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ABSTRACT

Consider the estimation and smoothing problem for a hierarchical

Markov process. The supremal state evolves autonomously; infemal

dynamics and observations may be statistically dependent on the supremal

state. This class of processes has more structure than a general Markov

process; the implications of this structure are developed here. Of

special interest is the case of hybrid systems, where the supremal state

is discrete and the infemal dynamics are linear and Gaussian. This

structure commonly appears in diverse applications, including failure

detection, maneuvering target tracking, and digital communications

on analog channels. It is also the structure for which the most useful

conclusions can be drawn.
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OPTIMAL SMOOTHING AND ESTIMATION FOR HYBRID STATE PROCESSES.

I. INTRODUCTION

The impending availability of very large scale integrated circuits gives

us the opportunity to review some of the classical approaches to control and

estimation problems, particularly those with a combinatorial structure, and

reconsider some of the design tradeoffs inherent therein. This new technology

provides the option of efficiently implementing algorithms which are rather

profligate in their requirements for multiplies and adds, provided that the

algorithm can be decomposed into a number of highly structured loci of

computation with relatively loose coupling (in terms of data transfer)

between them. Dynamic estimation problems provide a source of such algorithms,

particularly when they have a more complex structure than the oft discussed

linear-Gaussian case,

The special structure considered here involves a Markov process with

state space X which can be decomposed into subspaces X x X and where-zl z-2 a

the dynamics on X are independent of X2' but not vice-versa. The observation
-- 1

space Y can be decomposed compatibly. This structure lies at the heart of

several important applications, particularly in hybrid systems where X

is discrete (modeling failure modes, maneuver modes, or digital symbols)

and X2 continuous (modeling system dynamics, target trajectories, or channel

dynanics, respectively). These Problems are usually dominated hv the entire

discrete state sequence. Many ad hoc solutions to these types of problems

have appeared in the literature [1-3,11], where approximations are required in

order to overcome the exponential growth of the set of discrete state

trajectories as the time horizon of the problem advances. Now that combina-

tional problems are not necessarily computationally unassailable, it is
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worthwhile understanding the extent to which these problems can be solved

exactly. While the result may still be unimplementable, inclusion of computation-

reducing features which do not affect performance (and which do exist)certainly

provides a starting point for other modifications.

This paper develops optimal methods for approaching the filtering and

smoothing problems for systems with the above structure. The contributions

are of two types: specific techniques for reducing the complexity of hybrid

system estimation algorithms, and a general structure for approaching this

class of problems. The techniques and approach seem quite helpful in designing

algorithms for VLSI implementation, but do not entirely solve the problem.

As an example will show, the specific techniques developed here may reduce

the combinatorial growth of a problem from exponential to linear (in time);

this is helpful, but still not practical, and approximations must also be

introduced. Thus a prime purpose of this work is to delimit the power of

exact techniques, and create a framework for future performance analysis of

approximate techniques.

The development begins with a formal problem statement, followed by

the derivations of optimal filtering and smoothing techniques in a general

setting. These are then specialized to the linear-Gaussian and hybrid

linear-Gaussian cases. In the latter the greatest payoff is obtained; an

illustration of this concludes the work.
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II. PROBLEM STATEMENT

A. Models

Let the state space of a Markov process be X = X1 x X . X is the state

space of the supremal subsystem which evolves autonomously; X2 that of the

infemal subsystem which is dependent upon the value of the supremal state

4
xl(t). Formally, we make:

Assumption 1: The state transition probabilities factor as

p(x 1 (t+l),x 2(t+l) Ixl(t) ,x2 (t))= p(x 1(t+l) Ixl(t))p(x 2 (t+l) Ixl(t),x 2 (t))

O (2-1)

The process is observed via the space Y = Y 1x Y 2 where Y 1 contains

observations of the supremal state only, and Y 2 of the joint state. Again,

make

Assumption 2: The observation probabilities factor as

P(Yl(t) (t), y2 (t) 1xl(t),x 2(t)) = P(Yl(t) Xl (t))P(y2(t) (t) l ( x2(t))

(2-2)

Implicit in the above are the usual conditional independence assumptions

for a Markov process , so the quantities in (2.1) and (2.2) completely

specify the system.

We will be interested in the maximum a posteriori (MAP) estimates

of the state (filtering), or entire state trajectory (smoothing), conditioned

on an sequence of observations received from the system. Introducing the

notation

4. For the general case derivations will be done formally. This is exact

when X is discrete, and when all invoked distributions exist and are

well defined.
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X. (t) e Xt Y (t) e Yt (2-3)

for sequences of states and observations (over a time interval Te{l,...,t}),

the problem is

Assumption 3: Find

a) for the filtering problem,the state x (t) which maximizes

p(x(t) I Y (t))

b) for the smoothing problem,the state trajectory X (t) maximizing

p(X(t) Y(t)). 0

This is the general problem. Two special cases which are of interest are the

linear-Gaussian, and the discrete/linear-Gaussian (hybrid) structures. In

n.

the former, assume that X. = - , and that the system dynamics are

linear with additive white Gaussian driving noise. (2.1) becomes

Assumption 1L: The hierarchical dynamics are:

xl( t +l ) = A11 xl(t) + w (t) wl (t ) N ( ),Q 1 ) (2-4)

2 (t+l) = A21 x1(t) +A 22 x2(t) + w2(t) N(0,22 (2-5)

4- +

where Q1 and Q2 are positive definite, and w 2 are jointly

independent and white.

Similarly, the observations lie in 
Similarly, the observations lie in Y1 =

E , and

Assumption 2L: The observation equations are

-t -+ 4- -+ +

Yl(t) = C xl(t) + vl(t) vl(t)- N ( O,RI ) (2-6)

5. Extension to time-varying system and noise,--matrices is stra-i-ht~-o-IFwar d
and not considered here for notational clarity. A number of other

assumptions may be relaxed; the purpose here is to develop some new

structure in the simplest setting possible.



-6-

Y2(t) = C21 xl(t) + 22 2t) (t) v (t) N(,R 2 ) (2-7)

where R1 and R2 are positive definite and vl and v2 are

jointly independent. 0

Thus the conditonal distributions for the linear case p(xl(t+l)lxl(t)), etc.

in (2-1) and (2-2) are all multivariable Gaussian densities with means

and covariances specified by (2-4) - (2-7).

For hybrid models, a combination of discrete and continuous dynamics

exist. The supremal system is discrete, specifying some structural mode,

and the infemal is assumed linear - Gaussian, with descriptive matrices

~~n ~~~~~2~ndependent upon the value of the supremal state. Thus X1} {x, . . ,x 

X = R ,and
-2

Assumption 1H: The dynamics are specified by

p(xl(t+l)lxl(t)) (2.8)

x2 (t+l) = A(x l(t)) x2 (t) + w(t) w(t)- N(O,Q(xl (t)))

with Q positive definite.6 (2.9)

m m2

Finally, Y 1 = {Y Yl =R and

Assumption 2H: The observations for a hybrid system are specified by

p(yl(t) lxl(t)) (2.10)

y2 (t) = C(x (t)) x2 (t) + v(t) v(t) N(O,R(x l(t)))

(2.11)

with R positive definite. O

6. Nonzero, x1- dependent means may be treated by state augmentation and
the dependence of A or C on x1 (t)
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These are the three classes of models treated in sections III-V,

respectively.

B. Applications

It is not appropriate to completely review all applications involving

filtering and smoothing of hierarchical or hybrid Markov processes here.

However, some sense of the applications to which these techniques may apply

serves as useful motivation.

Certain failure detection and identification problems [1] are naturally

described by (2.8) - (2.11). X2 represents the usual states of a dynamical

system operating under feedback control. X describes various failures

which may occur in actuators and internal parts of the system (causing changes

in A or Q) or in sensors (appearing in C or R). As long as the causes of

failure are unrelated to the dynamic states (e.g. due to stressing operation),

the above model applies. Interest typically centers on determining the time

and type of failures; estimation of x2 itself is often a secondary goal.

Maneuvering and multiobject tracking in clutter [2] are other hybrid

estimation problems. X2 represents positions and velocities of objects in

a region; X may indicate maneuver modes [4], target identities,detection/

nondetections due to environmental effects [5], or the permutations of

sensor returns which are not labeled with the target from which they

originated [6 1 . In the latter case, signature information derived from

the sensed waveform would be modeled in Y1; position and velocity data

by Y2.

Finally, certain communication problems exhibit a hybrid structure.

X1 may represent a digital source (e.g. of a pseudorandom code), and--1
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X analog channel dynamics. X might also model the existance of bursty
--~~~2 ' ~-1

interference which effectively sets C to zero, and R large, intermittently.

III. THE GENERAL CASE

This section develops the concepts, notation, and basic techniques

for optimal filtering and smoothing under assumptions 1-3.

A. Filtering

One might expect that the hierarchical structure of the system would

lead to the posterior distribution having some structure such as

p(x 1 l(t),x 2 (t) IYl (t),Y 2 (t)) = p(x l Yl(Y1(t)) p(x 2(t) I l(t),Y 2 (y))

3-1)

If this were so, then one could design a filter for the supremal system

alone, and then one for the infemal system which used the results of the

supremal filter in the estimation of x2.

Unfortunately, this is not the case. One step of the Bayesian

estimator is

p(x1 l(t+l) ,x2 (t+l) IY1(t+lY 2(t+l)) = p(yl(t+l)fx 1 t+l)) p(y 2(t+l)x l1 (t+l) ,x2 (t+l)).

(3-2)

x (tP(xl (t) IP(x (t+l) l(t)l x2 (t))l(t),x2(t)Yl(t),Y(t))

x1 .t. x2 (t)

p(Yl(t+l), Y2(t+l)lY 1 (t)'Y2 (t))

Note that even if the conditional distribution at time t had a separation

property such as (3-1), it would be lost both in the propagation of the

dynamics of x2 and in the update with y2. The intuition behind this becomes
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clear in an extreme example: set X = X and the infemal dynamics so that
-1 -2

x2(t) = xl(t). Then not only does an observation Y1 provide direct

information on xl, but also about x2 .

Therefore the filtering solution exhibits no special structure in this

case.

B. Smoothing:Compact

We will consider two approaches to the smoothing problem, one the

usual optimal algorithm, and the other an expanded version which better

permits exploitation of the hierarchical structure at a cost of increased

computation. This section treats the former; section C the latter.

The suitability of the hierarchical structure to the smoothing problem

is suggested by the fact that

max P(X 1iX 2 Y 1,Y2 ) = 1 max {P(Y 1 IX p(X1 ) (3-3)

XlX 2 P (Y1'Y2
) X 1

max {p(Y2jXliX2) P(X 2 1X 1)}}

X2

This is a direct result of assumptions 1 and 2, since they imply :

P(X1 'X2) = P(X 2fX1 ) P(X1) (3-4)

P(Yl'Y2jXl'X2 ) = P(YllX 1 ) P(Y2 IXi'X 2 )

Note that it is not necessary to compute p(Y 1,Y2) at all: (3-3) suggests

an algorithm by which the best X2, is found for each X1; and then the

best X1 is found. Unfortunately, Xl(t) and X2(t) are elements of rather

large sets.
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However, this has not yet considered the Markov structure of the

problem, which is essential to recursive smoothing techniques. Consider

the smoothing solution on X1 x X2; we will be interested in determining

if (3-3) affects its structure.

Definition: A survivor function [7] s(x(t)lY(t)) is defined by

s(x(t)IY(t)) = max p(Y(t)Jx(t),X(t-l))p(x(t),X(t-l)) (3-6)

X(t-l)

Technically, s is a function on X x Y t; since we will only be

interested in evaluating it along a particular realization of the output

process Y(t), it is convenient to view it as a function of x(t). It

indicates the unnormalized probability of the most likely state trajectory

X(t) which terminates in x(t), conditioned on the observation sequence Y(t).

Note that the maximizing X(t-l) in (3-6) may not be unique, but one of them

may be selected and stored for each x(t). This permits reconstruction of

the entire MAP state sequence by finding x(t) which maximizes

s(x(t) Y(t)), and then determining the X(t-l) thus associated with it.

The implications of Markov structure are that s is recursively

computable.

Lemma 1. s(x(t) Y(t)) may be computed via

s(x(t+l) IY(t)) = max p(x(t+l)Ix(t)) s(x(t) IY(t)) (3-7)
x(t)

s(x(t+l)IY(t+l))= p(y(t+l)lx(t+l)) s(x(t+l)IY(t)) (3-8)

Proof: Bayes' theorem, interchange of max operations with functions

not of the same variable, and the Markov assumptions:

t

p(Y(t)lX(t)) = TI p(y(s)lx(s)) (3-9)
s=l



~t-l-1-

p(X(t)) = [i p(x(s+l)lx(s)) p(x(l)) (3-10)

If s is replaced with -kn(s), a monotonic operation, and the resulting

function is minimized, the Viterbi algorithm [7] emerges.

Computationally, the Viterbi algorithm is relatively simple, requiring

only O(N 1N2) operations per time step (for discrete X). Memory for storing

the preceeding trajectory associated with each x(t) is the dominant factor

in its implementation. As in the filtering problem, however, the

hierarchical structure of the Markov process does nothing, in general, to

simplify the algorithm further. Again, the case where xl(t) = x2(t) for

all t generates an s(xlY) which is diagonal on X1 x X2, and demonstrates

the lack of decomposition.

C. Smoothing: Expanded

An algorithm for the smoothing problem can be constructed which does

exploit the hierarchical structure, but at a great increase in computational

complexity. As such, it is not useful for general problems of the class

considered here, but it will be the key to the structure of the hybrid

smoothing problem.

Definition: A conditional survivor function s(x 2 X ,Y ) is defined as

s(x 2 (t) Xl(t),Y 2(t)) = max p(Y 2 (t) Xl(t),X2 (t)) P(X 2(t) Xl(t))
x2 (t-l)

(3-11)

This function is an intermediary in the solution of the smoothing

problem, as the second maximization in (3-3) can be rewritten as

max {p(Y 2(t) 1X(t),X 2 (t))p(X2 (t)1Xl(t))} = max s(x 2 (t) IXl(t),Y 2 (t))
X2 (t) x2 (t)

(3-12)
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These equations suggest an algorithm whereby s(x21XlY 2) is computed, based

only on Y2' for each X1. The result may be summarized in the function

r(X l(t) Y2(t)) A max s(x 2(t) IX1 (t),Y 2(t)) (3-13)

x2 (t)

The outer maximization in (3-3) is then over the product of P(X 1lY 1) P(X 1), which

is computable just from the structure of the sumnremal system, and

r(X1IY 2), derived from the infemal structure only.

This algorithm does capitalize on the hierarchical structure, but

leaves two questions to be answered. First, can the s(x21X 1,Y 2) be

computed recursively? Second, is there some recursive structure which can

be exploited in the outer maximization, over X1, without reducing the

solution to a Viterbi algorithm on X1 x X 2? The answer to the latter is

particularly critical, as the size of X1 grows exponentially with time.

The answer to both questions is yes. Consider the computation of

s(x 2 1Xl,Y 2) first.

Lemma 2: s(x 2 IX1,Y 2
) may be computed as

a) predict:

s(x (t+l) IXl(t),Y 2 (t)) = max p(x 2(t+l)Ix l(t),x2 (t))
x2 (t)

s(x 2 (t) IX1(t),Y 2(t)) (3-14)

b) update:

s(x 2 (t+l) IXl(t+l),Y 2(t+l)) = p(y 2 (t+l)lxl(t+l),x 2 (t+l))

s(x 2 (t+l) IXl(t)'Y 2(t))

(3-15)
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Proof: Identical to Lemma 1, with conditioning on X
10

The structure of these computations is straightforward. For each supremal

trajectory Xl(t), (3-14) and (3-15) implement a Vitebri calculation for the

survivor function on x2. Note that the explicit conditioning on X1 removes

the coupling between the statistics of x2 and the supremal observations Y1;

X1 provides a more complete statistical specification of the evolution of x2

than does Y1;

Note that s(x21X1 ,Y2) and p(x21X 1,Y 2) convey very different things.

The most likely single trajectory to x2, consistant with X1 and Y2, is

captured by s; p gives the aggregate probability of being in x2. If one

state in x2 can be reached by a number of individually low probability

paths, while another can by a single high probability path, the s and p

will generally be of quite different character.

The best visualization of this structure is to view X1 as a tree,

rooted at the time zero at a single point, and with each node representing

a state sequence over a period of time. From each node branches lead to

all states which may be reached as the system extends that state sequence

by one time step. Computation of s(x21XlY 2) involves running a Vitebri

algorithm along each branch of that tree.

Clearly this becomes cumbersome as t grows large, One can then

consider the outer optimization in (3-3) as a means for pruning the tree

of X1 sequences. However, this must be done carefully; it is not

appropriate to merely eliminate sequences in X1 merely because they have

low probability at time t. (For example, there may be only one sequence X1,

albeit of low probability, which enables x2(t) to enter some state x2;

if a subsequent value of y2 indicates that x2(t) = x2 with probability 1,
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it would be helpful if that X1 were still under consideration).

In fact, the tree of X1 sequences may indeed be pruned, in a way

which guarantees that the MAP trajectory will never be eliminated yet

preserves the hierarchical structure. This first requires:

Lemma 3: p(Yl(t) Xl(t)) p(Xl(t)) may be computed recursively:

[p(YL(t+l) IX(t+l)) p(X l(t+l)] =(3-16)

= p(Yl(t+l)lxl(t+l))p(xl(t+l)lx l(t))[P(Yl(t)lX l (t)) p(X l( t))]

Proof: Elementary manipulations and the Markov properties.

Lemma 3 provides for the computation of the term other than r(XllY2) -

the term which captures the supremal dynamics through p(x 1 (t+l) Ixl(t)),

and the supremal observation through p(yl (t+l) lxl(t+l)).

One more notion is needed.

Definition: The sources of a state x (t) are all trajectories in X1

terminating in xl.

* *

Theorem 1: Let (Xl(t), X2(t)) be the MAP trajectory for observations

Yl(t),Y 2(t). Let T be any time preceeding t. If, at time 

p(Y 1 (T jx 1CT)) p(X 1 (T)) s(x 2 (T)jX1 (T 2 CT 2 ())(3-17)

< p(Y 1(t) IX (T)) P(X1 ()) S(x2 (T) X1 (T),Y2 ))

max

{X1 () }

for each x2 (), where {X1 (T)}- contains all sources of x (T) except

X1(T=) itself, then X1(T) will not be a subsequence of Xl(t).



-15-

PtOof: Consider the (compact) smoothing algorithm, and the

s(x l (T) , x2 (T) Y1(T), Y2(T)) computed by it. Each (xl (T), x2 (T))

has a sequence (X 1(T), X 2(t))associated with it which constitutes

an optimal trajectory estimate through (Xl(T), x2(T)). If X1(T)

never appears as the first component of one of these associated

sequences, it will not appear as a subsequence of any longer tra-

jectory. X1(T) can only appear in association with states of the

form (x1 (T), x2 (T)) . (3-17)assures that there is no x2 ( T) for

which X (T) is the most likely source of xl(T), hence X l(T) may

be eliminated. a

Theorem 1 establishes a looser requirement for eliminating trajectories

than the compact smoothing algorithm. The Viterbi algorithm will eliminate

trajectories at each point (x1 (), x2 (T)), leaving only one candidate termi-

nating there. (3-17) suggests eliminating Xl(T) only if there is no

-J /v

x2 (T) at all with which Xl(T) may be paired and which preserves X1 (T) as

a candidate. An even looser criterion is given by

Corollary la: X1 (T) will not be a subsequence of the optimal estimate if

there exists some X1( ) # X1(T), both sources of Xl(T), where

p(X I( T ) IY ( T ) ) S(X s(x2I( T ) Y (T))1 1 1 (3-18)

P(X1( T ) l1Y(T ))
= S(X 2 1X1( T ) Y2(T))

for every x2.

Proof: (3-18) implies (3-17). The converse is not true as the maximizing

X1(T) in (3-17) may vary with x2. Q

Thus we have established two pruning rules for the x1 trajectories.

Both require functional dominance between two scaled versions of s(x 2jX1 ,Y2)
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to hold for a trajectory X1 to be eliminated. Both are weaker than the

optimal pruning rules on X1 x X2 implied by the Viterbi algorithm, as

the latter are pointwise dominance relations. Thus the strength of the

pruning technique has been sacrificed; this can only be advantageous if

either p(XIY1) or s(x2 IX1,Y2) has a particularly convenient form compared

to S(xl,x2lY 1 ,Y2 ). We will see that this is the case for hybrid state models.

IV. LINEAR - GAUSSIAN CASE

Before moving to the hybrid case, the relation between linear filtering

and smoothing algorithms and the quantities introduced above need to be

established. While the linear case exhibits no special solution structures

as a result of assumptions 1L and 2L, the development here is necessary

for section V.

A. Filtering

The solution to the joint filtering problem in X is well known for

the linear -Gaussian case: the Kalman filter [8]. The statistics

x(t) = E{x(t) Y(t)} p(t) = cov{x(t) Y(t)} (4-1)

may be recursively computed as

x(t) = A x(t-l) + K(t)(y(t) - C A x(t-l)) (4-2)

P(t) = [I - K(t) C] [A P(t-1) AT + Q] [I - K(t)C]T + K(t) R K T(t)

(4-3)

Kt = t )T [C t_1CT -+ R]_L(4-4)
K(t) = P(t-l) C [C P(t-l) C + R] (4-4)
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While assumptions 1L and 2L imply a block triangular or diagonal form in

A, C, R, and Q, this is not reflected in the propagation of P(t), and hence

in the structure of the algorithm. The reason for a lack of separation is

(4-4); the update gains are not block triangular as both yl(t) and Y2(t)

convey information about both components of the state, just as in section

IIIA. Thus the linear - Gaussian assumption does not allow extra structure

to become apparent.

B. Smoothing

We will consider only the compact smoothing problem here, as the

set X1 is an entire N t dimensional vector space which cannot be profitably

dealt with on a pointwise basis. Thus we will specialize Lemma 1 to

this case.

Theorem 2: Under assumptions 1L and 2L, and with A, C, Q and R the

matrices which can be partitioned to provide All, A2 1, etc.

s(x(t)IY(t)) is of the general form

1+ -t T -1 +
(X(t) - X(t)) P (t) (x(t) - x(t))

s (t) e

with the parameters x and P computable via (4-2) - (4-4) and with

s (t) given by:

/ ) = (2r)-M/2 det(Q) (R) s (t-) (4-5)
0 0

-1 (t) C T -1 A
(y(t) - C A x(t-l) S (t-l)(Y(t) - C A x(t-l))

e

T T
£(t) = C[A P(t-l) A + Q] C + R (4-6)

Proof: See Appendix A.
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Four points are important about those equalities. Foremost is the

fact that the survivor function is an exponential quadratic, with mode x

and quadratic coefficients identical to those of the conditional state

density computed by the Kalman filter. This gives a convenient double

interpretation to x and P; they are parameters of the filter solution, or

parameters of the survivor function. This coincidence .is quite special to

the linear case. Secondly, the quadratic shape P is data independent;

x depends on the observation trajectory so so is also data dependent,

unlike the filtering case. Since its behavior is dominated by an exponential

quadratic form of the residuals, so provides a quantification of the goodness

of fit of the trajectory to the actual observations (bigger is better).

Finally, this is only half of the smoothing solution; reconstruction of X

from the mode of s(xlY) can be done in the usual way [9].

Thus the survivor function for the linear-Gaussian smoothing problem

can be parametrized by exactly the same quantities as those computed by

the Kalman filter, plus a goodness of fit measure closely related to

p(YIX ). However, since the Kalman filter does not lead to a separation

along the lines of the hierarchical structure of the problem, neither

does s(xlY).

V. HYBRID CASE

Now we turn to the hybrid system case, given by assumptions 1H and 2H.

The set of supremal trajectories X is discrete, so they can be viewed

as being arranged in a tree as in section III. The conditional survivor

function S(x21Xl,Y2) will be that of a particular linear-Gaussian system

with time-varying dynamics specified by Xl,so the results of theorem 2

translate to it. Thus the smoothing solution takes the form of a bank of
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Kalman filters, one for each X1, with some supremal logic which prunes

elements of X1 using the tests of theorem 1. While this scheme is dominated

by the combinatorial size of X1, we will see that this same structure dominates

both the filtering solution and the straightforward Viterbi algorithm for

hybrid systems. Only the expanded smoothing approach of section IIIC allows

any practical reduction in the size of X1 on-line.

A. Filtering

The filtering problem for a hybrid system was first addressed many

years ago [10]. The exact solution is found from a decomposition much

like (3-3).

1p(x l( t) ,x 2( t ) IYl ( t) ,Y 2( t) )= P(YL(t)'Y2(t))xl(t-l)

p(Y2(t) IXl(t)) p(x 2 (t )lXl(t),Y2(t))

(5-1)

This expression has two parts. The conditional distribution

P(x 2 (t) IXl(t), Y2(t)) is Gaussian, since Xl(t) specifies completely the

linear-Gaussian dynamics of x2, decoupling it from Y1. The remaining

terms form a set of weights, so that the resulting conditional distribution

is, for each xl(t), a weighted sum of Gaussian distributions on x2(t). In

general, there are N-l) components in each weighted sum, each corresponding

to one element of Xl(t-l). The only time this size is reduced is if two

components have exactly the same conditional mean and covariance, an event

that does not happen at all in general.

Unlike the general case,and the linear case, the structure of the

optimal state estimator forces one to consider expansions over Xl(t).
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This is because the conditional distribution p(x2 (t)j Xl(t), Y2(t)) is

conveniently parameterized by its mean and covariance, but sums of such

distributions can only be expressed in terms of the parameters of the

components. However, the opportunities for reducing the complexity of

this expansion are almost nonexistant, and this is the point at which engineering

approximations for the sake of implementation are usually made . These

approximations generally fall into two categories: pruning , where a term

in the expansion is dropped completely because its weight is small relative

to others, and merging, where two or more terms in the expansion are

replaced by a single "equivalent" term, where "equivalent" is often taken

to mean "of equal conditional mean and variance". Criteria for determining

candidates for pruning or merging are legion. However, all have some

detrimental impact on estimation performance.

B. Smoothing

The smoothing problem has a structure wherein pruning is a natural

operation. While the ideal smoother requires a survivor function which has

many components to it, each being a weighted Gaussian shape, the combination

of components is. by a max operator, rather than a sum. Thus some compo-

nents may in fact be completely dominated by others, and dropped without

affecting the selection of the trajectory estimate. This is the idea behind

optimal pruning of X1 trajectories.

Consider (3-3) and (3-12):

1
max p(Xl'X2 IY'1 Y2 ... -max {p(Y1jX1 )p(X1 ) *

X!,X 2 P(Y1 'Y2

max {s(x21X1,T2 )1} (5-2)
X2
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From Lemma 2 and theorem 2, s(x 2(t)IX l(t),Y2 (t)) will have a weighted

Gaussian shape; hence the outer' maximization is over a set of Gaussian

shapes weighted by both supremal and infemal components. It is conceivable

that some terms in this set may be eliminated by the criterion stated

in Theorem 1.

First establish:

Leamma 4: In the hybrid case, s(x21X 1,Y 2) may be computed by

a) predict:
A, A

x(t+llt) = A(x l( t) ) x(tlt) (5-3)

P(t+lt) =A(x l (t)) P(tjt) A (x1 (t)) + Q(x1 (t)) (5-4)

s (t+llt) = (27r) det (Q(x (t))) s (tit) (5-5)

b) update

x(t+llt+l) = x(t+ljt) + K(t+l)[y(t+l) - C(x 1 (t+l))x(t+llt)]

(5-6)

P(t+llt+l) = [I - K(t+l)C(xl (t+l))] P (t+ l lt) [I - K(t+l)C(xl( t + l )) ]

+ K(t+l) R(x (t+l)) (t+l)KT(t+l) (5-7)

-M2/2
s (t+lt+l) = (27) det R(x 1 (t+l))1/2 s(t+t)= s t+l( ) t)

- [Ey(t+l) - C(x (t+l))x ( t + l lt )]T S(t+l)
e ^

[y(t+l) - C(x l (t+l))x(t+ll t)] (5-8)

S(+ = C( (+ P(t+l)t) C (x (t+l)) + R(x (t+l))
l(t+l)) + R(xl(t+l)-1(5-9)

(5-9)
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where

x(tJT) = X(tIX 1 (T) Y2(T)) (5-10)

etc.

Proof; Apply Theorem 2 to the recursion of Lemma 2, conditioning on X1.

This structure of s(x2 iY1,Y 2) indicates that a strict Viterbi algorithm

on X necessarily involves a parametrization which is based on trajectories

X . Thus the compact smoothing algorithm of section IIIB is no simpler

than the expanded structure of IIIC in this hybrid state case.

Definition: A quality function q(x X 1 ,Y,Y 2 ) is given by

q(x 2 'XllY 1 'Y2) = P(Y 1 lX1) P(X 1) S(x 2 fX 1XY 2 ) (5-11)

In the hybrid case, q(x 2XlY1,Y2) is a scaled Gaussian with mode and

quadratic weights given by Lemma 4, and with scale factor

qo(x lYl'Y2) = o(XiY 2) p(Y 1 X 1l) P(Xl) (5-12)

where the latter two terms may be recursively computed via Lemma 2.

The crux of the expanded smoothing algorithm in the hybrid case is:

Theorem 3: A supremal trajectory X(T)j will never be a subsequence of

* *

an optimal trajectory estimate (Xl(t), X2 (t)), t > T, if there

exists another X1 (T) $ X1 (T) which is a source of x1(T) and for

which

q(2 (T) , X1 (T) Y(T)Y 2 (T))< q(x 2 (T), 1(T) IY1(T) Y 2 ()) (5-13)

for all values of x2(T). This inequality holds iff
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P (TJT) - P-(T.1T) >0 (5-14)

2 (X T) - x2 (Tl T) ) [P(TIT) - P(Tjl)] (X2 (-r-) - 2(T -T)) >

in qo (Xl(t) IY1(T),Y 2(T))- n qo(X1 (T) Y 1i(T) 'Y 2 (T))

(5-15)

Proof: (5-13) is a restatement of corollary la. The equivalence of

(5-13) to (5-14) - (5-15) is shown in Appendix B.

The interpretation of these conditions is interesting. Figure la

illustrates a case where the q associated with X1 allows it to be eliminated

in favor of X1. (5-14) requires that the conditional Fisher information

matrix of a pruned trajectory be greater than that of the one that

dominates it; Figure lb shows that violation of this inequality will lead

to q dominating q on the tails of the distributions. Thus trajectories

with good conditional information may be eliminated in favor of those with

poorer information, but not vice-versa; this imparts a natural conservatism

to the pruning. For cases which satisfy (5-14), and for a given x2,

(5-15)determines an ellipsoidal region wherein x2 may lead to pruning X2.

Note that (5-14) ensures that the left hand side of (5-15) will always

be nonpositive, hence if

qo(XllYl'Y2 )

q (XIY1Yy)2 > 1 (5-16)

then this ellipsoid will be empty. (Figure lc) . (Note that (5-16) can

be interpreted as a likelihood ratio test on the hypotheses that X1 or X1

is the true trajectory). Even if (5-16) is satisfied, if the offset
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Figure 1. Comparison of Conditional Qality Functions
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between the conditional means is too large, no elimination can take place

(Figure ld).

Since theorem 3 is based on corollary la, it is not as complete as

possible. There may be cases where X1 is dominated by neither X1 nor

X1 alone, but is dominated by the max of their respective q functions

(Figure 2) (provided Xl(T) = X1 (x) = Xl(T)). While the general inequality

of theorem 1 may be applied: prune X1 if

Vx2 q(x21X 1,Y1 Y'2) < max q(x2j XlYlYy2) (5-17)

X1 e sources(x1)

the reduction of this test to simple algebraic tests such as (5-14) -

(5-15) is rather cumbersome.

Thus the hierarchical structure of the hybrid state dynamics, coupled

with the simple parameterization of the conditional survivor function,

leads to a hierarchically structured algorithm for the smoothing problem.

The infemal level consists of a Kalman filter computing the mode and

quadratic spread of the survivor function, and a scale factor calculation

based on the Kalman filter residuals and applicable noise covariances.

The supremal logic computes conditional probabilities on X1 based on Yl,

and then prunes away some possibilities based on a Viterbi-like criterion

posed in terms of functional, rather than pointwise, dominance.

The smoothing problem is more tractable than the filtering problem

because terms in a max-of-weighted- Gaussian functions may be dropped

completely, whereas all terms in a sum-of-weighted-Gaussian must be

obtained. Thus the smoothing problem admits a simplification in the

combinatorial aspects of the hybrid problem which is unavailable in a
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FIGURE 2: Many-on-one Dominance
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filtering approach. However, due to the coincidence of the shape of the

conditional survivor function s(x21Xl,Y2) and the conditional distribution

p(x21Xl,Y2), the Kalman filter statistics computed by the infemal algorithm

can also be interpreted as the conditional mean and covariance of x2 for

the trajectory X1. With this view, the output of the algorithm would be

* *

X1, the MAP discrete trajectory, and p(x2lX 1,Y2), the corresponding

continuous state distribution. This type of output may be quite suitable

for maneuvering target tracking and communications problems.

Finally, it is important to note that since (5-15) involves means

and scale factors, which are data dependent quantities, there is no pre-

determined order in which the X1 trajectories are eliminated. Algorithms

for which the pruning logic is data dependent are typically quite difficult

to analyze; the most important contribution of theorem 3 is the guarantee

that the pruning logic stemming from it will never increase the probability

* *

of error in the determination of (X1, X2); it is optimal. However, that

pruning logic is generally insufficiently powerful to reduce the search

for X1 to manageable sizes; other techniques are required for an actual

implementation.

VI. EXAMPLE

A. Problem

Consider a simple scalar hybrid system, where the plant dynamics

are fixed

x2(t+l) = .99 x2(t) + w(t) (6-1)

with Q = .035 so that x2 is normally distributed around zero, with
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x1 2 P q

a 0 ~ 0.0 1.1 -17.80

b 1 -.428 .204 -16.60

c 0 -5.961 .264 -38.16

d 1 -3.169 .128 -65.59

e 0 -.308 .378 -15.48

f 1 -.439 .15 -14.22

g 0 -.267 .277 -13.09

h 1 -.403 .131 -11.86

i 1 -.343 .096 -9.52

Table 1: Description of Survivors
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variance 1.75 in the steady state. The discrete state models a change in

the sensor structure; if xl = 1 (normal)

Y2 (t) = x2(t) + v(t) R(1) = .25 (6-2)

and if x1 = 0 (abnormal):

Y2(t) = v(t) R(O) = 18 (6-3)

Note that the standard deviation of the prior distribution on Y2 in state 0,

3v'i , is thrice that of the prior on Y2 when x1 = l(in the steady state.)

This model may apply in cases where x2 is a plant and xl models a

sensor failure; where x2 is an object and x1 a random detection process;

or where x2 is a signal and x1 the presence of interference. In all cases,

if the dynamics of xl are as shown in Figure 3, and since p $ .1, the

failure / inference process is "bursty": it has memory (with an expected

holding time of 10/3 time steps in state 0). This requires an algorithm

for smoothing or estimation which exploits the dynamics of x1 in order

to perform well.

Figure 4 shows a typical sample path of the hybrid process described

above. Figure 5 shows the corresponding results of using Theorem 3 to

prune the tree of possible X1. Each "x" indicates the time step

at which its corresponding trajectory was eliminated. Note that when all

descendents of a node are pruned, that node itself is eliminated; the heavy

lines indicate the trajectories which are still candidates at time 7.

While there are trajectories passing through both x1 = 0 and x1 = 1 at

times 1 and 2, all trajectories pass through x1 = 0 at times 3,4, and 5.

Refering to figure 4, this indicates that the obvious outliers at t=3

and t-5 have been confirmed as arising from state 0. Note that y2 (4)
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has been (correctly) determined to have arisen from x = 0 through the memory

of the supremal process.

There is a reason for the apparent dominance of Xls terminating in a

run of xl(t) = 0. Consider the model. If x(t) = 0 then the Kalman filter

estimate of x2 is not updated, and the associated conditional covariance P

is larger than it would be on an identical path except with xl(t) = 1,

where x2 would be updated. Thus the covariances along trajectories with

many xl(t) = O will be larger than those with several xl(t) = 1; the

condition (5-14) gives preference to the former. In fact, the trajectory

xl(t) E 0 will never be eliminated, for this reason; thus events xl(t) = 1

will never be confirmed. Thus the optimal algorithm can only confirm events

where xl(t) = 0. (Intuitively, this is in anticipation of the possible,

albeit unlikely, event that a futuresequence of... observations will fit

the dynamics of x2 perfectly, but for an initial state far from zero

If these were observed, the data thus far would be confirmed as all having

come from the interference.)

Table 1 shows the parameters describing each surviving trajectory

in figure 5. Most represent components of s(xlx21Y 1 Y 2) which are

clustered near x2 = .35, and it is possible that the general mechanism

of theorem 1 might eliminate one or more of these which were missed by

that of theorem 3. Coincidentally, the survivor corresponding to the

true trajectory, i, has the highest quality factor q.

Finally, figures 6 and 7 show the effectiveness of the optimal

pruning mechanism over a longer period of time. Figure 6 compares,

on a log scale, the actual number of survivors against the total size

of X1. It is clear that, for this example at least, the exponential
--l
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growth of candidate Xls has been averted. Figure 7 shows the same

count on a linear scale; the number of survivors seems to stay roughly

constant when X1 = 0 (as many trajectories with x1 = 1 can be pruned)

and to grow roughly linearly when x1 = 1. In particular, the jump in Y2

at t = 19 causes a net reduction in the surviving X1 at t = 20.

Thus the optimal pruning mechanism, while not complete, is still

capable of significantly reducing the combinatorial aspect of the hybrid

smoothing problem, at least for this example. A general categorization of

its effectiveness is yet to be determined.

VII. CONCLUSIONS

In conclusion, this work has presented a new perspective on filtering

and smoothing for hierarchical Markov processes, particularly hybrid state

systems. The results fall into two categories. The negative results are

that the hierarchical structure does not contribute to simplification of

the solution to the state estimation problem, nor to the trajectory

estimation problem for discrete state, or linear - Gaussian, problems.

The positive results are related to the hybrid case, where both state and

trajectory estimation are dominated by a structure involving combinations

of weighted Gaussian terms. While both can then be realized by separate

computations of the weights and parameters of the Gaussian shapes, only

the smoothing problem affords us the opportunity to eliminate some of

the components entirely. This simplification of the combinatorial

aspect of the problem suggests adoption of the trajectory estimation

approach to hybrid systems, particularly in light of the relationship

between the parameters of the Gaussian components in the two cases;
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they are computed by the same Kalman filters.

The results of the adoption of the trajectory estimation viewpoint is

a pruning rule which is optimal in a well defined sense: the elimination

of a trajectory is guaranteed to never increase the probability of error in

estimating the discrete state trajectory. An example showed that this rule

alone can be effective, but that some other selection mechanism is required

in order to bound the number of survivors at a finite level.

Computationally, the structure of the algorithm described in Section V

is ideal for VLSI implementation. The infemal calculations, involving Kalman

filters and residual computations, are completely separate from one another

and would benefit from parallel execution. The interconnection between

them is provided by the (simple) supremal computation involving the discrete

observation, and the pruning mechanism. The latter involves simple exchange

and tests of the results of the separate infemal calculations, and thus is

a relatively loosely coupled mechanism.

Thus this work presents a new approach to hybrid state tracking problems.

While it does not completely specify an implementable algorithm, an

approach which can reduce a set of 1,048,576 candidates to only 66 without

increasing the probability of error is a useful first step.
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APPENDIX A

Proof of Theorem 2

We seek to specialize Lemma 1 to the linear case, showing that

1 ^
-,+ + T -1 + +T
2(x-x) P (x-x)

s(x,Y) = s e ) - (A-l)
0

is the general form of the survivor function, and deriving recursive

equationsfor s , x, and P. The proof is inductive; assume that (A-l)

holds after an update at time t (the basis of the induction is established

at time 0 when x(O).YN(x(O), P(O)) and s(x) = p(x)).

Use (3-7) to predict to time t+l :
++ + T-1 -+ +

-1 (x -Ax) Q (x - Ax)

s(x+lY(t)) = max(2r) (det Q) e
x A A

2 (x-x)P (x-x)
s (t)e (A-2)

The x which maximizes (A-2) is given by

+~c -l T -l -1 -l T. -l
x = [P + A Q Al 3[P x + A x] (A-3)

The quadratic form in the exponent becomes

1l+ +T -l-lTT -T -1 +
-_ (x -x) P A [ A PA A PA (x- ) (A-4)

which using (A-3) and

[p + AT -1 A ]-1 P AT [Q + A P A A P (A-5)

'reduces to
l (+ T T ++ -+

- (x -Ax) [Q+ A P AT] (x - A x) (A-6)2~~~~~~~~~~~~~~~~~A6
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This gives the prediction equations:

x(t+l IY(t)) = x(tIY(t) (A-7)

P(t+l lY\(t)) = A P(t)| Y(t)) AT + Q (A-8)

s (t+lIY(t)) = (2T)N/2 (det Q)- 2 s (t|Y(t)) (A-9)

Now (3-8) updates these with y(t+l):

1 (y+ ++ T R-1 + C ++
c C x R (y+ x

x+lY(t+1)) = (2 7T)
- M /2 det(R) 2

1.++ +T -1 +
x) T P (X+ - x) (A-10)

so(t+lIY(t)) e

where now

x = x(t+l) y = y(t+l) (A-ll)

x = x(t+l) Y(t))

Combining and completing the squares in (A-10) gives

1 - x C T T - +
-M/2 -1/2 -Cx)(C P CT+R) (y -Cx)

s(x +Y(t+l)) = s (t+l) lY(t)) (27) - det(R)_ e

1 (+ 2 (CpCT et( e
A A-(x x+) (CPC + R) - (A-12)

e

where

++ + . + +
x x + K(t+l) (y - C x) (A-13)

This gives the update expressions:

x(t+l Y(t+l) = x(t+l)IY(t)) + K(t+l) (y(t+l) - C x(t+llY(t)))

(A-14)

K(t+l) = P(t+l Y(t)) CT[C P(t+l Y(t)) C + R]-1 (A-15)
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P(t+l)IY(t+l) = [I - K(t+l)C] P(t+llY(t+l))[I - K(t+l)C]I

(A-16)
+ K(t+l) R K (t+l)

s (t+l)jY(t+l)) = s (t+l)IY(t))(2) - M/2 det (R) -1/2 (A-17)

1- T -l 
-(y(t+l)-C x(t+l)jY(t+l))T S (y(t+l) - C x(t+l)jY(t)))
e

(A-18)

S = C P(t+liY(t)) CT + R

Note that (A-14) - (A-16) are the usual Kalman filter equations;

(A-17) - (A-18) accumulate the effect of the residuals

y(t+l) - C x(t+llY(t)) (A-19)

weighted by their inverse covariance S.

Combining (A-17) - (A-9) with (A-14) - (A-18) yields (4-2) - (4-6).

O
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APPENDIX B

Proof of Theorem 3

We seek conditions equivalent to the statement

1 + ,T'-i + - 1 + + -1 + +
-2 ( x- x2 P (x- x (x- x2 P (x- x2 )

q 2 e 2 2 qo e2 (B-l)

for all x.

Taking logarithms and rearranging terms, this is equivalent to

1 T '-1 -1 + 1 +T '-1 + -1 - + -1 + T +
2- x - P x P x -[P x -P x2- P x

(B-2)

i +T" --1 1 -+T -1 +
+ P x P - x n o -x2 > n n q

On the left is a quadratic function of x. It will be bounded below by

a finite constant only if

--1 -1
P -P > 0 (B-3)

This gives (5-14). The inequality will hold iff the minimum of the

quadratic function is greater than the right hand side. That minimum

is achieved at

+ =- 1 p-1]-l N-1 ' '"-1
x = P P [P x1 -P x2] (B-4)- - - 1 - 2

Using the fact

- p-1] - - -1
[P - P - P[P - P] P (B-5)

and substituting into (B-2), the inequality holds iff

-2(X2 -x2) [P - Pi (x2 - x2) > 5n q -kn q (B-6)

This is (5-15).

This assumes (B-3) is strict. If not, reformulate this entire development

in the largest subspace of X2 on which (B-3) holds strictly.
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