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Abstract

A method for blind separation of noisy jointly Gaussian multivariate signals X is
presented, where X = AP + N, X is an observed set of vectors, A is the mixing
matrix, P is the unknown signal matrix, and N is white noise. The objective is to
estimate all matrices on the right-hand side when even their dimensions (the system
order) are unknown. The algorithms developed are extensions of the Iterative Order
and Noise (ION) estimation algorithm [10]. Improvements made within the iterative
structure of ION to better estimate the order and noise yield ION’. The addition of
a second-order blind identification algorithm (SOBI, [4]) subsequently yields ONA,
which fully characterizes a data set by estimating the (O)rder, (N)oise, and mixing
matrix (A). Metrics are developed to evaluate the performance of these algorithms,
and their applicability is discussed. Optimum algorithm constants for ION’ and ONA
are derived, and their range of applicability is outlined.

The algorithms are evaluated through application to three types of data: (1)
simulated Gaussian data which spans the problem space, (2) a set of non-Gaussian
factory data with 577 variables, and (3) a hyperspectral image with 224 channels.
The ONA algorithm is extended to 2D (spatial) hyperspectral problems by exploiting
spatial rather than time correlation. ONA produces a full characterization of the data
with high signal-to-noise ratios for most unknown parameters in the Gaussian case,
though the jointly Gaussian P is shown to be most difficult to retrieve. In all three
cases, ONA reduces the noise in the data, identifies small sets of highly correlated
variables, and unmixes latent signals. The spatial ONA identifies surface features
in the hyperspectral image and retrieves sources significantly more independent than
those retrieved by PCA. Further exploration of the applicability of these algorithms
to other types of data and further algorithmic improvement is recommended.

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering
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Chapter 1

Introduction to the Problem

1.1 Introduction

Blind separation of signals (BSS) is a diverse family of problems generally expressible
in the form:

x = Ap + G'?w (1.1)

where x is one of a given set of m observed vectors of length n, A is the mixing
matrix, p is a signal vector of length k, and G'/?w is a noise vector.! Each element
of the vectors p and w has unit variance, thus reducing ambiguities in the separation.
The most general problem statement seeks estimates of A, k, p, G, and w based
exclusively on m observations of x. Usually w is Gaussian white noise and k<n.
Despite the simplicity of Equation 1.1, the array of problems it represents is extensive

and evolving.

1.2 Previous work done with BSS

Most methods for BSS utilize the non-Gaussian nature of the signal set p to facilitate
signal separation, which is increasingly necessary as the signal order k approaches

n. Methods utilizing cumulant matching and contrast functions are described in [6].

'Tn this thesis, I denote matrices by boldface capital letters, vectors by boldface lower-case, and
scalars by lower-case.

17



Independent Component Analysis [ICA] also relies on the non-Gaussian nature of
the mixed signals [7]. Other methods utilize maximum likelihood methods together
with prior knowledge of the non-Gaussian nature of the signal set [8], [5]. Information
maximization techniques have also been successfully used but require prior knowledge
of the nature of the signal set [3].

The papers most relevant to the present Gaussian-signal case include [1], [13], [14],
[4], [11], and [10]. Factor analysis [1] aims to unmix Gaussian sources but assumes that
the order k is known in order to calculate prior probabilities for the unobserved signals.
Bayesian BSS [13] assumes that k is unknown although its probability distribution
is known. The second-order joint diagonalization algorithm introduced in [4] can
be applied to both Gaussian and non-Gaussian sources, provided the sources have
different spectral content. This Second-Order Blind Identification algorithm (SOBI),
is incorporated in the algorithm introduced in this paper, designated the Order-Noise-
A (ONA) estimation algorithm, and is discussed further then. Even more central
to ONA is the Iterated Order-Noise (ION) estimation algorithm, which alternately
estimates the order k of the system, for example by using a scree plot ([11] and
Section 2.3.2), and then the noise covariance matrix G, for example by using the EM
algorithm [11], [10}. The EM algorithmic step in ION also estimates the signal matrix
Ap and the noise Gw of Equation 1.1.

1.3 Motivation for ION’ and ONA

Both algorithms developed in this thesis, ION’ and ONA, are based on the ION
algorithm developed in [10]. The ION algorithm was developed to address the BSS
problem where the underlying order of the system is unknown. In this case, it is
difficult to accurately estimate the order k without prior knowledge of the noise
covariance matrix G or to estimate G without knowledge of k. Clearly, an iterative
algorithm can take advantage of consecutive improved estimates of both k and G
to further improve the estimates of both parameters. The scree plot method of

estimating the order k was chosen because of its ability to locate the noise plateau,
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although other order-estimation algorithms could be used instead. Finally, the EM
algorithm is the most successful known separation technique for Gaussian signals, so
it was used to estimate G based on the previous estimate of k. Again, an alternate
separation technique could perform this function, but the goal of the ION algorithm
was to combine the most reliable algorithms for order and noise estimation, and
therefore the EM algorithm was chosen.

The ONA algorithm specifically addresses the case where both p and w are Gaus-
sian and have covariance matrices equal to the identity matrix. Although it was
designed for the case where the time sequence of the x vectors is irrelevant, ONA
will take advantage of any information latent in the sequencing of the x vectors. It
is assumed without loss of generality that the noise covariance matrix G is diagonal.
In the case where the noise is correlated across variables, ONA will detect this cor-
relation and will consider it signal, thereby increasing the estimated order of p. The
end user must then determine which elements of the retrieved p correspond to true
signals and which correspond to correlated noise.

These algorithms are unique because they address one of the most difficult cases
for blind separation: Gaussian data of unknown order. It is significant that they
also perform well on non-Gaussian or mixed data despite this initial assumption.
This makes TON, ION’, and ONA flexible and applicable to a diverse range of BSS

problems.
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Chapter 2

Improvements to the ION
Algorithm: ION’ and ONA

2.1 Introduction

ION was designed primarily to estimate the system order, k, and the noise covariance
matrix G in order to perform noise normalization. As a consequence of estimating
the noise N, ION also estimates the signal as Z = X — N. The success of ION in
estimating these parameters is striking, and more information on the subject can be
found in [11] and [10].

Little analysis was done on the convergence properties of ION, however. Also,
ION does not fully characterize the parameters of the most general problem statement
given in Equation 1.1. (ION estimates Z but does not estimate A or P.) Improvements
were made to the ION algorithm to address these two issues.

ION’ is an extension of ION that better initializes various variables at each it-
eration of the algorithm and that incorporates better criteria for terminating that
iteration. These changes improve the estimates of Z, G, and k relative to the original
ION algorithm.

ONA further extends ION’ to unmix the noise-free data matrix Z. At the end of
the ION’ process, ONA uses SOBI to separate the estimated Z into estimates of the

mixing matrix A and the source matrix P. Thus ONA improves upon ION and ION’
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by fully estimating all of the parameters described in Equation 2.1.

The details of ION” and ONA were determined after a large series of experiments
on simulated Gaussian data. For example, it was found that SOBI was best used
but once to conclude ONA rather than at each iteration. Also, it was found that
successive iterations of ION’ occasionally oscillate between a few estimated values
for k, leading to the scree-like method for determining which iteration produced the
best results. Finally, it was found that the initialization of parameters in the EM
Algorithm significantly affected the convergence time of the EM algorithm, and thus
of ION’ or ONA| so the updated parameters were initialized to provide convergence in
fewer iterations. In general, setting the number of EM iterations () and the number
of ION’/ONA iterations (i) as j = 10 and ¢ < 5 is sufficient. The corresponding

changes and additions to the algorithm are described below.

2.2 Problem Definition

The general problem definition in Equation 2.1 is an extension of Equation 1.1 that
represents the full set of m observed x vectors by X, which is a matrix of n row

vectors, each of which represents one observed variable:
X=AP+GY*W=Z+N (2.1)

The k-by-m matrix P represents the unknown unmixed signal of interest, and Z

and N represent the total signal and noise, respectively, where we define:
Z=AP (2.2)

N = GY/*W (2.3)

The problem is to estimate with minimum mean square error the unknowns k,
A, P, G, and W given ounly a single matrix X. Because the optimization is

non-linear, these separate estimates for any matrix X may not simultaneously
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Table 2.1: The ION’ algorithm

Step

1. Optionally normalize rows of X to zero mean and unit variance.

Initialize G = I. Set maximum iterations 4,4,

(typically ipq, = b is sufficient)

Noise-normalize X: X, = Gz-__ll/QX

Estimate signal order k; using a scree plot of X,, and SVD

Estimate G; and Z; using the EM algorithm and £;

Check for iteration termination conditions; if none, increment the

index i and return to Step 2.

6. Determine which of the i iterations produced the best results for
G, Z, and k.

G W

satisfy (2.1) exactly.

2.3 Improved Iterative-Order-Noise (ION”)
Algorithm

2.3.1 Algorithm Overview

The ION’ algorithm is defined in Table 2.1 in a form that returns estimates of k, Z, and
G for a given X. It, like ION (See [11] or [10]), iterates two principal steps: 1) order
estimation (of k), and then 2) estimation of G and Z using the EM algorithm. These
two steps are elaborated below along with details of the improvements made in each.
Also unlike ION, which simply returned the estimates produced by the last iteration
of the loop, ION’ compares the results of each iteration to determine which produced
the best results.

Step 1 of ION’ initializes G to the identity matrix I and optionally normalizes
the rows of X to zero mean and unit variance for each of the n variables. The
normalization improves the results of the algorithm in cases where the noise variances
vary widely over the variables, e.g. when the measurements were taken in different
units, and ION’ subsequently improves this normalization through iteration. Step 2

is the algorithm re-entry point and normalizes each row of X so that its estimated
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additive noise has unit variance based on the most recent estimate of G. Steps 3

through 6 describe the major modules of ION and are discussed in more detail below.

2.3.2 Improved Order Estimation

Step 3 utilizes a scree plot to estimate the signal order k, where such plots present
the logarithm of the magnitude-ordered eigenvalues of the correlation matrix for X,
as a function of eigenvector number. Figure 2-1 illustrates typical scree plots, where
the plateau to the right of the break generally represents noise, and the true order of
the underlying process is 24. The estimated order is the number of eigenvalues that
lie above the extrapolated plateau. Multivariate data with normalized additive noise
yields eigenvalues representing that noise plus signal energy. Therefore, for noise-
normalized signals, the eigenvalues corresponding to pure noise have approximately
equal amplitudes and form a plateau of length n - k. When the data set (m) is
limited, these pure-noise eigenvalues differ slightly and form a slope in the resulting
scree plot.! Round-off errors and statistics can cause the smallest eigenvalues to drop

below this slope.

Occasionally this method alone significantly over- or under-estimates k, and there-
fore ION’ simultaneously estimates k using Singular Value Decomposition (SVD). The
SVD estimate k’ is simply the number of eigenvalues that individually exceed 0.001
percent of the total variance of X. For the range of parameters discussed later, the
algorithm is not significantly sensitive to the percent cutoff used, although the esti-
mate produced with 0.001 percent tends to approximate both the true order and the
scree estimate. When consecutive estimates of k from the scree plot and from SVD
have oppositely signed slopes, the SVD estimate of k is used. Except in special cases,
e.g., when the scree plot is atypical or the problem parameters become very large,

the SVD value is usually not required.

IThe plateau and k’ is typically determined by performing a linear regression on the 40t* to 60t*
percentile of the ordered eigenvalues, although which percentiles are optimally included may change
for data sets with extremely large or small order k. See 4.2 and [11] for more discussion.
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Figure 2-1: Scree plots of data before (PCA) and after (ION and ONA) noise-
normalization

2.3.3 EM Algorithm

Step 4 of ION’, as presented in Table 2.1, is the Estimation-Maximization (EM)
algorithm, which is described in more detail in Table 2.2 and in [10]. The initialization
step employed here is the only departure from the algorithm describe in [10]; there
the initial A’ was the identity matrix augmented by n - k rows of zeros, or it was
an n-by-k matrix of unit-variance Gaussian random numbers. Here, for all iterations

but the first, the initial A’ for each iteration is based on the latest estimate of A.

The structure of the EM Algorithm is such that highly correlated columns of A’
often correspond to highly correlated rows of P’. These highly correlated rows of
P’ presumably correspond to a single true P; because the rows of P are generally
independent. In order to uncover more distinct rows of P, only those d columns of
A!_, for which o4 > oy for all r#q are therefore used to initialize A;, where g,

denotes the covariance of the ¢** and r'* columns of A}_;:
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Table 2.2: The Expectation-Maximization Algorithm

Step

Initialization:

Iteration index j = 1; number of iterations ja; = 10

G, = 0.51, I of order n

A? = columns of A for which o, > o, for all r#¢q, 1<(r, ¢) <K/,

d = number of columns in A°®

If A;_ exists, A; ;—; = { A® | unit-variance n x (k; — d) array of g.r.n.?}
Otherwise, A; ;=1 = { unit-variance n x k; array of g.rn. }
Expectation Step:

W, =ATG'A; +1

D; = E[P"P|X, A;,G;] = mW; ' + W ATG'XXTG; 1AW
Maximization Step:

Aj+1 = }((3]]D]_1

Gygjt1 = (Yng - Aq,j+ICJTYq)/m§

where Y = X7; q = 1, ..., n indexes the column vectors of Y and A;
G 44 references the diagonal elements of G,

If 7 < Jmaz, increment j and go to Step 2 for further iteration.

After last iteration, output G;,; and Z;; = [XTG;_ilAj+1W]'__&1]A?+1

agr = E[(4y — E[AJ])(4, — E[A/])] (2.4)

The remaining columns of the initialization matrix (up to the k™) are filled with

random numbers (as in the ION algorithm). Alternatively, if the latest estimate of

k has decreased (so that the number of columns of A}_; is larger than the number

desired), those columns with the smallest values o4, are dropped.

2.3.4

It is important to note the the ION’ algorithm is one of two major components of
the ONA algorithm, so improvements made to ION’ also affect the performance of
ONA. The algorithm developed to determine the best iteration of the ION’ algorithm
described here can be optimized differently depending upon whether it is being used

alone or as a component of ONA. The general algorithm outline is detailed here, and

Iteration Determination

optimizations specific to the ONA algorithm are discussed in Section 2.4.2.

26




The specific algorithm used in Step 6 of Table 2.1 to reject outliers and identify the
best iteration i is similar to that used to determine k’ from the scree plot but is based
on the successive estimates of Tr{G} and the corresponding cstimated values of k.
The set of Tr{G’} is ordered by decreasing magnitude and plotted; the corresponding
k values are re-ordered using the same transformation as on the set of Tr{G’}. Note
that this means the k values are not necessarily magnitude ordered. The steep slope
on the left side of the plot typically indicates outlier iterations while the far right of

bl

the plateau typically indicates iterations that are "too good to be true,” i.e. although
lower values of G imply that more signal has been retrieved from the noise, this is
not always true. That is, those iterations for which the metric Tr{G’} is near optimal
have a statistical spread, and those values near the median (and therefore the knee)

are less likely to have resulted in falsely optimistic estimates of G.

Manual inspection of consecutive iterations of ION’ on many different data sets
led to the following heuristics for determining which iteration should be retained.
Iterations are considered outliers if they have Tr{G;’} > (1 + ¢)Tr{G;41’} (where i
is the index into the ordered Tr{G’} vector), or if they have k] > (1 + d)k[,, where
¢ = 0.02 and d = 0.15. (See Chapter 4 for the details of how this was determined.)
Those which are "too good to be true” correspond to iterations for which Tr{G’}
decreases while k increases. An algorithm like that used to estimate k was used on the
set of iterations remaining after the elimination of outliers above to determine which
iteration is nearest the junction of the plateau and the steep slope on the left side;
note that this algorithm produces acceptable results even when only a few iterations
remain. This final valid iteration yields the best estimates of k, G, and Z (and
consequently of N and W), except in the case when outlying iterations ”accidentally”
produce good results, i.e. when the algorithm converges to an answer inferior to an

outlying iteration, which rarely occurs.

Stability of the performance of the algorithm with respect to the parameters ¢ and
d was tested for the same simulated data sets as described in Table 5.3. Performance
is stable for variations of (c¢,d) by as much as a factor of two increase or decrease,

though the results are more sensitive to changes in ¢ than in d. It was found that

27



Table 2.3: The ONA algorithm

Step

1. Optionally normalize rows of X to zero mean and unit variance.

Initialize Gy = I. Set maximum iterations %,,,,

(typically tmae = 5 is sufficient)

Noise-normalize X: X, = G;_I{ZX

Estimate signal order k; using a scree plot of X,, and SVD

Estimate G; and Z; using the EM algorithm and £;

Check for iteration termination conditions; if none, increment the

index i and return to Step 2.

6. Determine which of the i iterations produced the best results for
G, Z, and k.

7. Using this estimate of Z, estimate A and P using the
SOBI algorithm. Normalize A and P to guarantee that P has
unit-variance rows.

A

the quality of the parameter estimates of the set G, Z, N are often interrelated; for
any choice of ¢ and d, the three estimates are usually all good or all poor. The choice
of ¢ and d used here produce results which are near-optimal for all parameters, but
changing the values used for ¢ and d can change the precise optimality criterion of
the algorithm. (This is discussed in more detail below where the use of ION’ as a
part of ONA is presented in Section 2.4.2.) Overall, the parameters for which the

algorithmic estimation is most sensitive to changes in (¢, d) are G and the order k.

2.4 Order-Noise-A (ONA) Algorithm

2.4.1 Algorithm Overview

A block diagram of the ONA algorithm is shown in Figure 2-2, and the algorithm is
defined in Table 2.3. ONA is identical to ION’ (defined in Table 2.1) except for the
addition of SOBI at Step 7. Like ION’, ONA iterates two principal steps: 1) order
estimation of k using a scree plot and SVD, and then 2) estimation of G and Z using
the EM algorithm. After the completion of the ION’ algorithm, however, ONA passes
the estimate of Z through the SOBI algorithm to estimate A and P.
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2.4.2 Iteration Determination

As noted in Section 2.3.4, the specific optimization criterion of the algorithm which
determines the best iteration can be changed by using different values for ¢ and d. In
order to use ION’ as a component of ONA, additional work was done to determine
the best such values of ¢ and d with respect to the additional estimation of A and P
done by ONA. Although A and P are not estimated in each iteration of ION’, and
thus they are not directly determined by choosing one iteration over another, A and
P are entirely determined by which estimate of Z is chosen. This estimate of Z is
passed to SOBI which then separates it into A and P, and the type of residual noise
remaining in the estimate of Z can affect the quality of this separation.

The optimal values of (¢, d) determined for ION’ as used in ONA are ¢ = 0.02 and
d = 0.075. (See Section 4.4 for the details of how this was determined.) Using these
parameter values, the final valid iteration yields the best estimates of k, G, and Z
(and consequently of N and W) prior to use of SOBI in Step 7 of ONA to produce
the final estimates of A and P from k’ and Z.

It was similarly found that the quality of the parameter estimates of A and P
are often interrelated; for any choice of (¢, d), the coupled estimates are usually both
good or both poor. The choice of (¢,d) used here produces results which are near-
optimal for all parameters, especially the order estimate and the estimates of A and
P. Overall, the parameters for which the algorithmic estimates are most sensitive to

changes in (c,d) are G, k, and A.

2.4.3 Addition of SOBI

The most important improvement of the ONA algorithm over ION’ is the addition of
SOBI in Step 7 of Table 2.3 to estimate the mixing matrix A and the source signals
P. The SOBI algorithm, as described in [4] and summarized in Table 2.4 for real
signals characterized by (2.1), is a second-order blind source separation technique
that estimates A and P by jointly diagonalizing a set of covariance matrices of the

whitened signal matrix. Typically, the SOBI Algorithm assumes that the system
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Table 2.4: The SOBI Algorithm

Step

1. R z/(0) is the n x n sample covariance of Z’ where we assume
Z' = AP + Nj and Ny is residual noise.

Let R4p(0) be the n x n sample covariance of the product AP.

Find a whitening matrix W such that WR 4p(0)W7T = WAATWT =1L
Because (WA)(WA)T =1, let the unitary matrix U = WA.

(A is yet unknown.)

(Note that finding W requires that the covariance matrix of the noise Ny
be known or that it can be estimated. See [4])

2. Calculate ¥ = WZ' = WAP + WN; = UP + WN,

3. Calculate the set Ry(7;) | 7 =1,2,...,] where Ry(7;) are the estimated
sample covariances of ¥ for [ fixed time lags 7;. (I is a variable
parameter; here [ = 10.)

4. Find U as the joint diagonalizer of the set Ry (7;) | 7 =1,2,...,1 where
Rq;(Tj) = WRZI(T]')WT = URP(T]')UT.

d. Estimate A and P:

A’ = W#U (where # indicates the Moore-Penrose pseudo-inverse)
P = (UTW)Z

order k is known, so it could not be used directly on the matrix X. ONA thus takes
advantage of SOBI by giving it the order estimate k returned by ION’ and then using

SOBI to separate the noise-reduced estimate of Z.

Step 1 of Table 2.4 describes how to calculate the whitening matrix which effec-
tively noise-normalizes the data, producing the noise-normalized data in Step 2. A
set of time-delayed covariance matrices of the whitened data is produced in Step 3;
use of several covariance matrices instead of one allows additional information about
the independent signals P to be found as the independent noise on different variables
is averaged out through the joint diagonalization of Step 4. Finally, the whitening
and unitary matrices found in Steps 1-4 are used in Step 5 to estimate the mixing
matrix A and the source matrix P. The block diagram of SOBI shown in Figure 2-3

also details this process.

It is important to note that, in Step 5, SOBI produces the best estimate of P given
A and Z, which is Py = A#Z (where # indicates the Moore-Penrose pseudo-inverse).

It is the case that Z = APy, only when Z and A have an identical column space,
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however, so any residual noise in the Z matrix will produce a suboptimal estimate
of P. This fact makes the combined use of ION’ and SOBI in ONA more effective in
estimating P because noise is reduced in both stages of the process.

Overall, the accuracy of P’ produced by using only SOBI to process X is more
sensitive to noise in the data and errors in the system order SOBI is given than is
the accuracy of A’, while the results are fairly insensitive to small changes in L, the
number of covariance matrices which are jointly diagonalized (see Figure 2-3).

When SOBI is used as a component of ONA, the estimates it returns must be
normalized to conform with the assumptions of Equation 2.1. That is, the magnitudes
of the columns of A and the rows of P determined by SOBI are scaled to produce
unit variance rows of P, and these normalized matrices are used as the best estimates

of A and P.

32



€e

weIdel([] Yooid 190S §-¢ oIm31]

A
k, the estimated order of the system

A

Z = AP + N,,, where N, is residual noise

Sample Covariance
N /\T

R3(0)=E[ZZ ]

Rz(0)

=R, p(0)+ cov(Ny)
= AAT+ cov(N,)

Whitening Matrix Whitening
A
Find W such that Z,~=WZ
WR,OW! | W | =WAP+WN,
=WA ATWT =UP + WNO
—1 where U=WA is unitary

Zo

Delayed Sample Covariances

For fixed T, 1=1,2, .., L;tZ£0
Calculate R, (t)):

Joint Diagonalization

{R; ()} |of the set:
-~

- T
R. () =WRa(Tj)) W
so R, (1) =UR,(t)U "

/

S

Find U as the joint diagonalizer

A

U  A=w'U

———————————

(R, (t;)=URL(tpU '} P=(UTW)Z

1,j=1,2, .., L




34



Chapter 3

Performance Evaluation: Metrics

3.1 Introduction

Several of the parameters of Equation 1.1 are estimated by the ION’ algorithm. The
ONA algorithm is even more extensive, estimating all of the relevant matrix and
scalar parameters, i.e. Z, A, P, N, G, W, and k. Because the algorithms are
simultaneously estimating such a diverse set of parameters, the performance can be
quantified in many ways. Although not all of the metrics detailed in this chapter were
ultimately used to evaluate the algorithms, their successes and failures lend insight

into the nature of the problem being addressed.

3.2 Signal-to-Noise Ratio (SNR)

The most useful metric for evaluating the performance of the algorithm on simulated
data is the signal-to-noise ratio for each of the estimated parameters. This measure
gives some sense of the ability of the algorithm to detect signal buried in noise and
to separate the two. Here we extend the definition of signal-to-reconstruction-noise

ratio (SNR) for a matrix estimate Y’ of Y as:

T'I‘{SS}
T’I‘{SN}
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where

Ss = E[YYT] 3.2

Sy =E[(Y =Y (Y - Y] 3.3

Also, we define the SNR of X (SNRy) to be the ratio of the signal energy to the

noise energy: sy g
1=1 j=114,3
Z’?:I Z_Tynzl N’;?,]

Because the system is noisy, it is not expected that SN Ry, will meet or exceed

SNRx = 3.4

SNRx. It is clear, however, that the algorithm is performing well when SNRx:
approaches SN Ryx. Also, for this definition of SN Rx-, it is possible to calculate SNR
for the ION’ or ONA estimates of non-simulated data for which nothing is known a

priori about the SNR.

3.3 Order Estimation Metrics

Unfortunately, it is impractical to evaluate the estimate of k using the SNR. Because
k is often estimated precisely, the noise variance can be zero, making the SNR infinite.

An alternate set of stable metrics is used instead.

For a single experiment, the quality of estimation of the system order is described
by the percent error of the estimate and the root-mean-square error of the estimate.
For a set of identical simulated test cases, the overall performance of the estimate of

k is described as follows:

] 3.5
or 2 E[(k - k)22 3.6

Together these two metrics describe both the absolute error in the estimate of k and
the amount by which this estimate varies. Both metrics are stable and are used to

quantify the performance of ION’ and ONA on all simulated data sets.

36



3.4 Concentration: Variable Grouping

Concentration is a measure of how many variables are grouped together by a single
eigenvector of the covariance matrix of the data, where fewer variables per group is
usually considered to be better. If we let V be the matrix whose columns are the
eigenvectors of cov(G~1/2X), then in general, the strength of the contribution of the
i*" variable of a system to the j* eigenvector is proportional to | V(i) — mean(V;) |.
(Note that a system of N variables will typically have N such eigenvectors of dimen-
sion N.) If V; has a small number of elements with magnitude significantly differing
from the mean value, these elements likely distinguish a set of related variables. Con-
centration is developed as a measure of how well this grouping of variables into sets
1s accomplished. The concentration measure of all N eigenvectors can then be se-
quentially plotted to determine the number of significant variable groups found in

the data. The concentration of an eigenvector can be determined with either of two

related measures.

First, concentration can be related to a count of the number of elements in a
single eigenvector whose magnitude significantly differs from the mean, although this
method requires an arbitrary threshold for ’significance.” One simple way is to deter-
mine the number of elements which differ from the mean by more than sigmacount
standard deviations (where sigmacount is arbitrarily chosen, e.g. sigmacount = 4).
Given an eigenvector v of order N with mean p and standard deviation o, we define
Ceount as:

Crount = count(| v — p |> (sigmacount)o) (3.7)

and it is the case that 0 < C,gyns < N. This arbitrary choice of sigmacount here is
not ideal, however; an alternate definition is proposed which yields comparable results
without the need for an arbitrary threshold.

The second definition of concentration is a normalized measure of the range of
values taken on by the elements of any particular eigenvector v. If the Range of a
vector is defined as:

R(v) = maz(v) — min(v) (3.8)
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then the concentration of the same vector can be defined:

R*(v)
Crange = 0_2 (39)
where Clqnge can take on any non-negative real number. Although not directly related

to Counts Crange reveals much of the same information without the use of an ad hoc

threshold.

An example of sequentially plotted Concentration measures is shown in Figure
3-1 for the 577-variable factory data set discussed in Chapter 6. Both measures of
Concentration are plotted with the curves normalized so that their maximums are
unity. The shapes of the two curves are similar, showing that just much of the same
information can be extracted from Crqnge as from Ceoune; indeed, the discretized-curve
of Crount Obscures information about the variance of the magnitude of the elements
exceeding the threshold. In both cases, it is clear that a fraction of the eigenvectors
do much better at grouping a small set of variables; these are apparent in the steep
slope at the left, especially for C,ange.

Unfortunately, the magnitude of C(V;) is not correlated with | A; |. As can be
seen in Figure 3-2, some eigenvectors corresponding to the smallest eigenvalues have
a very large concentration measure. While these eigenvectors almost surely pick out
small sets of correlated variables, it is unlikely that they are important groups because
there is so little power in the corresponding eigenvalue. When they are significant
groups, it is most often the case that these variable groups were also grouped by an

earlier eigenvector, making the grouping redundant.

3.5 Evaluation of Estimated Source Quality

The ONA algorithm employs SOBI to separate the mixed source matrix Z into the
mixing matrix A and the unmixed source matrix P. Some metric is necessary, how-
ever, to evaluate the quality of these unmixed sources, both to determine the quality

of the unmixing as compared to other algorithms and also to allow the end user to

38



1 T T T T T
0.9 Ccount )
08} __ Trange 4
L)
|
~~_. 0.7 4
> Ly
o
|
= |
© i
-— 05 =y -
c 1
8 I
-1

[ - 04 \ .
Q |
O -_-

03 | B

I_ ——
1
02} ; .
______ [
1
01f e s . .
0 1 1 1 J 1
0 100 200 300 400 500 600

eigenvalue index i

Figure 3-1: Magnitude-ordered Normalized Count and Range Concentration measures
for Factory Data

Concentration (vi)

0 1.00 — 200 306 4;00 500 = 600
eigenvalue index i

Figure 3-2: Normalized Count and Range Concentration measures for Factory Data,
ordered by eigenvalue magnitude

39



separate significant source vectors from those primarily composed of correlated noise.!

The metrics discussed below quantify in some manner the quality of a source signal
P; or of the set of source signals P. None are used in the review of the algorithm in
this thesis, but their strengths and weaknesses are detailed here for the edification of

the reader.

3.5.1 Focus

The focus of a source signal P; is a general measure of the “sharpness” of the signal,
i.e. the extent to which the probability distribution function (pdf) of P;, call it p;(z),
is clustered around a few values. For the definition of focus provided below, a source
with uniform pdf has a focus value of zero, a source with Gaussian probability has
a very low focus value (~ 0.1 — 0.3), and a source with a pdf which consists only
of a few delta functions will have a very high focus value (~ 0.8 — 1.0). Figure
3-3 illustrates the notional relation of focus to probability distribution. Here all
calculations have been done with K = m for sources of dimension m=1001. The
uniform distribution has range [—2500,2500] and variance 2 % 10%. The Gaussian
distribution has an approximate range of [—2800,2600] and variance 0.9 = 10°. The
mixed Gaussian has peaks with variance 100 centered at -2400, 0, and 2400. The range
is [—2700, 2700] with overall variance of 2.89 x 10°. Finally, the non-Gaussian signal
has range [—2400, 2400] with variance 2.88 * 10°. These signals all have similar ranges
and variances, but the focus values produced differ drastically. While the variance
measure describes the spread of the distribution, the focus measure is intended to

capture information about the nature of spread of the distribution.

Specifically, focus is defined here as a measure of the entropy of p;(z) relative to

that of a uniform distribution over the range (min(P;), max(P;)). We define:

Hunif - Hsource
Hunif

3.10

F(P) =

11t is significant to note that if the noise is correlated with the data, ONA will consider it ’signal’,
and the estimated order k will increase. See Section 1.3 for more discussion.
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where the entropy of the source pdf is

maz{P;)
Hsource = Z ""pz(k)log(pl(k)) 3.11

k=min(P;)
and the entropy of the uniform pdf over the same range is

maz(P;)

log(maz(P;) — min(P;))
Z (maz(P;) — min(P;)) 312

Hynis =

k=min(P;)

where the summations are over K intervals within the given ranges. For K large

enough, all interesting features of the pdf should be fully resolved, making F(P;)

nearly independent of K. As with the concentration metric, the set {F(P;)} can

be plotted in magnitude order to inspect the spread of well-focused to unfocused

sources. Such plots can also be compared for competing algorithms to distinguish
which produces more sharply-focused sources.

Unfortunately, extreme cases behave unexpectedly with this metric. Principal
Components Analysis (PCA) has a tendency to align nearly Gaussian sources such
that each also has a few extreme outliers. When this occurs and the outlier is far
from the Gaussian center, the focus value for the source is greatly increased. This
phenomenon is demonstrated in Figure 3-4. The pdf of the 59" principal component
of the non-Gaussian factory data analyzed in Chapter 6 is shown on the top, calculated
with interval sizes of 0.0998 (K = m/10 where m is the number of samples in the
59" PC), with corresponding focus value of 0.4666. While a focus value near 0.5
does not indicate a source with great focus, it typically indicates at least that the
source is non-Gaussian. Inspection of the pdf shows, however, that this source is
essentially Gaussian except for the few extreme outliers at 15.98 and 68.48. When
the two outliers are removed, and the pdf for this new (Gaussian) source is plotted
below, calculated with interval sizes of 0.0932 (K = m/40), the corresponding focus
value decreases to 0.3146, which is near the high end of focus values indicating a
Gaussian source.

In this example, the interval size was held nearly constant to preserve the shape of
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the density function. If the number of intervals is instead held constant at K = m/10,
the focus value for the outlier-removed source drops further to 0.2519 which is well
within the Gaussian range. In the extreme, when K = m, the focus values become
F = 0.3528 for the unaltered PC and F' = 0.2056 for the outlier-removed source. Even
here, the original focus value was above the Gaussian range though visual inspection
of the pdf indicates that the source is nearly Gaussian. While outlier-removal reveals
the Gaussian nature of the signal, it is not clear that this process should be automated;
outlier detection and removal could quickly become ad hoc and may adversely affect
the focus values obtained on non-Gaussian sources. It is also important to note that,
in this case, the value chosen for K does affect the focus values, and this should be
kept in mind when comparing the results of different algorithms.

Because the focus value of these undesirable retrieved signals can actually be
increased above the typical Gaussian range of 0.1-0.3, it is difficult to use source
focus values to identify Gaussian sources with outliers from well-focused non-Gaussian

sources. For this reason, the focus metric is not used in the evaluation of ONA.

3.5.2 Visual Metric

A visual metric was also developed which helps to uncover patterns in the recovered

signals. Essentially the signals are transformed into a new set of signals Q by:

Q.(i) = 1 if | PJ(z) — pj |> mult * o,
0 otherwise

where mult is a constant chosen by the user. Q is then plotted on a two-dimensional
plot where black represents a 1 and white represents a 0. Clearly non-Gaussian P;
will create ’streaks’ of black in Q; as Q;(¢) = 1 for several consecutive i. Purely
Gaussian signals have fewer extreme values overall, reducing the number of dots, and
thus streaks, in the plot of Q.

An example of this type of visual plot is shown in Figure 3-5 where a subset

of the sources retrieved by PCA, ION, and ONA have been clipped at 30;. The
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corresponding set Q is displayed as a set of column vectors. On the left, 2000 samples
of the transformed PCA and ION sources Q are shown, while on the right, 4000
samples of the transformed ONA sources are shown. It is immediately recognizable
the the ONA plot shows significantly more vertical 'streaks’ than do the other plots,
demonstrating the power of the correlation assumptions made in the SOBI algorithm
to unmix correlated sources. Although this type of plot gives a good indication of the
type of sources retrieved, quantitative analysis of the plot quickly becomes more ad
hoc than is desired in a comparative metric; the visual metric is thus used only as a

qualitative measure of algorithm success.
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Chapter 4

Algorithm Optimization

4.1 Introduction

The ION” and ONA algorithms have two sub-functions which rely upon empirically-
set parameters. A discussion of the criterion for optimality and the approach used
to determine optimal values for these parameters is included in this chapter. Section
4.2 discusses the parameters used for order estimation from a scree plot. Section 4.3
explores the use of the trace of G as a metric for iteration selection. Section 4.4
explores the use of the trace of G as well as determining the other parameters of the
iteration selection algorithm. These parameters are optimized for the data used to
evaluate the algorithm in Section 5.3.2, specifically those data sets reviewed in Table

5.3. The limitations of this training set are discussed further below.

4.2 Order Estimation Parameters

As documented in [11] and [10], the scree algorithm estimates the order of a data set
by estimating the number of eigenvalues that rise above the noise plateau of the data.
This requires estimation of the level of the noise plateau, done by the ’screeorder
function’ (see A.2) authored by Junehee Lee [10]. The plot analysis is controlled by
the parameters (a,b) such that regression is performed on the 100 * a'* to 100 * b

percentile of the eigenvalues to determine the estimated noise plateau. Typically,

47



(a,b) = (0.4,0.6), the values used for ONA, but the optimal values can vary for

different types of data. For further discussion, see [10].

4.3 Trace of G

Recall that the noise on each channel is assumed independent, so the noise covariance
matrix G is considered diagonal and real. Because all of the noise variances lie on
the diagonal, the trace of G, denoted by Tr{G}, is a rough measure of the total noise
in the system. This means that the traces of G’ from consecutive iterations can be
compared to determine whether the algorithm is increasing or decreasing its estimate
of noise in the system. While this fact is straight-forward, how to use this information
is not necessarily so. In general, the estimates of noise in the system are expected
to increase for at least the first few iterations of ONA as the algorithm detects noise
which is present. If, however, the noise estimates continue to increase drastically, it
may be a sign that the algorithm has incorrectly classified a large portion of signal as
noise. Careful interpretation is thus required to use this metric as an indicator of the
quality of the results for a given iteration. The following section details how Tr{G}

is used in conjunction with other indicators to aid iteration selection.

4.4 Tteration Selection Parameters

The algorithm used to select the best iteration produced by ION’ was briefly intro-
duced in Sections 2.3.4 and 2.4.2. The Matlab code for this function can be found in
Appendix A.4 and can be altered and optimized for different values of (c,d). These
two constants determine what relative changes in the order estimation and the noise
estimation between two iterations are considered indicators that the iteration results
are unreliable. As was discussed earlier, the choice of (¢, d) can be used to optimize
this selection process for a specific parameter, e.g. G; however it was desired that a
set (¢, d) be chosen which would optimize the results over the entire set of parameters.

It is important to realize that this includes G, W, N, Z, and k. It also includes the
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Table 4.1: Legend of scoring for Table 4.2
(++) good retrieval with high consistency
(+) | good retrieval with acceptable consistency

(/) neutral or inconsistent retrieval
(-) poor retrieval with some consistency
(- -) poor retrieval with high consistency

Table 4.2: Performance of varied (c, d) pairs at parameter retrieval

(c,d) Z | N|GJA[P] kK |[W
004,020 + | + | + |/ |/ | -- | ++
008,025 | /7 | / | / | -1-1--]+

(0.02,025) | + | + | + | - |- | --|++
008015 | / | /| /7 |/ /1 --1+

A e BT B B B e
(BOSOI0YT » | = | = | = |= | == | 4=F
(0.02,010) | + | + | + |/ |/ |++ | ++

A and P which will be unmixed from Z; for two Z with the same levels of noise, the

specific contrasting noise structures may alter the ability of SOBI to unmix the data.

Many tests were run with a range of values for (c,d) to determine those values
which identify the iteration that produced the best set of data. Table 4.2 shows
generally how each pair (c, d) performed for each of the parameters estimated, with
the best results highlighted. The scale used is presented in Table 4.1 as follows:

The labels were found by running the algorithm on the simulated tests of Table
5.3 where a pair (c,d) receives a (+) for performing within 10% of the best results
as compared to the other (c,d) pairs tested for at least three of the six experiments
and a (++) for doing so for more than four. A (-) indicates that the results using
the pair (c, d) often varied more than 20% from the best value while a (- -) indicates

that this performance is consistent over most of the experiments.

Recalling that ION’ does not predict A or P, the contents of this table clearly
indicated that the best parameters to be used in ION’ were (¢, d) = (0.02,0.15). None
of the pairs tested showed promising results for A or P. A second set of tests was run

with promising pairs from Table 4.2 and with some different pairs (c, d); the results
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Table 4.3: Performance of second set of varied (c, d) pairs at parameter retrieval

(c,d) Z | NIJG]JA[JP] Lk [W
(0.04,0.20) | ++ | ++ | ++ | - - | -- |+
(0.02,0.25) | ++ | ++ | ++| - - w w | e
(0.02,0.15) | ++ |++ | ++| / /| ++ | ++
(0.02,0.125) | ++ | ++ | ++ | + | + | -- | ++
(0.02,0.10) |4+ | ++ | ++ | / [ [ ++]++
(0.02,0.075) | ++ | ++ | ++ | ++ | +4+ | ++ | ++

are presented in Table 4.3 with the best results again highlighted. Note that pairs
which appear in both tables may have different scores since the scoring is relative to
the other pairs (¢, d) being tested.

It is clear from these results that the parameters best suited to estimation of all
parameters well is the pair (¢, d) = (0.02,0.075). These are the values selected for use
in the ONA algorithm; while the value for ¢ is the same as that chosen for ION’, the
value of d chosen here produces better results for A and P and thus gives a better
complete set of parameter estimations for the context of ONA.

It is interesting to note that almost all choices of (¢, d) do an equally good job of
predicting W. Also, the predictions for the set {G, Z, N} generally vary together,
as do those for the set {A, P}. Finally, it is clear that altering these parameters can
change the optimality criterion used by ONA in the iteration determination algorithm.
This can be useful for applications in which only one or a few of the parameters are
important. Finally, these adjustable parameters leave room for specialization of the
algorithm to different types of data sets. Though the values chosen here worked well
for the data sets analyzed in this thesis, it is probable that the pair (c,d) will have
to be tweaked for data sets which differ significantly from those presented in the

following chapters.
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Chapter 5

Algorithm Evaluation: Exploring
the Problem Space

5.1 Introduction

To compare ONA to PCA, SOBI, and ION, their performances on a suite of simulated
test matrices X were evaluated for various distributions of singular values for A and
G, and for various values of n, m, and k. Because ION and ONA were developed
specifically to work on Gaussian data, the simulated data sets are Gaussian in nature
and span the space of such problems. The tests evaluate the limits of the algorithms
within the problem space, and the suite of tests described in this chapter demonstrate

the algorithm strengths and limits.

It is important to note that, because the mixing matrix A can only be determined
to within some permutation of its columns, the column sequence of A’ must be
unscrambled to maximize the correlation between A and A’ prior to computing the
error metric. This same unscrambling transformation is used to unscramble the row

sequence of P’.
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5.2 Degrees of Freedom in the Problem Space

Recall the problem definition of Equation (2.1):
X = AP + G'*W (5.1)

The problem space of data sets of this form is diverse and extensive. It can be roughly

characterized by five degrees of freedom.

5.2.1 Number of Variables (n)

The number of variables, n, is defined as the number of rows of X, as written above.
While it is usually the case that data sets with more variables are thought to be
more difficult to unmix, the ratio of latent sources to the number of variables, %, is
generally expected to have a greater impact on the difficulty of the problem, upheld

both by discussion in source separation literature and results obtained here. For a
k

given -, increasing n will increase the difficulty of the problem, but this is due more

to the increase in k than the increase in n.

5.2.2 Fraction of Latent Sources (%)

The number of latent sources, k, is also referred to as the order of the system and
appears in Equation 5.1 as the hidden dimension of A and P. In general, increasing the
system order for a given n creates a more difficult problem; effectively, this increases
the ratio %, showing again that part of the difficulty of a problem lies in the ratio of
hidden sources to observed variables. It is also generally assumed here that % <~ 0.3;
for Gaussian data, it is impractical to attempt to unmix data sets with a ratio higher

than 0.3 due to the unstructured nature of the data.

5.2.3 Number of Samples (m)

The number of samples, m, is the number of columns of X and of P. As was true for

the number of variables, it is often more useful to consider the ratio of the number
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of samples to the number of latent variables, i.e. 7, as this roughly indicates the
proportional amount of redundancy data available per hidden source. Although data
tends to be easier to unmix for larger m, the decrease in difficulty is more correlated

with increased %

5.2.4 Matrix Signal-to-Noise Ratio (SN Rx)

The matrix signal-to-noise ratio was defined in Equation 3.4 in Section 3.2 to be the
ratio of the energy of the signal matrix Z to the energy of the noise matrix IN. This
parameter captures the extent to which the data is noisy. As such, a high SNRx,
indicating little noise is present, corresponds to data which is more easily separated

than data with a low SNRx.

5.2.5 Distribution of Singular Values of the Mixing Matrix
(AXa)

Finally, the structure of the mixing matrix A affects the nature of the data set. This
structure is the most difficult of any degree of freedom in the problem to quantity,
so assumptions must be made in order to determine how to create adequate test
data. First, it is assumed that A has full column rank, although it is not assumed
that the columns of A are orthogonal. The non-orthogonality assumption describes a
more general set of problems for which Principal Components Analysis (PCA) is no
longer sufficient, allowing ION’ and ONA to successfully unmix data sets which PCA
cannot. That A is full column rank guarantees that the unmixing process will not
have singularity problems and allows for a unique mixing matrix to be found. The
distribution of these k singular values could be anything that leaves A with full column
rank; this is a huge problem space. In order to simplify the exploration of the problem
space defined by Equation 2.1 and reiterated in Equation 5.1, the singular values are
assumed to be roughly evenly spaced with some AAs. The spacing of the singular
values will not be precisely even, due to the random element present in construction

of the mixing matrix, but the average spacing over many tests approximates the
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chosen parameter. Although the entire range of possible AAa is not represented in
the test suites, it is varied over a few values to explore the behavior of the algorithm

for different structures of the mixing matrix.

5.3 Method for Exploring the Problem Space:

Simulated Gaussian Tests

Preliminary tests were performed to determine acceptable nominal values for each
of the five degrees of freedom described above. The algorithm performed adequately
(but not necessarily optimally) for these nominal values. The problem space was then
mapped by varying one parameter at a time; each parameter variation was chosen to
create a data set which was more challenging than nominal. This was done for each
of the five parameters characterizing the nominal Gaussian test data.

It was verified through these tests that the latent Gaussian sources, P, are the
most challenging parameters to estimate. The second set of tests were designed to
explore the circumstances under which P can be determined successfully. A second
nominal test was defined for these less noisy trials. The parameters describing the
degrees of freedom were again varied around nominal, but here an effort was made to
map out the space where the algorithm is successful at unmixing P. One parameter
was altered to make the problem more challenging, and a second parameter was then
varied to bring the problem back within the workable space. This is described in

more detail in Section 5.3.3.

5.3.1 Nominal Gaussian Test

Table 5.1 summarizes the nominal parameters used for the algorithm comparison
tests using simulated jointly Gaussian data. These nominal parameters explore a
moderately noisy case (SNRy = 16 dB) for a system X of 120 variables, each with
2400 test samples, where k£ = 24. The influence of each of these parametric choices

is explored further in the subsequent section, with the results in Table 5.3. A series
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Table 5.1: Nominal Test Parameters

Parameter Value

n 120

k 0.2n (k = 24)

m 100k (m = 2400)
SNRyx (SNR of Z to N) 16 dB

AM4 (Singular values of A) ~2 dB

of 50 test matrices X was created using the set of parameters detailed in Table 5.1
with independent zero-mean unit-variance GGaussian random values chosen for the
entries of P and W. Each test matrix X had independent random values for A, P,
G, and W while all have a system order of 24. A was created by multiplying a
matrix of Gaussian random numbers by a set of k orthonormal vectors with singular
values separated by 2 dB, producing a matrix A with singular values separated by
~2 dB. The diagonal entries of the noise covariance matrix G were chosen from an
exponential distribution and scaled to produce the desired signal-to-noise ratio SN Ry
for the test. It is important to note that it is actually this scaling which determined
the precise dB spread of the entries of G. The SNR performances of ONA, ION,
and SOBI were then evaluated for these 50 tests, where SOBI was given the correct
order k; the SNR for each estimate (of G, Z, N, W, k, A, and P) appears in Table
5.2 ordered by the success of ONA. Note that the SNR for A was calculated on the
min(k, k') most correlated columns of A and A’, and the SNR for P was calculated

on the corresponding rows of P and P’.

Table 5.2 demonstrates that for this test data, by adding SOBI and different
initializations, ONA significantly improves the estimates of A and G in comparison
to ION and improves the estimate of A when compared to SOBI alone. Corresponding
results for PCA are not included as they are unreliable when k£ > 1 and in the case
where the columns of A are not assumed to be orthogonal. The initialization used by
ONA accounts for its improvement in all parameters but A and P; all other entries
of the ONA column of Table 5.2 apply also to ION’. Only the estimates of A and P
are improved by the addition of SOBI. The improvement relative to SOBI is due to
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Table 5.2: SNR (dB) performance of ONA, ION, and SOBI on nominal Gaussian test
data (sce Table 5.1)

ONA | ION | SOBI
SNR of G | 31.8 | 315 | 0.296
SNRof Z | 283 | 284 | 19.7
mi 0.000 | 0.204 | N/A
% 0.775 | 5.03 | N/A
SNRof N | 123 | 124 | 3.73
SNR of W | 825 | 823 | 3.65
SNR of A | 256 |-0.71 | 1.92
SNR of P | -2.06 | -1.72 | -2.76

the noise reduction by ONA before Z is separated into A and P. The residual noise is
responsible for the limited ability of all three algorithms to recover the signal matrix

P.

5.3.2 Varied Gaussian Tests

To further characterize the performance of these algorithms, a test suite was developed
that explores the five axes of the problem space described in Section 5.2 by generally
increasing the challenge. The test suite is summarized in Table 5.3, where the baseline
experiment is that of Table 5.1. The second experiment increased n from 120 to
400 while keeping the ratio S— constant at 0.2, thus increasing k to 80. The third
experiment increased the ratio s from 0.2 to 0.3 so k = 36 for n = 120. The fourth
experiment decreased the ratio 7 from 100 to 20, thus reducing the redundancy in
the data. The fifth experiment decreased SNRyx from 16 to 10 dB, and the sixth
experiment assumed the singular values of the mixing matrix A were each separated
by an average of only 0.75 dB instead of 2 dB. The results suggest that increasing n
and k significantly improves the SNR of estimates for Z’, N’, and W’, while noticeably
degrading the SNR’s for P’, G’, and k’. The most significant effect of reducing the
number m of test samples by a factor of five was a drop of 8 dB in the SNR for G’.
Also, the metrics improve for k’ and P’ when the singular values of A are separated

by an average of only 0.75 dB.
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Table 5.3: SNR (dB) performance of ONA on varied Gaussian test data

Experiment | Nominal | n = k = m= | SNRy=| A=
400 0.3n 20k 10 dB 0.75 dB
SNR of G 31.8 31.3 35.2 25.5 32.8 28.9
SNR of Z 28.3 32.4 28.2 26.7 23.0 26.7
My, 0.000 -0.0025 | 0.0028 | 0.0083 | -0.0167 -0.0021
Ok 0.775 0.894 | 0.316 | 0.548 1.52 0.387
SNR of N 12.3 16.4 12.2 10.7 13.0 10.7
SNR of W 8.25 11.9 8.12 7.53 8.87 7.04
SNR of A 2.56 1.63 1.64 2.01 2.37 1.20
SNR of P -2.06 -2.59 -2.10 | -1.96 -1.97 -1.70

As the dimensions of the problem increase and as SN Ry decreases, the perfor-
mance of ONA improves significantly relative to that of ION. The same experiments
of Table 5.3 were run on ION and the results compared. For all six experiments,
ONA increased the SNR of A by ~2-3 dB over ION. ONA also increased the SNR
of G by ~3-5 dB for the experiments increasing n to 400, increasing k to 0.3n, and
decreasing SNRy. In no case was ONA inferior to ION.

The performance of ONA and ION versus PCA can also be evaluated using the
scree plot of Figure 2-1 discussed in Section 2.3.2, which presents the eigenvalues of the
covariance matrix for the noise-normalized X determined for one of the nominal test
matrices. For ION and ONA, X was normalized by G’, setting the noise plateau at 0
dB. For PCA, each row of X was simply normalized to unit variance, i.e. the energy
in each variable was normalized, setting the mean eigenvalue to 0 dB. The figure
suggests comparable performance for ONA and ION, both of which are substantially
superior to PCA because the entries in G differ so greatly (they are exponentially
distributed as described in Section 5.3.1) that noise normalization is critical. The
best linear fits to the plateaus are shown, as are the intersections between the screes
and the estimated plateaus, which suggest the value of k. All these methods appear
to recover ~20 significant eigenvalues. The gap between the largest eigenvalue and
the largest noise is shown for each algorithm; the stars (*) delineate the difference for
PCA while the open circles (o) do so for ION and ONA. This eigenvalue difference for
PCA is ~27 dB and those for ONA and ION are ~38 dB, i.e. about 11 dB greater.
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Table 5.4: Parameters defining the nominal less noisy BSS experiment

Parameter Value
n 200

k 4

m 2000

SNRx (SNR of Z to N) 60 dB
AM4 (Singular values of A) ~2 dB

The noise superimposed on the k signals is presumably typical of the plateau rather

than the worst case, however.

5.3.3 Varied Gaussian Tests with less Noise

The parameters in the examples of Section 5.3.2 have not permitted P to be recovered
with SNR above 0 dB. Table 5.5 explores the problem space where successful recovery
of P is possible. The parameters of the nominal experiment are shown in Table 5.4,
and the deviations from nominal are labeled in the heading of Table 5.5. For each
successive experiment, one parameter was altered from the nominal value to make
the data more difficult to separate and a second parameter was altered to bring the
data set back to a working regime. In the second column, the order k is increased to
5, and the number of samples m is correspondingly increased to 3000. In the third
column, the number of samples m is decreased to 1800 while the SNR is raised by 10
dB to 70 dB. In the fourth column, SN Rx is dropped to 55 dB, and the order is also
dropped to 3. In the final column, the separation between successive singular values
of A is decreased to 0.75 dB, and the order is decreased to 2 to compensate. Each

result is the average (dB) of ten simulated tests.
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Table 5.5: SNR (dB) performance of ONA on less noisy Gaussian test data

Experiment | Nominal k=25 m = 1800 k=3 k=2
(Table 5.4) | m = 3000 | SNRyx = | SNRy = A=
70 dB 55 dB | ~0.75 dB
SNR of G 40.4 42.7 44.6 46.8 34.6
SNR of Z 79.9 91.5 77.5 84.5 79.2
my -1.93 -0.280 -1.48 -0.233 -4.60
Ok 9.89 1.67 9.21 1.05 10.8
SNR of N 19.9 21.5 22.5 24.5 19.2
SNR of W 14.4 16.3 16.8 19.3 14.4
SNR of A 4.00 5.12 6.37 10.6 4.43
SNR of P -0.189 -0.513 2.45 6.07 -0.200
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Chapter 6

Example Data Set: Factory Data

6.1 Introduction to Non-Gaussian Data

Since the EM algorithm embedded in ION (and thus ION” and ONA) was derived
for Gaussian data, it is interesting to see how well these algorithms perform with real
non-Gaussian data. For this purpose a data set characterizing a large single-product
factory was chosen. The data comprise 7847 sequential test vectors of 577 variables,
each of which was separately normalized to zero mean and unit variance. These
variables include temperatures, pressures, power levels, product quality measures,
switch positions, and many others, all recorded over many weeks.

This data was processed using Principal Components (PCA), the original ION
algorithm of [10], and the final ONA algorithm.! The algorithms are compared for
three distinct tasks: the ability of the algorithm to separate X into Z and N, i.e.
noise reduction of the data; the extent to which the algorithm groups the variables
into small, correlated sets; and the quality of the sources, i.e. P, retrieved from
the data. Also, the ONA algorithm is used to process factory data which has been
time-scrambled, that is the sequence of 7847 vectors is scrambled before processing
and the results unscrambled accordingly. Testing ONA on scrambled data documents

the ability of the ION portion of ONA to produce good results even on data with

L All of the results produced in this chapter for the ONA algorithm are identical to those produced
with ION’ except the separation of the sources P. That is, all results for ONA in Sections 6.2 and
6.3 apply identically to ION’.
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no correlated sequence. It also demonstrates that the SOBI portion of ONA takes

advantage of such corrclation in the vector sequence.

6.2 Noise Reduction

The log-scree plots in Figure 6-1 show the results of applying PCA, ION, and ONA to
the factory data. Note that the ONA curve is identical for both time-scrambled and
time-sequenced data as the sequence of the data is not used to predict G. Although
converting the x-axis to the logarithm of the eigenvalue index in Figure 6-1 better
reveals the SNR behavior of these algorithms for small indices, it also obscures the
scree-plot breakpoint that normally reveals the signal order k, so the final order
estimations are indicated by circles on the plot. The figure shows that even the first
iterations of ION and ONA exceed the performance of PCA, and that after three
iterations the first few eigenvalues for ONA exceed those of ION by as much as two
orders of magnitude. These results also suggest the benefits of iteration for both ION
and ONA, and the ability of both algorithms to raise the eigenvalues above the 0 dB

noise baseline where \; = 1.

The scree plot of Figure 6-1 is shown for the data noise-normalized by the esti-
mated noise variances. In order to understand how significantly the noise normal-
ization altered the original data, one can examine the spread of the estimated noise
variances. The final noise variances for the 577 channels, i.e. G’, estimated by ONA
are shown in Figure 6-2. The values here are all less than unity because the data was
normalized to unit variance before being processed by ONA. (This was important
because the variance of the variables ranged from 3.9514 + 10716 to 4.6309 x 108.) The
variability of the estimated noise variances is extensive and indicates that noise levels
for different variables also vary greatly. In such cases, even a technique as simple as

noise-normalization of the data can significantly improve further data analysis.
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6.3 Variable Grouping

Figure 6-3 characterizes the ability of these algorithms to identify groups of parame-
ters in X that are correlated. The figure presents the n-element eigenvectors derived
for the factory data, i.e. X/, = (G')"'X, for 1) PCA, 2) ONA for time-scrambled
factory data, and 3) ONA for time-ordered factory data. (The data is normalized
to unit-variance for PCA while it is normalized by the predicted noise covariance
matrix for ONA.) Since even the low-order eigenvectors deduced using PCA involve
contributions from nearly all 577 variables, it is fair to assume that these eigenvectors
may not be very meaningful physically. In contrast, both ONA experiments single
out a few dominant variables that are strongly correlated, and the time-sequential
ONA retains some of this ability even at the 64th eigenvector.

In order to fully quantify the success of ONA, the extent to which all of the eigen-
vectors perform this grouping is measured. The first ten eigenvectors determined by

ONA for time-sequenced factory data are plotted in Figure 6-4, and all ten clearly
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identify small groups of correlated variables. This is expected for low-order eigen-
vectors, however. To determine the extent to which higher-order eigenvectors also
perform this grouping, every tenth eigenvector is plotted in Figure 6-5 up to the
100" for ONA. While the highest-ordered eigenvectors have contributions from most
of the variables, ONA retains some ability to categorize the variables even at the
50" eigenvector. The ability of the algorithm to produce so many physically sig-
nificant variable groups indicates accurate estimation of the noise variances used for
noise-normalization.

The first, second, fourth, and tenth factory eigenvectors were chosen and inspected
to find such correlated groups of variables; these eigenvectors and the time sequences
of the corresponding Z; are shown in Figure 6-6 where the peak excursions have
been normalized to unity. Here the contribution of a variable to an eigenvector was
considered significant if it was more than 60 from the mean. This criterion identifies
variables 125 and 127 in the first eigenvector, 126 and 129 in the second eigenvector, 33
and 34 in the fourth eigenvector, and 128, 499, 500, and 501 in the tenth eigenvector.

ONA has clearly grouped variables that exhibit correlated time histories.

6.4 Source Separation

Neither PCA nor ION (nor ION’) takes advantage of possible time correlations in the
data whereas SOBI and therefore ONA do. Recall from Section 2.4.3 that SOBI esti-
mates the data correlation matrix by multiplying data vectors not only by themselves
but also by adjacent correlated samples, thus reducing noise, particularly for those
eigenfunctions that are most correlated in time. As a result, ONA is more successful
than ION or PCA in identifying time-correlated variables that cluster well. Also,
ONA used on time-ordered data does better than ONA on time-scrambled data due
to the lack of correlation structure in the latter data. Figures 6-7 and 6-8 suggest the
relative degrees to which the time behavior of the retrieved signals is organized for
PCA, ION and ONA for time-scrambled and time-ordered data, respectively. These

figures are scatter plots of the time histories of consecutive rows of P, each row having

65



Eigenvector 1

05¢
0
-0.5 : :
0 200 400 600
Eigenvector 3
0.2 ; .
0
-0.2
-0.4
_0.6 L 1
0 200 400 600
Eigenvector 5
0.2 . .
0
-0.2
-04
-0.6 :
0 200 400 600
Eigenvector 7
0.5 . .
0
-0.5 - :
0 200 400 600
Eigenvector 9
0.5
0
-0.5 : :
0 200 400 600

Eigenvector 2

0.5¢
0
-0.5 : .
200 400 600
Eigenvector 4
1 .
0.5
0 T - v "“f‘l
-0.5 ‘ :
0 200 400 600
Eigenvector 6
0.5 . .
0
-0.5 : -
0 200 400 600
Eigenvector 8
1 . .
0.5}
0
-0.5 : .
0 200 400 600
Eigenvector 10
1 . .
0.5¢
0] L‘“ﬂ" A L 'L"'F""‘rr‘éﬁ"‘f‘"lw
-05 - :
200 400 600

Figure 6-4: First 10 Eigenvectors of Sequenced Factory Data determined by ONA



Eigenvector 10 Eigenvector 20

1 0.5
0.5¢
0
0
-0.5 - : -0.5 - :
0 200 400 600 o 200 400 600
Eigenvector 30 Eigenvector 40
0.5 . : 1 : .
0.5}
0
0
-0.5 -0.5
0 200 400 600 0 200 400 600
Eigenvector 50 Eigenvector 60
0.2 . : 0.5 : .
0
-0.2} 0
-04
-0.6 : : -0.5 : :
0 200 400 600 0 200 400 600
Eigenvector 70 Eigenvector 80
0.5 - - 0.5 ; "
0 WMWWW%W | :
-0.5 - - -05 - :
0 200 400 600 o 200 400 600
Eigenvector 90 Eigenvector 100
0.5 - - 05 . .
OWMMMM - OWW/W |
-0.5 : : -0.5 : -
0 200 400 600 0 200 400 600
Figure 6-5: Eigenvectors 10, 20, ... , 100 of Sequenced Factory Data determined by
ONA

67



Eigenvector 1 Zs indicated by eigenvector 1

: N q
1 L 4
0.5} < 0 it il
0 -1t , _ variable 125
-0.5¢ 1
owAWMWM-
-1t .
. . -1 ) __variable 127
0 200 400 600 0 2000 4000 6000 8000
Eigenvector 2 Zs indicated by eigenvector 2
1
0.5
variable 126
0 { :
-0.5
-1t
. . -1 ) ___variable 129
0 200 400 600 0 2000 4000 6000 8000
Eigenvector 4 Zs indicated by eigenvector 4
1t !
0.5} - 0 ]
-1} variable 33
0 ¥ 1 A vf‘ e = L -
1t
-0.5 |
0
-1t
. . -1t ) __variable 34
0 200 400 600 0 2000 4000 6000 8000
Eigenvector 10 Zs indicated by eigenvector 10
, | D T
-1t . _variable 128 )
0.5 1r ' ' ' 1
0 M«MW
0 -1t . _Variable 499 ]
1 b ' v ! 3
0 WWW
-0.5 -1t ) _ variable 500 1
1f ¥ ' y p
-1 0 WWMM
. X 1t . _ variable 501 ]
0 200 400 600 0 2000 4000 6000 8000

Figure 6-6: Time sequences of groups of correlated Z; for ONA

68



unit variance. P for PCA is obtained by normalizing to unit variance the eigenvectors
produced by PCA of X’. The scatter plots for PCA rapidly resemble Gaussian ellipses
surrounded by outliers that contributed to the signal separation whereas the plots for
ONA characteristically exhibit fewer outliers and crisp clustering within distinct time
intervals.

Finally, inspection of the retrieved sources plotted as a function of time can in-
dicate whether the sources are Gaussian or non-Gaussian and whether they are time
correlated or not time correlated. The time sequences of several retrieved sources are
plotted in Figure 6-9 for PCA, ONA for time-scrambled data, and ONA for time-
ordered data. It is clear that the signals retrieved for ONA are in both cases more

structured than those retrieved by PCA.
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Chapter 7

Extension to 2D Spaces

7.1 Applications of Extended Algorithm

The ONA algorithm was developed for application to sets of one-dimensional data,
e.g. 500 variable vectors, each with 8000 samples. In this case, the SOBI algorithm,
which was developed for data which has one-dimensional correlation, detects and
takes advantage of any correlation existing in the sample sequence. For many vector
sets, the sample sequence corresponds to consecutive time intervals, and in these
cases, SOBI effectively uses any sequential time correlation in the data to improve
the estimates of A and P.

There are many data sets for which the inherent correlation structure is not se-
quential, however. Any type of spatial or image data, e.g. hyperspectral data, fits
this description. If read line by line, the correlation structure of the image may well
be sequential, but this method clearly fails to capture any correlation between lines.
Also, even if these lines are concatenated to form a one-dimensional vector to take
advantage of the per-line correlation, the areas of the vector where two lines are
abutted clearly have no necessary local correlation. Here it is the case that the set of
covariance matrices are computed created by SOBI fails to capture the true correla-
tion in the data. The concept of jointly diagonalizing a set of covariance matrices is
still valid, but the method by which these covariance matrices needs to be revised to

support the two-dimensional spatial correlation inherent in the data. This extension
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to the SOBI algorithm is developed in Section 7.2.
Because imaging and hyperspectral data sets are usually quite large, practical
memory-saving alterations were made in the algorithm implementation. These are

documented in Section 7.3 and in Appendix A.

7.2 Use of Spatial Correlation in SOBI

In a two-dimensional image, the most likely correlation structure is one where the
strength of the correlation between two pixels decreases monotonically with the spatial
distance between them. It is possible that no correlation may exist or that the
signal may include cyclic patterns so the correlation is more complex; in a blind
environment, however, no knowledge is given of these special cases, so the most likely
case is assumed.

The power of SOBI comes through jointly diagonalizing a set of covariance ma-
trices; the challenge for spatial data is to construct covariance matrices for ’spatially-
shifted’ data which correspond to the covariance matrices for time-shifted data con-
structed in the one-dimensional case. The concept of ’spatially-shifted’ can be ex-

plored through pixel nearest neighbors.

7.2.1 Nearest Neighbors

In general, each pixel has 8 first-ring and 16 second-ring nearest neighbors. For the
moment we ignore edge effects which are dealt with in Section 7.2.3. When an image
is considered as a set of pixels, however, processing all 24 neighbors is redundant.
Only half of the neighbors of each pixel need to be processed because the pixel itself
will be considered a corresponding neighbor of the other half. For example, say that
the neighbors immediately around a pixel P are labeled N; through Ng as shown in
Figure 7-1. If we choose to examine the correlation between a pixel and the pixel
immediately to its left, we will first examine the pair {P,Ng}. We will also eventually
examine the pair {P,N,} because P is the left-neighbor of N,. If the goal is simply

to list all pairs of first-ring correlated pixels, it is clearly redundant to list both the
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Figure 7-1: First-Ring Nearest Neighbors for one pixel

left-neighbors and the right-neighbors for all pixels. Here, the pair {P,Ns} would
immediately be listed twice, as would all pairs of pixels by extension.

A diagram of the 24 nearest neighbors of one pixel is shown in Figure 7-2 where
the correlation need only be measured between the black pixel and the set of white
pixels because of the inherent redundancy explained above. Remaining are 4 first-ring
neighbors and 8 second-ring neighbors. In general, it will be the case that a pixel
will be most correlated with its first-ring neighbors and less correlated with those
in the second ring, so the spatial correlation function is first done only for first-ring
neighbors. Extension of the algorithm to include second-ring neighbors (and in fact
any number of rings of neighbors) is straight-forward and thus will not be discussed
further here.

In order for the joint diagonalization technique to work, a set of covariance ma-
trices need to be constructed. The set proposed by the above discussion is a set of

five covariance matrices as follows:

1. the self-covariance of a pixel

2. the covariance between a pixel and its immediate right neighbor

3. the covariance between a pixel and its immediate top-right neighbor
4. the covariance between a pixel and its immediate top neighbor

5. the covariance between a pixel and its immediate top-left neighbor

corresponding to the white first-ring neighbors in Figure 7-2.
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Figure 7-2: First- and Second-Ring Nearest Neighbors for one Pixel

7.2.2 Creation of Spatial Covariance Matrices

In order to more clearly discuss the construction of spatial covariance matrices, an
example application is necessary. The application most appropriate, which is dis-
cussed further in Chapter 8, is data retrieved through hyperspectral imaging. By
nature, this data has one spectral dimension and two spatial dimensions; the pixels
in the two spatial dimensions are analogous to the time samples in one dimension
in problems discussed earlier. Thus it is valid to create covariance matrices which
capture the correlation structure between pixels in order to unmix the data in the

spectral dimension.

Each spatial covariance matrix is created by transforming a pair of three-dimensional
(one spectral, two spatial) images into a pair of two-dimensional (one spectral, one
spatial) matrices, using the same transform for each. The covariance matrix is then
computed in the normal manner for a pair of two-dimensional matrices (see Section
2.4.3 for more details). The information latent in the spatial correlation of the image
is captured by altering the two images used to compute the covariance matrix. In
all cases, the first image is identical to the original image while the second image

corresponds to the original image spatially shifted in some direction.

As discussed previously, five such covariance matrices can be constructed for the

first-ring nearest neighbors. The self-covariance matrix of the image is created by
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performing the above calculations for two identical (un-shifted) copies of the original
image. For the remaining four covariance matrices, the second image corresponds
to a shifting of the original image by one unit in some direction (as listed in Section
7.2.1). While edge effects are caused by these shifts, they are minimized by a mirroring

technique detailed in the following section.

7.2.3 Dealing with Edge Effects: Mirroring

Clearly not all pixels in a rectangular image actually have all eight first-ring nearest
neighbors. At the extreme, pixels in a corner have only 3, while pixels along the edges
typically have only 5. In order to develop a generalizable function that can spatially
shift an image to create the desired shifted covariance matrices, mirroring is employed.
This concept simply means that the original image is padded with reflections of itself
so that all pixels have eight nearest neighbors, as shown in Figure 7-3. Processing is
done only on the original image; this padding exists simply for ease of construction
of the second images used above to create the corresponding covariance matrices.
Visually, this means that the original image and the shifted image now overlap for
all of the original pixels of the image, so the misalignment of these two images is no
longer a problem.

The padding of Figure 7-3 is created simply by reflecting the entire image about
each of its edges. The black and white image in the center is the original image,
and the gray-scaled images are the padding. For example, the padding to the right
is created by reflecting the image about the right edge, etc. This simple technique
guarantees that all pixels have valid nearest neighbors by assuming that the pixels
near the edge closely approximate those that would exist outside of the image borders.
While this does in fact introduce inaccuracies in the spatial shift, they are much less
than those that would exist if other padding techniques, such as simply re-copying
the unreflected image about each edge, were used. It is also important to realize that
the percentage of pixels for which the padded neighbors are used in the covariance
matrices is small compared to the absolute size of the image, so any inaccuracies in

the approximation have little impact on the final results.
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Figure 7-3: Mirroring technique used to pad an image for construction of covariance
matrices

7.3 Memory Management

The addition of Step 6 of Table 2.1 and Table 2.3 requires that the results from each
iteration be compared to determine which produced the best results. This means that
G;’, Z;’, and k;’ must be stored for all 7 < 4,4, Although it is rarely necessary to set
tmaz > 10, as the size of the data sets grows it still becomes unmanageable to store
this set of matrices in the Matlab workspace. Instead, at the end of each iteration,
the new G;’, Z;’, and k;’ are appended to a temporary file where the iterative results
are stored. It is possible to move this data to disk because the iterative algorithm
uses only the results of the previous iteration, not those of all previous iterations. In
order to determine the best iteration, the contents of this file are simply read and the

set {Gy’, Z;, k;} is passed to the iteration determination algorithm.

Additionally, many of the matrix operations performed in the iterations, especially
within the Expectation-Maximization Algorithm, are very memory-intensive. Care

was taken to perform these operations sequentially, i.e. complex Matlab statements
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were broken into several simple statements in order to minimize the memory demands
of the program. This allowed for data sets of much greater size to be processed using
ONA.

The most expensive matrix operation involved in these calculations is the matrix
left-divide. In Matlab, A\B is essentially the same as A~!B, but it is calculated
differently. In the specialized case where A is diagonal, however, this calculation
can be made more efficient by performing a row-wise division of B by the inverted
diagonal elements of A. A script was created to do precisely this, further reducing
the memory-intensive demands of the algorithm and increasing the size of the data
sets that can be processed. The code which performs this special matrix left division

is included in Appendix A.1.
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Chapter 8

Evaluation of 2D ONA:
Hyperspectral Data

8.1 Hyperspectral Data Overview

Hyvperspectral visible and infrared data is used to sound both the surface of the earth
and the earth’s atmosphere. Hyperspectral refers to the simultaneous mapping of the
surface by a large number of frequencies. By nature, this data has three dimensions,
two spatial and one spectral; an example of this type of data is shown in Figure 8-1.

The data used to evaluate ONA in this chapter comes from AVIRIS, the Airborne
Visible InfraRed Imaging Spectrometer. This instrument was developed at the Jet
Propulsion Laboratory (JPL) at the California Institute of Technology with sponsor-
ship by NASA. AVIRIS sounds in 224 contiguous spectral channels; the wavelengths
used range from 370 to 2500 nanometers (nm). The image used here is of Moffett
Field (taken in 1997), and it has resolution of approximately 17 meters [2].

The motivation behind applying ONA to hyperspectral data is the contrast be-
tween this and the previous data set. While the factory data is clearly non-Gaussian,
hyperspectral data can be modeled fairly reliably as Gaussian. Also, the previous data
had time correlations that could be exploited to improve separation. Hyperspectral
data instead has inherent spatial correlation among pixels, and it was desirable to

modify ONA to exploit this type of correlation as well.  While many algorithms
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Figure 8-1: Example Hyperspectral Data Set from AVIRIS, Complements of JPL [2]

designed to process hyperspectral image data exist, most use clustering or filtering
techniques or require that the noise variances be known, e.g. [12], [15], [9]. In this
initial evaluation, ONA is not specifically intended to compete with these algorithms,
although further work may reveal that its noise estimations may be used in conjunc-

tion with NAPC or other similar algorithms.

8.2 Evaluated Image

The data set chosen for analysis is of the Moffett Field site in California. This data
set is appropriate for evaluation of the algorithm because it combines natural surface
features (forest, mountain, lakes) with man-made surface features (roads, houses,
etc.). While it is important to test the ability of the algorithm to deal with the
existence of surface features, the most challenging aspect of the data is the extreme
variation in surface types. A false color image of the entire Moffett Field data set is
shown in Figure 8-2, where the data is one of several free data sets available on the
JPL AVIRIS website [2]. This image has been processed by hand to accentuate ground

features and clearly shows the variation between rural and urban areas. Because this
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Figure 8-2: False Color Image of the Moffett Field Data Set from AVIRIS, Comple-
ments of JPL [2]

image actually spans many kilometers from top to bottom, only a small sub-image
is used to evaluate ONA. This sub-image. which is comprised of approximately one-
ninth the pixels of the whole image, is taken from the upper-right hand corner and
is representative of the entire image in that it contains a corresponding ratio of rural

and urban areas.

8.3 Noise Reduction

As discussed in 2.3.2, one good way to evaluate how well the noise has been removed

from the data is through a scree plot. Such a plot is shown for the Moffett Field
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Figure 8-3: Scree plots of noise-normalized Moffett Field image data

sub-image data in Figure 8-3 where the ONA and PCA curves are compared. In
this case, ONA estimates the order of the system at 60 while PCA estimates only
33. Also, the largest ONA eigenvalue is nearly 25 dB above the corresponding noise
plateau, while this difference is only about 10 dB for PCA, where the noise plateau

is less well defined.

The results of processing the Moffett Field sub-image produced estimates of the
noise variances as shown in Figure 8-4, where it is again important to recall that
the estimated noise variances are all less than or equal to one because the data
was normalized to unit variance on each channel before processing. Note that some
channels have very low noise levels; the information contained in these channels will
be most heavily weighted in the retrieved signal Z and in the retrieved sources P.
One example of this is detailed in Figure 8-5. Channel 153 was chosen because
it corresponds to the minimum estimated noise variance in Figure 8-4. Figure 8-5
shows the original image of Channel 153 (Xj53) in the top-left and the image for

the same channel after the noise has been removed by ONA (Z,53) in the top-right.
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Figure 8-4: Estimated Noise Variances for 224 Spectral Channels for Moftett Field
sub-image

Finally, the lower image of Figure 8-5 shows one of the independent sources unmixed
by ONA (P,). It is clear that the information content in these three images is
virtuallv identical; ONA preserves the low-noise levels of Channel 153 (and thus its
high information) through both the noise-filtering and the source unmixing steps, as

would be expected.

Finally, Figures 8-6 and 8-7 show the ability of ONA to reduce the noise in the
images for two channels with moderate noise levels and for two channels with very
high noise levels. In Figure 8-6, the top shows the original (X) and noise-reduced
(Z) images for channel 109 while the bottom shows the corresponding images for
channel 159. The noise variances predicted on these two channels are respectively
0.3120 and 0.6269, and ONA has successfully improved the signal-to-noise ratio on
each. Two examples of channels in the most challenging regime (noise variance > 0.9)
are shown in Figure 8-7. On the top are the original and noise-reduced images for

channel 2 (noise variance predicted to be 0.9319), and below are the corresponding

85



50 100 150 50 100 150

50 100 150

Figure 8-5: Comparison of Original (top-left), noise-filtered (top-right), and corre-
sponding Independent Source (bottom) for Moffett Field sub-image minimum noise
channel (frequency channel 153)
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images for channel 3 (noise variance predicted as 0.9130). Even in this high-noise
regime, ONA has successfully identified the signal portion of the data and removed
the noise to produce a better quality image. Some of this apparent noise reduction
may have been obtained, however, by overlaying a different signal with higher SNR.

More study of this issue seems desired.

8.4 Variable Grouping

While previously the eigenvectors were inspected to determine if the algorithm had
detected small groups of correlated data, in hyperspectral data the spectral channels
will by definition have overlapping information content. This means the eigenvectors
will in general have contributions from many channels, indicating the extent to which
the channels are correlated. This is the case, as shown in Figure 8-8, for the first ten
cigenvectors of the final noise-normalized data. It is significant, however, that few of
the first ten eigenvectors contain contributions from chaunels in the lowest part of the
spectrum, i.c. those which were determined to be most noisy as shown in Figure 8-4.
This is as would be expected; since the information content, or possibly the novel
information content, is higher in the less noisy channels, the correlation among these

channels will also be higher.

8.5 Signal Separation

For hyperspectral data, it is actuallv more desirable for individual features of the
earth’s surface to be grouped into small highly correlated groups than that the fre-
quency channels be grouped in such a manner. Figure 8-9 shows a comparison of the
first three principal components retrieved using PCA and three independent sources
(P;) retrieved by ONA. Note that the first principal component detects features in
the image, but the noise level increases drastically in the second and third PCs. In
contrast, the sources retrieved by ONA. which are by definition unordered, are less

noisy and group the image features into smaller independent clusters. For instance,
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Figure 8-6: Two examples of noise reduction in mid-range noise levels: Original and
Noise-Reduced Images for Channel 109 (top) and Channel 159 (bottom)
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Figure 8-7: Two examples of noise reduction in highest noise levels: Original and
Noise-Reduced Images for Channel 2 (top) and Channel 3 (bottom)
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Figure 8-8: First 10 Eigenvectors of AVIRIS Moffett Field sub-image determined by
ONA
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the few bright features in the lower left corner of Py appear only slightly in Py and
P.;. Also, the road which runs up and to the right from pixel 350 on the left is clearly
visible in P5 but is not very visible in P, or Py;. Finally, the features which cover
larger arcas in the lower left portion of the image in Py, are virtually undetectable in
the other two ONA sources. This ability of ONA both to identify important features
in the data and also to separate it into sources which group fewer features together

is an advantage over PCA and an asset to further analysis of the retrieved sources.
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Figure 8-9: Comparison of first three principal components produced using PCA and
three Independent Sources (P;) retrieved by ONA for Moffett Field sub-image
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Chapter 9

Conclusions and Suggested Further

Work

9.1 Conclusions

Both the ION’ and ONA algorithm successfully blindly separate the signal from the
noise given a single data matrix. Also, the addition of SOBI in ONA produces a final
algorithm which can additionally unmix the hidden sources P and the mixing matrix
A from the noise-filtered signal Z. Good results are obtained for both Gaussian and
non-Gaussian hidden sources P; also, it was shown that these sources need not have
a specific time structure for successful separation to take place.

The problem space over which ION’ and ONA produce reasonable results was
mapped for purely Gaussian sources. It was demonstrated that there exists a regime
where ONA can unmix even a set of purely Gaussian signals. The remaining area of
the high-dimensionality problem space was mapped along each of the axes to indicate
the areas where data is well-suited to ONA.

ONA was shown to be successful at reducing the noise, retrieving small sets of
correlated variables, and retrieving non-Gaussian sources for the example set of fac-
tory data. When run on the same data which was time-scrambled to remove any time
correlation, ONA and ION’ produce results in line with those produced on the se-

quenced data. This indicates that the ION’ portion of the algorithm does not assume
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or exploit time correlation and that it is only recognized by the SOBI algorithm.

The joint diagonalization technique of SOBI was extended to take advantage of
spatial correlation; this was proved successful by application of this 2D version of
ONA to a sample hyperspectral data set. Here, the noise levels in the system were
significantly reduced, and the retrieved sources were demonstrated to group smaller
sets of features than did the sources produced by PCA. The results presented in
Chapter 8 confirm the applicability of ONA to hyperspectral data in general, and the
adaptability of the algorithm to new types of data.

9.2 Future Work

9.2.1 Improvements to the Iteration Determination

Algorithm

The iteration determination algorithm discussed in Section 4.4 can clearly be opti-
mized differently depending upon the results desired. It was indicated that the choice
of (¢,d) determines those output parameters for which the algorithm is optimized.
Further investigation into the optimal choice of (¢, d) for each of Z, G, etc. may
enable even better results from ONA. It is possible that this algorithm could be run
several times, once for each parameter to be estimated, producing fully optimal so-
lutions for each. The results produced in this case will not be fully consistent with

Equation 2.1, but for some applications, this may not be a problem.

9.2.2 Hyperspectral Applications

The array of problems associated with hyperspectral data is large, and ONA may be
used to address some of them. The most obvious application would be to use ONA
to identify surface types in hyperspectral images. Because ONA retrieves P;’s which
are assumed independent, it may be possible to rotate these sources to a new basis in
which each corresponds to a different surface type. If this is possible, it would elim-

inate the need for the time- and computation-intensive clustering algorithms which
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perform this task currently.

It would also be revealing to compare the noise estimates of ONA to a priori noise
levels for a given instrument. The amount by which the estimates and measurements
differ will indicate the extent to which ONA has identified noise in the data (feature
noise) in addition to noise in the measurements (instrument noise), allowing a better

evaluation of the algorithm performance.

9.2.3 Application to Varied Data

The ability of ONA to identify and remove noise in the blind data setting makes it
an obvious choice for application to data sets for which little knowledge exists which
characterizes the latent sources P. Data recorded from a suite of medical instruments
during tests or during surgery could be analyzed. Data collected from a large number
of patients for tests of new treatments or drugs could be filtered. The sets of variables
identified by ION’ and ONA may lend insight into the correlated functions of the

human body in any of these cases.

9.2.4 Improvements and Extensions to the Algorithm

Because the algorithm was developed generically to be applicable to all blind data,
much improvement can be gained by tailoring it for work on specific data types.
The extension of the joint diagonalization algorithm to take advantage of spatial
correlation to improve separation is one example of this. Allowing the user to specify
any constraints which exist on the set of sources P to exploit this extra knowledge if it
exists would further improve results. This could involve the development or addition
of other separation algorithms in place of SOBI; ONA would then determine at the
outset which separation algorithm would be most appropriate for the data, given the
a priori knowledge available. A similar multi-option setup could be developed for the
order estimation portion of the algorithm. Should prior knowledge exist about the
value of or statistics of the system order, use of this may also significantly improve

the results attainable.
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Appendix A

Matlab Code

A.1 Useful Scripts

my _leftdivide.m

function result = my_leftdivide(A,B)
% does
% result = A\ B;
% more gquickly and efficiently for the case where
% A\ B = INV(A)*B
%A is a diagonal matriz, INV(A) is diagonal with elements which are
%the inverse of the elements in A
[ar ac}] = size(A);
[br be] = size(B);
if ((ar "= ac) | (ac "= br))
warning(’matrix dimensions do not match’);
return;
end;
result = zeros(br,bc); % same size as B
for 1=1:br,
result(l,:) = B(l,:) ./ A(Ll);

end;

return;

my_normalizer2.m

function [x] = my_normalizer2(x)
% memory-efficient normalization

% normalizes a matriz of column vectors:
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% zn = (z - mean.z) / std_x
% where mean_z, std_z are found for each column

%
%c:MzN
% mean_z : 1 = N 10

% stdr:1z N
% zn : M z N, normalized

if (size(x,1) == 1), % std dev will be zero
x = NaN;
warning(’X cannot be normalized, unit dimension’);
return;

end;

[xr xc] = size(x); 20
for i=1:xc,
v = x(:,i);
m = mean(v);
s = std(v);
if (s™=0),
v = v — mean(v);
v = v/s;
end;
x(:,i) = v;
end; 30

A.2 TON/ION’/ONA Shared Scripts

A.2.1 Unaltered ION Scripts

The following functions are used in ION’ and ONA but are unaltered from the original

ION code written by Junehee Lee in [10].

Irl.m

function [a,b,R_.SQUARED]=Irl(x,Y)

LR! [a,b,R_squared]=Ir1(z,Y)
Multi-dimensional linear regression
z ts a m by 1 vector
Y is a m by n matric
a and b is ther coefficient which fits the data points on

z=a+Y*bh
10
If Y and = is not normalized, this command will NOT normalize
them before the regression (as opposed to LR).

R_squared is the variability of z erplained by Y
(in terms of percentage)

MIT N AN TRV NN

(c) Copyright 2000 M.I.T.

20
Permission is hereby granted, without written agreement or
royalty fee, for Hewlett Packard Corporation (HP) to use, copy,

NN R WK
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modify, and distribute within HP this software and its
documentation for any purpose, provided that the above copyright
notice and the following three paragraphs appear in all copies of
this software.

In no event shall M.I.T. be liable to any party for direct,

indirect, special, incidental, or consequential damages arising

out of the use of this software and its documentation, even if 30
M.I.T. has been advised of the possibility of such damage.

M.I.T. specifically disclaims any warranties including, but not
limited to, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement.

The software is provided on an “as is” basis and M.I.T. has no
obligation to provide maintenance, support, updates, enhancements,
or modifications.

N IT T ST VAT T T R VAT T W AWK

40

mY=mean(Y);

mx=mean(x);

new_Y =Y —ones(size(Y,1),1)*mY;

new.x=x—mx;

b=regressl(new_x,new_Y);

a—ones(size(x,1),1)*mx—mY*b; 50

Sxx=(x—mean(x))’*(x-mean(x));

Rss=(x—a—Y*b)’*(x-a-Y*b);
R-SQUARED=(Sxx—Rss)/Sxx*100;

regressl.m

function b= regress1(y,X,alpha)
% REGRESS1 Performs multiple linear regression using least squares.

% b = REGRESS1(y,X) returns the vector of regression coefficients, B.
% Given the linear model: y = Xb,

% (X is an nzp matriz, y is the nzl vector of observations.)

% References:

% [1] Samprit Chatterjee and Ali S. Hadi, “Influential Observations,
% High Leverage Points, and Outliers in Linear Regression®,

% Statistical Science 1986 Vol. 1 No. 3 pp. 379-416. 10
% [2] N. Draper and H. Smith, “Applied Regression Analysis, Second
% Edition“, Wiley, 1981.

% B.A. Jones 3-04-93

% Copyright (c) 1998 by The MathWorks, Inc.

% $Revision: 1.4 $ $Date: 1993/10/04 12:26:29 §

if nargin < 2,
error(’REGRESS requires at least two input arguments.’);
end 20

% Check that matriz (X) and left hand side (y) have compatible dimensions
[n,p] = size(X);
[nl,collhs] = size(y);

if n"=nl,
error(’The number of rows in Y must equal the number of rows in X.?);
end
if collhs "= 1,
error(’Y must be a vector, not a matrix’}); 30
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end
% Find the least squares solution.

[Q R]=ar(X);
b = R\Q’*y;

screeorder.m

function p = screeorder(evals, a, b)
SCREEOCRDER Automatic Order Estimation Based on the Scree Plot.

EVALS is a vector of eigenvalues in decending order.
a, b are parameters controlling screeplot analysis.

RN NN NN

(c) Copyright 2000 M.I.T.

Permission ts hereby granted, without written agreement or
royalty fee, for Hewlett Packard Corporation (HP) to use, copy,
modify, and distribute within HP this software and its
documentation for any purpose, provided that the above copyright
notice and the following three paragraphs appear in all copies of
this software.

In no event shall M.I.T. be liable to any party for direct,
indirect, special, incidental, or consequential damages arising
out of the use of this software and its documentation, even if
M.I.T. has been advised of the possibility of such damage.

M.I.T. specifically disclaims any warranties including, but not
limited to, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement.

The software is provided on an “as is” basis and M.I.T. has no
obligation to provide maintenance, support, updates, enhancements,
or modifications.
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if (nargin==1),

a = .4;
b = .6;
end

Nvar = length(evals);

log-evals = logl10{abs(evals));

[slope, intersect] = soebs(evals, a, b);
est_eig = intersect + [1: Nvar]’ * slope;
L = log_evals — est_eig;

begins = floor(Nvar * a);

ends = ceil(Nvar * b);
p = min(find(L ~ 20 * std(L(begins : ends)) < 0)) -1 ;
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soebs.m

function [slope, intersect] = soebs(eigenvalues, a, b)

SOEBS [slope, intersect] = soebs(eigenvalues, a, b)
Signal Order Estination by Scree plot
EIGENVALUES are the eigenvalues of the
covariance matriz of data in descending order.
SLOPE and INTERSECT are the slope and intesect of
the linear line which fits best the noise eigenvalues
when the scree plot is in logarithmic y-axis.
a, b control screeplot analysis.

NN RN RSN

(c) Copyright 2000 M.I.T.

Permission is hereby granted, without written agreement or
royalty fee, for Hewlett Packard Corporation (HP) to use, copy,
modify, and distribute within HP this software and its
documentation for any purpose, provided that the above copyright
notice and the following three paragraphs appear in all copies of
this software.

In no event shall M.I.T. be liable to any party for direct,
indirect, special, incidental, or consequential damages arising
out of the use of this software and its documentation, even if
M.1.T. has been advised of the possibility of such damage.

M.I.T. specifically disclaims any warranties including, but not
limited to, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement.

The software is provided on an “as is” basis and M.I.T. has no
obligation to provide maintenance, support, updates, enhancements,
or modifications.
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if (nargin==1),

a = .4;
b = .6;
end

n = length(eigenvalues);
logeig = logl10(eigenvalues);

% ALSO SEE screeorder.m FOR DETAILS OF PARAMETERS a,b.
begins = floor(n * a);

ends = ceil(n * b);

[intersect, slope, foo] = Irl(logeig(begins:ends),[begins:ends]’) ;
intersect = intersect(1);

A.2.2 Updated ION Scripts

The following scripts were originally written by Junehee Lee ([10]) and revised by A.
Mueller.
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fixeig.m

function [evect,evals] = fixeig(evect,evals)

% FIXEIG [NewFEvect, NewEvals] = fizeig(EVECT, EVALS)

%

% EVALS is a vector of eigenvalues.

% EVECT is a matriz whose column is the eigenvectors.

% The first column of EVECT is the eigenvector corresponding
% to the first element of EVALS.

%

% NewEuals is the eigenvalue in descending order.

% NewFEvect is the re-ordered eigenvector matriz.

%

(c) Copyright 2000 M.I.T.

Permission is hereby granted, without written agreement or
royalty fee, for Hewlett Packard Corporation (HP) to use, copy,
modify, and distribute within HP this software and its
documentation for any purpose, provided that the above copyright
notice and the following three paragraphs appear in all copies of
this software.

In no event shall M.I.T. be liable to any party for direct,
indirect, special, incidental, or consequential damages arising
out of the use of this software and its documentation, even if
M.L.T. has been advised of the possibility of such damage.

M.LT. specifically disclaims any warranties including, but not
limited to, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement.

The software is provided on an “as is” basis and M.I.T. has no
obligation to provide maintenance, support, updates, enhancements,
or modifications.
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evals = diag(evals);
evals_temp = evals;

dim = size(evals);
for i = 1:dim(1)
mx = max(evals});
for j = 1:dim(1)
if mx == evals(j,1)
loc = j;
end
end
evals_temp(i) = mx;
evect_temp(:,i) = evect(:,loc);
evals(loc,1) = (—1) * (abs(evals(loc,1)));
end
evals = evals_temp;
% if evals are below acceptable machine precision threshold
broken = find(abs(evals)<(10-—13));
minvalue = evals(min(broken)}—1);
evals(broken) = minvalue;
evect = evect_temp;
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nebema.m

function [S, estimated_signal, A_est, p_est] = ...
nebema(x, p, it, prevA)

NEBEMA Noise Estimation through EM algorithm

p is the number of latent variables.

S is the estimated noise variances for each variables.

T AT T ST WYX N W R WK

prevA is used to initialize the estimate of A

[m, n] = size(x);
thresh = 1*10~(—6);
if (nargin==3),
% randomly initialize A
A_est = randn(n,p);
elseif(nargin==4),
A_est = prevA;
end;
% randomly initialize G
G_est = diag(0.5*ones(n,1));

brokeninit = it41;
S=1I
for repeat = 1 : it
% first check that G is non-singular.
% if it is not, fiz that so that we don’t break EM trying to do
% pinv()
if (rcond(G_est) < thresh),
warning(strcat(’singular G’ num2str(rcond(G_est))));
G_est = makeNonSingular(G_est,thresh};
end;

% E - STEP

%AldG = (G_est \ A_est);
% made more memory (RAM) efficient
AldG = my_leftdivide(G_est,A_est);

terml = x * AldG;

term2 = (A_est’ * A1dG + eye(p,p));

if (rcond(term2) < 10~-10),
brokeninit = repeat;
warning(strcat{’singular term2: ’,num2str(rcond(term2))));
break;

end;

Exp_lv = terml / term?2;
clear termil;

tl = m *eye(p,p);

t2 = (A_est’ * pinv(G_est) * A_est + eye(p,p));
t3 = (term2 \ A_est’);

%ty = (G-est \ z’);

% made more memory (RAM) efficient

t4 = my_leftdivide{(G.est,x’);

t5 = AldG / term2;

clear AldG term2;
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t55 = t3 * t4;

clear t3 t4;

t56 = x * t5; 70
clear t5;

t6 = t55 * t56;

clear t55 t56;
Exp_lv2 = t1/t2 + t6;
clear t6 t1 t2;

% M - STEP
A_est = (x’* Exp_1lv) / Exp_lv2; Z*** 80
G_est = [];

for index_j = 1:n
tl = x(:index_j)’ * x(:,index_j);
t2 = A_est(index_j,:) * Exp_lv’ *x(:,index_j);
Geest_j = (t1 — t2) / m;
G_est = [G_est; G_est_j];
end

G_est = diag(G_est); 90
end

if (rcond(G_est) < thresh),
warning(strcat(’singular G’,num2str(rcond(G-est))));
G_est = makeNonSingular(G_est,thresh);

end;

S = diag{G-_est);

if (brokeninit==1),

A_est = [];
estimated_signal = []; 100
p-est = [];

else

estimated_signal = Exp_lv * A_est’ ;
p-est = Exp_lv’;
end;

A.2.3 ION’/ONA Scripts

checkevals.m

function checkevals(evals, it)
whichbum=find{evals<0);
if (prod(size(whichbum))>0)
warning(strcat(’negative eigenvalues in iter *,num2str(it))});
Z%evals(whichbum,)
end;

return;

essential_equality.m

function [newA newP] = essential_equality(realA estA estP);

% realA is of size n z k.
% estA is of sizen z k’.
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N K

estA.

the transformation matriz which mazimizes the covariance of
corresponding columns of realA and estA (i.e. mazimizes
trace(cov(realA,estA)) where the covariance is taken over the
columns, not the rows). In order to be consistent, estP must
% also be transformed so that the product (estA*estP) does not
% change.

% Simply post-multiply estA by the transformation matriz and
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% If only estA, realA are passed in, do not output a P.

% make sure that estA, realA are the same size
k = size(realA,2); % true number of latent variables

[ar ac] = size(estA);
if (ac < k),
estA = [estA zeros(ar,k—ac)];
elseif (ac > k),
estA = estA(:,1:k);
end; % end if

if (nargin==3),
if (ac < k),
estP = [estP; zeros(k—ac,size(estP,2))];
elseif (ac > k),
estP = estP(1lk,:);
end; % end if;
end; % end if;

% determine the covariance between the columns of the two A
% matrices.
crosscov = zeros(kk);
for i=1:k,
for j=1:k,
t = cov(estA(:,i),realA(:j));
crosscov(i,j) = t(1,2); % could be t(2,1)-symmetric matriz
end;
end;

% transformation matriz
trans = zeros(kk);

% loop variables
temp = abs(crosscov);
iterations = 0;

% exit the loop when all columns of estA have been optimally
% rearranged. (all elements of temp will be zeroed.)
% [sum(sum(temp))=0]

% However, don’t want to exit prematurely. FEvery row & column of

% the transformation matriz must have a non-zero element.
while (iterations<k),

m = max(max(temp)); % find the columns with the most in common
w=find(temp==m); % locate this element in the coveriance matriz

% multiple elements may have the same value
if (sum(sum(temp)) > 0),
% just use the first element
e = mod(w(1).k); % row indez of the element
if (e==0),
e = k; % because matriz indeces start at 1
end;
d = ceil(w(1)/k); % column indez of the element
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else

% only have zeros left (the matriz passed in was most likely
% the incorrect size).
% Must find some element for which the corresponding row and
% column of the transformation matriz are all zero.
notfound = 1;
e = mod(w.k);
d = ceil(w/k); % column index of the element
es = 1; % loop variable
while (notfound),
if (e(es)==0), e(es) = k; end,;
if ((sum(trans{e(es),:)) "= 0) | (sum(trans(:,d(es))) "= 0)),
es = es+1;
else
notfound=0;
end;
end;
e = e(es);
d = d(es);

end;

if (temp(e,d) "= crosscov(e,d)),

% the signs are wrong
trans(e,d) = —1;

else

trans(e,d) = 1;

end; % end if

% zero the row and column just marked in the transformation
% matriz to make sure they are only included once.

temp(e,:) = zeros(1,k);

temp(:,d) = zeros(k,1);

iterations = iterations+1;
end; % end while

%

set the outputs

newA = estA*trans;

if
if

(nargout==1), return; end;
(nargin==3)

newP = (trans’)*estP;
else

newP = [];
end;

goodIter.m

function [status, newG] = goodlter(Git, thresh);

Make sure that IONPRIME/ONA doesn’t produce singular results.

Detects if G will produce singular/imaginary results.

THRESH should be changed depending upon the level of protection

wanted against possibly singular results. It is possible that

matrices with rcond<thresh may not be singular if the threshhold is

set too high (and also that matrices with rcond>thresh may be
singular if the threshhold is set too low). Keep in mind that this

matriz needs to be stable enough to be inverted, and it will also be

% mutliplied by another matriz, the result of which should still be
% non-singular.

if (nargin == 1),
thresh = 1*10~—10;
end;
machprecision = (10°—13); % agrees with FIXEIG

% G is assumed REAL - fails if has any imaginary elements
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imags = prod(size(find(imag(Git)~=0)));
if (imags>0),
status = 0; % fails
else, % all real elements
% tf G has negative elements which are larger than machine
% precision off from zero, throw G away. Else take the
% ablsolute value of G to get rid of any bogus elements.
negs = max(abs(Git(find(Git<=0)))); % largest magnitude of a
% negative element
if (size(negs,1)"=0), % Git has negative elements
if (negs>machprecision),
status = 0; % fails
else
% take absolute value to get rid of negative elements
status = 1; % passes so far
Git = abs(Git);
end;
else
status = 1; % passes so far
end;
% final thing to check: singular cases
sing = rcond(diag(Git));
% if rcond is too low, make sure that iteration will not be chosen.
if (sing < thresh),
status = 0; % fails
Y%else, it passes

end;
end;
newG = Git;
return;
initializer.m

function [newA] = initializer(est_A, est_order);

% constructs an initialization matriz NEWA from ESTA, the prior
% estimate of A, to be passed into the EM algorithm. If ESTA is
% of size n © k, NEWA should be of size n © est_order.

ca = cov(est_A);
nca = abs(ca)./(ones(size(ca))*diag(max(abs(ca)))});
% keep a column of A if its self-covariance is larger than its
% covariance with other columns of A
[arows, acols] = size(est_A});
if (acols <= est_order),
for vr=1:acols,
if (nca(vr,vr)==1.0),
newA(:,vr) = est_A(:,vr);
else
newA(:,vr) = randn(arows,1);
end;
end;
for vr=(acols+1):est_order,
newA(:,vr) = randn(arows,1);
end;
else
next=1,;
for vr=1:acols,
if {nca(vr,vr)==1.0),
newA(:,next) = est_A(:,vr);
next = next+1;
end;
end;
[nar, nac] = size(newA);
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if (nac < est_order)
newA = [newA randn(arows,est_order—nac};
else
newA = newA(:,l:est_order);
end;
end;
% mormalize the power in each column. ..should all be about the same
if (rcond(newA’*newA)<10°-10),
variances = var(newA); 40
for q=1:est_order,
newA(:,q) = (1/variances(q))*newA(:,q);
end;
end;

makeNonSingular.m

function [betterX] = makeNonSingular(X,cutoff)

% given a diagonal matriz X, if the matriz is near singularity
% (according to cutoff), the function will repair this to the point
% where rcond(betterX) > cutoff.

% This version does not use scree plots at all. It ’raises the

% water level’ of the screeplot by determining how many eigenvalues

% need to be altered in order for rcond(X)>cutoff. After

% alterations, the last several eigenvalues will have identical 10
% values.

% setup
if (nargin==1)
cutoff = 1¥10~(~6); % arbitrary cutoff
end;
[xr xc] = size(X);
if (xr==1 | xc==1),
% X is actually a vector. assume it’s the diagonal
X = diag(X); 20
end;

tempX = diag(X);
vals = —1*sort(~—1*diag(X)); % sort decreasing
upperbound = max(find(vals > cutoff*max(tempX})))+1;

% want to bring everything to the right of upperbound up to some
% minimum acceptable level
betterX = diag(tempX);
i=0; 30
while (rcond{betterX) < cutoff),

i=i+1

valueatbound = vals(upperbound—(i—1)};

needtofix = find(tempX <= valueatbound);

newvalue = vals(upperbound—i);

tempX(needtofix) = newvalue;

betterX = diag(tempX);
end;

pc-ord2.m

function ord_est = pc_ord2(Z tonormalize)

% Input: Z = {(A*p)"}

% Estimate the hidden size of A,p by analyzing the number of
% significant principal components.
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if (nargin==1)
tonormalize=0;
end;

% Find the principal components of the data.
if (tonormalize==1),
[zn] = my_normalizer2(Z*);

Y ———— %
% code modified from princomp.m %
%—— %

[m,n] = size(zn);
r = min(m-1,n); % maz possible rank of =
s = svd(zn./sqrt(m—1),0);
latent = 5.72;
if (r<mn)
zvar = [latent(1:r); zeros(n—r,1)};
end
clear zn;
else
[zpc, zjunk, zvar] = princomp(Z*);
clear zpc zjunk;
end;
percExpl = 100*zvar/sum(zvar); % percent of var explained by pc’s

% find # of principal components explaining any varience
for i=1:size(percExpl)
if (percExpl(i) < .001)
noSigZPC = i-1;
break; % ezit for loop
end; % end if
end; % end for

ord_est = noSigZPC;

traceG3.m

function bestlter = traceG3(orders, Gs, ordparam, tracegparam);

% Given the data of maxiter tlerations of IONPRIM/ONA, determines
% which iteration provided the best prediction of the data.

% ORDERS is a matriz of size 1 £ MAXITER (a parameter passed to

% always be greater than zero (and the G mairiz is always diagonal).

if (nargin<2),

warning(’not enough inputs?)

return;
elseif (nargin==2),

% defaults

ordparam = 0.075;

tracegparam = .02;

combinedparam = 0.15;
elseif (nargin==3),

tracegparam = .02;

combinedparam = ordparam — tracegparam,
elseif (nargin==4),

combinedparam = ordparam — tracegparam;
end;

nvar=size(Gs,1);
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iterations=size(Gs,2); 30
for it=1:iterations,

traces(it) = sum({Gs(:,it));
end; % end for

alldata = [ traces’ orders’ [l:terations]’ J;
% sort them by traces; make sure to keep track of the original
% order in order to return this information.

sorteddata = —1*sortrows(—1*alldata); % sort descending
sorttraces = sorteddata(:,1);
sortorders = sorteddata(:,2); 40

sortiters = sorteddata(:,3);

% %
% check for BOGUS iterations %
% ————— %

% check orders and trace(G)’s.
% find drastic changes in the highest iterations
maxTraceG = sorttraces(1l);
% first check for next-largest of the same order
ofthatorder = sorttraces(find(sortorders==sortorders(1))); 50
if (size(ofthatorder,1) > 1);
% first ofthatorder is always mazTraceG
% if is has more than one element, take the second.
nextTraceG = ofthatorder(2);
else
% no other iterations with same order estimation; compare to the
% nezt estimation
nextTraceG = sorttraces(2);
end;

60
percentIncrease = (maxTraceG — nextTraceG) / nextTraceG;
maxTraceGorder = sortorders(1);
nextOrder = sortorders(2);

% if order is increasing, this will be positive
percOrderIncrease = (nextOrder—maxTraceGorder) / nextOrder;
% if order increases by a lot and traceG decreases by a lot, that
% iteration is likely bogus.
while ((percentIncrease > tracegparam) | ...
(percOrderIncrease > ordparam) | ...
(percOrderIncrease+percentIncrease > combinedparam)), 70
% the iteration at the top of sorteddate is BAD
% throw away the top iteration
sorteddata = sorteddata(2:end,:);
sorttraces = sorteddata(:,1);
sortorders = sorteddata(:,2);
sortiters = sorteddata(:,3);

% do another check
maxTraceG = sorttraces(1);
ofthatorder = sorttraces(find(sortorders==sortorders(1))); 80
if (size(ofthatorder,1) > 1),

nextTraceG = ofthatorder(2);
else

if (size(sorteddata,1) > 1),

nextTraceG = sorttraces(2);

else
nextTraceG = sorttraces(l);
end;
end;
percentIncrease = (maxTraceG — nextTraceG) / nextTraceG; 90

maxTraceGorder = sortorders(1);
if (size(sortorders,1) > 1),
nextOrder = sortorders(2);
else
nextOrder = sortorders(1);
end;
percOrderIncrease = (nextOrder—maxTraceGorder) / nextOrder;
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end;

% now take the first row of sorteddata as best 100
bestIter = sortiters(1);

A3 ION’

The ION’ code was revised by A. Mueller from the original ION code authored by
Junehee Lee [10].

ionprime.m

function [S, noise, order] = ionprime(x, maxiter, a, b, pl, p2)

% This version of ION, called ION’, has improvements made in order
% estimation, in initialization of the EM algorithm, in iteration

% choosing. It does NOT estimate A or P. It does NOT use the SOBI
% algorithm in any way.

% Original code by Junehee Lee, updated by A. Mueller
% IONPRIME Iterative Order, Noise estimation algorithm 10

X is an m-by-n data malriz. m represents the number of
observations, and n represents the number of variables.
X = (A*P)’ + (G~.5 * W)’

MAXITER is the desired maz number of iterations of the ION
algorithm. We have found that MAXITER = 10 is generally more
than sufficient.

S (n-by-1 vector) is the noise variance vector. 20
NOISE (m-by-n matriz) is the retrieved noise sequence(s).
ORDER is the estimated number of independent signals.
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if (nargin==0), return;
elseif (nargin==1), maxiter=10;
end;
if (nargin<4),

a = .4;

b = .6; 30
end;
if (nargin<6),

pl = 0.15;

p2 = 0.02:;
end;

thresh = 1¥10~(~10);
EMiters = 10;% number of iterations of EM algorithm we want.
randfileID = strcat(’/usr/dicke2/ionprimetemp’,. ..
num2str(round(rand(1,1)*1000))});
40
% initialize variable used in the loop

[Nobs, Nvar] = size(x};
G = ones(Nvar,1); S = ones(Nvar,1);

allEstSignal = []; allS = zeros(Nvar,maxiter);
save(randfileID,’allEstSignal’,’allS’);
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est_order = 0;

PCtypicallyToobig = 0;
PCtypicallyToosmall = 0;
ignorePC = 0;

nebemstatus = 1;

% _

for it = 1 : maxiter
xn = x*diag(S."—.5);
Sx = cov(xn); 60
[evect, evals] = eig(Sx);
[evect, evals] = fixeig(evect, evals);
checkevals(evals, it);

screeordest = screeorder(evals,a,b);

% Use the estimated signal and PCA to improve the signal order estimate.
if (“ignorePC)
if exist(’est_signal’},
pcordest = pc_ord2({est_signal* diag(sqrt(S_old)),1); 70
else,
pcordest = NaN;
end; % end if
% should work for any data sets, whether ION
% overestimates or underestimates.
if (it>1) % first iterations are always poor
if ((pcordest < screeordest) & “PCtypicallyToobig)
PCtypicallyToosmall = 1;
elseif ((pcordest > screeordest) & “PCtypicallyToosmall)
PCtypicallyToobig = 1; 80
end; % end if
end; % end if
end; % end if
est_order_old = est_order;

if ((it==5) & “PCtypicallyToobig & “PCtypicallyToosmall)
% PC method generally agrees with ION, don’t use it
ignorePC = 1;
end;
if ("ignorePC), 90
if (PCtypicallyToobig & (screeordest > pcordest)) | ...
(PCtypicallyToosmall & (screeordest < pcordest)),
warning(’using pc estimate’);
est_order = pcordest;
else
est_order = screeordest;
end; % end if

else
est_order = screeordest;
end; % end if 100

% Now that we have chosen an order, we need to construct
% a prior A to pass in to the EM algorithm.
if (it==1), % don’t have prior estimates
[G.est_signal est_A]=nebema(xn, est_order, EMiters);
else
newA = injtializer(est_A, est_order);
[G, est_signal, est_A] = nebema(xn, est_order, EMiters, newA});
clear newA;

if (isempty(est_signal)) 110
nebemstatus = 0;
end;
end;
S_old = S;
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S = S8.*G;

[status, newS] = goodlter(S,thresh),

S — newS;

clear newS$;

if (status == 0 | nebemstatus==0),
warning(strcat(’status = 0 in iteration ’,num2str(it)));
maxiter = it—1; % how many iters there were
% quit looping, LEAVE ’for’ loop.
break;

end:

if (rcond(diag(S))<thresh)
warning(cat(2,’singular noise matrix in iterations: ’, ...
num?2str(rcond({diag(S)))))
end;

% make sure that bogus runs don’t get chosen:
if (isempty(est_signal)) allOrder(it) = Nvar;
else allOrder(it) = est_order;
end;

% Save all of the information from this iteration
load(randfilelD,*al18’);

allS(:,it) = S;
save(randfilelD,’alls’,*-append’);

clear allS;

load(randfileID,’al1EstSignal’);
allEstSignal(:,:,it) = est_signal* diag(sqrt(S_old));
save(randfileID,’allEstSignal’,’ -append’);
clear allEstSignal;

end; % end for

% get the best iteration’s predictions
if (max(size(allOrder))>1),
load(randfilelD,?al1S’);
% takes care of cases where the loop is exited early due to
% status=0 and allS, allEstSignal are not saved for that iter.
bestiter = traceG3(allOrder(1:maxiter), allS(:,1:maxiter), pl, p2)
else,
bestiter=1;
end;

est_order = allOrder(bestiter);
load(randfileID,’allEstSignal’);
est_signal = allEstSignal(:,:,bestiter);
clear allEstSignal;

= allS(: bestiter);
clear allS:

if (rcond(diag(S)) < thresh),
% This should NEVER happen because all singular S matrices should
% have been caught by GOODITER.m in the loop above.
warning(cat(2,’singular noise matrix at end: ’, ...
num2str(rcond(diag(S)))))
end;

% other outputs %
noise = x — est_signal;
order = est_order;

% uncomment this line if you want to forcefully assume unit variance w
%S = (std(noise))."2; % or S = var(noise);

% GET RID OF THE TEMP FILE SO AS TO FREE UP HARDDRIVE SPACE
unix([’rm * randfileID ’.mat’});

return;
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A.4 ONA

The ONA code was revised by A. Mueller from the original ION code authored by
Junehee Lee [10].

ona.m

function [S, noise, order, est_P, est_.A] = ...
ona(x, maxiter, a, b, pl, p2)

% IONPRIME with improvements made to estimate A (mizing matriz)
% and P (latent signals) with SOBL

if (nargin==0), return;
elseif (nargin==1), maxiter=10;
end;
if (nargin<4), 10
a = .4;
b = .6;
end;
if (nargin<6),
pl = 0.075;
p2 = 0.02;
end;

thresh = 1*10~(-10);

EMiters = 10;% number of iterations of EM algorithm we want.

randfileID = strcat(’/usr/dicke2/onatemp’, ... 20
num?2str(round(rand(1,1)*1000)));

randfileID1 = strcat(randfileID,’1’);

randfileID2 = strcat(randfileID,’2°};

% initialize variable used in the loop

[Nobs, Nvar] = size(x);
G = ones(Nvar,1); S = ones(Nvar,1);

allEstSignal = []; allS = zeros(Nvar,maxiter); 30
save(randfileID1,’allEstSignal’);
save(randfileID2,’al1S’);

est_order = 0;
PCtypicallyToobig = 0;
PCtypicallyToosmall = 0;
ignorePC = 0;

nebemstatus = 1;
G e 40

for it = 1 : maxiter
xn = x*diag(S.”—.5);
Sx = cov(xn);
[evect, evals] = eig(Sx);
[evect, evals] = fixeig(evect, evals);
checkevals(evals, it});

screeordest = screeorder(evals,a,b);
50
% Use the estimated signal and PCA to improve the signal order estimate.
if ("ignorePC)
if exist(’est_signal’),
pcordest = pc_ord2(est_signal* diag(sqrt(S_old)),1);
else,

114



pcordest = NaN;
end; % end if
% should work for any data sets, whether ION
% overestimates or underestimates.
if (it>1) % first iterations are always pretty poor 60
if ((pcordest < screeordest) & “PCtypicallyToobig)
PCtypicallyToosmall = 1;
elseif ((pcordest > screeordest) & “PCtypicallyToosmall)
PCtypicallyToobig = 1;
end; % end if
end; % end if
end; % end if
est_order_old = est_order;

if ((it==5) & "PCtypicallyToobig & “PCtypicallyToosmall) 70
% PC method generally agrees with ION, don’t use it
ignorePC = 1;

end;

if (“ignorePC}),
if (PCtypicallyToobig & (screeordest > pcordest)) | ...
(PCtypicallyToosmall & (screeordest < pcordest)),
warning(’using pc estimate?’);
est_order = pcordest;

else
est_order = screeordest; 80
end; % end if
else

est_order = screeordest;
end; % end if

% Now that we have chosen an order, we need to construct

% a prior A to pass in to the EM algorithm.

if (it==1), % don’t have prior estimates
[G.est_signal,est-A]=nebema(xn, est_order, EMiters);

else 90
newA = initializer(est_A, est_order);
[G, est_signal, est_A] = nebema(xn, est.order, EMiters, newA);
clear newA;
if (isempty(est_signal))

nebemstatus = 0

end;

end;

S_old = §S;
S =8*G; 100

[status, newS] = goodIter(S,thresh);
S = newS;
clear newS;
if (status == O | nebemstatus==0),
warning(strcat(’status = 0 in iteration ’,num2str(it)));
maxiter = it—1; % how many iters there were
% quit looping over ONA, LEAVE ’for’ loop.
break;
end; 110

if (rcond(diag(S))<thresh)
warning(cat(2,’singular noise matrix in iteratiomns: ’, ...
num2str(rcond(diag(S)))))
end;

% make sure that bogus runs don’t get chosen:

if (isempty(est_signal))
allOrder(it) = Nvar;

else 120
allOrder(it) = est_order;

end;
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% Save all of the information from this iteralion
load(randfile]D2,’alls");

allS(:it) = S;

save(randfile]D2,’all8?);

clear allS;

load(randfileID1,’allEstSignal’);
allEstSignal(:,:,it) = est_signal* diag(sqrt(S_old));
save(randfileID1,’allEstSignal’);
clear allEstSignal;

end; % end for

% get the best iteration’s predictions
if (max(size(allOrder))>1),
load(randfileID2,’al15?);
% takes care of cases where the loop is exited early due to
% stoatus=0 and allS, allEstSignal are not saved for that iter.
bestiter = traceG3(allOrder(1:maxiter), allS(:,1:maxiter), pl, p2)
else,
bestiter=1;
end;

est_order = allOrder(bestiter);
load(randfileID1,’allEstSignal’);
est_signal = allEstSignal(:,:, bestiter);
clear allEstSignal;

S = allS(:,bestiter);

clear allS:

if (rcond(diag(S)) < thresh),
% This should NEVER happen because all singular S matrices should
% have been caught by GOODITER.m in the loop above.
warning(cat(2,’ singular noise matrix at end: ’, ...
num2str{rcond(diag(S)))))
end;

[est_A1] = sobi(est_signal’,est_order);
est_P = pinv{est_Al)*(est_signal’);

% normalize the results so that P has unit variance.
std_p = std(est_P’);

est_P = diag(std_p.~(—1))*(est_P); % normalize P
est_A = est_Al * diag(std_p); % move power to A

% other outputs %

noise = x — est_signal;

order = est_order;

% uncomment this line if you want to forcefully assume unit variance w
%S = var(noise);

% GET RID OF THE TEMP FILES SO AS TO FREE UP HARDDRIVE SPACE

unix([’rm ’ randfileID1 ’.mat’]);
unix([’rm ’ randfileID2 *.mat’]);

ona_spatial.m

function [S, noise, order, est_P, est_A] = ...
ona_spatial(x, maxiter, a, b, pl, p2,q,r,8)

% ONA algorithm altered to work with 2D spatial data

if (nargin==0), return;
elseif (nargin==1), maxiter=10;
end;

if (nargin<4),
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a = .4,
b = .6;
end;
if (nargin<6),
pl = 0.075;
p2 = 0.02;
end;

thresh = 1*10~(-10);

EMiters = 10; % number of iterations of EM algorithm we want.

randfileID = strcat(’/usr/dicke2/onatemp’,. ..
num?2str(round(rand(1,1)*1000)));

randfileID1 = strcat(randfileID,’1’);

randfile]D2 = strcat(randfilelD,’2’);

% initialize variable used in the loop

[Nobs, Nvar] = size(x);
G = ones(Nvar,1); S = ones(Nvar,1);

allEstSignal = []; %zeros(Nobs, Nvar,maziter);
save(randfileID1,’allEstSignal’);

allS = zeros(Nvar,maxiter);
save(randfilelD2,’al18");

est_order = 0;
PCtypicallyToobig = 0,
PCtypicallyToosmall = 0;
ignorePC = 0;

nebemstatus = 1;

for it = 1 : maxiter
xn = x*diag(S.”—.5);
Sx = cov(xn);
[evect, evals] = eig(Sx);
[evect, evals] = fixeig(evect, evals);
checkevals(evals, it);

screeordest = screeorder(evals,a,b);

% Use the estimated signal and PCA to improve the signal order estimate.

if (“ignorePC)
if exist(’est_signal’),
pcordest = pc_ord2(est-signal* diag(sqrt(S-old)),1);
else,
pcordest = NaN;
end; % end if
% should work for any data sets, whether ION
% overestimates or underestimates.
if (it>1) % first iterations are always pretty poor
if ((pcordest < screeordest) & ~PCtypicallyToobig)
PCtypicallyToosmall = 1;
elseif ((pcordest > screeordest) & ~“PCtypicallyToosmall)
PCtypicallyToobig = 1;
end; % end if
end; % end if
end; % end if
est_order_old = est_order;

if ((it==5) & "PCtypicallyToobig & ~PCtypicallyToosmall)
% PC method generally agrees with ION, don’t use it
ignorePC = 1;
end;
if (TignorePC),
if (PCtypicallyToobig & (screeordest > pcordest)) | ...
(PCtypicallyToosmall & (screeordest < pcordest)),
warning(’using pc estimate’);
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est_order = pcordest;

else
est_order = screeordest; 80
end; % end if
else

est_order = screeordest;
end; % end if

% Now that we have chosen an order, we need to construct

% a prior A to pass in to the EM algorithm.

if (it==1), % don’t have prior estimates
[G,est_signal,est_A]=nebema(xn, est_order, EMiters);

else 90
newA = initializer(est.A, est_order);
[G, est_signal, est_A] = nebema(xn, est_order, EMiters, newA);
clear newA;
if (isempty(est_signal))

nebemstatus = 0;

end;

end;

* G 100

[status, newS] = goodIter(S,thresh);
S = newS;
clear newS;
if (status == 0 | nebemstatus==0),
warning(strcat(’status = 0 in iteration ’,numa2str(it)));
maxiter = it—1; % how many iters there were
% quit looping over ONA, LEAVE ’for’ loop.
break;
end; 110

if (rcond({diag(S))<thresh)
warning(cat(2,’singular noise matrix in iteratioms: ’, ...
num?2str(rcond{diag(S)))))
end;

% make sure that bogus runs don’t get chosen:

if (isempty(est_signal))
allOrder(it) = Nvar;

else 120
allOrder(it) = est_order;

end;

% Save all of the information from this iteration
load(randfileID2,?al18’);

allS(:,it) = S;

save(randfileID2,’alls’);

clear allS;

load(randfileID1,’al1EstSignal’); 130
allEstSignal(:,:,it) = est_signal* diag(sqrt(S_old)});
save(randfile]D1,’allEstSignal’);
clear allEstSignal;
end; % end for

% get the best iteration’s predictions

if (max(size(allOrder))>1),
load(randfile]D2,’allSs’});
bestiter = traceG3(allOrder(1:maxiter), allS(:,1:maxiter), pl, p2)

else, 140
bestiter=1;

end;

est_order = allOrder(bestiter);
load(randfileID1,’allEstSignal’);
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est_signal = allEstSignal(:,: bestiter);
clear allEstSignal,
S = allS(:,bestiter);
clear allS:
150

if (rcond(diag(S)) < thresh),

% This should NEVER happen because all singular S matrices should

% have been caught by GOODITER.m in the loop above.

warning(cat(2,’singular noise matrix at end: ’, ...

num2str(rcond(diag(S)))})

end;
es = reshape(reshape(est_signal’,1,q*r#*s),q,r,s);
es = shiftdim(es,1); % so it is spatial z spatial z spectral

est_Al = sobi_spatial(es,est_order); 160
est_P = pinv(est_Al)*(cst_signal’);

% mormalize the results so that P has unit variance.
std_p = std(est_P’);

est_P = diag(std_p.~(—1))*(est-P); % normalize P
est_A = est_Al * diag(std_p); % move power to A

% other outputs %

noise = x — est_signal;

order = est_order; 170
% uncomment this line if you want to forcefully assume unit variance w

%S = var(noise);

% GET RID OF THE TEMP FILE SO AS TO FREE UP HARDDRIVE SPACE
unix([’rm * randfileID1 ’.mat’]);
unix([’rm ’ randfileID2 ’.mat’]);

A.4.1 SOBI

The following code was authored by William J. Blackwell and revised by A. Mueller

to implement the SOBI algorithm described in [4].

sobi.m

function [A_hat, P_hat] = sobi(x,k);
% Original code by William J. Blackwell, revised by A. Mueller

% = is the matriz we wish to separate into A,p

% assumingn T = A*p+noise

% if x is of size nzm (where each row is a variable, each
% column is a time sample), then A is of size n by k

T = length(x); 10

% calculate 2nd-order stats for a range of time lags
X- = x — (mean{x’)’ * ones(1,T));
RO =x_*x_"/(T-1);
x_(:,1:(end-1)) * x_(:,2:(end))’ / (T - 2);
x-{:,1:(end~-2)) * x_(:,3:(end))’ / (T - 3);
x_(:,1:(end—3)) * x_(:4:(end))’ / (T - 4);
x-(:,1:(end—4)) * x_(:,5:(end))’ / (T - 5);

x-(:,

x-(s,

x-(s,

1

x-(:,1:(end-5)) * 6:(end))’ / (T - 6);
x-(:,1:(end—6)) * 7:(end))’ / (T - 7); 20
x_(:,1:(end—-7)) * 8:(end))’ / (T - 8);

FUFUFUIFUFUFU’;U
NO AW e
[ | T (R (R 1
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R_8
R_9

It H

x-(:,1:{end—8)) * x_(:,9:(end))’ / (T - 9);
x-(:,1:(end—9)) * x_(:,10:(end))’ / (T - 10);

% calculate eigenv’s

[evects, evals] = eig(R_0);

evals = diag(evals);

[junk, ind] = sort{evals);

evals = evals(ind(end:-1:1));
evects = evects(:, ind(end:—1:1));

% estimate residual noise

var_est = mean(evals(k+1:end));

% calculate whitening matriz W using k evectors. ..

for temp=1:k,
col = 1/sqrt(evals(temp) — var_est) * evects(:,temp);
W(:,temp) = col(:);

end,;

W =W?’;

% Compute sample covariance matrices for z(t)-noise
wR_.0=W*R_0*W?’;

wR_1 =W*R_.1*W’;
wR2=W®*R. 2* W,
wR.3 =W*R.3*W?;
wR_4 =W *R_4*W’;
wR_5 = W * R_.53 * W’;
wR_6 =W *R_6* W?’;
wR_7 =W * R_.7T*W’;
wR.8 =W *R_8* W?;
wR_9=W*R_9*W?,;

[V, D] = joint_diag-r([wR_0 wR_1 wR_2 wR_3 wR_4 wR_5 wR.6 wR.7], 1e—6);
A_hat = pinv(W) * V;
P hat = V'’ x ¥ * x;

sobi_spatial.m

function [A_hat, P_hat] = sobi_spatial(x,k});

% Takes in a 3-d matriz of hyperspectral data of size (a,b,c):
% z is the matriz we wish o separate into A,p.

% The size of A is ¢ by k.

% The size of P is k by a*b.

% (a,b) are the spatial dimensions of the data, ’c’ is the spectral
% dimension of the data.

% NOTE: This function will normalize z before computing the

% spatially-shifted covariance matrices if the second parameter

% passed in is set to 1.

M, M1, M2, M3, M4] = threeD_cov(x,1);

% Returns M, size (c, a*b) which is the date in z but made 2-D so

% that the first dimention is spectral, the second is spatial.

% (The corresponding mapping to the 2-D case ts where each row 1s a
% wariable and each column is a time sample, except now each column
% is a spectral distribution sample of one pizel.)

T = length(M);

% calculate 2nd-order stats for a range of spatial lags
% [Note that normalization should be done in threeD_cov.]

M* M’ /(T - 1);
M* M1’ / (T - 1);
M * M2’ /(T - 1);

Il

R_O
R_1
R.2
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R_3
R_4

M * M3? / (T - 1);
M * M4’ / (T - 1); 30

i

% calculate eigenv’s

[evects, evals] = eig(R-0);

evals = diag(evals);

[junk, ind] = sort(evals);

evals = evals(ind(end:—1:1));
evects = evects(:, ind{end:—1:1));

% estimate residual noise
var_est = mean(evals(k+1:end}); 40
% calculate whitening matriz W using k evectors. . .
for temp=1:k,
col = 1/sqrt(evals(temp) — var_est) * evects(:,temp);
W(:,temp) = col(:);

end,;

W = W7,

% Compute sample covariance matrices for z(t)

wR_0 =W * RO * W’;

wR_.1 = W * R_1* W3; 50
wR_2=W*R.2*W?;

wR_.3 =W *R.3*W*;

wR_4=W*R_4* W,

[V, D] = joint_diag_r([wR-0 wR_1 wR_2 wR_3 wR_4], 1e—6);
A_hat = pinv(W) * V;

% mnote that V is unitary and real, so inv(V) = transpose(V)
P_hat = V7’ = W * M;

A.4.2 Spatial SOBI helper function

threeD _cov.m

function [Mlong, Mllong, M2long, M3long, M4long] = ...
threeD_cov(M, normalize)

% Given the matriz M, return the first four spacial covariance
% matrices corresponding to the nearest pizels. All matrices
% returned are of appropriate size to be passed directly to the
% SOBI algorithm.

% given a matriz X of size T-by-y-by-v:
10
[a b c]=size(M);

if (nargin==1)
normalize=1;
end;
if (normalize==1),
tempM = reshape(shiftdim{M,~1), a*b,c)’;
T = length(tempM);
tempM = tempM -~ (mean(tempM’)’ * ones(1,T));
M = reshape(shiftdim(tempM,1),a,b,c); 20
end;

% create the shifted matrices used to compute shift covariances
% CASE 1:
% |-l

% |-|#|*| where # is the home entry, * is the entry to which
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% |-|-|-] it 1s being compared in the covariance calculation
M1 = circshift(M,[0,—-1]);
% correct the mistakes on the sides:
for k=1:a, % one mistake per row
M1(k,b,:) = M(k,b—1,:);
end;

% CASE 2:

% ||

% |-

% |11

M2 = cireshift(M,1);

for k=1:b, % one mistake per column
M2(1k,:) = M(2,k,:);

end;

% CASE 3:

% 1--1"

% |14)-]

% |-I-I-l

M3 = cireshift(M,[1,—1]);

for k=2:a, % one mistake per row
M3(k,b,:) = M(k—1,b—-1,:);

end;

for k=1:b—1, % one mistake per column
M3(1.k,:) = M(2,k+1,:);

end;

M3(1,b,:) = M(2,b—1,:);

% CASE 4:
% | *-|-l

M4 = cireshift(M,[1,1]);

for k=2:a,
M4(k,1,:) = M(k-1,2,:);

end;

for k=2:b, % one mistake per column
M4(1k,:) = M(2,k—1,);

end;

M4(1,1,:) = M(2,2,:);

% These are all of the first ring matrices necessary to calculate
% spatially-shifted covariance matrices.

Mlong = reshape(shiftdim(M,—1), a*b,c)?; % transpose for SOBI

% note that the columns of Mlong correspond to the spectral

% dimension of M. The columns are ordered from top-left pizel to

% bottom-right pizel BY COLUMN, then by row. t.e. the spectral

% distribution of pizel (z,y) of M corresponds to

% Mlong( (a-1)*y+z, :).

Mllong = reshape(shiftdim(M1,-1), a*b,c)’; % transpose for SOBI
M2long = reshape(shiftdim(M2,-1), a*b,c)*; % transpose for SOBI
M3long = reshape(shiftdim(M3,—1), a*b,c)’; % transpose for SOBI
M4long = reshape(shiftdim(M4,—1), a*b,c}’; % transpose for SOBI

A.4.3 Joint Diagonalization

The following script was obtained from the website of Jean-Francois Cardoso.

doso@sig.enst.fr and used as a part of the ONA functions.
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joint_diag r.m

function [ V , qDs ]= rjd(A,threshold)
%***************************************

% joint diagonalization (possibly

% approzimate) of REAL matrices.
%***************************************

% This function minimizes a joint diagonality criterion
% through n matrices of size m by m.

% Input :

% * the n by nm matriz A is the concatenation of m matrices

% with size n by n. We denote A = [ A1 A2.... An ]

% * threshold is an optional small number (typically = 1.0e-8 see below).

% Output :

% * V is a n by n orthogonal matriz.

% * qDs is the concatenation of (quasi)diagonal n by n matrices:

% ¢Ds = [ D1 D2 ... Dn ] where Al = V*DI1*V’ ..., An =V*Dn*V".

% The algorithm finds an orthogonal matriz V

% such that the matrices DI,...,Dn are as diagonal as possible,

% providing a kind of ‘average eigen-structure’ shared

% by the matrices Al ,..., An.

% If the matrices Al,...,An do have an ezact common eigen-structure
% ie a common othonormal set eigenvectors, then the algorithm finds it.
% The eigenvectors THEN are the column vectors of V

% and D1, ...,Dn are diagonal matrices.

% The algorithm implements a properly ertended Jacobi algorithm.

% The algorithm stops when all the Givens rotations in a sweep

% have sines smaller than ’threshold’.

% In many applications, the notion of approrimate joint diagonalization
% is ad hoc and very small values of threshold do not make sense

% because the diagonality criterion itself is ad hoc.

% Hence, it is often not necessary to push the accuracy of

% the rotation matriz V to the machine precision.

% It is defaulted here to the square root of the machine precision.

% Author : Jean-Francois Cardoso. cardoso

% This software is for non commercial use only.
% It is freeware but not in the public domain.

A version for the compler case is available
upon request at cardoso

Two References:

S

The algorithm is ezplained in:

HTML = “ftp://sig.enst.fr/pub/ifc/Papers/siam_note.ps.gz”,
author = “Jean-Fran\c{c}ois Cardoso and Antoine Souloumiac”,
journal = “{SIAM} J. Mat. Anal. Appl.”,

title = “Jacobi angles for simultaneous diagonalization”,

pages = “161-164”,

volume = “177,

number = “17,

month = jan,

year = {1995}}

The perturbation analysis is described in

author = “{J.F. Cardoso}”,
% HTML = “ftp://sig.enst.fr/pub/jfc/Papers/joint_diag_pert_an.ps”,
% institution = “T\ {e}]\ {e}com {P}aris”,

SSRGS SN S R S
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% title = “Perturbation of joint diagonalizers. Ref\# 94D0277,
% year = “19947 }

%
%
% 70
[m,nm] = size(A);
V=eye(m);
if nargin—==1, threshold=sqrt(eps); end;
encore=1;
while encore, encore=0;
for p=1:m-1,
for q=p+1:m,
%computation of Givens rotations 80
g=[ A(p,pm:nm)—A(q,q:r:nm) ; A(p,q:m:nm)+A(q,pimmnm) |;
g=g%g’;
ton =g(1,1)—g(2,2); toff=g(1,2)+g(2,1);
theta=0.5*atan2( toff , ton+sgrt(ton*ton+toff*toff) );
c=cos(theta);s=sin(theta);
encore=encore | (abs(s)>threshold);
%update of the A and V matrices
if (abs(s)>threshold) ,
Mp=A(:,p:m:nm);Mg=A(:,qg:m:nm);
90

A(:,prm:nm)=c*Mp+s*Mq;A(:,q:m:nm)=c*Mq—s*Mp;
rowp=A(p,:)irowq=A(q,:);
A(p,:)=c*rowp+s*rowq;A(q,:)=c*rowq—s*rowp;
temp=V(:,p);V(:,p)=c*V(:,p)+s*V(:,q); V(:.q)=c*V(:,q)—s*temp;
end; %of the if
end; %of the loop on ¢
end; %of the loop on p
end; %of the while loop
qbDs = A
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