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Abstract

Three-dimensional mixed-mode linear elastic fracture mechanics analysis is presented
using domain interaction integrals. An out-of-plane sinusoidal crack was analyzed
using a commercially available finite element package to extract the stress intensity
factors and the J-Integral. The results were then compared with those obtained
from crack face relative displacements as a post-processing step. The model has been
tested on various geometries and the performance of focused and non-focused meshing
algorithms are compared. The behavior of the stress intensity factors under far-field
K-load for growing surface roughness in the form of a sinusoidal crack have been
modelled as a cosine series.
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Chapter 1

Introduction

In 1983, the National Bureau of Standards released a study estimating the direct

and indirect costs of fracture in the economy of the United States [1]. The study

approximated the total annual loss at $ 120 billion - an amount equal to 4% of the

gross national product at the time. Moreover, the study concluded that about one

third of this loss could be avoided by implementing better fracture control.

Brittle fracture is characterized by very little plastic flow prior to failure and

occurs as a result of a single crack propagating through the specimen. Griffith [2]

introduced the energy approach to study crack propagation in glass specimens. His

theory states that crack propagation occurs when the energy available for crack growth

is sufficient to overcome the resistance of the material. Griffith proposed that there

is a simple energy balance consisting of the decrease in the potential energy within

the stressed body due to crack extension, balanced by the increase in surface energy

due to increased crack surface area:

dW1 dV
=dA (1.1)d A d A

where W is the external work done on the body, U is its internal strain energy, y,

is the surface energy of the material, and A = 4at is the crack surface area for an

internal crack in a body of thickness t (Figure 1-1). Griffith showed that the fracture

stress in a through thickness crack in an infinitely wide plate subjected to a remote

15



Figure 1-1: A large plate of an elastic material containing a crack length 2a.

tensile stress a is related to the crack size and can be given as:

E- = (1.2)
Ira

where 2a is the length of the crack, -y, is the surface energy of the material, and E is

Young's Modulus. Griffith assumed that the energy consumed in crack propagation

came exclusively from the surface energy of the material, neglecting the work required

in producing a new plastic zone at the tip of the advancing crack. Hence, his approach

only applies to ideally brittle solids. Irwin [3] extended Griffith's theory to metals

to account for the limited plastic behavior near the crack-tip. The modified Griffith

theory that includes the plastic dissipation, -y,, can be expressed as

of = (1.3)ira

where 7, denotes the plastic energy per unit of crack extension at the crack-tip. The

strain energy release rate in Equation 1.1 is denoted by g to give

dH dW d U
g = dA = - (1.4)

16
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Figure 1-2: Stress field at the tip of a crack.

where I is the potential energy of an elastic body. The Griffith-Irwin model applies

to materials that exhibit small-scale yielding, and is therefore referred to as Linear

Elastic Fracture Mechanics. Based on the cracked body solutions of Westergaard [4],

Irwin [5] then provided a quantitative relation between the energy release rate (a

global parameter) and the stress intensity factors (a local crack-tip parameter) for

linear elastic isotropic bodies. The stress intensity factors, Ka, define the amplitude

of the crack tip singularity. Moreover, the stress intensity factors completely define

the crack tip conditions. Using the stress intensity factors, it is possible to solve -

asymptotically - for all components of stress, strain, and displacement as a function

of distance from the crack-tip. Placing the origin at the crack tip, the stress fields in

a linear elastic cracked body can be given by

1
-ij = [K 1 f?§ (0) + K 11f|4'(6) + K 111f|"() + (r1/2 ) (1.5)

V2rr

where o-ij is the stress tensor, r and 0 represent the cylindrical coordinates (Fig-

ure 1-2), fij (a) are dimensionless functions of 0, and K 1 , K 11 , and K 11 1 are the stress

intensity factors corresponding to the three basic modes of loading. Though the

higher-order terms depend on the geometry, the solution for any given configuration

17
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Figure 1-3: The three modes of cracking (a) opening mode (mode I) (b) sliding mode (mode II)

(c) tearing mode (mode III).

contains a leading term that is proportional to 1/f. Therefore, in the vicinity of

the crack-tip the higher-order terms can be neglected where the stress singularity at

the crack-tip is implied.

A crack in a model can be stressed in three modes (Figure 1-3). In mode I, the

principal load is applied normal to the crack plane. The displacements of the crack

faces are perpendicular to the plane of the crack. Mode II is in-plane shear, and

the displacement of the crack faces is in the plane of the crack and perpendicular to

the leading edge of the crack. Mode III is out-of-plane shear, and the crack face

displacements are in the plane of the crack and parallel to the leading edge of the

crack. The stress state ahead of the crack tip then reduces to

lim u 2 -K i3f a) (Q) (no sum on a I, II, III). (1.6)

Irwin [5] proved that the energy release rate g is uniquely related to the stress

intensity factor K for isotropic linear elastic materials. By calculating the change in

potential energy as the crack propagates by a distance 6a, Irwin was able to show:

g (K 21
E' 1 2 G

(1.7)
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where the material properties are given as

E = 2(1 + v)G

and

E' = E/(1 - v 2 )

for plane strain. In Chapter 2, we will show the equivalence of J and the energy

release rate 9, and express J in terms of the stress intensity factors as

1 2 2 1 2
J = ,(KI + K)+ 2KII. (1.8)

If a brittle isotropic solid were ideally elastic, we would expect the solution in

Equation 1.5 to become more accurate as we approach the crack-tip. Moreover, as

we move farther away from the crack-tip, the asymptotic crack-tip field would not

be accurate as the fields are influenced by the geometry of the solid and boundary

conditions in a finite-sized body. However, our linear elastic model predicts infinite

stress at the crack tip, which no material could withstand. Therefore, we predict our

solution is not accurate very close to the crack tip either. Hence, we can divide the

material into three regions: plastic zone near the crack tip, a region further away from

the crack tip where the LEFM is expected to be accurate, and the far field, where the

stress fields depend on the geometry of the solid and boundary conditions. The region

where the LEFM is expected to give accurate results is known as the "K-dominant"

zone. The fields in this region are assumed to depend only on K, K 1 and KIII.

A cracked body can be loaded in any of these three modes, or a combination of

two or three modes. Even though most of the practical problems are of the mixed-

mode type, the bulk of the fracture mechanics work has been concentrated on the

"opening mode" or Mode I crack growth problems. This is justified by the simplicity

of its application and by its dominant effect on the crack growth in a component. A

mixed-mode K - KII problem can be modelled in two dimensions in a crack oriented

at an acute angle to the applied stress, or more generally when the applied stress is

biaxial. A mixed-mode analysis combining all three fracture modes can be modelled

in three dimensions.

19



In the following chapters, two further sets of elastic crack parameters are intro-

duced: the J-Integral and the Crack Face Relative Displacement (CFRD). They are

used in the remainder of this work and so are developed in some detail from back-

ground information.

J-Integral evaluation based on the virtual crack extension/domain integral method

has proven useful to evaluate the variation of fracture mechanics singularities strength

along a 3-D crack-front. Moran and Shih [6, 7] presented a discussion of the domain

integral method, where a crack-tip contour integral is expressed as a volume inte-

gral over a finite domain surrounding the crack-tip. The interaction energy integral

method is an implementation of the domain integral method where auxiliary fields are

introduced and superimposed on top of the actual fields that come from the solution

to the problem. The auxiliary fields can be related to the mixed-mode stress intensity

factors by defining the interaction integral as a crack-tip contour integral surrounding

a point on the crack front, defined in the limit as the contour is shrunk on to the

crack tip. Stern, Becker, and Dunham [8] introduced the interaction energy integral

approach to compute mixed-mode stress intensity factors in two-dimensional crack

problems. The process can be generalized for three-dimensional analysis. In an auxil-

iary field, the desired mode is set to a constant value (e.g. unity) while the remaining

two modes are set to zero. The interaction with the real fields leaves only the terms

involving the non-zero auxiliary field with one equation and three unknowns, namely

the real K1 , KII, and KIII. Repeating the same procedure for the other two auxiliary

modes, we obtain three equations and three unknowns and solve for the desired stress

intensity factors in the mixed-mode analysis.

The Crack Front Relative Displacement (CFRD) - or the crack tip opening dis-

placement as it is called in two dimensional, pure mode I geometry - is another fracture

parameter that is equivalent to the LEFM criteria when LEFM is applicable. For the

purposes of this study, CFRD serves to verify the accuracy of the stress intensity

factors obtained from other parameters.

Gosz and Moran [9] explored the concept of mixed-mode stress intensity factors

along non-planar crack fronts in three dimensions. Gao and Rice [10] presented a

20



slightly curved crack front analysis for general shear loading of planar crack faces.

However, there is still a need to explore the behavior of three-dimensional cracks with

out-of-plane fronts where the geometry of a crack and its loading activates all three

stress modes due to, e.g. a crack surface roughness. In Chapter 4, we analyze a finite-

width plate of thickness t containing a through-thickness flat crack (Figure 4-1). The

stress intensity factors are calculated through the interaction integrals. Moreover, the

J-Integrals are calculated both from the stress intensity factors and directly through

domain integration to verify the equivalency of the two methods. Next, the accuracy

of the stress intensity factors are verified through the K's calculated from the CFRD

method. The results are normalized by reference solutions and plotted on top of each

other. Next, a mixed-mode problem is created by generating a surface roughness in

the form of an out of plane sinusoidal crack across the thickness. Similarly, the stress

intensity factors and J-Integral calculations are plotted against each other in this

mixed-mode problem where all three modes are present. Discrepancies between the

results obtained from different methods for the mixed-mode crack have been observed,

and various boundary conditions are tested to further investigate the patterns of this

behavior. Then loading is applied by a far-field K, loading to extend the reach of the

"K-dominant" zone, and to verify the extent of the curious behavior in the mixed-

mode problem. Finally, a general pattern of stress intensity factors vs. sinusoidal

surface roughness in the form of a cosine function of growing amplitude is established.

All the meshes used in this study were created using MATLAB. Moreover, exten-

sive post-processing was performed. The Appendix contains the algorithms behind

programming done in MATLAB. The included CD has a copy of selected ABAQUS

input files used to run the simulations.

21



22



Chapter 2

J-Integral

The path-independent J-Integral introduced by Rice [11] is a fracture characterizing

parameter for nonlinear materials. The J-Integral can also be interpreted as the

energy release rate in elasticity. The potential energy of an elastic body in two

dimensions in the absence of body forces can be given as

II(a) = WdA- ,Tuids

where IF' is the portion of the boundary contour on which tractions are defined, and A

is the total area of a two dimensional body (Figure 2-1). The crack surfaces are taken

to be traction free, and the tractions are assumed to be independent of the crack

length a. The change in potential energy resulting from a virtual crack extension of

the crack is

d I dW du.
-=- --- d A-iTi dy. 21da Ada ' da (2.1)

The coordinate system is attached to the crack tip; thus a derivative with respect to

crack length can be written as

d a Ox& _ 9 9

da aa Da x Da ox

since &x/&a = -1. Applying this result to Equation 2.1 gives

dU W _W &us &n-= a --- dA-f T i d,
da A o&a OXWd ( a ax)dy
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Figure 2-1: Free body diagram of a two-dimensional cracked body bounded by 1'.

using definition of strain energy

9W OW er _ _ 4E
ax aEg ax o wx

The strain-displacement relationship for small strain gives

W 1 a 'Ua
a~x 2 Oax O x) Ox 'aXi )Jx a xaJ

due to symmetry (o-j = o-j). Invoking the principle of virtual work gives

J a9wdA / rja (auidA [1Ta0Ui -y

Therefore, Equation ( 2.1) reduces to

d171 _ aw raou
da - J9a dA+ f]Tif d. (2.2)

Applying the divergence theorem and multiplying both sides by -1 leads to

da (9 ~ ) -19 2 x
-~ ~ Wn, - T 2 > d'y- = ,dy - T dy

since nxd-y = dy. Rice [11] considered a counterclockwise arbitrary contour F from

the lower to the upper crack face around the crack tip (Figure 2-2(a)) where the
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e, ligament

front perturbation field 61(s).

traction can be written in terms of the Cauchy stress and the outward normal a to

F as T = -j% to define J:

J (Wa1 - o-ja u) dy, (2.3)

where W is the strain energy density defined by

W(Ckl= jik.i

From Equation (2.2), the potential energy per unit thickness ir in plane strain can be

given as

ir = fW (TEiu) dA - T ui d7, (2.4)

where AT is the portion of the boundary where the tractions are prescribed. The

strain energy release rate g (Chapter 1) can be be then expressed as

where the decrease in -R due to a unit advance of crack in its plane with tractions held

fixed. Then, to the first order,

9 = -J r. (2.5)
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By introducing a point-wise definition of the energy release rate g as a function

of the arc-length measuring curvilinear coordinate, s, along the crack front C, we can

generalize expression (2.5) to three-dimensional problems [12, 13]. Let 61(s) denote

the magnitude of the virtual crack advance at s, in the plane of the crack and in the

direction normal to the crack-front, as shown in Figure 2-2(b). Equation (2.5) can be

recast, to within first-order terms in 61(s), as

/ 9(s) Si(s) ds = -67r, (2.6)

where ds is the elemental arc length along C, and -67r is the decrease in the potential

energy of the body.

For a plane strain tensile crack, with the crack advancing uniformly through the

thickness in its plane [14], J and 9 are equivalent in two dimensions. Along a 3-D

crack-front, as r -- 0+, asymptotic plane strain conditions prevail so that the three-

dimensional singular stress fields approach a linear combination of Mode III and

the plane strain two-dimensional Mode I and Mode II fields along C. Hence, as r

shrinks onto the crack front, F -I FO, the local value of the energy release rate, 9(s),

and point-wise value of the J-integral, J(s), become equivalent:

g(S) lim j [W ak nk - Uij aj U,k nk] c- = JrO(s) = J(s), (2.7)

where n is the in-plane normal to the crack-front at location s. Equation (2.6) can

then be written as

Jc J(s) Si(s) ds = -6r, (2.8)

with the understanding that J(s) is defined through (2.7).

2.1 Domain Integral Representation

The crack tip contour integrals are difficult to evaluate in numerical studies and may

result in inaccurate readings. The difficulty lies in the nature of the calculations where
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Figure 2-3: Two-dimensional formulation. Domain of integration Q.

the crack tip energy release rate in these integrals need to be calculated at points arbi-

trarily close to the crack tip [7]. Yet, it is near the crack-tip where accurate solutions

are most difficult to obtain. The domain integral method provides a convenient way

to calculate the energy release rate for 2-D and 3-D problems [14]. The finite element

formulation of the domain integral method corresponds to the virtual crack extension

method [15], which is versatile in its applicability to 3-D crack configurations. Both

formulations have been derived in greater detail in [12].

2.1.1 Two-dimensional formulation

Introducing Eshelby's energy momentum tensor [16], Pi = W 6 1j - -ij ui,1 , we can

recast (2.3) in the more compact form

J = [W 61j - -ij ui,1] ajd- := Pij a d7. (2.9)

We now consider a second curve around the crack tip, I, surrounding an arbitrary

interior boundary F, and define a simply-connected region, Q, between F1 and F,
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as shown in Figure 2-3. Q is bounded by closed curve T = F, ±17+ - F + F-. The

path-independence of J [11] gives

J~z j Piaid> =j1Piajdy. (2.10)

We define a vector 0 as the outward normal to T, such that 3 = -c on F,

and 3 = a on 1. If the crack faces are traction-free, then ouj - f3 0, on F+ and

F-. Also on F+ and F- the vector /3 is normal to the direction of crack propagation,

01= 0, so that (2.5) can be written as

-6ir = G l = J6l = J[W i -ijuui,1] 1qi0 d-y j=Pij qi Oj dy, (2.11)

where we introduce a sufficiently smooth CO vector-valued perturbation field q = q1ej

defined in Q which has magnitude 61 on F and which vanishes on F1 :

{1 = on and within F,

0 on 11 .

Application of the divergence theorem reduces (2.11) to

- 6r = J6l = J(P 3 q1),j dA =J(Pigiqi +Pigqi,3 )dA. (2.12)

2.1.2 Three-dimensional formulation

For three-dimensional crack configurations, (2.7) and (2.8) can be combined to express

the decrease in total potential energy as

-67r = 6l(s) lim jf Pm n, am dy ds, (2.13)
JC I r7-ro I

where the momentum tensor P is defined as Pmj = Jiksikomj -iijai,m-

Introducing surface So as the envelope of the curves Fo(s) as shown in Figure

2-4 (a), we can write (2.13) as

-jm = nm naj 6 (s) dS. (2.14)
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(a) (b)

Figure 2-4: Three-dimensional formulation. (a) Surfaces So and S1 enclosing the crack-front. (b)

3D domain of integration, Q in the limit ]o -+ 0.

Now consider a second cylindrical surface around the crack tip, S1 , exterior to SO,

and define a three-dimensional simply-connected domain Q between So and S1 , as

shown in Figure 2-4 (b). Q is bounded by the closed surface S formed by the surfaces

SO, S1, S+, S_, SR, SL, where S+ and S- are surfaces on the respective crack faces,

and SR and SL connect So and S1 at the respective ends of the cylindrical domain as

shown in Figure 2-4 (b). We define a vector 3 as the outward normal to S, such that

1 = -a on So; also the traction-free crack surfaces S- and S+ have their respective

outward normals 8 = Im, where m is the normal to crack plane. We consider

a sufficiently smooth C' virtual crack advance pattern, 61(s), which vanishes at all

crack locations outside the Q-domain, and the corresponding perturbation field, q, in

Q as

61(s) n(s) on the crack front,

0 on S 1,
q=

0 on SR U SL,

q-m=O on S+ US-.

The third condition applies only if SL and SR are not free external surfaces of the

body. If an end surface is a free surface with normal m, then q - m = 0. If the crack

faces are traction free, Ouj 3 = 0= on S+ and S-, so that qmPmfyjo = 0 on S+ and S-.
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Combining these results with (2.14), we obtain

- [Pj q, /3 ] dS. (2.15)

Application of the divergence theorem to (2.15) leads to

-6r = J [(Wmj - Ozj Ui,m) qm,j + (W6mj - -ij ui,m),j qm] d. (2.16)

2.2 Interaction Energy Integral Method

The energy release rate can be given as [17]

1 KTBlK, (2.17)
87r

where K = [K 1 , KII, K1 1 1 ]T. For isotropic materials, B is diagonal with the compo-

nents

B4( = B22 = 1 - ) and B 33 = P, (2.18)

and the expression can be restated as

1_ [Kj2 + Ki] +l K P (2.19)

Note that, for actual, mixed-mode crack field, the crack extension force is given

by

1
I = [K 1B 1 K1 + (terms not involving K1 )]. (2.20)

87r

An auxiliary field can be defined as explained in Stern, Becker, and Dunham [8]

or in Gosz and Moran [9]. In most cases, the auxiliary stress fields are assumed diver-

gence free and set to zero. However, Gosz and Moran [9] note that is not necessarily

the case in three-dimensions and the divergence of the auxiliary stress field is not nec-

essarily zero. In a three-dimensional geometry, spatially varying components o

and basis vectors ei of the auxiliary stress tensor a("') can lead to divergence. The
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energy release rate for any such pure mode I field with stress intensity factor K "ux

where K (aux) K(aux) = 0 can be formulated as

1, K ""x B 1 K (aux). (2.21)(au)~ 87 1 1

Superimposing the auxiliary field onto the actual field yields

Itot = [(K1 + K(aux)B1 (K 1 + Kaux))

+(terms not involving K 1 or K aux)]. (2.22)

Since the terms not involving K 1 or Kaux) in Itot and I are equal, the interaction

integral for isotropic materials can be defined as

Iit = Iot - ( - aux)

= I (2K( "ux B-'K,) (2.23)
87r

Itot is the energy release rate of the total field (the actual field plus the auxiliary

field), and I(aux) is the energy release rate of the auxiliary field. The interaction energy

integral in the line integral form, by letting pint) =iEiek a)61- Yi) -ai,au, ,

can be written as

Iint =r(ozkik ', 6jijau, 1  - oJ uj,1) o dy (2.24)

assuming small strains in the absence of body forces. To convert this interaction

energy contour integral into an equivalent area integral we employ the same method-

ology as in the J-Integral conversions, including the vector valued perturbation field

q over the same domain (Figure 2-3). Then,

It = - J q1,dA - jPii7t qjdA.

Then, the interaction integral can be written as

int = j rk - i(aux) - ux)U2 ) q1 ,jdA
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+ (uik,1E, -x) ,, ui,1 + 'ik Ek1x) _ j ~~ (aux) -a j q1 dA.

(2.25)

where (ggjsUaux) - 0 due to lack of body forces.

The three-dimensional formulation for the line integrals can be set in a similar way.

In three dimensions, following the guidelines laid out in the domain representation

of the J-Integral formulation, the three dimensional line integral formulation can be

given as

lint = lim P(,'7t nma -6l(s)dS, (2.26)

where all parameters are defined as in the three dimensional J volume integral cal-

culations. Application of divergence theorem gives

-Tit J (aux) 6 Mj _ aij(aux) _ or(aux)ai'm) qm,jdV

(auxaux ( r x)OiUaux) ''x qnW

± Ukm (Ux)m + auxEaux
+ iaux ?jr ± ~ikmn - 0i. -i U ij

(2.27)

All three energy release rates I,tot, and (aux), including iznt itself can be computed

from the domain integrals. Repeating the calculations for mode II and mode III, a

linear system of equations results:

I = K") B-1 Ka, (no sum on a = sum on(2.28)

If the KcuX are assigned unit values, the solution for K's leads to

K = 47rBIInt (2.29)

where int = [ nI t, 1 T
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Chapter 3

Crack Face Relative Displacement

(CFRD)

The Crack Face Relative Displacement method has been used in the analysis to verify

the accuracy of results obtained by FEM solutions. The analytical solution for pure

Mode I for the flat crack exists and served to verify the accuracy of the initial CFRD

post-processing code, as well as the ABAQUS model. The CFRD method is crucial for

determining the accuracy of the sinusoidal crack solution, as there are no analytical

solutions for the mixed mode problems examined.

The node displacements used to calculate the stress intensity factors are captured

from an ABAQUS report for the node set near the crack front, as explained in Ap-

pendix A. The postprocessing provided a value for each loading mode by making use

of local coordinate systems along the crack and the equations derived below. These

derivations are adopted from [18].
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3.1 Asymptotic Crack Tip Fields

3.1.1 Antiplane Strain

Antiplane strain is defined as a state where l = U2= 0 and u3 = u 3(X 1 , X 2 ). The

nonzero scalar components of strain have the form e - 3=(X 1 , X 2 ), where

1
23 = U3,a (3.1)

Therefore, the nontrivial scalar components of stress, - 2 =2pEij + Aekk 6jj, in the form

O-a3 = -a3 (X1, X 2 ), are given in

Ua3 = /u3,a- (3.2)

In the absence of body forces the only relevant equation of equilibrium is

Or.3,, =0. (3.3)

Equations (3.1)-(3.3) can be combined to yield Laplace' s equation

V 2U3 = U3,aa = 0. (3.4)

An antiplane strain displacement field U3 can be presented as the real part of an

analytic function 4 of the complex variable z= X1 + iX 2 ,

1
U3 = - R[V)(z)]. (3.5)

Then, it follows from the Cauchy-Riemann equations that V 2 U3  0 at points where

O(z) is analytic. It follows from (3.2) and (3.3) that, at points where V)(z) is analytic,

ct3= R[(z)] = R a (z) = R [zQ'O (z)]

Since z, 1 =1 and z,2 =i,

713 = R[V)'(z)], 1-23 = R[ii'(z)] =-

or

0-13 - ZO-23 = 0'(z) (3.6)

which gives the nonzero components of stress in terms of the antiplane strain complex

potential, at points where the complex potential is analytic.
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Figure 3-1: Semi-infinite, straight crack in anti-plane strain

3.1.2 Asymptotic Crack Tip Fields (Mode III)

Consider a semi-infinite, straight crack in a state of antiplane strain where a cartesian

coordinate system is located at the crack tip (Figure 3-2). The only restriction in

antiplane strain is that the relative displacement of the crack faces must vanish as we

approach the crack tip. It will also be assumed that the crack faces are traction free.

The crack faces considered here are at 0 = 7r and 6 = -7r.

The traction free crack faces boundary condition requires that

U 2 3 = 0 on 0 = ±7r (3.7)

The restriction that the relative displacement vanish at the crack tip is satisfied, and

the rigid-body translation of the body is fixed, by requiring the displacement field to

vanish at the crack tip,

lim U3= 0. (3.8)

The objective is to find the most general form of the antiplane strain complex potential

and of the displacement and stress fields that are consistent with the conditions (3.7)

and (3.8). Consider a function of the form
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7(z) = (A + iB)zA+1

where A, B, and A are real. Substituting the assumed form (3.9) of the antiplane

strain complex potential into the expression (3.5) for the scalar components of the

stress field gives

0 13 - ZO23 = (A + 1)(A + iB)zA

= (A + 1)rA(A + iB)(cos A\ + i sin AO), (3.10)

so that the stress component field 023 corresponding to the form (3.9) of the antiplane

strain complex potential is

U2 3 = -(A + 1)rA(A sin AO + B cos AO).

The traction-free crack faces boundary condition U2 3 = 0 on 0 = ±ir requires that

Asin Air + B cos Ar = 0

-A sin Air + B cos Air = 0.

The displacement field must vanish at the crack tip and that condition can only be

satisfied for A > -1. The general solution to the antiplane strain crack problem can

them be given in the power series representation

(z) = [ iB(1z)+ + A$)zn+] (3.11)
n=O

where the constant, real coefficients BM and A(2) are determined by the remaining

boundary conditions of whatever specific problem one is considering.

As we approach the crack tip, the lower order terms become dominant. The con-

tribution to the stress field, 0 ' (Equation 3.6), becomes unbounded for the term Zn+1/2

at n = 0, and provides the most significant contribution when the constant A(2
) = 0

The convention in linear elastic fracture mechanics is to replace the constant B(

by the mode III stress intensity factor KII1 [19], defined in the cartesian coordinate

system such that
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K 11 1  liM V2rr -2 3 Io-o. (3.12)

For this case, Equations (3.5) and (3.10) become

2K 111  r 0
U- sin -, (3.13)

pi 2w 2

and

713 K 111  - sin (
0-2 3  V2r cos (

respectively. The Mode III stress intensity factor is established by the far field

boundary conditions and is a function of the applied loading and the geometry of

the cracked body. The stress components of Equation (3.14) have an inverse square

root singularity at the crack tip and will dominate as the tip is approached. In the

limit r -+ 0, the stress field for any antiplane crack, regardless of the remaining

boundary conditions, approaches (3.14) asymptotically. The antiplane crack face

relative displacement is

5(r) = u(r, 7r) - u(r, -7r); 63(r) = u3(r, 7r) - u3(r, -7r).

It follows from (3.13) that

-4K 111  r
63(r) = 2- (3.15)

A 27r

3.1.3 Asymptotic Crack Tip Fields (Modes I and II)

Consider a semi-infinite, straight crack in a state of plane strain, where the cartesian

coordinate system is located at the crack tip (Figure 3-2). The only restrictions are

that the crack faces should not overlap one another (the crack can "open", but the

material on one side cannot penetrate the material on the other side) and that the

relative displacement of the crack faces must vanish as one approaches the crack

tip. It will also be assumed that the crack faces are traction-free. The crack faces

considered here at 0 = r and 0 -7r.

The traction-free crack faces boundary condition requires that

37



Figure 3-2: Semi-infinite, straight crack in plane strain/stress

U22 = 912 = 0 on 0 = ±7r. (3.16)

In terms of crack relative displacement, the restriction that the relative displacement

vanish at the crack tip is satisfied, and the rigid-body translation of the body is fixed,

by requiring the displacement field to vanish at the crack tip

lim u = 0. (3.17)
IzI-*o

The objective here is to find the most general forms of the complex stress functions

and of the displacement and stress fields that are consistent with the conditions (3.16)

and (3.17).

The equilibrium conditions will be satisfied if the nonzero stress components - at

points where the body force field is zero - are expressed in terms of the Airy stress

function, 1(X 1 , X 2 ), such that

O' = D, 22 ; U22 = 4,4 ; 0'12 =-, 12 . (3.18)

This guarantees that the two nontrivial equilibrium equations Jaf,a = 0 are satisfied.

The equation of elasticity that remains to be satisfied is the compatibility condition,

which is given in terms of the Airy stress function by
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V41D = 0. (3.19)

Thus the Airy stress function must be biharmonic in any region where the body force

field is zero. It can be shown that in a region S where the body force field is zero,

every Airy stress function (D that satisfies the compatibility condition V 4 <D = 0 can

be represented in S by

<) = R {#(z) + WI(z)}, (3.20)

where O(z) and I(z) are analytic in S. The scalar components of stress in terms of

the complex stress functions can be given by

O2 2 + ia1 2 = 2R (o') + #" + ?'. (3.21)

The boundary condition 3.16 requires that 0 2 2 +1 i 12 = 0 on 0 = ir.

For plane strain, the constitutive equations can be rewritten as

9,= 2p E + 2(- 1)TY3 , (3.22)

where the material property K is given by r, 3 - 4v. It follows from Equation (3.22)

and strain-displacement relation that

O 1 + 0 22 = _ 1,1 + U,2

and thus it can be shown that the scalar components of displacement are [18]

2p(ui- iu2 ) = - rq#' + c - 4. (3.23)

Consider two functions of the form

#= AzA+l, 4= CzA+1 (3.24)

where A, B, and A are real. Substituting Equation (3.24) of the complex stress

functions into the expression (3.21) and using Euler's formula to separate the real
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and imaginary parts gives:

0 2 2 + ic1r2 = (A + 1) rA ((2A cos AO + AA cos(A - 2)0 + B cos(AO))

+zi(AA sin(A - 2)0 + Bsin(AO))). (3.25)

It follows that the traction-free crack faces boundary condition requires

A(2 + A) cos Air + B cos(AX) =0 (3.26)

AA sin(AX7r) + B sin(Xw) = 0.

The non-trivial solutions to Equation (3.26) can be given by A > -1. The general

solution to the crack problem can then be given in a power series representation:

C A)zn±i + A-2)zn+1
n n (3.27)

_E B$)zn+2 + B 2)zn+1(

The constant, real coefficients A('), B),A(2),Bn(2 ) are determined by the remaining

boundary conditions of the specific problem.

The terms in z provide a constant contribution to the stress and the terms in Z1/2

provide a contribution that becomes unbounded like Iz|-1/2. The dominant contribu-

tion to the crack tip stress and displacement fields occurs for A = -1/2, where n = 0

for which A) = 2B(1 . An inverse square root singularity exists at the crack tip

and the scalar components of stress in terms of the complex stress functions (Equa-

tion 3.21) become unbounded, defining mode I fields.

The procedure can be repeated for solutions of the form

4 = AzA+1, 0 = BzA+1 (3.28)

but this time with pure imaginary coefficients A and B to define the Mode II fields.

As a last step, the two solutions can be superimposed to result in the definition

K + iKI- lim 2rrCr22 + i-12)o0o. (3.29)

Hence, the contribution to the stress field defined by Equation 3.21 can be shown [18]

to take the form
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I-1 3 cos 2 + cos L -5 sin - - 7 sin21 K,_ 1 - $r Ki o 2 2

-22 5 cos - cos + Ls - sin (3.30)4 \2-xr 2 214vF7 2 2

0-12 sin Lo - sin 2 3 Cos 2 + Cos Lo1 2 2 J
In the limit r -+ 0 as one approaches the crack tip, the stress field for any plane

strain/stress crack, regardless of the remaining boundary conditions, asymptotically

approaches Equation (3.29).

Finally, the contribution to the displacement field is given in terms of cartesian

coordinate scalar components by

U K1  cos ±KI rf (2+K+cos0)sini
- (K-COS 0) 2+ r2 (3.31)

2 j 2p 2 c ) sin 22p 2p ( (2 - K - cosO)cos (

The crack front relative displacement 6= Sa&, is the displacement discontinuity

across the crack (Figure 3-2), given as a function of the distance r from the crack tip

by

6(r) = u(r, 7r) - u(r, -7r) Hence from Equation (3.31),

J,(r) = KI r, + r (3.32)

and
K + 1 F

J 2 (r) = K . (3.33)
pi 2wr
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Chapter 4

Modelling, Analysis, and Results

Two models are examined using ABAQUS Standard, Version 6.3-1. The input files

for ABAQUS were created using a mesh generation code created in MATLAB'.

4.1 Modelling

The specimens to be simulated are 3- D center cracked specimens of finite dimensions

(Figure 4-1). The first specimen (Figure 4-1 (a)) has a flat crack while the crack in

the second specimen (Figure 4-1 (b)) has the form of a sinusoid to represent a surface

roughness. Utilizing the symmetry on the Y - Z plane, only half of the specimens will

be modelled in the finite element analysis (Figure 4-2). Modelling required decision

making on three fronts: Boundary conditions, dimensions, and meshing decisions.

Each criterion will be discussed in detail in this section.

4.1.1 Setup and Boundary Conditions

Both setups (Figure 4-2) are modelled as linear elastic, using 27-node full integration

hexahedral elements (ABAQUS Element Type C3D27). The mesh is created on the

X - Y plane and extruded into the +Z-direction from Z = 0 to Z = Zma, as stated

by the right hand rule. Taking Figure 4-2(a) as a reference, the global cartesian

'The MATLAB code is discussed in detail in Appendix A.
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Figure 4-1: Plot of the through crack specimen modelling a (a) flat crack (b) surface roughness.

coordinate system has its origin at the start of the crack on the Y - Z plane and at

the mirror image position for the X - Z plane. Both specimens are center-cracked,

finite-width test specimens as shown in Figure 4-1. Therefore, in the FEM model, the

specimen surface parallel to the Y - Z plane at X = 0 is on rollers. At X = Xmax,

the surface lying on the Y - Z plane is traction free. The models assume traction-

free crack faces, and plane strain in the finite thickness of the specimen. Therefore,

movement in the Z-direction on faces lying on the X - Y plane, namely at Z = 0

and Z = Zmax, is fixed. The load is normal traction applied perpendicular to the

X - Z plane at Y = +Ymax and Y = -Ymax. The only difference between the two

setups is that the specimen in Figure 4-2(a) has a flat crack, where as the crack in

Figure 4-2(b) is modelled as a cosine function of one full cycle - with no phase shift -

on the Y - Z plane, having a user-defined amplitude, Amp. Hence, the first setup is a

special case of the second setup with Amp = 0. Even though the models look similar,

the flat crack produces pure mode I stress intensity factors, while the out-of-plane

crack on the second model results in variable mixed-mode stress intensity factors as
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Figure 4-2: Plots of (a) flat and (b) sinusoidal crack geometries. Note: The plane X = 0 is

assumed to be a symmetry plane in both geometries.

we move along the sinusoidal crack front. The load at Y Ym, remains identical in

both cases.

4.1.2 Dimensions of the Test Specimen

Even though the ideal analytical model assumes an infinitely long specimen in the Y-

direction, a few practical decisions had to be made for the finite element model setup.

Saint-Venant's principle states that the effect of change in boundary conditions is

local. Therefore, sufficiently far from the part of the boundary where the conditions

are different, the solutions to infinite-size and finite-size problems are expected to be

approximately the same. The problem now is to determine "sufficiently far". For this

purpose, simulations were run with different sets of specimen dimensions, and a ratio

of b/h = 1/3 was selected. We considered the ratio of specimen thickness, t, to the

crack amplitude, Amp, a critical one for our calculations. As the elements along the

sinusoidal crack front would be distorted, and as excessively distorted elements could

lead to inaccurate results, we selected a low ratio of Amp/t = 1/20. The crack front
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(a) (b)
a 1 1
_ 4

a 1
t 2 2

b 1 1
hi 3 3

Amp 1
_ _ 20

Table 4.1: Dimensions of the specimens (Figure 4-2 (a),(b)) in relative terms.

consists of the arc length created by the cosine-shaped curve. The mesh is created by

linearly spacing the elements along the Z-coordinate and then distorting the crack to

accommodate for any given amplitude Amp. Therefore, as the amplitude is increased,

the elements at the steepest parts of the curve would have significantly larger arc-

length per element and not capture critical information. A low Amp/t ratio thereby

determines a sufficiently small maximum "arc length per element" value. With the

selected Amp/t ratio, we hope to achieve good numerical results for a computationally

affordable price. The relative dimensions of the specimens are given in Table 4.1. The

Poisson's ratio was taken as v = 0.3.

4.1.3 Meshing

The mesh geometry near the crack tip is crucial to obtain an accurate reading of

the desired parameters. The computational aspects of creating the mesh have been

discussed in detail in Appendix A. This section discusses the reasoning behind the

meshing decisions. A schematic of the mesh used in this model has been given in

Appendix A, Figure A-1 (a). The mesh for the specimen consists of eight sections,

four of which are unique and mirror-imaged across the X - Z plane to result in

eight subsections. The sections are then tied to each other using linear multi-point

constraints. The sections surrounding the crack front (Section 1 and Section 8) are

discussed here in detail. In LEFM analysis, the singularity at the crack front must
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be considered, since including the singularity effect around the crack tip improves the

accuracy of the computed J-Integral, the stress intensity factors, and the stress and

strain calculations2 . Figure 4-3 illustrates the collapse of a two-dimensional element

and the rearrangement of mid-side nodes to capture the crack-tip singularity. The

same procedure can be applied to the 27-node 3 - D hexahedral elements used in

our models. To obtain a combined square root and 1/r singularity, the nodes on

the collapsed face are allowed to displace independently at the crack-tip and the mid

side nodes are moved to the 1/4 point. To obtain accurate results, the number of

circumferential elements were selected to give subtended angles of less than 100 at

the crack-tip. The nodes are radially biased towards the crack tip (Figure 4-4) to

make more efficient use of the elements in the model by including more elements in

the K-dominated zone. Hence, the characteristic radial lengths of the first few rings

of elements around the crack-tip are smaller than they would have been if they were

linearly distributed. The uniformly-spaced mesh (Figure 4-4(a)) places all mid-side

nodes at the middle of the element, while the quadratic biasing factor (Figure 4-4(b))

forms the first ring of elements as quarter-point elements, and places the mid-side

nodes of the remaining layers farther away from the quarter-point location and closer

to mid-point.

Another critical decision was selecting the number of elements in the Z-direction,

across the thickness, to accommodate the deformation in the sinusoidal crack front,

as described in Section 4.1.2. We decided to place 20 elements through the thick-

ness. This made the finite element analysis computationally feasible while providing

accurate results for the tested Amp/t range. Coupled with the 'crack amplitude to

thickness ratio' decision, the choice of characteristic element size in the first tube of

elements along the crack front is expected to provide good results. Table 4.2 presents

the ratios selected on meshing the specimen dimensions. The characteristic size in

R-direction for Section 1 gives the size of the first element ring around the crack tip

relative to the crack length. Due to the biasing algorithm, this ratio is larger as we

move farther away from the crack tip.

2Please refer to ABAQUS manual [20], Section 7.9.2.
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b
c

a, b, c ------- --- r

isoparametrc space physical space

Figure 4-3: Collapsed 2 - D element used at crack-tip. The variable r is the distance from the

crack-tip. In the physical space, the boundary nodes are located 1/4 of the distance from the tip

cluster (a,b,c) to the opposite face.

Vr

Le ;

(a) (b)

Figure 4-4: Mesh near crack tip for different radial biasing coefficients (b.c) (a) b.c=1 (no 1/4-point

elements); (b) b.c=2 (with 1/4-point elements). In both meshes 10 rings of elements are shown.
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Figure 4-5: Deformed view of mesh near crack tip for (a) flat crack (b) sinusoidal crack.

Section Extent of Dimension Number of Elements Characteristic Size

1 R 5 10 1/100

0 1800 20 90

Z 10 20 1/2

2 X 10 10 1

Y 55 5 11

Z 10 20 1/2

3 X 10 5 2

Y 55 5 11

Z 10 20 1/2

4 X 10 5 2

Y 5 5 1

Z 10 20 1/2

Table 4.2: Number of elements used in each of the four unique sections for modelling

and the characteristic sizes corresponding to the specimen dimensions. For length-

dimensioned parameters, the absolute dimensions are arbitrary.
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Figure 4-6: Plot of meshes tested (a) View in X-Y plane (b) View in Y-Z plane for (i) flat crack;

(ii) sinusoidal crack (Amp/t = 1/20).
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4.2 Analysis

The goal of the simulations is to study the behavior of the stress intensity factors

as we move along the crack front from Z = 0 to Z = Zmax in different crack front

geometries. ABAQUS writes its findings to the .dat output file, but they need to be

post-processed and formatted to serve our purposes. First, we ran the MATLAB post-

processing code written for this purpose3 . Second, using the crack face displacements,

we calculated the stress intensity factors from CFRD. Finally, all data is normalized

by the reference solutions obtained from an engineering handbook [21] corresponding

to the load characteristics and plotted against Z. In other words, the final product of

postprocessing is plots of normalized singularity strengths (K, K 1 , KIII, J) obtained

from the interaction integral method. Each plot contains two set of values, represent-

ing two contours. This serves to test the path independence. To verify the accuracy

of the results, stress intensity factors calculated using the CFRD methodology are

superimposed on those existing KI, K 1 , and K 1 1 plots, while the direct calculation

of the J-Integral was superimposed on its counterpart that was calculated from the

stress intensity factors.

The first model is the flat crack: This model was included to test the accuracy of

the pre- and postprocessing algorithms, including meshing. The expected outcome of

the analysis under the specified load is a normalized K value of unity, and zero K 1

and K 1 1 values.

For the sinusoidal crack, we expect the stress intensity factors to vary as we move

along the sinusoidal crack front. K, is predicted to be highest at the points where

the crack resembles a pure mode I setup, namely at the maximum and minimum

values of the cosines curve. Conversely, K, should be lowest where the sinusoidal

curve is steepest. The steepest sections are also expected to correspond to highest

K 1 1 contribution. Therefore, K is expected to reach its maximum at Z = 0, Z =

1/2 Zmax, and Z = Zmax and to have a minimum at Z = 1/4 Zmax and Z = 3/4 Zmax.

KII1 is expected to reach its highest magnitude at Z = 1/4 Zmax and at Z = 3/4 Zmax.

3Please refer to Appendix A for a detailed discussion of the postprocessing codes
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Magnitude Z = 0 ZA Zm Z = Zmax Z = Zax Z = Zax

K 1  max. V V

min. A/

K 1 1  max. V V V

min.(= 0) V
K 111  max. VV

min. (= 0) V

Table 4.3: Expected locations of largest magnitudes of mixed-mode stress intensity

factors along the sinusoidal crack front. Estimations are given in absolute value terms.

From symmetry, we expect K 1 1 to be zero at Z = 1/4 Zma, and Z = 3/4 Zmax and to

have largest magnitude at Z = 0, Z = 1/2 Zmax, Z = Zmax. The expected behaviors

of the stress intensity factors along the crack front for the sinusoidal crack have been

summarized in Table 4.3, albeit no reference to the sign convention has been made.

4.3 Results

The results for the flat crack are displayed in Figure (4-8). The K 1 reading gives an

error at an acceptable level of 1%, and is constant across the crack front. Mode II and

mode III stress intensity factors are zero throughout, as expected. The J-Integral

calculations from two different methods are also in agreement.

When we test the specimen with the out-of-plane sinusoidal crack front, to a cer-

tain extent we do observe the expected patterns (Figure 4-9). The interaction integral

calculations from crack front nodal locations interior to a set of C3D27 elements (i.e.,

midplane nodes) are contour-independent and in agreement with the CFRD readings

in the case of stress intensity factors and with direct calculations in the case of the

J-Integral. Overall, trends are consistent with expectations noted above. However,

the readings from crack front corner nodes located at an edgeplane connecting two

crack front segments exhibit a curious, contour-dependent behavior. In our setup,

midplane nodes are defined as nodes that do not lie on an element edge along the
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Midplane

Edgeplane

Figure 4-7: Illustrative definition of the terms 'midplane' and 'edgeplane' in three dimensional 27

node hexahedral elements.

crack front. A schematic representation of midplane and edgeplane nodes can be

found in Figure (4-7).

Mode I (K1 ):

The mode I stress intensity factors show a sinusoidal pattern as we move along

the crack front (Figure 4-9 (a)). The readings are in agreement with the predicted

pattern. The resulting curve resembles a cosine function in the form

K, = K"base) + K amp) cos (Au +p) (4.1)

where u = 27r(Z/Zmax) and serves to map one full cycle along the crack front. The

results indicate an amplitude K amp), frequency A = 2, and phase shift W = 0 in

agreement with the predictions in Table 4.3. The amplitude of the function is more

difficult to determine. The interaction energy integral readings at midplane nodes

along the crack front are contour-independent but seem to be contour-dependent at

the edgeplane nodes, especially where the K, contribution is largest. Interpreted lit-

erally, the amplitude of the predicted K1 curve apparently changes as we move away

from the crack front. As the contour number increases, i.e., the volume in the integra-
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tion grows larger, the edgeplane nodes increasingly lower the amplitude of the best-

fit curve K amp). Superimposed CFRD results match with the contour-independent

midplane nodes. Moreover, the CFRD results calculated at the edgeplane nodes are

consistent with interpolation/extrapolation of the contour-independent pattern of the

midplane nodes. However, it is worth noting that the CFRD results are 0.5% lower

than the interaction integral mode I calculations at points where the K1 contribution

to the crack is least.

Mode II (K 1 ):

The resulting plot, Figure 4-9 (b), resembles a cosine function of the form

K 1 - K(amp) cos (Au + o) (4.2)

with an amplitude KhmP), frequency A = 1, and phase shift W = r in agreement with

the predictions in Table 4.3. While the mode II stress intensity factors calculated

through the interaction integrals act similarly to their mode I counterparts, the mag-

nitude of contour variation at the edgeplane nodes reaches 40%. Plotting the mode II

calculations through CFRD suggests that the contour-independent midplane nodes

provide the better solution, as the readings from the two methods agree perfectly.

Mode III (K 11):

Mode III stress intensity factors have the form (Figure 4-9 (c))

K 11 1 = K (amp) sin (Au + W) (4.3)

with an amplitude K" , frequency A = 1, and phase shift W = r in agreement with

the predictions in Table 4.3. Even though unreliable results from the edgeplane nodes

exist in mode III, the variation along the crack front is minimal. The bigger problem

seems to be at the ends, at Z = 0 and Z = Zmax, where we observe large jumps of

equal magnitude in opposite directions. The magnitude of these jumps at the ends

are contour-dependent and reach 40%, twice the amplitude of the sine curve.

J-Integral:

The J-Integral calculations from the interaction energy integrals are arithmetic

combinations of the stress intensity factors KI, KII, and KIII and therefore reflect
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the same behaviors at the midplane and edgeplane nodes, respectively (Figure 4-9

(c)). J-Integral calculations through interaction integrals are denoted as "II" in the

figure, while the direct J-Integral readings calculated through domain integration are

referred to as "DI". The direct calculations provide another opportunity to indepen-

dently verify the inaccuracy of the interaction integral calculations at the edgeplane

nodes. The direct J-Integral values are in perfect agreement with the midplane in-

teraction integral calculations. At the edgeplane nodes along the crack front, the

directly calculated J's differ from the interaction integral counterparts. The directly-

calculated J's at edgeplane nodes are contour-independent and have a value that

lies on the same curve set by their midplane counterparts, as calculated using both

interaction integral method and direct domain integration methods.
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Figure 4-8: Superimposed and normalized (a) K, (b) K11 (c) KII, and (d) J-Integral readings

for the rectangular specimen with a flat central crack under normal traction load (Plane Strain).
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for the rectangular specimen with a sinusoidal crack (Amp/t = 1/20) under normal traction load

(Plane Strain).
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Chapter 5

Discussion

While the setup with the flat crack performed as expected, the sinusoidal crack ge-

ometry introduced two distinct problems. First, the mode III results have large,

contour-dependent jumps at the boundaries Z = 0 and Z = Zmax. These jumps are

of opposite sign and of equal magnitude. Second, nodes located at the edgeplane of

an element give contour-dependent, inaccurate results for all modes of loading in the

interaction integral calculations. The reason for the inaccurate results from ABAQUS

is difficult to determine. The ABAQUS theory manual does not detail the steps it

takes to form the auxiliary stress and strain fields but the error can be caused by the

assumption that the auxiliary stress fields will be divergence free in the absence of

body forces. This is a potential source of error as explained in Section 2.2.

The problem of contour-dependent jumps at the boundaries Z = 0 and Z = Zmax

will be examined and discussed in this chapter.

5.1 Boundary Conditions

Even though the readings in the mode II boundary layers at Z = 0 and Z = Zmax be-

have the same way, the mode III readings offer the distinct advantage for analysis in

that the inaccurate data is limited to the boundaries, and therefore might be isolated

easily. To isolate the problem in hand, the boundary conditions for the specimen in

the flat crack model have been reset and the finite width center cracked test specimen
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Figure 5-1: Representation

stress intensity factor.
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of the sheared center cracked specimen to result in pure mode III

has been set to result in a pure mode III stress intensity factor (Figure 5-1). The

specimen surface on the Y - Z plane at X = 0 is again on rollers. At X = Xmax,

the surface lying on the Y - Z plane is free. The model assumes traction-free crack

faces, motion in any direction other than the antiplane shear direction Z is fixed to

obtain a pure mode III loading. The pressure boundary conditions at Y = Ymax

and Y = -Ymax have been replaced with shear tractions ry,. As ABAQUS cannot

directly apply shear tractions to a surface, a uniform displacement in the Z-direction

has been applied on the surfaces at Y = Ymax and Y =Ymax. The resulting shear

from the applied displacement has been calculated during postprocessing.

The results are plotted in Figure 5-2. The K, and KII, readings behave as ex-

pected. K, has a value of zero across the crack front, while the normalized KII, has

the constant value of unity. The problem arises in the K1 1 calculations. Mode II

stress intensity factor calculations match the expected value of zero, except for at the

ends Z = 0 and Z = Zmax. These contour-dependent readings follow a trend similar

'For a discussion on how to extract the shear traction from the displacement during postprocess-

ing please refer to Appendix A.
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to the K 11 readings under normal traction load (Figure 4-9 (c)) and are of equal

magnitude but of opposite signs. The interaction integral based J-Integral calcula-

tions are also affected by this error. Interestingly, unlike in the sinusoidal crack, the

error grows larger as the area of integration gets smaller.

As the error at the ends are of the same magnitude but different signs, we model

a specimen to simulate periodic boundary conditions. The idea behind this model

is to make the faces on the X - Y plane at Z = 0 and Z = Zmax behave the

same way as if they are at the same physical location. We use the same mesh as

in Figure 4-2(b) but instead of the plane strain boundary conditions at Z = 0 and

Z = Zmax, the specimen is now configured with periodic boundary conditions, as

explained in Danielsson, Parks, and Boyce [22]. Our expectation is that the jumps

in K 1 calculated at the ends will "add up" under the periodic boundary conditions

and provide us with the correct value of zero.

The results are summarized in Figure 5-3. While the error in the K 1 readings

has been decreased, the results for the edge plane nodes for K, and KIII calculations

present even more variation. Moreover, the CFRD readings are higher than the

stress intensity factors calculated through the domain integration method for K1 but

perfectly match K 1 and KIII at mid plane nodes. The CFRD are expected to provide

correct values for the plane strain problem. For the periodic boundary conditions

CFRD only provides a qualitative benchmark for the behavior of the mode I stress

intensity factors rather than serving as a quantitative comparison tool.

5.2 Alternative Specimen Geometries

Our attempt to make responses at specimen ends "add up and cancel each other" by

implementing periodic boundary conditions did not work as implemented. Another

option is placing the two faces that are currently at Z = 0 and Z = Zmax to the

same physical location and tying the two faces. This is done by creating a cylindri-

cal specimen instead of a rectangular piece (Figure 5-4). Once the 2 - D mesh is
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Figure 5-2: Superimposed and normalized (a) K, (b) KI, (c) KII1 and (d) J-Integral readings

for the rectangular specimen with a flat crack under shear load.
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c*4

2b

Figure 5-4: Schematic representation of cylindrical bar under normal traction with the penny-

shaped crack.

created on the local X - Y plane2 , a cylinder is created by extruding the mesh in

the circumferential e-direction. The circumference is meshed using 40 elements to

reach a subtended angle of 90 per element - below the 100 value recommended [20]

for accurate results (Figure 5-4). The "ends" of the cylindrical bar at E = 0 and

E = 360' are tied using linear multi-point constraints. The resulting geometry is

a normal traction cylindrical bar with a penny-shaped crack. The only boundary

condition applied was normal traction at Z = Zmax = h and Z = -Zmax = -h on

the local cylindrical coordinate system. A reference solution for this problem does

exist [21] and is used to normalize the results. We achieve the expected results of

unity normalized mode I stress intensity factor along the crack front (circumference)

and zero mode II and mode III values (Figure 5-5).

2We use the cartesian coordinate system set in Figure 4-9.
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Figure 5-5: Superimposed and normalized (a) K, (b) K11 (c) KII, and (d) J-Integral readings

for the cylindrical specimen with a penny-shaped crack under tension.
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The cylinder is then tested under torsion (Figure 5-6) to obtain pure mode III

stress intensity factors. As ABAQUS cannot directly apply torsion on the specimen,

we applied an angular displacement at Z = Zm . Degrees of freedom in the Z-

direction are fixed for all nodes. During postprocessing the resulting torque due to

applied displacement has been calculated as explained in Appendix A. The mode III

stress intensity factor did provide its expected value of unity despite some oscillations,

possibly due to large subtended angles. We also expected the inaccurate mode II

readings that occurred at the ends of the crack front in the rectangular specimen to

disappear. As the ends of the cylinder (0 = 0 and E = 3600) lie at the same physical

location we expected the readings at the ends to add up and result in the correct

value of zero. The new specimen geometry did not solve the problem. The mode II

readings at the ends were once again highly inaccurate, leading - for contour 8 - to a

1500% error in the J-Integral calculations from the interaction integrals at the ends

(Figure 5-7).

As the problem could not be solved by geometric iteration, we decided to change

the definition of the boundaries where the crack front begins and ends. In the standard

ABAQUS procedure, all nodes at the crack-tip at any given crack front location are

set up as an independent node set. In the case of the cylinder, two node sets exist at

the ends, namely at 0 = 0 and 9 = 360'. The nodes at the ends are then tied using

linear multi-point constraints. This way the two faces are forced to move together.

For the contour integral calculations in ABAQUS, the user needs to define the node

sets that constitute the crack front. In the original cylindrical mesh, a unique node

set was described for the 'face' at E = 0 and another for the 'face' at E = 360'. We

then modified the crack-tip node set definition at these locations. The node sets at

these faces are modified to include the other faces' nodes as well. In other words, the

crack tip node set at 9 = 0 contains its own nodes as well as the nodes from the crack

tip at 9 = 360' that are located at the same position, and vice versa. This way, we

tested whether the misreadings at the ends will be corrected, as the crack-tip node

set at the 'faces' will have their perturbation based on two elements and behave like

any other element in the crack front.
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Figure 5-6: Schematic representation of the

penny-shaped crack.

thick cylindrical specimen under torsion with the
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The cylinder with the alternative node set definition is first tested under normal

traction (Figure 5-8). As expected, the normalized K1 value is near unity, within an

acceptable margin of error of 1%, where the stress intensity factors K 1 and KII1 are

zero. Next, the mesh using the alternative node set definition is tested under torsion

(Figure 5-9). The modification in the definition of node sets at the ends has resolved

the issue of mode II jumps and the readings present pure mode III results with the

remaining stress intensity factors of zero around the circumference (Figure 5-9).
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Chapter 6

Discussion - Part II

6.1 Meshing Algorithms

While using a focused mesh geometry for fracture mechanics analysis is a widely

implemented method, it does have alternatives. The non-focused mesh geometry can

be created using a single global coordinate system where the circumferential element

structure around the crack-tip for a focused mesh required the use of a local cylindrical

coordinate system. As there is no need to use different coordinate systems, a single

section - rather than the four sections in the focused mesh geometry (Figure 6-1(a))

- suffices to generate the top half of the mesh. Hence, there is no need to use linear

multi-point constraints in the structure except to tie the top and bottom halves, as

shown in Figure 6-1(b). Therefore, the non-focused mesh is easier to generate. The

reason for initially selecting a focused mesh geometry was the expectation that it

would provide more accurate results. Next, we will test this hypothesis by creating

a non-focused mesh of same dimensions as in Table 4.1. In the vicinity of the crack

front1 , the mesh density2 of the focused mesh is preserved (Figure 6-2). Where

the crack front in the focused mesh is surrounded by the user-defined number of

'Using the convention in Figure 4-2 (a) and Figure 6-1(b), the vicinity of the crack front is set

to range from X = 0 to X = 2a, Y = -a to Y = a across the thickness, where a is the crack size.
2By meshing density we refer to the same number of elements and same biasing coefficient in the

vicinity of the crack front (Table 4.2).
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-q

Y Y

Figure 6-1: A 2-D schematic representation of the rectangular specimen for the (a) focused mesh

(b) non-focused mesh created by MATLAB. Crack tip is located at X = 1/4 Xmax and Y = 0.

Numbers indicate sub-sections referred to in text.

circumferential elements, the crack front in the non-focused mesh is always surrounded

by four elements at any given crack front location.

Figure 6-2 shows the non-focused mesh that was constructed. Figure 6-3 shows

the vicinity of the crack tip for that mesh. The boundary conditions and loads

were identical with the focused mesh as described in Chapter 4. The only difference

in postprocessing is that instead of the first node away from the crack front, the

displacements for the CFRD calculations were taken from the third node on the crack

face away from the tip, which corresponds to the mid node of the second element.

The ratio of that node' s distance from the crack front, r, to the crack length, a,

is r/a = 0.02. Figure 6-4 shows the outcome of the simulation. We do observe the

curious behavior of the edgeplane nodes across the crack front in the non-focused

mesh as well. In all aspects, the calculations from the two meshing geometries seem

to be equivalent. The next figure, Figure (6-5), compares the stress intensity factors
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and directly calculated J-Integral values calculated from the two meshing algorithms

for the same specimen 3 and plots the difference between the two. Compared to the

focused mesh, the non-focused mesh calculates the mode I values to be 1% higher

along the crack front. The difference in mode II calculations have a varying value

of up to 0.2% on the midplane nodes, and up to 1% on the edgeplane nodes. The

difference in mode III is only significant at the crack front ends, and reaches a value

of 4%. The J-Integral calculations were compared using the direct domain integration

method, and J's from the non-focused mesh are 2% higher than the focused mesh

readings. As the difference between the two meshing algorithms amounts to only 1%

on the reliable midplane node readings, we adopt the non-focused mesh geometry for

further simulations, because of its ease of creation.

6.2 Midplane vs. Edgeplane Nodes

We have observed earlier that the stress intensity factors calculated at the edgeplane

nodes across the crack front are contour-dependent. In this section, we try to for-

mulate the contour dependency. It is worth noting that it is the area covered by

each contour that is the variable, not the contour number. Yet, the contour numbers

increase with increasing area and provide a qualitative frame for analysis.

We have also noticed that the stress intensity factors plotted along the crack front

resemble a sinusoidal function as shown in Table 6.1, where u = 27r(Z/Zmax). For the

midplane nodes, this shape function is contour-independent, while the amplitude of

the function constructed using the edgeplane nodes is contour-dependent. Using the

curve fitting toolbox in MATLAB, we construct three best-fit curves for each stress

intensity factor, one from the midplane nodes, one from the edgeplane nodes, and the

last one from all nodes for each contour. The spikes for KIII the readings at Z = 0

and Z = Zmax are left out in all fit functions. We then plot the normalized4 constants

Kae), K(amp), K(amp), K (amp) against contours (Figures 6-6, 6-7, 6-8). The contour-

3Rectangular specimen under normal traction load; plane strain with Amp/t = 1/20.
4The stress intensity factors are normalized by the reference K1 solution.
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Figure 6-2: Non-focused mesh for the rectangular specimen tested under normal traction.

76



Figure 6-3: Views of the mesh geometry in the vicinity of the crack front for the non-focused

mesh.

Mode I K 1 = K se) + K amp) cos (2u +p)

Mode II K 11 = K amP cos (u +o)

Mode III Kiii = K sin (u + P)

Table 6.1: Form of the best fit function to approximate the behavior of the stress

intensity factors along the out-of-plane sinusoidal crack front.

independent numerical values for the above mentioned constants are summarized in

Table 6.2 and compared to the results obtained from the CFRD method. Both the

midplane and edgeplane best-fit curves presented here have a fit of R2 > 0.90.

In all models, the first contour is left out of the discussion, as it is widely ac-

knowledged that the first contour around the crack tip in a non-focused mesh does

not provide accurate results.

The amplitude for the best fit curve by the midplane nodes provide a constant

value for the parameters describing K 1 , while the edgeplane nodes seem to be pro-

viding a diminishing best fit amplitude up to contour 5. Farther away from the crack

front, the best fit amplitude provided by the edgeplane nodes seems to be approach-

ing the constant value obtained from the midplane nodes. A similar observation can

be made for base value. The midplane nodes for the parameter describing mode II
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Figure 6-4: Superimposed and normalized (a) K, (b) K 1 (c) KIII and (d) J-Integral readings

for the rectangular specimen using the non-focused mesh (Amp/t = 1/20, plane strain).
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mesh and the focused mesh (NF-F) for the rectangular plane strain specimen with a stress load

(Amp/t = 1/20).
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Figure 6-6: Best fit plots for (a) base and (b) oscillatory parts of mode I stress intensity factors for

specimen under normal traction load, where K1 = K base) + K "amp) (Plane Strain, Amp/t = 1/20).

Numerical Analysis CFRD

Base value Amplitude Phase shift Base value Amplitude Phase shift

K(base)/Kf, Klam()/K. _ Kibase)/K 1 , Kamp)/K 1

a = I 0.9701 0.0273 0 0.9474 0.0277 0

a=II 0 0.0688 7r 0 0.0613 7F

a =III 0 0.2009 7r 0 0.1939 7r

Table 6.2: Constants for the best fit function to approximate the behavior of the

stress intensity factors along the out-of-plane sinusoidal crack front for the specimen

under far normal traction load. (Plane Strain, Amp/t = 1/20).
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Figure 6-7: Best fit plots for mode II stress

load (Plane Strain, Amp/t = 1/20).

intensity factors for specimen under normal traction
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Figure 6-8: Best fit plots for mode III stress intensity factors for specimen

load (Plane Strain, Amp/t = 1/20).

under normal traction

82

-0.18

-0.185

-0.19

-0.195

-0.2

-0.205

E

-0.21

-0.215

-0.22
0

function K 111 = KN m sin (u + so)

Best Fit x Midplane Nodes

obtained from o Edgeplane Nodes

o All Nodes

7x. 7.-



follow a constant value, while the magnitude of the best fit amplitude provided by

the edgeplane nodes seems to be increasing without bounds. In the case of mode

III, the midplane nodes do provide a constant value as we move away from the crack

tip. While the KII, values calculated from the edgeplane nodes deviate from the

mid plane readings, the difference between the two readings seems to be becoming

constant at around 1% as we move away from the crack tip.

It is worth reminding at this point that the foregoing stress and displacement

fields for the three modes of loading represent the asymptotic fields as r -+ 0 may be

viewed as the leading terms in the expansions (Equation 1.6) of these fields about the

crack tip. The applied loading o-, the crack length a, specimen width b, and height h

may affect the strength of these fields through the stress intensity factors. Therefore,

we can express the stress intensity factor as K = K(-, a, b, h). As we move farther

away from the crack front, boundary conditions of the specimen become dominant.

6.3 Far Field KI-loading

Our next task is to isolate the remote K-field from the effects of other boundary

conditions. This can be achieved by applying a far field K-load to a region. As

noted in Chapter 3, we can calculate the stress intensity factors from crack face

displacements for any load at the specimen boundaries. It is possible to reverse

this argument. To generate a pre-determined stress intensity factor, we can apply a

displacement at the specimen faces on the X - Z and Y - Z planes. This process is

referred to as 'applying a far field K-load'. We first place a local cylindrical coordinate

system at the crack tip, to describe every point at the specimen boundary in terms of

r and 0 at any crack front location. We then set the magnitude of the desired mode I

stress intensity factor and solve the corresponding CFRD equation to find the required

r and 0 displacement at each boundary node to reach that value. To avoid further

normalization, we select K' = 1. Normalization of the results by Kn = 1 has been

explicitly expressed in the plots and [KI/K] represents units of the obtained values.

The Z-coordinate of the local cylindrical coordinate system coincides with the global
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Table 6.3: Dimensions of the specimen for the far field K, load in relative terms.

Z-axis, and we apply displacement to all nodes at specimen boundaries by defining a

displacement in the form of D = D(r, 0).

The relative specimen dimensions required to effectively apply far field K-load are

given in Table 6.3. The Poisson's ratio was selected as v = 0.3. The characteristic

element sizes for the innermost "tube" of elements around the crack front is X =

1/100 a, Y = 1/100 a, and Z = 1/20Zmax where a/Zmax = 10. We verify the

accuracy of our setup by applying a far field K1 -load. As expected, K = 1 with

remaining stress intensity factors equal to zero (Figure 6-9). Next, we introduce

surface roughness in terms of an out-of-plane sinusoidal function where Amp/t = 1/10

and calculate the mixed-modes stress intensity functions as explained in the previous

section with the normal traction load.

Figures 6-10- 6-12 show the constants for the functions in Table 6.1 obtained

from the simulations for the far field KI-loading. The normalization process is not

explicitly mentioned as we normalize by the magnitude of the applied mode I stress

intensity factor, where Kn = 1. Similar to the normal traction load, the midplane

nodes for the far field KI-loading exhibit a contour-independent behavior where the

stress intensity factors calculated at the edgeplane nodes are not constant. At the

edgeplane nodes, they grow with increasing area, and unlike in the case of the normal

traction load, the magnitudes K&8e) and K amp) at the edgeplane nodes keep growing

at an increasing rate. The accuracy of our model can be confirmed by testing the

84

Dimension Value

a 5
& 12

a 10

b 6
Ah 5

Am 1
10j



1.0

1.0

1.0

1.0

0.9

0.9

0.9

0.9

0.0

0.0

0.0

0.0

-0.0

-0.0

-0.0

-0.c

(a)
4

3

1
2

93

8 -

7 -

6
0 0.2 0.4 0.6 0.8 1

Z/t

4

3 -

2

2-

3

0 0.2 0.4 0.6 0.8 1

z/t

0O

C:

(b)
0.04

0.03

0.02

0.01

0

0.01

0.02

0.03

0.04
0 0.2 0.4 0.6 0.8 1

z/t

(d)
1.04

1.03

1.02

1.01

0.99

0.98

0.97

0.96
0 0.2 0.4 0.6 0.8 1

Z/t

(a),(b),(c) (d)

legend x Contour4 o Contour8 x Contour4 (II) o Contour8 (II)

Figure 6-9: Plots of (a) K, (b) K 1 (c) KII, and (d) J-Integral readings for the rectangular

specimen using the non-focused mesh under far field "K 1 -load" (Amp = 0, plane strain).
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Figure 6-10: Best fit plots for (a) base and (b) oscillatory parts of mode I stress intensity factors

for specimen under far field Kj-load of unity, where K = K (base) ± KamP) (Plane Strain, Amp/t

1/10).

equality of the far field-local J-Integral to the thickness-arc length ratios. In other

words, we would like to confirm,

J0 t = iocal (s) ds, (6.1)

where s is the arc length along the sinusoidal crack front. For the tested specimen,

where Amp/t = 1/10, arc length across the thickness is S/t = 1.0924. The far field

J-Integral, J', is calculated from the applied far field K1 - loading, while the local

J-Integral values along the crack front, Jiocai, are calculated from Table 6.4. The

equality holds, and we confirm the accuracy of our model. The constants in the

best fit stress intensity factor functions obtained from the CFRD method are also

presented in Table 6.4 and are in agreement with their numerical counterparts and

serve to independently confirm the accuracy of the results.
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Figure 6-11: Best fit plots for mode II stress intensity factors for specimen under far field Kj-load

of unity (Plane Strain, Amp/t = 1/10).

Numerical Analysis CFRD

Base value Amplitude Phase shift Base value Amplitude Phase shift

Kkbase)/K 1  Kanmp)/K 1 _ Kbase)/KI, K(amp)/K 1

a = I 0.9173 0.0717 0 0.8906 0.0763 0

a =II 0 0.1848 7r 0 0.1463 7r

a III 0 0.2924 7r 0 0.3176 7r

Table 6.4: Constants for the best fit function to approximate the behavior of the

stress intensity factors along the out-of-plane sinusoidal crack front for the specimen

under far field K1 - load of unity (Plane Strain, Amp/t = 1/10).
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Figure 6-12: Best fit plots for mode III stress intensity factors for specimen under far field K1 -load

of unity (Plane Strain, Amp/t = 1/10).
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Figure 6-13: Varying Amp/t best fit plots for mode I stress intensity factors for specimen under

far field KI-load of unity (midplane nodes only).

6.4 Impact of Increasing Amplitude

So far, we used a single amplitude for the sinusoidal crack surface to solve for the stress

intensity factors under far field KI-loading. We would like to change the sinusoidal

crack surface amplitude relative to the specimen thickness (Amp/t), and observe the

change in the constants that shape the best fit function given in Table 6.4. As Amp/t

increases, we observe that the stress intensity factors do not follow the form suggested

in the previous sections.

Figure 6-13 plots normalized 5 K, values obtained from the reliable midplane nodes

against thickness for increasing Amp/t. Even though both the maxima and minima

5 The specimen is loaded by a far field K, of unity.
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of the best fit curve drop with increasing Amp/t, the drop in the minima is larger. In

loose terms, we can say that the minima "sags" mode than the maxima, suggesting a

solution in the form of a cosine series. Hence, by generalizing the expressions obtained

before (Table 6.1), we can express the stress intensity best fit functions as

K, = [K cos (Au + p)J, (6.2)
A=O

KI, = KI-\ cos ((2A + 1) u + p),(6.3)
A=O

K,,, = [K sin ((2A +1)u + ) . (6.4)
AX=O

For our calculations, we will only use the first few terms of the series, namely,

A = 0, 1, 2 for K, and A = 0, 1 for K 1 and KIII. The desired output is the stress

intensity factors plotted against increasing Amp/t. Figures (6-14) - (6-16) show the

constants KA, that describe the stress intensity factors along the crack front for a

specimen under far field KI-loading.
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Figure 6-14: Plot of constants Kj for various Amp/t for specimen under far field K1 load of unity.
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Figure 6-15: Plot

unity.

of constants KA1 for various Amp/t for specimen under far field K load of
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Figure 6-16: Plot of constants KA11 for various Amp/t for specimen under far field K, load of

unity.
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Chapter 7

Conclusions and Future Work

Three-dimensional mixed-mode LEFM analysis using domain interaction integrals

was presented in this work. First, the crack geometry to result in a mixed-mode

analysis was created and the methodology for analysis was laid out. The model was

then analyzed in ABAQUS, a commercially available package, to extract K 1 , KII,

KIII stress intensity factors, and the J-Integral. The results were then verified by

the Crack Front Relative Displacement (CFRD) method to verify the accuracy of the

stress intensity factors, and the J-Integral obtained from the interaction integrals was

compared to the directly-calculated J-Integrals. The parameters calculated from the

edgeplane nodes in the interaction integrals exhibit a contour-dependent behavior

providing inaccurate values. This could be tied to the definition of the auxiliary

stress and strain fields. The assumption of zero divergence might not hold in the

case of an oscillatory basis vector moving along the crack front - similar to the case

simulated in this study. As the ABAQUS documentation does not provide details on

its assumptions and definition of the auxiliary fields, the source of this error remains

unresolved.

The purpose of this study is to establish a relationship between the three dimen-

sional mixed-mode stress intensity factors and crack surface roughness. The surface

roughness is modelled as the ratio of a sinusoidal crack amplitude to specimen thick-

ness, Amp/t. Applying a far field K load to the specimen and using the reliable stress

intensity factors calculated from the midplane nodes in ABAQUS, we formulate the
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mode I, II, and III stress intensity factors as a function of the applied far field K

load in the form of a cosine function.

The model used to establish the K-functions only utilizes the numerical results at

the midplane nodes due to the inaccurate values at the edgeplane nodes. Therefore,

the source of error in the software package that results in inaccurate stress intensity

factors at the edgeplane nodes needs to be investigated. Moreover, the K-functions

should also be tested for various Poisson's ratios.
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Appendix A

MATLAB Codes

This Appendix summarizes the algorithm behind the MATLAB codes used in per-

forming the analysis. Programs are classified as pre- and postprocessing codes. The

first section discusses preprocessing for different setups, while the second section is

focused on postprocessing codes.

A.1 Preprocessing Codes

Preprocessing includes mesh generation as well as the creation of the input file that

will be processed in ABAQUS. The idea behind preprocessing was to create a flexible

finite element input file that could accommodate changes in geometry, number of

elements in the model, and material properties. The output of that code is a single

and complete .inp file, ready to be processed in ABAQUS.

The code uses 27-node hexahedral elements in the analysis and is written for

isotropic linear elastic fracture mechanics analysis. All preprocessing codes give the

user the same flexibility to determine the dimensions, material properties, magnitude

of load to be applied, and the number of elements to be assigned to each section of

the model. The mesh was divided into real (focused mesh) or virtual (non-focused

mesh) sections where the user could define the density of the mesh by assigning a

pre-determined number of elements for that section and employing node-biasing near

crack tip. The first layer of elements surrounding the crack tip are quarter-point
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y Y

Figure A-1: A 2-D schematic representation of the rectangular specimen for the (a) focused mesh

(b) non-focused mesh created by MATLAB. Crack tip is located at X = 1/4 Xma, and Y = 0.

Numbers indicate sub-sections referred to in text.

elements.

ABAQUS was asked to calculate the J-Integral values both using interaction in-

tegrals through K's and directly using the domain integral method. In cases where

the local virtual crack propagation direction changes due to changes in specimen

geometry, the crack propagation directions used for the crack front node sets were

automatically updated.

A.1.1 Focused Mesh

Four unique meshes that constituted the top half of each geometry were tied to

each other by defining linear multi-point constraints using built-in functionality in
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ABAQUS'. The bottom half was then generated using the built-in mirroring func-

tionality in ABAQUS [20].A global cartesian coordinate system with origin at the

lower left hand corner of the top half has been set.

The first section is adjacent to the crack and is focused on to the crack tip,

located at X = 1/4Xmax and Y = 0 in (Figure A-1(a)). This section has the shape

of a rectangle with its X-dimension twice the size of its Y-dimension. As this piece

will be duplicated by mirror imaging on the X - Z-plane, the final geometry around

the crack tip is planned to be a square in the X - Y-plane. Hence, when the user

defines the crack size, he defines the Y-dimension of this section, which is equal to

the crack size, as well as the X-dimension, which equals twice the crack size. The

schematic representation (Figure A-1(a)) is modelled using parametric input values

re = 2 and 0e1 = 4. This section was created using circumferential elements around

the crack tip. Introducing local cylindrical coordinates at the crack tip, nodes were

placed around the tip. Node distances from the tip were determined by the number

of elements within the section in each direction, dimensions of the crack, and by the

biasing factor. In a sense, the crack tip is wrapped with a user-defined number of

elements (Oer-elements) and a user-defined number of layers (re-elements). While

the re-elements are biased towards the crack tip, the Oer-elements are homogenously

distributed around it. All nodes in a given ring about the tip have either the same

vertical or horizontal distance from the crack tip; hence they have the shape of an

inverse " U " rather than a semi-circle (Figure 4-4). The number of 0 elements has

to be a multiple of four, as the " U " shape is divided in four equal sections, to make

each circumferential element of the same size.

The height of the specimen and the user defined number of elements required to

fill this space are the only new variables needed to create the second section of the

mesh. The local coordinate system coincides with the global cartesian coordinate

system. The height, less the crack length (which equals the height contribution from

the first section) is the desired dimension of the second section in the Y-direction.

'A discussion of the multi-point constraints can be found in the ABAQUS manual [20], Section

20.
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The X-dimension of the section, like the first section, is twice the size of the crack

length. Moreover, the number of elements in the X-direction for the second section

is also fixed, equaling the number of neighboring elements of Section 1, i.e., half

of user-defined 0e-elements. Once the dimensions and number of elements to fill

these dimensions are determined, the nodes in Section 2 are generated through equal

spacing. Sections 2 and 4 are created in a similar way. The third requires two

additional user-defined input variables, namely, b, the total length of the specimen

in the X-direction, and the number of elements to be used in that direction. All the

variables to generate the fourth section are already defined at this point, and this

section is generated as discussed above. Once a two-dimensional model is complete,

additional nodes are extruded in the third direction. For the rectangular specimens,

this extrusion is in the global Z-direction. When a thick cylinder with a penny shaped

crack is modelled, a local cylindrical coordinate system is introduced where the Y-

coordinate of the global cartesian coordinate system coincides with the z-coordinate

of the local cylindrical coordinate system. The model is then extruded in the global

0-direction.

Even though the nodes have been generated, the elements have not been cre-

ated yet. Element definition is described in detail in the ABAQUS manual, Section

2.2.1 [20]. For the models considered, 27-nodes characterize an element, and the

required node ordering is given in Section 14.1.4 of the ABAQUS manual [20]. The

numbering of these 27-nodes change as the user changes the number of elements in the

model. To overcome this problem, a dynamic numbering scheme that automatically

updates the node numbering during element creation has been coded. The remaining

elements in the section were created incrementally from the master element that was

just created 2 . The elements for the remaining three sections were created in a similar

fashion.

Once all the elements for the top half of the specimen are generated, the MATLAB

code creates the nodes for the bottom half by mirroring all node coordinates on the

global X - Z-plane and assigning them node numbers. The elements for the bottom

2Incremental element generation is discussed in ABAQUS manual, Section 2.2.1 [20]
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half of the model are created using the built-in ABAQUS functionality to generate

elements by defining the X - Z plane as the mirror plane. For element generation by

mirroring, the code calculated the required input parameters, namely the number of

elements and nodes in the top half of the model that has already been created.

Each of the eight sections constituting the model has a total of six faces in three

dimensions. Node numbers for nodes located on these faces are captured in 48 node

sets. The resulting node sets were later used either to apply linear multi-point con-

straints (i.e., to tie sections) or boundary conditions. The crack was simulated by

not applying multi-point constraints for the left half of the first section, namely, for

X-values smaller than the crack length, while Y = 0 on the global coordinate system.

Node numbers at the free crack faces were stored as well. During postprocessing

the displacements of the crack face nodes were used to calculate the stress intensity

factors through Crack Face Relative Displacement (CFRD).

Once the node numbers for nodes on the crack faces are captured, the node coor-

dinates in the global Y-direction are modified to incorporate a sinusoidal out-of-plane

crack, rather than the flat crack resulting from the element reflection. A cosine func-

tion of one full cycle and no phase shift is integrated in the geometry. To accomplish

this modification, a local coordinate system is introduced where the user-defined am-

plitude of the crack face oscillation coincided with the maximum global Y-coordinate,

and one full cycle of the cosine curve is mapped across the thickness in the global Z-

coordinate. The new shape of the crack is extended through the global X-dimension.

To apply load at the specimen ends perpendicular to the crack plane, the planes at

Y = Ymax and Y = -Ymax, are required to be flat surfaces. Therefore, the normal

distance to the crack plane is also a variable in the cosines transformation function.

The amplitude of the cosine function has its maximum, user-defined value at the

crack face (Y = 0) and its minimum of zero at the ends where the load is applied

(Y = Ymax and Y = -Ymax) in the form presented in Equation (A.1):

Y -Y YO Zo )Y =Y+ [Ap (I - ]Cos (27r , (A.1)
Ymax Zar

where Y0 is the Y-coordinate of the node in the undistorted geometry, and Z0 is the
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point along the crack front.

Finally, all nodes are checked for their assigned degrees of freedom, as multiple

boundary conditions for nodes eliminated through multi-point constraints are not al-

lowed in an ABAQUS input file. Besides the .inp file, the preprocessing code also

saves a .mat file. This MATLAB workspace file contains specimen dimensions, ma-

terial properties and the original coordinates of the nodes at the crack faces that will

be read and used during postprocessing.

While most of the code remains universal, a number of versions have been created

to account for different shapes, boundary conditions and load characteristics. The

rectangular specimen is tested for both plane strain and periodic boundary conditions

under stress for various crack amplitudes. Each of the three load profiles, namely out-

of-plane stress, shear traction, and far field constant K 1 are applied to the rectangular

specimen.

A.1.2 Non-focused Mesh

The focused mesh generator requires setting local coordinate systems to generate

nodes for different sections. Moreover, checking nodes for multiple boundary condi-

tions is computationally expensive for MATLAB. Moreover, linear multi-point con-

straint equations employed to tie sections are also expensive for ABAQUS.

In a focused mesh setup, elements around the crack tip are focused onto the

tip. An alternative to a focused mesh geometry is the non-focused mesh (Figure A-

1(b)). Unlike the focused mesh, where a large number of elements reside at the

crack tip through the collapsed hexahedral element geometry, only four elements are

neighboring the crack tip in the non-focused configuration, and at any position the

crack tip consists of a single node. Unlike the large-sized node set that is dependent on

the circumferential elements used in the focused mesh, the crack tip node sets for the

non-focused mesh consist of just 2 nodes, one on each side of the mirror-imaged halves

of the mesh. The non-focused mesh can be generated much quicker in MATLAB, and

runs faster in ABAQUS. The small number of elements surrounding the crack tip has

been considered a disadvantage of the non-focused mesh. That hypothesis is tested
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for the purposes of this study.

A specimen modelled using a non-focused mesh geometry contains only two sec-

tions, top half and bottom half (Figure A-1(b)). Hence, the only linear multi-point

constraint applied is to tie top and bottom halves. The user first defines the dimen-

sions of the specimen, including the crack size. Again, a global cartesian coordinate

system with the lower left hand corner of section 1 as the origin is set up. In the

X-direction, starting from x = 0, MATLAB creates the nodes, biasing them onto

the tip until the tip is reached. These node coordinates in the X-direction are then

mirrored from the crack tip towards higher x-values. Once the crack tip is seeded

from both sides totaling to a length twice the crack size, MATLAB linearly distributes

nodes to the remaining section of the specimen in the x-direction. At this point, X-

coordinates for all nodes in the model are set. The number of nodes to be distributed

is calculated from the number of user-defined elements for both the biased as well

as unbiased sections. Similar to the focused mesh, the mesh density near the crack

tip contributes to the mesh characteristics in the Y-direction near the crack tip. The

crack size is equal to the y-dimension to be seeded with a bias onto the crack tip

using the same number of elements as in the biased section of the X-direction. The

remaining variables to be determined are the number of elements to fill the non-biased

sections in both X- and Y-directions. Unlike in separate sections of the focused mesh,

the same node number incremental values are preserved throughout the model, since

all node implementation is done using the global cartesian coordinate system. As a

result, a single element definition and element generation script suffices to generate

the elements for the entire model. Thus zoning is referred to as virtual sectioning.

Nodes located at the faces of both sections are captured in a node set, similar

to the focused mesh. Unlike the focused mesh there is no need to tie sections -

except for the top and bottom halves. Boundary conditions, load, and the crack

are all modelled following the same guidelines as explained for the focused mesh

(Section A.1.1). Finally, the crack is distorted to model a surface roughness the same

way as in the focused mesh.
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A.2 Postprocessing Codes

The purpose of the simulations is to inspect the variation of the mixed-mode stress

intensity factors and J-Integral values across the thickness (or around the circumfer-

ence) of the specimen for out-of-plane sinusoidal crack fronts. To that end, we need to

examine the calculated K and J-Integral values as they vary through the thickness.

Each setup is run twice, once to obtain the stress intensity factors (TYPE=K), and

another time to obtain the J-Integral values (TYPE=J). The desired values are stored

in the corresponding .dat files created during ABAQUS analysis. The postprocessing

codes were written to read and analyze those files. In addition, postprocessing also

incorporates an ABAQUS created report containing displacements for nodes located

at crack faces, and the .mat file created by MATLAB during mesh generation.

Three files have been created for postprocessing purposes. The first one plots the

normalized K1 , KII, KII1 and J-Integral values obtained from the interaction integral

method, where the second file captures the J-Integral values calculated directly from

the domain integrals. The last file calculates the stress intensity factors through

the CFRD method (Chapter 3) by utilizing displacements of crack face nodes as the

input. All values are normalized using the analytical solutions corresponding to the

load and specimen shape (rectangular and cylindrical).

A.2.1 Analyzing ABAQUS Output

Within the code that analyzes the .dat files, a number of versions exist. The user

needs to select the correct version depending on the geometry of the specimen and

the applied load type. Three reasons can be cited for this differentiation. First, the

user cannot apply shear traction or torsion directly, and needs to apply a displace-

ment. After the analysis, effective shear traction or torsion values are compiled in

an additional code included in codes written for that load type. Second, all readings

are normalized using the analytical solutions by the dominant stress intensity factor

expected to result from the load type. For example, if the specimen is sheared, all

readings are normalized by the analytical KII, solution for the given geometry. The
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analytical solution is built-in to the code and differs for each load type and speci-

men geometry. Third, desired values are plotted directly against the thickness for

the rectangular specimen, but need to be transformed in the case of the cylindrical

specimen.

When asked to calculate the stress intensity factors, ABAQUS creates a .dat file

which includes the required K 1 , KII, and KII, values as well as the J-Integrals calcu-

lated from those values at each contour for every crack-front position node set across

the specimen thickness or circumference. The postprocessing code reads that .dat

file, captures the required values and stores them in a matrix where the columns cor-

respond to the contours and the readings in the rows correspond to crack tips across

the thickness or circumference. Four rows fully capture all the information at a crack

tip in the following order: K 1 , KII, KIII, J. Every fifth row provides the reading for

the same variable at the next crack tip across the thickness. The code also loads

the MATLAB workspace file saved during pre-processing. This workspace file con-

tains specimen dimensions and other useful information required for postprocessing,

including material dimensions, load characteristics, and the number of elements used

across the thickness.

If the specimen is under normal traction with a user-specified magnitude, the cal-

culated stress intensity factors are easily normalized by the built-in analytical formula

for mode I stress intensity factors using that magnitude and specimen dimensions.

The normalized K1 , KI1 , K1 1 1 , and J-Integral values for any crack amplitude at any

contour can then be plotted against the thickness or circumference. If the load is shear

traction or torsion, additional work is required. As shear traction or torsion cannot

be applied directly to the specimen in ABAQUS, the user applies a displacement to

the top and bottom surfaces. In the cartesian coordinate system, this corresponds to

user defined node displacement at Y = Ymax and Y = -Ymax in the global Z- and

-Z-directions. In the cylinder setup, torque can be applied by imposing a circum-

ferential displacement in the local 0-direction at Z = Zmax and Z = -Zmax. During

post processing, the user is required to find the shear traction or torque resulting

from the applied displacement. Shear traction can be extracted directly through
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querying within ABAQUS Viewer by probing u2 3 values at nodes where displacement

was applied. This value can then be manually entered into the post processing file

to calculate the built-in analytical solution for mode III stress intensity factor. To

calculate the torque corresponding to circumferential displacement in the cylinder,

the magnitude of the reaction forces at nodes where the displacement is applied are

recorded in an ABAQUS report. The magnitude for each node is then multiplied

with that node' s radial distance from the center of the cylinder to give the torque

resulting from the displacement of that specific node. The sum of nodal torques give

the torque applied to the cylinder. This number is then used in the built-in analyti-

cal solution to calculate the stress intensity factors for a thick cylinder with a penny

shaped crack. Finally, the computational results are normalized by the analytical

solution and plotted against 6. The J-Integral value is normalized by J calculated

from the stress intensity factor corresponding to applied load characteristic 3.

A second code is written to read the .dat output file created as a result of direct

J-Integral calculations (TYPE=J). Similar to the first code, MATLAB reads the

.dat file and extracts the desired J-values, and places them in a matrix. While the

columns of the matrix still represent contours around the crack, a single row captures

the only available datum at a given crack tip across the thickness or circumference

- the J-Integral values. Again the results are normalized by the J-Integral value

calculated from the stress intensity factor corresponding to load characteristics and

plotted against crack tips for any given contour.

A.2.2 Stress Intensity Factors calculated from CFRD Method

The Crack Face Relative Displacement method is discussed in detail in Chapter 3. To

use this portion of the postprocessing code, the user is required to create a report in

ABAQUS consisting of displacements of nodes at crack faces. Nodes in question are

collected in two node sets during preprocessing, one for the top crack face and another

one for the bottom crack face. The field output report, created in ABAQUS under

3For example, if the applied load stress perpendicular to the crack plane, J is calculated using

resulting K, from the analytical solution
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a unique nodal menu for the node sets at the top and bottom crack faces, contains

spatial displacements U1, U2, and U3 based on the global coordinate system. Sorted

by the ascending node labels, this report does not include column totals or column

min/max. The report, as well as the .mat file created by this preprocessing code

is read by the postprocessing file. The .mat workspace file contains the original

coordinates of the nodes on the crack faces, material properties as well as specimen

dimensions. The code reads the displacement of a node in all directions from the

ABAQUS report and the corresponding original distance of that node from the crack

tip from the workspace file. The displacements are then converted into the local

coordinate system along the sinusoidal crack curve. The resulting crack openings are

then plugged into the solutions obtained from CFRD calculations for each opening

mode, normalized by the analytical solution for the setup, and plotted as a way

to verify the accuracy of K' s obtained from the interaction integral method using

ABAQUS. For the focused mesh, the nodes closest to the crack tip is used for the

calculations while the third node set away from the crack tip is selected for the non-

focused mesh. This choice is justified by the fact that the first ring of elements around

the tip in a non-focused mesh provide inaccurate results.
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