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1 Introduction

This thesis addresses a special class of problems known as assignment problems.

Assignment problems take two groups of items and match each item in the first group

with a unique item in the second group, or perhaps leave items purposefully unassigned.

Many examples of the problem exist in our everyday lives. Take, for example, a hospital

emergency room where there are a limited number of doctors and nurses who must help

patients with different ailments. Specific doctors are assigned to certain patients based on

their proficiencies and the time constraints. For any individual doctor-patient

assignment, there is a utility value based on how well the doctor can treat the patient. A

surgeon mapped to an asthma sufferer would likely yield a low utility score, while a

surgeon working on a patient with a severe laceration would produce a high utility score.

At any given moment, there is an optimal assignment of doctors working with patients,

where optimal is defined as the maximal aggregate utility over all assignments.

Another example is a distributor with customers and a limited number of items.

The distributor has to decide how best to divide the items among the customers so that

everyone is best served. This example will be more fully explored in the chapter three.

In either case, there exists a best way to pair all the items, suggesting that there is

some overall assignment that is at least as good as, and potentially better than, all other

assignments. In the linear case, the total utility (or "goodness") is calculated by simply

adding up the utility of each pairing to reach a total utility score. Some particular overall

assignment yields the highest total utility score, even though each item might not be

assigned its optimal partner. This type of linear problem is solved proficiently by

auction, a special method that reaches a guaranteed optimal solution in polynomial time.
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Another, more complicated type of problem exists where the total utility score

depends not only on individual pairing scores, but also depends on combinations of

pairings. An example of this occurs with software and a computer, where each item is

valuable to a consumer only as long as both are purchased. This is an example of

nonlinear behavior and requires an exhaustive test of all assignment permutations in order

to guarantee optimality. However, in many of these problems, patterns exist which

models can take advantage of to reduce computational time. By making simple

assumptions, much of the computation can be avoided. Though the solutions are not

guaranteed to be optimal outside of the assumptions, good solutions can be produced

within a given time constraint.

In this case, the degree to which modeling simplifications are made clearly

represents a tradeoff in accuracy versus computational time. The right assumptions can

lead to a "good enough" solution in a given amount of time. Given these assumptions,

auction can be utilized to yield an optimal result for the modeled problem. This thesis

examines problems of this nature and modeling techniques that can reduce the

computational requirement to an acceptable level through an increasing level of model

simplification.

The structure of this thesis begins in Chapter 2 with a theoretical and practical

overview of auction theory. This chapter is a restatement of the reigning auction theory

developed primarily by Bertsekas and is designed to prime the reader on the subject.

Additionally, it is intended to develop insight into the power of auction and how basic

assumptions can lead to fast solutions.



Following the theoretical overview, two problems are given to illustrate the use of

auctions in the nonlinear problems described above. These problems and their solution

techniques are intended to serve as models for using auction effectively under difficult

scenarios, with special attention given to reducing time requirements. The first problem

is discussed in Chapter 3 and tackles the issue of nonlinear object combinations. The

second problem is presented in Chapter 4, delving further into complexity by also

allowing nonlinear bidder combinations. Careful use of assumptions will be shown to

reduce intractable problems to levels that can produce accurate results quickly.

The application of auction to a new space of problems has become possible

through both theoretical and technological advancement and promises to be used widely

in the future. Particularly, the scaling ability of auction due to its polynomial time

operation lends powerful potential to its use. Additionally, the flexibility of determining

the level of optimality through its approximation characteristic allows application to

problems with computational time constraints to guarantee solutions within specific

optimality boundaries. This feature undoubtedly enhances the attractiveness of auction.

For a textbook approach to auction, as well as the original derivations, the reader

is referred to Bertsekas in [4] and [6].
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2 Auction Algorithms-A Theoretical Overview

2.1 Motivation

Assignment problems, where each item from one list is paired with a distinct item

from a second list to yield an overall optimality over all pairs, have become

commonplace in today's world. Moreover, the confluence of increasing computational

power and larger available memory, both with reduced prices, has enlarged the sphere of

problems that can be solved. Specifically, the scale of problems which can be solved in

reasonable time has grown tremendously, allowing many new applications to benefit

from analysis and implementation of assignment algorithms.

Traditionally, linear assignment problems, where the overall optimality is

determined by summing the utility scores of each pairing to yield an overall utility score,

had been solved using the simplex method (primal descent) or the primal-dual method

(dual ascent). These methods were originally proposed by [12] and [14], respectively;

see [4] and [10] for discussion. However, the worst case times for the simplex method is

exponential, O(c") where c is a constant and n is the number of items in the problem. The

dual ascent run-time can be shown to be pseudopolynomial. The auction method, a

departure from primal-dual methods, is an approximate dual ascent method that has been

shown to solve an n x m problem in pseudopolynomial O(n2mc) time [6]. Utilizing

specialized scaling techniques, the required time can even be reduced to polynomial

O(nmLog[c*n]); see [1], [2] and [6]. Additionally, despite its typecast of "approximate

dual ascent," the solutions are optimal to the degree desired, in which known bounds can

be placed on the solution prior to running the algorithm.



The polynomial growth of the solution technique allows practical application to

significantly larger problems than its counterparts. It allows more flexibility in the

modeling of problems to capture a larger portion of the relevant information given the

computational and time constraints. Solutions are improved in two ways. First, the shear

scale of the problems can be increased to handle larger problems in far less time than its

counterparts. Secondly, because the auctions are solved more quickly, they can be used

as components of larger problems with significant time reduction [13]. One such method

to be explored utilizes a series of different auctions to solve a nonlinear problem.

The crux of this thesis examines the application of auction algorithms into a larger

space of problems. This chapter restates the current state of auction theory for the

convenience of the reader. Techniques of modeling will be discussed that view the

tradeoff of computation versus accuracy. Additionally, the auction methodology carries

an intuitive interpretation grounded in everyday economics, particularly in the concept of

competitive bidding. To the extent that this process is understood, new problems in

disparate areas can benefit from the application of auction. It is the hoped that this thesis

will serve as a primer for auction application to new problems.

2.2 Formulation

The formulation of an auction problem includes one set of entities (bidders)

bidding among its members for the items in another set (objects). The set of bidders that

can bid for an objectj is denoted BU). Likewise, the set of objects that can be bid on by

bidder i is denoted A(i). The problem can be interchanged, such that the bidders become

objects and objects become bidders, yielding the dual problem. The fundamental idea is
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to achieve the globally optimal pairing of bidders B to objects A, as defined in Figure 2,

through sequential bidding. This solution, in the traditional symmetric auction (where the

number of objects equals the number of bidders), matches each bidder with a unique

object such that the sum of the utilities is highest. The problem can be set up as a

traditional network flow problem as in Figure 1.

Utility Values Per Unit Flow
(negative costs)

Flow =1 A Bidder Item I Flow=

A 3

5

Flow = Bidder 6 Item 2 Flow

B

Flow = 1Bidder Item 3 Flow = 1 
C 1

Figure 1
Assignment problems can be viewed as maximum network flow problems (or, equivalently, as a

minimum network flow problems with the negative utility values). Flow through each bidder
must equal 1 and through each item must equal 1.

The network flow problem can likewise be presented as a maximization problem

summing the flows and their costs, given the corresponding constraints (Figure 2). The

constraints consist of each bidder necessarily being assigned one unique object and each

object necessarily being assigned one unique bidder. While the flow of every arc in the

network flow diagram is either zero (i andj not paired with each other) or one (i andj

paired with each other), as in the actual auction, it can be modeled as a continuous value

between 0 and 1 because the value will always tend to one extreme or the other. This

allows mathematical assumptions regarding convexity to hold in the proof of auctions.



N N

Maximize I Xa(ij)f(ij)
i=1 /=1

a(ij) = Utility of pairing bidder i and objectj
f(,ij) = 1 if i andj paired together, 0 otherwise (an indicator function)

f(zj) = 1 V i=1,...,n (bidders) Outflow = 1
/=EA(i) Each bidder assigned once

X f(j) = 1 V j=1,. .. ,n (objects) Inflow = 1
iEBO) Each item assigned once

Figure 2
Assignment problems can be viewed as maximization, where the utilities of each assignment are
summed. In the simplest formulation, each bidder and object are constrained to have exactly one

assigned partner.

This formulation represents the traditional symmetric problem. Other variations,

including the asymmetric case and differing pairing constraints, are addressed later in the

chapter, as well as in the actual applications.

2.3 Auction Process Overview

Before the auction begins, an initial price must be designated for each object.

This price will be used by bidders to compare the price of an object versus the utility it

will provide them and will allow them to select the most profitable object. Additionally,

the auction must start with a set of assignments such that every assignment is currently

best for the particular bidder (known as the complementary slackness condition).

Complementary slackness is often observed trivially by starting with no assignments,

allowing initial prices to be unconstrained. Prices can begin at any level because the

auction is finding the assignment that maximizes the overall absolute utility. Throughout
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the auction, prices are used only as a relative indicator among the bidders and objects.

Over the course of the auction, the prices will reach their eventual equilibrium with each

other and the auction will terminate. Hence, the three auctions indicated in Figure 3 will

result in the same outcome of pairings (given identical utilities for all case), though the

initial prices will affect the speed and prices at which the auction reaches its conclusion.

Object Auction 1 Auction 2 Auction 3
Number Initial Price Initial Price Initial Price
1 5 50 0
2 20 20 0
3 30 -5 0

Figure 3
Three auctions are run with different initial prices. However, because the utilities are identical,
the auctions should terminate achieving an overall utility within the same bounds. The initial
prices, therefore, do not play a role in determining overall utility. They may, however, impact

the speed at which the solution is reached.

In the standard naive forward auction, an unassigned bidder is selected at each

stage to evaluate his options, given the current prices, and place a bid on the best value.

Value v is determined by subtracting the price p of the objectj from the utility ay

received from the pairing q. The value of matching objectj with person i is

vy= ay -pj.

Values can take on positive and negative levels, again only presenting a relative

comparison among bidders and objects. The condition of the bidder choosing the best

possible choice is referred to as "complementary slackness" and will be discussed in

Section 2.4.

ay -pj > max { aik -Pk} \/ (ij) E S (set of pairings)
kEA(i)
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The bid is an amount equal to the price of the object he is bidding for plus the

difference in value between the best and second best objects. The intuition is that a

bidder will remain loyal to the best object until the point at which he sees more value in

moving to the next best. For all the prices up to that point, he will continue to bid for the

same object. To eliminate the tedious bidding cycles with small bid increments, the

bidder places a bid at the level to which he would bid for the next object. Therefore, he

finds the objectj with the most value

j= arg max { ay-p.}
jCA(i)

and then solves for the bidding increment Y,, equal to the difference in value between the

best value vi and the next best value wi. The bid is then computed as the price of objectj

plus the bidding increment.

Bidding increment: Y= Vi - W1.

Best value: vi = max { ay-p}
j1A()

Second best value: w= max { aik-pk}
kcA(i), k f-j

Bid: Bid y =pj+ Y

If a bidder selects an unassigned object, he becomes assigned to that object at the

initial price and the next round begins. If a bidder selects an assigned object, he replaces

the formerly assigned bidder. The formerly assigned bidder becomes unassigned and will

have to bid in a later round for another (or possibly the same) object. Two methods exist

in the bidding stage for determining the bids and objects. In the Gauss-Seidel method,
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any unassigned bidder can be chosen arbitrarily and undergo the bidding process. A

second method, the Jacobian method, evaluates all unassigned bidders and calculates the

bids for all of them. The best bids for each object are then selected and processed

simultaneously. The trade-off occurs in whether the calculations of finding the highest

bidder each round (in the Jacobian version) are more expensive than additional bidding

rounds required because a suboptimal object was assigned one or more times in a

previous round. The Gauss-Seidel method can potentially avoid continuously suboptimal

bids by rotating or randomly selecting which bidders are selected, rather than searching

through a static preordered list of bidders for the first unassigned bidder. In the static

preordered search, two early bidders on the list may slowly, alternately drive the price of

an object up, while a third bidder would price the object far above the other two but not

be reached for some time because of the ordering.

The auction terminates when all bidders are assigned. At this point, no bidder can

increase his utility by bidding for another object, because prices have either risen to or

stayed at the level they were at when the bidder placed his best bid on the object to which

he is currently assigned. A simple example is given in Figure 4 to demonstrate the

procedures of a naYve auction.



Illustrative Example of Naive Auction
Figure 4

The utility values of each possible assignment are given
in the matrix on the right, corresponding to the diagram in
Figure 1.

Utility Values of Assignments
Objects

1 2 3
A 4 3 5

Bidders B 7 6 7
C 7 6 17

The initial conditions to this auction are that there are no assignments and that the prices of objects 1, 2, and 3, respectively,
are 5, 20, and 30.

Round 1, shown below, begins with these conditions and (1) selects a bidder who is unassigned (A in this case). The profit of pairing
the bidder with each object is then examined in (2). Given the starting prices, the highest utility for the bidder occurs with object 1,
where the profit is equal to -1 (3). The second best object is 2, with a profit of -17 (4). A bid is then constructed by adding the
profit difference of the best and second best (5) to the price of the best object, which yields a bid of 21 for object 1 (6). The reason
this equals the bid is because the bidder would continue to bid for the best object until it passed that price, at which point it
would bid for the second best object. Because the overall utility is computed by adding the utilities, the absolute price is actually
irrelevant to the overall score, meaning that the importance is in which assignment is made, not the price. Rather than continue
to bid a small increment, the entire difference is added to the bid so the next round can occur.

The assignments are made (6), reflecting bidder A's new assignment to object 1, and the price of the newly bid object is updated.
The auction then checks to see if there are any bidders still unassigned, which is true, and hence continues to the next round.

Auction Round # iI Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 3 - - - - - -

Starting Prices 5 20 30
Utilities 4 3 5
Profit -1 -17 -25

(Profit = Utility - Price)
Best Object,Profit 1 -1
2nd Best Object, Profit 2 -17
Difference 16

Ending Assignment Ending Assignment
Object Bid On, Bid 1 21 A - - I - -

(Bid = Start Price + Difference)
Ending Prices 21 20 30

Round 2, shown below, begins with the ending prices and assignments of round 1. An unassigned bidder B is selected as the bidder in
round 2 (1). Again, the profits for each assignment are computed, using the utility table and current prices (2). Object 1 and 2 appear
equally attractive, each with profits of -14 (3), so the bidder randomly selects object 2 (3). The difference is computed to be 0 (5) and the
bid is calculated to be the price of object 2 plus the difference of 0, equal to 20 (6). The assignments are updated, noting bidder B is now
assigned to object 2 (6), at a price of 20 (7).

Auction Round # 21 Assignment (by Object) Assignment (by Bidder)
Bidder B 1 2 3 A B C
Objects 1 2 3 A - - 1 - -
Starting Prices 21 20 30
Utilities 7 6 7
Profit -14 -14 -23

(Profit = Utility - Price)
Best Object,Profit 2 -14
2nd Best Object, Profit 1 -14
Difference 0

Ending Assignment Ending Assignment
Object Bid On, Bid 2 20 A B - 1 2 -

(Bid = Start Price + Difference)
Ending Prices 21 20 30 1 1 1

Step #
1)

2)

3)
4)
5)

6)

7)

Step #
1)

2)

3)
4)
5)

6)

7)



Round 3 begins with unassigned bidder C (1). The most attractive objects to bidder C is object 3 with a profit of -13 (3). The next most
attractive is object 1 or 2, each with a profit of -14 (4). The bidder therefore chooses object 3, bidding 31 (6), which is equal to the starting
price of 30 plus the profit difference of 1 (5). The assignments are updated (6), along with the price update of object 3 (7).

Auction Round # 31 Assignment (by Object) Assignment (by Bidder)
Bidder C 1 2 3 A B C
Objects 1 2 3 A B - 1 2 -
Starting Prices 21 20 30
Utilities 7 6 17
Profit -14 -14 -13

(Profit = Utility - Price)
Best Object,Profit 3 -13
2nd Best Object, Profit 1 -14
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 3 31 A B C 1 2 3

(Bid = Start Price + Difference)
Ending Prices 21 20 31

Since all bidders have been assigned, the auction terminates. The ending assignments and utilities are

A1 4
B2 6
C3 17
Total 27

Step #
1)

2)

3)
4)
5)

6)

7)
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2.4 Complementary Slackness and E-Complementary Slackness

The complementary slackness (CS) condition requires that the value received by

the bidder for the object (utility minus price) is the highest possible given all current

object prices. Hence, a bidder would never choose a less than optimal object at any

given stage.

Complementary Slackness: ay -p> >max { aik-pk} V (ij) E S
kcA (i)

The auction presented above requires that a bidder bid at least the current price for

an object, given the bidding increment is always non-negative. However, it is easy to

construct a scenario in which three bidders desiring the same object at the same level will

enter into an endless cycle, each subsequently bidding for the object at the same price.

Because of this, the auction presented above is referred to as the naive auction. The

method for fixing this problem is to require each successive bid to be more than the

previous, so that eventually one of the bidders will find it more attractive to bid for a

different object. Figure 5 demonstrates a nafve auction that never terminates.



Illustrative Example of Non-terminating NaTve Auction
Figure 5

The utility values of each possible assignment are given
in the matrix on the right. The utility of C3 has changed
from 17 in Figure 4 to 4 here.

Utility Values of Assignments
Objects

1 2 3
A 4 3 5

Bidders B 7 6 7
C 7 6 4

The initial conditions to this auction are that there are no assignments and that the prices of objects 1,
are 5, 20, and 30.

2, and 3, respectively,

Round 1 proceeds identically to that in Figure 4.

Auction Round # I Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 3 - - - - - .
Starting Prices 5 20 30
Utilities 4 3 5
Profit -1 -17 -25

(Profit = Utility - Price)
Best Object,Profit 1 -1
2nd Best Object, Profit 2 -17
Difference 16

Ending Assignment Ending Assignment
Object Bid On, Bid 1 21 A - - 1 - -

(Bid = Start Price + Difference)
Ending Prices 21 20 30

Round 2 begins with the ending prices and assignments of round 1. An unassigned bidder B is selected as the bidder in round 2 (1).
Again, the profits for each assignment are computed, using the utility table and current prices (2). Object 1 and 2 appear equally
attractive, each with profits of -14 (3), so the bidder randomly selects object 1 (3). The difference is computed to be 0 (5) and the bid is
calculated to be the price of object 1 plus the difference of 0, equal to 21 (6). The assignments are updated, noting bidder B is now
assigned to object 1 (6), at a price of 21 (7), and bidder A is becomes unassigned.

Auction Round # 2 Assignment (by Object) Assignment (by Bidder)
Bidder B 1 2 3 A B C
Objects 1 2 3 A - - 1 - -
Starting Prices 21 20 30
Utilities 7 6 7
Profit -14 -14 -23

(Profit = Utility - Price)

QSkMk 4erfi trofit ? ::4
Difference 0

Ending Assignment Ending Assignment
Object Bid On, Bid 1 21 B - - - 1 -

(Bid = Start Price + Difference)
Ending Prices 21 20 30

Step #
1)

2)

3)
4)
5)

6)

7)

Step #
1)

2)

5)

6)

7)



Round 3 begins with unassigned bidder C (1). The most attractive objects to bidder C are objects 1 and 2. The bidder therefore chooses
either object, being indifferent, which in this case he bids on object 2 (3). However, there is no price increment (5), but again a bid equal to
the current price, this time of object 2, of 20 (6). The assignments are updated (6) and the prices are kept the same.

Auction Round # 3 Assignment (by Object) Assignment (by Bidder)
Bidder C 1 2 3 A B C
Objects 1 2 3 B - - - 1 -
Starting Prices 21 20 30
Utilities 7 6 4
Profit -14 -14 -26

(Profit = Utility - Price)
Best Object,Profit 2 -14
2nd Best Object, Profit 1 -14
Difference 0

Ending Assignment Ending Assignment
Object Bid On, Bid 2 20 B C - - 1 2

(Bid = Start Price + Difference)
Ending Prices 21 20 30

Round 4 starts with bidder A computing his profits, noticing that he is indifferent to objects 1 and 2. He therefore chooses either object, but
the new bid is exactly the same as the old bid. He nevertheless replaces the old owner and the next round continues with which ever
bidder he ousted this round. The problem is that both bidders he is ousting will view the two objects indifferently also and the prices will
never be incremented. Hence, the auction will continue for an infinite number of rounds, with no bidder ever bidding on object 3.

Auction Round # 4 Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 B C -- 1 2
Starting Prices 21 20 30
Utilities 4 3 5
Profit -17 -17 -25

(Profit = Utility - Price)
Best Object, Profit 1 -17
2nd Best Object, Profit 2 -17
Difference 0

Ending Assignment Ending Assignment
Object Bid On, Bid 1 21 A C - 1 - 2

(Bid = Start Price + Difference)
Ending Prices 21 20 30

lB

Step #
1)

2)

3)
4)
5)

6)

7)

Step #
1)

2)

3)
4)
5)

6)

7)



The actual auction algorithm used in practice incorporates a required increment in

each bid of value s, in addition to the bid determined in the naive auction.

Bidding increment: Y, = Vi - W + s

This precludes the possibility of infinite cycling among an equally valued object

by two bidders and guarantees the auction will finish in a fixed amount of time. The

requirement forces each bid to increase the bidding amount by a minimum of E. Hence,

eventually a bidder will bid on a new object because the price has increased enough to

make another object a more profitable choice. While this deviates from the original CS

condition, it is replaced by an s-CS condition, which states that a bidder's selection is

within , of optimal.

s-Complementary Slackness: ay - p> >max { aik-pk}- 6 V (ij) C S
kEA(i)

With each bidder within s of being optimal, the total deviation is at most E times

the number of bidders. Therefore, by insuring that s* n is less than the utility granularity,

the solution will be optimal. Assuming the utility granularity is to the integer, s must be

less than 1/n. This allows n different bidders to sequentially bid for the object, if it is in

fact the optimal choice, before the price increases to the next level of value. If each

bidder is therefore within s of optimal, all bidders together must be within 0* n, which is

less than 1. Since it is impossible to be suboptimal by less than one if utilities are integer

(the minimum suboptimality would be at least one), the solution must be optimal. Figure
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6 presents an auction using s-complementary slackness, which guarantees a solution

within n * s of optimality.

A practical implementation sets s equal to one and each utility equal to

(n+1)*(Integer Utility), increasing utility granularity to the requisite level and requiring

only integers to be used in the program. This is identical to the previous argument, but

multiplying all terms by n+l. Figure 7 modifies the auction in Figure 6 by multiplying

the integer utilities by n+l, yielding the optimal solution.

An important issue in using s is that there can at most be [max(ij)Iay -pj(initiaol + E]

bids for each object, or O(c) , where c is a constant. By multiplying the utilities by n as

above, there can be at most n times this amount of bids for each object. With n objects,

total possible number of bids in the auction to the number of objects n times the number

of bids per object, a total maximum of n2 *[maxilJay -pfrinitiaol+ s], or O(n2c). Each

round requires O(n) operations to find the best bid, examining the profit of pairing the

object with each of n items. Hence, the total running time of the auction becomes

O(n3 [max(i)l ay -Pj(initial) +c]), or essentially O(n c), which is pseudopolynomial, where c

is a constant.
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Illustrative Example of Modified Auction (optimal within n*epsilon = 3)
Figure 6

Everything in this example is identical to Figure 5 except
that every bid is increased by an additional value epsilon
equal to 1.

Utility Values of Assignments
Objects

1 2 3
A 4 3 5

Bidders B 7 6 7
C 7 61 4

Round 1 begins identically, choosing a bidder (1), finding the profits (2), and calculating the difference (5) of the best (3)
and second best (4) objects. However, the bid is now equal to the starting price plus the difference plus epsilon (epsilon = 1).
Hence, the assignment is identical to last time (6), but the bid (6) and ending prices (7) are higher.

Auction Round # I Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 3 - - - - - -

Starting Prices 5 20 30
Utilities 4 3 5
Profit -1 -17 -25

(Profit = Utility - Price)
Best Object,Profit 1 -1
2nd Best Object, Profit 2 -17
Difference 16

Ending Assignment Ending Assignment
Object Bid On, Bid 1 17 A - - I - -

(Bid = Start Price + Difference + epsilon)
Ending Prices 22 20 30

Round 2 proceeds as usual. The difference here is 1, so the bid is equal to the start price of 20 plus the difference of 1 plus 1 for
epsilon. Hence the bid is 22 for object 2.

Auction Round # 2 Assignment (by Object) Assignment (by Bidder)
Bidder B 1 2 3 A B C
Objects 1 2 3 A - - 1 - -
Starting Prices 22 20 30
Utilities 7 6 7
Profit -15 -14 -23

(Profit = Utility - Price)
Best Object,Profit 2 -14
2nd Best Object, Profit 1 -15
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 2 22 A B - 1 2 -

(Bid = Start Price + Difference + epsilon)
Ending Prices 22 22 30 1 1

Auction Round # 3 Assignment (by Object) Assignment (by Bidder)
Bidder C 1 2 3 A B C
Objects 1 2 3 A B - 1 2 -
Starting Prices 22 22 30
Utilities 7 6 4
Profit -15 -16 -26

(Profit = Utility - Price)
Best Object,Profit 1 -15
2nd Best Object, Profit 2 -16
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 1 24 C B - - 2 1

(Bid = Start Price + Difference + epsilon)
Ending Prices 24 22 30 1 1

Step #
1)

2)

3)
4)
5)

6)

7)

Step #
1)

2)

3)
4)
5)

6)

7)

Step #
1)

2)

3)
4)
5)

6)

7)
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Auction Round # 4 Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 3 C B - - 2 1
Starting Prices 24 22 30
Utilities 4 3 5
Profit -20 -19 -25

(Profit = Utility - Price)
Best Object,Profit 2 -19
2nd Best Object, Profit 1 -20
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 2 24 C A - 2 - 1

(Bid = Start Price + Difference + epsilon)
Ending Prices 24 24 30 1 1 1

Auction Round # 5 Assignment (by Object) Assignment (by Bidder)
Bidder B 1 2 3 A B C
Objects 1 2 3 C A - 2 - 1
Starting Prices 24 24 30
Utilities 7 6 7
Profit -17 -18 -23

(Profit = Utility - Price)
Best Object,Profit 1 -17
2nd Best Object, Profit 2 -18
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 1 26 B C - - 1 2

(Bid = Start Price + Difference + epsilon)
Ending Prices 26 24 30

Auction Round # 6 Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 3 B C - - 1 2
Starting Prices 26 24 30
Utilities 4 3 5
Profit -22 -21 -25

(Profit = Utility - Price)
Best Object,Profit 2 -21
2nd Best Object, Profit 1 -22
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 2 26 B A - 2 1 -

(Bid = Start Price + Difference + epsilon)
Ending Prices 26 26 30

Auction Round # 7 Assignment (by Object) Assignment (by Bidder)
Bidder C 1 2 3 A B C
Objects 1 2 3 B A - 2 1 -
Starting Prices 26 26 30
Utilities 7 6 4
Profit -19 -20 -26

(Profit = Utility - Price)
Best Object,Profit 1 -19
2nd Best Object, Profit 2 -20
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 1 28 C A - 2 - 1

(Bid = Start Price + Difference + epsilon)
Ending Prices 28 26 30 1 1 1

Auction Round # 8 Assignment (by Object) Assignment (by Bidder)
Bidder B 1 2 3 A B C
Objects 1 2 3 C A - 2 - 1
Starting Prices 28 26 30
Utilities 7 6 7
Profit -21 -20 -23

(Profit = Utility - Price)
Best Object,Profit 2 -20
2nd Best Object, Profit 1 -21
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 2 28 C B - - 2 1

(Bid = Start Price + Difference + epsilon)
Ending Prices 28 28 30 1
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Auction Round # 9 Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 3 C B - - 2 1
Starting Prices 28 28 30
Utilities 4 3 5
Profit -24 -25 -25

(Profit = Utility - Price)
Best Object,Profit 1 -24
2nd Best Object, Profit 2 -25
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 1 30 A B - 1 2 -

(Bid = Start Price + Difference + epsilon)
Ending Prices 30 28 30 1 1 1

Auction Round # 10 Assignment (by Object) Assignment (by Bidder)
Bidder C 1 2 3 A B C
Objects 1 2 3 A B - 1 2 -

Starting Prices 30 28 30
Utilities 7 6 4
Profit -23 -22 -26

(Profit = Utility - Price)
Best Object,Profit 2 -22
2nd Best Object, Profit 1 -23
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 2 30 A C - 1 - 2

(Bid = Start Price + Difference + epsilon)
Ending Prices 30 30 30

Auction Round # 11 Assignment (by Object) Assignment (by Bidder)
Bidder B 1 2 3 A B C
Objects 1 2 3 A C - 1 - 2
Starting Prices 30 30 30
Utilities 7 6 7
Profit -23 -24 -23

(Profit = Utility - Price)
Best Object,Profit 3 -23
2nd Best Object, Profit 1 -23
Difference 0

Ending Assignment Ending Assignment
Object Bid On, Bid 3 31 A C B 1 3 2

(Bid = Start Price + Difference + epsilon)
Ending Prices 30 30 31

The auction terminates. However, note that the assignments yield a score of

Al 4
C2 7
B3 6
Total 17

while a higher scoring assignment exists in the form

A3 5
B2 6
C1 7
Total 18

However, the total score is within n * epsilon = 3 * I = 3 of being optimal. Because the utility values are integer, an
assignment that is not optimal will be a minimum of 1 away (and perhaps 2 or some other integer) from the optimal
score. Hence, by reducing n * epsilon to be less than 1, the solution will be guaranteed to be optimal. Setting epsilon
equal to 3/4 will allow this to happen. An altemative way to achieve this is to increase the discrete differences in the
utility values so that the minimum discreteness is greater than 3. By this argument, the minimum amount a suboptimal
assignment can be from optimal is equal to the minimum discrete difference. This allows us to set epsilon equal to
whatever value desired (1 in this case) and multiply utilities by a certain value to achieve the discrete level required.
Because n * epsilon = 3 in this case, multiplying the integer utilities (which are currently at a discrete level of 1) by
anything more than 3 will create a discrete level greater than 3 and achieve optimality. The added benefit of this is
that using integer values for utilities and epsilon allows the entire implementation to occur using integers on a computer.



Illustrative Example of Modified Auction (Completely Optimal)
Figure 7

This auction modifies the utility matrix so
the final assignment is guaranteed to be
optimal. To achieve this, the utility table
is multiplied by 4 and the same auction is
run. It does not matter whether or not the
prices are adjusted as well, though it may
affect the time until solution.

New Utility Values of Assignments
Objects

1 2 3
A 16 12 20

Bidders B 28 24 28
C 28 24 16

Old Utility Values of Assignments
Objects

1 2 3
A 4 3 5

Bidders B 7 6 7
C 7 6 4

Auction Round # 1 Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 3 - - - - - .
Starting Prices 5 20 30
Utilities 16 12 20
Profit 11 -8 -10

(Profit = Utility - Price)
Best Object,Profit 1 11
2nd Best Object, Profit 2 -8
Difference 19

Ending Assignment Ending Assignment
Object Bid On, Bid 1 25 A - - I - -

(Bid = Start Price + Difference + epsilon)
Ending Prices 25 20 30

Round 2 proceeds as usual. The difference here is 1, so the bid is equal to the start price of 20 plus the difference of 1 plus 1 for
epsilon. Hence the bid is 22 for object 2.

Auction Round # 2 Assignment (by Object) Assignment (by Bidder)
Bidder B 1 2 3 A B C
Objects 1 2 3 A - - 1 - -
Starting Prices 25 20 30
Utilities 28 24 28
Profit 3 4 -2

(Profit = Utility - Price)
Best Object,Profit 2 4
2nd Best Object, Profit 1 3
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 2 22 A B - 1 2 -

(Bid = Start Price + Difference + epsilon)
Ending Prices 25 22 30

Auction Round # 3 Assignment (by Object) Assignment (by Bidder)
Bidder C 1 2 3 A B C
Objects 1 2 A B - 1 2 -
Starting Prices 25 22 30
Utilities 28 24 16
Profit 3 2 -14

(Profit = Utility - Price)
Best Object, Profit 1 3
2nd Best Object, Profit 2 2
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 1 24 C B - - 2 1

(Bid = Start Price + Difference + epsilon)
Ending Prices 25 24 30
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Auction Round # 4 Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 3 C B - - 2 1
Starting Prices 25 24 30
Utilities 16 12 20
Profit -9 -12 -10

(Profit = Utility - Price)
Best Object,Profit 1 -9
2nd Best Object, Profit 3 -10
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 1 27 A B - 1 2 -

(Bid = Start Price + Difference + epsilon)
Ending Prices 27 24 30

Auction Round # 5 Assignment (by Object) Assignment (by Bidder)
Bidder C 1 2 3 A B C
Objects 1 2 3 A B - 1 2 -
Starting Prices 27 24 30
Utilities 28 24 16
Profit 1 0 -14

(Profit = Utility - Price)
Best Object,Profit 1 1
2nd Best Object, Profit 2 0
Difference 1

Ending Assignment Ending Assignment
Object Bid On, Bid 1 29 C B - - 2 1

(Bid = Start Price + Difference + epsilon)
Ending Prices 29 24 30

Auction Round # 6 Assignment (by Object) Assignment (by Bidder)
Bidder A 1 2 3 A B C
Objects 1 2 3 C B -- 2 1
Starting Prices 29 24 30
Utilities 16 12 20
Profit -13 -12 -10

(Profit = Utility - Price)
Best Object, Profit 3 -10
2nd Best Object, Profit 2 -12
Difference 2

Ending Assignment Ending Assignment
Object Bid On, Bid 3 33 C B A 3 2 1

(Bid = Start Price + Difference + epsilon)
Ending Prices 29 24 33

The auction terminates. Note the optimal total utility score of 18.

A3 5
1B2 6
C1 7
Total 18

The reason the auction terminated more quickly was because the initial prices were closer to their relative equilibrium values and
the increments were larger due to the larger discrete values in the utility table.
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2.5 s-Scaling and Price Wars

The initial prices set for the objects can significantly affect the length of the

auction. Often, one or more particular objects will be of similar value to each other, yet

far away from their relative equilibrium prices given the initial prices of other objects.

Bidders may see similar value in the objects and increase the price by low increments,

requiring a very large number of bidding rounds to occur before the prices reach the

desired levels. The slow, incremental increase in an object price, referred to as a price

war, can be reduced by a procedure known as s-scaling. Essentially, this requires early

bidding rounds to be in much larger increments, while prices have large movements to

make. The auction procedure then takes the prices obtained from the large s rounds as

initial starting prices in subsequent auctions, where s is decreased, eventually to the

desired level.

s is lowered over the course of bidding cycles, typically by a factor of 10 (or a

more appropriate constant) per auction. This is economically equivalent to only allowing

large bid increments in the beginning of an auction, reducing the total number of bids

received. As an example, imagine two objects are worth $10,000 to three bidders and a

third object is worth $9,999. However, the initial prices of two of the items are set to $0,

while the third is set at $10,000. All three will compete for the two items priced at $0,

raising the price as little as possible because their next most valuable item is at the same

level. In fact, this competition will proceed until the level of the third item is reached, at

which point it becomes more valuable for a bidder to bid for the third item, at which point

the auction will terminate.



If the final price of the items will ultimately sell for $10,000, minimum

increments of $1 will require 10,000 rounds to raise the two objects to the level of the

third, whereas requiring the initial auction to increment at least $1,000 per bid until the

auction is over will require only 10 rounds. Of course, this causes the auction to only be

within 3 * $1,000 of optimality. But the process continues with a second auction that

starts with no initial assignments, but the prices achieved by the previous auction, which

requires far less bidding rounds. While the first auction will only be within n * $1,000 of

optimality (where 6 = 1,000), the next auction will be within n * (minimum increment

level) of optimality. As the auction proceeds, s is reduced to an acceptable level of

guaranteed optimality. The reduction of epsilon by factors contributes to shrinking a

portion of the theoretical bound to a logarithmic factor. In the example auction, if the

second auction set s = $100, a third with s = $10, and a final with s = $1, a total of 22

rounds would have been required, as opposed to the non E-scaling version requiring

10,003 rounds. This scenario is illustrated in Figure 8.

While not all savings will be as dramatic as in this case, there is always a

theoretically bounded logarithmic decrease in the number of rounds required when s-

scaling by factors is used. Attention has been focused on the optimal method of reducing

epsilon, yet it appears that this method changes on a case by case basis, depending on the

probability and frequency of price wars, as well as worst-case requirements. These

scaling methods are lumped into a category called adaptive scaling [6].

It is important that complementary slackness be observed in the subsequent

auctions; merely reducing epsilon in further rounds can violate conditions required.



Typically this is observed trivially by beginning each successive auction in the series

with no assignments.



Illustrative Example of Epsilon Scaling (e-scaling)
Figure 8

The auction on the left is run without e-scaling. The utility values of all objects in
this example are very close, resulting in final prices that are likewise very close.
However, the initial starting prices for objects 1, 2, and 3 are 0, 0, and 10,000,
respectively. Therefore, the prices of objects 1 and 2 must be raised until it is
more advantageous for object 3 to receive a bid at a price over 10,000. Because
there are two objects already near their equilibrium value, the increments are
small (typically 2 * epsilon) for each bid round. This results in the auction
needing 10,003 rounds.

The charts below are read in the following way. The initial conditions are
specified first, denoting the starting prices of the objects. Each round of the
auction then shows which bidder has been selected to bid, the object for which
he will bid (the most profitable), the bid he is willing to make (old price + profit
difference of best two objects + epsilon), and the revised, post-round
assignments. The pre-round assignments are simply the previous round's
assignments. The non e-scaling version consists of a single auction that
terminates with its solution, while the e-scaling runs several auctions. Each
successive e-scaling auction begins with the resultant prices of the previous
auction as its new initial prices.

The auction on the right is run with e-scaling. The initial epsilon value is 1000,
giving a result that is accurate to n * epsilon = 3000. The resulting prices are
saved when the first auction terminates and the next auction is run beginning with
those prices and a reduced epsilon (the reductions are by a factor of 10 in each
auction), but starts with no assignments. Hence, the second auction has an
epsilon equal to 100. The process is repeated until the desired epsilon is
reached. Because the objects are so far from their relative equilibrium, using the
large epsilon allows the prices to converge more quickly, with increments of 1000
versus the non e-scaling's increments of 1. The total number of rounds required
is 22, versus the 10,003 required in the non e-scaling case. Using e-scaling, the
auction is solved in polynomial time because the order depends on the log of the
utility value and can grows according to bit representation.

Utility Values
Objects 1 2 3

Bidders
A 10,000 10,000 9,999
B 10,000 10,000 9,99
C 10,000 10,000 9,999



Figure 8 (page 2)

Auction without e-scaling

AUCTION 1 Epsilon = I Owners of Each Object
Round # Bidder Object Bid On New Price 1 2 3

Initial - 1 0 - - -

Conditions 2 0 -
- 3 10,000 - - -

1 A 1 1 A - -
2 B 2 2 A B -
3 C 1 3 C B -
4 A 2 4 C A -
5 B 1 5 B A -
6 C 2 6 B C -
7 A 1 7 A C -
8 B 2 8 A B -
9 C 1 9 C B -

10 A 2 10 C A -

11 B 1 11 B A -
12 C 2 12 B C -
13 A 1 13 A C -
14 B 2 14 A B -
... ... ... ... ... ... ...

9999 C 1 9,999 C B -
10000 A 2 10,000 C A -
10001 B 1 10,001 B A -

10002 C 2 10,002 B C -
10003 A 3 10,001 B C A

(final assignments)
10003 ROUNDS

Final Utility Assignments Utility Values
BI 10,000
A3 9,999
C2 10,000

Total 29,999
Optimality within 3*epsilon = 3

Auction with logarithmic e-scaling (reduction by 10x each auction)

AUCTION I Epsilon = 1000 Owners of Each Object
Round # Bidder Object Bid On New Price 1 2 3

Initial - 1 0 - - -

Conditions - 2 0 - - -
- 3 10,000 - - -

1 A 1 1,000 A - -

2 B 2 2,000 A B -
3 C 1 3,000 C B -
4 A 2 4,000 C A -
5 B 1 5,000 B A -
6 C 2 6,000 B C -

7 A 1 7,000 A C -
8 B 2 8,000 A B -
9 C 1 9,000 C B -
10 A 2 10,000 C A -
11 B 1 11,000 B A -
12 C 2 11,000 B C -
13 A 3 11,000 B C A

AUCTION 2 Epsilon = 100
Initial - 1 11,000 - - -

Conditions - 2 11,000 - - -

- 3 11,000 - - -

14 A 1 11,100 A - -
15 B 2 11,100 A B -
16 C 3 11,100 A B C

AUCTION 3 Epsilon = 10
Initial - 1 11,100 - - -

Conditions - 2 11,100 - - -
- 3 11,100 - - -

17 A 1 11,110 A - -
18 B 2 11,110 A B -
19 C 3 11,110 A B C

AUCTION 4 Epsilon = I
Initial - 1 11,110 - - -

Conditions - 2 11,110 - - -
- 3 11,110 - - -

20 A 1 11,111 A - -
21 B 2 11,111 A B -
22 C 3 11,111 A B C

(final assignments)
22 ROUNDS

Final Utility Assignments Utility Values
Al 10,000
B2 10,000
C3 9,999

Total 29,999
Optimality within 3*epsilon = 3
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2.6 Similarity Classes and Price Wars

2.6.1 Auctions with Similar Objects

Often times a group of items will have identical utilities to all bidders and are said

to comprise a similarity class, as illustrated in Figure 9.

Similar Objects
Figure 9

Utility Values
Objects 1 2 3

Bidders
A 10,000 10,000 9,999
B 1 10,000 10,000 9,999
C 10,000 10,000 9,999

Objects 1 and 2 are in a similarity class because
Al = A2
B1 = B2
C1 = C2

Similar objects are represented by identical columns.

Formally, the utility of each object-bidder pair ay is identical for every objectj in

the similarity class:

ay = ay, V icB6j) wherej andj' are in a similarity class

When competing for these objects, bidders will bid a very small increment (the

minimum) for an item in a similarity class because the next optimal object bid would be

for another object in the class at the same price. The next bid will then be the minimum

increment for the next item in the class. Bidders will continue alternating among items in

the similarity class until eventually a level is reached where a bidder chooses an item

outside the class, referred to as the contention threshold or minimum departure price.
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Until the contention threshold is reached, bidders will be engaged in a price war, raising

bids as slowly as possible.

Price wars due to similarity classes can be circumvented by keeping track of

similarity classes and contention thresholds. Every objectj in a similarity class has its

own contention threshold p. Unassigned objects carry a contention threshold of the

initial price. Assigned objects have a contention threshold equal to c plus the price to

which it can be raised under its current assignment before an item in a different class

becomes equally valuable. If all contention thresholds of objects in a similarity class are

higher than the prices of the objects, the prices can all be raised to the minimum

contention threshold, avoiding the price war.

Therefore, the price pj of every objectj of a similarity class MY) is the same,

equal to the minimum contention threshold p over all objects in the class.

pj = min pk
kcMO)

The previous example auction (demonstrating c-scaling) also contains similarity

classes which can be exploited for efficiency. An example is presented in Figure 10 that

demonstrates the use of similarity classes. Figure 11 then compares the similarity class

auction with the standard auction, verifying a reduction in the number of rounds from

10,003 to 3, a clear and substantial improvement.
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Illustrative Example of Object Similarity Classes
Figure 10

Utility Values
Objects 1 2 3

Bidders
A 10,000 10,000 9,999
B 10,000 10,000 9,999
C 10,000 10,000 9,999

Contention Thresholds (CTs) start at initial prices for unassigned objects. The CTs replace the former role of prices. First, an unassigned bidder is
selected in (1), bidder A, who determines his best choice by finding his best profit (3), which now is equal to the utility minus the CT, rather than the actual
price. The most profitable object is selected in (4) and the next most profitable in a different class is selected in (6). The new CT is now computed by
calculating the price at which the best object would need to reach in order for the bidder to want a different class object. This is computed by taking the
current price of the object, adding the difference in profits, and finally adding an epsilon. This becomes the CT of the best object (10), though the prices are
the minimum CT of their class, which is still 0 in this case. The object is assigned to the bidder and the next round begins.

Auction Round # 1
Bidder A
Objects 1 2 3
Starting Prices 0 0 10000
Starting CTs 0 0 10000
Utilities 10000 10000 9999
Profit 10000 10000 -1

(Profit = Utility - CT)
Best Object,Profit
Min Contention Threshold Object
in Class, CT Value
Best Object Outside of Class,
Profit
Price of Best Object at which
Object in (6) is chosen + epsilon

1 10000

1 0

3

Prce of Best Object +
(4) -(6) + l

-1

10002

Object Bid On, Bid 1 0
(Bid = Min Contention Threshold within Class-Object I or 2's value of 0 + epsilon)

Ending Prices 0 0 10000
(Price - Min CT of Class, = Object 2's 0)

Ending CTs 10002 0 10000
(7) - Prce of this

object at which object
3 (outside of class) is

chosen

Stil unassigned

Assignment (by Object)
1 2 3

Ending Assignment
A - -

Assignment (by Bidder)
A B C

Ending Assignment
1 - -

Unassigned bidder B is selected (2) and his profits options are examined (3). His best object is clearly object 2, and the new CT of the object is calculated
to be the price of 2 plus the profit difference of object 2 and the best object outside of the class, plus epsilon, which is equal to O + (10000- -1) + 1 = 10002
(7). This becomes the new CT for object 2 (10), and the prices of the class are now recomputed to be the minimum CT of the class, which is now 10002
(9). Object 2 is assigned to B (8) and the next round continues.

Auction Round # 2
Bidder B
Objects 1 2 3
Starting Prices 0 0 10000
Starting CTs 10002 0 10000
Utilities 10000 10000 9999
Profit -2 10000 -1

(Proft = Utiity - CT)
Best Object,Profit
Min Contention Threshold Object
in Class, CT Value
Best Object Outside of Class,
Profit
Price of Best Object at which
Object in (6) is chosen + epsilon

2 10000

2

3

Price of Best Object +
(4) -(6) + 1

0

-1

10002

Object Bid On, Bid 2 10002
(Bid = Min Contention Threshold within Class-Object 2s value of 0 + epsilon)

Ending Prices 10002 10002 10000
(Price - Min CT of Class, = Object 1 or 2s 10002)

Ending CTs 10002 10002 10000
(7) - Price of this object at which object Sill unassigned

3 (outside of class) is chosen

Assignment (by Object)
1 2 3
A - -

Ending Assignment
A B -

Assignment (by Bidder)
A B C
1 - -

Ending Assignment
1 2 -

Step #
1)

2)

3)

4)
5)

6)

7)

8)

9)

10)

Step #
1)

2)

3)

4)
5)

6)

7)

8)

9)

10)

I

I I I



Round 3 takes the only remaining unassigned bidder C (1) and again computes the profits (2), choosing object 3 as the best choice. The CT is now
computed by taking the price of object 3 plus the profit difference plus epsilon (7). The assignment is made in (8) and the price of the class of C is now
recomputed. Trivially, the price of C is always equal to its CT. Since all objects are assigned, the auction terminates.

Auction Round # 3
Bidder C
Objects 1 2 3
Starting Prices 10002 10002 10000
Starting CTs 10002 10002 10000
Utilities 10000 10000 9999
Profit -2 -2 -1

(Profit = Utlity - C T)
Best Object,Profit
Min Contention Threshold Object
in Class, CT Value
Best Object Outside of Class,
Profit
Price of Best Object at which
Object in (6) is chosen + epsilon

3 -1

3 10000

1 -2

Step #
1)

2)

3)

4)
5)

6)

7)

8)

9)

10)

Object Bid On, Bid 3
(Bid = Min Contenton Threshold within Class-10002)

Ending Prices 10002
(Price - Min CT of Class, = Object 3 CT)

Ending CTs 10002

10002

10002

10002

1000
Price of this object at which object 3

(outside of class) is chosen

10002

10002
(7) - Price of this
object at which

object nrutsidn nf

2

Assignment (by Object)
1 2 3
A B -

Ending Assignment
A B C

Assignment (by Bidder)
A B C

1 2 -

Ending Assignment
1 2 3

Price of Best Object +
(4) -(6) + l

ohiect outside of



Comparative Example of Object Similarity Classes
Figure 11

The charts below are read in the following way. The initial conditions are specified first, denoting the starting prices of the objects. Each round of the
auction then shows which bidder has been selected to bid, the object for which he will bid (the most profitable), the bid he is willing to make (old price +
profit difference of best two objects + epsilon), and the revised, post-round assignments. The pre-round assignments are simply the previous round's
assignments. The non-similarity class auction (at left) engages in a price war between objects 1 and 2, slowly incrementing each object until eventually
object 3 is selected. The similarity class auction (at right), on the other hand, allows objects A and B to instantly increase their price to a level where an
object outside the class would be selected. This avoids the price war and terminates the auction in 3 rounds. Detailed rounds are given for the similarity
class auction in the prior figure.

Utility Values

dders Objects 1 2 3

A 10,000 10,000 9,999
TB I 10,000 10,000I 9,999
C 10,000 10,000 9,999

Auction Without Similarity Classes Auction With Similarity Classes
(objects 1 and 2 in same class)

AUCTION 1 Owners of Each Object' AUCTION 1 Owners of Each Object
Round # Bidder Object New Price 1 2 3 Round # Bidder Object CT 1 2 3

Initial - 1 0 - - - Initial - 1 0 - -

Conditions - 2 0 - - - Conditions - 2 0 - -
- 3 10,000 - - - - 3 10,000 - -

1 A 1 1 A - - 1 A 1 10,002 A -
2 B 2 2 A B - 2 B 2 10,002 A B
3 C 1 3 C B - 3 C 1 10,002 A B C
4 A 2 4 C A - (final assignments)
5 B 1 5 B A - 3ROUNDS
6 C 2 6 B C - Final Utility Assignments Utility Values
7 A 1 7 A C - Al 10,000
8 B 2 8 A B - B2 10,000
9 C 1 9 C B - C3 9,999

10 A 2 10 C A -
11 B 1 11 B A - Total 29,999
12 C 2 12 B C - Optimality within 3*epsilon = 3
13 A 1 13 A C -
14 B 2 14 A B -

9999 C 1 9,999 C B -
10000 A 2 10,000 C A -
10001 B 1 10,001 B A -
10002 C 2 10,002 B C -
10003 A 3 10,001 B C A

(final assignments)
10003 ROUNDS

Final Utility Assignments Utility Values
B1 10,000
A3 9,999
C2 10,000

Total 29,999
Optimality within 3*epsilon = 3



2.6.2 Auctions with Similar Bidders
An auction with similar bidders can also be handled to avoid price wars and

expedite the process [4] [6]. The intuition here is that if one bidder is not assigned, then

all k bidders of that similarity class bid a common amount set to the (k+1)st bid for the

first k most profitable items. Essentially, bidders are automatically raising their bids to

the minimum contention threshold of the class.

Similar Bidders
Figure 12

Utility Values
Objects 1 2 3

Bidders
A 10,000 10,000 9,999
B 10,000 10,000 9,999
C 10,000 10,000 9,999
D 9,999 9,999 9,999

Persons A, B, and C are in a similarity class because
Al = B1 = C1
A2 = B2 = C2
A3 = B3 = C3

Similar Persons are represented by identical rows.

2.7 Reverse Auctions

Reverse auctions switch the bidding perspective such that the objects now lower

their prices, trying to extract as high a price as possible from the bidders [4] [6] [11]. To

obtain a bidder, the unassigned object must drop its price low enough to draw a bidder

away from some other assignment or to attract an initial bidder. Note here that once a

bidder has been assigned, he can at worst be reassigned to another, and will never again

be unassigned. Hence, the idea of irreversible progress is made when a new person

becomes assigned. Reverse auctions are equivalent to forward auctions and are subject to
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the same issues of complementary slackness, 8-CS, price wars, and similarity classes,

which can all be handled in analogous ways as its forward counterpart.

Formally, the bid in a reverse auction for an unassigned person is computed in the

following way, analogous to the forward case. A key point is that price p is exchanged

with profit 7r as the perspective has reversed. An unassigned objectj looks for its best

person i and the corresponding value P.

Best person i: ij= arg max { ay;- ,}
iEBO)

Best value: P3 = max { ay- ir }
iEB6)

Additionally, the value of the second best person k is computed.

Second best value: w. = max { ak - 7r}
keBO), k # i

The bid by the object is to the best person i and increases 71 by (%3 - W,+ s). The price is

determined by the relation

pj+ri=ay CV (ij) E S

for all assigned pairs q. If a different object had been assigned to the person earlier, it

becomes unassigned and reenters the bidding process. Additionally, complementary

slackness holds in the following way:

Complementary Slackness: ay - 7, > max { ai - , } V (ij) E S
kEB6)



2.8 Combined Forward-Reverse Auctions

A notably efficient method in practice occurs through the implementation of

forward-reverse combination [6] [7] [8]. A typical forward-reverse auction begins with a

forward auction of several iterations, at least until one new object becomes assigned.

Both profit and price are tracked, under the relation

pj +7r = ay V (ij) E S

Next a reverse auction iterates until an additional bidder becomes assigned. The process

then cycles until no bidders are left. At each stage of the auction, the fact that an

additional bidder becomes assigned represents irreversible progress. Therefore, the

auction will be guaranteed to terminate after at most N/2 cycles, with each cycle

consisting of a series of forward iterations followed by a series of reverse iterations.

The reason for the efficiency stems from receiving the benefits of both forward

and reverse auctions simultaneously. While auctions that initially have all items start at

the same price typically exhibit forward-only behavior, auctions beginning with differing

prices and values can greatly benefit from the ability to approach the problem from both

sides simultaneously.

2.9 Asymmetric Assignment

Asymmetric assignment problems are those that have an unequal number of

bidders i and objectsj [4] [6]. Two major methods have emerged in solving such

systems. The first involves a conversion to the symmetric case by introducing a number



of artificial objects with very high price or bidders with very low value for a match (or

any other arbitrary value that is identical to every bidder of the artificial object or to every

object of the artificial bidder). This results in the least attractive bidders or objects being

paired with the artificial counterparts, which are separated from the results in the end.

While inheriting the positive qualities of symmetric solution techniques, it can

dramatically increase the size of the problem. The benefit from this technique is that it

accommodates both sided asymmetric cases where i >j and i j.

To avoid price wars, it is best to set the value of the artificial objects to a number

less than the lowest value of any real object. This way, the artificial objects will be

selected last, rather than competitively bid for until another object becomes more

lucrative. This issue can also be skirted by using a similarity class for all artificial objects

and bidders.

A second technique requires that i <j and pursues a forward auction until all

objects have been assigned. This is followed by a reverse auction that reduces all

unassigned object prices below a threshold price of the lowest assigned object (trivially

observed in the symmetric case). Once this last constraint is met, the solution is deemed

optimal. The conditions required for optimality are as follows:

E-Complementary Slackness: pj+ ag1 - V (ij) E A

Price-Profit Parity: pj + z, = ay V (ij) C S

Assigned objects above threshold: pj 5 min Pk
k assigned under S

VJ unassigned under S



2.9.1 A Modified Asymmetric Forward-Reverse Auction Algorithm

The following algorithm was developed in [8], to which the reader is referred for

additional reference. Two types of iterations comprise the algorithm. The forward

iteration acts only when there are unassigned persons, and the reverse iteration occurs

only when there are unassigned objects with a price above a threshold X. Three

conditions to be met for optimality are described in the previous section. Each iteration

begins with a set of assignments that satisfies c-CS, Price-Profit Parity, and an additional

constraint that requires every assigned object to have a price of at least k. Initially, the

algorithm can begin with no assignments, ? and pj to be arbitrary, and zi to be at least (ay

pj -c).

In the forward iteration, an unassigned person i finds his best objectj as usual.

However, the bid price and profit now become

pj = max{ X, ay - 0, + F }

7ri = Wi - 6

If X < ay - w, + s, the new pair (ij) is added to the assignment set and the old pair

involving objectj, if any, is removed. Otherwise, no new assignments are made and only

the profits and prices are updated.

As noted above, the reverse iteration takes an unassigned objectj with a p> X and

finds its best person i. The best price Pj and second best price wj are found, as usual, but

the algorithm strays at this point. Two cases dictate the next action. In the first case, the

Case 1: P>X + c

p = max{ X., wi - c }
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Zi = ay- max{ X, U) - E }

The new pair (ij) is added to the set and any old pair involving person i is removed.

Case 2: Pf<X+

Pi = Pi- E-

No assignment occurs here, but the price is dropped. If there are now more than n - m

objects with a price less than k, then X is set to the next value below X such that the

number of objects below the new ) is equal to n - m (and possibly greater than if there is

more than one object at that exact level).

X can only be reduced in the reverse algorithm and is unaffected in the forward

iteration. The reverse algorithm may also end up not assigning an object. However, the

price of it is reduced and the object will not be able to bid until k is reduced.

2.9.2 Relaxing the Constraint of Bidder Assignment

Another interesting variation occurs when it is optimal to have one or more

bidders not assigned to any object [6]. This can be set up by creating a number of

artificial objects that have a utility value set at a threshold level for each bidder.

Additionally, the values must be standardized such that it is more beneficial to pair a

group among the threshold value (easiest when set to zero to represent positive as good

and negative as not preferred) while values below the threshold level will choose

artificial pairings. Figure 13 demonstrates the use of artificial objects in an auction of

three bidders and three real objects. Figure 14 presents the formulation of the assignment

problem when objects and bidders are allowed to remain unassigned.

Y.



Allowing Bidders to Remain Unassigned
Utility Values

Objects 1 2 3 4 5 6
Bidders

1 10,000 10,000 -242 0 0 0
2 _ 10,000 10,000 -564 0 0 0

3 1 10,000 10,000 -738 0 0 0

Figure 13
Objects 4, 5, and 6 are artificial objects with a threshold price of 0. Therefore, object 3 is displaced

by "no object" (object 4). However, objects 1 and 2 are still assigned because of their superior
utility to the artificial variables.

Maximize E Ea(ij)f(ij)

a(i,j) = Utility of pairing bidder i and objectj
f(i,J) = 1 if i andj paired together, 0 otherwise (an indicator function)

Ef(ij) = 0 or 1 V i=1,. .. ,m (bidders) Outflow = 0 or 1

= 0 or 1 Vj=l,...,n (items)

Each bidder possibly assigned once

Inflow = 0 or 1
Each item possibly assigned once

Figure 14
Formulation of Assignment Problem without Required Assignment of Each Object

By allowing bidders to remain unassigned, inflow and outflow to each bidder and item can be
either 0 or 1. Auctions can solve this problem type by introducing artificial variables to bring the
constraints back in line with Figure 2, where the sum must equal 1. n items becomes n + m items,

2.10 Multi-Assignment Problems

Multi-assignment problems are a variation of standard auctions in which each

person can be assigned more than one object, yet each bidder is assigned at least one



object [4]. Additionally, every object is assigned to some bidder. The network model

can be visualized in Figure 16.

Multi-Assignment Network Flow Model

Utility Values
(negative costs)

Flow ! 1 Bi d r 5 2

Flow =n Flow>1 4

P)Bidder 1Ite m F/

~ Flow=1IIte bn

Figure 16
Multi-assignment problems are represented in a network flow model where each item must have a
flow of 1, while each bidder is constrained have a flow of at least one. Flow from bidder i to itemj

f(ij) is constrained such that Of(ij) 1.

Formally, the problem is formulated as in Figure 17 below.

Maximize I Ja(ij)f(ij)

a(ij) = Utility of pairing bidder i and objectj
f(ij) = 1 if i andj paired together, 0 otherwise (an indicator function)

f(k,) 1 V i=l,...,m (bidders)

f(ij) = 1 Vj=,...,n (items)
iEBO)

Outflow > 1
Each bidder assigned to at least one object

Inflow = 1
Each item assigned once

Figure 17
Formal maximization definition of a multi-assignment problem.



By transposing the problem so that bidders become objects, the problem of

assigning at least one bidder to each object can be solved, where each bidder is assigned

once and each object has at least one bidder assigned to it.

The method for solving the multi-assignment problems can be broken into two

parts. Initially, the standard forward auction proceeds to until every bidder has one

object. The second part consists of a modified reverse auction to assign the remaining

objects. The conditions that need to be met for the multi-assignment to be optimal are as

follows:

c-Complementary Slackness: p +r,>ay -E V (ij) E A

Price-Profit Parity: pj +7r, = a. V (ij) E S

Assigned objects above threshold: 7ri = max ik Vj unassigned under S
k assigned under S

A constant X will be used to determine a profit threshold for new persons.

Initially,

= max 7i

At this point, a reverse auction is run by taking an unassigned objectj and

reducing its price low enough to attract a bidder i. However, the old object only

displaced from bidder i if the profit of the assignment is equal to X. The stages are

outlined below:

Best person i: i;= arg max { ay - r,}

&tC(



icBO)

Best value: p = max { ay;- w, }

Second best value: Wj= max { ak- 7rj}
kB), k # i

6 = min[k - rj,(Pj - W; + s)]

The pair (ij) becomes part of the assigned set S. The price ofJ and profit of i are set as

follows:

pi=%p - X

7,= 7r, + X.

If 6 > 0, the former object assigned to i becomes unassigned. Otherwise, the two

objects now share the bidder. The auction ends when all objects are assigned.

2.10.2 Linear Combinatorial Optimization

The above multi-assignment auction is an instance of linear combinatorial

optimization. Linear combinatorial optimization occurs when the values of objects

maintain their pairing values regardless of whether groups of objects are assigned to

bidders or just the object by itself. The pairing values of groups in this case add linearly.

If the requirement of each bidder needing to receive at least one object is relaxed, a new

problem is formed. While this problem can be assigned by introducing a set of artificial

objects equal to the number of real objects less one with values equal to the threshold

level of indifference, the problem can be solved more easily with other methods.

Particularly, the problem can intuitively be thought of as the one sided view from each

object about which person would be the best fit, regardless of the other objects. From



this view, the problem deteriorates into a mere search for the maximum pairing of each

object over all its potential bidders will yield the optimal assignment in n*m operations

total.

2.11 Nonlinear Combinatorial Optimization Using Auction

Often times a bidder will value a group of products more than the sum of the

individual values, such as purchasing a computer and software, where neither has value

without the other. Conversely, a bidder may value his first car tremendously, but the

second is unnecessary. In this case, the combination is worth far less than the sum of

values of the individual cars. These nonlinear behaviors complicate the process of

finding a solution because auction algorithms are only capable of solving linear models.

However, auction can be used to reduce part of the required time by separating the

problem into linear and non-linear sections, and applying the auction to the linear

segments. Examples of this technique are examined in Chapters 3 and 4.



3 Distributor Problem

A scenario is constructed in which a distributor has received a number of objects.

The distributor has a number of customers, as well, and needs to distribute the objects

optimally among the customers. This scenario commonly occurs when a stockbroker

receives a limited number of shares of companies undergoing an initial public offering

(IPO). All the shares are priced identically, so it does not matter monetarily to which

clients he sells the shares. However, unique customers will value receiving shares

differently, perhaps leaving the broker if they do not receive certain amounts or shifting

the amount of money they have under management to match their happiness. Assigning

all shares to one client is probably not optimal because it alienates the broker's other

customers. However, because customers are not valued equally, dividing the shares

among them evenly would not reflect better treatment to better customers. While each

customer would like to receive as much as possible (given a customer's investment

constraints), an optimal assignment exists that maximizes the overall happiness of the

broker's customers. In this example, stock shares would be thought of as objects and

customers would be bidders. This problem addresses the following issues:

Reducing Complexity:
* Exploiting the fact many objects are identical (members of a class) both in reducing

auction time and number of required auctions.
* Discretizing objects into minimum-sized multiple-object "buckets"
* Limiting each bidder assignment to one type of object

Allowing Variation:
* Addressing nonlinearity in object assignments
* Setting up the possibility of not pairing (i.e. not using) a bidder
* Setting up the possibility of not pairing (i.e. not using) an object
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Terminology

For clarity and reference, the terminology used throughout this example is
described here. Auctions are composed of bidders that bid for items. Items are buckets
or groups of buckets, which are a minimum allowable amount of a type of object to be
assigned to a single bidder. In this example, type-F buckets are equal to two objects.

Figure 17
Illustration of how objects form buckets and buckets form items.

AA

A? 1;-O A4

A Z
A4Lf

6 Type-F
Objects

3 Type-F
Buckets

B Id1

Bidder 2

Bidder 3

3 Bidders
bidding for

2 Items

2 Type-F
Items

3.1 Problem Description

In this problem, the distributor receives six types of objects {A, B, C, D, E, F}.

The number received of each object varies. The distributor has 10 unique bidder types to

whom he can distribute objects {Q, R, S, T, U, V, W, X, Y, Z}. The number and types of

objects and bidders are displayed in the Figure 18.



Figure 18
Types and numbers of bidders involved in the distributor problem.

Object Type # Objects Bidder Type # Bidders
A 20 Q 1
B 16 R 1
C 40 S 1
D 7 T 1
E 5 U 1
F 6 V 1

Totals 6 Types 94 W 1
X
Y 1
z 1

Totals 10 Types 10 Bidders

The distributor is capable of delivering either one type of object or no object to

each bidder. For example, a Q-type bidder can receive five A-type objects, seven D-type

objects, 16 B-type objects, or any available number of a single type of object. A Q-type

bidder can also receive nothing, or even receive the same type of object as the R-type

bidder provided there are enough objects to satisfy both bidders. The distributor need not

distribute all the objects.

The utilities of each bidder sum linearly to yield the overall utility and are

independent of each other (i.e. the scores of bidder Q and bidder R add linearly to

contribute to the overall score). However, the utilities of each bidder vary nonlinearly

with the number of objects assigned to it, where to bidder Q, five type-A objects are not

necessarily worth one-half the score of ten type-A objects. A sample section of the

overall utility matrix is examined in Figure 19. The figure shows each different possible

pairing and the corresponding value of any bidder assigned to a type-A item. A similar

matrix exists for each different type of object.
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Bidders

Utility Values for Delivering Type-A Objects

# Objects 5 10 15 20
Q 2 10 16 20
R -3 5 5 -10
S 6 5 4 3
T 5 6 7 8
U 10 5 0 -10
V 7 -40 -41 -42
W 4 5 6 7
X 5 10 11 12
Y 7 6 5 4
Z -1 -2 -3 20

Figure 19
Each value in the chart is the individual utility of pairing the bidder with the

specified number of type-A objects.

At first glance, the problem looks potentially approachable by auction as it is an

assignment problem. Conversely, because the pairs behave nonlinearly, the question

arises as to whether auction can really be utilized in finding the solution. The optimal

assignment can, of course, be computed using complete enumeration of the possibilities.

The computation required, though, grows too large. Single auctions are capable of

solving a large number these possibilities quickly, and enumerating a number of different

auctions allows a very large space to be solved quickly. This occurs most obviously

when several types of objects, each consisting of a number of objects, must be permuted

across many bidders. A single auction is required for each unique a object combination,

whereas the number of permutations for that object combination that can be assigned

distinctly among bidders grows at a factorial rate. While both the single auction and the

SQ



complete set of permutations will solve the problem, the auction produces the result in

polynomial time, opposed to the NP-complete permutation complexity.

The important idea is that applying auction to certain parts of the solution reduce

the solution time. The constraints, complexities, and reduced models are discussed in the

following section to demonstrate how auction can be implemented to extract the optimal

assignment.

3.2 Constraints

The major constraints are as follows

* Each bidder receives at most one type of object, though the number objects of
that type may vary.

* An object can be assigned to at most one bidder.
* Each bidder need not be assigned.
* Each object need not be assigned.

3.3 Complexity

The major complexity in this model lies in the nonlinear utilities relating to the

number of objects chosen from a type. Therefore, each different combination of pairings

must be evaluated, which grows to be an enormous number. However, because each

bidder is limited to receiving only one type of object, the problem size diminishes greatly.

The problem increases mildly in size because objects and bidders have the freedom to not

be assigned. Complexity is handled through object classification, bucketing objects into

minimum-sized items, constraining each bidder to one type of object, and

3.4 Reducing and Formulating the Problem

3.4.1 Bucketing



To reduce the size of the problem, a major assumption must be made in how

objects will be delivered, specifically limiting the number of ways the objects can be

assigned to bidders. Assuming the objects in a type are identical and interchangeable,

with twenty of the A-type objects, the number of different possible combinations of A-

type objects for this example would be 635. Not assuming they are identical and

interchangeable, the number of possible combinations are on the order of (c+l)", where c

is the number of bidders and n is the number of objects. If all objects in the problem

were considered unique, the number of potential combinations would be equal to 1194, or

7.8E+97, a number too large to investigate in real-time. Intuitively, this can be thought

of as each object going to either one specific bidder or no bidder, a total of c+1 choices

for each of the n objects. By having identical object types, the number of unique

permutations decreases because many of the permutations are now viewed as

indistinguishable. However, with each unique configuration of objects permuted to cover

all possibilities among the ten bidders, the number of permutations grows to roughly

-[6.5E+12] * [15!/(15-10)!], which is on the order of 1.2E+23, a significant drop from

7.8E+97 yet still computationally demanding. The first term is the number of

configurations and the second a rough estimate of the permutations among the bidders for

each configuration. Here, buckets will be introduced to reduce the size of the problem.

Buckets are just groups of objects that cannot be separated further. They are

analogous to cases of products that must be purchased as an entire case and cannot be

sold separately. Buckets can also be grouped together, enabling bidders to purchase

several buckets at once. In this example, the A-type objects will be divided into buckets

of size five. Where 20 objects existed, four now represent. Buckets can exist in a variety
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of sways, such as in sizes one, two, four and eight or in sizes one, five, and 15 (this

example uses a single size for each object type). The power lies in constructing buckets

in sizes that both reduce the number of possibilities and yet still capture likely optimal

assignments. Essentially, this approximates the maximum utility by solving a courser

problem, allowing a reduction of size of the problem.

If the solution is found to include the A-type objects, the model can be rerun with

a finer level of buckets while excluding objects that were not assigned in the former

assignment. While optimality is not guaranteed in this case, far better time constraints can

be met.

3.4.2 Determining Computational Requirement

The proposed model seeks to use auction to find the optimal assignment. Because

objects within their own class an be grouped and behave nonlinearly, however, the

problem becomes combinatorial. It is impossible for an auction to compare a bidder

receiving all four buckets versus four bidders receiving one bucket each because each

auction relies on linearity (where aF(x) = F(ax)) to reach its solution. Nonlinearity allows

local maxima to exist that potentially lead to globally suboptimal results. Therefore, a

structured method of using auction involves creating a series of auctions. Each auction is

composed of a different enumeration of items and will yield an overall optimal score for

that configuration, in turn allowing comparison among different configurations. Correct

use of this method requires running every item configuration possibility as an auction to

capture each nonlinear utility.



The number of total configurations is arrived at by first determining the number

of unique combinations of buckets within a type of object. Each combination consists of

items, where each item is composed of inseparable buckets. For example, each type-A

bucket represents five type-A objects, and each bidder can be assigned between zero and

four buckets (assuming not more than four buckets are assigned in total). One specific

combination consists of four items, where each item is a separate bucket. Another group

consists of an item of three buckets (as one inseparable item) and an item of a single

bucket. The total number of combinations that can be constructed for each type is

illustrated in Figure 20.

# of # Unique Specific Configurations of Items
Buckets Combinations

1 1 1
2 2 2 1,1
3 3 3 2,1 1,1,1
4 5 4 3,1 2,2 2,1,1 1,1,1,1
5 7 5 4,1 3,2 3,1,1 2,2,1 2,1,1,1 1,1,1,1,1

20 635 20 19,1 18,2 18,1,1 ... ... ...

Figure 20
Unique combinations are illustrated, demonstrating the ways in which a number of identical

buckets can be divided uniquely. For example, 3 buckets can be uniquely configured in 3
distinct ways. The first configuration consists of an item containing all 3 buckets. The second

configuration is composed of an item of 2 buckets and an item of 1 bucket. The third
configuration occurs as 3 separate items, each a single bucket.

From an auction perspective, each item of a specific group can be viewed as a

single item available in an auction. For example, in the four-bucket case, five different

auctions could be constructed. The first auction would have only a single item of the

type, which is composed of all four of the buckets. The second auction would consist of

two items, specifically an item containing three buckets and an item containing one
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bucket. When bidders bid for objects in the first auction, they can only bid for the four-

bucket item. Likewise, in the second auction, bidders can bid for either the three-bucket

item or the one-bucket item, with these being the only two items of type-A for which any

bidder can bid. These two auctions are shown in Figure 21.
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Figure 21
Two different auction configurations are shown. The first consists of the bidders bidding on

an item configuration of one item. The second consists of the bidders competing for a
different distribution of the same objects, but this time as two separate items.

Auction 1-Bidders are bidding for one item, a group of 20 of object A.

5 of One item to

Object A beido5 of consis ting of
Objet A 20 of A. Only

one person
5 of will receive
Object A all 20.

5 of
Object A

Auction 2-Bidders are bidding for a different configuration of items. The
two items available are a 5-Object-A and a 15-Object-A. A bidder can be
assigned one or the other, but not both.

Bidder Q

Bidder R

Others

5 of
Object A

One item composed
of 5 of Object A

5 of One item to

Object A be bid on
consisting of

Object A Only one

5 of person will

Object A receive
these 15 A.

Bidder Q

Bidder TR

Others



The total number of different auctions that can be set up for each class is exactly

equal to the total number of configurations. The number of configurations was at first

thought to be NP-complete, but upon closer investigations reveals itself to behave, at

least at a level of up to 79 items, better than exponentially. The following charts

demonstrate the growth of the number of configurations that can be uniquely formed

(assuming items within the configuration are identical and indistinguishable). Figure 22

shows the number of unique configurations versus polynomial and NP-complete

functions.

Figure 22
A comparative graph of the order of growth of the number of groups formed by n identical items.
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Figure 23 illustrates that the growth of unique configurations behaves better than

O(n"), easily discernable by examining the log behavior. However, it also appears to

grow faster than the polynomial time functions. It appears to asymptotically approach an

exponential growth rate O(C") and can be shown to be upper bounded by 0 (2 "),

empirically demonstrated in Figure 24.

.2 1000000
Auctions

C. - - nn [n^(n/1 0)]
(n/3)A5C*

Identical Separate Items

Figure 23
A comparative graph of the order of growth of the number of groups formed by n identical items,

plotted on a logarithmic y-axis.



Figure 24
Examining the empircal growth of the numbe of unique auction configurations (Auctions) produced by a given number
of buckets is compared to an exponential function 2An, where n corresponds to buckets. The decreasing derivative

value of auctions with respect to buckets suggests that the function is upper bounded by
maintains a constant derivative an n grows.

an exponential function that

611

Buckets (n) d(2An)/d(n) d(Auctions)/d(Buckets) Buckets (n) d(2An)/d(n) d(Auctions)Id(Buckets)

2 2 2.000 24 2 1.266
3 2 1.500 25 2 1.238
4 2 1.667 26 2 1.243
5 2 1.400 27 2 1.236
6 2 1.571 28 2 1.245
7 2 1.364 29 2 1.227
8 2 1.467 30 2 1.234
9 2 1.318 31 2 1.208

10 2 1.448 32 2 1.228
11 2 1.310 33 2 1.210
12 2 1.364 34 2 1.221
13 2 1.333 35 2 1.216
14 2 1.340 36 2 1.203
15 2 1.284 37 2 1.193
16 2 1.343 38 2 1.207
17 2 1.281 39 2 1.203
18 2 1.294 40 2 1.204
19 2 1.282 41 2 1.185
20 2 1.293 42 2 1.199
21 2 1.249 43 2 1.181
22 2 1.276 44 2 1.193
23 2 1.254 45 2 1.185



The total number of auctions that can be set up over all classes is upper bounded by the

product of the number of groups in each class. The total number of auctions is

guaranteed by the lower bound C(nc) where n is the number of items in a type, t is the

number of types, and c is a constant.

The bucket size, number of buckets, number of unique configurations, and auction

sizes for the proposed model are given in Figure 25.

Object # Bucket Size # of # Unique # Unique
Type Buckets Bucketed Non-bucketed

Item Item
Combinations Combinations

A 20 5 4 5 635
B 16 8 2 2 231
C 40 10 4 5 38566
D 7 7 1 1 15
E 5 1 5 7 7
F 6 2 3 3 11

Totals 6 Types 94 19 1050 Auctions 6.5339E+12
(H Unique
Combos)

Figure 25
Each object type is discretized into a bucket size of at least one object, reducing the number

of items that can compete in an auction. The number of unique combinations of the
discretized buckets is then shown to be far fewer (by several factors) than the original level.
For example, object type-C is discretized in 10-object buckets, creating four total buckets

that can be uniquely distributed in five ways, as opposed to the 38,566 ways that 40 identical
items can be uniquely distributed. The last line totals the number of auctions required, which

is a product of the number of unique distributions for each type.

Note the significant reduction in the number of auctions required due to the use of

buckets, from 6.5339E+12 to 1,050, a factor of 6.2E + 9. Where t is the number of object

types and gi is the number of combinations for a particular type i, the number of auctions

(i.e. different configurations) required becomes

t
# Configurations = H (gi)

i=1

(00O



While the order of growth is still NP-complete, the larger terms are first to be reduced

and have the most significant impact. After all the auctions are run, the total utilities of

each auction are compared and the highest is selected as optimal.

The reason the upper bound, rather than exact growth order, is mentioned for the

auction count is that some of the auctions in the original case will be identical, such as the

case with object type C. Imagine two auctions, the first with eleven items of size-two

buckets and the remaining items as 18 single buckets. The second has twelve items of

size-two buckets and sixteen items single buckets. Because there are only ten bidders,

the asymmetric auction will appear the same to the bidders. In each auction, every bidder

has the right to choose whichever item it prefers, still leaving both types of items

available for the rest. This occurs whenever the number of items available is equal to at

least 3e + 2, where e is the number of items. This occurrence can be exploited in auctions

with few bidders and many objects of similar types by limiting the number of items of a

particular type and size that participate in the auction to the number of total bidders in

each auction.

3.5 Setting Up the Auctions

This solution technique requires a number of auctions be set up, run, and

compared. In every auction, the same ten bidders will hold constant. However, the

number of items and actual items bid for by the bidders will be unique in every auction.

An asymmetric auction will be used to assign bidders to items. This will allow objects to

remain unassigned if optimal.
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Prior to running the auctions, a table listing the utilities of all the possible bidder-

item pairs is required. Not all utilities will be used in each auction, but over the course of

running all auctions, each utility will be used at least once. Attention should be given to

the resources needed to compute the utilities for the auctions. The finer the grain in

number of items and buckets, the larger the necessary computation set both to determine

the utilities and to solve the auctions. However, the bound of optimality is compromised

as the grain becomes coarser.

Figure 26 shows the utilities of different items assigned to each bidder. Note the

nonlinear nature of the utilities (Utility[5A] # %,* Utility[ 1 OA] for ever bidder).

Bidder-Item Pairing Utilities

ITEMS

#Objects 5 10 15 20 8 16 10 20 30 40 7 1 2 3 4 5 214 6
Type-> A A A A B B C C C C D E E E E E F F F

Bidder

Q 2 10 16 201-3 4 -3 -8 0 5 -2 2 -1 -5 -16 -2 1 11-6
R -3 5 5 -10 -3 -5 4 7 9 4 -4 7 -2 -2 0 -181-3 2 -4
S 6 5 4 3 -3 6 5 0 0 15 -6 6 3 0 -1 21-7 -2 0
T 5 6 7 8 -3 -5 6 0 -31-40 8 9 -1 -5 7 12 -7 1 -4
U 10 5 0 -101-3 -5 -3 3 9 -30 -8 4 -6 2 -8 -10 8 4 6
V 7 -40 -41 -42 -3 -5 -9 0 1 -40 9 -2 -4 0 -2 7 6 -4 2
W 4 5 6 7 -3 -5 -2 1 -5 16 9 11 -2 -14 11 121-5 7 0
X 5 10 11 12 -3 -5 0 -3 -9 10 3 -2 3 11 12 -111-6 2 -3
Y 7 6 5 41-3 -5 3 4 4 8 3 -2 -6 -3 0 4 -813
Z -1 -2 -3 201-3 12 0 6 -10-1214 0 -4 3 -5 006 -1

Figure 26
The utility values of pairing a particular bidder with a particular number of objects of a certain type.

As noted in the constraints, neither every bidder nor every object need be

assigned. The bidder issue is addressed by introducing artificial objects that have a utility



of zero for every bidder. The number of artificial objects is equal to the number of real

bidders so that each bidder has the option of not choosing an object (choosing the

artificial object instead). In this case, ten artificial objects are introduced to the auction

(object type G).

The option for objects to be either assigned or unassigned is addressed by the

combination of the artificial objects existing along with the utilization of the asymmetric

auction. This allows, in the extreme case, every bidder to be assigned to an artificial

object and for no objects to be paired. However, if it is more valuable to assign a real

object, the assignment to the real object will occur, leaving an artificial object

unassigned.

The algorithm is summarized as follows:

Assignment Algorithm
One object type per bidder, no constraint of number of objects
Objects and bidders can be assigned or unassigned
Order = O(c't(m+ n)n2a)
g = # unique combinations of a single type = O(c'")
t = # of types of objects
n = number of bidders
m = number of objects

Set utility-max = 0

For each Combination of Items over All Item Types: O( c'")
{
Run an Auction with the Specific Items and Artificial Objects O((m+ n)n a)
and compute utility.

If utility > utilitymax, set utilitymax = utility and 0(1)
save assignments.
}

The advantage of this algorithm over a fully enumerated case lies in the use of

auctions where objects of a similar type exist. The larger the number of objects in the

class and the larger the number of bidders, the more computational effort saved by using



auction. Fully enumerating every case for each bidder is an NP-complete problem,

replacing the auction component of polynomial order O((m+ n)n2a) with an NP-order

O([n + 1][m]). Because this term is multiplicative in the overall algorithm, the time

savings are substantial.

Additionally, bucketing objects into groups allows the outside loop of the

algorithm to scale better. Though the theoretical bound is the same, which is O(n"), the

actual values of n are shrunk to a desirable level. For example, by bucketing object A

into four buckets, each containing five of object A, there are only five different ways for

the objects to be distributed among bidders. With 20 individual objects, there are 635

combinations. The number of combinations of object types are multiplied together to

reach the total number of auctions to be run. Hence, a problem with two times the

number of groups in each type increases the number of auctions by a factor of 2(# f types)

or generically by a factor of [(groups now/groups before) (4 ofYp*e,)]. Because the growth

of groups is exponential with the number of buckets, the number of auctions required

grows tremendously with the number of buckets, with the previous term in the exponent.

The total number of auctions in this example required by bucketing according to

the given parameters is equal to the product of the number of groups for each type,

equaling 1050. With the auctions ranging in size from 10 bidder by 16 objects to 10

bidders by 29 objects, the answer was computed in 0.77 seconds on a Pentium 166MHz

machine with 32 megabytes of RAM. Not introducing artificial variables (forcing as

many bidders as possible to be assigned) reduces the time to 0.45 seconds. Similarity

classes were implemented for objects.
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If desired, the bucket sizes could be altered at this stage to more accurately solve

the problem, based on the results of the first series of auctions. This would require a

utility matrix of the finer grain utility values for the object classes desired, while it may

excuse other types of objects from the auction altogether, thereby keeping the

computational requirements low. Further research into optimal methods of grouping

objects over the course of subsequent auctions promises gains in efficiency.

The results of the current solution technique are very encouraging for future

application.
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Illustration of Nonlinear Object Auction Procedure
Figure 27

The procedure here involves setting up a number of different auction, solving them, and then comparing the utilities
achieved to determine the best assignment. Initially, a utility matrix is required that values can be taken from when
constructing each auction. Following the matrix, three example auctions are shown to communicate the auction setup
procedure. The auctions are all solved using any asymmetric auction technique.

The following matrix contains all possible utility values for any individual pairing of a customer (or nonlinear behaving group
of customers) with an object (or nonlinear behaving group of objects).

10 15 20 8 16 10
Complete Utility Matrix
20 30 40 7 1 2 3 4 5 2 4 6 Artificial

Q 2 10 16 20 -3 4 -3 -8 0 5 1 3 3 -11 9 -1 7 7 14 0
R -3 5 5 -10 -3 -5 4 7 9 4 8 -8 -8 0 -6 -3 9 6 -10 0
S 6 5 4 3 -3 6 5 0 0 15 -2 6 12 0 0 1 -2 -3 -5 0
T 5 6 7 8 -3 -5 -6 2 3 -40 -1 10 -7 15 -11 0 -10 1 -6 0
U 10 5 0 -10 -3 -5 9 -6 -6 -30 -6 3 -9 6 0 -5 -6 -7 4 0
V 7 -40 -41 -42 -3 -5 -4 8 1 -40 -8 4 5 -10 -17 2 -11 -2 -18 0
W 4 5 6 7 -3 -5 3 1 0 16 -1 7 -1 1 5 6 -2 -14 -12 0
X 5 10 11 12 -3 -5 -6 -9 -3 10 10 -2 -3 0 1 3 -2 -8 -2 0
Y 7 6 5 4 -3 -5 -5 4 -10 8 -2 -4 7 -2 -5 12 9 -9 6 0
Z -1 -2 -3 20-3 12 -10 7 -2 -12 1 -1 1 7 -9 1 10 -4 -10 0

A total of 1050 auctions that occur while solving the problem. The first auction takes the item configuration presented in the
chart just below. This auction uses the smallest buckets possible for each type of item. Four items of type-A (each
composed of five A-type objects) participate in the auction. Two type-B items also participate, each consisting of eight type-
B objects. There are four type-C items, five type-D items, one type-E item, and three type-F items that join the auction.
Lastly, since ten bidders are participating and allowed to remain unassigned, an equal number of artificial variables must be
allowed to join the auction, leading to the use of ten G-type objects. This leads to a total of ten bidders and 29 objects that
will participate in the first auction.

(smallest increments)
Type Objects in Group
A 5 5 5 5
B 88
C 10 10 10 10
D 7
E 11 1 1 1
F 2 2 2
G 11 1 1 1 1 1 1 1 1

The auction is now constructed using the above objects and the ten bidders. The following utility matrix is used to run the
auction. The auction is solved and the overall utility and assignments of the optimal assignment is saved and compared to
the rest of the auctions.

Utility Matrix Constructed for This Auction

# Objects 5 5 5 5 8 8 10 10 10 10 7 1 1 1 1 1 2 2 2 Artificial
Object-> A A A A B B C C C C D E E E E E F F F G G G G GIGIGIG G G

Bidder I
Q 2 2 2 2 -3 -3 -3 -3 -3 -3 1 3 3 3 3 3 7 7 7 0 0 0 0 0 0 0 0 0 0
R 3 -3 -3 -3 -3 -3 4 4 4 4 8 -8 -8 -8 -8 -8 9 9 9 0 0 0 0 0 0 0 0 0 0
S 6 6 6 6 -3 -3 5 5 5 5 -2 6 6 6 6 6 -2 -2 -2 0 0 0 0 0 0 0 0 0 0
T 51 5 5 5 -3 -3 -7 -3 -5 9 -1 10 10 10 10 10 -10 -10 -10 0 0 0 00 0 0 0 0 0
U 10 10 10 10 -3 -3 5 -4 1 4 -6 3 3 3 3 3 -6 -6 -6 0 0 0 0 0 0 0 0 0 0
V 7 7 7 7 -3 -3 -1 -12 3 -6 -8 4 4 4 4 4-111-11 -11 0 0 0 0 0 0 0 0 0 0
W 4 4 4 4 -3 -3 18 11 1 -7 -1 7 7 7 7 7 -2 -2 -2 0 0 0 0 0 0 0 0 0 0
X 5 5 5 5 -3 -3 -13 -3 -5 8 10 -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 0 0 0
Y 7 7 7 7 -3 -3 3 -2 6 -4 -2 -4 -4 -4 -4 -4 9 9 9 0 0 0 0 0 0 0 0 0 0
Z -1 -1 -1 -1 -3 -3 -12 4L-4 -5 1 -1 -1 -1 -1 -1 10 10 10 0 0 0 0 0 0 0 0 0 01

# Objects 5

Bidder

U 'ec- A' AI I I IC C C C D E E E E EIFIFIF

Auction I

Auction Size = 10 X 29

Object-> A A SA | A I B | B | C I C I C I C I D E | E 1 E E E 1 F 1 F I F IG



The second auction illustrates a change in the Type-A object group. Where four separate items each of five A-type objects
had existed, two of the items have been consolidated and will be delivered together, reducing the total number of objects by
one and changing the available A-type objects to be bid for to two separate items of five A-type objects and a single ten A-
type objects item.

Type Objects in Group
A 5 5 10
B 8 8
C 10 10 10 10
D 7
E i i 1 1 1
F 2 2 2
G 1 1 1 1

Auction Size = 10 X 28

The utility matrix is then constructed. Notice how there are only three A-type items that bidders can bid for now. The
overall utility value of this auction is compared to the previous auction. If this auction's utility is higher, the assignments are
saved as the current best and the utility value compared against future auctions. If the first auction had a higher utility, it
would continue on as the current best and this auction configuration would not be saved.

Utility Matrix Constructed for This Auction

# Objects 5 5 10 8 8 10 10 10 10 7 1 1 1 1 1 2 2 2 Artificial
Object-> A A A B B C C C C D E E E E E F F F G G GIG G G G G G G

Bidder I
Q 2 2 10 -3 -3 -3 -3 -3 -3 1 3 3 3 3 3 7 7 7 0 0 0 0 0 0 0 0 0 0
R -3 -3 5 -3 -3 4 4 4 4 8 -8 -8 -8 -8 -8 9 9 9 0 0 0 0 0 0 0 0 0 0
S 6 6 5 -3 -3 5 5 5 5 -2 6 6 6 6 6 -2 -2 -2 0 0 0 0 0 0 0 0 0 0
T 5 5 6 -3 -3 2 -4 0 11 -1 10 10 10 10 10 -10 -10 -10 0 0 0 0 0 0 0 0 0 0
U 10 10 5 -3 -3 -6 4 -1 -3 -6 3 3 3 3 3 -6 -6 -6 0 0 0 0 0 0 0 0 0 0
V 1 7 7 -40 -3 -3 4 15 -2 8 -8 4 4 4 4 4 -11 -11 -11 0 0 0 0 0 0 0 0 0 0
W 4 4 5 -3 -3 1 -2 -9 7 -1 7 7 7 7 7 -2 -2 -2 0 0 0 0 0 0 0 0 0 0
X 5 5 10 -3 -3 -4 -6 2-12 10 -2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 0O0 0
Y 7_ 7 6 -3-3-12 2 1 -1 -2 -4 -4 -4 -4 -4 9 9 9 0 0 0 0 0 0 0 0 0 0
Z -1 -1-2 -3 -3 0 -1 0 1 -1-1 -1 -1 -110101000000 0 0 00

Auction 1050
Largest Increments

The third auction illustrates the final auction where all objects have been consolidated to their largest groups. In this case,
all A-type objects are delivered as one item,of 20 A-type objects to one customer who wins the assignment. Note here that
because object G behaves linearly, it never changes its offering of ten single G-type objects. This would likely be the last
auction and all other 1064 auctions would have already occurred. At this point, the best utility of either this auction or the
current best before the auction would be the overall best assignment and should be output as the optimal assignment.

Type Objects in Group
A 20
B 16
C 40
D 7
E 5
F 6
G_ 1 1 1 1 1 1 1 1 1 1

Utility Matrix Constructed for This Auction Auction Size = 10 X 16

# Objects 20 16 40 7 5 6 Artificial
Object-> 1A1 BICIDIEl FIG IG IG [G IG IG IG IG IG IG

Q 20 4 5 1 -1 14 0 0 0 0 0 0 0 0 0 0
R -10 -5 4 8 -3 -10 0 0 0 0 0 0 0 0 0 0
S 3 6 15 -2 1 -5 0 0 0 0 0 0 0 0 0 0
T 8 -5 -40 -1 0 -6 0 0 0 0 0 0 0 0 0 0
U -10 -5 -30 -6 -5 4 0 0 0 0 0 0 0 0 0 0
V -42 -5 -40 -8 2 -18 0 0 0 0 0 0 0 0 0 0
W 7 -5 16 -1 6 -12 0 0 0 0 0 0 0 0 0 0
X 12 -5 10 10 3 -2 0 0 0 0 0 0 0 0 0 0
Y 4 -5 8 -2 12 6 0 0 0 0 0 0 0 0 0 0
Z 20 12 -12 1 1 -10000 0 0 0 0 0 0 0

Auction 2

Type A modified

Bidder | 1 1 1 1 1 1 1 1 1 1 1 1 1 1



4 Extension of Distributor Problem to Nonlinear Bidder Behavior

4.1 Problem Description

The distributor problem is now extended to account for nonlinear bidder

interdependencies. An intuitive example appears in the stockbroker scenario where

clients are aware of what other clients receive. Therefore, a more valuable client would

be upset if he noticed a less valuable client receiving the same number of IPO shares,

causing his utility to be dependent not only on the number of shares he receives, but

depend on what others receive as well. Another example occurs when several clients

require that they all receive shares or else they will all leave as a group. In this case, the

stockbroker would decide whether to allocate shares to all members of the group or to

allocate none to any member because allocating shares to a partial subset of the group

would yield no future value to the broker. Instead, the broker may look to allocate shares

only to clients not in the group.

In both of these examples, each combination of bidders that behaves nonlinearly

must be examined individually for every object configuration. However, linearly

behaving bidders can simply compete in a single auction for each object configuration, as

in Chapter 3. A simple example of nonlinear bidding and object behavior is presented

next to illustrate how one might handle a complex problem by still taking advantage of

auction procedures. The example consists of three types of bidders and two types of

objects. The bidding pool is comprised of one Q-type, one R-type, and two S-type

bidders. There are two A-type objects and four B-type objects available for bidding.

Figure 28 summarizes the available auction participants.



Figure 28
Bidders and objects to be assigned by type and number.

Object # Objects
Types

A 2

B 4

4.2 Nonlinear Object Behavior

Assuming the objects behave nonlinearly, auctions for each type of configuration

must be constructed. As in the distributor problem of Chapter 3, each bidder is

constrained such that he can receive either one type of object (though any number of

objects of that item) or no object at all. The possible object configurations are listed in

Figure 29.

Figure 29
The number of ways two A-type objects and four B-type objects can be

uniquely distributed into same-type items is enumerated below. Ten
possible configurations exist.

Configuration # Items Available in # Items in Auction
Auction

1 A A B B B B 6
2 A A 2B B B 5
3 A A 2B 2B 4
4 A A 3B B 4
5 A A 4B 3
6 2A B B B B 5
7 2A 2B B B 4
8 2A 2B 2B 3
9 2A 3B B 3

10 2A 4B 2

Bidder # Bidders
Types

Q 1
R 1

S 2



For each object configuration, a separate auction must occur. While running a

multi-assignment auction would seem a favorable alternative to enumerating the

combinations, the nonlinear combinations of objects do not allow the multi-assignment

auction approach to work correctly. A critical requirement is that the assignments are

added linearly to obtain the overall score. In comparing two different configurations run

through enumeration, configurations 1 and 10 would likely obtain different scores.

Imagining huge incentives for single bidders each owning all of one type, in which

configuration ten would likely produce the high score. However, the multi-assignment

auction would not be able to account for the additional incentive provided by the owning

all of the type and could lead to a suboptimal solution, perhaps distributing a single object

to each bidder as in configuration one. This occurs because an auction uses a value that

represents the score of the individual item only, independent of any others. Each

configuration is then compared and the best score is recorded as the optimal assignment.

4.3 Nonlinear Bidder Behavior-Single Object-Type Constraint per Bidder Group

The notion of nonlinear bidder combinations is now explored. Assume that

bidders of type-Q and type-R care about what the other receives. Therefore, the score is

not just a linear sum, but also has an added score dependent on what the other receives.

Figure 30 shows how combinations lead to nonlinear scores.



Figure 30
The complete enumeration of how two A-type objects and four B-type objects can be distributed
among bidders Q and R. Note how Combinations 14 and 30, when added, do not equal the score

of Combination 1, indicating a dependence of bidders Q and R on each other.

Combo# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Q A A A A A 2A 2A 2A 2A B B B 2B A 2A B 2B 3B 4B
R A B 2B 3B 4B B 2B 3B 4B B 2B 3B 2B - - - - - -
Score 11 7 3 5 2 6 7 8 4 10 9 20 18 4 2 5 2 4 6

Combo # 20 21 22 23 24 25 26 27 28 - 29 30 - 31 32 33 34 35 36
Q Noth B 2B 3B 4B B 2B 3B 4B 2B 3B - - - - - -
R ing A A A A 2A 2A 2A 2A B B A 2A B 2B 3B 4B
Score 0 2 6 4 6 8 4 2 4 8 18 4 3 6 4136

Because of the nonlinearity, the same procedure used for the initial distributor

problem cannot be used. However, nonlinear bidders can be evaluated and then a

representative linearly behaving bidder can participate in the auction. To achieve this

linearly behaving bidder, different object combinations are be evaluated among the

various ways they can be assigned to the bidders. Each total combination of objects,

including A, 2A, B, 2B, 3B, and 4B, is evaluated with bidders Q and R, and the best

score is selected as the utility to be used in the auction. Figure 31 breaks up the

combinations of Figure 30 into groups based on the total objects used, limiting the groups

to only those confined to a single type of object. This is a more stringent constraint than

previously, where bidders Q and R could receive different types of objects. Figure 32

shows which combinations are restricted from participating in the auction. Removal of

the single object-type constraint is explored in Section 4.4. The assumption may lead to a

suboptimal solution, but will shorten the time to reach a solution.



Figure 31
Breakdown of Combinations by Objects Used (Single-type Object for Bidders)

This chart enumerates the different ways that a single type of object can be divided among Bidders Q and R.
For example, a single type-A object can be assigned to bidder Q, as in QA. Likewise, a single type-A object
can be assigned to bidder R, as in RA. These are the two ways in which a single A-type object can be
distributed among bidders Q and R. Two A-type object can be divided in three different ways. The first way
is with bidders R and Q receiving a single A-type object (QA RA), the second way is with bidder Q receiving
both (Q2A), and the third way is with bidder R receiving both (R2A). The best combo row signifies which
distribution scores the highest given the number and type of object distributed. In the single A-type object
case, either RA or QA scores 4. In the two A-type object case, the QA RA (one A-type object assigned to
bidder R and one to bidder S) scores the highest (11) and will be chosen to represent the 2A item score in the
auction.

Total Objects A B 3B Total
Assignment/Score QA 4 QA RA 11 QB 5 QB RB 10 QB R2B 9 QB R3B 20

RA 4 Q2A 2 RB 6 Q2B 2 R2B QB 8 Q2B R2B 18
R2A 3 R2B 4 Q3B 4 Q3B RB 18

R3B 3 Q4B 6
R41B 6

Figure 32
Combinations Not Included in Auction (Cross-type Combinations)

Because of the single object-type constraint on the auction problem, if bidders Q and R are to participate as a
single bidder, combinations in which they receive different types of objects are excluded from the auction.
Therefore, the following combinations are not considered and could actually contain an optimal assignment.
However, their exclusion decreases the size of the problem and may not affect the solution if a single type of
item is likely to be allocated to the nonlinear bidder group (Q and R).

Figure 33
Utility Matrix for Bidders Q and R and Single-type Items

The best scores from Figure 31 are used to create a single bidder entity representing bidders Q
and R. The actual distribution of the objects to Q and R must be saved so that when the auction
terminates with an assignment for the QR bidder, the individual objects can be assigned directly to
Q or R.

Items
A 2A B 2B 3B 4B

QR 4 11 6 10 9 20

Figure 34
Complete Utility Matrix for Bidders Q, R, and S

The bidders for the auction include a single QR bidder along with two S-type bidders. Each S-
type bidder has the same utility values and acts independently of all other items (linear behavior).
Values will be extracted from this table when constructing different auction configurations.

F- Items
Bidders A 2A B 2B 3B 4B
QR 4 11 6 10 9 20
S 5 7 3 11 14 15

F Combinations Not Included in Auction (Cross-type Combinations)
Total Objects I AB A2B A3B I A4B I 2AB I 2A2B I 2A3B 2A4B Total
Assignment/Score [QA RB 7 JQA R2B3 3 JQA R3B3 5 1QA R4B3 2 JQ2A RB 6 JQ2A R2B 7 JQ2A R3B3 8 1Q2A R4B3 4

JQB RA 2 JQ2B3 RA 6 JQB R3A 4 JQ4B3 RA 6 JQB R2A 8 JQ2B R2A 4 JQ3B3 R2A 2 JQ4B3 R2A 4
# Possible Assign. 2 2 2 12 12 2 2 2 1
1Best Assign./Score 1QA RB 7 JQ213 RA 6 JQA R3B 5 Q413 RA 6 QB R2A 8 JQ2A R2B 7 1Q2A R3B 8 JQ2A R4B3 4



Figure 33 assembles the best utilities for each item assignment for the nonlinear bidding

group. If the nonlinear bidding group were to receive the item, it would allocate the

objects in the item in the best way, suggesting that the best score should be used for the

auction. For example, if the QR bidder received an item consisting of two A-type

objects, it would examine the different ways to distribute the two objects to Q and R and

do so optimally. Figure 31 lists the three unique ways to divide the objects and concludes

that distributing a single A-type object to each of bidder Q and bidder R results in the

highest score, equaling 11. Therefore, the auction should let the score of 11 represent the

value of a two A-type object assignment to bidder QR. The same procedure is applied to

each object combination (A, 2A, B, 2B, 3B, 4B) to produce the utility row for each

nonlinear bidding group (just QR in this example). The final utility matrix containing all

values is then created in Figure 34 by entering a row for each unique linear bidding

entity. While there are two S-type bidders, they are identical and can reference the same

row of the utility matrix when constructing the auctions.

Auctions are then run for each item configuration, as shown in Figure 35. The ten

unique configurations each use the same three bidders (QR, S, and S) and each generate a

total utility score. The highest score corresponds to the optimal assignment, taken from

the auction that produced that score.



- -u

The ten unique item configurations are each
run as separate, asymmetric single-
assignment auctions. The bidders this time,
however, are a single QR bidder and two S-
type bidders. Three artificial items are added
to allow the bidders to remain unassigned.
The shaded squares are the assignments
producing the optimal score. Visually, there
can be at most one shaded square per
column, representing that the item in the
column is assigned to the bidder in the
shaded row. The total score is a simple linear
sum of the shaded squared. The highest
score is achieved in Auction 8, where QR is
assigned to 2A, S to 28, and the other S to
28. Figure 32 holds that a 2A assignment to
QR consists of a QA and an RA assignment.
Hence, the final assignment is QA, RA, S-2B,
and S-2B, for a score of 33.

Figure 35
Auction 1 Objects
Bidders JA A |B jB [B |B JArt. JArt. lArt.
QR 4 4 6 6 0 0
S 5 3 3 3 3 01 0 0
S 5 13 01 0 0
Score 76

Auction 2 Objects
Bidders A JA 12B IB IB |Art. Art. Art
QR 4 410 6 0 00
S 55 1 3 3 0 0
S 13 3 0 0
Score T 22

Auction 3 1Objecs
Bidders A A 2B 12B Art. ]Art. JArt.
QR 4 4 10 0 0 0
S 5 5 111 0 0 0
S | 5 11 11 0
IScore 26

Auction 4 Objects
Bidders A [A 13B |B Art. [Art. |Art.

S
QR414 9 0 0 0

Score 25

Auction 5 Objects
Bidders 4A A 4B Art. ]Art. Art.
QR 412 N01

Score 30
Auction 6 Objects
Bidders 2A B ZB IB B Art. Art. Art.

rQR 61 1 6 60010.
___7___M_ _3 3 3 0 0 0

IScore 777717
Auction 7 Objects
Bidders 2A 2B B IB |Art. Art. Art.

Score 25

Auction 8
Bidders 2A 2B 2B |Art. Art. Art.

Score 33

Auction 9 Objects
Bidders 2A 3B B JArt. Art. Art.

QR 00

Score 2

Auction 10
Bidders 12A4 [Art. |Art.
QIR 11 20 0 0 0
S 1 0 0 0
S cr 0 0
IScore 27

IOblects

Objects i

:N



4.4 Nonlinear Bidder Behavior-Single Object-Type per Bidder

Whereas the previous section only allowed a single nonlinear bidding group to

receive a single type of object, this section permits each bidder in the nonlinear bidding

group to receive its own type of item, welcoming the assignments of Figure 32 to be

considered in the problem. Therefore, the assignment of an item composed of an A-type

object and a B-type object can be assigned to the QR bidder, which can then point to a

distribution that pairs the A-type object with bidder Q and the B-type object with bidder

R. Note that the single-type item constraint still applies to each individual bidder, as

described in the original distribution problem.

The methodology is to create more item configurations that enable each member

of a nonlinear bidder group to be assigned a different type of item. With the QR bidder,

there must be two types of items considered. If there were n bidders in the nonlinear

bidder group and n + m items available, all combinations of n different types of items

would need to be calculated. The combinations for the QR bidder are enumerated in

Figure 32. The complete list of item configurations is enumerated in Figure 38. Each

configuration is run as a separate asymmetric single-assignment auction, using values

from Figure 37 and the three bidders QR, S, and S. The same procedure as in Section 4.3

is followed, finding the highest score of the 22 auctions and looking up the corresponding

nonlinear distribution for the individual members of the nonlinear groups.



Figure 36
Utility Matrix for Bidders Q and R and Single-type Items

To allow each individual bidder (Q and R, separately) its own type of item, the best
scores from both Figure 31 and Figure 32 are used to create a single bidder entity
representing bidders Q and R, this time for all items of two types or less (all in this
case).

Items

OR 411 6 1 T9 201 7 61 5 61 8 71 8 4

Figure 37
Complete Utility Matrix for Bidders Q, R, and S

The bidders for the auction include a single QR bidder along with two S-type
bidders. However, bidder S is incapable of receiving two types of objects, such as
AB or A2B. Therefore, the utility equals anything below that of an artificial variable.
Accordingly, each combination of items will be broken out, so that A and B are
separate items and can be bid on independently by bidder S. The only case in
which the combination would matter, therefore, is when it is assigned to QR. Hence,
no time is wasted in calculating redundant values for bidder S for multiple-type
items.

Single-type Items Multiple-type Items
Bidders A 2A B 2B 3B 4B AB A2B A3B A4B 2AB 2A2B 2A3B 2A4B
QR 4 111 6 10 1 9 120 1 71 6 5 61 81 71 81 41
S 5 1 7 1 3 111 1 4 15 1 -11 -11 -11 -11 -11 -11 -11 -11

Values are -1 because they are impossible
assignments. Therefore, an aritificial variable will

always be assigned instead.



Figure 38
Complete Utility Matrix for Bidders Q, R, and S

The total number of configurations is now increased to allow the single QR bidding entity to be paired with
a two-type item, such as AB or 2AB, as enumerated in configurations 11-22.

Configuration # F Items Available in Auction 1#Items in Auction
1 A A B B B B 6
2 A A 213 B B 5
3 A A 213 213 4
4 A A 313 B 4
5 A A 413 3
6 2A B B B B 5
7 2A 2B B B 4
8 2A 213 2B 3
9 2A 313 B 3
10 2A 413 2

11 AB A B B B 5
12 AB A 2B B 4
13 AB A 3B 3
14 2AB B B B 4
15 2AB 2B B 3
16 2AB 3B3 2
17 A213 A B B 4
18 213 A 213 3
19 2A213 B B 3
20 2A2B3 2B3 2
21 2A313 B 2
22 2A413 1



4.5 Nonlinear Bidder Behavior Based on Items and Not Bidders

A special type of problem exists in which the nonlinear bidding behavior depends

not on what objects other specific bidders receive, but rather depends on what objects

have been assigned, regardless of who receives them. In this case, imagine a bidder that

is nonlinear with many items, yet other items are linear with each other. First, enumerate

all ways in which the objects can be distributed, similarly to Section 4.3, so that for every

group of items, the best assignment can be found. Run auctions for each item

configuration, where now the configurations consist not only of different ways in which

all items are distributed, but also include partial distributions. This way, the nonlinear

bidder can receive the items not included in the partial distribution and a total score for

the unique distribution can be determined later by complete enumeration (as required for

nonlinear problems). This score will equal the best assignment score of the partial

distribution to the linear group coupled with the nonlinear bidder receiving the rest of the

distribution (or a subset of it). This procedure can potentially be applied a successive

number of times, essentially cascading the nonlinear groups such that the number of

enumerations is reduced to allow auctions to handle intermediate, linear groupings. This

method relies heavily on the structure of the problem and deserves future consideration.

4.6 The Makings of a Good Nonlinear Bidder Group

How one knows when to group objects into nonlinear groups is based on two

primary factors. First, the fewer bidders involved in the nonlinear behavior, the better.

Because enumeration is an NP-complete process, finding the optimal assignments for a

large number of bidders will not occur quickly. Representing only the highly nonlinear



behavior by the group and allowing a margin of error for other bidders who are not

included can give faster results, but at the cost of optimality, of course.

A second factor depends on how many object types exist. A small number of

object types will not increase the number of different bidding configurations by much, as

in the example given here needing a mere 12 more configurations. However, an example

with a three bidder group and twenty different object types would require 1140 different

ways for arranging the single multiple-type item. Multiplying this by the number of ways

the remaining items can be grouped soon approaches a large computational requirement.

While limiting the group to a single type of object, as in Chapter 4.3, will keep the

number substantially lower, it will also compromise the optimality.

This last point implies that if a group of objects is likely to request an assignment

of all the same type, then it makes sense to group them together, as the number of

configurations will be kept much lower. While there is the cost of precomputing the best

scores of the intra-group distribution, it may be worth the optimality increase.

The essence of a good nonlinear group lies in the ability to compartmentalize a

nonlinear segment of the problem into a linearly behaving segment that can subsequently

interact with the remainder of the problem. If this can be done accurately, the procedure

can maintain precision as well as auction efficiency. If there are not a lot of bidders of

the same type and many of the bidders depend on each other, auction may not be the best

approach. As can be inferred from all the above assumptions, the power of auctions

comes from linear behavior and from identical objects. The problems require at least

some amount of linear behavior for auctions to exploit. Otherwise, the process

essentially begins enumerating all the possibilities and may actually require more work



than pure enumeration from auction overhead. Figures 39 through 42 present an example

that shows a process of identifying and compartmentalizing nonlinear groups of objects

and bidders. In order for the process to occur, data must be given for individual and

grouped assignments. These can be compared for linearity to see if the group utility

matches the individual utility for different objects and bidders. The results of this

comparison can then help the auctioneer more accurately determine which objects and

bidders to treat as nonlinear pieces.

These results clearly indicate that the size of problems can be cut to

computationally feasible sizes provided assumptions on assignments can be made.



Example: Identifying Nonlinear Groupings

Figure 39
Independent Utilities (if oni that assignment occurred)

1A 2A 1B 2B 1C 1D
Q 2 6 8 2 6 3
R 2 8 8 6 2 2
S 6 9 9 8 9 3
T 5 4 9 4 6 8

6 7 7 7 3 7

Figure 40
Pairs of Assignments and the Corresponsing Utilities

2A 2B AC AD BC BD CD
QR 8 16 8 5 14 11 4
CIS 9 17 12 9 17 12 6
QIT 7 17 11 10 15 16 18
QU 8 15 12 9 13 15 5

RS 11 11 16 20 21 5 3
RT 24 30 0 18 16 4 2
RU 8 15 8 9 11 15 5

ST 2 4 5 3 8 4 13
SU 12 16 15 13 16 16 5,

TU 11 16 12 14 13 16 1

Figure 41
Hypothetical Linear Pair Utilities Based on Independent Utilities

2A 2B AC AD BC BD CD
QR 8 16 8 5 14 11 8
QS 9 17 12 9 17 12 12
OT 7 17 11 10 15 16 14
QU 8 15 12 9 13 15 13

RS 9 17 11 8 17 11 11
RT 8 17 8 10 14 16 10
RU 8 15 8 9 11 15 9

ST 11 18 14 14 18 17 17
SU 12 16 15 13 16 16 16

TU 11 16 12 14 13 16 13

Figure 42
Difference in Actual Pair Utilities and Hypothetical Linear Pair Utilities

Figure 42 = Figure 41 - Figure 40

2A 2B AC AD BC BD CD
QR 0 0 0 0 0 0 4
QS 0 0 0 0 0 0 6
QT 0 0 0 0 0 0 -4
QU 0 0 0 0 0 0 8,

RS -2 6 -5 -12 -4 6 8
RT -16 -13 8 -8 -2 12 8
RU 0 0 0 0 0 0 4

ST 9 14 9 11 10 13 4
SU 0 0 0 0 0 0 11

TU 0 0 0 0 0 0 12

In this example (Figures 39-42), the
data of Figure 39 and Figure 40 are
supplied. Figure 39 represents a
single assignment of only one bidder
to one object or to two of the same
type of object. No other assignments
were made when these values were
computed.

Figure 40 presents data of multiple
assignments, where two objects
were assigned to a group of two
bidders. We are not given the the
specific breakdown of how the
individual objects were paired with
the bidders, but only the collective
utility.

Although we do not know the
breakdown, we can compute the
likely linear behavior of a group of
objects assigned to a group of
bidders based on the independent
values. We will assume that a group
of two objects is distributed optimally
to the group of bidders, hence the
group utility is the configuration
yielding the MAX utility of
independent assignments. For QR-
2A, we look in Figure 39 and
compare Q-2A (6), Q-A R-A (2+2 =

4), and R-2A (8). The MAX is R-2A
and the utility value is inserted into
the hypothetical linear pair utilities
chart in Figure 41.

The actual utilities of pairs are now
compared with the hypothetical
linearized pair utilities by taking the
difference, presented in Figure 42. A
value of zero signifies that the utilities
of the group assignment behaved
exactly as the expected linear
combination, whereas a nonzero
value indicates nonlinear behavior in
the grouping of either objects or
utilities. Nonlinear objects will
appear nonlinear to many bidders
and nonlinear bidders will appear
nonlinear to many objects.

We quickly notice by inspection in Figure 42 that RS, RT, and ST tend do deviate from the predicted linear group utility for
all objects. We infer from this that bidders R, S, and T behave as a nonlinear group (among each other they are nonlinear,
however, they appear to behave linearly with others as in QR, QS, QT, RU, etc.) and will separate them in a full assignment
auction. We also notice that objects C and D have nonzero differences for all bidders, suggesting that they behave as a
nonlinear object group (though they appear linear to the rest of the objects). We will create a single bidder to represent
objects C and D in the auction.



5 Conclusion

Auctions present an opportunity for reducing the computational requirements of

complex problems. Problems that have a particular structure, even if nonlinear, can

benefit greatly by using auctions to circumvent a large number of unnecessary cases. The

structures that are most viable for improvement contain groups of items that are identical,

especially those that behave linearly. Additionally, problems with items that can be

partitioned in a limited number of ways allow auctions to be reduced in size, as well as

decrease the number of auctions required to reach optimality.

While nonlinear problems are still NP-hard, the scale of problems that can be

solved grows tremendously by use of these techniques. This is reflected both by allowing

larger numbers of items to participate in a given auction as well as in modeling problems

to embrace a much higher degree of complexity. Large-scale auctions arrive at solutions

very quickly by grouping the items into similarity classes. For nonlinear problems,

auctions are run on all different possible configurations of items. Groups of identical

items are exploited to readily reduce the number of auctions required by eliminating a

number of configurations that are essentially identical. The coupling of a reduction in

nonlinear possibilities with polynomial-time scalable auctions provides a powerful

optimization technique for large and complex problems.

Efficient algorithms rely on breaking the problem into linear and nonlinear pieces.

The more linear the model, the faster the solution can be reached. Approximating

nonlinear behavior into larger discrete units can help narrow the range of a much larger

problem, which can subsequently be solved at the desired precision. While optimality

cannot be guaranteed, time constraints can be adhered to. Hence, the tradeoff boils down



to speed versus accuracy in creating a simplified model to represent a real-life complex

model. The key lies in boosting accuracy as much as possible while keeping the time

requirement low.

The specific techniques described here include bucketing, one-type object

assignment limits, and expansion of only nonlinear segments. Bucketing simply allows

the number of items within the auction to be reduced by taking a coarser view of the data.

It essentially resizes the number of items into fewer items with larger pieces. While on

the one hand it reduces combinatorial complexity and serves as an accurate guide in fairly

linear environments, it can overlook drastic nonlinear anomalies, leading to a suboptimal

conclusion. A possible extension of research would be in investigating smart techniques

in adjusting bucket sizes. Additionally, this work has explored only same-size buckets,

yet a mix of different bucket sizes could potentially lead to effective management of

complexity within time bounds.

Single-type object assignment limits were imposed in the research to capture a

specific type of domain-specific behavior. This limit assumes that a pattern exists in the

assignment problem such that each bidder will only receive a single type of object. If this

assumption holds, the solution avoids a good amount of computation. Though this

technique could be used for purely linear models to reduce the size of the auctions, the

impact is felt more strongly in the nonlinear case because it eliminates cross-type

combinations. These can be easily handled linearly through multi-assignment, yet

require exhaustive enumeration in the nonlinear case.

Expanding only nonlinear problem segments allows a complex, NP-complete

problem to be reduced to linear elements, requiring only nonlinear segments to adhere to



the NP-complete requirement. After simplifying a segment, it can then participate in an

auction that is solved in polynomial time. This is achieved by calculating and storing the

best score and subassignment for a group of nonlinear bidders. Additionally, the degree

to which constraints are relaxed can be determined by the specific problem and allow the

number of auctions to decrease if certain patterns exist, such as one-type nonlinear

groupings. Because the number of auctions in each segment more than add with each

other to produce the total required, isolating and solving subproblems can avert a large

number of potential combinations.

Auctions are very fast at handling linear behaviors. As such, any part of a

problem that can be described linearly allows full exploitation of auctions. Allowing

nonlinear pieces of the problem to be expanded to capture their nonlinear behaviors while

keeping the rest of the model linear limits the growth of solution time. Because auctions

can accommodate large problems quickly, the linear pieces can be fully and easily

examined in every nonlinear scenario, especially through use of similarity classes.

Though the auction size is larger in purely linear scenarios, the required number of

auctions shrinks to overcompensate this.

Potential future areas of research that have come up through the investigation of

this problem include the following topics. Bucketing can substantially reduce time, but

how can nonlinearity be accounted for in the best selection of bucket sizes and the

descent toward the smallest discrete levels? Even in completely linear models, the

discreteness affects the optimal assignment because the granularity can be too large.

Another area involves techniques for determining the margins of error when deciding a

segment of a problem behaves nonlinearly. By limiting the actual number of members



that participate in the nonlinear group, other nonlinearities may not be accounted for in

the auction. To what extent will this compromise the accuracy of the results? Departing

from the general techniques described here, does a method exist in which a dynamic

auction structure allow real-time perturbations of the existing assignment problem to be

solved more quickly based on either predefined pricing or by precomputing "close"

problems. This real-time procedure would explore auctions that are very similar, varying

by an object or bidder, or by a different utility value for a particular entry that would be

likely to occur. The premise here is that not all information is available to begin with, but

that small amounts of information will be added to the existing assignment problem later,

when time becomes a critical issue. Calculating "close" problems along the way can

exploit redundant calculations, especially in nonlinear expansions, even though the

available objects or bidders vary per problem. Therefore, savings can be made both in

overall time by avoiding redundancies and at run-time by having precomputed results of

probable variations that may occur.

The application of auction to large and complex problems promises to yield

appealing results. Both the size and complexity of problems that can be modeled and

simulated has grown tremendously and auctions will undoubtedly serve as a valuable

optimization technique.



Derivation of Auction Time and Space Complexity
See [4] and [6]

Assume n bidders, m objects

Data Structures

Unassigned Bidders (stack) O(n)

Bidder Assignments (vector) O(n)

Utility Table O(nm)

Object Assignments and Price for Object O(m)

* Space complexity = O(nm)

Time Complexity

The minimum bidder increment is e = 1
The starting prices for all objects are equal to the Min Utility.

1) The maximum number of bids for a object equals a /c = a = Max Utility - Min Utility.

2) To guarantee optimality such that ne < 1, multiply all utilities by n + 1, so a'= a * (n + 1).
(equivalently, e can be reduced such that it is < 1/n)

3) From the optimality guarantee, each object requires O(an) bids.

4) Since there are n people, there can be at most O(n 2 a) bids for all objects.

5) Each bid requires a search through the utility of each object pairing with that bidder O(m)

6) Hence, the total number of operations is bounded by O(mn 2a).

Variations
* This assumes the use of a stack for unassigned bidders that can find an unassigned bidder in O(1). Use

of a list of people that is searched to see who is unassigned increases the order by a factor of n to
O(mn3a).

* Without the optimality guarantee, the solution is optimal within ne. The order is then O(mna) as each
object only requires O(a) bids.

* Epsilon scaling decreases the number of bids to its log, from O(an) to O(log(an)), and hence the total
number of operations becomes O(mnlog(an))

* This assumes using the Gauss-Seidel auction, where one bidder at a time bids. The Jacobian version
checks all unassigned bidders simultaneously, requiring O(mn) bids, and assigning the best for each
object from the group. This increases the overall bound to O(mn3a). However, it decreases the total
amount of bids made and the actual run-time depends on the utility landscape.
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