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Abstract

Establishing high data rate communication links over short distances via fiber-optic
cables may prove costly and time consuming, particularly in urban areas. Through-
the-air optical communication systems are a reliable and cost effective alternative for
establishing high data rate links when the two terminals have a clear line-of-sight.
Bad weather conditions, such as rain, snow or fog, degrade performance severely for
such links. However, even in clear weather conditions, local refractive index fluctu-
ations in the atmosphere known as atmospheric turbulence, may drastically impair
performance. Most optical links are set up to operate in the far-field power transfer
regime, in which diffraction spread is the dominant effect on the beam. Therefore,
a very small portion of the beam is captured at the receiver, resulting in very weak
power coupling between the transmitter and the receiver. However, it is also possible
to establish geometries such that the link operates in the near-field regime, where,
in absence of turbulence, it is possible to focus the beam onto the receiver with al-
most perfect power coupling. Work on performance of near-field atmospheric optical
communication systems is scarce in existing literature, perhaps due to increased com-
plexity in prescribed models. In this thesis, we analyze error probabilities of binary
optical communication links operating in the near-field regime, utilizing on-off keying
(OOK) or pulse position modulation (PPM) signaling techniques. We also obtain
bounds on the capacity of a single-input, single-output (SISO) atmospheric optical
communication link with a coherent-detection receiver operating in the near field.
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Chapter 1

Introduction

The increasing demand in the past decade for higher data-rate communication net-
works has been answered with the advances in fiber-optic communications. However,
particularly in urban areas, replacing existing network infrastructure with fiber-optic
communications remains as an expensive and time consuming challenge, and one that
is disruptive to every-day life.

In the past decade, atmospheric optical communications has received much at-
tention as an appealing alternative to fiber-optic and microwave communications.
Improvements in semiconductor laser technology as well as optical amplification and
detection technologies have significantly reduced the cost of hardware necessary to
set up such links. Furthermore, avoiding the high construction costs and the need for
difficult to obtain rights of way in urban areas associated with laying down fiber-optic
cables provides strong incentive to consider atmospheric optical communications as
a cost-effective alternative. Atmospheric optical links are also highly modular and
can be installed fairly quickly. Hence they can serve as temporary solutions to main-
tain high data rate communications in the absence of a permanent infrastructure.
Likewise, they may prove useful in emergency situations, such as in the immediate
aftermath of natural disasters, when re-establishing global communications is vital,
yet extremely challenging if the existing infrastructure is damaged. Through-the-air
optical links also have unlicensed bandwidth, therefore can yield much higher data-

rates than microwave communications. Finally, because laser beams can be much
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narrower than microwave beams, atmospheric optical communications offer a more

secure alternative to microwave communications.

Optical propagation through the atmosphere, however, is susceptible to meteo-
rological events and atmospheric conditions. Bad weather conditions, such as snow,
fog and rain, cause severe absorption and scattering, drastically reducing optical
power transfer on a line-of-sight atmospheric path [1, 2, 3, 4]. Even in clear weather
conditions, however, a phenomenon known as atmospheric turbulence significantly
degrades the performance of atmospheric optical communication links. Atmospheric
turbulence is what causes stars to twinkle at night and scenery to shimmer above an
asphalt road on a hot day. Physically, atmospheric turbulence is due to parcels of air,
referred to as “turbulent eddies”, with slightly varying temperatures and therefore
slightly varying refractive indices [5, 6, 7]. These refractive index fluctuations result
in random distortions in the wavefront as well as constructive and destructive inter-
ference in the intensity of propagating optical waves, leading to undesirable effects

such as beam spread, angular spread and fading.

A number of optical wave propagation theories and models have been developed
to date which quantify these atmospheric propagation phenomena. One such model,
which we shall utilize in this work, is the extended Huygens-Fresnel principle [8, 9].
This model treats the transmitter surface as a collection of infinitesimal point sources
and uses the random spherical-wave Green’s function of the turbulent atmosphere to
describe the field at a point on the receiver surface via a superposition integral. This
approach enables a linear system interpretation of atmospheric propagation, in which
the wave at the transmitter aperture is considered the input and the wave entering
the receiver aperture is considered the output of this system. The linear system
interpretation provided by the extended Huygens-Fresnel principle is a starting point
for a number of other theories which attempt to quantify wave propagation statistics
and power transfer characteristics for the turbulent atmosphere. We will employ some
of these theories in this thesis as well.

Free-space line-of-sight propagation between finite transmitter and receiver aper-

tures may be divided into near-field and far-field power transfer regimes, which bracket
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the power transfer characteristics of an atmospheric optical link. Qualitatively, in
free-space propagation, the far field corresponds to the regime in which the minimum
beam size at the receiver plane is much larger than the size of the aperture, due to
diffraction spread [10, 11]. Thus, only a small fraction of the transmitted power is
coupled into the receiver. On the other hand, the near field is the regime in which
the minimum beam size is much less than the aperture area, yielding near-perfect
power coupling when the beam is focused on the receiver. It turns out that these
free-space power transfer characteristics can be summarized by a single parameter,
the free-space Fresnel number. When this number is much smaller than unity, far-
field power transfer prevails; when it is much larger than unity, power transfer is
in the near field [11]. In the turbulent atmosphere, similar power-transfer regimes
exist, with the added complication that the minimum beam size at the receiver de-
pends on the random atmospheric state. Nevertheless, a parameterization similar to
that for free-space is possible: for the turbulent atmosphere the operating regime is

determined by comparing a random effective Fresnel number with 1.

Work in the field of atmospheric optical communications has mainly focused on
the far-field power transfer regime [8, 5]. On the other hand, near-field analysis
has been used mostly for imaging applications. However, it is possible to establish
atmospheric communication links which operate in the near-field regime. There are a
number of motivations for understanding the communication performance of optical
links in the near field. As described earlier, the ability to focus a beam onto the
receiver results in high power coupling, as opposed to a link operating in the far-
field regime. Therefore, much less transmitter power will be required to achieve
data rates and error probabilities comparable to those systems that operate in the
far field. Furthermore, the reduced diffraction of near-field systems is attractive for

high-security applications or situations in which privacy is at a premium.

In this thesis, we will analyze the performance of optical communication links
operating in the near-field power transfer regime through atmospheric turbulence in
clear weather conditions. Chapter 2 presents background material on atmospheric

propagation and optical detection. Chapter 3 will be devoted to the maximum power
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transfer statistics of the turbulent atmosphere. There we focus on bounding the mean
and variance of the maximum power transfer. Through-the-air binary, atmospheric,
optical communication systems with on-off keying (OOK) and pulse-position modu-
lation (PPM) signaling techniques, in combination with direct detection or coherent
detection receivers will be analyzed in Chapter 4. The results of Chapter 4 will be ex-
tended, in Chapter 5, to the case in which the maximum power transfer is assumed to
be Beta distributed. Finally, Chapter 6 will analyze the ergodic and outage capacity
of near-field atmospheric optical communication links employing coherent detection

receivers.
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Chapter 2

Background

2.1 Atmospheric Propagation

This section will discuss the linear system model for atmospheric optical wave prop-
agation and its normal mode decomposition. The material will provide the necessary

tools for analyzing the power transfer statistics of the atmosphere.

2.1.1 Wave Propagation Model

Optical waves propagating through the atmosphere are affected by atmospheric condi-
tions and meteorological phenomena. In clear weather, turbulent mixing of air causes
local temperature fluctuations in the atmosphere, generating spatially and temporally
random air parcels with slightly varying refractive indices, as illustrated in Figure 2-1.
Although these air parcels, referred to as “turbulent eddies,” have refractive index
variations on the order of 107, their effect on wave propagation is profound. For
optical communication systems, constructive and destructive interference results in
fading, while distortion of the phase-front leads to beam spread and angular spread
[5].

A number of theories have been developed to quantify wave propagation through
the turbulent atmosphere, with considerable success in agreeing with experimental

observations [6]. One such propagation model, widely utilized in atmospheric optical
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Turbulent Eddies
Transmitter Receiver
Plan lane

Laser

Figure 2-1: Propagation of a plane wave through the turbulent atmosphere.

communications studies, is the extended Huygens-Fresnel principle, which expresses
the propagated field as a superposition integral of spherical waves originating from
point sources that collectively constitute the source. This approach provides a sys-
tem-level interpretation for atmospheric propagation, in which the field entering the
medium can be considered the input to a stochastic, space and time-varying linear
system with the atmosphere’s spherical-wave Green’s function as its impulse response.
The output is considered to be the field at another plane along the propagation path.

Consider a line-of-sight propagation path where the transmitter and receiver aper-
tures are placed in parallel, along some common principal axis, as shown in Figure 2-2.
For definiteness, assume the propagation direction is chosen to be along the z-axis,
with x and y axes as depicted in the figure. Furthermore, assume a quasimonochro-
matic and linearly polarized electric field with center frequency w, is transmitted from
an aperture K; on the z = 0 plane.

For high data rate communications, it is feasible to assume that the duration
of a transmitted symbol is much less than the atmospheric coherence time and the
transmitted field has bandwidth much less than the atmospheric coherence bandwidth
[5, 8, 10]. As a result, the atmosphere can be assumed frozen for the duration of
transmission. In other words, temporal variations in the refractive index field can

be suppressed, leaving only spatial variations. Furthermore, it has been shown that
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Figure 2-2: Line-of-sight propagation geometry.

turbulent atmosphere exhibits negligible depolarization [12], thus consideration of

linearly polarized fields leads to scalar field equations.

Let us use U;(p, t) to denote the scalar complex envelope of the transmitted field,
where p is a point on the 2 = 0 plane; i.e., the point (p,z =0) € R3 Under
the assumptions specified in the previous paragraph, the extended Huygens-Fresnel
principle states that the scalar complex envelope of the received field on the z = L

plane, Uy(p’, 1), is

Uyp',t) = % / Ui (p,t — £) efk(L+"";L‘"Q)+x<p',p>+j¢(p',p) dp . (2.1)
J R1

Here, U; (p,t) and U, (p’,t) are complex field envelopes! about optical (carrier) fre-

quency w, = gf\’—c, in terms of their center wavelength A, k£ = *¢ is the wave number and

x(p’, p) and ¢(p’, p) are turbulence-induced log-amplitude and phase fluctuations at

(p’,z = L), due to a monochromatic point source at (p, z = 0). Equation (2.1) can be

. 1/2 . .
!The units of these fields are %——, so that |, R, [Ui(p,t)|?dp is the short-time average power

transmitted through the R; aperture at time ¢, etc.
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interpreted as the input/output description of a linear system with impulse response,

1 . 1o’ —p1? ’ . /
h(p’, p) = eIk Lt =5 | +x(¢',p)+id( .p) )
(0'.p) = 7 () (22)
h(p’, p), referred to as the atmospheric propagation Green’s function, is a multiplica-
tively perturbed version of the free-space propagation Green’s function,

1 e 1o’ —pi?
his(p’, p) = EA—LCJ ( o > (2.3)

In the weak perturbation regime for turbulence, x(p’, p) and ¢(p’, p) are real-
valued, statistically homogeneous and isotropic, jointly Gaussian random fields [8, 5].
Therefore fully characterizing x(p’, p) and ¢(p’, p) requires specifying their mean

functions, auto-covariance functions, and cross-covariance function, defined respec-

tively as
my = E[x(0', 9)] (2.4

my = E[8(p, p)] , (2.5)

Kyx(p',p)=E :{x(p’l +p', 1+ p) —my ) {x(p}, p1) — mx}] , (26
Koo(p',0) = E|{6(0} + ', o1+ p) = my} {90, p1) —me}| . (27)
Kys(p',p)=E i{x(p’l +p', o1+ p) — my (P, p1) — m¢}] - (28)

Because propagation through clear turbulent air is both passive and lossless, av-
erage power must be conserved. This condition implies that the mean of the log
-amplitude field must satisfy

my = —Ky(0,0) = —02 . (2.9)

Furthermore, the phase field is assumed to have zero-mean, in accordance with ex-
perimental observations. Assuming Kolmogorov spectrum for turbulence [13] and

a constant turbulence strength profile C%(2) = C?, the auto-covariance and cross-
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covariance expressions are given by [8]

K("—122k2LC’21oo‘8/3Jd n2 (Y2022 g g 2.1
(P p)=0.1327 - u o(du) sin udz, (2.10)
o Jo 2k/L

u?z(1 — 2)

1 poo
K¢’¢(p’,p)=O.1327T2k2LC,21// u=¥3 Jo(dw) cosz( 2 h/L >dudz, (2.11)
0J0 g

1 poo 2 1—
K, s(p', p) = 0.066 7°k*L C? /0 /O u™8 Jo(dw) Sin(%) dudz, (2.12)

where d = |zp" + (1 — 2) p|. Then it follows that the the log-amplitude variance is

o2 =0.124 k76 C2 /6 (2.13)

in the weak perturbation regime; i.e. when the right hand side is less than 0.5. The

phase variance, on the other hand, satisfies K 4(0,0) > 1, so that, via (2.1),
E[U,(p")] = 0 (2.14)
and

E[U(0})Un(p})] ~ 0, (2.15)

where we have suppressed the temporal modulation of the transmitter in order to
focus our attention on the turbulence-induced spatial effects. Therefore, the lowest
order non-zero moment of the output field in the weak perturbation regime is the

mutual coherence function,

E[Us(p})U; (P3)]
(2.16)
=/R i Ui (p1) Ui (p2) E [h(Plp Pl)h*(P’z,lh)} dp1dp2 ,
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where the expectation is given by,

E [h(p'l, p1)h* (ph, Pz)]

2 :
- (ﬁ) E|:6X(pll’p1)+X(p,2)p2)+j¢(p/11pl)‘j¢(Pl2vp2)] e%(lp’l—mlz—lp’z—pzlz) (2.17)

2 .
_ (ﬁ) o3t (10h—paP=les—pal?) ~5 D(ph—phpr—p2) (2.18)

D(p’, p) in (2.18) is the two-source spherical-wave wave structure function defined as

D(p’, p) = Dyx(p',P) + Dy (P, P) (2.19)
= 2[x(0,0) = (6, 9)] +2[K06(0,0) = Koolp'.p)| ,  (2:20)

which is equal to
1
=291k C? L/ |sp"+ (1—s)p| ds , (2.21)
0

for Kolmogorov spectrum turbulence with a constant turbulence strength profile
C2(z) = C2?. Hence, the mutual coherence is now expressed in terms of known
parameters and can be evaluated for different turbulence profiles. It is also relevant
to note that although the mutual coherence function result is derived in the weak per-
turbation regime, it remains the correct mutual coherence function for the received

field U,(p’) well into the strong perturbation regime [5].

2.1.2 Normal Mode Decomposition

If one regards the instantaneous state of the atmospheric propagation medium to-
gether with the input and output apertures as a passive resonator, then the nor-
mal mode decomposition refers to obtaining the input and output transverse modes,
along with their associated diffraction losses for a single pass through the medium.
An equivalent linear system interpretation consists of regarding propagation through

turbulent atmosphere as a linear transformation from an input field on the transmitter
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aperture to an output field on the receiver aperture. Then, the normal mode decom-
position corresponds to obtaining the input and output eigenfunctions (diffraction

modes) and associated singular values (single-pass diffraction losses).

For h(p’, p), the atmospheric propagation channel impulse response, we define the

propagation kernel

K(PL 02) = / h*(p', p1) (P, p2) dp’, P1, P2 € Ry (2.22)
R,

which is Hermitian and positive semi-definite by construction. This kernel has a
complete, orthonormal (CON) set of eigenfunctions on Ry, {®,(p) : 1 < m < oo},

and a set of associated eigenvalues, {7, : 1 <m < oo}, which satisfy [11, §]

/ K(p17p2) Q.. (p2) dp2 = m Pr(p1) p1 € Ry, (2.23)
R

where n,, > 0. We use this set of input eigenfunctions, {fbm(p) 1 <m< oo},
and the associated eigenvalues, {nm 1 <m< oo}, to define a CON set of output

eigenfunctions on R, via
/ h(p', p) ®m(p) dp = 13> dm(p’) P ER,. (2.24)
R

Without loss of generality, we shall assume that the {nm} are arranged in decreasing
order. It is worthwhile noting that in (2.22)-(2.24), we have in effect obtained the

singular value decomposition of the channel impulse response h(p’, p).

Because {®,,(p) : 1 < m < oo} and {¢m(p’) : 1 < m < oo} are CON sets
on their respective domains, every scalar input field U;(p), p € R; and output field
U, (p’ ) , P" € Ry can be represented as a linear combination of the respective eigen-

functions, via

Ui(p) = Z UimPm (p) where  w;y, = / Ui(p)®;,(p)dp (2.25)
m=1 R
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Figure 2-3: Parallel channel representation of the propagation impulse response.

and
= Zuomqu(p'), where Uy, =/R Us(p") s, (p") dp' . (2.26)

Considering (2.25) and (2.26) together with (2.24) leads to the conclusion

Uom = N5/ Uiy 1<m<oo. (2.27)
Equation (2.27), in effect, shows that the channel h(p’, p) can be equivalently rep-
resented as an infinite set of parallel channels, each of which transforms a particular
input eigenfunction to the corresponding output eigenfunction and scales it by the
associated singular value. This infinite set of parallel channels, depicted in Figure 2-
3, is the normal mode decomposition for R;—to—R, propagation. The atmospheric

propagation impulse response is then,

h(p', p) = Z\/ﬁ;%(p 7. (p) - (2.28)

Because the atmospheric propagation channel is random, i.e. the impulse response
h(p’, p) is a random field, the eigenvalues and the associated input and output eigen-

functions will, in general, be random as well. Nevertheless, because the atmosphere
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is a passive medium, all its eigenvalues {nm 1<m< oo} must lie in the interval
[0,1]. In other words, the received power can be less than the transmitted power due

to losses during transmission, but cannot be greater than the transmitted power.

It can be deduced from equation (2.27) that the power transfer properties of
the atmospheric channel are characterized by the eigenvalues of the normal mode
decomposition. It has been shown [11, 8] that far-field and near-field power transfer

regimes can be distinguished by comparing the effective instantaneous Fresnel number

2
Dy = / / \h(p’, )| dp’ dp (2.29)
R; YRy

with 1, where Dy < 1 is the far-field regime and Dy > 1 is the near-field regime.
To gain insight regarding this parameterization and its consequences, let us consider

the free-space situation with the circular apertures shown in Figure 2-2, for which

2
the Fresnel number is a non-random value, Dy, = (%) . One can show via the

Huygens-Fresnel principle that the minimum-area spot produced on the receiver plane
z = L, by a beam transmitted from aperture R; is approximately

(2AL)?

2
dy

(2.30)

When this minimum spot size, which is obtained by focusing the transmitted field

onto the receiver, satisfies

nd
(&%2) = (ﬂﬁf)Q >1, (2.31)

i.e., when the minimum spot size is much less than the receiver aperture diameter,
we achieve near-perfect power coupling. Consequently, the condition Dy, >> 1 corre-

sponds to near-field power transfer. On the other hand, when the minimum spot size
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obeys

nd
(g;_)) = (T;?)Q <1, (2.32)
may

it is much larger than the receiver aperture, hence the received power will be only a
small fraction of that transmitted. Correspondingly, the condition Dy, < 1 indicates

far-field power transfer.

The parameterization of the eigenvalues of turbulent atmosphere in terms of the
instantaneous Fresnel number has analogous interpretations, with the added compli-
cation that the eigenvalues are random in the presence of turbulence. In particular,
if we follow the minimum beam spot size analogy, the minimum spot size on the
receiver plane is now dependent on the turbulent state of the atmosphere, thus, in
general, the Fresnel number will be a different value in each turbulent state, i.e. it will
be a random variable. Nevertheless, it is easily verified from (2.29) that the average
value of the effective Fresnel number is Dy,, the free-space Fresnel number. Therefore,
the free-space behavior of an atmospheric optical link provides some insight into its

performance in the presence of turbulence.

In the atmospheric propagation near-field regime it has been shown that, with high
probability, there are Dy eigenvalues which are approximately equal to unity and all
other eigenvalues are approximately zero [11]. In the atmospheric propagation far-field
regime, there is one eigenvalue that is approximately equal to Dy with high probability,
the other eigenvalues all being approximately zero [11]. Moreover, it has been shown
that in the far-field regime, if the transmitter diameter is less than the phase coherence
length of the medium, the input eigenfunction with non-zero eigenvalue is, with high
probability, approximately the free-space eigenfunction. Likewise, in the near field,
if the transmitter diameter is less than or equal to the receiver diameter (d; < ds),
the input eigenfunctions for the near-unity eigenvalues are, with high probability,

approximately the free-space eigenfunctions.
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2.2 Optical Detection

This section develops some basic tools that will be employed in future chapters to
analyze the performance of atmospheric optical communication systems. We first de-
velop a statistical description for a photodetector, then consider the output statistics
of direct and coherent detection receivers. Throughout this discussion, we assume
a quasimonochromatic, linearly polarized optical wave with center frequency w, is
impinging upon the photosensitive surface of the photodetector and all observations

start at time ¢t = 0.

2.2.1 Photodetectors

In most general terms, a photodetector is a device that generates an electrical current
proportional to the power of the optical wave that illuminates its photo-sensitive
surface. There are a number of photodetection technologies available at present, each

having their own benefits and shortcomings [14, 15, 16].

Despite the wide range of photodetector types available, it is possible to develop
a single statistical model which captures the relevant features of photodetection for
communication systems. The model we present here is often referred to as the semi-
classical model of photodetection, as it rests upon assumptions that can be rigorously
proven with quantum mechanical considerations, yet the quantities in question are

classical, such as optical waves and electrical currents.

The conversion from optical power to electrical current in a photodetector is af-
fected by two main factors. First, there are a number of noise sources that will result
in fluctuations in the generated output current, and second, even in the absence of
noise the conversion from optical power to electrical current does not take place with
perfect efficiency.

The fraction of optical power that is converted to electrical power in the absence of
any noise is specified by the parameter 7, and is referred to as the quantum efficiency

of the detector. The quantum efficiency is an indication of the number of electrons
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Figure 2-4: Block diagram representation of a photodetector.

emitted per absorbed photon? from light impinging on the photosensitive surface.
Due to energy conservation, 7, can only take values between 0 and 1.

There are three main noise components affecting the output current of a general
photodetector. First, there is shot-noise, which is the randomness in the number of
incident photons for a light source with constant intensity. This noise is not due to
any external fluctuation or lack of sensitivity of the detector, but a property inherent
to light, imposed by quantum mechanics. However, even when all light impinging
on the photosensitive area of a photodetector is blocked, there are random charge-
carrier generations, referred to as dark current, which constitute another source of
noise. Finally, the observable output current of a photodetector is subject to thermal
noise from the load resistance through which it flows. The type of photodetector

used, in general, will determine the dominant noise component in the output current.

Figure 2-4 is a block diagram representation of a photodetector, which captures the
physical attributes relevant to communications analysis. The block referred to as an
ideal photodetector in the figure, encompasses the quantum efficiency and shot-noise
effects of photodetection [15]. In other words, it is a photodetector with quantum
efficiency 7., infinite optical and electrical bandwidth, and no thermal noise or dark
current affecting its output. Therefore, the output current of the ideal detector, i,(t),
is a sequence of randomly generated impulses corresponding to the generated electrons
due to incoming light. Given P(t), the total short-time-average power impinging upon

the sensitive area of the detector, the generation times of these electrons constitute

2Tt is well known via quantum mechanical theory that energy from an optical wave at center
frequency w, can be absorbed only in integer multiples of fiw,. We will refer to this unit of energy
as “a photon” in this discussion.
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an inhomogenous conditional Poisson point process with rate function [15, 17]

P(t)

)\s(t)Znehw )

(2.33)

where h is Planck’s constant divided by 2.
Dark current, represented by i4(t), is also a sequence of randomly generated im-
pulses, independent of the incoming light. The charge-carrier generation times con-

stitute a homogeneous Poisson point process with rate
Ag==2 (2.34)

expressed in terms of the mean dark current /; and the electron charge q.

Due to electrical and optical bandwidth limitations as well as non-zero delays in
current generation, the output current of a real detector will not be in the form of
impulses, but rather in the form of current pulses with finite length. The physical
attributes of a photodetector which have a ‘smearing’ effect on impulses due to in-
dividual electron releases are collectively modeled as a linear, time-invariant filter
with impulse response p(t). The output of this filter, ,(t), is the current that will
be observed in the absence of significant thermal noise, which, in some very sensitive
photodetectors is indeed the case.

Finally, thermal noise, ir(t), is statistically represented as a zero-mean, additive
white Gaussian noise (AWGN) process independent of i4(¢) and i4(t), and with co-
variance function Q—g—LT—" d(t—wu) [18]. T, denotes the temperature of the load resistance,
Ry is the load resistance seen at the output of the detector, and K is Boltzmann’s
constant.

It can be concluded from Figure 2-4 that the output current, i(¢), has infinite
variance because thermal noise is not bandlimited. Therefore, it is necessary to
include a low-pass filter after i(¢) to bandlimit this noise. However, if post-detection
LTI processing is going to take place, it is convenient to assume that the statistics of

i(t) represents the output current of the detector, as long as post-detection filters are

appropriately band-limiting.
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2.2.2 Direct Detection Receiver

A direct detection receiver, shown in Figure 2-5, is the most straightforward utilization
of a photodetector in an optical detection circuit. It consists of optical elements to
focus the incoming light onto the photosensitive area of a photodetector and an
amplifier to increase the output current of the detector to compatible values with
devices used in post-detection processing.

The pulse shape p(t) of a typical photodetector is a short duration pulse, with
therefore very large bandwidth. In many practical configurations, the amplifier follow-
ing the detector will have much smaller bandwidth than that of p(t), and furthermore,
p(t) will have a relatively flat frequency response over the pass-band of the amplifier
[19]. Ignoring thermal noise for the moment, the cumulative effect of filtering i,(t)
and i4(t) through p(t) and the amplifier is equivalent to filtering these currents just
through the amplifier. Therefore with no appreciable loss of generality, we will replace
p(t) with 6(¢).

A further useful simplification in modeling the output current of the amplifier
arises from results for filtered Poisson processes. If we assume a LTI filter has an
impulse response of finite duration T', when a Poisson process with arrival rate much
higher than 1/T is passed through the filter, the output process will be approximately
a Gaussian random process [17]. Applying this result to the output of the amplifier
in a direct detection system, the output i4(t) can be approximated as a Gaussian
random process.

The output of the amplifier is clearly a bandlimited random process. However,

in communication theory the eventual goal is to obtain a sufficient statistic for the

32




optimal decision rule needed to properly decode the message that was transmitted.
Therefore, for analytical convenience we assume the output process from the amplifier
is a white Gaussian process, bearing in mind that the overall effective bandwidth of

the system cannot be greater than the bandwidth of the amplifier.

Merging all these approximations and using (2.33), (2.34) and the covariance
function for thermal noise, we conclude that the output current from the amplifier is

a Gaussian random process with conditional mean,

Mian () = Elia(t)|As(t)]

qGne P(t) )
2.
th (2.35)
and conditional covariance function
Kijian (tu) = E[(iA(t) —mims(t)) (Z'A( ) = Mg ) [)\ ]
2KT,

= G? {q2 (As(t) + Aa) + 7 } Ot —u) (2.36)

L

P
= {(qG)Qn (t) +qG L+ GP—= 2K T,

o R } St—w). (237

2.2.3 Coherent (Heterodyne) Detection Receivers

Direct-detection receivers simply collect power from the incoming light, convert it to
an electronic signal and enhance that signal through electronic amplification. Coher-
ent detection receivers, on the other hand, attempt to enhance the incoming optical
wave by mixing it with a strong local oscillator field prior to detection, thereby ob-
taining an electronic signal proportional to the frequency translated optical field. If
the center frequency of the local oscillator field is offset from that of the incoming
signal by some intermediate (electronically detectable) frequency, then the detection
scheme is called heterodyne detection, and if the center frequencies are the same, we

refer to the process as homodyne detection.

In this section we present a statistical characterization of the output of a hetero-
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Figure 2-6: Block diagram of a coherent detection receiver.

dyne detection receiver, whose block diagram representation is shown in Figure 2-6.
The differential amplifier in the figure is treated as an infinite bandwidth amplifier
and a finite bandwidth is imposed explicitly via the LTI filter that performs bandpass

filtering around the intermediate frequency, w;p.

Suppose the incoming optical wave has a normalized scalar complex envelope
Ui(p’,t). We assume the local oscillator generates a monochromatic plane wave po-
larized linearly in the same direction as the incoming wave, and with center frequency
wir + w,. Then the normalized scalar complex field envelope of the local oscillator

wave is expressed as

Uo(p’,t) = Uro(p)e 79wt (2.38)

The 50/50 beam splitter equally mixes the two fields and can be modeled as a unitary

transformation on the two input fields:

U_(p,t) = —=(Ua(p', ) = Urolp')e 751 | (2.39)

Up(p',1) = —= (Us(p', t) + Uro(p)e ) (2.40)

SEESE

as the output field envelopes.
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The output current of the first photodetector, i_(t), can be expressed as

i (t) = ma_(t) + Ai_(t) (2.41)

where

mi_(t) = Bli-(0)] = 1 P_(t) + L (2.42)

o

and Ai_(t) is a zero-mean random process with conditional covariance function

2 » 2T,
T p_(t) + qly +

Kaiai (t,u) =
AzaAz_( ,U) [hwa RL

S5(t —u) . (2.43)

In the equations above, I is the average dark current from the first photodetector

and P_(t) is the short-time average optical power illuminating the detector, i.e.,

P(t) = / U (o D)2 dp’ (2.44)
Ry
1 .
- / 5 |Ua(6', 1) = Uro(p)e 77| dp’ (2.45)
Rz

=[50+ 30— r{e= [ v ovioear}| (20

where P,(t) = fRz \U,(p’,t))*dp’ and Ppo = fRz |ULo(p")|> dp’ are signal and the

local oscillator short-time average powers, respectively.

The characterization of the first and second moments of i, (t) parallels the devel-

opment for i_(t). We write the current in terms of its deterministic part and noise

as
i (t) = mq, (t) + Nip(t) (2.47)
where
mi, (8) = Blis(0)] = 1 Pu(t) + Ly (2.48)

and Ai(t) is a zero-mean random process with conditional covariance function,

2D, 2kT,
47 Py(t)+qlp+

o, 7, ot —u) . (2.49)

Kai,ni, (tiu) =
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I4 in equations (2.48) and (2.49) is the average dark current from the second pho-
todiode and P, () is the short-time average optical power illuminating this detector,

namely

Py (t) = : UL (p',1)” dp’ (2.50)

- L
-

o(p', 1) + ULo(p’ e_j‘*"Ft|2 dp’ (2.51)

l\3|>d

M‘l—i

)+ 570+ R{e [ 000U ap' )] (252)

Ry

The noise terms Ai_(t) and Ai,(t) are due to two physically separate photode-
tectors. Therefore, given the signal field envelope, U,(p’,t), they are independent
random processes. The output current i(t) expressed in terms of the currents i_(t),

i+(t) and the band-pass filter impulse response hy,(t) is

() = G (54(6) — i (£)) % hup(8) = ma(t) + Ai(t) (2.53)
where m;(t), the deterministic part of the output current, is

and Ai(t) is the noise portion of the output current. Heterodyne receivers are operated
in the strong local oscillator regime wherein the local oscillator shot-noise contribution

is significantly larger than any other noise component, i.e.,

2ne Pro(t 20. Py (t AKT,
q- LO( ) > q ( ) ’ q(Idl +Id2) and )
hw, hw, Ry

(2.55)

Then via filtered Poisson statistics [17], Ai(t) is approximately a Gaussian random
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Figure 2-7: An equivalent representation of a coherent detection receiver.

process with zero-mean and covariance function

*G?n,

Wo

Kauni(t, ) = ( ) Pio / (£ — 7) hap (11 — 7)dbr (2.56)

Let us assume the signal field envelope is separable into space and time functions

over the receiver aperture, i.e.

Us(p',t) = VPs(t)Us(p’), P €Ra, (2.57)

where [ |U,(p’)|2dp’ = 1. Furthermore, assume that the local oscillator field enve-

lope has normalized spatial pattern ﬁLo(p' ); e,

Uo(p’) = v/Puo ULo (') p ER,. (2.58)

Then, if we define a normalized output current r(t) as

r(t) = (2—(]71(?—%3 (2.59)
20Gne/Piig

it follows directly from (2.54) and (2.56), together with (2.57) and (2.58) that r(t)
can be written as

r(t) = m.(t) + Ar(t) , (2.60)
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where

o)) = VER {0 [ 0,00 Tio (o) dof byl (261)

and Ar(t) is a zero-mean Gaussian random process with power spectral density

Twg Wi — Wi
Sarar(w) = }'{E[A'r(t) AT(U)]} = 4ge a Ith I l < (2.62)

We note that the integral in (2.61) is independent of time and has magnitude
between 0 and 1. We will refer to this number as the spatial correlation coefficient

between the input field and the local oscillator field, and denote it with &.

Equations (2.61) and (2.62) imply that we can consider a coherent detector as the
black-box abstraction shown in Figure 2-7, where w(t) is zero-mean white Gaussian
noise with spectral density g However, because our input signal is the complex
scalar envelope of an optical wave, it is often even more convenient to work with a

complex envelope representation for the normalized output current r(t).

So, by defining a complex envelope r(t) via
r(t) = R {r(t)e’rt} | (2.63)

we can show that r(t) = m,(t) + Ar(t), where
me(t) = /P, & s(t) x h(t) (2.64)

is the mean value of r(t), and Ar(t) is a stationary, zero-mean, complex Gaussian
random process whose real and imaginary parts are independent and identically dis-

tributed with spectral density

5:7‘20 iflw] < B,
Sarar (W) = (2.65)

0 otherwise .

The complex envelope equivalent of a heterodyne receiver is shown in Figure 2-8
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Figure 2-8: Complex representation of a coherent detection receiver.

where w(t) is a zero-mean complex Gaussian random process with spectral density
—h;‘]*’:‘l. In Chapter 4 we shall assume that the post-detection filter imposes a more
stringent bandwidth constraint than H(jw) from Figure 2-8. Thus the model we
shall use for heterodyne detection will omit the filter A(t) in Figure 2-8.
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Chapter 3

Statistical Considerations for

Maximum Power Transfer

3.1 Introduction

Using the normal mode decomposition of the extended Huygens-Fresnel principle, the
input field transmitted from the R; pupil in the z = 0 plane can be represented as a

weighted sum of the input eigenfunctions:

L'ri(p) = Z uzmq)m(p) ) Uim = Uz(p)q):n(p) dp ) (31)

Ry

where Y > |uim|?> = P, is the transmitted power. The resulting output field over

the Ry pupil in the z = L plane is then,

Uo(p,) = Z Uim \/ﬁr—nvgbm(p,) ) (32)

by virtue of the normal-mode behavior. The output power collected over R, is there-
fore > |tim|? Mm. Thus the fractional power transfer from R; to R; that is achieved
by the transmitter field pattern U;(p) is
>t [im|* 1
= S. T S 1 3 3.3
> it 03
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where the first inequality follows from our having arranged the eigenvalues in decreas-
ing order and the second inequality is due to the passive nature of the propagation
medium.

It is clear from equations (3.1), (3.2) and (3.3) that the transmitter field U;(p) =
VP, ®,(p) maximizes the R,~to—R, power transfer. For free-space propagation this
approach has proven fruitful [20]. In the turbulent atmosphere however, this strategy
is undermined by the fact that the channel is random, thus yielding random eigen-
functions and eigenvalues. The extended Huygens-Fresnel principle and its associated
statistics have been used to study certain asymptotic characteristics of the maximum
eigenvalue and its input and output eigenfunctions [11], but complete results for
normal-mode statistics have yet to be obtained.

The goal of this chapter is to develop tight bounds on the first and second mo-
ments of the maximum eigenvalue for R;-to—R,; propagation through atmospheric
turbulence. To simplify some of the results to the point that their numerical evalu-
ation becomes feasible, we replace the circular (2-D) pupils with slit apertures (1-D
pupils). As will be seen, we have succeeded in bounding the mean of the maximum
eigenvalue, but our bound on the mean-square of this eigenvalue has proven to be too

formidable to evaluate.

3.2 One-dimensional Formulation

In Chapter 2 we reviewed free-space and atmospheric propagation for a 3-D medium,
i.e., 2-D apertures, plus one propagation dimension. These results reduce almost
identically to a two-dimensional propagation medium, i.e., 1-D apertures, plus one
propagation dimension. We will only present the fundamentals of the one-dimensional
formulation in this section. A more complete compilation is given in Appendix A.
Consider the propagation geometry in Figure 3-1. The extended Huygens-Fresnel

principle for turbulent atmospheric propagation in this geometry is

1 ikl L (P,“P)z + (l )+ (/ )
Jk{ L+ x(p',p)+iolp’p

U, t)= | Ui(pt—%)—=e dp, 3.4
(0, t) /R (p c)m p (3.4)
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Figure 3-1: Propagation geometry of a two-dimensional propagation medium with
one-dimensional apertures.

where U;(p, t) is the input field, U,(¢', t) is the output field and the impulse response

of the channel is defined as

/42 R
1 ejk<L+%)+x(p',p)+y¢(p’,p)

S (3.5)

h(el,p) =

All terms in (3.4) and (3.5) represent the same quantities as in the two-dimensional
formulation. Note however, now p and p’ are scalar quantities thus the integral in
(3.4) is one-dimensional, rather than two dimensional. The free-space propagation

impulse response is
7 \2
1 ejk<L+%)

hfs(p,’ ,0) = m (36)

We begin our analysis by obtaining an expression for the propagation kernel

K(pl, p2), introduced in (2.22):

K(p1,p2) = [ h*(0',00) b0, p2) dpf
R2 0
k 2
— )\I_L ejﬁ(pg—ﬁf) / eI 1 (p2=p1)0 +x(p' p2)+x(0 . p1)+ib(p p2) (e ,p1) dp' . (3.7)

_d2
2

The normal mode decomposition for this kernel is

K (p1,p2) = Y 1tm Pm(p1) @5 (p2) (3.8)
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where {®,,(p)} are a CON set on the R; slit so that

Nm = // @y (01) K (p1, p2) Pm(p2) dpa dpy - (3.9)
R1 Ry

It should be clear from (3.9) that the quadratic phase factors preceding the integral
in (3.7) can be included in the eigenfunction definitions as ®,(p) = ®p(p) e 72clo’
so that we need only seek the eigenvalue/eigenfunction structure {n,,, 6m(p)} of the

reduced kernel

e

~ 1 -k ’ ’ 7 . / : /
K - —I L (p2=p1)P o x(¢',p2)+x(0' 1) +i 00 ,p2)—ib(P 1) g, 1
(p1,0) = 17 /_%e e p (3.10)
We adopt this modified kernel expression henceforth, but we will drop the tilde su-

perscripts to avoid notation clutter.

Ideally, one would like to obtain the probability distribution function for the max-
imum eigenvalue, i.e. p(n;). However, this is not feasible in the near-field regime.
Instead, we will attempt to characterize a tight lower bound on the average of the
maximum eigenvalue. Let U;(p) denote the complex scalar envelope of some input
field with unity power, and let U,(p’) be the corresponding output field obtained via

(3.4)1. The output power collected at the receiver aperture is

1=
Ra

= /Ui*(m)K(pl,m) Ui(p2) dp2 dps - (3.12)
R1 Ry

U.(o)| dp (3.11)

Note that v is a random variable. By means of equation (3.3), (3.12) satisfies

Y M, (3.13)

with equality if U;(p) = ®1(p), i.e., the transmitter uses the maximum-eigenvalue

1The time dependence of the input and output fields are suppressed to focus on the turbulence-
induced spatial properties.
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input eigenfunction as its field pattern. It follows that the statistical average of v is

also less than the average of 7;:

7<7, (3.14)

where we have also dropped the subscript for the maximum eigenvalue, because in
all that follows our focus will be restricted to the maximum eigenvalue. Thus, by
choosing different input fields of unity power, we can obtain various lower bounds on

the mean value of the maximum eigenvalue.

3.3 Deterministic Input Fields

If the input field is restricted to deterministic functions, then via (3.12), ¥ can be

expressed as

¥ = // Ui*(pl) K(Pl, ,02) U; (,02) dps dpy (3.15)

R1 Ry
where, with the help of the atmospheric mutual coherence function,

1

K(p1, p2) = Kis(p1, p2) e~ 2P(0p2=p1) (3.16)

is the average kernel, viz., the ensemble average of the instantaneous kernel over all
possible turbulence states. In equation (3.16), K (pl, p2) is the free-space propaga-
tion kernel,
: wdo
& (%10 )
Kfs(pl’pZ) =17 , p1,02 € Ry, (3.17)

AL L:\%’Pz - p1l

and D(0, p2 — p1) is the spherical-wave, wave structure function introduced in (2.21)2.
We see from (3.15) and the normal mode decomposition of K (pl,pg) that the
highest achievable power transfer by a deterministic input field is the maximum eigen-

value of the average kernel. Furthermore, through (3.14), the maximum eigenvalue of

2See (A.7) for the 1-D equivalent.

45



Average Fractional Power Transfer vs. Free-Space Fresnel Nu mber
1 T JRSIN jppp———— = == e E T e T T = =~ - =

Fractional Power Coupling

0.84 =+ Avg. Kml, oi =0.018 {
—— Focused Bm., 2 =0.018

0.82 - Avg.Kml,o?=0104 [
. Focused Bm., 0’; =0.104

I
I
!
I
|
i
!
|
I
I
I:
0.8 - 1 1 1 L t 1 T T T
10 20 30 40 50 60 70 80 90 100
Free-Space Fresnel Number (D‘O)

Figure 3-2: Maximum eigenvalue of the average kernel and mean power coupling of
a focused beam in mild and strong turbulence conditions.

the average kernel is also a lower bound on the average maximum eigenvalue of the
turbulent-atmosphere kernel [11, 8].

The maximum eigenvalue of K (pl, pg) for various turbulence strengths is shown in
Figure 3-2. It has been shown in [11] that the worst-case power coupling, for a given
Fresnel number, occurs when the apertures are equal size, an assumption adopted
for the plots as well. As one expects, the maximum eigenvalue of the average kernel
rapidly approaches 1 as the free-space Fresnel number is increased. On the other
hand, as turbulence strength increases there is a reduction in the power coupling due

to increased levels of turbulence-induced scattering.

Focused Beam

In free-space, the eigenfunctions of the normal mode decomposition are found to be
prolate spheroidal wave functions [20]. However, in the limit of Dy, > 1 and Dy, <

1 the maximum-eigenvalue input eigenfunction becomes approximately a uniform-
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intensity focused beam. It has also been shown that the maximum-eigenvalue input
eigenfunction of the atmospheric propagation kernel converges asymptotically to a
focused beam [11]. Therefore, one would expect that a focused beam input field would
yield a tight bound on the average of the maximum eigenvalue. Notice, however,
because this field is deterministic, it cannot yield a tighter bound than the maximum

eigenvalue of the average kernel.

A focused beam input field with unity power is expressed as,
4 d, d
Ul) = /&% pel-5.5]. (3.18)

By substituting this expression in (3.15), we obtain,

sin(m Do) (3.19)

1
¥ = Dy / e 2@ (1 - |z])
-1

1
= 2D, / e~ 20 (1 — x)
0

7w D x
sin(m Dy,
M)_ dz (3.20)
™ Dfo i
where D(z) = 75.95207 Dfso/ ®|2[5/3 is the spherical-wave wave structure function for
the one-dimensional case with equal aperture sizes (d; = d2 = d,) and a uniform C?
profile, written in terms of the normalized (dimensionless) coordinate® z = %. From
(3.20) it can be deduced that the average power coupling for the focused beam depends
on two quantities: the variance of the spherical-wave log-amplitude fluctuations af(

and the free-space Fresnel number Dy,.

Figure 3-2 compares the average focused beam power transfer through turbulence
to the maximum eigenvalue of the average kernel. The plots are versus the free-space
Fresnel numbers corresponding to the near-field regime. It is seen that the power
coupling is indeed asymptotically close to the average kernel maximum eigenvalue,
at large values of Dy,. Furthermore, increased strength of atmospheric turbulence, as
expected, reduces average power transfer of both the focused beam and the maximum-

eigenvalue eigenfunction of the average kernel.

3See (A.10).
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3.4 Tighter Bounds via Adaptive Optics

In an effort to improve the overall performance of optical atmospheric communica-
tion systems, adaptive correction methods can be implemented to compensate for
the phase and amplitude fluctuations in an optical wave propagating through the

turbulent atmosphere.

Early work on adaptive optics for communication systems mostly concentrated on
eliminating turbulence-induced phase distortions [5, 7). The main principle underlying
most phase-compensated systems is phase conjugation: overcoming the deleterious
effects of phase fluctuations by applying the conjugate phase to the optical field.
Such compensation systems can be implemented at the transmitter end to overcome
beam spread, as well as at the receiver end to overcome angular spread. Recent
work has also considered intensity correction for imaging and optical atmospheric

communication applications [7, 21].

In the previous section, we limited the input to be a deterministic field and deduced
that the maximum average power coupling between the transmitter and receiver aper-
tures is the maximum eigenvalue of the average kernel, m,-p_g), which is less than
the average of the maximum eigenvalue of K (pl, pg). This suggests that we could use
adaptive techniques to construct an input field which is pre-distorted such that at
least some of the deleterious effects of the turbulent atmosphere are compensated for
in a manner that yields higher power transfer on average. It should be emphasized
that via (3.12), it is still the case that an input field constructed using some adaptive
optics technique will, in general, yield a lower bound on the maximum eigenvalue
of the atmospheric propagation kernel, K (pl, pQ). We will begin by considering a
particular adaptive scheme and derive its average power transfer. Afterwards, we will
briefly consider a hypothetical limiting case, when we assume all phase fluctuations
can be removed, leaving only log-amplitude fluctuations. We do not consider the fea-
sibility of realizing our adaptive schemes with existing technologies. However, should
there be a substantial performance gap between the power coupling predicted by these

theoretical studies and those achievable with existing equipment, then investing more

48




effort in developing technologies to bridge such a gap might well be warranted.

3.4.1 Maximizing On-Axis Power Density

Consider a unity-power focused beam with additional phase compensation that de-

pends on the turbulent state of the atmosphere; i.e.,

[ 4 ik e
Uz(p) = ;{:ﬁe igrlpl?—idé(p) ’ pe R, (321)
1

where @(p) is the phase field imposed at the transmitter. This additional phase
term pre-distorts the transmitted beam such that the deleterious effects of the atmo-
spheric Green’s function on power transfer are minimized. Note that implementing
this scheme requires the ability to estimate those aspects of the atmospheric state
that are relevant to determining the appropriate phase compensation dynamically;
i.e. the estimation process must be able to track the changes in the turbulent state
of the atmosphere, which occur on msec time scales [5]. In addition, the transmitter
must be equipped with the technology necessary to impose the determined phase

compensation in real-time.

To get the tightest lower bound on 77, we should choose qB(p) to maximize the
instantaneous R;-to-Ry; power transfer and then average that instantaneous power
transfer over the atmospheric statistics. Unfortunately, that approach is impossible to
follow. So, instead, we will choose (Z)(p) to maximize the instantaneous on-axis power

density in the z = L plane. In particular, for the full 3-D propagation geometry, the
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output field intensity at p’ = 0 is

2

2
Uo(p’=0)] = / Ui(p) h(0, p) dp (3.22)
Ry
4 ka2 ; o2 . 2
_ —isg|pl*=id(p) Jk(L+‘§‘L“) x(0,p)+34(0,p)
Y SVAE /R1 e e e dp| (3.23)
4 ) 2
< eX(0:0)+j$(0,p)—jd(p) | 4 ] 3.24
<saoer . ° 20
4 2
_ x©.0) } 3.5
wﬁ@MJLl g (:2)

with equality if, and only if, qzs(p) = ¢(0,p), Vp € R;. Therefore the input field
of the class (3.21) that maximizes the power density at the center of the receiver

aperture is

4 k. .

Ul(p) = —7 e’ 2L|p|2—]¢(0,p) y pE Rl . (326)
wdy ,

For the one-dimensional aperture (two-dimensional propagation medium) case the

equivalent of (3.26) is

1 ke
Ui(p) = —= e 72" —3900) pER . (3.27)

d

The resulting instantaneous power transfer -y for this phase-compensated focused

beam is thus

2
v= [ loae) o (3.28)
Ry
1 - / /
= I /// eI T p2=p0) X0\ P102) g 4y dp, (3.29)
R1 R1 Ra

o0




where

X (¢, p1,p2) = X0, p2) + x (0, 1) + 58(0, p2)
—Jo(p', ;1) — 50, p2) + 5(0,p1) . (3.30)

The fields in (3.30) are jointly Gaussian, from which it can be shown, using eX =

6E[X]+varéx)
eX(P'»PI,PZ) = exp{—%DX’X(O, pP1 — pg) - D¢7¢(0, P1— pg) - D¢,¢(p/, O)
+3D4.6(0' p2 = p1) + 5D4.4(0', p1 — p2)
+ 7 Kxo(0's p2 = p1) = 1Ky s(0', 1 = m)} , (3:31)

where D, ,(p', p) and Dy 4(¢/, p) are the log-amplitude and phase structure functions,

and K, 4(p', p) is their cross-covariance function.

For brevity, in the next few steps of our analysis, we will use f(p',p1 — p2) to
denote the exponent on the the right-hand side of (3.31). Assume the transmitter

and receiver apertures are equal length, d,. The mean value of the power transfer is

then,
do do do
2 2 2
ik ’ /

¥ = / / / e~ L (p2=p1)p o f (P .p1,p2) dp' dp, dp; . (3.32)

_do _do _do

2 2 2
By change of coordinates from p;, p2 to pg = p2 — p1, pe = ﬂ%, the integral over p,
can be done analytically. Converting to dimensionless coordinates =’ = (’1’—', T = £,

we then obtain

Loz , ,
¥ = 4Dy, J/ / cos (27ero 'z — fold, a:)) (1 — z)e 1@ 2+SLGD) gor go - (3.33)
0

0
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where,

r=2'=0
(', z) = s (3.34)
5/6 'z .
75.952 02 DY/ ((m)(x'z/(s+()x'x>1/3+12/3>) otherwise ,
= Ky y(do ', do ) — Ky (doa', —do ) (3.35)

and

f3(z',2) = 3Dy x(0,do ) + Dy (do2',0) — 1Dy \ (do 7', do ) — 1Dy \(do ', —d, z) .
(3.36)

We have performed the double integral in (3.33) numerically. The result for mild
turbulence strength is plotted in Figure 3-3 along with the focused beam result. For
ease of comparison, the plots show 1 — 7% on a semi-logarithmic scale. Although the
average fractional power transfer for the given turbulence strength does not differ
significantly for small free-space Fresnel numbers, as the aperture sizes are increased,
the difference between the average power coupling of the two schemes grow larger.
Consequently, for moderate values of Dy,, the phase-compensated focused beam field
predicts a tighter lower bound on the mean of the maxiumum eigenvalue. Note how-
ever, that the average kernel maximum eigenvalue achieves higher average power cou-
pling than the phase-compensated focused beam for the free-space Fresnel numbers

shown in the plot.

The benefits of adaptive optics become more apparent in strong turbulence, for
which the average power coupling results are plot in Figure 3-4. Although, the in-
creased turbulence strength has reduced the overall average power coupling for all
beams, the phase-compensated beam has been reduced the least, now yielding higher
average power coupling than the maximum eigenvalue of the average kernel. It is also
clear from the plot that in strong turbulence, the average power coupling of the the
phase-compensated focused beam is distinctly higher than the average coupling given

by a focused beam with no adaptive optics, throughout the near field regime.
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Figure 3-3: Average power transfer of a focused beam in mild turbulence conditions,
with and without phase compensation. Dashed line shows the maximum eigenvalue
of the average kernel.

3.4.2 Perfect Phase Cancellation

Assume a hypothetical scenario in which the turbulence-induced phase fluctuation in

the atmospheric Green’s function satisfies,

(0, p) = d1(p) + da2(p') . (3.37)

The atmospheric propagation kernel (with the quadratic phase factor suppressed)

then becomes,

K(pl ) /02) =

N eI P1(p2)=id1(p1) / e—j%(m—m)p'ex(p',m)+X(p',pz) dp' . (3.38)
Ry
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Figure 3-4: Average power transfer of a focused beam in strong turbulence conditions,

with and without phase compensation. The maximum eigenvalue of the average kernel
is also shown as a dashed line.

The eigenfunctions of this kernel, {®,,(p) : 1 < m < oo}, satisfy

() = Bm(p)e 771, (3:39)
where {5,,1(;))} are the eigenfunctions of the reduced kernel

AL

-~ 1 ; ’ / /
K(m,pz) = __/R eI T (p2=p1)P pX(0' p1)+x (0 p2) dp' . (3.40)
2

Therefore the maximum instantaneous power coupling is the maximum eigenvalue of
the kernel with only log-amplitude fluctuations, i.e. K (p1, p2). On the other hand,

if adaptive optics are employed to construct an input field of the form Up(p)e 7#1(?),

o4



where Up(p) is deterministic, the highest average power coupling will be the maximum

eigenvalue of the log-amplitude only average kernel

E [f( (pl,pz)] = e~ 2DuxOr=r) g (py o) (3.41)

and will be achieved when Up(p) is chosen to be the maximum-eigenvalue eigenfunc-

tion of this average kernel.

The adaptive scheme presented in section 3.4.1, would estimate a phase compen-

sation field

d(p) = ¢1(p) + ¢2(0); (3.42)

and therefore would correspond to an input field where Up(p) is chosen to be a
focused beam (with some absolute phase, —¢2(0)). Note that, because a focused
beam is not an eigenfunction of (3.41), the adaptive scheme will not, in general,
yield the maximum achievable average power coupling with input fields in the class
(3.21). For an equal aperture geometry with slit width d,, the average power coupling

achieved by this focused beam is

Y= // U (p1) K(Pl, Pz) Ui(p2) dp2 dpr (3.43)
R1 Ry
= le /// e—j%(pz-m)p’ ex(@'pV)+x(0"p2) dp! dpy dp, (3.44)
Ry R1 Ry
t sin(m Dy, z)
= 2Dy, —7Dxx(0do) (1 _ AT ) d 3.4
f /0 e ? ( $) 7TDfo$ z, ( 5)

in terms of the normalized difference coordinate = = ﬂ:’dl"—l.
{e]

Figure 3-7 plots all the average fractional power transfer results discussed until
now, along with some free-space results, for mild turbulence strengths. It is clearly
seen that the complete elimination of phase, combined with the maximum-ecigenvalue
eigenfunction yields the highest average power coupling. On the other hand, in the
absence of complete phase elimination, the maximum-eigenvalue eigenfunction of the

average kernel yields the highest average power coupling. The focused beam propa-
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gating in free-space achieves fractional power transfer,

1 :
Yo = 2Dp /0 (1 - :c) %ﬁﬂ dz , (3.46)
which is seen from the figure to be slightly higher than its average power coupling in
the presence of only log-amplitude fluctuations. This in turn, is slightly greater than
the average power coupling of the focused beam propagating in turbulent atmosphere.
Nevertheless, the results appear very close to each other. The convergence of the
focused beam results for limiting cases of Dy, can be verified by analyzing the behavior
of the integrands in equations (3.20), (3.45) and (3.46). All three integrands consist
of a weighting factor 1 — z, a unity area sinc function expression Dfo%;&) and, in
the presence of turbulence, a decaying exponential term. The sinc function converges
to an impulse at z = 0 as Dy, diverges to infinity, asymptotically yielding perfect
power coupling on average for all three cases. However, in the presence of turbulence,
the convergence of the sinc function competes against the decaying exponential term,
which has a decay rate proportional to \/D}; for full turbulence statistics, and a
much smaller decay rate when only log-amplitude fluctuations are present*. This
exponential term reduces the overall area underneath the integrand (which is mostly
located underneath the main lobe of the sinc function), causing the slight reduction
in average power transfer for intermediate values of Dy,. When Dy, is very small (yet
greater than 1), the dominant effect in the integrand is the 1 —x weighting factor, thus
all three results yield similar average power coupling in this regime. Note that the
sinc function and decaying exponential terms are also present in the average kernel
expressions of the turbulent atmosphere and the log-amplitude-only case. Thus as
Dy, — o0, the maximum eigenvalue of these kernels must also tend to 1. However,
comparing the eigenvalue behavior in these three cases from the plots, it is seen that
the exponential term reduces the maximum eigenvalue of the average kernel to a much

greater extent, than the average power transfer of the focused beam.

4The width of the main lobe of the sinc function expression is DQF thus the sinc function converges

to an impulse faster than the exponential term decays to zero almost everywhere. The limiting
behavior as Dy, — oo is therefore determined by the impulsive behavior of the sinc function and not
by the exponential decaying to zero.
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Although the phase-compensated focused beam yields average fractional power
transfer results similar to that of other focused beams, the plot in the figure shows
that it follows a different slope in approaching 1 as Dy, is increased. To establish
better insight as to why this occurs, we rewrite the average power transfer integral

expression in (3.33) as

1
0

1
l:/? 2cos(27ero T — fg(:c’,x))efl(”’”””) dm’} dz , (3.47)
0

where

fi(@', ) = =Dy 4(0,dy 7) — Dy 4(do 2, 0) + 1Dy 4(do 7', do ) + 2Dy 4(do 2, —d ) |

(3.48)
and fo(z’, ) is given in (3.35). Comparing this expression to the average power trans-
fer expressions for the focused beam, we see that the integral in brackets has replaced
the sinc function expression in (3.45). Note that, in the absence of turbulence, f;
and fl are zero, and the integral reduces to a sinc function. Figures 3-5 and 3-6
compare this function to the corresponding sinc function at a variety of Dy, values
and turbulence strengths. It can be seen from these plots that the adaptive optics
term has a slightly different main lobe and appreciably smaller side lobes. Therefore,
although the average power coupling for large values of Dy, is still determined by the
convergence of this term towards an impulse, the convergence rate or pattern need

not be similar to that of a sinc function.

Strong turbulence results for the input fields discussed in this chapter are illus-
trated in Figure 3-8. Note that all average power coupling results have suffered,
when compared to the mild turbulence results. However, the relative changes due to
increased turbulence strength are quite different. The focused beam and maximum-
eigenvalue eigenfunction of the average kernel suffer the most attenuation. The com-
plete elimination of phase slightly improves power coupling of a focused beam, how-

ever both perform worse than a focused beam propagating in free-space. For the
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The sinc function and modified adaptive optics term vs. x
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Figure 3-5: Plot of the sinc function vs. the integral expression obtained when adap-
tive phase compensation is used in mild turbulence conditions. Dy, = 1 compares the
main lobes, while Dy, = 30 enables comparison of side-lobe behavior.
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Figure 3-6: Plot of the sinc function vs. the integral expression obtained when adap-
tive phase compensation is used in strong turbulence conditions. Dy, = 1 compares
the main lobes, while Dy, = 10 enables comparison of side-lobe behavior.
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particular turbulence strength, the phase compensated focused beam yields higher
power transfer than the maximum-eigenvalue eigenfunction of the average kernel and
eventually yields higher coupling than all other focused beam results. The maximum-
eigenvalue eigenfunction of the log-amplitude only average kernel still yields the high-

est average power transfer.

Average Fractional Power Transfer vs. FreeSpace Fresnel Number
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Figure 3-7: Average power transfer of the focused beam and the phase-compensated
focused beam in mild turbulence conditions. The average power coupling of a hypo-
thetical atmospheric condition with no phase fluctuations is also plotted, as are the
maximum eigenvalues of the corresponding propagation kernels.

The figures show that in the equal aperture case, which is also the worst case, the
free-space maximum eigenvalue approaches unity exponentially, while the focused
beam results and the maximum eigenvalues of the average propagation kernels with
or without phase fluctuations converge towards unity much slower. Figure 3-9 is a

plot of the maximum eigenvalue of the average kernel and the log-amplitude-only
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Figure 3-8: Average power transfer of the focused beam and the phase-compensated
focused beam in strong turbulence conditions. Log-amplitude only focused beam
results and maximum eigenvalues of the corresponding propagation kernels are also
plotted.

kernel when unequal apertures are considered in mild turbulence and Figure 3-10 is
the same plot for strong turbulence conditions. In both figures, d; = VAL, so that
the equal aperture case corresponds to Dy, = 1. Then, d, is varied to achieve free-
space Fresnel numbers greater than 1. Because the transmitter aperture width is held
constant, the exponential terms in the kernel expressions do no vary with Dy,, hence
the maximum eigenvalues approach 1 faster than in the equal aperture case. Note

however, that the convergence is still not exponential.
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Unequal aperture and Equal aperture maximum eigenvalues vs. E?D
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Figure 3-9: Comparison of the maximum eigenvalue of the average kernel as well
as the log-amplitude-only case, when the transmitter and receiver aperture sizes are
chosen to be equal versus unequal. Mild turbulence results shown.

3.5 Variance of Maximum Eigenvalue

We have shown that the mean value of the maximum eigenvalue of the atmospheric
propagation kernel is very close to one when transmitter/receiver geometries yield
free-space Fresnel numbers on the order of tens. Thus, we suspect that the variance
of the maximum eigenvalue would be very small in this regime of operation.

In this section we obtain an expression for the second moment of the power transfer

of a focused beam, ¥2. Note that,

00 2
'72 = Zluim|27}m (349)
m=1
S Zluim|2 Z'uimlz 773)1 (350)
m=1 m=1
<ny, (3.51)
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Figure 3-10: Comparison of the maximum eigenvalue of the average kernel as well
as the log-amplitude-only case, when the transmitter and receiver aperture sizes are
chosen to be equal versus unequal. Strong turbulence results shown.

where (3.50) follows from the Cauchy-Schwarz inequality and (3.51) assumes an input

field with unity power, i.e., S oo |u;m|? = 1. Averaging (3.51) then yields 2 < ;7?

Using the definition of v in (3.11) and the focused beam input field from (3.18),

7= (dl)lu.;;)Q /// /// eXp{ﬁ'%(pzz — p12)py + 55 (a1 — p11)Ah

RoRyRi1R1R1 Ry

+ g(p11, P21, P12, P22, P}, P5) } dpa dp12 dpay dpr1 dpy dpy . (3.52)
where,

g(ﬂu»ﬂzl, £12, P22, Plupfz) = X(PI211022) + X(P’z, pi2) + X(Plppn) + X(Plbpu)
+j¢(ﬂlzyp22) - j¢(ﬁl27 ,012) - J'¢(Pl17 /721) +j¢(PI17 Pll) . (3-53)

Averaging over all x and ¢ fields in (3.52), we obtain 42. The expected value of
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exp{g(p11, P21, P12, P22, P}, P) }, where g is a complex Gaussian random field, is given

by exp{g2(p11, P21, P12, P22, P}, P5) }, with

92(011,/721,912,/322,,0'1,/"2) = —% D(0, paz — p12) — % D(sz - P,17P22 — p21)
- % D(py — py, pr2 — p11) — %D(O, p21 — p11) — % Dx,x(Plz ~ P, P22 — P11)
= 5 Dxx(Py = Py pro = por) + 5 Dy (3 = p1, p22 — pu) + 5 Dy (05 — ', pra ~ po1)
+ 402 4+ 25 Ky (0 — P4, p22 — p11) — 25 Ky s(py — P, pr2 — po1) . (3.54)

With the assumption that both aperture sizes are equal to d,, performing the trans-

formations
IC]T 0 0 -1 1 P11
To _ l —1 1 0 0 P21 (3 55)
23l G0 —-1 0 1| |pw
_$4_1 _—]. 0 0 OJ _pggJ
and
o B e B (3.56)

v dol05 05| |p

allows x4 and ¥’ to be integrated out, hence reducing the original expression to the

following four-dimensional integral:

1 1

1 1
72 = cho////gg(:cl,xz,xs) exp{—J7m Dp(z1 + 2)2' + ga(1, T2, 23, 7") }
-1 -1-1-1
sin(7r Dy, [1 = ||] [#1 — xg])

dxr, dzydzsdz’ , (3.57
7TDfo(.’Bl — CEQ) 1 2 3 ( )

where

93(x1, T2, T3) = max{(), 1- maX{O, To, To + T3,Ty + Ty — T1}

+ min{0, z2, T2 + 23, T2 + T3 — xl}} (3.58)
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and g4 is just go (defined in (3.54)) expressed in terms of the new variables. In

particular,

94(z1, T2, 23,2') = D(O 7)) — 2 D(x x3)
— 1D, x5 4+ 22 — 1) — 3 D(0, 22) + 5 D(a', 22 + x3)
+ % 1)(1’, I3 — .’L'l) — DXX(dO 17,, do (.’L'Q + x5 ) DX (d .T, d (.’13'3 — Il))
-+ 40'>2( +2] (KX ¢,(d l' d ($2+$3 ) KX¢(d IE d 1133 —.L‘l))) y (359)

where D(z',z) is the normalized spherical-wave wave structure function given in
(A.10).

Attempts to evaluate this integral have not been successful with available resources
for computation. However, the integrand in (3.57) is continuous in R, and therefore is
also integrable. Nevertheless, the integrand is highly oscillatory and therefore requires

dense sampling — consequently vast resources — to converge to a valid result.
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Chapter 4

Performance of Optical Binary

Communication Systems

4.1 Introduction

In this chapter we will obtain bounds on probability of error for binary data transmis-
sion via near-field atmospheric optical communications. On-off keying (OOK) and
pulse position modulation (PPM) will be considered. In each case we will treat both
direct detection receivers and heterodyne detection receivers.

Figure 4-1 is a generic block diagram for the binary, atmospheric optical com-
munication channel. A continuous-wave laser at some fixed and known wavelength
(or center frequency) is OOK or PPM modulated by a binary sequence of data. In
OOK, the laser is turned off during the bit interval if a ‘zero’ bit is being sent and
turned on if a ‘one’ bit is being sent. An alternative to turning the laser on or off to
communicate a bit is to choose two equal-energy, orthogonal waveforms and send one
when m = 0 and the other when m = 1. The simplest two such waveforms are a pair
of pulses with no overlap in time. PPM signal pulses fall in this category: The laser
is turned on for the first half of the bit interval and turned off for the second half to
transmit a ‘zero’ bit. If a ‘one’ bit is being sent, then the laser is turned off for the
first half of the bit interval and turned on for the second half.

In all systems that are analyzed, we assume we have knowledge of the normal
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Figure 4-1: Block-diagram representation of binary, atmospheric optical communica-
tion systems.

mode decomposition of the atmosphere, or at least knowledge of the eigenfunctions
associated with the maximum eigenvalue of the atmospheric propagation kernel. The
scalar complex envelope of the transmitted field, U;(p, t), is assumed to factor into the
product of spatial and temporal components and the space-dependent part is chosen
to match the maximum-eigenvalue input eigenfunction of the atmospheric channel,
®(p), to maximize the fractional power coupling between the transmitter and receiver.

The transmitted field with power P; is therefore expressed as

Ui(p7 t) = \/F;S(t) @(p) ’ (41)

where the temporal modulation, s(t), is chosen as shown in Figure 4-2 for OOK and

as in Figure 4-3 for PPM during the bit transmission interval 0 <t < T

4.2 Conditional Error Probabilities

4.2.1 On-Off Keying, Coherent Detection Receiver

Figure 4-2 shows a binary communication system, employing OOK modulation and

a heterodyne receiver. For optimum heterodyne detection, when the transmitter’s
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Figure 4-2: Block diagram of a binary (OOK) communication system with coherent
detection.

spatial field pattern is ®(p), the local oscillator field should be chosen to have the
corresponding output eigenfunction ¢(p’); i.e. Uro(p’) = V' Pro ¢(p’). This leads to
E=1form=1and =0 form=0.

The normalized complex envelope of the output current from the coherent detec-

tor, r(t), will be a complex Gaussian random process’
r(t) = m.(t) + Ar(t) , (4.2)
where m.(t), the conditional mean, is given by

0
Psn

3

Il

o

3

I

for L <t<£4+T, (4.3)

3
I
&
I

and Ar(t) is a zero-mean, stationary, complex Gaussian random process with inde-

pendent and identically distributed real and imaginary parts and spectral density %"—Q

1See Section 2.2.3.
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in both cases.

It is well known from introductory systems analysis that the optimal processing
for signals corrupted by stationary, additive white Gaussian noise is matched filtering
followed by sampling and a threshold comparison test for decision making. Thus, we

process the received signal r(¢) with a LTI filter whose impulse response is

hons(0) 7 , for0<t<T (4.4)
0 , otherwise .

The particular choice of the constant value in h.,,¢(t) is to maintain a unit energy

pulse, but the constant may be chosen to be any non-zero value, in general.

Sampling at the output of the matched filter yields the complex random variable

L = /_00 r(7) hng (2 +T —7) dr (4.5)
1 [T
= ﬁ/% r(7)dr . (4.6)

Note that, £ is simply the integral of the received signal r(t) over a single-symbol

transmission interval. It is easily seen that £ is a complex Gaussian random variable,

hwo
2ne °

The mean of £ is 0 if m = 0 and /PsnT if m = 1. Because the mean is real both

given m, with independent real and imaginary parts, each with variance o? =

when m = 0 and m = 1, the real part of £, /g, is a sufficient statistic for minimum

probability of error detection.

The optimal decision threshold between two Gaussian distributions with equal
variance, but different mean values is the mid-point between the two means; i.e. u =

——VP;"T. Adopting this threshold, we can derive the probability of error, conditioned on
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the knowledge of the maximum eigenvalue, 7, of the atmospheric propagation kernel:

Pr(error|n) = % {Pr (ER < @{m = 1) + Pr <€R > @ m = 0)} (4.7)

= Q( n;gfn) (4.8)
= Q( %n) (4.9)

where, nyn is the average number of detected signal photons over an m = 1 bit

interval, and the Q-function is defined as,

Q(a:)z/oo Loo%ar (4.10)

We note that this particular detection and decoding scheme depends on the value
of 1 to set the decision threshold optimally. Thus optimal decoding over an extended
period of time is possible only if the threshold can be adjusted adaptively as the
atmospheric kernel changes. Because fading fluctuations in the atmosphere occur on
msec time scales and high rate communication systems have nsec bit intervals, it is
feasible to assume feedback systems can be used to estimate and track the changes

in power transfer over time.

Finally, this derivation assumes the bandwidth of the detector B is greater than
the bandwidth of the post-detection processing filters. This assumption is equivalent

to B> 2%, which is the case in most applications?.

4.2.2 Pulse-Position Modulation, Coherent Detection Receiver

Figure 4-3 illustrates a binary communication setup with PPM modulation and het-
erodyne detection. Noting that the local oscillator field is chosen as in the OOK

case, the complex envelope of the output current from the coherent detector, r(t) =

2B is in radians-per-second.
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Figure 4-3: Block diagram of a binary PPM communication system with coherent
detection.

me(t) + Ar(t), is a complex Gaussian random process, given m, with mean function

VFP;n for%§t<€ %
me(t) = (4.11)
0 for%+%§t<T+%
for m = 0, and
0 for%§t<g+%
me(t) = (4.12)
VEsn for%+%_<_t<T+%

for m = 1. The noise component Ar(¢) is a zero-mean, complex white Gaussian
random process with independent, identically distributed real and imaginary parts
and spectral density % Matched filtering r(t), followed by sampling and threshold
comparison of the real part of the sample will yield a minimum probability of error

decision rule [22]. The matched filter impulse response is the difference of the mean
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processes for m = 1 and m = 0, normalized to unit energy for convenience; i.e.

VAN

b

-
STl

hmg(t) =

t <
(4.13)
<

~

0
T
a_Q'St 3

=

Sampling at time t = % + T yields the complex Gaussian random variable

=L ( /j;rm i /% o dT) | (414

c

ot

The real part of £ is a sufficient statistic, which can be written in regards to the two

transmitted bit values as

m=0: fp = -5+ AL (415
mzlz(ZR: _PZ_UE_FAK’ ‘

hwo

where A/ is a zero-mean Gaussian random variable with variance ¢? = .
e

Thus, the optimal decision threshold is 4 = 0. The probability of error, condi-

tioned on the knowledge of the maximum eigenvalue 7 is then,

Pr(error|n) = -;—{Pr(é <0lm=1)+Pr(¢>0lm = O)} (4.16)

- Q (, /___Z;WTU) (4.17)

= Q(\/nm) (4.18)

where, ngn represents the average number of detected signal photons during a bit
interval.

We see from equations (4.18) and (4.9) that at equal n, values, the conditional
error probability of OOK is 3 dB worse than that for PPM with a coherent detection
receiver. This is because in OOK photons are transmitted only if m = 1. On the
other hand, in PPM, photons are transmitted both when m = 1 and m = 0. Hence,
on average, twice as many photons are being transmitted in PPM than what is the

case for OOK. PPM also offers a significant advantage in implementation of post-
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Figure 4-4: Block diagram of a binary OOK communication system with direct de-
tection.

detection processing because the decision threshold is 0, regardless of the state of
atmospheric turbulence. Thus this decision scheme is insensitive to time dependent

changes in the atmosphere.

4.2.3 On-Off Keying, Direct Detection Receiver

Figure 4-4 shows a block diagram of a binary communication system using OOK
modulation at the transmitter and a direct detection receiver. The complex envelope

of the received field on the z = L plane is

Ualp,t) = VB s(t = £) 6() (4.19)

where s(t) represents the temporal OOK modulation.
The output current of the direct detection receiver, denoted by i(t), is a non-

stationary, white, Gaussian random process®. The mean and covariance functions of

3See section 2.2.2.
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i(t) are given by (2.35) and (2.37) respectively, where P(t) = Psn for m = 1 and

P(t) = 0 for m = 0, over the bit interval £ <t,u <L +T.

Because the covariance function of i(t) depends on the received signal power,
it is non-stationary. In addition, the noise statistics depend on whether a ‘zero’
or ‘one’ bit has been transmitted. This results in a minimum probability of error
decision rule which is nonlinear and hard to implement. It is common, therefore, to
implement a decision rule that would be optimal if the noise statistics were stationary
and independent of the bit value. This condition is approached when the signal shot-
noise is a minor contributor to the output current noise. Thus, this decision rule
will be optimal for direct detection receivers operating in the thermal-noise dominant

regime.

The post-detection processing involves filtering the output current through a LTI

filter with impulse response

1
hmp(t) =4 VT ' ro<t=1 (4.20)
0 , otherwise

and sampling the output of the matched filter at time % + T. This gives a Gaussian

random variable
1 Lir

which is fully characterized by its mean and variance. When m = 0, ¢ has mean
mo=VTGIy, (4.22)

and variance

2KT,
of = qG*I; + G? 7 (4.23)
L

On the other hand, when m = 1, ¢ has mean

eqG

5



and variance,

e q° G2 2KT,
ol = n}gw Pon+qG?I;+G? R,

(4.25)
The optimal decision threshold is not trivial to obtain for two Gaussian random vari-
ables with different means and variances. Hence the threshold is instead chosen such

that the false-alarm probability, Pr(rh = 1|m = 0), is equal to the miss probability,
Pr(m = 0lm = 1). This condition yields a threshold

_ oom + ovmg (4.26)
0o + 01
Then the probability of error conditioned on the knowledge of 7 is
m; — My
Pr (error = _ 4.27
erorly) = @ (2 (427
NePsT

“he 1

= fuve o (4.28)

\/nePs + AT + 2 2KT,, i \/)\ T+ 2KT0

which, after some simplification, can be rewritten as

Pr(errorln) = Q(vs7 ¥ n — v/aw) (4.29)

where, nyn = ﬂﬁzn is the average number of detected signal photons over am =1
bit interval and ny = AT + %ﬁ"—z@ is an effective average number of noise photons
over a bit interval, i.e., the shot-noise variance of ny matches the dark current plus
thermal noise variance.

When thermal noise is dominant, i.e. ny > ng, the conditional error probability

expression simplifies to

Pr(error|n) = Q (2%) . (4.30)

4.2.4 Pulse-Position Modulation, Direct Detection Receiver

The final system that we consider is a communication system utilizing PPM and a

direct detection receiver, shown in Figure 4-5. The received field on the z = L plane
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Figure 4-5: Block diagram of a binary PPM communication system with direct de-
tection.

is Uy(p',t) = /Psm s(t — %) ¢(p’), with s(t) shown in Figure 4-5.
The output current of the direct detection receiver, i(t), is a Gaussian random
process with mean and covariance functions given in (2.35) and (2.37) respectively.

For m = 0, the received power function in these equations is

P ifL<t<Ly
P(t) = (4.31)
0 iff+I<t<

Sl

o It
+
~

and for m =1,

0 ifi<t<i4 T
P(t) = (4.32)

Pop fL+T<t<fyT.

Sl

The post-processing scheme is identical to that of an OOK modulated system with

a direct-detection receiver. The impulse response of the matched filter for PPM is

1 T
hmg(t) = vi o 0st<y (4.33)
vT ' 2



Then, the sample at t = % + T is a conditionally Gaussian random variable,

Lyr £+ Z
/ i(r)dr — / i(T) dT) , (4.34)
Li :

c

1
e:ﬁ<

with mean
VI 17.9qG
Mo = ——— G (4.35)
ifm=0, and
T neqG
= — P, :
m, 5 ﬁ,wo n (4 36)
if m = 1. The variances in both cases are equal and given by
2 2
2 2 _ Mg G 2 2 2KT,
=2 = P, I . :
%0 =01 = o n+qGli+G 7. (4.37)

Since ¢ has antipodal means and equal variances under the two hypotheses, the

optimal threshold is 4 = 0. Then the error probability conditioned on 7 is

Pr(errorjn) = @ (—Zﬂ) (4.38)
1
ﬂePsTn
= Q — 2o , (4.39)
BBy + AT + B
(4.40)
which can be rewritten as
N1
Pr(error|n) = _— ], 441
(rrorl) = @ ( =) (4.41)
where ngn = %n is the average number of detected signal photons over a bit
interval.

In the thermal noise dominant regime, i.e. when ny > ng, the conditional error
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probability expression simplifies to

Pr(errorly) = Q (\’}%) | (4.42)

which is 3 dB better than the conditional error probability result for a OOK modu-
lated communication system with direct detection receivers operating in the thermal
noise dominated regime. This is because, at equal n, values, the expected number of
photons transmitted in OOK is half of the expected number of transmitted photons
in PPM. As is the case for coherent detection receivers, the implementation of the
PPM direct detection decision rule is easier than its OOK counterpart because the

threshold is independent of the turbulent state of the atmosphere.

4.3 Unconditional Error Probabilities

4.3.1 The Markov Moment-Matching Problem

In the previous section we obtained the error probabilities conditioned on knowledge
of the atmospheric propagation kernel’s maximum eigenvalue. The unconditional

error probabilities follow from the law of total probability:

Pr (error)z/0 Pr (error|n) p(n)dn (4.43)

where p(7) is the probability density function? of . Thus, finding the unconditional
error probability requires knowledge of the distribution of . However, using the log-
amplitude and phase statistics introduced in Section 2.1 to derive the distribution
of 1 appears impossible. Part of the challenge is due to not knowing the input
eigenfunction corresponding to the maximum eigenvalue. Thus, alternatively, one
may be interested in obtaining the probability of error when a particular input field,
such as any of the fields considered in Chapter 3, is used. The fractional power transfer

in this case, v, is a random variable which is less than the maximum eigenvalue, 7,

4Through out this thesis, we assume 7 has a probability density function, possibly including
generalized functions, such as delta functions.
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ie, 0 <~vy<n <1 It follows immediately that Pr(y < z) > Pr(n < ), for any z
between 0 and 1. Consider the difference between the unconditional error probability
when v is the power coupling between the transmitter and receiver, and the error

probability when 7 is so, i.e., consider

Pr,(error) — Pr, (error) = /0 Pr.(z) py(z) dz — /0 Pre(z) p,(z) dz , (4.44)

where Pr.(z) = Pr(error | power transfer = ).

Using integration by parts on both integrals separately, we obtain

1 1
Pr,(error) — Pr,(error) = Pr.(z) Pr(y < z)| — / 9 Pre(z) Pr(y <z)dz
0 0

ozx

— Pr.(z) Pr(n < z)| + /01 OPr.(z) Pr(n <z)dx, (4.45)

o ox

which can be further simplified to

Pr. (error) — Pr,(error) = % [Pr(y = 0) — Pr(n = 0)]

+ /01 —a—%;(x—)(Pr(ﬁ <z)—-Pr(y < m)) dr >0, (4.46)

where the inequality is true because the conditional error probability is a decreasing
function of increasing z. Thus, we have shown via (4.46) that the unconditional
error probability obtained using a sub-optimal transmitter field must be an upper
bound to the unconditional error probability achieved when the maximum-eigenvalue
eigenfunction is the transmitted spatial field pattern. However, this approach also
requires the knowledge of the distribution of 7, which appears impossible to derive
from first principles. Nevertheless, in Chapter 3 we have obtained the mean of « for
a variety of input fields, and with more computational power, we might obtain its

second moment when the transmitted field is a focused beam.

Thus, as an alternative to deriving the probability density function of 1, we con-

sider the set of all probability distributions on [0,1] which satisfy a mean 7 and
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, constraint. Within this set of possible distributions for n, we attempt

variance o
to find those which result in maximum and minimum error probabilities for each of
the four communication systems analyzed in the previous section. Note that, if we
choose 77 and 0,2] equal to the first and second moments of the power coupling of a sub-
optimal field, the maximum error probability derived from those constraints will also
be an upper bound on the error probability achieved with the maximum-eigenvalue

eigenfunction.

Much of the work in this chapter rests upon Markov’s studies of the extremal
values of integrals which are of the form given in (4.43) [23, 24]. The results relevant

to our problem are compiled in the following lemma:

Lemma 4.3.1. Let §)(t) be a three-times differentiable function on the closed interval
[a, b]. Also, let V(p(t); s1, s2) denote the set of all probability densities p(t) on [a, b] ,

which satisfy
b
/ tp(t)dt = s (4.47a)

and

b
/ p(t)dt = s, . (4.47b)
Furthermore, suppose the set of moments {s1,s2} satisfy,

sy —857>0 (4.48)
and

(a + b)Sl —ab~— 89 >0 S (449)
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Finally, assume
PQ(t)
o3

>0, t€]a,bl. (4.50)

Then, the minimum value of the integral fab Q(t)p(t) dt is achieved by a unique distri-
bution, omin(t), which has mass concentrated at point t = a and an interior point tg
(i.e. to € (a,b))S.

Likewise, the mazimum wvalue of the integral f:Q(t) p(t)dt is attained with a
unique distribution, Omaes(t), which has mass concentrated at point t = b and an

interior point t1 € (a,b).

We shall draw upon the results of this lemma several times in the work that follows.
Because a variety of closed intervals will appear in our analysis, it is convenient to
derive the maximizing and minimizing distributions over an arbitrary interval [a, b]
before proceeding with the unconditional error probability results.

Assuming the conditions stated in the lemma are satisfied, the distribution with
support [a,b] which minimizes the integral expression has two mass concentration
points: one at ¢ = a and another interior point we denote with t,. Then the proba-

bility density function will be two impulses,
Pmin(t) = po6(t — a) + (1 — po) 6(t — to) , (4.51)
where pg and ty are obtained from the first and second moment constraints given by

b
S§1 = / tpmin(t) dt = a Po + to (1 — po) (452)

b
59 = / t? Drmin(t) dt = a® po + 5 (1 — po) - (4.53)

5Note that there exists at least one probability distribution with mean s; and mean-square so
if, and only if, the expressions in (4.48) and (4.49) are non-negative. This is because (4.48) and
(4.49) are equivalent to var(X) > 0 and E[(X — a)(X —b)] < 0, for X a random variable on [a, b]
with probability density p(z). Therefore the two strict inequalities presented in the text guarantee
V(o (t); s1,82) is non-empty.

81f either of (4.48) or (4.49) are not strict, there may exist other distributions with mass con-
centrated at two points which achieve the extremum values. If (4.50) is not strict, there may exist
multiple distributions in V(o (t); sy, s2) that attain the extremum values of the integral given by

Omin(t) and opmaz(t).
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Solving these two equations yields

2 2

S — 59 (o)
Do = = 4.54
° (59— 82) + (s1 —a)® 0%+ (s1 —a)’ (4.54)

and
o?
tog = 81+ s (455)
S1—a

where 0? = s, — s? is the prescribed variance of the distribution.

The distribution with support [a, b] which maximizes the integral expression also
has two mass concentration points. However, now one is at ¢ = b and the other is at

an interior point denoted by ¢;. The probability density is then

Prmaz(t) =010t —0) + (1 —p1)d(t —t1) . (4.56)

Once again, p; and t; are obtained by solving the mean and mean-square constraints

b
5 = /  prnaa(£) dt = by + t1 (1 = p1) (4.57)
b
So = / t2pmaz(t) dt = b2p1 + t% (]. - p]_) y (458)
which results in
2
o
PL= 5 b= 5) (4.59)
and
2
o
ti =87 — —— )
1 S1 (b—sl) (4 60)

It is worthwhile to note two facts about the results derived above. First, the
maximizing and minimizing distributions, p,,(t) and ppe.(t), somewhat surprisingly

do not depend on the function Q(t), so long as Q(t) is a three times differentiable
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function with a positive third derivative. Second, if Q(¢) has a third derivative that is
negative, then one can apply the above lemma and our subsequent results to —§2(¢),
thereby concluding that (4.56) yields the minimizing distribution and (4.51) yields

the maximizing distribution.

Through straightforward calculus, one can verify that the coherent detection con-
ditional probability of error expressions, (4.29) and (4.41) are three times continuously
differentiable on (0, 1] and have strictly negative third derivatives. On the other hand,
the direct detection results (4.9) and (4.18), although three times continuously differ-
entiable on [0, 1], do not have sign-preserving third derivatives. Therefore we start our
analysis with communication systems employing coherent detection receivers. Later
we show that the direct detection conditional error probability results can be closely
approximated by functions that have non-positive third derivatives and thus the same
distributions that yield extremum unconditional error probabilities in coherent detec-
tion systems, yield approximately the extremum unconditional error probabilities for

direct-detection systems as well.

4.3.2 Coherent Detection Unconditional Probability of Error

Bounds

Because OOK and PPM conditional error probability results differ only by a factor
of 2 in the coefficient that precedes n, we will only derive the results for OOK in
this thesis. The results for PPM with coherent detection can be obtained by simply

substituting 2n in place of ng in all of the results that follow in this section.

To emphasize that Pr(error|n) is a function of the random variable 7, we use f.(n)

to denote the conditional error probability for coherent detection, i.e.,

Jen) = Q( 5 n) . (4.61)
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The third derivative of f.(n) is

33fc(77) 1 /ng| ns 3 nﬁ _nasn
o 16\« 773/2+n5/2+4n1/2 € (4.62)

Vn € (0, 1], which is clearly strictly negative for all n € (0, 1]. Therefore, we can apply

the Markov moment-matching lemma to — f.(n) and obtain the probability distribu-
tions of n that yield the maximum and minimum unconditional error probabilities ”.

Then, from (4.51), for a given mean 7 and mean-square n2, the distribution that max-
imizes the unconditional error probability, fol fe(n) p(n) dn, has mass concentrated at

two points; i.e.

Pmaz(1) = po0(n) + (1 —po) 6(n — o) , (4.63)
where
2 =2
o, ]
= =1—- 4 4.64
pO 0_72’ + 77—2 772 ( )
and
o2 n2
m=n+2 =1L (4.65)
n n

with orf, denoting the variance of n. The maximum error probability is then

Perror) = | 1 Q( " )pm(n) d (4.66)

1 0,2, ) ng N> ( n? )
S — | +Q = — : 4.67
2(0,27—%772 27 or%+n2 ( )

The probability density function that minimizes the unconditional error probability

also has mass concentrated at two points. Setting b = 1 in (4.56), this probability

"Notice, the Markov moment-matching theorem requires that the function f.(n) be three times
differentiable in the closed interval [0, 1]. However f.(n), although continuous and defined at n = 0,
strictly speaking, is not differentiable there. Nevertheless, we can still apply the Markov moment-
matching theorem in this case. To see this, consider applying Markov moment-matching theorem
on the closed interval [e, 1], where f.(n) is differentiable, then take the limit as e — 0.
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density function can be expressed as

Pmin(n) =p16(n—1) + (1 —p1)d(n—m) , (4.68)
where
0_2
_ n
2 AT (4.69)
and
, o
o, n—n?
m=7— _ L 4.70
' 1-7) 1-7 (4.70)

The minimum error probability is then

PMmm=A¥K %@mmmw (4.71)

_ ng oy ns(m—-n%)\ (1-7)?
‘Q<¢Z>ﬁ+u—mf”9 2= | Zra—qe *

4.3.3 Direct Detection Unconditional Probability of Error

Bounds

For analytic tractability, let us assume we are in the regime in which thermal noise is
the dominant noise component. Again, OOK and PPM conditional error probability
expressions in this regime differ only by a factor of 2 in the coefficient preceding 7,
hence we only derive the results for OOK, and state that the PPM results can be

obtained by substituting in 2n, for n, in all results that follow in this section.

Analogous to the coherent detection case, we use fy(n) to denote the conditional

error probability expression given in (4.30), to emphasize that it is a function of 7.

The third derivative of fy(n) is

a3 3 2 71.2
Ffaln) _ nj =D 2| (4.73)
o 8nd?\Von dny
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which satisfies,

o 2./n
hy)>o, if n< Y™ and (4.74)
o N
o3 2\/n
fdg") <0 , if p> YN (4.75)
87) ns
Note that the low conditional error probability regime corresponds to 2—7“\/::]\] > 1, and
in this regime the transition point for the third derivative, 7, = 2\{5’7, is guaranteed

to fall between [0, 1]5.

Because, in general, the third derivative of f3(n) does not maintain a single alge-
braic sign for all n € [0, 1], it is not possible to directly apply the Markov moment-
matching lemma. However, consider the following piecewise defined function, fq(n),

as an approximation to fy(n) over [0, 1]:

Fy = FO+ Fam)n = o)+ HE =<

fa(n) , ifn>mn,.

Notice fy(n) is the second order Taylor-series approximation to fq(n) for 7 < 75, so
that it maintains a unipolar third derivative for all n € [0,1]. Figure 4-6 illustrates
this approximation and the resulting derivatives for n, = 0.2.

Substituting the explicit expression for 7, in (4.76), we obtain

N[

-1 — .
z Q(l)_ no\1/2—7re 2 (71“770)+2,7§1\/56 (77_770)2 ’ 1f77 <o

fa(n) = (4.77)
fa(n) , ifnp>mn,.

Considering the sign of the error term in the Taylor-series expansion, it can be verified
that fy(n) > fa(n),Vn € [0,1]. Furthermore, for any 7, value, the maximum error
between f4(n) and f(n) is 0.0216 and it occurs at 7 = 0.

Because, the third derivative of fd(n) is unipolar, Markov moment-matching the-

ory can be applied to the integral fol fa(n) p(n) dn to find its extremal values. The

8Note that the transition point for PPM is half that of OOK, i.e. ——V:s” Therefore, if the OOK
transition point falls within the interval [0, 1], the PPM transition point will also be in this interval.
Hence, all analysis that follows applies to the PPM case as well.
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(a) fa(n) and its approximation for 19 = 0.2. (b) The third-derivatives of fs(n) and fa(n).
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Figure 4-6: Approximation to the direct detection conditional error probability func-
tion to obtain a unipolar function on which Markov’s moment matching theory may

be applied.

inequality

/0 fa(n) p(n) dn < /O fa(n)p(n)dn, (4.78)

implies that the maximum value of the right hand side is an upper bound on the
direct detection unconditional error probability. The minimum of the right hand
side, however, is not a lower bound on the error probability. Nevertheless, because
the error between fy(n) and fq(n) is bounded and eventually decreasing towards 0
for large n, values, we claim that the minimum of the left hand side of (4.78) is well
approximated by the minimum of the right hand side. Therefore, we will obtain the
distributions of 7 that yield the maximum and minimum values of the right hand side

of (4.78) and use these as bounds for the unconditional error probability.

It follows from the Markov moment matching lemma results that the extremal
values of fol fa(n) p(n) dn are given by the same distributions that yield the extremal
values of the unconditional error probability for coherent detection. Thus, (4.63) and
(4.68) are maximizing and minimizing distributions for 7 in direct-detection systems,
respectively. It is worthwhile to note that the third derivative of fd(n) is not strictly

negative, thus minimum and maximum achieving distributions may not be unique.
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Error probability bounds achieved by these distributions for coherent and direct
detection cases are plotted in Figures 4-11 and 4-13 when 072) is much smaller than
7 — 7%, and in Figures 4-10 and 4-12, when o7 is close to 77 — 77°. The worst-case
distribution has an impulse at 1 = 0 regardless of the values of 7j and ¢2,'° which
implies that in the worst atmospheric state there is a positive probability that a field
with power P, will be transmitted and none of it will be collected at the receiver
aperture. Therefore, for n, > 1, the error probability is dominated by this zero-
transmission event. On the other hand, the minimum error probability distribution
always has an impulse at n = 1. This corresponds to a positive probability of receiving
all the power that has been transmitted. For ng > 1, the error probability with
perfect power transfer is negligibly small, thus the error probability in this regime
is dominated by the impulse at 7;. Hence, as can be verified from the Chernoff
bound, the minimum error probability decays exponentially in the high transmit

power regime.

4.3.4 Unimodal Distribution Error Probability Bounds

Based on physical observations and general understanding of atmospheric turbulence,
it is highly unlikely that the maximum power coupling between the transmitter and
receiver would behave as a two-level switch. Therefore, although the distributions
found in the previous section yield the extremal values for the unconditional error
probability, they are not realistic distributions for the maximum eigenvalue of the
atmospheric propagation kernel. Hence, it is desirable to impose further constraints
on the probability distribution function of 7, so that distributions consisting of a finite
collection of impulses are eliminated. One such constraint is to assume that n has a

unimodal probability distribution over [0, 1].

Although it is not possible to rigorously justify that 7 must have a unimodal

9For a distribution on [0, 1] with mean 7%, the maximum possible variance is 7 (1 — 7).

10Because 7 is the maximum eigenvalue of the atmospheric propagation kernel, 7 = 0 implies that
the kernel is equal to zero, which in turn, requires that x(p’,5) = —oo for all 5 € Ry and p/ € Ry,
which is a zero probability event. However, it is still possible to have an impulse in p(n) at a location
€ as € — 0. Hence this upper bound is strictly not achievable, yet possible to approach in the limit.

89



Log-Normal Distribution for Irradiance 1-K Distribution for Irradiance

3 0.45 o
1=eX: X=N(0,1) A=2
=3
| =N
| =
(=%
00 é 1.0 1‘5 2‘0 2‘5 30 0 fl) 1‘0 15 26 2‘5 30
Irrandiance, | Irrandiance, |
(a) Lognormal probability density function (b) I-K probability density function

Figure 4-7: Some unimodal probability distributions, used as models for far-field
irradiance.
distribution, consulting models characterizing far field power transfer statistics, it is
possible to argue its plausibility. Many theoretical and heuristic models have been
developed to characterize turbulent effects in far-field atmospheric propagation. The
most well-known analytic theory developed for the weak turbulence regime is the
Rytov theory of atmospheric turbulence [6]. This model predicts a log-normal dis-
tribution for the irradiance of the wave at the receiver plane, which is a unimodal
probability distribution. Other models have also been developed for the strong fluctu-
ation and weak fluctuation regimes [6]. The I-K distribution, which obtains its name
from the presence of modified Bessel functions of type I and K in the probability
density function, is valid in both regimes and yields a unimodal distribution. Some
other theories predict a lognormally modulated exponential distribution in the strong
fluctuation regime, which is also unimodal. Some of these probability distributions
are shown in Figure 4-7. The fact that far-field maximum eigenvalue probability dis-
tribution models, heuristic or analytic, predict unimodal distributions, is additional
motivation to examine the behavior of the error probabilities in the near field regime
when the maximum eigenvalue is assumed to have a unimodal distribution.

A commonly accepted definition of unimodality, provided by Khintchine, is as

follows [25]:

Definition 4.3.1 (Unimodal distribution). A real random variable X or its dis-
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tribution function Fx(z) = Pr(X < x), is unimodal about a mode v if F is convex on

(—o0, v) and concave on (v, 00).

Further work in the field, has led to very useful results in characterizing unimodal

distributions [25, 26]. We present one result relevant to our analysis, due to Shepp:

Theorem 4.3.2 (Representation of a unimodal random variable). A distribu-
tion function F(z) on R is unimodal about 0, if, and only if, there exist independent
random variables U and Z such that U is uniform on [0, 1] and the product UZ has
distribution function F(zx).

A detailed treatment of the development leading to this theorem and its proof is
presented in [25, Chapter 1]. It follows trivially that if a random variable X is uni-
modal about a mode v, then X — v is unimodal about 0. Hence, from Theorem 4.3.2,

X =v+UZ, where U and Z are as explained above.

Assume that 7 has a unimodal distribution with a given mode v € [0, 1], as well

as a given mean 7 and variance 072,. Then,
n=v+UZ, (4.79)

where U is a uniform random variable over [0,1] and independent of Z. Z can
be any random variable such that v + UZ yields a distribution for n satisfying the
support, mean and variance constraints on 7. These three constraints on 7 imply
three corresponding constraints on the distribution of Z. First, because n € [0,1], Z

must also have finite support. In particular,
Z€[-v,1—v]. (4.80a)
Second, Z must have mean

ZE2FE[Z]=2(Mm—v) . (4.80b)



Finally, Z must have variance

03 2 E[(Z-2)) =302 - (m-v)*, (4.80c)
or, equivalently second moment

7227 =3 (i - 207 +7) . (4.80d)

It is evident from (4.80a — 4.80d) that the range of possible modes for 7 is not inde-
pendent of the prescribed support, mean and variance constraints. In the discussion
that follows, we will assume that the mode has been chosen such that equations in
(4.80) constitute a consistent set of constraints. The interval a mode must lie in for

a given set of constraints will be determined later.

Coherent detection systems

For an OOK, coherent detection system, the unconditional error probability is'!

o - 52 (/5] as

where, for clarity, the subscript in the expectation notation indicates the random

variable in consideration. Combining this result and (4.79), we have that

Ns

o .
_ /_ 1_,, /0 0 ( %i(u + uz)) p(2) dudz (4.83)

_ /_1 {/01Q< %ﬁ(wuz)) du} p(2) dz (4.84)

- / gz ) plz) d= (4.85)

v

Pr(error) = Ey z {Q (

HTo obtain results for PPM, coherent detection systems, substitute 2n, for n, throughout the
results in this subsection.
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The parametric dependence of g.(z; ) on v is made explicit by including v in the list
of arguments. With (4.85) and (4.80a) — (4.80d), we have re-defined our maximization
and minimization problem in terms of the random variable Z. The objective can now
be stated as finding the probability distributions for Z on [~v, 1 — v] which yield the

extremal values of (4.85), given Z and o2.

This formulation warrants, once again, the use of the Markov moment matching
problem if it is true that g.(z;v) has a non-positive or non-negative third derivative.

Referring back to (4.61), we can write g. as

9e(2z;v) =/0 fe(v+uz)du, (4.86)

and note that

Ofe(v + uz) — Afe(x) (4.87)
8‘2 811) r=v+uz .
Therefore, the third derivative of g, is
8%gc(2;v) b3 0 fel(x)
—g = /0 v 5 o du <0. (4.88)

The strict negativity follows from the positivity theorem for integrals in standard

analysis [27, Chapter 19].

Having satisfied all conditions of Lemma 4.3.1, we conclude that the unique dis-
tribution of Z which yields the maximum unconditional error probability for given

mean and variance values, specified in (4.80b) and (4.80c) respectively, is

Pmaz(2) =pod(z+v) + (1 —po) 6(z — 20) , (4.89)

where

(4.90)



and

20 =7 + =—2—, (4.91)

for a given valid mode v.

Using (4.79) and (4.89), we can derive the corresponding distribution for the
unimodal density of n given a mode v, satisfying mean 7 and variance af]. The
probability density function for n depends on whether 2z, is positive, negative or equal
to zero. The three possibilities for the density of 1 are shown in Figure 4-8 and the

analytic expressions are given by

B 0<n<y,

Pmaz() = 4 0 v <n<z+v, (4.92a)
\0 otherwise ,
for zg > 0, and )
" 0<n<v+z,
Prmaz (1) = B+ 1;5"" v+zp<n<v, (4.92b)
\O otherwise ,

for zo < 0. When z; = 0, the distribution contains an impulse at n = v of area 1 — po,

shown in Figure 4-8(c).

The maximum unconditional error probability achieved by this distribution is

computed to be

v st 1-— vtzo st
Pr(error) = %/ Q ( n2 ) dt + zopo / Q ( n2 ) dt , (4.93)
0 v

where the second term is replaced by (1 — po) @ (, / "—525) if zo = 0.

Referring to (4.56), the unique distribution for Z which minimizes the uncondi-
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Figure 4-8: The unimodal probability density function of n satisfying a mean con-
straint 7 and a variance constraint ag , which maximizes the probability of error. v is
assumed to be some known valid mode.

tional error probability expression is also a two-impulse distribution given by
Pmin(2) =p16(z —14+v) + (1 - Pl) 6z — =), (4.94)

where

(4.95)

and

zZp = - —=— y (496)

for a given mode v.

The corresponding distribution for 7, again, depends on an algebraic sign, this

time that of z;. The probability density function of n for the three possible cases are
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Figure 4-9: The unimodal probability density function of n satisfying a mean con-
straint 77 and a variance constraint 0727, which minimizes the probability of error. v is

assumed to be some known valid

mode.

plotted in Figure 4-9, and expressed as

Pmin (77)

for z; > 0, and

Pmin(N)

(

£+ 12’1 v<n<v+z,
2 v+2z <n<l, (4.97a)
0 otherwise.

(

TR ovtan<n<v,
S (4.970)
0 otherwise.
\

for z; < 0. As with the maximizing distribution, when 2z; = 0, the distribution

contains an impulse at 7 = v of area 1 — p;, shown in Figure 4-9(c).
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The resulting minimum unconditional probability of error is then

1 st 1 . v+2z3 s
Pr(error) = llily/ Q( n2 ) dt + lel/ Q( n2t> dt,  (4.98)

where the second term is replaced by (1 —p1) @ ( et ) if 2, =0.

Note that these distributions are also the maximum and minimum achieving distri-
butions for the PPM, coherent detection case. However, the maximum and minimum
error probability expressions are not the same. In particular, PPM extremal error

probabilities are obtained by replacing ns with 2n; in (4.93) and (4.98).

The extremal unconditional error probability results above are for a particular
mode, v. To find probability error bounds valid for all modes, we simply maximize
and minimize the results above over all possible modes. For a given mean 77 > 0.5
(which, in general, holds true in the near-field regime) and variance 072, > 0, the mode
v must satisfy!?

3n% — 27
max{O,ﬁ—\/gan,%ﬁ——_—lq}Sugmin{l,ﬁ—i—\/gon} : (4.99)

This maximization and minimization is carried out numerically and results are shown

in the figures at the end of this chapter.

Direct detection systems

The derivation of the maximizing and minimizing unimodal probability densities of
n for direct detection receivers parallels that of the coherent detection case. We
continue to assume that the dominant noise source in the receiver is thermal noise.
The derivation in this section is carried out for OOK systems, but PPM results can

be obtained by substituting 2n, for n,.

Using (4.79), we write the unconditional probability of error in terms of the statis-

12Gee Appendix B for the derivation of the range of possible modes for a prescribed support, mean
and variance.
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tics of Z:
1—v
Pr(error) = / ga(z;v) p(2) dz, (4.100)

where
1
ga(z;v) = / fa(v + uz) du (4.101)
0

and fy(n) is the conditional probability of error, given in (4.30). This gives

Pga(z;v) 1 O3 fa(v + uz)
1 3
_ / w2 g;gf") du (4.103)
0 r=v+uz

which is not unipolar for all z € [-v,1 — v]. However, the approximation to g4(z;v),

Ja(z;v) = /0 falv +uz)du (4.104)

has a non-positive third derivative!3, the inequality being strict if v > 7,. In near-
field applications v = 1, and for any acceptable level of input signal power 7, < 0.5,

therefore the third derivative of (4.104) is, in general, strictly negative.

Applying the Markov moment-matching lemma to f_l;y Ga(z;v) p(z) dz, we can
obtain the distributions of Z which will maximize and minimize this expression. Be-
cause Jq(z;v) > g4(z;v), the maximum of f_l;" ga{z;v) p(z) dz will also be an upper
bound on (4.100). On the other hand, because the error between g4 and its approx-
imation is small, the minimum obtained via Markov’s moment matching lemma is
a good approximation to the minimum unconditional error probability. The distri-
butions which achieve this upper bound and approximate minimum are identical to
those that achieve the extremal values of the coherent detection unconditional er-
ror probability . Thus the maximizing density for Z is given by (4.89) and the
minimizing density is given by (4.94). Consequently, Figure 4-8 and (4.92) give the

maximum eigenvalue unimodal distribution which maximizes the error probability,

13 . is defined in (4.77)
148ee concluding remarks in Lemma 4.3.1.
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while Figure 4-9 and (4.97) are the unimodal distributions of 7 that minimize the
unconditional error probability.

The resulting maximum unconditional probability of error for the OOK case is
given by

v, [ ngt 1-py, /Hz" nst
=z dt 4.105
Pr(error) ” /o Q(2 N ) dt + = ) Q (2 N ) ) (4.105)

ns vV

the second term being replaced by (1 — pg) @ (2\/—517) if zo = 0. The corresponding

minimum unconditional OOK error probability is

1 v+z
1 nst 1—p / ! ngt
= dt dt 4.106
Pr(error) T /V Q (2 = ) + ol Q(2 — ) . (4.106)

in which the second term is replaced by (1 — p;) @ (5’\1;—77_";) if z1 = 0.

The maximum and minimum error probability expressions for a PPM, direct de-

tection communication system are obtained from (4.105) and (4.106) respectively, by

substituting in 2n, for n;.

The maximum and minimum probability of error curves for coherent and direct
detection receiver systems are shown in Figures 4-10 — 4-13. The probability distri-
butions for 7 that generate these error probability bounds are shown in Figures 4-14
and 4-15. Notice, direct detection systems require approximately three orders of mag-
nitude more signal photons than coherent detection systems to achieve comparable
sensitivity. This difference is due to the mixing with the strong local oscillator in
coherent detection, which amplifies the incoming signal levels above thermal noise
levels. The trade off, however, is the increased complexity and implementation cost
of the coherent detection receiver. Determining the optimum local oscillator field
as well as efficient mixing of the signal and local oscillator fields are some of the

challenges to overcome.

It is seen from the figures that the two-impulse worst case distribution reaches
a floor for ny > 1. This is because, in this worst-case scenario, there is a positive

probability that none of the transmitted power will couple into the receiver aperture.
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Therefore, no matter how many signal photons are transmitted, the probability of this
event will dominate the overall error probability. The worst-case unimodal distribu-
tion on the other hand, is a two-piece, piecewise constant distribution with a non-zero
probability density out to n = 0. Thus, it can be shown that for n; > 1, when most
of the area underneath the conditional error probability expressions are concentrated
around 7 = 0, the unconditional error probability results will be proportional to ;1;

The best-case error probability results, on the other hand, are dramatically dif-
ferent than the worst-case results. The error probability results when no fading is
present decrease exponentially with ng. The best-case two-impulse distribution has
impulses at 1 and some other intermediate point, and therefore the error probability
consists of two exponentially decaying terms. As n, gets large the contribution to the
probability of error due to the impulse at n = 1 will become negligible and the error
probability will be dominated by the intermediate point. Thus, for ns > 1, the error
probability will decay exponentially, at a fraction of the rate of the non-fading case.
The minimizing unimodal distribution is a two-piece piecewise constant distribution
(with the possible exception of one of the pieces degenerating to an impulse), with a
density that is zero for 7 values below some positive threshold. Thus, when n; is large
enough, the area underneath the tail of the conditional probability expressions will
be very small, and the error probability will decay exponentially, at again a fraction
of the non-fading rate.

As a consequence of the discussion in the previous paragraph, we observe from
the figures that for a given mean of 7, the error probabilities of the best-case distri-
butions converge to the non-fading error probability as the variance becomes smaller.
This is because a small variance combined with a very high mean will result in al-
most identical best-case unimodal and two-impulse distributions, with all probability

concentrated around 77 = 1.
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OOK-Coherent Detection, Probability of Error Results
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Figure 4-10: Coherent detection maximum and minimum probability of error results
when the variance of 7 is close to its maximum, 1 — 772. Plot shows error probability
curves for OOK. PPM results are obtained by shifting all curves 3 dB to the left.
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OOK-Coherent Detection, Probability of Error Results
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Figure 4-11: Coherent detection maximum and minimum probability of error results
when the variance of 7 is small relative to its maximum, 7 — 7%. Plot shows error
probability curves for OOK. PPM results are obtained by shifting all curves 3 dB to

the left.
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OOK-Direct Detection, Probability of Error Resuits
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Figure 4-12: Direct detection maximum and minimum probability of error results
when the variance of 7 is close to its maximum, 77 —72. ny = 4 x 108, an approximate
value for gigabit communication rates when the detector output sees a 502 load
resistance at room temperature. Plot shows error probability curves for OOK. PPM
results are obtained by shifting all curves 3 dB to the left.
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Figure 4-13: Direct detection maximum and minimum probability of error results
when the variance of 7 is small relative to its maximum, 7 — 72 ny = 4 x 108, an
approximate value for gigabit communication rates when detector output sees 502
load resistance at room temperature. Plot shows error probability curves for OOK.
PPM results are obtained by shifting all curves 3 dB to the left.
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Figure 4-14: Extremum achieving distributions of 7 in previous figures, when 7 = 0.99
and 072, =5 x 1073,
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Figure 4-15: Extremum achieving distributions of 7 in previous figures, when 77 = 0.99
and o7 = 5 x 107°.
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Chapter 5

A Heuristic Model for Maximum

Power Transfer

5.1 Introduction

In Chapter 3 various lower bounds on the mean of 7 were obtained and the possibility
of obtaining a bound on the second moment was discussed. Chapter 4 built upon these
results by deriving the distributions for n which achieved maximum and minimum
unconditional error probabilities given the mean and variance. In this chapter, we will

extend this work by considering a specific distribution, namely the Beta distribution.

The Beta distribution is of particular interest as a distribution of the maximum
eigenvalue of the propagation kernel for a number of reasons. First, it is a continuous
distribution on [0, 1] which is completely characterized by two non-negative param-
eters. Therefore, mean and variance constraints on n are sufficient to fully specify
the probability density function. Second, the Beta distribution is unimodal if either
of its two parameters are greater than 1 and otherwise it becomes a continuous ap-
proximation to a pair of impulses at 7 = 0 and 7 = 1. Hence, there are grounds for

comparison to the bounds computed in the previous chapter.
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5.2 The Beta distribution

The probability density function of a Beta random variable with parameters a and b

is given by Y -
o (1=n)"”

where f(a, b) is the Beta function defined as [28],

fora>0,b>0, (5.1)

1
Bla, b) = / (1 — )V dp 0>0,b>0. (5.2)
0

It is evident from (5.1) that if a < 1 p(n) has a singularity at n = 0, if a = 1
p(0) = 3(;—11), and if a > 1, p(0) = 0. Similar behavior with respect to b occurs at
n = 1. Figure 5-1 shows the general shape of a Beta probability density function for

various values of the parameters a and b.

The moments of a Beta distribution are given in terms of Beta functions by

B - 25 53

After simplifications, the mean becomes

n= = , (5.4)

and the variance,

oo~

o2 = ab - (5.5)

" oe+b)’(@a+b+1)  (1+2)’@+b+1)

The second equalities in (5.4) and (5.5) are convenient because, given the mean and

variance of 7, they are easily solved for g and (a + b). We find that

a:ﬁ(ﬁ—ﬁ —1) (5.6)
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Figure 5-1: Some Beta probability density function plots.
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and

b=(1-7) (ﬁ ;f — 1) . (5.7)

Note that the necessary conditions ¢ > 0 and b > 0 will be satisfied for 0 < 0,% <
(m—m?). In other words, there exists a Beta distribution which satisfies any prescribed
mean and variance except the limiting cases, 0,2] = 7 —7n? (which is achieved by a two-
impulse distribution with impulses at n = 0 and n = 1) and 0,2, = 0 (which is achieved

by a unity impulse at n = 7).

As a final remark, the mode of the Beta distribution for a > 1 and b > 1 is [29]

a—1

5.3 Unconditional Error Probability Results

Chapter 4 concluded that the unconditional error probability for large ns values is
strongly dependent on the probability of observing deep fades; i.e. the relevant part
of the probability density function of 7 is the lower end of the [0, 1] interval. Conse-
quently, when 7 is Beta distributed, we expect that the unconditional probability of
error results for large n, will mostly depend on whether the Beta distribution has a

singularity at n = 0 or not.

Because we have been unsuccessful in numerically evaluating the variance of the
maximum eigenvalue of the atmospheric propagation kernel, we will resort to consid-
ering the performance of a set of Beta distributions with equal mean, yet different
variance values within the open interval (0, ﬁ—ﬁ2). Using the expressions for the two
parameters of the Beta distribution in (5.6) and (5.7), it can be concluded that, if

__2 p—
s (-7

> —— =1, , 5.9
o, 157 P (5.9)




the Beta distribution will have a pole at n = 0 and if

ol > 17—(;:—%7)2 =1, (5.10)
the beta distribution will have a pole at n = 1. It can be verified from these equations
that 1,,%, € (0,7 —7?) and when 7 > 0.5, ¥, > 1. The results in Chapter 3
indicate that, without appreciable loss of generality, 77 > 0.5 is true in the near-field
regime. Then, as the variance is decreased from its maximum towards zero, the Beta
distribution transitions through three phases: For (7—7?) > 072, > 1),, the probability
density function has poles both at n = 0 and n = 1 (Figure 5-1(a)). For ¢, > 0,2’ > Uy,
there is only a pole at n = 1 (Figure 5-1(c)), and for 072) < 1, the Beta distribution
has no poles (Figure 5-1(d)). The Beta distribution is unimodal in the latter two
regions, thus the unconditional error probability will lie within the unimodal bounds
derived in Chapter 4. When 072, > 1,, because the distribution is not unimodal, the

unconditional error probability may not fall within the unimodal bounds. However,

the results must still lie between the two-impulse bounds.

Figure 5-2 illustrates a set of Beta cumulative distribution functions with equal
mean and a variety of af’ values. It is seen that there is appreciably larger probability
close to n = 0 (greater than two orders of magnitude up to n = 0.1 for the particular
choice of parameters in the figure), when the density has a singularity at n = 0.
Thus we expect that the performance will be closer to the worst-case distribution
performance in this regime. On the other hand, suppose that the mean and variance
are such that the probability density of 1 does not have any singularity or has a
singularity only at 7 = 1. Then, because the deep fade probability is small, we expect
that the unconditional probability of error results will be closer to the unimodal lower

bound.

This transition in Beta-distribution performance, from worst-case towards best-
case performance as the variance of 7 is decreased while the mean is kept constant,
is demonstrated in the unconditional error probability plots in Figures 5-3 — 5-6.

The mean of 7 is 0.99 in all of the plots, which yields 1, = 4.925 x 1072 and ¥}, =
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Cumulative distribution function for Beta distributed n
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Figure 5-2: The cumulative distribution function of Beta-distributed n for several 0,27
values. For 03] > 1),, the CDF is much higher on the lower end of the [0, 1] interval

than it is for o7 < th,.
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9.802 x 10~°. In Figure 5-3 the variance for the Beta distribution is 6 x 1073, which
yields a density with poles at n = 0 and n = 1. The resulting unconditional error
probability is closer to the upper bound. The error probability associated with this
Beta distribution is higher than that of any unimodal probability distribution with
the same mean and variance.

Figure 5-4 and 5-5 plot the unconditional error probability for a Beta distribution
with 07 = 3 x 107* and 07 = 5 x 107" respectively, both of which have a singularity
at 7 = 1 but none at n = 0. In Figure 5-4, the Beta distribution error probability is
approximately half-way between the best-case and worst-case unimodal bounds. In
addition, there is a noticeable difference between the minimum achievable error prob-
ability and the probability of error with no fading, for large signal photon numbers.
On the other hand, in Figure 5-5 the Beta distribution is very close to the mini-
mum achievable probability of error, which is approximately equal to the no-fading
probability of error.

Figure 5-6 plots the results for 07 = 5 x 107°, for which the Beta distribution
has no poles. Comparing this figure to the previous figure, it is observed that further
reducing the variance changes little in terms of the Beta distribution error probability
and the lower bounds. However, because the worst case probability of error result
is proportional to UZ‘ for high n,, the worst-case probability of error bounds have

decreased an order of magnitude from the upper bounds given in Figure 5-5.
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Figure 5-4: Probability of error bounds from Chapter 4 plotted together with the
error probability curve when 7 is Beta distributed with 7 = 0.99 and 072, =3 x 1073
The Beta distribution is singular at the right end-point if its support. Plots are for
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Chapter 6

Capacity of SISO Optical Links

with Coherent Detection Receivers

So far, the performance criterion in our analysis has been the probability of error in
communicating a binary symbol (i.e., a bit) using particular encoding and decoding
schemes at some chosen data rate. A more informative measure of the ultimate per-
formance of near-field atmospheric optical communications is the Shannon capacity
of the link. In most general terms, the capacity of a communication channel is the
maximum rate (in bits-per-transmission or bits-per-second) at which information can
be transmitted and decoded with arbitrarily small probability of error.

In this chapter, we will analyze the capacity of a single-input, single-output (SISO)
atmospheric optical communication link operating in the near-field regime and uti-
lizing a coherent detection receiver. We will show that a mean constraint on the
maximum eigenvalue is sufficient to obtain a tight lower bound on the ergodic capac-
ity of the channel. In addition, we consider performance when 7 is assumed to have
a Beta distribution.

Consider the block diagram in Figure 6-1, showing the general structure of a
communication channel. The set of all possible messages! M are mapped to a set of

length-n codewords, denoted by X" in the figure. The channel has a known statistical

'With no loss of generality assume the messages are the set of index numbers; M =
{1,2,3,..., M}
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Message p(ylz) Estimate

of message

Figure 6-1: Block diagram of a general communications system.

transformation relating input symbols to output symbols, shown here as X" — Y™",
which we assume to be memoryless; i.e., each symbol transmission is independent of
all other transmissions. The received codeword Y" is mapped, via some deterministic
decision rule, to an estimate of the transmitted message, m. Therefore the probability
of error for message m is defined as Pr(m # m),m € M. The maximum error

probability within the set of all messages is then max Pr(m # m).
me

We refer to a code that maps M messages to codewords of length n, as a (M, n)

code. The rate of transmission of a (M, n) code is defined as

R= 1°g;M , (6.1)

and is referred to as being achievable if the maximum error probability goes to 0 as
n — oo. The capacity of the channel is defined as the supremum of all achievable

rates.

For most elementary communication channels, such as discrete memoryless chan-
nels or Gaussian channels, it has been shown that the channel capacity is equal to
the maximum mutual information between the input and output symbols, where the

maximization is over all possible distributions on the input [30]:

C =max I[(X;Y), (6.2)

p(z)

with the mutual information given by I(X;Y) = [[, ,,p(z,y) log, (p?ngg)) dxdy.
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Figure 6-2: A block diagram representation of an atmospheric optical communication
link using a coherent detection receiver.

6.1 Capacity of an Atmospheric Optical Link with

Coherent Detection

Consider the simplified block diagram of a near-field atmospheric optical communica-
tion link employing a coherent detection receiver, shown in Figure 6-2. X(t), denotes
the complex time modulation on the transmitted optical wave with an average power

constraint of P; i.e.,

E(IX@®)f] =P, te[o,T]. (6.3)

Correspondingly, Y (¢) represents the received waveform after optical detection. The
spatial pattern of the transmitted waveform is assumed to be ®(p), and ¢(p’) is
the local oscillator spatial field. 7 is the maximum eigenvalue of the atmospheric
propagation kernel representing the power loss during atmospheric propagation and
Z(t) is the local oscillator shot noise in coherent detection, which is a stationary, zero-

mean, complex white Gaussian noise process with independent, identically distributed

hw,
2ne °

real and imaginary parts, each with double-sided power spectral density Nf =
The filter h(t) is a bandlimiting filter with bandwidth W.

Assume 7 is known both at the transmitter and receiver ends. Then the capacity

of the channel shown in Figure 6-2 is the maximum of the sample mutual information,

i(X, Y|n) / / (z,y|n) log, ( (-73777) yl(z)]ﬂ)) dydzx , (6.4)

which is the well known capacity of a band-limited complex Gaussian channel with
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average input power constraint Pn [30]:

Pn _
Cr = 2W log, (1 + 2N0W> bits / second. (6.5)

X in (6.4) is the transmitted symbol over [0,7] and Y is the corresponding received
symbol. The capacity in (6.5) has subscript “I” to emphasize that this capacity is

“instantaneous”; i.e. for a particular realization of 7.

This capacity result suggests that if n were constant for all time and known to both
ends, the transmitter would simply use a codebook suitable for a transmission rate
R < C, which would yield arbitrarily small probability of error as t — co. However,
due to the evolution of turbulent eddies and the drift effect caused by winds, the
turbulent state of the atmosphere will alter over long time intervals, changing the
value of 7 as well. Therefore the instantaneous capacity cannot be achieved over long
periods of time. A more insightful measure of capacity is to consider the long term

average of the instantaneous capacities; i.e.

Cp = lim (foT' Cr(t;n(t) dt) , (6.6)

T'—o0 T

where 7(t) appears as a parameter of Cy(t) to emphasize that the time dependent
changes of the instantaneous capacity are due to the changes in the power coupling
between the transmitter and the receiver. Now, given the knowledge of 7(t) for all
time, the transmitter generates a codebook for each distinct value of n(t) and encodes
a symbol over all time intervals in which 7(¢) takes the same value, hence achieving
the instantaneous capacity at every time instant ¢t. Then, as 7" goes to infinity, the

capacity of the channel becomes Cg. If n(t) is assumed to be an ergodic process?,

?In most general terms, if the limiting time-average properties of the sample outcomes of a
random process are equal to the limiting ensemble-average properties of the random process, with
probability 1, then the process is called ergodic. See [31].

120




then Cg will be equal to the ensemble average of the instantaneous capacity, i.e.,

Cp = lim E, [Cy(t)] (6.7)
= 2W/11 1+ il (n)dn bits/seconds (6.8)
= | log v ) P dn : :

It is worthwhile to mention that the ergodic capacity Cg is equivalent to the max-
imizing the conditional mutual information 7 (X , Yln) subject to an average power
constraint on the input.

When the channel bandwidth W is sufficient to ensure that EN}Z_W <1, Cg

simplifies to the power-limited result

P
Cg =~ A 7 logy e . (6.9)

Therefore, in this regime of operation, the capacity is linearly proportional to the
input power and average of the maximum eigenvalue. The lower bounds on 7 derived
in Chapter 3 suggest that although establishing a link geometry with larger free-
space Fresnel numbers will increase the ergodic capacity, there are diminishing returns
to such an approach. Therefore, for links operating deep in the near-field regime,
increasing average input power rather than the free-space Fresnel number may prove
more rewarding in terms of capacity.

For a link that is not sufficiently broadband to enjoy power-limited capacity, ob-
taining its ergodic capacity requires the knowledge of the probability distribution of 7.
In the absence of this knowledge we derive bounds to the capacity, using the integral
expression in (6.8). It is possible to obtain tight bounds by just imposing a mean
constraint on 7, hence we resort to the Markov moment matching theorem with a

single constraint:

Lemma 6.1.1. Let Q(n) be a two-times differentiable and strictly convez function’
on the closed interval [a,b]. Also, let V(p(n); M) denote the set of all probability

distributions on [a, b] which satisfy

3. . 92Q(n)
Le. =50 >0
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/ np(n)dn =17, (6.10)

where a <7 < b. Then, the minimum value of the integral fab Q(n) p(n) dn is achieved
by a unique distribution® p,,i(n), which has all its mass concentrated at n = 7.
Likewnse, the mazimum value of this integral is attained with a unique distribution

P(N)maz, which has mass concentrated at the two end-points, n = a and n = b.

Cr(n) = 2W log, (1 + ZJ\IZ)WI,V) in (6.8) is twice differentiable, and strictly concave;
82Q(t)

5=~ < 0,Vn € [0,1]. Thus applying Lemma 6.1.1 to —Cj(7), we conclude that

i.e.

the distribution of 7 which yields the lowest capacity is a two-impulse distribution
with impulses located at n = 0 and n = 1. The probability density function for 7 is
then

Pmin(m) = (1 =7)6(n) +Mo(n—1) . (6.11)

The resulting lower bound on the ergodic capacity is

Ccim™ — oW log, (1 + ) : (6.12)

2NoW

Not surprisingly, the maximum capacity is achieved when there is no fading®; i.e.

pmaa:(n) = 6(77 - ﬁ) : (613)

The corresponding upper bound on ergodic capacity is

P7
clme®) — oW | 1 . 6.14
E 082 ( + ZNOW) (6.14)

The normalized difference between these ergodic capacity bounds and zero trans-
mission loss capacity, i.e. 9%”1—77—’1532, are plotted versus the free-space Fresnel number
for moderate turbulence in Figure 6-3 and for strong turbulence in Figure 6-4 when a

phase-compensated focused beam and the maximum-eigenvalue eigenfunction of the

41f Q(n) is convex, but not strictly convex, then there may be multiple distributions in V(p(n); 7)
that achieve the maximum and minimum values given with ppaz(n) and pmin(7) respectively.
5The upper bound on capacity also follows from Jensen’s inequality.
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average kernel are used as the transmitter spatial field patterns.

With this normalization, the lower-bound plots correspond to one minus the av-

erage power coupling for the field in consideration, while the upper bound plots
log, ;:1—!——’7—2150—‘”)

loga (14575 )
very rapidly in the near field, regardless of the distribution of 7, links operating in

are 1 — Because the mean of the maximum eigenvalue approaches 1
the near-field with moderately large free-space Fresnel numbers achieve near zero-
fading ergodic capacity. Figure 6-3 suggests that the use of a phase-compensated
focused beam in mild turbulence will result in 99% of zero-loss ergodic capacity with
Dy, > 25, while the maximum-eigenvalue eigenfunction will fall in this range when
Dy, > 5. The results for strong turbulence indicate that the ergodic capacity will lie
within the 99-percentile of the zero-loss capacity with adaptive optics if Dy, > 16,
while the maximum-eigenvalue eigenfunction requires Dy, > 33 (not shown in plot).
Note that, because the average power coupling given by any sub-optimal field is a
lower bound on 7, the lower bounds obtained for these sub-optimal fields are also
lower bounds on the ergodic capacity when the maximum-eigenvalue eigenfunction
is used. Thus, with the maximum-eigenvalue eigenfunction used at the transmitter,
the ergodic capacity is guaranteed to achieve the 99-percentile for geometries with
free-space Fresnel numbers no larger than 5 in mild turbulence, and 16 in strong

turbulence conditions.

Achieving ergodic capacity requires full aprori knowledge of n(t) and the ability to
encode and decode over many atmospheric turbulence states, which are not feasible
conditions in some cases. An alternative measure of capacity is therefore the highest

data rate at which reliable communication is possible with probability 1 — poyr, i.e.,

Pr(Cour > C1(n)) = pour , (6.15)
which is equivalently,
(2*‘”"2w _ 1) 2NW
Prin< P = pour , (6.16)
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Ergodic capacity bounds with adaptive and non-adaptive tran smission methods
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Figure 6-3: Bounds on the percentile distance to zero-loss channel capacity when the
maximum-eigenvalue eigenfunction is used as the transmitter spatial field pattern in
mild turbulence. Bounds are obtained via the phase-compensated focused beam and
maximum-eigenvalue eigenfunction of the average propagation kernel. The param-
eters values for the plot are P = 0.ImW , W = 1.8 GHz and N, = 2.5 x 107%°
W/Hz.
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Figure 6-4: Bounds on the percentile distance to zero-loss channel capacity when the
maximum-eigenvalue eigenfunction is used as the transmitter spatial field pattern in
strong turbulence. Bounds are obtained via the phase-compensated focused beam
and maximum-eigenvalue eigenfunction of the average propagation kernel. The pa-
rameters values for the plot are P = 0.1mW , W = 1.8 GHz and N, = 2.5 x 107'°
W/Hz.
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where Coyr is the outage capacity associated with the outage probability poyr. In
other words, with probability pout, the fade will be so deep that reliable communi-
cation at the chosen rate Coyr will not be possible. For all data rates higher than
Cour, the outage probability will exceed poyr, and for lower data rates, the outage
probability will be less than or equal to pour.

This definition is easily applied to the two-impulse distribution which yields min-
imum ergodic capacity for a given 7. For this distribution of 7, the instantaneous

capacity is 0 with probability 1 — 7. Thus for any data rate R satisfying

2W log, (1 + ) >R>0, (6.17)

2N W

there will be an outage with probability 1 — 7. Then the outage capacity, when 7 is

assumed to have a two-impulse distribution, is

2W 1Og2 (1 + WI;—VV) if PoutT Z (1 - 7]7)

Cout = (6.18)

0 ifp()UT<<1—ﬁ).

Thus, for a given free-space Fresnel number, the minimum outage probability that
yields non-zero capacity — and also the maximum capacity — is 1—7. Figure 6-5 plots
the minimum allowable outage probabilities for adaptive and non-adaptive commu-
nication schemes in moderate and strong fading conditions. It can be seen that there
is approximately an order of magnitude difference between minimum outage prob-
abilities for moderate and strong fading conditions when the maximum-eigenvalue
eigenfunction of the average kernel is used. The change in the minimum outage
probability is less for the phase-compensated focused beam. In strong turbulence
conditions, the minimum outage probability with the adaptive scheme is lower than
that with the non-adaptive scheme, however, in mild turbulence conditions, the non-
adaptive scheme yields appreciably lower minimum outage probabilities than what is
obtained with the phase-compensated focused beam. Nevertheless, because the mean
of the maximum eigenvalue approaches 1 asymptotically, for any outage probability

pour = € > 0, there exists a free-space Fresnel number threshold D, such that, any
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Minimum outage probability for two-impulse distribution vs. Qo
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Figure 6-5: Minimum outage probability that will yield non-zero capacity when 7
has the worst-case two-impulse distribution. The plots correspond to the phase-
compensated focused beam and the maximum-eigenvalue eigenfunction of the average
kernel. Both moderate and strong fading conditions plotted.

link geometry with a free-space Fresnel numbers in excess of D, will have an outage
capacity equal to that of a perfect transmission link.
If n is assumed to be Beta distributed, (6.16) yields an incomplete Beta function;
ie,
pout = 1 /no 2 (1—x) de (6.19)
6(av b) 0
where,
C,
(278 — 1) 2npw
770 = P )

(6.20)
and the two parameters for the Beta distribution are determined by the mean and
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variance constraints on 7. The shape of the Beta distribution varies dramatically
depending on whether it has poles at n» = 0 and/or n = 1. This leads to some
interesting behavior in terms of the outage capacity of the link. From (6.20), the
outage capacity increases as 7, increases. If the outage probability poyr is chosen
to be very small, then the Beta distributions with singularities at n = 0 will yield
the smallest outage capacity. Furthermore, as the variance is decreased, the outage
capacity will increase. However, as the outage probability is chosen larger, this trend
changes. In particular, the Beta distributions with singularities at n = 1 eventually
yield higher 7, values than those with no singularities because more of the probability
mass is concentrated around the pole at n = 1 (See Figure 5-2). Therefore, when
the outage probability is larger than a threshold value, the Beta distribution with
the largest variance (i.e. with poles at = 0 and n = 1) will yield the highest
outage capacity. This is not surprising given the following interpretation. Probability
distributions with small variances have most of the probability density concentrated
around their means, whereas densities with large variances are more spread out.
Thus, as the outage probability pour is increased, the threshold will vary only slightly
around the mean if the probability density has small variance, while the threshold
will sweep a much broader range if the distribution has large variance. That is to say,
if we can tolerate large outage probabilities, then a channel with larger deviations
from its mean will be able to support higher data rates on those rare occasions where
transmission is anomalously good. On the other hand, if we require transmission most
of the time (i.e. a small outage probability), then the channel with large fluctuations

will have to use a much lower rate to maintain a steady link.

Figure 6-6 is a plot of outage capacities, normalized to the perfect-transmission
capacity, for Beta distributed n with 7 = 0.99 and variance values in the range
5x 107° = 6 x 1073. For poyr < 0.014 the Beta distribution with no poles, thus
smallest variance, yields highest outage capacity. However, for poyr > 0.028, the
Beta distribution with the largest variance will achieve the highest outage capacity
and at poyr = 0.05, 7, is close enough to 1 that the outage capacity of this Beta

distribution is almost equal to that of a zero-loss link. Thus, the plots confirm that
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Normalized outage capacity for Beta distributed n vs. outage probability
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Figure 6-6: Outage capacity results for Beta distributed n with different variance

values. The outage capacity is normalized by zero-loss capacity; i.e. C—f&% is plotted.

larger variance may help improve the outage capacity when 7 is assumed to be Beta
distributed. Note however, that larger values of poyr, imply that there is a larger

probability of not being able to communicate reliably.
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Chapter 7

Discussion and Future Work

In this thesis, we have attempted to establish a better understanding of the perfor-
mance of atmospheric optical communication links operating in the near field power
transfer regime. Our efforts were concentrated in two areas: increasing our under-
standing of the first and second moment behavior of maximal power coupling due to
atmospheric propagation and using these results to obtain probability of error and
capacity bounds for near-field, atmospheric optical links.

Chapter 3 addressed the atmospheric propagation aspects of near-field communi-
cation. In particular, we considered the normal mode decomposition of the turbu-
lent atmosphere and utilized deterministic and adaptive input fields to obtain lower
bounds on the average of its maximum eigenvalue. One striking observation is the
rather invariant nature of the average power transfer of a focused beam in free-space,
the turbulent atmosphere, and when all phase distortions are hypothetically assumed
to be eliminated. Applying phase compensation to a focused beam which maximizes
on-axis power density, yields slight improvement over other focused beam results. In
mild turbulence conditions, the maximum eigenvalue of the average kernel yields high-
est average power coupling after the maximum eigenvalue of the log-amplitude-only
average kernel, yet all bounds converge towards 1 much slower than the free-space
maximum eigenvalue. A similar gap is present in strong turbulence conditions. How-
ever, deterministic fields appear to have a clear disadvantage over phase-compensated

input fields in strong turbulence. The convergence of the maximum eigenvalue of the
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average kernel and that of the log-amplitude-only average kernel towards 1 is appre-
ciably faster when unequal apertures are considered. However, the convergence is
still not comparable to that of the free-space maximum eigenvalue. Future work in
this area might concentrate on obtaining the eigenfunction structure of the phase-
compensated average kernel, thereby establishing a more rigorous understanding of
the ultimate average power transfer benefits from phase compensation that maximizes

the on-axis power density.

Another area in need of further attention is the second moment results for average
power transfer. Although an expression in the form of a four dimensional integral is
obtained in this thesis, computational resources have proven insufficient to calculate a
valid numerical result from this expression. Much of the work that follows, however,
assumes knowledge of the variance for n. Therefore future work should focus on
simplifying the variance expression to facilitate a numerical solution. Furthermore, a
number of numerical challenges have been encountered in the process of computing
the phase compensated power transfer results. Additional work in numerics might

resolve some of these challenges.

The second part of this thesis treated the communication aspects of atmospheric
optical links. Chapter 4 developed unconditional error probability bounds for com-
munication links with OOK or PPM modulation and coherent or direct detection
receivers. Employing the lower bounds on the average of the maximum eigenvalue
and assuming a variance is obtainable, we have shown that the distributions achieving
the best and worst-case error probabilities are two-impulse distributions, which yield
drastically different performance. Limiting the set of possible distributions to uni-
modal distributions with prescribed mean and variance values, we slightly improved
the bounds on error probability. However, the most relevant conclusion from this
analysis is that the unconditional probability of error of a near-field communication
link does not depend as much on the particular shape of the distribution, as it does
on the overall deep-fade probability. Therefore, some statistical characterization of
deep-fade events in near field propagation could lead to much tighter probability of

error bounds, hence a more precise characterization of binary communication per-
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formance. Such a statistical characterization of deep-fade events could be pursued
experimentally, by relying on the ergodicity of the time dependent changes in frac-
tional power transfer. However, the need for precise aiming and focusing onto the
receiver aperture in near field communications is a major deterrent to performing

such experiments.

One distribution that is of particular interest, due to its convenient analytical
properties is the Beta distribution. Chapter 5 assumed the maximum eigenvalue is
Beta distributed and compared the resulting unconditional error probabilities to the
bounds obtained in the preceding chapter. In this chapter we showed that, if 7 is
Beta distributed with some known mean, then the unconditional probability of error
results transition from the worst-case bounds towards the best-case bounds as the

variance is decreased from its maximum towards zero.

In Chapter 6 we analyzed the capacity of an atmospheric optical link with a
coherent detection receiver. In particular, we considered the ergodic capacity and the
outage capacity of such a link. We concluded that a mean constraint is sufficient to
obtain an accurate estimate of the ergodic capacity of the channel by deriving tight
lower and upper bounds which rapidly converge to each other with increasing free-
space Fresnel numbers. The minimum ergodic capacity distribution was shown to be
a two-impulse distribution with one impulse at 7 = 0 and the other at n = 1 and
the outage capacity was derived for this distribution. We also considered the outage
capacity when 7 is Beta distributed and concluded that Beta distributions with large
variance values can yield higher outage capacity than Beta distributions with smaller

variance and can approach zero-loss outage capacity at high outage probabilities.

A natural extension to the work in Chapter 6 is to consider the capacity of direct
detection links. If we assume that the detectors are operating in the shot-noise limited
regime, then given n, the capacity of the channel is the capacity of a Poisson channel,
for which an analytical expression has been derived in [32, 33]. However, the expres-
sion for the capacity of a Poisson channel cannot be directly structured to fit into the
context of a moment matching problem. Therefore, the tools developed in this thesis

do not apply to shot-noise limited direct detection. Nevertheless, the capacity of a
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direct detection link and its comparison to coherent detection links remain a topic of

interest for future research.
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Appendix A

One-Dimensional equivalents of

atmospheric propagation results

This appendix gives a brief summary of the two-dimensional propagation medium

(one-dimensional aperture) results. The free-space fresnel number in this geometry is

d,d
Dy, = ;LQ . (A1)

Kolmogorov’s development of a model for atmospheric turbulence in a 3-D prop-
agation medium [13] is paralleled for a two-dimensional propagation medium, from

which the Kolmogorov turbulence spectrum is found to be
®y(u) = 0.056 C2u=3/3 | w>0, (A.2)
for constant turbulence profile strength C2(z) = C2.

The mutual coherence function can be derived following Ishimaru’s derivation of

the mutual coherence function [34], which gives the following covariance function
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expressions for the log-amplitude and phase fluctuations:

2 —
K, (¢, p) = 0.2247k*L CQ/ / 3 cos(d'u) sin (%) dudz, (A.3)
2 —
Ky 50, p') = 0.2247k*L 02/ / /3 cos(d'u) cos (u_z(%r_z)) dudz, (A.4)
2,01
K, 40, p)=0. 1127rk2L02/ / 3 cos(d'u) sin(%ii)) dudz, (A.5)

where d' = |z p’ + (1 — 2) p|. Consequently, the log-amplitude variance is

02 = K,x(0,0) = 0.067 k™/° L'/6 C2. (A.6)

The wave structure function for Kolmogorov-spectrum turbulence is given as
1
D(p, p) = 2.94 k2 C2 L/ |sp' + (1 —s)p”* ds , (A.7)
0

which can be analytically evaluated to

sen (o’ / 8/3—3 n 8/3
b 1 1095k CT%L( g (p>|p|(p/_p)g (o) 10l*/?) it o as
p,p) = -
2.94 k2 C2 L |p|>/3 if p=p,

where sgn(z) is the signum function defined as

1 ifz>0
sgn(z) =¢0 ifz=0 (A.9)
-1 ifz<0.
\

Note that, in (A.8), the limit as p — p/, gives value of the function at p' = p ,Vp €
R, and p' € Ry. Thus, D(¢/, p) is continuous.

With the equal aperture assumption, the terms in the wave structure function can
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be regrouped such that

(]

1
D(z',z) = 202.539 02 DS/S/ sz’ + (1 — s)z|>3 ds (A.10)
0

where d, is the aperture size and zd, = p, ¥'d, = p' are the normalized coordinates;
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Appendix B

Modes of a unimodal distribution

with given mean and variance

Let X be a unimodal distribution on [0, 1] with mode v, mean my and variance 0%.
Then, via Theorem 4.3.2, there exist independent random variables U and Z, with U
uniform on [0, 1], such that UZ has the same distribution as X — v. It immediately

follows from the support condition on X that,
0<v<l. (B.1)

We now look at the problem somewhat backwards. The set of all unimodal distribu-
tions for X with mode v, given the support, mean and variance constraints for X,
is equivalently described with the set of all probability distributions for Z satisfying
the support, mean and variance constraints specified in equations (4.80a) — (4.80d) in
Chapter 4. Therefore, v can be any real number in the closed interval [0, 1], so long
as there exists a distribution for Z on [-v,1 — v|, with mean given by (4.80b) and
variance by (4.80c).

Our main interest here is to determine the interval in which v must lie, given
mean and variance constraints on a unimodal X. To this end, we refer to a the-
orem presented in [23], which specifies the existence conditions for a distribution

with prescribed moments. A simplified version of this theorem, combined with some
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corollaries, is presented below:

Lemma B.0.2 (Markov). s; is the mean and s, 1s the mean-square of some prob-

ability distribution on [v,1 — v] if, and only if,
S% S S92 (BQ)

and

(1-2v)s1+v(l—v)—s22>0. (B.3)

From the lemma, it immediately follows that Z is a valid random variable if, and

only if,

and
(1-20)mz+v(l—v)—E[Z*] >0. (B.5)
The first condition applied to (4.80c) gives
mx —V3ox <v<mx+V3ox, (B.6)
and the second condition leads to
v(2mx —1)+2mx —3E [X?] > 0. (B.7)

This expression can be simplified to

, 3 [X?] — 2my

T— (B.8)
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for mx > 0.5, and
3E[X? -2
y < X = 2 (B.9)
2mx -1

for mx < 0.5. In near-field applications we are interested in mx > 0.5, thus we
assume (B.8) is true. Then the three conditions on v, presented in (B.1), (B.6) and
(B.8), are the necessary and sufficient conditions on v to ensure X is an appropriate
unimodal distribution on [0, 1] with the prescribed first and second moments. If all
three intervals do not have an intersection, then there is no unimodal distribution for
X on [0,1] which will have the prescribed mean and variance. However, if the three

conditions do indeed have an intersection, the interval in which v must exist is

3F [X2] - 2mx
2mx -1

max{O,‘ﬁ—\/iax, } §u§min{1,mx+\/§ax} ) (B.10)

This expression is presented in (4.99) in Chapter 4 with X replaced by 1, mx by 7,
and E[X?] by n2.
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