
IF ABS {FNThetaSolve ({(Thetal, Theta2, CapThetah,

PRINT #1:Count, Thetal,

PRINT "Thetal=";Thetal;"; Thetaz=";Theta2;"

e (count)=Thetal
f(count)=Theta2
g (count)=h
count=count+1
END TIF
NEXT ThetaZ?
NEXT Thetal

Gi
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NEXT h

'CLOSE #1

!SOUND 550, 2

PRINT "Done."; (count-1);"solutions." !Copy from ANGLES.TXT to retain."
GET KEY null

CLEAR

DIM 1(200)

FOR salamander=1 to count
i(salamander)=f(salamander) -e(salamander)
NEXT salamander

CALL SetText ("Difference in angle over the domain", &
& "Theta2-Thetal”, "h")
CALL DataGraph(i,g,5,0,"black")

GET KEY null

CLEAR

!*********************************************
!Integrating Egn 5 (11) using Simpson's rule, with the
!Thetal and Theta2? generated earlier, renaming them
!slightly to allow for the fact that they now have to
! be a matrix.

DEF FNWidthSolve (foo, h) = &

& ({s3in{foo-CapThetad))"2-h*cos (foo-CapThetah) +&
& b* {sin(Thetal-CapThetalA))"2-&

& h*a*cos (Thetal-CapThetalA)+h* (a+1l)) " (-0.5)

DIM Width (200), Defectwidth(200), Lattices(200)

PRINT #1:""

IOPEN #2: name "Widths.TXT", create old

'ERASE #2

I'PRINT #2: "Theta 1, Theta 2, Norm. field, norm. width, abs. width, # of co

FOR water=1 to (count-1)
! PRINT water

Thetal=e (water)

Thetaz=f (water)

h=g{water)
Doremi=FNWidthSolve (ThetaZ, h)
Fasola=FNWidthSoclve (Thetal, h)
Estimate=Doremi-Fasola

Steps=200
Stepsize=(Theta2-Thetal) /Steps

!Compute the sum of odd index terms, as in (15) subroutine SIMP
Space=Thetal-Stepsize '
! PRINT "Steps:";Steps

FOR krotus=1 to (Steps-1) step 2
Space=Space+2*S5tepsize
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Estimate=Estimate+4*FNWidthSolve (Space, h)
NEXT krotus
! PRINT "And the odd terms:";Estimate

!Compute the sum of the even index terms
Space=Thetal
FOR jack=2 to (Steps-2) step 2
Space=Space+2*Stepsize
Estimate~Estimate+2*FNWidthSolve (Space, h)
NEXT jack
! PRINT "And the even points:";Estimate

Estimate=Estimate*Stepsize/3

! PRINT "Overall defect width;"; Estimate
Width (water)=Estimate
Defectwidth (water)=Width(water)*delta2/spacing
Lattices(water)=INT (Defectwidth(water))
! PRINT #2: Thetal;'";";Theta2;";";h;";":Estimate;";";DefectWidth (wat
NEXT water
PRINT
ICLOSE #2

'PRINT "Done printing to file Widths.txt. Rename it if you want to keep it.
PRINT "Line 236"

IPRINT "Press a key to continue to calculating energies using these values.
GET KEY null

_I******************************************

DIM Angle (200), ThetaPrime (200)

DEF FNAngle (oink)=CapThetaA + ((PI-2*CapThetad)/PI)*&

& ASIN(1/COSH((({oink~1)+num)*spacing/deltaz))

DEF FNThetaPrime (oink)=( (PI-2*CapThetad)/(PI*delta2))*&

& (1/COSH( ({oink-1) +num) *spacing/deltaZ2) )

DEF FNThetaTemp (num)=({(PI-2*CapThetad)/PI)*&

& ASIN(1/COSH (num*spacing/delta?2) )+CapThetaA

DEF FNIntegratedEnergy (position, num)=K2*(1/CO5H{(position+num)*spacing/de
& K2* (SIN(ASIN(1/COSH ({position+num)*spacing/delta2))-CapThetalA)) " 2-
& M1*Hfield*COS(ASIN(1/COSH( (position+num) *spacing/delta?))-CapTheta
Filename2$="File20f2-" & Date$ & "-" & Material$ & ".TXT"

DIM Sigma (200), Seahorse{200)

FOR xxx=1 to (count-1)

Thetal=e (xxx)

Thetaz2=f (xxx)

'PRINT "Thetal=";thetal

!PRINT "Theta2=";Theta?

h=g {xxx)

'PRINT "h=";h

HField=h*K2/M1

w=DefectWidth (xxx)

'PRINT "Real # of lattice constants ";w

number=lattices (xxx) linteger Number of lattice consts wide

I'PRINT "INT (above)";number
! eg, 1.33 means sum over 0 and 1
! terms. s
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PRINT #1: xxx;"th combination"
PRINT #1: "Thetal=";Thetal;", ThetaZ2=";Theta2;", norm field=":;h
PRINT #1: "Defect width relative in number of lattice constants";w

ITrying to find center in egn to fit Theta
num=0
difference=10"(-7)

DO WHILE abs{difference) >= 10" (-5)
num=num+difference
thetanow=FNThetaTemp (num)
difference=Thetal-ThetaNow

1LOOP

A4 check to make sure num isn’t that far off
ThetaCheck=FNThetaTemp (w+num)
IF Thetaz>PI/2 THEN

ThetaCheck=PI-ThetaCheck

PRINT "Thetacheck after mod";thetacheck
END IF

SUM=0 | Just to reinitialise
! Finding Theta and ThetaPrime at each relevant lattice constant,
| to be used in the summation
FOR oink=1 to (number+l)
DelTheta=FNThetaPrime (oink)
Rotation=FNAngle (oink)
EnergyzAZ*Deltheta“2+K2*(sin(Rotation—CapThetaA))“2&
~-M1*HField*COS (Rotation-CapThetad)
Sum=Sum+Energy
NEXT oink
PRINT #1: "Summed energy over integral # of constants:";sum
IPRINT "The energy for the narrow wall from Theta=";Thetal;s&
" o Theta=";ThetaZ;" in field ";Hfield;" is ":;sum

Sigma (xxx)=sum

Integral=0 ! To reinitialise for safety

! Integration in a continuous medium, for comparison, using Simpson
|Bounds are x1=0 and x2=w. Use infinitesimal dTheta/dX here not del
Guess=FNIntegratedEnergy(O,num}+FNIntegratedEnergy(w,num)
Iterations=100

Stepsize=w/steps

Position=-stepsize

'odd

FOR meow=1 to (Iterations-1) step 2
position=position+2*stepsize
Guess=Cuess+4.0*FNIntegratedEnergy (position, num)

NEXT meow

leven

position=0

FOR meow=1 to (Iterations-2} step 2
position=position+2*stepsize
Cuess=Cuess+2.0*FNIntegratedEnergy (position, num)

NEXT meow

Cuess=Guess*stepsize/3.0
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Seahorse (xxx)=guess

'!Energy from a continuous wall which somehow has the same dimless #
! other params as my discrete walls but without the necessity of su
'PRINT "The energy assuming you had integrated:";Guess

PRINT #1: "The energy assuming you had integrated"”;Guess

!' Difference between the two
!PRINT "Energy in Region IT solely from discreteness:"; (sum-guess}
PRINT #1:"Energy in region 2 solely from discreteness [ergs/cm”3]:"

PRINT #1:""
! PRINT

NEXT xxx

CLOSE #1
!*********‘k**************************************
'Graphs.

DIM x (2}, y{2)

CALL SetText ("Normalised consistent field vs Defect Width", &
& "h (dim'less)","defectwidth (lattice constants)")

CALL DataGraph (g, DefectWidth, 3,0, "red")

x{1l)=(-1)

X(2)=20

y(1)=SQR{Al1/K1) /spacing
y(2)=y (1)

CALL AddDataGraph{x,y,0,1, "black™)

GET KEY null

FOR penguin=1 to count
breath (1, penguin)=DefectWidth (penguin)
heart (1, penguin)=5igma (penguin)
breath (2, penguin)=DefectWidth (penguin)
heart (2, penguin)=Seahorse (penguin)
NEXT penguin
legend$ (1)="Enerqy from discreteness"
legend$ (2)="Energy from integration"”
ceolors$="black black blue green"
CALL SetText ("Relative energies from the intrinsic and rest contributions",
& "Defectwidth (# of lattice constants)","Energy [erg/cm”3]")
CALL ManyDataGraph (breath, heart, 0, legend$, colorss)

CALL AddDataGraph(y,x,0,1,"black")

DIM michigan(200), pennstate(200)

FOR clock=1 to (count-1)
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michigan(clock)=DefectWidth{clock)
pennstate (clock)=5Seahorse (clock) /Sigma(clock)
NEXT clock

CALL SetText ("Relative energies from intrinsic and rest terms", &
& "DefectWidth (# of lattice constants)"™, "Ratio: Integrated/Summed e

CALL DataGraph (michigan, pennstate, 2,0,"black")

GET KEY null

DIM emu(2,200), roo{2,200)

FOR koala=1 to count
emu({l, koala)=DefectWidth (koala)
roo{l, koala}l=e(koala}
emu (2, kocala)=DefectWidth (koala)
roo (2, kocala)=£f(koala)

NEXT koala

legend$ (1)="Left side"

legend$ (2)="Right side”

colors$="black black magenta blue"

CALL SetText ("Angle as wallwidth", "Defectwidth (lattice constants)”, "Angle

CALL ManyDataGraph(emu, roo, 1, legend$, color$)
CALL AddDataGraph(y,x,0,1, "black")

GET KEY null

FOR koala=1 to count
emu(l, koala)=g(koala)
roo(l, koala)=e (koala)
emu (2, koala)=g(koala)
roo(2, koala)=f(koala)
NEXT koala

legend$ (1)="Left side"

legend$ (2)="Right side"

colors$="black black magenta blue"

CALL SetText {"Angle as normalised field"”, "Normalised field","Angle (radians
CALL ManybataGraph (emu, roo, 0, legend$,coclor$)

CALL AddDataGraph(y,x,0,1,"black"™)

GET KEY null

END

Gl
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I Catherine Jenkins, elidor@mit.edu
! SM thesis work under David Paul, dipaul@mit.edu

! started 28/10/03
! last mod 3/3/04

library "sglib.trc"

library "framelib.trc"

library "sgfunc.trc®

OPTION NOLET

!Can be assumed for now that only P 1 1 is
!important, so Theta_total reduces to two terms

! and net an infinite sum.

! See solution for T(t) in CAJ 28/10/03.

Variables

A=10"(-6) 'exchange, energy/length

K=5*10"8 'anisotropy, energy/volume
C=10"{-10) !coefficient of KE term as Kittel and Galt
M=10" (-3) 'Magnetization

spacing=2*10"{-8)
delta=(A/K)"~{0.9)

!VERY IMPORTANT: Theta is a function not directly of
labsolute position but of relative number of lattice
Ispacings, e.g., Theta Nought(2) is the magnetizaticn
! at 4*10"(-8) cm from the center of the domain wall

DEF FNTheta Nought (x)=asin(1/cosh{x))

!Phi is spatial*temporal, or sech({x)*exponents
DEF FNPhi (x,H,t)=(1/cosh(x))*(spacing/delta)*&

& ((2/PI1)}* (exp( ( (M*H*PI/(B*C})"(0.5))*t))+ &

& (2/PI)* (exp ((-1)* ((M*H*PI/(B*C))~(0.5))*t))-4/71)

DEF FNBigT (H,t)=(2/PI)* (exp( ({M*H*PI/(8*C))"~{0.5))*t))+ &
& (2/PI)*(exp ((-t)* ( (M*H*PL/(B*C))~{0.5))))-4/PI

! ____________________________________________________________

xmin=(-7)

xmax="7

£1=0

£2=6*10"({-5)
£3=1*10" (-4}
temp=0
HO=30

! This graph plots Theta vs x for different t at H=1000

DIM e(3,100), f(3,100), label3(3)
iterations=100

'PRINT "cosh(xmin)=";cosh (xmin)
'PRINT "sech({xmin)=";1/cosh (xmin)
YPRINT "sin(-1)sech{xmin)";asin(1l/cosh (xmin))

!GET KEY null
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! AN *enormous* kludge here, setting the magnetization equal
! to the difference between the variant anisotropy and the
!calculated theta. Not sure how to cope once it has moved.

! to not be centered around x 0

FOR foo=1 to iterations
temp=xmin+ (xmax-xmin) *foo/iterations
e(l,foco)=temp
! PRINT e (1, foo);"=x"
! PRINT FNTheta Nought (temp)
IF temp<0Q THEN f(l,foo)=PI/2—FNTheta_Nought(temp)—FNPhi(temp,HO,tl)
& ELSE f(1, foo)=-PI/2+FNTheta Nought (temp)+FNPhi (temp, HO,t1)
! PRINT f (1, foo);"=theta" h
e(2,foo)=temp
IF temp<0 THEN f(2,fo0)=PI/2-FNTheta Nought (temp) &
& ~FNPhi (temp, HO, t2) & B
ELSE f£(2,foo)=-PI/2+FNTheta Nought (temp) &
+FNPhi (temp, HO, t£2)
e (3, foo)=temp
IF temp<0 THEN f{(3, foo)=PI/2-FNTheta WNought {temp) &
& -FNPhi (temp, HO,t3) &
& ELSE f(3,foo)=-PI/2+FNTheta Nought (temp)&
& +FNPhi (temp, HO, t3)
NEXT foo

2

'GET KEY null

label$(1)="t=0, no perturbation"
labels (2)="t2"
label$ (3)="t3"

colorsS="black black red blue™

CALL SetText ("Magnetization distribution vs x at different times, B=30 [QOe]
& ,"position in lattice spacings"”, "Magnetization Angle")

CALL ManyDataGraph(e, f,5,1label$, colors$)

GET KEY null

Xmin= (-7}
xmax=7
HO=0
H1=10
H2=100
temp=0

! This graph plots Theta vs x for different H at t=0

DIM g(3,100), 3(3,100), words$(3)
cat=40

! Same kludge as befeore with the angle

FOR dog=1 to cat

temp=xmin+ (xmax-xmin) *dog/cat

g(l,dog)=temp

IF temp<0 THEN j(l,dog)=PI/2~FNTheta_Nought(temp)—FNPhi(temp,H0,0)&
& ELSE j(1,dog)=-PI/2+FNTheta Nought (temp)+FNPhi (temp,HO,0)
! PRINT f(1,dog);"=theta" B

g(2,dog)=temp

IF temp<( THEN j(2,dog)=PI/2-FNTheta Nought (temp) &
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& -FNPhi (temp, H1,0) &
& ELSE j(2,dog)=-PI/2+FNTheta_Nought (temp)é&
& +FNPhi (temp, H1, 0)

g (3,'dog) =temp .
IF temp<( THEN j(3,dog)=P1/2-FNTheta_ Nought {temp) &

& -FNPhi (temp, HZ,0) &

& ELSE j(3,dog)=-PI/2+FNTheta Nought (temp) &
& +FNPhi (temp, HZ2, 0)

NEXT dog

IGET KEY null

words$ (1)="Noc field"

words$(2)="10 f[oel"

wordss (3)="100"

colors$="black black green cyan"

CALL SetText ("Magnetization distribution vs x at different fields, t=t noug
& , "position in lattice spacings", "Magnetization Angle"”)

CALL ManyDataGraph(e,f,5,words$,colors$)

GET KEY null

|**x+#*** Thig plots BigT vs time for different H

{

steps=70

DIM d(3,70), bi(3,70), legends$(3), single(70), xax (70)

tmin=10" (-7}
tmax=10" (-6}
H1=0

H2=1

H3=20
temp=0

p=delta/spacing

eta=10"(-5) ! This is a pretty random guess
H1=0

H2=20

H3=100

DEF FNBigTDamped(eta,H, time)= exp((-1)*eta*time/ (2*C))*&

& ((4*C*PI“2*K*pA2/((eta“Z)*SINH(p*PI“Z))+H*M*2*C/eta“2))+&
& ((2*PIA2*K*pA2/(eta*SINH(p*PIA2)))+H*M/eta)*time—&

& ((4*C*PI"2*K*p“2/((eta“Z)*SINH(p*PIAZ)))+2*H*M*C/eta”2)

FOR foo=1 to steps
temp=tmin+ (tmax-tmin) *foo/steps
d(1, foo)=temp
b(l, foo)=FNBigTDamped{eta, H1, temp)
d(2, foo)=temp
b(2, foo)=FNBigTDamped{eta, HH2, temp)
d (3, foo)=temp
b (3, foo)=FNBigTDamped{eta, H3, temnp)
NEXT foo ’

legendss (1)="H1=0 [Cel”

legends$ (2)="H2=20"
legends$ (3)="H3=100"

G9
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colors$="black black green yellow"”
ICALL SetGraphType ("LOGX")

CALL SetText ("Time dependent part vs time at x=center of wall,

& "time [sec]","BigTDamped [unitless]”)
CALL ManyDataGraph(d,b, 6, legends$,colors$)
GET KEY null

! Varying eta ***++
etal=10"({-5)
etal2=10"{-4)
eta3=10"({-3)

FOR foo=1 to steps
temp=tmin+ (tmax-tmin)*foo/steps
d(1l, foo)=temp
b(l, foo)=FNBigTDamped{etal, H2, temp)
d(2,foo)=temp
b (2, foo)=FNBigTDamped (eta2, H2, temp)
d (3, foo)=temp
b (3, foo)=FNBigTDamped (eta3, H2, temp)
NEXT foo

legends$ (1)="etal=10"(-5)"

legendsS$ (2) ="etaz2=10" (-4} "

legends$ (3)="eta3=10"(-3)"

colors$="black black magenta green"

ICALL SetGraphType ("LOGX")

CALL SetText ("Time dependent part vs time at x=0 at H=20",&
& "time", "BigTDamped [unitless]")

CALL ManyDataGraph(d, b, 6, legends$, colorgs}

GET KEY null

| F ke de Ak
H

etanow=14*10"{-12)

FOR bang=1 to steps

temp=tmin+ (tmax-tmin) *bang/steps

xax (bang)=temp

single (bang)=FNBigTDamped (etanow,H2, temp)
NEXT bang

eta=10"(-5) "

CALL SetText ("Time dependent part using VISCOSITY eta=1.4*10"(-11), H=20",&

& "time [s]","BigThamped [Unitless]™)
CALL DataGraph (xax,single, 1,2, "black")
GET KEY null

T O O T 2 T I T T A T T A

! Graphing relative size of PHI(=P 1 1(x)*T(t)) and ThetaNought

! at increasing time at x=1,2,and 3 wallw1dths away from center

! For some eta.

eta=10"(-6)
H=10

FOR whammo=1 tc steps
temp=tmin+ (tmax-tmin) *whammc/steps

Phi temp l=(spacing/delta)*(1/COSH(0))*FNBigTDamped(eta,Hl, tenp)

ThetaNought 1=ASIN(1/COSH(0))
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Phi temp 2=(spacing/delta)*{1/COSH(1))*FNBigTDamped{eta,H, temp)
ThetaNought 2=ASIN(1/CCSH(1))

Phi_temp_3=Tspacing/delta)*(1/COSH(3))*FNBigTDamped(eta,H,temp)
ThetaNought 3=ASIN(1/COSH(3)} ’

Relativel=Phi Temp 1/ThetaNought 1
Relative2=Phi Temp 2/ThetaNought_ 2
Relative3=Phi Temp 3/ThetaNought 3

d (1, whammo)=temp

b(l,whammo)=Relativel

d (2, whammo)=temp

b {2, whammo)=Relative?

d (3, whammo)=temp

b (3, whammo)}=Relative3
NEXT whammo

legends$ (1}="=x=0 (at center)"

legends$ (2)="x=delta cm from center of wall"

legends§ (3} ="x=3*delta cm from center"

colors$="black black blue yellow"”

ICALL SetGraphType ("LOGX")

CALL SetText ("Relative Magnitude: Phi/ThetaNought with increasing time", &
& "time ([s]", "Phi/ThetaNought [unitless]")

CALL ManyDataGraphid,b, 2, legends$, colorss}

GET KEY null

END
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