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1. Introduction

The problem of guantum measurement has received a
great deal of attention in recent years, both in the gquantum
physics literature and in the context of optical communica-
tions. An account of these ideas may be found in Davies
[1976] and Holevo [1973]. The development of a theory of
quantum estimation requires a theory of integration with
respect to operator-valued measures. Indeed, Holevo [1973]
in his investigations on the Statistical Decision Theory
for Quantum Systems develops such a theory which, however,
is more akin to Riemann Integration. The objective of this
paper is to develop a theory which is analogous to Lebesque
integration and which is natural in the context of gquantum
physics problems and show how this can be applied to quantum
estimation problems. The theory that we present has little
overlap with the theory of integration with respect to
vector measures nor the integration theory developed by
Thomas [1970].

We now explain how this theory is different from some
of the known theories of integration with respect to operator-
valued measures. Let S be a locally compact Hausdorff space
with Borel sets ﬁ. Let X,Y be Banach spaces with normed duals
X*,Y*, CO(S,X) denotes the Banach spacé of continuous X-
valued functipns f: S »X which vanish at infinity (for every
€>0, there is a compact set KCS such that [f(s)| < & for all

s¢S\K), with the supremum norm |flm= sup[f(sﬂ . It is possible
séS




to identify every bounded linear map 1: CO(S,X).>Y with a

representing measure m such that
Lf = /m(ds)f(s) (1.1)
S

for every f'ECO(S,X). Here m is a finitely additive map

1)

m: B -~ L(X,Y**% with finite semivariation which satisfies:

1. for every z e¢Y*, m,: 8 » X* is a regular X*-valued

Borel measure, where m, is defined by

mz(E)x = <z,m(E)x> E€B, x€¢X; (1.2)
2. the map z » my is continuous for the w* topologies

on zé€Y* and mzeCO(S,X)*.

The latter condition assures that the integral (1) has
values in Y even though the measure has values in L(X,Y*¥)
rather than L(X,Y) (we identify Y as a subspace of Y**).
Under the above represehtation of maps Lé.L(CO(S,X),Y), the
maps for which L,: CO(S) > Y: g(*) » L(g(*)x) is weakly
compact for every x€ X are precisely the maps whose
representing measures have values in ka,Y), not just in
L(X,Y**), 1In particular, if Y is reflexive or if Y is
weakly complete or more generally if Y has no subspace
isomorphic to Cor then every map in L(CO(S,X),Y) is. weakly
compact and hence every I.GIJCO(S,X),Y) has a representing

measure with values in L(X,Y).

(l)L(X,Y) denotes the Banach space of bounded linear
operators from X to Y.




We now develop some notation and terminology which will

be needed. Let H be a complex Hilbert space. The real

linear space of compact self-adjoint operators'Ks(H) with the

operator norm is a Banach space whose dual is isometrically
isomorphic to the real Banach space T;(H) of self-adjoint
trace-class operators with the trace norm, i.e.

7{S(H)* = 'T;(H) under the duality

<a,B> = tr(aB) < |a| _-|B] A€ 'Z'S(H), B € K (H).

tr

Here |B| = sup{|B¢|: ¢eH, |¢] <1} =

sup{trAB: A e T (1), IAItr <1} and |a| is the

tr

trace norm I Ilil < +» where A€ T_(H) and {);} are
i

the eigenvalues of A repeated according to multiplicity.

The dual of 'TS(H) with the trace norm is isometrically

isomorphic to the &pace of all linear bounded self-adjoint

operators, i.e. T;(H)* = <£S(H) under the duality
<A,B> = tr(AB) ae T m, seL (1),

Moreover the orderings are compatible in the following
sense. If K_(H),, TS(H)+, and ‘(S(H)_'_ denote the
closed convex cones of nannegative definite operators

in K (H), T (H), and fS(H) respectively, then
(K 1" = 7., and (T 17 = £ 0,

where the associated dual spaces are to be understood in

the sense defined above,

In the context of quantum mechanical measures with values




in LS(H), one can identify‘gzggz continuous linear map L:
CO(S)* LS(H) (here X=R, Y=LS(H)) with a representing measure
with values in LS(H) rather than in LS(H)**, using fairly
elementary arguments. Since Y=LS(H) is neither reflexive nor
devoid of subspaces isomorphic to CO, one might think at first
sight this is incorrect. However, whereas in the usual
approach it is assumed that the real-valued set function
zm(-)x is countably additive for x € X and: every z €Y*, we
require that it be countably additive only for X € X and
z€.z=Ts(H), where Z=TS(H) is a predual of Y=LS(H), and

hence can represent all linear bounded maps L: CO(S,X) > Y
by measures with values in L(X,Y). In other words, by
assuming that the measures m: B » LS(H) are countably
additive in the weak* topology rather than the weak topology
(thesé are equivalent only when m has bounded variation),

it is possible to represent every-bounded linear map |
VL: CO(S) - LS(H) and not just the weakly compact maps.

This approach is generally applicable whenever Y is a dual
space, and in fact yields the usual results by imbedding

Y in Y**; moreover it clearly shows the relationships
between various boundedness conditions on the representing
measures and the corresponding spaces of linear maps. But
first we must define what is meant by integration with
respect to operator-valued measures. We shall always take
the underlying field of scalars to be the reals, although
the results extend immediately to the complex case.

2. Additive Set Functions




Throughout this section we assume that & is the
o-algebra of Borel sets of a locally compact Hausdorff
space S, and X,Y are Banach spaces. Let m: 8 + L(X,Y) be

an additive set function, i.e. m(ElL}EZ) = m(El)+m(E2)

whenever El’EZ are disjoint sets in B. The semivariation

of m is the map m: B + R, defined by

n N
m(E) = sup | I m(Eq)x,|,
i=1

where the supremum is taken over all finite collections

of disjoint sets EyreeesBEp belonging to BnE and

KyreeosXy belonging to Xq- By BnE we mean the sub-og-algebra
{E'€¢B: E'CE} = {E'NE: E€38} and by X, we denote the
closed unit ball in X. The variation of m is the map

|m|: 8 ~ R, defined by

N3

m| (E) = sup
i

l)m(Ei){

where again the supremum is taken over all finite collections

of disjoint sets in 8NnE. The scalar semivariation of m is

the map m: 8 + R, defined by

n
(E) = sup| I aim(Ei)[
i=1

=11

where the supremum is taken over all finite collections
of disjoint sets El""'En belonging to BN E and
ajr--.,a €R with la;| < 1. It should be noted that the

notion of semivariation depends on the spaces X and Y;




in fact, if m: 8 + L(X,Y) is taken to have values in

L(R,L(X,Y)), L(X,Y), L(X,Y)** = L(L(X,Y),R) respectively
then

(2.1)

gi

=M R,Lx,m) S0 T,y SR = m xRy

When necessary, we shall subscript the semivariation
accordingly. By fa(B,W) we denote the space of all finitely

additive maps m: 8 + W where W is a vector space.

Proposition 2.1. If m ¢ fa(8,X*) then m = |m|. More generally,

if mé¢ fa(B,L(X,Y)) then for every z € Y* the finitely

additive map zm: B + X* satisfies zm = |zm|.

Proof. It is sufficient to consider the case Y = R, i.e.
m € fa(8,X*). Clearly m < |m|. Let E€B and let Ej,...,E_

be disjoint sets in 8nE. Then Z]m(Ei)l = sup Im(E;)x; =
i X €X4

sup [Zm(Ei)xi[ < m(E). Taking the supremum over all
X.,eX
iv71 _
disjoint E,€ BNE yields |[m|[(E) < m(E). g
We shall heed some basic facts about variation and

semivariation. Let X,Y be normed spaces. A subset 2z of

Y* is a norming subset of Y* if sup{zy: z¢€¢ 2z,|z| < 1} = |y|

for every y €Y.

Proposition 2.2.Let X,Y be normed spaces, m € fa(®d , L(X,Y)).

If Z is a norming subset of Y*, then




m(E) = su [zm]| (E) , E &8
z€Z,|z|<1l
m(E) = su

su |zm(+)x|(E) , Ee&
zez,?zli} xex,?xli}

Moreover |y*m(-)x]| (E) i.lxl;ly*mI(E) < |x|«]y*|+|m] (B)

for every x€ X, y*€ Y*, E€d.

Proof. Let ‘{El,...,En} be disjoint sets in I NE and

xl,...,xné Xl' Then

n n
I'Z m(Ei)x.I = sup <z, I

m(E.)x.> =
i=1 1 zezl i 12

zm(E.)x. .
1 i *

1

IR

1

Taking the supremum over {Ei} and {xi} yields

m(E) = |zm|(E). Similarly,
n n
sup ! z aim(Ei)] = sup sup sup <z, I aim(Ei)x>
laj]<1 i=1 la; [<1 xex, zez; i=1
n
= sup I |zm(E;)x|
xeXl i=1
zézl

and taking the supremum over finite disjoint collections

{Ei'}C B8NE yields m(E) = sup sup |zm(+)x| (E).
lx|<1 |z|<1

It is straightforward to check the final statement of the

theorem.




Proposition 2.3. Let me&fa(d, L(X,¥)). Then m, m, and |m|

are monotone and finitely subadditive; |[m| is finitely

additive.

Proof. It is immediate that m, m, !m| are monotone.

Suppose E;. E, € and E.NE. =@, and let F F

1 2 1’°°"""n
be a finite collection of disjoint sets in cBn(ElUEZ) .

Then if [x;| <1, i =1,...,n, we have

n
| T m(F;)x,| ]

2 . (m(F; AE )+m(F; NE,))x, | |

e

1

A

[:z_L:m(Fin El)xi|+l§m(r~in Ez)xi[

| A

m(El)+m(E2).

Taking the supremum over all disjoint Fl,...,Fné b n (ElU E2)
yields H(Elu E,) < ﬁ(El)ﬂ—n-z (E,)). Using (2.1) we immediately
have m, |m| finitely subadditive. Since |m| is always

superadditive by its definition, |m| is finitely additive. 4

3. Integration with Respect to Additive Set Functions

We now define integration with respect to additive set
functions m: # -+ L(X,Y). Let &88X denote the vector
space of all X-valued measurable simple functions on §,
that is all functions of the form £(s) =-:.Lr>3113I.Ei(s)xi

where {El,...,En} is a finite disjoint measurable

partition of S, i.e. EieaE Bi, EinEj =g for i # 3,




and (JE. = S. Then the integral /m(ds)f(s) is defined
i=1l S

unambiguously (by finite additivity) as

n
/m(ds)f(s) = % m(Ei)xi. (3.1)
S =

i=1

We make &@X into a normed space under the uniform norm,

defined for bounded maps £f: S » X by

€], = sup|f(s)].
S€S

Suppose now that m has finite semivariation, i.e.

m(s) < +w. From the definitions it is clear that

|/m(as)£(s)| < m(s)-|£]_ , (3.2)
S

so that £ » fm(ds)f(s) is a bounded linear functional on

’ s

(86x,||_); in fact, m(S) = sup{|/m(ds)f(s)]|: |£]|_ < 1,feB8X}

is the bound. Thus, if m(S) < +» it is possible to extend

thé definition of the integral to the completion M(S,X) of
&38X in the |[+|_ norm. M(S,X) is called the space of totally
& -measurable X-valued functions on S; every such function

is the uniform limit of J¥-measurable simple functions.

For £ €M(S,X) define

/m(ds)f(s) = lim fm(ds)fn(s) (3.3)
s n+*o s .




10

where fné B 8x is an arbitrary sequence of simple functions
which converge uniformly to £. The integral is well-defined
since if '{fn} is a Cauchy sequence in o ®X then

{/m(ds)£f_(s)} is Cauchy in ¥ by (3.2) and hence converges.
S

Moreover if two sequences {f }, {g_ } in D OX satisfy

lg,~fl, > 0 and |£,-£], ~ 0 then |/m(ds)f (s)-/m(ds)g (s)]| <

m(s) |f ~g |, * 0 so lim /m(ds)£f (s) = lim /m(ds)g (s).
n+® s n+e s

Similarly, it is clear that (3.2) remains true for every

f € M(S,X). More generally it is straightforward to verify
that

M(E) = sup{/m(ds)f(s): f€M(S,X), |£], < 1, suppfC€E}. (3.4)
. s .

Proposition 3.1.C(S,X) C M(S,X).

Proof. Every g(-°) ¢ CO(S) is the uniform limit of simple
real-valued Borel-measurable functions, hence every function
n n

of the form f(s) = I g.(s)x, = I g.®x, Dbelongs to M(S,X),
=] & i jop i 1

i
for gieCO(S) and xi&X. These functions may be identified with
CO(S)®X, which is dense in CO(S,X) for the supremum norm (cf.

Treves [1967], p. 448). Hence CO(S,X) =_chO(S)$XCM(S,X).

To summarize, if mé¢fa(dL, L(X,Y)) has finite semivariation

m(S) < += then J/m(ds)f(s) is well-defined for
s
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f e M(S,X) DCO(S,X), and in fact £ » /m(ds)f(s) 1is a bounded
S

linear map from CO(S,X) or M(S,X) into Y.

Now let Z be a Banach space and L a bounded linear
map from Y to 2, If m: &+ L(X,Y) is finitely additive
‘and has finite semivariation then 1ILm: &+ L (X,Z) is
also finitely additive and has finite semivariation
E(‘S) < |L|*m(S). TFor every simple function f € HOX it

is easy to check that L/m(ds)f(s) = SfLm(ds)f(s). By
s s

taking limits of uniformly convergent simple functions we

have proved

Proposition 3.2. Let meéfa(®, L(X,Y)) and m(S) < +». Then

Lm € fa(® , L (X,2)) for every bounded linear L: Y+ Z, with

Im(S) < + » and
L/m(ds)f(s) = fLm(ds)£f(s). (3.5)
s s ~
Since we will be considering measure representations

of bounded linear operators on CO(S,X) , we shall require

some notions of countable additivity and regularity. Recall

that a set function m: # -+ W with values in a locally

convex Hausdorff space W is countably additive iff

(=] [+ ]
m( UE_) = I m(En) for every countable disjoint sequence
n=1 n=1

{Ei} in /. By the Pettis Theorem (cf. Dunford-Schwartz [1966]) countable
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additivity is equivalent fo weak countable additivity,

i.e. m: & + W is countable additive iff it is countably
additive for the weak topology on W, that is iff w*m: f + R
is countably additive for every w* € W*, If W is a Banach

- space, we denote by ca(d,W) the space of all countably
additive maps m: & + W; fabv(®,W) and cabv(8,W) denote
the spaces of finitely additive and countably additive

maps m: & ~+ W which have bounded variation |m|[(S) < + e.

If W is a Banach space, a measure m€ fa(d,w) is
regular iff for every ¢ > 0 and every Borel set E
there is a compact set KCE and an open set GS2E such
that |m(F)| < € whenever F € LA (G\K). The following
theorem shows among other things that regularity actually
implies countable additivity when m has bounded variation
|m| (S) < += (this latter condition is crucial). By
rcabv(f ,W) we denote the space of all countably additive
regular Borel measures m:ig + W which have bounded
variation.

Let X,Z be Banach spaces. We shall be mainly concerned
with a special class of L (X,z*)-valued measures which we
now défine. Let 77(&5, L(X,Z2*)) be the space of all
me¢efa(dfd, L(X,2*)) such that <z,m(+)x> € rcabv(d8B) for
every bx € X, z¢ Z. Note that such measures mé¢ M(R, L(X,2*))

need not be countably additive for the weak operator
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(equivalently, the strong operator) tqpolqu on L(X,z%*),
since z**m(°)x need not belong to ca{dd) for every
X €X, z¥*k e Z**,

The following theorem is very important in relating

various countable additivity and regularity conditions.

Theorem 3.1. Let S be a locally compact Hausdorff space

with Borel sets & . Let X,Y be normed spaces, Zl a
norming subset of Y*, méfa(d, L(X,¥)). If zm(:)x: &8 >R
is countably additive for every =z €Zl, x € X then

Im|(+) is countably additive & + R, . If zm(-)x:d =+ R
is regular for every z €%;, x € X, and if [m] (8) < +=,

then |m|(+) €& rcabv(eB ,R.). If |[m|[(S) < +«, then m(-)

is countably additive iff lml is and m(*) is regular

iff |m| 1is.

Proof. Suppose zm(-)Xeéca(d8,R) for every zé¢ Zys X ¢ X.
Let {Ai} be a disjoint sequence in L. Let {Bl,...,Bn}

be a finite collection of disjoint Borel subsets of

x
U A, . Then

i=1

n : n o n - o

jil’m(Bj)l ) jillm(iglAinBj)l ) jilx?‘elgllzjm(iglAinBj)xjl.
zgézl

Since each zjm(')xj is countably additive, we may continue

with
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n @ co
= I sup | I am(A.nB)x.| < I sup I |z.m(A.NB.)x.|
J 1 J J - j=1 XjeX i=1 J 1 J J

j=1 xjex1 i=1 1
szZ:L zjé Zl
n @ -] n I o
< I I |m@aB.)| = T I [m(a;aB.)| < I |m|(a)).
Tj=1i=1 * J i=1 j=1 Y I T =1 *

[e2]
Hence, taking the supremum over all disjoint {Bj}CZ LlAi,
i=1

we have |m|( U A) < 2 [m](Ai). Since |m| is always
i=1 i=1

countably superadditive, |m| is countably additive.

Now assume zm(°)x 1is regular for every =z ¢ Zl’ xX€ X,
and |m|(S) < +»., Obviously each zm(-)x has bounded
variation since |m| (S)<+=, hence zm(.)xéca(B) by (Dunford-

Schwartz [1966], IXII.5.13) and zm(.)xércabv(8). We wish to show

that |m| is regular; we already know |m| € cabv(d).
Let E €&, ¢ > 0. By definition of |m|(E) there is a
finite disjoint Borel partition {El,...,En} of E such

n v
that |m|(E) < [m(Ei)I + ¢/2. Hence there are

i=1

Zyre--s2 €%y and Xy ...,% € X, Ixil < 1, such that

n
|m| (E) < iElzim(Ei)xi + /2.

Now each zim(-)xi is regular, so there are compact KiC’.Ei
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for which ]zim(Ei\ Ki)xil < e¢/2n, i=1,...,n. Hence

Im| (ENK) = |m|(E) - |m]|(K)

n c n

< .E zim(Ei)x:.L + > - _ZE zix'n(EinKi)xi
i=1 i=1
n

= I z.m(E:\K.)x. + €/2
j=1 * 1 i’71

< g,

and we have shown that |m| is inner regular. Since

|m| (s) < +®, it is straightforward to show that |m| is
outer reqular. For if E ¢&, € > 0 then there is a
compact KC S\ E for which |m|(S\E) < |m|(X) + ¢ and

so for the open set G = S\NKDJE we have
Im] (GNE) = |m|(S\NE) - |m|(K) < e.

Finally, let us prove the last statement of the
theorem. We assume m¢€ fa(d, L(X,Y)) and [m|(S) < +=,
First suppose m(.) 1is countably additive. Then for
every disjoint sequence {A;} in L,
- .

lm( U A - 2 m(AiII + 0, so certainly
i=1 i=1

n

y*m( U Adx = I y*m(A)x;°> 0 for every y*¢€Y*, xe€X
i=1 i=1
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and by what we just proved |m| is countably additive.
Conversely, if |m| is countably additive then for every
® n
disjoint sequence {A,} we have |m( UA,) - I m(a,)]| =
* i=1 Y i=1 *

[--] (-] oo n
Im(UA)] < Iml(UA) = |m|](URA,)) - I [m|[(a,) »~ 0.
i=1 * - i=1 * j=1 1 i=1 1

Similarly, if m is regular then every y*m(°*)x is regular
and by what we proved already |m| is regular. Conversely,

if |m| is eegular it is easy to show that m is regular. 0

Theorem 3.2. Let S be a locally compact Hausdorff space

with Borel sets d9 . Let X,2 be Banach spaces. There
is an isometric isomorphism L& m between the bounded
linear maps L: CO(S) + L(X,2*) and the finitely additive
measures m: &8 -+ L (X,Z*) for which 2zm(-)x € rcabv(d)

for every x€ X, z€Z., The correspondence Le m is

given by
Lg = / g(s)m(ds), geC,(S) (3.6)
S
where |L| = m(S); moreover, zL(g)x = / g(s) zméds)x and
s
|zL(*)x| = |zm(*)x|(S) for =x€X, z¢€z,

Remarks. The measure m € fa(&, L(X,2*)) need have neither
finite semivariation m(s) nor bounded variation |m]|(S).

It is also clear that L(g)x = f g(s)m(ds)x and
S

zL(g) = S g(s)zm(ds), by Proposition 3.2.
S
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Proof. Suppose L ¢ L(CO(S), L(X,2*)) is given. Then

for every x€X, 2€Z the map g+ zL(g)x is a bounded

linear functional on CO(S), so there is a unique real-

valued regular Borel measure m, ¢ & -+ R such that
[ 4

zL(g)x = é f(s)mx’z(ds). : (3.7)

For each Borel set E ¢ 8, @8efine the map m(E): X + Z*

by <z,m(E)x> = mxz(E). It is easy to see that

m(E): X » 2* is linear from (11); moreover it is con-
tinuous since

Im(E) | < m(S) = sup |zm(+)x|(S) = ssup ]mxz](s) =
x|<1 | x <1

lz|<1 |z[<1

14

sup |zL(*)x| = |L].
Ix|<1

|z]|<1
Thus m(E) € L (X,2*) for Ee¢d and m€fa(®, L (X,2%))
has finite scalar semivariation m(S) = |L]. since
m = EL(R,L(X,Z*)) is finite, the integral in (3.6) is
well-defined for g éCo(S)C:M(S,R) and is a continuous
linear map g » /m(ds)g(s). Now (3.7) and Proposition 3.2

S
imply that

zL(g)x = [fzm(ds)xg(s) = <z,/m(ds)g(s) *x>
S S
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for every x¢€X, z€2, Thus (3.6) follows.

Conversely suppose m € fa(ﬁ , L(X,2*)) satisfies
zm(+)x ¢ rcabv(® ) for every x¢ X, z¢ Z. First we must
show that m has finite scalar semivariation m(S) < +,

Now sufz3 lzm(E)x| < |zm(+)x|(S) < += for every x€X, z€ 2,
EE€

Hence successive applications of the uniform boundedness

theorem yields sup |m(E)x| < + » for every x¢ X and
&3

E€
sup |m(E)| < +=, i,e. m is bounded. But then by
Eed
Proposition 2.2.
m(S) = sup zm(e)x|(S) = sup sup Z lzm(E ) x|
x|<1 |x|<1 E, disjoint i=1
lz|<1 |z|<1
= sup sup Z+zm(Ei)x - Z-zm(Ei)x
|x|<1 B, disj
lz]<1

= sup sup zm(U+Ei)x - zm(UTE ) x
|x[<1 E,disj

lz|<1

< SuP Zsu%!zm(E)XI =2sup|m(E) | < +=,
|x|<1 Ee ‘Eed |

Iz|,<_l

where ¥ ana ut (£” and U”) are taken over those i

for which zm(Ei)x >0 (zm(Ei)x < 0). Thus m(s) is
finite so (3.6) defines a bounded linear map

Lt Co(8) > L(X,2%). o




WPV

o ik e

19

We now investigate a more restrictive class of
bounded linear maps. For L € L(CO(S), L{x,z%*))

define the (not necessarily finite) norm

n
|1L]| = sup| £ Lig,)x,]|
i=1
where the supremum is over all finite collections
gl,...'gn€ CO(S)l and xl,...,xn €Xl such that the qi

have disjoint support.

Theorem 3.3. Let S be a locally compact Hausdorff space
with Borel sets 8 . Let X,Z be Banach spaces. There
is an isometric isomorphism L m L, between the
linear maps L;: C_(S) + L(X,2*) with IlLll! < +»; the
measures m €fa(&, L(X,2*)) with finite semivariation
m(S) < +» for which zm(.)x € rcabv(&8) for every

z €Z, x €X; and the bounded linear maps Lyt CO(S,X) + 2%

The correspondence Ly me L, is given by

It

L9 é’m(ds)g(s) r gEC(S)

th
o

J m(ds)f(s) , £fecC_(5,X)
S

Lz(g(-)X) = (ng)x , g€ CO(S), x € X.

Moreover under this correspondence llLl[{ = m(s) = |L

(3.8)

(3.9)

(3.10)
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and zL2€ CO(S,X)* is given by zL2f = [ zm(ds) f(s)
| 3

where zm € rcabv(d,X*) for every zée 2.

Proof. From Theorem 3.2 we already have an isomorphism
Ly #* m; we must show that ||L,|| = W(S) under this
correspondence. We first show that l]Llll < m(s).
Suppose gl,...,gne co(s) have disjoint support with

logle < 15 %) p00e,x €X with |x;] <1; and z€ 2z with

lz| < 1. Then

n n
<z, I Ll(gi)xi> = 'Zl fzm(ds)xi-gi(s)
’ = 1= S

i=1

n
) iil Jzm(+)x; | (suppg; )

| A

n
< I |zm|(suppg;)

i=1

where the last step follows from Proposition 2.2 [xil <1,
Since |zm| is subadditive by Proposition 2.3, we have

n n :

<z, I Ly(g;)x;> < |zm|( U suppg,) < |zm]|(s).

. h - N 1 -~

i=1 i=1
Taking the supremum over |z| < 1, we have, again by

Proposition 2.2.

n ]
Lo ’ ! {
L1 (gi)xil < Isup |zm| (8) = @(R),

1] 21



21

Since this is true for all such collections {gi} and
{x,1, ln]] < m(s). We now show m(s) < ||L]|. Let

€ >0 be arbitrary, and suppose Ej,...,E_ €L are
disjoint, [z| <1, lxil <1, i =1,,..,n. By regularity
of zm(-)xi, there is a compact K,CL, such that

|zm(«) %, | (E;) <§+ lzm()x, [ (K;), i = 1,...,n. Since
the K, are disjoint, there are disjoint open sets
Gi:>Ki. By Urysohn's Lemma. there are continuous functions

95 with compact support such that lK < 9; 2 1G . Then

i i
n n n
I zm(E;)x, = I zL(g,)x, + I [f(1_. =-g.)(s)zm(ds)x.
i=1 1771 i=1 1771 i=1 Ei i i
n n
< I zL(g.,)x, + I f(1_, -1, )(s)zm(ds)x,
i=1 Yt ga1 By Ky *
n n | | n
< I zL(g)x; + I |zm(*)x|[(E,\NK,) < I zL(qg,)x.+¢€

I A
™

n
liilL (gi) xi. ' +

A

Hol] + €.

Taking the supremum over |z| < 1, finite disjoint collections

{E;}, Ixil <1 we get m(s) < ||L]| + €. since € > 0
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was arbitrary m(s) < [|L|| and so m(s) = |[|L]].

It remains to show how the maps L, € L(CO(S,X) ,2%)
are related to Ll and m, Now given Ll or equivalently m,
it is immediate from thé definition of the integral (3.3)
that (3.9) defines an L, ¢ L(c (5,X),2*) with
IL2I = m(S) < +w=, Conversely, suppose L, € L (C (5,X),2%)
is given, Then (3.10)defines a bounded linear map
Lyt € (8) + L(X,2z%), with ]Lll < |L2|: moreover it is
easy to see that |[[L,|]| < |L,]|. Of course, L, uniquely
determines a measure m¢ m(ﬁ, L(X,2%)) with

m(s)

HLlH < |L2] such that (3.8) holds. Now suppose

n
izlgi(-)xi €C, (s)®X; then

£(.)

n n
/m(ds)f(s) = ¢ Ll(gi)xi = I

L, (g, (+)x,) = L,(£).
i=1 j=y 274771 2

Hence (3.10) holds for f(.) ECO(S)GX, and since co(s)ex is

dense in CO(S,X) we have

lL,| = sup |t £] = sup | fm(ds) £(s) |
feco(S)GX ffCo(S)gx
J£] 1 | £] <1

IA

sup |/m(ds)£f(s)| = m(s).
feM(S;X)

[£] <1

Thus  W(A) = |, |,
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Finally, it is immediate from Proposition 3.2 that

szf = fzm(ds)f(s) for f'eco(s,x), z €Z. We show that
S

zm € rcabv ({0 ,X*) for z€ 2Z. Since |[zm|(S) < [z]-m(S)

by Proposition 2.2, zm has bounded variation. Since for

each x€X, zm(e)x€ rcabv(dd) we may apply Theorem

(with ¥ = R) to get |zm|€ rcabv(8®) and zm¢ rcabv(dd,x*). o
The following interesting corollary is immediate from

IILlll = ]Lzl in Theorem 3.3.

Corollary. Let Ly CO(S,X) + Y be linear and bounded,
where X,Y are Banach spaces and S 1is a locally compact

Hausdorff space. Then
n
L, | = sup'LZ‘iﬁlgi(')xi)"

where the supremum is over all finite collections
{gl,...,gn}CICo(s) and all {xl,...,xn} € X such that

{suppg;} are disjoint and Igil°° <1, Ixil < 1.

Proof. Take Z = Y* and imbed Y in 2Z* = Y**_  Then

L, ¢ Lxco(s,x),z*) and the result follows from

2
[z, Il = |z,] in Theorem 3.3.p

We now consider a subspace of linear operators

L, € L(CO(S,X),Y) with even stronger continuity properties,
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namely those which correspond to bounded linear functionals
on CO(S,XGHZ); equivalently, we shall see that these maps
correspond to representing measures m E?W(JB,I.(X,Z*))
which have finite total variation [m]|(S) < +=, so that

m¢€ rcabv(3, L(X,2*)). For L, € L(CO(S,X) ,Y) we define

the (not necessarily finite) norm

n
Iyl 1] = sup. I | (£,

g7 =1

where the supremum is over all finite collections
{fl,...,fn} of functions in C_(S,X) having disjoint
support and Ifilm < 1. In applying the definition to
L, ¢ L(c (s), L(x,2*)) = L(C_(s,R),Y) with

Y = L(X,2*) we get

R

l”LlH! = sup ILl(gi)l

g;t i 1l

where the supremum is over all finite collections
{gl,...,gn} of functions in Co(s) having disjoint

support and |gi‘w < 1.

Before proceeding, we should make a few remarks about
tensor product spaces. By X ® Z we denote a tensor

product space of X and Z, which is the vector space

n
of all finite linear combinattons z aixi ® z; where
i=1l
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a. . zZ.6 2 s . .y 2. t
j€Ry X, €X, i€ (of course, ajr X5, 2; are no

uniquely determined)., There is a natural duality between

X® 2 and L (X,2*) given by

n n
<L a,x, ®z,,L>= I a,<z,,Lx.>,
=1 11 i qmp 1 i

Moreover the norm of L € L(X,2*) as a linear functional
on X ® Z is precisely its usual operator norm

L] = TSTP <z,Lx> when X ® Z is made into a normed
x|<1l '

lz|<1

space X & 7 under the tensbr product norm nm defined by

m(u) = inf{_gllxi[-lzi]: u = iglxi ®z;}, wex 8 2z,
It is easy to see that w(x 8 z) = |x|+|z] for x¢Xx, z¢€32
(the canonical injection X x 2 -+ X ® 2 is continuous)
and in fact 7w is the stronéest normon X & Z with
this property. By X 8 g2 we danoﬁe the completion of
X ® 2 for the 7 norm., Every L ¢ L(X,2*) extends to
a unique bounded linear functional on X 6w Z with the
same norm, X 8w Z may be identified more concretely as
infinite sums izl a X ® z; where X, = 0 in X,

o

z, 0 in 2z, and I [ai]<°° (Schaeffer [1971], III.6.4)
i=1 :
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and we identify (XONZ)* with L{X,Z2*) by

<

X, . > = a.<z,,Lx.>
i alxl ® zl’L z i l' i”

i=1

lmg

1

The following theorem provides an integral representation

A
of CO(S,X G," z) *.

Theorem 3.4. Let S be a Hausdorff locally compact space

with Borel sets & . Let X,Z be Banach spaces. There

is an isometric isomorphism L19 mé&> L, < L, between

the linear maps L,: C_(8) » L(X,z*) with [HL]_[ [ < +;

the finitely additive measures m: & =+ L (X,2*) with

finite variation |m](S) < += for which zm(+)x ¢ reabv(dd)

for every z €2, x¢ X; the linear maps L,: CO(S,X) > Z%
with |||L,|[| < +»; and the bounded linear functionals
L

is given by

L9 = ,Jc_': m(dsg(s) , g¢€ CO(S)
sz = é’ m(ds) £(s) R f(-Co(S,X)

Lyu = / <u(s) m(ds)> u€C_(S,X 8, 2)

<z, (L;9)x> = <z,L,(g(*)x)> = Ly(g(+)x8z),

geco(s), xéx,.zei.

A
3% CO(S, X 8 Z) -+ R. The correspondence Ly mes Ly L,

(3.11)

(3.12)

(3.13)

(3.14)
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Under this correspondence |!|L1l|l = Iml(s) = [|lz,]]] =

[LBI, and m € rcabv( 8, L(X,2*)).

Proof. From Theorem 3.3 we already have an isomorphism
Iq.e*nzéﬁLZ; we must show that the norms are carried
over under this correspondence, As in Theorem 3.2, we

assume that Ll‘# m «'Lz with llLllI = m(s) = |L2| < 4=,

We first show lIILllil < |]|L2|||. Now if
{greeerg } € C,(s); have disjoint support and lxil <1,
then gi(-)xie CO(S,X) have disjoint support with

Igi(.)xil"" <1, so

8

n
j_.EllLl(gi)xil = izl ‘Lz(gi'(.)xi)l < H'LzIH-

Taking the supremum over Ixil <1 yields

Ly teg) | < 115,111, and nence |11ty 1] < [11L,l11.

ol

i=l
Next we show ||[L,]]| < |m|(s). Let
fl,...,fne CO(S,X) have disjoint support and zl,...,zne A

with Izil < 1. CThen

L ZiLz(fi) = .

o
I e

n
é z;m(ds)£,(s) < I |zimk$uppfi)

1 1 i=1

where the last inequality follows from (3.4) applied to

zinzéfa(ce,x*). By Propositions 2.2 and 2.3 we now have
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n n n
I 2,L,(f,) < I |m|(suppf,) = |m|( U suppf.) < |m|(s).
i=1 12 = 1 =1 1~
n

Taking the supremum over lzil <1 yields T lefil < |m|(s),
. i=1 -

and over {f;} yields |||L,||] < |m|(s).

Now we show |m|(s) < IIILl[[i. Let € > 0 be

arbitrary, and suppose El""’En edd are disjoint and
Ixil <1, 'zi] <1, 1i=1,...,n. By regularity of
zim(')xi, there is a compact K; € E; such that

€ . . .
Izim( )xil(Ei) <=+ Izim(o)xil(Ki), i=1,...,n. Since

the K, are disjoint, there are disjoint open sets
Gi‘D K. Urysohn's Lemma then guarantees the existence
of continuous functions 93 with compact support wuch

that 1Ki 29; < IG.‘ We have

n n * , n
iilzim(Ei)xi = iilziLl(gi)xi + iill‘(lEi—gi)(s)zim(dS)xi

n n

< iilziLl(gi)xi + iilf(lEi-lKi)(S)zim(dS)Xi
n n '

< iﬁlziLl(gi)xi + iﬁllzlm(')xil(Ei\ K;)
n

< iﬁllngil + e < ||lLlIll t e

Taking the supremum over lxil <1 and |z;l £1 yields
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n
z Im(Ei)I < IHLll || + €, and the supremum over all
i=1 ~

disjoint {E;,...,E_} yields [m|(S) < [z ]+ e
since € was arbitmary, [m|(s) < 1z 1l. we also note
that if |m|(S) < 4w, then m € rcabv(®, L(X,2*))
by Theorem 3.1.

It remains to show how the maps L3‘€ CO(S, X e, 2)*
are related to Ll' m, and I‘2‘ Suppose L3€ CO(S, X 6“ zZ)*

is given. Define Ly: C (s) ~ L(X,2*) by
<z,L (g) x> = Ly(g()x & z), gec_(s), xex, z€z., If

gyres+2r9, € C(S) have disjoint support with Igilw <

R

n
and if |x;]| <1, lz;1 <1 then )izlgi(.)xi ® z|

I

(-}

and so

n

n
z g.(*)x. ® z,) < |L,].
= i=1 1 1 1" - 3

i=1

sence T [yl < lugl ana 11134111 <[5l comersely, let m
correspond to L,; since Im](s) = HILlHI < IL3| < 4o

we know that m € rcabv(d, L (X,2*)) = rcabv(I, (X 8 2)*).
Let us define W= X 6" 2. By Theorem 3.2 there is an
isometric isomorphism between maps L3e CO(S,W)* =
L(CO(S,W),R) and measures m € rcabv(&,L (W,R)) =

rcabv (& yW*) = rcabv( &, L(X,2*)); under this correspondence
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Lyu = f<u(s),m(ds)> and |3 = |m[(s). Thus (3.13) holds
S
and the theorem is proved.

Thus, to summarize, we have shown that there is a

continuous canonical injection

Co(8, X & 2)* > L(C (5,X),2%) » L(c (5), L(X,2%));

each of these spaces corresponds to operator-valued measures
me M(L, L(X,2*)) which have finite variation [m](s),
finite semivariation m(s), and finite scalar semivariation
;(s), respectively. By posing the theory in terms of
measures with values in an L (X,Z*) space rather than an
L.(X,Y) space, we have developed a natural and complete
representation of linear operators on CO(S,X) spaces.
Moreover in the case that Y is a dual space (without
necessarily being reflexive), it is possible to represent
all bounded linear operators L € I.(CO(S,X),Y) by operator-
valued measures m € M( &8, L(x,Y)) with values in L(x,Y)
rather than in L(X,¥**); this is important for the quantum
applications we have in mind, where we would like to
represent 'L(CO(S) , LS(H)) operators by LS(H)—valued
operator measures rather than ];s(Pi)**-valued measures. .
We now give two examples to show how the usual representation
theorems follow as corollaries by considering Y as a

subspace of Y**,
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Corollary (Dunford—Schwarté [1967], 11I1.19.5). Let S be a
locally compact Hausdorff space and X,Y Banach spaces. There
is an isometric isomorphism between bounded linear maps L:
C,(s,X) + Y and finitely additive maps m: &+ L (X,¥**)

with finite semivariation m(s) < +» for which
1) y*m(*) € rcabv(d,X*) for every y*¢ Y*

2) y* v» y*m is continuous for the weak * topologies
on Y*, rcabv(d,x*) = CO(S,X)*. This correspondence
Ledm is given by Lf = /m(ds)f(s) for £ eCo(S,X) '

and |L] = m(s).

Proof. Set 2 = Y* and consider Y as a norm-closed

subspace of Z*. An element y** of Y** belongs to Y

iff the linear functional y* » y#**(y*) 1is continuous for
the w* topology on Y*., Hence the maps L ¢ L(CO(S,X) ,Y *k)
which correspond to maps L .é L(CO(S,X) ,Y) are precisely |

the maps for which 2z w» <z,Lf> are continuous in the

w*-topology on 2 Y* for every fé-CO(S,X), or

equivalently those maps L for which 2z » L*z is con-
tinuous for the w* topologies on 2 = Y* and CO(S,X)*.
The results then follow directly from Theorem 3.3, where

we note that when Lé&¥nmn,

<f,L*z> = <z,Lf> = fzm(ds)f(s). o
S

Corollary (Dobrakov [1971], 2.2). A bounded linear map
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L; CO(S,X) + Y can be uniquely represented as

Lf = /m(ds)f(s) , £f£€C_(S5,X)
S o]

where m €fa(d, L(X,Y)) has finite semivariation

m(s) < +» and satisfies y*m(-)x € rcabv(8) for every

X €X, y*¢ Y, if and oniy if for every ke X the bounded
linear operator Lyt CO(S) > Y: g(+) » L(g( )x) 1is weakly
compact. In that case |L| = m(s) and L*y* is given

by (L*y*)f = fy*m(ds)f(s) where y*mé€rcabv(®,xX*) for
S

every y*€ Y*,

Remark. Suppose Y = Z* is a dual space. Then by

Theorem 2 every L ¢ L(CO(S,X) ,Y) has a representing
measure m € M(H, L(X,Y)). What this Corollary says is that
the representing measure m actually satisfies

y*m(-)x € rcabv(8) for every y*e ¥Y* (and not just for
every y* belonging to the canonical image of 2 in

Z** = Y*), if and only if Lx is weakly compact CO(S) > Y
for every x€ X; i.e. in this case we have (in our notation)
me M(L,L (X,Y**)) where Y is injected into its

bidual Y**,

Proof. Again, let 2 = ¥Y* and define J: Y =+ Y** 0o be
the canonical injection of Y into Y** = Z*, The bounded

linear operator Ly: CO(S) + Y is weakly compact iff
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L;*: C,(8)** » ¥y** has image L;*‘Co (X)** which is a subset

of JY (Dunford-Schwartz [1966], VI.4.2). First, suppose Ly is weakly
compact, so that L;*:Co(é)**+JY for every x. Now the map

A » A(E) is an element of Co(8)**  (where we have

identified 1€ rcabv(®) = C (8)*) for E&dH, and
% %
Ly (Aw» XA(E)) = (2 » <z,m(E)x>) € Y**

where mé€ M(H, L(X,2*)) is the representing measure

| of JL: CQ(S,X) + Y**_ Since L, is weakly compact,

z = <z m(E'X> must actually belong to JYC Y**, that is

z » <z,m(E)x> 1is w* continuous and m(E)x € JY. Hence m

has values in L (X,JY) rather than just L(x,y**),
Conversely if m €M (&8, L(X,JY)) represents an

operator L ¢ L(CO(S,X),Y) by
JLE = [m(ds)f(s),

%
then the map L: Y* > C (s)* S rcabv(dB): z v <z,m()x>

Y* and the

is continuous for the weak topology on 2
weak * topology on C,(s)* ® rcabv(d)) since m(E)x € JY
for every E € 8, x € X. Hence by (Dunford-Schwartz [1966],

VI.4.7), L, is weakly compact.

X O




34

4. Integration of real-valued functions with respect to

operator-valued measures

In quantum mechanical measurement theory, it is nearly
always the case that physical gquantities have values in a
locally compact Hausdorff space S, e,g; a subset of R".
The integration theory may be extended to more general
measurable spaces; but since for duality purposes we wish
to interpret operator-valued measures on S as continuous
linear maps, we shall always assume that the parameter
space S is a locally compact space with the induced o-algebra
of Borel sets, and that the operator-valued measure is
regular. In particular, if S is second countable then
S 1is countable at infinity (the one-point compactification
s Uf»} has a countable neighborhood basis at «) and every
complex Borel measure on S 1is regular; also S 1is a
complete separable metric space, so that the Baire sets
and Borel sets coincide.

Let H be a complex Hilbert space. A (self-adjoint)

operator-valued regular Borel measure on S 1s a map

m: .+ JCS(H) such that <m(+)¢|y> 1is a regular Borel
measure on S for every ¢,y € H. In particular, since
for a vector-valued measure countable additivity is

equivalent to weak countable additivity [DS, IV.10.1},
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m(+)¢ is a (norm-) countably additive H-valued measure
for every ¢ €H; hence whenever {E,} is a countable
collection of disjoint subsets in & then

o 0

m(UE ) = I m(E),

n=1 n n=1 n
where the sum is convergent in the strong operator topology.
We denote by M(&8, Zs (H)) the real linear space of all
operator-valued regular Borel measures on S. We define

scalar semivariation of m¢€ M(-@,fs(H)) to be the norm

m(s) = sup [<m(*)¢]o>](s) (4.1)
lo]<1
where |<m(+)¢]¢>| denotes the total variation measure
of the real-valued Borel measure E » <m(E)¢|¢>. The
scalar semivariation is always finite, as proved in
Theorem 3.2 by the uniform boundedness theorem
(see previous sections for alternative definitions of
m(s); note that when m(*) is self-adjoint valued the

identity m(s) = sup sup |<m(+)é|y>]|(s) reduces to (4.1)).
[o]<1 [wl<1

A positive operator-valued regular Borel measure is a

measure m € mu@, ,CS(H)) which satisfies

m(E) > 0 YE€EDH,
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where by m(E) > 0 we mean m(E) belongs to the positive

cone ‘is(H)+ - of all nonnegative-definite operators. A

probability operator measure (POM) is a positive

operator-valued measure mé€ 7] (3, efs (H)) which satisfies
m(S) = I.

If m is a POM then every <m(-)¢|¢> is a probability

measure on S and m(S) = 1. In particular, a resolution

of the identity is an m¢ M8, £S(H')‘) which satisfies

m(s) = I and m(E)m(F) = 0 whenever EANF = f§; it is

then true that m(-) is projection-valued and satisfies
m(EAF) = m(E)m(F), g,Fed.t

We now consider integration of real-valued functions
with respect to operator-valued measures. Basically, we

identify the regular Borel operator-valued measures

+g£gg£. First, m(-) is projection valued since by finite
additivity

m(E) = m(E)m(S) = m(E) [m(E)+m(S\E)] = m(E) >+m(E)m(S\E) ,
and the last term is 0 since EN(S\E) = . Moreover we
have by finite additivity

m(E)m(F) = [m(EAF)+m(E\F)]- [m(EAF)+m(F\E) ]

]

i

m (EAF) 2+m (EAF) m (FNE) +m (EXF) m (EAF) +m (ENF) m (FAE) ,
where the last three terms are 0 since they have pairwise

disjoint sets,.
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m6777(,08, J:S(H)) with the bounded linear operators
L: C_(8) ~ ;CS(H), using the integration theory of
Section 3 to get a generalization of the Riesz

Representation Theorem.

Theorem 4.1. Let S be a locally compact Hausdorff space

with Borel sets &9 . Let H be a Hilbert space. There
is an isometric isomorphism mes L between the operator-
valued regular Borel measures m E'M(oe ’ ZS(H)) and the
" bounded linear maps Lé€ L (c (s), fs (H)). The correspondnece

m eI is given by

L(g) = fg(s)m(ds), g€C_(S) (4.2)
S

where the integral is well-defined for g(-) € M(S) (bounded
and totally measurable maps g: S - R) and is convergent
for the supremum norm on M(S). If meé>IL, then m(S) = |L]

and <L(g)¢|y> = Sg(s)<m(-)¢|y>(ds) for every ¢,y €H.
S

Moreover L is positive (maps CO(S)+Vinto fS(H)+) iff

m is a positive measure; L is positive and L(1) = I iff

m is a POM; and L is an algebra homomorphism with L(1) = I
iff m is a resolution of the identity, in which case L

is actually an isometric algebra homomorphism of CO(S) onto

a norm-closed subalgebra of is(H) .
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Proof. The correspondence L <»m is immediate from
Theorem 3.2. If m is a positive measure, then

<m(E)¢|¢> > 0 for every E ed and ¢ € H, so

/) \VJ

<L(g)¢|¢> = Sfg(s)<m(<)¢|$>(ds) > O whenever g > 0, ¢€ H
S

and L is positive. Conversely, if L is positive then
<m(-)¢|¢> is a positive real-valued measure for every

¢ €H, so m(*) 1is positive. Similarly, L is positive
and L(l) = I iff m is a POM. It only remains to

verify the final statement of the theorem.

Suppose m(-) 1is a resolution of the identity. If

n m
gl(s) = I a,i_ (s) and gz(s) = I b.l, (s) are simple

. E. \ F.
j=1 7 &3 j=1 3 73

functions, where {El,...,En} and {Fl,...,Fn} are each
finite disjoint subcollections of £ , then
n m .
fgl(s)m(ds)-fgz(s)m(ds) = _E E ajbkm(Ej)m(Fk)
j=1 k=1
n n

I I a.bm(E
j=1 k=1 1 ¥ 1

N Fk)

= fgl(s)gz(s)m(ds);

Hence g v fg(s)m(ds) is an algebra homomorphism from
the algebra of simple functions on S into ifs(H).
Moreover we show that the homomorphism is isometric on

simple functions. Clearly
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}fg(s)m(ds)l_f___;(s)jg]°° = lglm.

n
Conversely, for g = I ale we may choose ¢j to be
j=1 3
. in the range of the projection m(Ej), with l¢j{ =1,
to get
[fg(s)m(ds) | > max {fg(s)m(ds)o¢jj¢j>

j=l,...,n

= max |a.|<m(E.)¢.]|.>
j=1,...,n 3 177307

= max layl = lal..
j=1,...,n

Thus g » Sfg(s)m(ds) is isometric on simple functions.
Since simple functions are uniformly dense in M(S), it
follows by taking limits of simple functions that
fg;(s)m(ds)-fg,(s)m(ds) = fgy(s)g,(s)m(ds) and
]fgl(s)m(ds)[ = lgl[°° for every gl,gzﬁ.M(S). Of course,
the same is then true for gl,gze CO(S)CIM(S). Since
CO(S) is complete, it follows that L is an isometric
isomorphism of CO(S) onto a closed subalgebra of ;fs(H).
ﬁow assume that L 1is an algebra homomorphism and
L(l) = I. Clearly m(S) = L(l) = I. Since
L(gz) = L(g)2 > 0 for every g €CO(S), L and hence m

are positive. Let
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My = {geM(S): Sg(s)m(ds)+S/h(s)m(ds) = fg(s)h(s)m(ds)

for every h€cC_(s) .

Then Ml ccntains CO(S). Now if gne M(S) 1is a uni-

" formly bounded sequence which converges pointwise to 9o
then fgn(s)m(ds) converges in the weak operator
topology to fgo(s)m(ds) by the dominated convergence
theorem applied to each of the regular Borel measures
<m(*)¢|y>, ¢,0€ H (the integrals actually convérge for
the norm topology on GCS(H) whenever lgn---golco + 0).
Hence M, is closed under pointwise convergence of

uniformly bounded sequences, and so equals all of M(S)

by regularity. Similarly, let

M, = {h€M(S)‘: Jg(s)m(ds)+/h(s)m(ds) = fg(s)h(s)m(ds)

for every g€ M(S)}.

Then M, contains CO(S) and must therefore equal all of M(S).
It is now immediate that whenever E,F are disjoint sets

in d@ then
m(E)m(F) = flEdm'ledm = flEnF(s)m(ds) = 0.

Thus m is a resolution of the identity. .0

Remark. Since every real-linear map from a real-linear

subspace of a complex space into another real-linear
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subspace of a complex space corresponds to a unique
"Hermitian" complex-linear map on the complex linear
spaces, we could just as easily identify the (self-adjoint)
operator-valued regular measures WM[(8, afs(H)) with

the complex~linear maps L: CO(S,C)-* £ (H) which

satisfy

L(g) = L(q)*, g€c (s,C).
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5. Integration of TS(H)-valued' functions

"

We now consider & (H) as a subspace of the "operations
L(TH), T(H)), that is, bounded linear maps from T (H)
into T (H). This is possible because if A € T (H) and

Bé€ £(H) then AB and BA belong to T(H) and

28|, < |a],|B]

IBal, . < [a] ,IB] (5.1)

tr (AB) = tr(Ba).

Then every B € £ (H) defines a bounded linear function

Ly T(H) » T(H) by

LB(A) = AB, A€ T (H)

with |[B| = ILB} . In particular, A v» trAB defines a
continuous (complex-~) linear functional on A € T(H) , and
in fact every linear functional in “?Y(H)* is of this
form for some B € £ (H). We note that

if A and B are selfadjoint then trAB is real
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(although it is not necessarily true that . AB is self-
adjoint unless AB = BA). Thus, it is possible to identify
the space T;(H)* of real-linear continuous functionals
on ?é(H) with zﬁs(H), again under the pairing
' <A,B> = trAB, A € T_(H), B 6¢fs(H); For our purposes we
shall be especially interested in this latter duality be-
tween the spaces 'TS(H) and J?S(H), which we shall use later
to formulate a dual problem for the quantum estimation |
situation. However, we will also need to consider &fS(H)
as a subspace of £ ( T(H), T(H)) so that we may integrate
T (H)-valued functions on S with respect to fs(H)-valued
operator measures to get an element of ‘T (H).

Suppose m €W (B3, '{s (H)) is an operator-valued
regular Borel measure, and f: S -+ TQ(H) is a simple

function with finite range of the form

f(s) =
3

oo

1. (s)p.
1 By J

where pj é‘Ts(H) and Ej are disjoint sets in 49, that
is fe Be T;(H). Then we may unambiguously (by finite

additivity of m) define the integral

N3

Jf(s)m(ds) = m(E.)p..
S J° 3

j=1
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The question, of course, is to what class of functions
can we properly extend the definition of the integral? .
Now if m has finite total variation |m[(s), then the

map f » [f(s)m(ds) is continuous for the supremum norm
S

£],, = supl£(s)]_, on Be T_(H), so that by continuity
the integral map extends to a continuous linear map from
the closure M(.S, T‘S(H)) of Be ’Z'S(H) with the

f«1_ norm into TY(H). In particular, the integral

Jf(s)m(ds) is well-defined (as the limit of the integrals
S

of uniformly convergent simple functions) for every bounded
and continuous function £f: S > ’("S(H). Unfortunately,
it is not the case that an arbitrary POM m has finite
total variation. Since we wish to consider general gquantum
measurement processes as represented by POM's m (in parti-
cular, resolutions of the identity), we can only assume
that m has finite scalar semivariation m(S) < +w. |
Hence we must put stronger restrictions on the class of
functions which we integrate.

We may consider every mé)n(as, st(H)) as an element
of W(OS,X(T(H), T(H)) in the obvious way: for

EE, pe T(H) we put
m(E) (p) = pm(E).

Moreover, the scalar semivariation of m as an element
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of 777( 3, £S(H)) .+ is the same as the scalar semivariation
of m as an element of M(o@,o‘f (T(H), T(H))), since

the norm of B € i;(H) is the same as the norm of B as
the map p®» pB in £ (T(H), T(H)). By the representation
Theorem 3.2 we may unigquely identify

m em(ﬁrfs(HHC ML, L (TH), ¥(H))) with a linear
operator L € & (Cy(8), fs(H))‘C £(c (s), L(rMH, TH))).
Now it is well-known that for Banach spaces X,Y,Z we

may identify (Treves [1967], III.43.12)

A~

Lxe vz = pxy-,2 2 L L,2)

where X §W Y denotes the completion of the tensor product
space X ® Y for the projective tensor product norm
n

[£] = inf{ T |x.
T 5213

i
. .l £ = I
vyl z

By.}, £€X ® Y;
; X yj}

1
,G (X,Y:Z) denotes the space of continuous bilinear forms

B: X X Y > Z2 with norm

sup |B(x,y)]|;

IB!ﬁ(x,y;z) ) ¢§?§1 lyl<1

and i’ (x, £(¥,2)) of course denotes the space of continuous

linear maps L,: X > L (X,Z) with norm

II~:‘2I (X,£(Y,2)
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The identification L, « B f-*LZ is given by
Ll(xey) = B(x,y) = Lz(x)y.

In our case we take X = M(S), Y =2 = T (H) to identify

~

LM(s) & TE), TH)) T ZM(S), £( TH), T(H)). (5.2)
™

Since the map g » fg(s)m(ds) is continuous from M(S)
into & _() ¢ L(T(H), T(H)) for every mé m(@,fs(n)) ,
we see that we may identify m with a continuous linear
map f£w [fdm for f£eM(s) 8 T (H). Clearly if

fe€M(S) ® T (H), that is if

f(s) =
j

([ o =

. (s)p,
lgj()pj

for gj € M(S) and pj ¢ T(H), then

n
JE(s)m(ds) = I p.Sfg.(s)m(ds).
s j=1 7 7J

Moreover the map f v Sff(s)m(ds) is continuous and linear
S

for the 1°1v—norm on M(S) ® T(H), so we may extend the
definition of the integral to elements of the completion

M(S) éﬂ T (H) by setting

Sfm(ds) = lim ffn(s)m(ds)

n-+o
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where f_€M(S) ® T(H) and £, > f in the 'le:tﬂvnorm.

In the section which 'followé we prove that the completions
M(s) 8 T(H) and C_(S) 8§ T(H) may be identified with
subspaces of M(S, T(H)) and CO(S, T(H)) respectively,

i.e. we can treat elements £ of M(S) @_’T T (H) as totally

measurable functions £: S - T (H). We shall show that
under suitable conditions the maps f: S + T (H) we are
interested in for gquantum estimation problems do belong

to CO(S) 6“ TS(H), and hence are integrable against

arbitrary operator-valued measures mé¢ )’Y[( 08, TS (H)).

Theorem 5.1. Let S be a locally compact Hausdorff

space with Borel sets aG . Let H be a Hilbert space.

There is an isometric isomorphism e mel between

1 2

T(H) » T(H), the

L
the bounded linear maps Lyt CO(S) gn
overator-valued regular Borel measures m € W((o@, L (T(H),TH))),
and the bounded linear maps L,: c (s) = Z(T@H), TH).

The correspondence Ly« mé—éLz is given by the relations
A
Ll(f) = éf(S)m(dS), feCo(S) e, T (H)
L,(g)p = Li(g(+)p) = pfg(s)m(ds), g€ Co(S), p € T(H)

and under this correspondence |[L,]| = m(s) = |L,|. More-

over the integral Jf(s)m(ds) is well-defined for every
S

£ € M(S) §W T (H) and the map £ & [f(s)m(ds) is bounded
s
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and linear from M(S) §ﬁ T(H) into T (H).

gg__egg. From Theorem 6.1 of section 6 (see next section), we
may identify M(S) gﬂ T(H), and hence C,(8) §“ T(H),

as a subspace of the totally measurable (that is, uniform
limits of simple functions) functions £f: S - T(H). The

results then follow from Theorem 3.2 and the isometric

isomorphism

~

Licg(s) 8 T, Tm) F L (s), £ T®, TH))

as in (5.2). We note that by a &£ ( T (H), T (H))-valued
regular Borel measure we mean a map m: L & (T(H), T (H))
for which trCm(+)p is a complex regular Borel measure

for every p € T(H), C € K(H), where in the application

of Theorem 3.2 we have taken X = T(H), z = K (H),

Z* = T (H). In particular this is satisfied for every

me ML, L H)). g

Corollary 5.1. If mé€ M 49, ofs (H)) then the integral

JE(s)m(ds) is well-defined for every f € M(S) §“ T(H).
S

Remark. It should be emphasized that the || norm is
strictly stronger than the supremum norm

[£], =~s:p[f(s)[tr. Hence, if £ , fe€M(S) ® T(H)

satisfy fn(s) + f(s) uniformly, it is not necessarily true

that [fn-fl + 0 or that ff_(s)m(ds) -+ Sf(s)m(ds).
L s S
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5.2. M(s) & T(H) is a subspace of M(s, T (H))

6. A Result in Tensor Product Spaces.

The purpose of this section is to show that we may
identify the tensor product space M(S) gﬂ 'Ts(H) with
a subspace of the totally measurable functions
f: S » T_(H) in a well-defined way. The reason why
this is important is that the functions f € M(S) gﬂ 'TS(H)
are those for which we may legitimately define an integral

Jf(s)m(ds) for arbitrary operator-valued measures

S

meM (8, JCS(H)), since f w» ff(s)m(ds) 1is a continuous
S

linear map from M(S) @ﬂ T() into T(H). In particular,
it is obvious that CO(S) e 'TS(H) may be identified with
a subspace of continuous functions £f: S -» 'TS(H) in a
well-defined way, just as it is obvious how to define the
integral éf(s)m(ds) for finite linear combinations

f(s) =
3

[ le)

. gj(s)pj GCO(S) ® 'TS(H). What is not

V A
obvious is that the completion of CO(S) e T;(H) in

the tensor product norm 1w may be identified with a
subspace of continucus functions £f: S - YTS(H).

Before proceeding, we review some basic facts about
tensor product spaces. Let X,Z be normed spaces. By
X ® Z we denote a tensor product space of X and Z,

which is the vector space of all linear finite combinations
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n
I a.x. ® z. where aj ¢ R, xje:x, zjé Z (of course,

jljj J

aj,xj,zj are not uniquely determined). There is a natural

duality between X ® Z and L (X,2%) ~given by

n n
< X a.x., ® z., L> = E_a.<zj,ij>.

Moreover the norm of L ¢ i(X,Z*) as a linear functional
on X ® Z 1is precisely its usual operator norm

L] = ]STP ISTP <z,Lx> when X ® Z 1is made into a
z|<l |x|<1

*

normed space X en Z under the tensor product norm

™
defined by
<] SATAREN :
£ = inf{ % |x.|*|z.|: £ = I x. © z.}, f€X ® 2.
m 521 3 5213 0 5
It is easy to see that |x @ z| = |x]|+|z] for

x€X, z¢ Z (the canonical injection X x Z - X ® Z 1is
continuous with norm 1) and in fact ]-fﬂ is the strongest

. ~
norm on X ® 2 with this property. By X 8“ Z we denote

the completion of X @ 2 for the [+|_norm. Every

L e £(X,2*) extends to a unique bounded linear functional
on X @ﬂ Z with the same norm as its operator norm, so
that we identify (X Qﬂ z)* = £ (X,z*). The space X 8N Z

may be identified more concretely as all infinite sums .




PR

51

@
£ a.x, ® z, where x. >0 in X, z. - 0 in Z, and
= J 3 J J . J

j=1
z Iajl < + » (Schaeffer [1971], III.6.4), and the pairing between
j=1
X éﬂ‘ Z and of (X,2*) by
[ o0 R
< I a.x, ® z.,L> = L a.<zi,in>.

A second important topology on X ® Z is the e-topology,

with norm

= max max

X. | a.<x, ,x*><z,,z*>
1 1.1 1'¢e ]X*}il ]Z*}f_l i 1 1

i

(I =]

1

It is easy to see that {-[S is a cross-norm, i.e.

< 1]

|x © z|_ = |x|+|z|, and that ]-]s < ;¢ i.e. the m-topology
is finer than the e-topology. We denote by X ®€ Z the
tensor product space X ® Z with the €-norm, and by X gs pA

the completion of X ® Z in the e-norm. Now the canonical
injection of X ®. 2 into X §€ Z 1is continuous (with

norm 1 and dense image); this induces a canonical continuous
map X gﬂ zZ * X 8€ Z. It is not known, in general, whether
this map is one-to-one. In the case that X,Z are Hilbert
spaces we may identify X §w Z with the nuclear or trace-

. A
class maps T (X*,zZ) and X ®€ Z with the compact operators

K(X*,2), and it is well known that the canonical map
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X é} 7 > X g Z is one—to-ohe (cf Treves [1967], III.38.4). We are
i £

interested in the case that X = CO(S) and Z = Z'S(H);

we may then identify CO(S) @E 'Z‘s (H) with CO(S, ’Z’s (H))
(since the |- |, is precisely the |+|_ norm when

C (8) ® Ts (H) is identified with a subspace of

CO(S, TS(H)), and CO(S) ® ’L‘S(H) is dense in

C (S, T (H))) and we would like to be able to consider
CO(S) 817 Ts(H) as a subspace of CO(S, ’L'S(H)). Similarly
we want to consider M(S) gﬂ T(H) as a subspace of

M(s, T(H)).

Theorem 6.1. Let X be a Banach space and H a Hilbert

space. Then the canonical mapping of X @ﬂ T(H) into

X ée T(H) is one-to-one.

Proof. It suffices to show that the adjoint of the mapping
in question has weak * densé image in |

(x 8  T(m)* = £(x,£ ("), where we have identified
TH)* with &£(H). Note that the adjoint is one-to-one,
since the image of the canonical mapping is clearly dense.
What we must show is that the imbedding of (X §€ T(H)) *,
the so-called integral mappings X + L (H) £ T(H)*, into
L (X, £(H)) has weak * dense image. Of course, the set

of linear continuous maps L,: X > L (H) with finite

dimensional image belongs to the integral mappings
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(X é\s T(H))*; we shall actually show that these finite-rank
operators are weak* dense in < (X, Z (")) .» We therefore

need to prove that for every £ € (X gvr TMH)), L eL(X,£(H),
€ >0 there is an L_ in X (X, £(H)) with finite rank

such that |[<f,L-~L_>| < €. Now £ has the representation

f = jgl agxy ® 2 (6.1)
©
with _illa.] < 4w, Xy »- 0 in X, and z3 ~ 0 in 7 (H)
(Schaef:’,fer [1971], III.6.4), and
Ao .
<f,L-—LO> = E aj<zj,(L-Lo)xj>. (6.2)

The lemma which follows proves the following fact: to every
compact subset K of X and every O-neighborhood V of Z(H),
there is a continuous linear map LO: X - .éf(H) with
finite rank such that (L—LO) (K) € V. Using the representa-

tion (6.1), we take K ='{xj};.°=l U {0} and

If 8

vV = {yl,yz,..-}c"e/ ]ajl. We then have ]<f,L—LO>’ < g

j=1

as desired. 0y
The lemma required for the above proof, which we give
below, basically amounts to showing that 32z* = & (H)

satisfies the: approximation property, that is for every
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Banach space X +the finite rank operators are dense in
£(X,z*) for the topology of uniform convergence on
compact subsets of X. It is not known whether every
locally convex space satisfies the approximation property:
this question (as in the present situation) is closely
related to when the canonical mapping X 8& Z + X 65 y/

is one-~to-one.

Lemma 6.1. Let X be a Banach space, H a Hilbert space.
For every L &€ (X, £(H)), every compact subset K of X,
and every O-neighborhood V in <€ (H) there is a continuous

linear map LO: X+~ £ H) with finite rank such that
(LBLO)(K) C V.

Proof. Let P, be projections in H with P 4+ I, where

I is the identity operator on H (e.g. take any complete
orthonormal basis {¢j,je J} for H; let N be the

family of all finite subsets of J, directed by set inclusion:;
and for n€é N define Py to be the projection operator

P (¢) = I <¢|¢.>¢. for ¢ €H). Suppose L € X (X, L(H)).
sen 03703

Then P L ¢ £ (X, £(H)) has finite rank and converges

pointwise to L, since (PnL)(x) = Pn(Lx) + Lx. Moreover

{P,L} 'is uniformly bounded, since [P L| < [P [-|L]| = |L].

Thus, by the Banach-Steinhaus Theorem or by the
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Arzela-Ascoli Theorem the convergence PnL -+ L 1is uniform
on compact sets. This means that for every 0O-neighborhood V
in £ (H) and every compact subset K of X, it is true

that for n sufficiently large
(L-P L) (K) € V. O

Corollary 6.2. Let S be a locally compact Hausdorff

space, H a Hilbert space. The canonical mapping
CO(S)_&{r T(H) ~» CO(S,- T(H)) is one-to-one, and the

canonical mapping M(S) §1r T(H) » M(S, T(H)) is one-to-one.

Proof. This follows from the previous theorem and the fact
that C_(S) éa z may be identified with C_(S,2) with the
supremum norm, for Z a Banach space. Similarly

M(S) @8 Z = M(S,Z) with the supremum norm. O

Remark. In Theorem 3.4, we explicitly identified

A A ‘
(Cy () & T () * = L(c (s), L(H) and (C (S) 8 T(H))* =
c, (S, T(H))* with the measures mé€ W(_(a@,aﬁ (H)) having

finite semivariation and finite total variation, respectively.
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7. Quantum Estimation Theory

7.1 Introduction

The integration theory develoved in the previous sections
is needed in studying the problem of Quantum Estimation Theory.
We now develop estimation theory for guantum systems.

In the classical formulation of Bayesian estimation
theory it is desired to estimate the unknown value of a
random parameter s€ S based on observation of a random
variable whose probability distribution depends on the
value s. The procedure for determining an estimated
parameter value s, as a funcpion of the experimental
observation, represents a decision strategy; the problem
is to find the optimal decision strategy.

In the quantum formulation of the estimation problem,
each parameter sé€ S corresponds to a state p(s) of the
quantum system. The aim is to estimate the value of s by
performing a measurement on the guantum system. However,
the gquantum situation precludes exhaustive measurements
of the system. This contrasts with the classical situation,
where it is possible in principle to measure all reievant
variables determining the state of the system and to specify
meaningful probability density functions for the resulting

values. For the quantum estimation problem it is necessary




to specify not only the best procedure for processing

experimental data, but also what to measure in the first

place. Hence the guantum decision problem is to determine

an optimal measurement procedure, or, in mathematical terms,

to determine the optimal probability operator measure

corresponding to a measurement procedure.v

We now formulate the quantum estimation problem.

Let H be a separable complex Hilbert space corresponding

to the physical variables of the system under consideration.

Let S be a parameter space, with measurable sets &2 .

Each s €S specifies a state p(s) of the guantum svystem,
é i.e. every p(s) 1is a nonnegative-definite selfadjoint

trace-class operator on H ‘with'trace l. A general

decision strategy is determined by a measurement process

m(+), where m: d - afS(H) is a positive operator-valued

measure (POM) on the measurable space (S,4£3) --
m(E) € JZS(H)+ is a positive selfadjoint bounded linear
operator on H for every E €4, m(S) = I, and m(-) is

countably additive for the weak operator topology on & _(H).

s
The measurement process yields an estimate of the unknown
parameter; for a given value s of the parameter and a
given measurable set E €d?, the probability that the

estimated value § 1lies in E is given by

Pr{§ € E|s} = tr[p(s)m(E)]. | T (7.1)
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Finally, we assume that there is a cost function c(s,§)
which specifies the relative cost of an estimate 8§ when
the true value of the parameter is s.

For a specified decision procedure corresponding to
the POM m(-), the risk function is the conditional expected

cost given the parameter value s, i.e.

Rm(s) = trlp(s)fc(s,t)m(dt)]. (7.2)
S

If now p 1is a probability measure on (S,&) which
specifies a prior distribution for the parameter value s,

the Bayes cost is the posterior expected cost
Rm = éRm(s)u(dS). (7.3)

The guantum estimation problem is to find a POM m(-) for

which the Bayes expected cost R, is minimum.

A formal interchange of the order of integration yields

Rm = tréf(s)m(ds) (7.4)

where f(s) = fc(t,s)p(t)u(dt). Thus, formally at least,
S

the problem is to minimize the linear functional (7.4)
over all POM's m(-) on (8,53). We shall apply duality
theory for optimization problems to prove existence of a

solution and to determine necessary and sufficient conditions
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for a decision strategy to be optimal, much as in the
detection problem with a finite number of hypotheses (a
special case of the estimation problem where S is a
finite set). Of course we must first rigorously define
what is meant by an integral of the form (7.4); note that
both the integrand and the measure are operator-valued.
We must then show the equivalence of (7.3) and (7.4); this
entails proving a Fubini-type theorem for operator-valued
measures. Finally, we must identify an appropriate dual
space for POM's consistent with the linear functional (7.4)
so that a dual problem can be formulated.

Before proceeding, we summarize the results in an
informal way to be made precise later. Essentially, we
shall see that there is always an optimal solution,.and
that necessary and sufficient conditions for a POM m to
be optimal are

éf(s)m(ds) < f(t) for every te€s.

It then turns out that J[f(s)m(ds) belongs to 'TS(H)
S

(that-is, selfadjoint) and the minimum Bayes posterior

expected cost is

R = trff(s)m(ds).
m S
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7.2 A Fubini theorem for the Bayes posterior expected cost

In the quantum estimation proklem, a decision strategy
corresponds to a probability operator measure 'm 671(43,1;(H))
~with posterior expected cost

R = Jtrlp(s)/C(t,s)m(dt) ]y (dt)

S S
where for each s, p(s) specifies a state of the quantum
system, C(t,s) 1is a cost function, and n is a prior
probability measure on S. We would like to show that the
order of integration can be interchanged to yield

R = trff(s)m(ds)

m S

where

f(s) = SC(t,s)p(t)ue)
S

is amap f: S -» ‘TS(H) that belongs to the space
M(S) §ﬂ T (H) of functions integrable against operator-
valued measures.

Let (S,8,u) be a finite nonnegative measure space, .

X a Banach space. A function f£f: 8 = X is measurable iff

there is a sequence '{fn} of simple measurable functions
converging pointwise to £, i.e. fn(s) > f(s) for every

s €S. A useful criterion for measurability is the
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following [Dunford-Schwartz (1966), III 6.9]: f is measurable
if it is separably-valued and for every open subset V of X,
vy e d. I particular, every f€C_(S,X) is

measurable, when S is a locally compact Hausdorff space

with Borel sets o . A function £: § - X 1is integrable

iff it is measurable and Jf|£(s)|u(ds) < +®, in which case
S

the integral J[ff(s)u(ds) is well-defined as Bochner's
S

integral; we denote by Ll(S,§3,u;X) the space of all
integrable functions f: S + X, a normed space under the

Ly norm [£|, = f|£(s)|u(ds). The uniform norm [+], on
S

f8nctions f: § » X is defined by |f|_ = sup|f(s)]|; M(S,X)
S€S

denotes the Banach space of all uniform limits of simple
X-valued functions, with norm [-[m, i.e. M(S,X) is the
closure of the simple X-valued functions with the uniform

norm. We abbreviate M(S,R) to M(S).

Proposition 7.1. r1et S be a locally compact Hausdorff

space with Borel sets o3 + ¥ a probability measure on S,
and H a Hilbert space. Suppose p: S -+ ‘?S(H) belongs
to M(S, TE(H)), and C: S x S » R 1is a real-valued map

satisfying
te C(t,+) € Ly(S, &,u;M(5)),

Then for every sé€S, f(s) is well-defined as an element

of ’?S(H) by the Bochner integral
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f(s) = SC(t,s)p(t)u(dt); (7.5)
S

moreover f € M(S) 3“ .’C'S (H) and for every operator-valued

measure m € W(AD, ECS(H) ), we have

fE(s)m(ds) = Sp () [
e

C(t,s)m(ds) ]y (dt) (7.6)
d |

S

Moreover if t & C(t,*) in fact belongs to Ll(S,S,u;CO(S))

then f€CO(S) 9,” T's(H).

Proof. Since t & C(t,-) € Ll(S,Q,u;M(S)), for each n

there is a simple function Cn€ Ll(S,aG,u;M(S)) such that

e, )=C_(t,) | p(@t) < —3— . (7.7
S n

Each simple function C, is of the form

k
n 7 .
C_(t,s) r g .(s)l (t)
n k=1 Bk E x
where En,l""'Enk are disjoint subsets of 08 and

n

917 'Ink belong to M(S) (in the case that
n
t» C(t,*) Ll(s,ﬁ,u;CO(S)) we take 9n17 1 Ink in
n

CO(S)). Since p € M(S, 'Z‘S(H)), for each n there is a

simple measurable function Pnt S ~» TS(H) such that

sup|p (£)-p (t) | < én . (7.8)
t n ’
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We may assume, by replacing each set Enk- with a disjoint
subpartition correSpondingito the finite number of values
taken on by Pnr that each °n is in fact of the form

pn(t) (t).

i
[ B

©

-

Define fn: S - T‘S(H) by

fn(s) Js'cn(t,s)pn(t)u(dt)

n

|
e =

gnk(S)onku(Enk).

k=1

Of course, each £  belongs to M(S) @ ?“S(H). We shall

show that {fn} is a Cauchy sequence for the |-

; DOTrm on
M(S) © TS(H), and that fn(s) + f(s) for every s€S;
since the [-]ﬂ—limit of the sequence f_  is a unique
function by Theorem 6.1, we see that f is the I-[w—limit

of {fn} and hence f belongs to the completion

A
M(S) & TE(H).

We calculate an upper bound for |f__ ,-f

n+l nlﬂ’ Now

fn+l(sx_fn(s) =

k k

n+l "n

Lo L A9n4n,5080 enyy, 370 k¥ 9041, 5 (879, () T0, s Ju(E L SAE, )

j=1 k=1
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and hence

[ fne1Enly < (7.9)
kn+l kn
jﬁl kil{lgn+l,j[w.lpn#l,j—pn,kltr+lgn+1;j’gn,klw4pnk[tr}“(En+l,ann,k)
Suppose En+l,jr\En,k # @, i.e. there exists a toe'En+l,j(’En,k’
Then from (7.8) we have
‘pn+l,j"pn,k|tr h ’pn+l,j_p(to)ltr * lpn,k_p(to)ltr
1l 1 1
< : + < .
- (n+l)2n+1 n2n n2n+l
Thus, the first half of the summation in (7.6) is bounded
above by
T L | (a0)
7 L I g : | oH (E .NE_ ,)=——= [J|C__,(t,*)]|_u(dt
n2t j=1 k=1 n+l,3 n+l,j n,k nzn 1 3 n+l ©
_ 1
= —5=1! Gl 1y
n2
1
2
where by llclll we mean the norm of t #» C(t,*) as a

element of Ll(S,iB,u;M(S)); and the last inequality follows
from (7.7). Similarly the second half of the summation is

bounded above by
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kn+1 kn'

Uola#tds 2 F I9ner, 3790 il By, 3 08 )

= (lplm'l'l) * I 'Cn+'l—cnl 'l
) P

< (lp,m+l)'*"ﬁtf
n2

where again the last inequality follows since

l1cy=Clly < —EH by (7.7). Let a be a constant larger
n2

than 1 + [[c[|; and 1+ |p]_; adding the last two

inequalities from (7.9) we have

a

!f n-2

f <

- ! .
n+l "n'w n2

Hence for every m > n > 1 it follows that

l , m-l’ l - a 1. a 3a
f ~-f < z f. -f. < z — < = z —_—— = — .
m n'm — j=n j+1 “J'm j=n n2® 2 ] oN=2 n
Thus {f_ } is a Cauchy sequence for the | +|, norm on

M(S) © 'TS(H), and hence has a limit foé'M(S) ®Tr ’FS(H).

Since it certainly follows that fn > fo pointwise (in

fact in the uniform norm since |-|_ < ), and since

w S 1t lg
it is straightforward to show that fn(s) +~ f(s) for-

every .s €S, fo = f, Moreover in the case that

t v C(E, ) éLl(S,s,ﬁ;CO(S)), we have £ € C_(5) & T,(H)
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and hence f = [-Iw-lim £, belongs to cC_(s) ® T _(H).

It only remains to show that (7.6) holds. Essentially
this follows from the approximations we have already made
with simple functions. Now clearly

k

n .
ffn(s)m(ds) = kilpnkU(Enk)égnk(S)m(dS)

Jo () [fc (t,s)m(ds)]u(dt), (7.10)
S

so that (7.6) is satisfied for the simple approximations,

We have already shown that fn + £ in M(8S) gn ’ES(H),

so that |/f_(m)m(ds) - JE(s)m(ds) | . < |£ -£] _<m(s) » 0
and the LHS of (7.10) converges to J/ff(s)m(ds). We need only
show that the RHS of (7.10) converges to the RHS of (7.6)

But applying the triangle inequality to (7.10) yields
prn(t)[an(t,S)m(ds)]u(dt)-fo(t)[fc(t,s)m(ds)]u(dt)ltr

i!Dn(t)f[Cn(t,S)—C(t,s)lm(ds)jtru(dt)

+ fl(pn(t)-p(t))'fC(t,s)m(dS)ltru(dt)

A

leplee sl (e, )= (t, *) | *m(S) u(at)

+ le el slcit, ) | _m(sS)u(at)

I A

(lel*b) em(s)+|lc ~c| ], + loy-plm(s) | lcl],

= 1 =
(Jola*1) *m(s) + =2 + == F(s) - |[c||, » 0

n2 n2®

I~
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where the last inequality follows from (7.7) and (7.8) and

again HCHl = flc(t,+) | _u(dt) denotes the norm of C
S

as an element of Ll(S,o@,u;M(S)). o
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7.3 The quantum estimation problem and its dual

We are now prepared to precisely formulate the
guantum estimation problem in the framework of duality

theory of optimization and calculate the associated

dual problem. Let S be a locally compact Hausdorff space
with Borel sets &3 ., Let H be a Hilbert space associated
with the physical variables of the system under consideration.
For each parameter value séS let p(s) be a state or
density operator for the quantum system, i.e. every p(s)
is a nonnegative-definite selfadjoint trace-class operator
on H with trace 1l; we assume p GNHS,‘TS(H)). We assume
that there is a cost function C: § x S + R, where C(s,t)
specifies the relative cost of an estimate t when the true
parameter value is s. If the operator-valued measure
m € M(o@, fs(H)) corresponds to a given measurement and
decision strategy, then the posterior expected cost is

R = tr/p(t) [JC(t,s)m(ds)]uldt),

S S

where p 1is a prior probability measure on (5,23). By
Proposition 7 this is well-defined whenever the map
t » C(t,*) belongs to L,(s,8,u;M(S)), in which case
we may interchange the order of integration to get

R = tréf(s)m(ds) (7.115

where f € M(S) g" ZE(H) is defined by
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£(s) = fp(t)C(t,s)ulds).
S

The quantum estimation problem is to minimize (7.11) over
all operator-valued measures m 674(49,¢fS(H)) which are
POM's, i.e. the constraints are that m(E) > 0 for every

Ee&? and m(S) = I,

We shall now assume that the reader is familiar with the
duality theory of optimization in infinite-dimensional spaces
as for example development in [Rockafellar (1973)]. To form

the dual problem we take perturbations on the equality con-
straint m(S) = I. Define the convex function F:?%AOZik(H))+§ by

F(m) = &, (m) + trcf;f(s)m(ds), méM (L, L (1),

where 6>o denotes the indicator function for the

positive operator-valued measures, i.e, 6>O(m) is 0
if m(B) < ;CS(H)+ and +» otherwise. Define the

convex function G: JfS(H) + R by
G(x) = 8, 3(x), x €L ()

i.e. G(x) is 0 if x =0 and G(x) =+« if x # 0,

Then the gquantum detection problem may be written
P, = inf{F(m)+G(I-Lm): m e (L, & _(1))}

where L: ¥ (S,ZS(H)) + .{S(H) is the continuous linear
operator

L(m) = m(8).




70

We consider a family of perturbed problems defined by
P(x) = inf{F(m)+G(x-Lm): me 7 (&, L_1)}, xeL ).

Thus we are taking perturbations in the equality constraint,
i.e. the problem P(x) requires that every feasible m
be nonnegative and satisfy m(S) = x; of course,
P, = P(I). Since F and G are convex, P(:) is
convex X _(H) - R.

In order to construct the dual problem corresponding
to the family of perturbed problems P(x), we must calculate
the conjugate functions of Fand G denotedras F* and G*. We
shall work in the norm topology of the constraint spacetﬁs(H),
so that the dual problem is posed in {g(H)*. Clearly G*= 0.

The adjoint of the operator L is given by
w*: L (H)* MR, L m))*: y b (myem(s)),
To calculate F*(L*y), we have the following lemma.

Lemma 7.2. Suppose y é«fs(H)* and £ € M(S) gﬂ 'fs(H)
satisfy

ye'm(s) < tréf(s)m(dS) (7.12)
for eyery positive operator-valued measure m € W ( 08, rd s (II)+) .
Then Yeq < 0 and Yac < f(s) for every s¢€ S, where

Yy =y, .ty is the unique decomposition of y into

59
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R
Yac € TglH) and y € X (H).

Proof. Fix any S, €S5. Let x be an arbitrary element
of X_(H),,
measure m ¢ 7 (8, ‘fs(H)+) by

and define the positive operator-valued

x 1if s € E
(o]
m(E) = , Ee&d3.
0 if so¢E

Then yem(S) = y(x) = tr(yacx)+ysg(x), and trff(s)m(ds) =
trf(so)x. Thus, by (7.12) tr[yac—f(so)]x+ysg(x) < 0;

since xé/,s(H)+ was arbitrary, it follows
that y_. < f(s]) (i.e. fls )-y, € Ts‘(H)+) and

Yog £ 0 Ue. —y el& m ' AK 5. o

With the aid of this lemma it is now easy to verify that

F*(L*y)

{ 0 if Yae S £(s) s€¢ S, and Veg < 0

+o otherwise

= 6_<_f(yac) + 6_<_o(ysg)'

It now follows that P*(y) = F*(L*y) + G*(y) is 0 if
Ysq <0 and Yoo £ £(s) for every s €S, and P*(y) = +=
otherwise. The dual problem D, = *(P*) (1) =

sup[y(I)=-P*(y)] is thus given by
Yy
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*(P*) (I)

o
]

sup{tryac+ysg(1): y éa’fs(H)*, Yog <o, Yac S f(s)Uses}.

We show that P(¢) is norm continuous at I, and hence there
is no duality gap (PO--DO) and D, has solutions,
Moreover we shall show that the optimal solutions for

Dy will always have 0 singular part, i.e., will be in

T, (H).

Proposition 7.3. The perturbation function P(.) is continu-

ous at I, and hence 9 P(I)# @, where 3P denotes the subgradient
of P. In particular, PO=DO and the dual problem Do has optimal
solutions. Moreover every solution yéafs(H)* of the dual problem
D, has 0 singular part, i.e. g'sg = and § =9
belongs to the canonical image of 7T_(H) in Ts'(H)**.

Proof. We show that P(.) is bounded ahove on a unit
ball centered at I. Suppose x é,{s (H) and |x| < 1. Then it
is easily seen that I+X > 0. Let Sq be an arbitrary element
of S and define the positive operator-valued measure
meM (B, L (1)) by
I+x if s ¢ E
o
m(E) = , Eel .

0 if s ¢E

Then m is feasible for P(x) and has cost
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tr/f(s)m(ds) = trf(s ) (I+x) < 2[f(s )| ..

Thus P(I+x) < 2|f(so)[tr whenever |[x| <1, so P(-)
is bounded above on a neighborhood of I and so by.
convexity is continuous at I, and hence from standard
results in convex analysis, it follows that BP(xO) # g,
hence PO ='deand~Do has solutions. Suppose now.that.
?éK%(H)* is an optimal solution for D,- If 9Sg # 0,
then since ysq < 0 and IéintiLS(H)+ it follows that

tr(§ac)+§sg(1) < tr(§ac). Hence the value of the dual

objective function is strictly improved by setting

A

Yy = 0, while the constraints remain satisfied, so

sg
~

that if § is optimal it must be true that ysg = 0, a

In order to show that the problem PO has solutions,
we could define a family of dual perturbed problems D(v)
for v GCO(S) Sn ‘TS(H) and show that D(¢) is continuous.
Or we could take the alternative method of showing that the
set of feasible POM's m is weak* compact and the cost
function is weak*-lsc when 2] (43, fs(H)) = e'f(CO(S) ,efs(H))
is identified as the normed dual of the space CO(S) gﬂ’?s(H)

under the pairing
<f,m> = trff(s)m(ds).

Note that both methods require that f belong to the.
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predual C_(S) éﬂ ’TS(H) of 77(&3,‘TS(H))= by
Proposition 7.1 it suffices to assume that t » C(t,*)

belongs to Ll(S,§9,u;CO(S)).

Proposition 7.4. The set of POM's is compact for the

weak* = w(M(a&,éﬂs(H)), CO(S) 6" 'Z;s(H)) topology.
If tr C(t,-)eLl(s,S,u;co(s)) then P_  has optimal

. A
solutions m.

Proof. Since M (&, L_(H)) is the normed dual of
c,(s) 8“ ’TS(H) it suffices to show that the set of
POM's is bounded; in fact, we show that m(S) = 1 for
every PoMm., If ¢€H and |¢| =1, then <oém(+)|o¢>
is a regular Borel probability measure on S whenever m
is a POM, so that the total variation of <ém(+)|¢> is

precisely 1. Hence

m(S) = sup |<ém(e)]|d>]|(S) = sup |<ém(+)|o>|(S) = 1.
deH oeH
lof<1 lo]=1

Thus the set of POM's is a weak*-closed subset of the
unit ball in m (é?,dfs(ﬂ)), hence weak*-compact. If now
t » C(t,+) belongs to L,(s, B,u;c_(s)) then

f’écb(s) 8n 'TS(H) by Proposition 7.1, so m b tr/ff(s)m(ds)
is a weak*-continuous linear function and hence attains

its infimum on the set of POM's. Thus Po has solutions,
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The following theorem summarizes the results we have
obtained so far, as well as providing a necessary and

sufficient characterization of the optimal solution.

Theorem 7.5 Let H be a Hilbert space, S a locally

compact Hausdorff space with Borel sets -@ . Let
) €M(S,TS(H)), C: S xS+ R a map satisfying
t P C(t,*) € Ll(s,ﬁ,u;co(s)), and u a probability

measure on (S,8). Then for every mé”[(@, vfs(H)),

tr/p(t) [/C(t,s)m(ds)Ju(dt) = tr/f(s)m(ds)
S S S

where féco(s) 8“ ’Z'S(H) is defined by
f(s) = fp(t)C(t,s)u(ds).
S
Define the optimization problems

P
O

infltr/f(s)m(ds) : meM(B, X (H)) ,m(S)=I,m(E)>0 for every E&B}
s /

D
(o}

]

sup{try: ye T (H), y < f(s) for every sé S},

Then Po =D and both P0 and Do have optimal solutions,

O'
Moreover the following statements are equivalent for
men (B,vfs(H)), assuming m(S) = I and m(E) > 0 for

every .E &8 H
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1) m solves Po

2) Jf(s)m(ds) f(t) for every t€sS

S

3) J/m(ds)£f(s)
S

i

f(t) for every t€Ss,

IA

Under any of the above conditions it follows that

y = [f£(s)m(ds) = /m(ds)£f(s) is selfadjoint and is the
S S

unique solution of Dy with

Po = D0 = try.

Proof. We need only verify the equivalence of 1)-3);

the rest follows from Propositions 7.3 and 7.4. Suppose m
solves P . Then there is a vy é'{s(H) which solves D,

so that y < £(t) for every t and

tr/f(s)m(ds) = try.
S

Equivalently 0 = trff(s)m(ds)-try = trf(f(s)-y)m(ds).
S S

Since f(s)-y > 0 for every s¢S and m >0 it follows

that 0 = f(f(s)-y)m(ds) = ff(s)m(ds)-y and hence 2) holds.
S S :

This last equality also shows that y is unique.
Conversely, suppose 2) holds. Then vy = [ff(s)m(ds)

is feasible for Do' and moreover trff(s)m(dz) = try.

Since Po > Dy, it follows that m solves P and vy

o
solves D,., so that 1) holds.
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Thus 1) <=> 2) is proved. The proof of 1) <=> is
identical, assuming that | trff(s)m(ds) = tr/m(ds) f(s)
for every fé€cC_(S) 3," 'Z’S(H). But the latter is true
since trAB = trBA for every A€ T_(H), B éfs(H)

and hence it is true for every fé€C_(s) & T _(H). g
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