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Abstract

This thesis develops a physiological-control model of the spinal processing of descend-
ing neural kinematic motor control signals in the bullfrog (Rana Catesbeiana). The
model encompasses the full nonlinear skeletal dynamics of the femur/tibiofibula/tarsus
system in the horizontal plane, its muscles, and spinal monosynaptic stretch reflexes.
In addition, it incorporates recent findings of muscle synergies encoded within the
spinal cord and demonstrates that these muscle synergies can be reorganized into a
set of Kinematic Control Synergies (KCS), which have simple, orthogonal kinematic
functions. Activating these KCS with simple pulse-like signals allows for the forma-
tion of a wide range of behaviors. It is hypothesized that such signals might come
from higher-level Central Nervous System (CNS) structures such as the brainstem or
cerebellum. Furthermore, KCS present a simple mechanism whereby sensory infor-
mation could be used by spinal interneurons to recruit the muscle groups required
to correct limb movement in real-time, or to learn the correct combination of muscle
groups required to perform a movement correctly. Lastly, the experimental findings of
convergent, position-invariant ankle force fields observed in the frog are discussed in
light of the muscle synergies encoded within the spinal cord and KCS. It is concluded
that the control of ankle movement using linear combinations of KCS-derived ankle
force fields, may be equivalent to movement control via linear combinations of con-
vergent, position-invariant ankle force fields. Further research, however, is required
to concretely establish their equivalence.

Thesis Supervisor: Steve G. Massaquoi
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Many reasons exist for studying the role of the spinal cord in movement control.

First and most importantly, in clinical applications, an accurate model of the spinal

processing of descending Central Nervous System (CNS) motor commands may sug-

gest treatments and rehabilitation strategies for patients with spinal cord injury (SCI).

Moreover, a functional understanding (both physiological and anatomical) of the

spinal cord may help advance the design and engineering of spinal prosthetic devices.

That is, with an accurate knowledge of the spinal motor system, spinal prosthesis

may be designed to take advantage of the underlying structure of the system - lead-

ing to a reduction in device complexity, an improvement of device function, and an

increased feasibility for real-time processing of physiological signals. For example, it

may become possible to design spinal prosthetic devices that perform the functions

of damaged spinal centers externally in a real-time physiological manner, effectively

compensating for their damage by restoring lost motor function.

Furthermore, a detailed model of the spinal processing of descending CNS motor

control signals may suggest methods whereby kinematic intent information can be

inferred from easily accessible physiological signals such as EMGs 1. These kine-

matic intent signals could then be used as inputs to neurally driven prothetic limbs

lelectromyogram (EMG): the tracing of the electrical potentials (voltages) measurable at the skin

surface as a result of the electric currents generated within muscles during their contraction.
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and other robot motor control systems, which would behave in essentially the same

fashion as real limbs from the patient's perspective since they would be controlled

physiologically. Finally, an understanding of how the body controls movement will

suggest principles for the design of robot motor control systems that are both well

suited to be driven by brain-like devices and able to afford flexible, adaptable, and

robustly stable environment interactions.

1.1 Overview of Spinal Cord Function

Although within the field of motor control the spinal cord is often thought of as

being only a conduit for signals from the periphery of the body to the brain, or

vice versa, this simplified interpretation is far from complete. Embedded within

the spinal cord are circuits capable of producing a variety of kinematic adjustments

and regulatory physiological functions in response to sensory and descending nerve

activation. For example, even after having transected the cord below the brain stem,

many basic behaviors can still be elicited via intraspinal or cutaneous stimulation.

These include:

1. Walking movements;

2. Withdrawal Reflexes (drawing limbs away from painful stimuli);

3. Reflexes that stiffen the legs to support the body against gravity;

4. Reflexes that control local blood vessels and gastrointestinal movement.

The presence of these responses in the absence of higher-level motor structures

serves to illustrate the hierarchical structure of the body's neurally controlled motor

systems. As illustrated in Figure 1-1, the body's motor systems are organized into

three primary levels - spinal cord, brain stem, and primary motor cortex - which are

connected both serially and in parallel. Along with the connections present between

the primary levels, each level is directly influenced by two independent subcortical

systems, the basal ganglia and the cerebellum.
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Figure 1-1: Parallel and serial connections between the body's neurally controlled

motor systems. Note that the corticospinal tract and the gamma fusimotor system

(not shown) are absent in the frog.

21

I

Primary motor"-
cortex

AL A Nonprimary
motor cortex



In terms of their effects on movement control, primary motor levels can be thought

of as providing increasingly higher levels of motor abstraction beginning at the spinal

cord and ending with the primary motor cortex. That is, the spinal cord performs

many necessary physiological functions and integrates somatosensory information and

descending nerve activation as a variety of spinal reflexes and movements. For ex-

ample, diagonal stepping of all four limbs and galloping has been observed in the

spinal cat when its feet are placed on a moving surface [15]. Similarly, the spinalized

frog is known to display a variety of movements and complex kinematic adjustments

including the rostrocaudal (front to back) wipe and scratch reflex [13] as a result of

cutaneous or intraspinal stimulation.

At the level of the brain stem, spinal functions are integrated further into a variety

of automated movements that control posture and locomotion. Likewise, several in-

terconnected areas of the cortex that project to the descending systems of the brain

stein and to the spinal cord initiate and control our more complex voluntary move-

ments. Such observations illustrate how increasingly complex behaviors are formed

by the motor system, and together suggest that one of the roles of descending nerve

stimulation is to recruit or inhibit these "prepackaged" motor reflexes during the

coordination of movement.

An important observation to be made from Figure 1-1 is that in order for any motor

level to achieve direct control of any of the body's muscles (not including the muscles

of the head and neck), that level must "go through" the spinal cord. Therefore the

types of primitive motor functions encoded within the spinal cord directly influence

how supraspinal levels coordinate and execute effective control of the body's muscles

and resulting skeletal dynamics. That is to say, in cases where desired movements

are realizable as a combination of spinal motor primitives, the corresponding control

might be reduced to the sequential recruitment of a small number of spinal functions.

However, in the opposite case, supraspinal levels would need to control individual

muscles directly to achieve the desired movement.
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1.2 Spinal Motor Control in the Frog

In an effort to begin to understand the role of the spinal cord in the control of

locomotion, the spinal cord/hindlimb system of the bullfrog (Rana Catesbejana) has

been studied extensively. In general, the frog is chosen for the following reasons.

First, the frog's spinal cord contains a subset of the full range of circuits present

in the mammalian cord. For example, the gamma fusimotor system is completely

absent in the frog, as is the corticospinal tract [13] (see Figure 1-1). Second, the

frog's behavioral repertoire is much simpler. Therefore, an understanding of the frog's

spinal circuits may yield insight into some of the basic circuits within the mammalian

cord as well as an explanation for some locomotive implications of several spinal

pathologies.

1.2.1 Spinally Encoded Ankle Force Fields

In order to gain insight into the structure and function of spinal circuits. Giszter,

Bizzi and colleagues examined the organization of the ranine spinal cord by describing

the movements evoked by electrical microstimulation of the spinal cord [13]. In these

experiments, microelectrodes were placed in the lateral and intermediate neuropil

zone, 500-1000 ,im in depth and 200-500 pnm from the midline. Stimulation of the

spinal gray matter (central part of the cord) with 300 mrscc trains of anodal current

impulses resulted in the activation of a set of muscles in the ipsilateral hindlimb.

Throughout the experiment, the hindlinib configuration was fully constrained by a

pelvis restraint and a force sensor so that no limb motion resulted from microstimu-

lation (i.e. muscles were kept in isometric conditions). The isometric force produced

by these activated muscles was then measured at the ankle with a force transducer.

The resulting ankle forces rose to a plateau level and then declined to a baseline

level at a variable period (300 ms to 2 see) after the termination of stimulation.

The ankle was then moved to a new configuration, the same site in the spinal cord

was stimulated, and the evoked ankle force measured. As summarized in Figure 1-2,

this procedure was repeated for several configurations of the ankle and the resulting
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a b
12 an

Figure 1-2: Movement characterization by the measurement of isometric force fields.

a) The ankle of the frog was fixed in different locations of the workspace, indicated

by the filled circles. Muscular actions were evoked by electrical stimulation of the

spinal cord and the force produced by the pattern of muscle activations was then

measured. b) The collection of forces measured at different ankle locations. This set

of positiondependent forces is termed a force field. (Reprinted with permission from

[1])

pattern of position-dependent forces summarized as a force field.

The resulting spatial force fields showed convergence to an equilibrium point, while

the equilibrium paths calculated from the force fields with the leg clamped predicted

free limb motion in 75% of the trials. These equilibrium paths, known as the limbs'

"virtual trajectory", are defined as the trajectory of positions at which the leg would

experience no net forces. More significantly, this is also the trajectory of spatial

locations toward which the limb endpoint would be attracted at any instant in time if

the limb were unconstrained. The observation that free limb movement was predicted

by these virtual trajectories in 75% of the trials is, therefore, consistent with the

hypothesis of Hogan et al. ([19],[20]) that movement of the limbs' equilibrium could

be used by the CNS to generate postural transitions and movements. When the force

fields were separated into active and pre-stimulation (passive) components, the active
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force field responses showed a fixed position equilibrium. These active force fields were

modulated in amplitude over time, although the balance and orientation of forces in

the pattern remained fixed. The active fields were further divided into convergent

and parallel fields. Convergent force fields (CFFs) were observed in deafferented

preparations and found to be similar among different frogs.

It was concluded in this study that the small number of fixed-pattern force fields,

<)i(x, y), elicited from intraspinal stimulation might be viewed as movement primi-

tives. That is, the repertoire of movements performed by the spinalized frog could

be reconstructed as simple combinations of these fixed-pattern force fields. Further

experiments with intraspinal NMDA iontophoresis [37] [36], cutaneous hindlimb stim-

ulation [42], and supraspinal stimulation [7] have provided further evidence for the

existence of movement primitives encoded within the spinal cord.

Subsequent studies by Mussa-Ivaldi et al. [24] and Lemay (t al. [31] found that the

simultaneous co-activation of two spinal sites in the frog resulted in a force field equal

to the vector sum of the two individual fields. Figure 1-3 illustrates this finding. Two

examples of force fields, a , b, evoked by stimulation of different sites in the spinal

cord of a frog are shown. The force field in c is that predicted by a simple summation

of the force vectors measured at each position in the separate force fields shown in

a and b, while the force field in d is that actually produced by costimulation of the

two spinal sites illustrated in a and b. The force field produced by costimnulation of

two sites in the spinal cord was very similar to the force field predicted by a simple

summation of each separate force field (compare c and d).

More recently, Lemay et al. demonstrated in [31] that the magnitude of the in-

dividual fields also scaled linearly with activation over the low-force range studied 2

Taken together these results imply that the active force vector (ankle force field mi-
21t should be rioted that because the force range studied in [31] was constrained to values less

than 20 % of the maximum muscle force, it is possible that this finding does not hold for larger

variations of activation.
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Figure 1-3: Summation of force fields by costimulation of sites in the frog spinal cord.

(Reprinted with permission from [1])

nus passive field evaluated at a given workspace location) recorded during a given

response, F(x, y, t), can be written as:

N ~C,(t)

F(x, y, t) N (x, y)c (t) ' 1(x, y) .. .'N(x, Y)

CN(t)

F(x, y, t) = 4(x, y)c(t) (1.1)

where the pair (x, y) is the cartesian coordinate of the ankle, each (i(x, y) is a vector

corresponding to the ith primitive force field evaluated at the current ankle location

(((x, y) is the matrix whose columns are the primitive force fields), and c'(t) is

an amplitude scaling waveform for the ith primitive field. The vector of scaling

waveforms, c(t), has length corresponding to the number of primitive force fields,

N. However, it is not yet understood how the spinal stimulation signals, s(t), are

converted into the primitive force field activation signals, c(t). Additionally, no claim

is made in these studies as to how the signal c(t) is actually generated by the the
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nervous system. The number of primitive force fields, N, typically varies from one

study to the next but is in general small. Theoretical studies by Mussa-Ivaldi et

al. [22] [23] have shown that such summation and scaling of a few force field types

could be used to generate a large range of force field structures and might underlie

movement synthesis.

Kargo and Giszter [27] have confirmed that both force-field summation and scaling

occur during real limb behavior by examining the organization of correction responses

that circumvent path obstacles during hindlimb wiping trajectories. Correction re-

sponses were triggered in real-time during wiping by cutaneous feedback, signaling

obstacle collision. The correction response activated a force field that summed with

an ongoing sequence of force fields activated during wiping. Both impact force and

time of impact within the wiping motor pattern scaled the evoked correction response

amplitude. However, the duration of the correction response was constant and similar

to the duration of other muscles activated in different phases of wiping. Their results,

thus, were consistent with the idea that both force field summation and scaling occur

during real limb behavior, that force fields represent fixed-timing motor elements (i.e.

that force fields can be shifted in time but the timing within the field remains fixed),

and that the combination of these motor elements is contingent on the interaction of

afferent feedback and central motor programs. The observation of constant duration

corrective responses can be understood as an additional constraint on Equation (1.1)

where each of the components c(t) is taken to be of a fixed length of time. The

time shifting of the jth primitive force field could be interpreted as a corresponding

time-shift of the fields activation waveform,ci(t (Z) i.e. cj(t) =-> c(t - tshift).

Lemay et al., in [31], also verified what had been hypothesized by Galagan et

al. in [12], that the summation of force output is achieved via the summation of

the individual drives to muscles (i.e. rectified and integrated EMG). EMGs of each

muscle at each position were rectified and integrated over time. The rectified and

integrated EMGs produced by activation of the individual spinal sites (for each muscle
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at each position) were then summed and compared with the rectified integrated EMGs

(of each muscle at each position) produced during costimulation of the spinal sites.

The average correlation coefficient for the 16 costimulation stimuli pairs studied was

0.87 ± 0.07.

Mathematically, the observation made by Lemay et al. can be stated as follows:

let mi(t)A and mi(t)B represent the rectified integrated EMG of muscle i resulting

from stimulation of spinal sites A and B respectively. Then, the findings of Lemay et

al. imply that the rectified integrated EMG of muscle i during costimulation of sites

A and B, mi(t)A+B, is

mi(t)A+B = mi(t)A + mi(t)B (1.2)

Or alternatively, written in vector form

mil(t)A+B Ml(t)A Mi(t)B

m(t)A+B = = + =m(t)A + m(t)B (1.3)

Mn(t)A+B Mn tA Mn(t)B

where n represents the number of muscles being considered. Note that because of

the experimental protocol used in [31], Equation (1.3) holds at each of the workspace

locations where the ankle was held fixed.

Given the linearity of ankle force field summation verified by Mussa-Ivaldi et al.

[24], the observation made by Lemay et al. suggests that stereotypic force patterns,

or primitives, are likely to be associated with stereotypic EMG patterns. Such a char-

acterization of stereotypic ratios of muscular activations are termed muscle synergies.

More importantly, the above observation of EMG summation during costimulation of

two spinal sites has an interesting suggestion for how EMG is apparently converted

to ankle force by the musculoskeletal system. To see this, let us denote abstractly the

functional mapping from EMG to ankle force by F : m(x, y, t) -+ F(x, y, t). Then

the observed linearity of ankle forces suggests that
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FA+B = FA+FB=(mA+B)

r (mA+B) = F(MA) + (MB)

F(mA + mB) = F(mA) - FUmB) (1.4)

where for notational convenience F(x, y, t) and m(x, y, t) have been written as F and

m respectively. Moreover, Lemay et al. demonstrate in [31] that the magnitude of the

individual fields also scaled linearly with activation over the low-force range studied.

This implies that

FeA = cFA (1.5)

where c is an arbitrary positive constant, and A is the spinal site being stimulated.

Equation (1.5) states that if the activation at a particular spinal site is scaled in

amplitude by a factor of c, then the corresponding ankle force also increases by the

same factor. If one assumes that EMGs also scale linearly with spinal activation, i.e.

mcA(t) = cmA(t) (1.6)

Equations (1.4) and (1.5) have a very important implication. Here c is the intensity of

stimulation at spinal site A. If Equation (1.6) can be shown to be true experimentally,

then Equation (1.5) implies that

FeA = r(MwA)

F(cmA) = cFA = cF(mA)

--->(cmA) = cL'(mA) (1.7)

Together Equations (1.4) and (1.7) demonstrate that the mapping relating EMGs

and ankle forces must necessarily be linear (in the strict mathematical sense) over

the range of activations considered in the experiment by Lemay et al..

This observation can be taken one step further by realizing that at each workspace

location the hindlimb joint angles and muscle moment arms were held fixed during

29



the experiments, and therefore the transformation from muscle forces to ankle forces

is also linear, i.e.

F = (J(6)T) 1 T = (J(E 0 )T)l-M(O0 )Fm (1.8)

where F is the force measured at the ankle, 0 0 is the vector of joint angles at the

current workspace location, J(E0) is the jacobian relating changes in ankle position

(x, y) to changes in the joint angles (6), T is the vector of joint torques, M(E 0 ) is

the matrix of muscle moment arms, and F' is the vector of muscle forces. Note that

both the jacobian and moment arm matrices are evaluated at the current workspace

location, so that at each location the transformation F' to F is indeed linear. The

effect of Equations (1.4) and (1.8) is that the mapping relating muscle EMGs to

muscle force, r', must be linear over the range of muscle activations studied in [31].

Given the known nonlinear relation between EMG and muscle force (described in

Chapter 2), the linearity constraint on F' most likely arises from the low force range

used by Lemay et al. in their experiments. That is, even though the transformation

from EMG to muscle force is actually nonlinear, over small variations of activation

it appears substantially linear. However, if Equation (1.6) is found not to hold, then

it is possible that spinal networks make the transformation from spinal activations

to muscle force appear linear, even though the transformation from EMG to muscle

force is nonlinear.

1.2.2 Spinally Encoded Electromyographic Motor Synergies

Recent experiments by Saltiel et al. and Tresch et al. [36] [42] have sought to

identify the existence of muscle synergies encoded within the spinal cord and to

quantify the ratios of muscular activation observed within a synergy. In particular,

by choosing to define a synergy as a fixed group of muscles whose activity scales

together, Saltiel et al. attempted to reconstruct observed EMG patterns from 12

hindlimb muscles as linear combinations of synergies. That is to say, in the case of j
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muscles and N synergies,

NwI N

m (t) = di (t) = di (t) wi di, wj,i ;> 0 Vi,

di(t)

m(t) = w ... WN

dN(t)

m(t) = Wd(t) (1.9)

where m(t) is the observed EMG vector, di(t) is the positive weighting coefficient of

the ith muscle synergy, wi is the ith muscle synergy, and wj,i e [0, 1] is the ratio of

activation relative to its maximum for muscle j within synergy i. By performing a

gradient descent on the error between the reconstructed and actual EMGs recorded in

these experiments, Saltiel et al. found a set of seven synergies whose linear combina-

tions accounted for more than 90% of the variance of the pooled EMG data. Figure

1-4 illustrates the reconstruction of a sequence of rectified, averaged, and normal-

ized EMGs reconstructed as a linear combination of the seven extracted synergies.

The experiments of Tresch et al. have a similar experimental paradigm except that

cutaneous stimulation was used in order to recruit muscle activations.

Although the above studies elicited EMG responses via two different stimulation

methods (intraspinal NMDA [36] and cutaneous stimulation [42]), it is interesting to

note that the synergies extracted with both methods were similar but not identical.

However, in [41], Tresch et al. demonstrated that the responses from spinal stimu-

lation could be well described in terms of the responses from cutaneous stimulation,

and vice versa. He also found that the relationship between cutaneous and spinal

responses appeared to follow the somatotopy of spinal cutaneous systems, such that

the response produced from stimulating a site in the spinal cord tended to be similar

to the response produced from stimulating the region of skin surface represented at

that site. These results support the idea that responses evoked from electrical micros-

timulation of the cord and cutaneous stimulation share a similar neural substrate.
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1.2.3 Unification of Primitive Ankle Force Fields and Spinally

Encoded Electromyographic Motor Synergies

Given that experiments characterizing both ankle force fields and EMGs arising

from intraspinal or cutaneous stimulation found the dimensionality of these to be

low, it is natural to ask if there is a direct relation between both Equation (1.1) and

(1.9). That is, whether the primitive force fields, q5(x, y), from Equation (1.1) can

be described in terms of the observed muscle synergies, wi, in Equation (1.9). Do

muscle synergies encoded within the spinal cord give rise to the small number of force

fields observed? To derive the relationship between the two, we begin with Equation

(1.8) below.

F(x, y, t) = (J(0)T )M(E)Fm

F(x, y, t) = (J(E)T)lM(E)r'm(t)

F(x, y, t) = (J(E)T )M(E)l'Wd(t)

F(x, y, t) = (J(E)T )M(O)pIWZ(s)c(t)

F(x, y, t) = @(x, y)c(t)

==> D(x, y) = (J(E)T)-M(E)I'WZ(s) (1.10)

where 4(x, y) and c(t) are indeed the same as that in Equation (1.1). The transfer

function matrix Z(s) maps the coefficients, c(t), from Giszter et al. [13] to the

coefficients, d(t), of Saltiel et al.. Z(s) therefore consists of n columns and m rows

where n is the number of primitive force fields, Di(x, y), and m is the number of

muscle synergies, wi. The relationship between c(t) and d(t) depends specifically on

whether the same number of spinal sites were being activated in both experiments,

and on the nature of the spinal circuits that the spinal stimulation recruited in each.

Because at this time it is not known how c(t) and d(t) are related, we will assume

that the number of primitive fields is equal to the number of spinal synergies so that

Z(s) is square. Additionally, for simplicity, it will be assumed that both the force field

and synergy experiments stimulated identical neural circuitry so that Z(s) equals the
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identity matrix. Therefore each spinally encoded muscle synergy has a corresponding

primitive ankle force field, and the signals c(t) and d(t) will be considered equivalent

(i.e. c(t) = d(t)).

Note also that in Equation (1.10) the linear mapping relating muscle EMGs to

muscle force, ', described previously has been represented here by its equivalent

matrix. Furthermore, note that F' must be diagonal since an EMG mi(t) only leads

to the production of force by muscle i. However, if Equation (1.6) is shown to be

false experimentally, F' may not necessarily be linear. In this case, the primitive force

fields, <P(x, y)j, from Equation (1.1) can still be described in terms of the observed

muscle synergies, wi, as

F(x, y, t) = (J(E)T)-M(E)exp(WZ(s)c(t)) (1.11)

where exp is now the experimentally derived mapping between m(x, y, t) and F(x, y, t).

Note that Fexp is now a vector valued function which takes an EMG vector m(t) =

WZ(s)c(t) and produces as output the resulting muscle force vector, F"'. Therefore,

by either Equation (1.10) or (1.11), the experimentally derived muscle synergies can

be transformed into their corresponding force field primitive.

1.3 Toward a Control Engineering Approach to

Spinal Cord Motor Control Function

1.3.1 Need for an Integrated Physiological-Control Engineer-

ing Model

In order to develop an understanding of how the experimental results outlined

above are related to anatomy and physiology of the frog, it is necessary to develop

an integrated physiological control model of the spinal/musculoskeletal system (the

physiological plant). Through the process of model development, it becomes necessary

to explicitly state the anatomical details being modelled along with their intended
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physiological function. Once all of the model's components have been implemented

and tested to ensure that the model mimics reality in an accurate manner, a number

of important hypothesis can be tested.

First, it will become possible to understand how the observed experimental findings

arise from the individual anatomical components of the spinal cord and hindlimb. For

example, how do the convergent force fields (CFFs) observed by Giszter et al. [13]

arise from the recruitment of individual muscles? Does activation of the Saltiel et

al. synergies lead to the production of these CFFs? Do the Saltiel et al. synergies

capture the entire range of kinematic behaviors that the frog performs? Along with

possibly providing answers to these questions, an integrated physiological model may

help to demonstrate that certain experimental results are only valid when certain

conditions hold, or suggest that the physiology of certain anatomic systems are not

well understood. Also, the failure of models to predict observed experimental findings

may suggest future experiments that must be carried out in order to gain a better

understanding of the spinal/musculoskeletal system.

From a control perspective, an integrated physiological-control engineering model

places the physiological system in a precise mathematical framework suitable for

system analysis and description in terms of stability, performance, efficiency, and

robustness criteria. Moreover, the results of such control engineering analysis can

be directly connected to the underlying motor physiology, potentially leading to new

insights into motor function and anatomy. Finally, a quantitative model of spinal

motor function may suggest treatment and rehabilitation strategies for patients with

spinal cord injury, or lead to advances in the design of spinal prosthetics.

1.3.2 Problem Statement

In this thesis, we develop and assess a physiological-control engineering model of

the spinal cord/hindlimb system of a frog which includes three skeletal segments,

twelve hindlimb muscles, and spinal reflexes. Using the synergy set derived in [36], it
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is demonstrated that effective kinematic control of the frog hindlimb can be achieved

using linear combinations of the Saltiel et al. muscle synergies. Moreover, the relation

between muscle synergies and convergent ankle force fields is explored.

Additionally, a new functional reorganization of the Saltiel et al. synergies is pre-

sented by which muscle synergies are combined to obtain a set of four simple, orthog-

onal Kinematic Control Synergies (KCS). Using KCS, hindlimb control is reduced

to the specification of four independent control signals specifying the azimuthal and

radial extent of the hindlimb on the horizontal plane. Surprisingly, even though a 7:4

reduction in dimensionality is achieved, it appears that both the observed kinematics

and recorded EMGs from intact bullfrogs during a variety of kicking tasks can be

closely reconstructed using only a set of simple pulse-like signals. It is also shown

that force fields generated from activation of the Saltiel et al. synergies and KCS

are convergent. Even with a reduced order muscle model, the KCS force fields show

neither a fixed-position equilibrium nor linear scaling with spinal activation. How-

ever, if our model is constrained to a small range of ankle forces, then it is consistent

with the linearity findings of Mussa-Ivaldi et al.. Because the output forces predicted

by our model scale as the square of the spinal activations, it behaves linearly over a

small range of ankle forces and spinal activations. Our model may also be consistent

with Giszter et al. in that the KCS force fields, when evaluated at their maximum

activation levels, are convergent and show a fixed-position equilibrium.

1.3.3 Thesis Outline

The main work of this thesis can be divided into two logical sections. First, an

accurate model of the spinal cord circuits and musculoskeletal components of the frog

hindlimb is developed (Chapter 2). Unknown model parameters are obtained via a

parameter estimation method (Chapter 3), and the accuracy of the model is assessed

(Chapter 4). The performance of the spinal/musculoskeletal model is assessed by

testing its ability to reproduce realistic limb kinematics when driven with EMG signals

recorded in vivo from intact bullfrogs during kicking tasks. Second, a reorganization
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of the synergies identified by Bizzi et al. into a set of Kinematic Control Synergies is

presented (Chapter 5). The formation of complex behaviors such as swimming and

kicking is demonstrated using the developed KCS. Lastly, Chapter 6 concludes with

a discussion of some of the implications of this work along with suggestions for future

research.
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Chapter 2

Spinal-Musculoskeletal Plant

Model Structure

In this chapter, we describe the formulation of each of the major components in

our bullfrog spinal cord/hindlimb model. First, the skeletal forward dynamic model

is described. Then, a brief overview of common muscle model types is presented along

with the description of the reduced order muscle model used herein. A summary of

spinal cord anatomy follows, illustrating a few of the common cell types and circuits

known to be encoded within the spinal cord. Finally, we conclude with a possible

hypothesis of how muscle synergies might be encoded within the spinal cord in light

of the types of neurons in the cord. Figure 2-1 summarizes the structure of our model.

2.1 Skeletal Forward Dynamic Model

The ranine hindlimb, detailed in Figure 2-2, is a complex skeletal structure, which

consists of five major segments: femur, tibiofibula, tarsus (calcaneumn and astra-

galus), metatarsals, and phalanges. However, because the first three segments (femur,

tibiofibula, and tarsus) are the longest, most massive, and most heavily actuated by

the musculature, the resulting limb dynamics are largely determined by their effects

alone. As a result, the frog hindlimb is modelled as a three-link rigid body with

the masses and lengths of each link corresponding to those of the femur, tibiofibula,
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Figure 2-2: Frog Skeleton. Note the contributions of the femur, tibiofibula, and tarsus

to the total length and mass of the hindlimb.

Table 2.1: Physical Parameters for the Three Hindlimb Segments.

and the tarsus respectively. The mass and length values in Table 2.1 were estimated

for the bullfrog from values reported in [28] for the Rana Pipiens, as described in

Appendix A. Segment inertias were computed from the segment masses and lengths

using Equation (2.1).

Consistent with previous experimental procedures of Bizzi et al. and available

kinematic data for the bullfrog, we constrain hindlimb movement to the horizontal

plane. Constraining the motion to a plane (not necessarily horizontal) reduces the

number of parameters that must be estimated per link from three moments of inertia

per segment to one, which is about an axis through the center of mass of each link

41

Physical Parameters Femur Tibiofibula Tarsus

mass - mi [grams] 17.1 12.00 3.40

length = li [cm] 5.48 6.28 3.15

inertia = I [grams cm 2] 42.9 39.4 2.8



and perpendicular to the plane of motion. Therefore, assuming uniform density for

each of the links, the moment of inertia of each link, Ii, about its center of mass,

becomes

I 1 mil (2.1)
12

While at first it might seem too restrictive to constrain the model solely to motions

in the horizontal plane, recall that a large percentage of the frog's behavioral reper-

toire, such as swimming and kicking, take place predominantly within this plane.

To the authors' knowledge, only jumping requires movements that are substantially

out of the plane in order to generate the vertical forces necessary to propel the frog

upward. Thus, it is our belief that a large part of the frog's kinematic ability can

be understood despite this constraint. Furthermore, the equations of motion derived

here for the hindlimb hold in any plane. Therefore, if the musculature is able to

orient the leg's plane more vertically (by rotating the spherical hip joint to a different

pitch angle) and compensate for the effect of gravity, the results shown here should

be valid for limb orientations in which the plane of motion has a significant vertical

component.

With the model dynamics constrained to a plane, the resulting equations of motion

are of straightforward derivation (see Appendix B-i for the full derivation). One

important simplification that arises from our horizontal motion constraint is that the

effects of gravity on the rigid body can be neglected, since its effect on each of the

segments is uniform and perpendicular to the direction of movement. The resulting

dynamic equations of motion can be expressed in matrix form as

7 = H()e + C(E). 6)e (2.2)

where T is the vector of applied joint torques, E is the vector of joint angles,

H(O) is the matrix relating angular accelerations to torques (also known as the

system inertia matrix), and C(E, 0) is the matrix consisting of the Coriolis and
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centrifugal terms. Terms in the product of the C matrix and 9 of the type 0i2 are

called centrifugal, while those involving a product of the type Oidj where i -#4j are

called Coriolis terms. Equation (2.2) can be solved for 9 as illustrated in Equation

(2.3).

9 =H )-1 - H(E)-C(E, 0)0 (2.3)

Once in this form, Equation (2.3) can be integrated to obtain the set of joint angle

time-waveforms, 0(t), resulting from the applied joint torques, T(t).

2.1.1 Endpoint Forces

In order to make our results directly comparable with the force field experiments

of Giszter et al. [13], Mussa-Ivaldi et al. [24], and Lemay et al. [31], it is necessary

to compute the ankle forces generated by our model. Since the femur-tibia system

constrained on the horizontal plane is non-redundant, it is possible to compute the

ankle forces, F, generated by an arbitrary set of joint torques, T(t). Focusing on

ankle force instead of endpoint force results in a square full-rank Jacobian matrix

from angular to cartesian ankle coordinates, which can be inverted to obtain the

desired ankle forces.

Let us define the 2 x 2 Jacobian matrix, J, as

J = - (2.4)
aE)

where x is the Cartesian coordinate vector of the ankle, and E is the vector of joint

angles as determined from Equation (2.3). Next, noting that the differential work

done on a system must be the same within any coordinate frame, we obtain

FTax = TTaE (2.5)

where F is the vector of ankle forces, x is the ankle coordinate vector, T is the vector

of joint torques, and 9 is the vector of joint angles. Combining Equations (2.4) and
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(2.5) we derive the relation between ankle forces and joint torques, namely that

F TJOE = FTTE

FTJ = TT

JTF = T

F = (JT)-T (2.6)

Using Equation (2.6) it is possible to reconstruct both the isometric force field at

the ankle resulting from any set of joint torques, as well as the real-time ankle forces

generated during free limb movement. Chapter 4 contains various examples of these

which were used in validating the model.

2.2 Muscle Actuators

In order to maintain consistency between this study and the work of Bizzi et al.

described in Chapter 1, the twelve muscles listed in Table 2.2 were included. Note

that flexion is defined as movement toward the body for both hip and knee, while

plantar flexion is defined as movement toward the ground (away from the body).

Extension is defined as the complement of flexion in all cases.

2.2.1 Model Types

Three structurally different types of models have evolved over the years to describe

muscle-joint systems [45]. The first, based on an input-output analysis of a given task,

results in simple second-order differential equation descriptions that are adequate over

a certain range of movement. The second, based on the classic structural model of Hill

[18], results in highly nonlinear models described by ordinary differential equations.

The third, based on analysis of the biophysical contractile mechanism, results in

complex partial differential equation descriptions. Of the three, it has been found

that an eighth-order Hill-type model is the simplest type of model that adequately
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Muscle Name Abbreviation Function

Rectus Internus (Gracilis Major) RI hip extensor/knee flexor

Adductor Magnus AM mono hip extensor

Semimembranous SM hip extensor/knee flexor

Semitendinosus ST hip extensor/knee flexor

Iliopsoas (Iliacus Internus) IL hip flexor

Vastus Internus (Cruralis) VI hip flexor/knee extensor

Rectus Anterior (TFL) RA hip flexor/knee extensor

Gastrocnemus (Plantarus) GA knee flexor/plantar extensor

Peroneus PE knee extensor/plantar flexor

Biceps Femoris (Ilio-fibularis) BF hip extensor/knee flexor

Sartorius SA hip flexor/knee flexor

Vastus Externus (Gluteal) VE hip flexor/knee extensor

Table 2.2: Muscle Names, abbreviations, and respective kinematic functions.

simulates most fundamental types of movement without having to modify the model's

parameters for different tasks [45] 1.

Hill-type models are typically structured along anatomical lines as connective tissue

and contractile tissue. Connective tissue includes both the tendon and aponeurosis.

These two tissues have nonlinear spring-like properties that are similar to each other

[2], and, therefore, these two anatomically separate tissues are usually grouped into

a single component (the series elastic element (SE) in Figure 2-3). The fascicles are

classified as contractile tissue. It is generally assumed for simplicity that fibers within

a muscle are identical and act together so that a single component (the fascicles)

1Interestingly, in spite of the high degree of nonlinearity present at the muscular level, much

evidence suggests that entire spinomuscular-joint systems are not as nonlinear as would be expected

from the concatenation of several nonlinear elements. Quite to the contrary, recent evidence (as

described in Chapter 1) suggests that spinal-musculoskeletal system may behave in a linear fashion

from descending neural stimulation in the spinal cord to output muscle force.
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Figure 2-3: Conceptual Model of Muscle Force Production. The tendon and aponeu-

rosis are combined to form the series elastic (SE) components, while the fascicles are

composed of the parallel elasticity (PE) and the contractile element (CE).

may be used to represent them. The fascicles themselves can be broken into two

smaller mechanical subcomponents: the parallel elastic element (PE) and the active

contractile element (CE) (see Figure 2-3). In the passive state (no neural activation)

fascicles behave much like a nonlinear spring. This property can be modelled and

included as a passive component of the fascicles. When fascicles are neurally activated,

they produce (active) force in parallel with and adding to the passive force.

The active contractile component (CE) of muscle force can be divided even further

into three smaller subcomponents. The force-length (FL) component arises because

of the change in actin/myosin overlap as the length of the fasicles (and hence sar-

comeres) changes. As the overlap between the myofilaments changes, the number

of cross-bridge sites available for force generation also changes. The force-velocity

component (FV) is thought to arise because of cross-bridge dynamics (Huxley [21]).

As muscles change length, cross-bridges complete their cycles, detach and reattach.

The dynamics of attachment and detachment thus affect the shape of the FV rela-

tionship. The activation component (act) is associated with calcium kinetics. The

variable act represents the percentage of myosin binding sites on the thin filament

that are available for cross-bridge formation, which depends upon sarcoplasmic cal-
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cium concentration. Thus, act consists of a function of time that relates motoneuron

activity to calcium release and reuptake by the sarcoplasmic reticulum as well as sar-

coplasmic calcium concentrations to myosin binding site availability [44](p. 152-153).

Equation (2.7), modified from [5], shows the typical form of a Hill-type model, while

Figure 2-4 graphically summarizes Equation (2.7).

FP'(1, act ) = FiP" (1) + F pe 2 (l act

FCe(l 1. act) = FL(l)FV(v i, l)act

F"(l. 1, act) = F'(l1. act) + F"(l, il act) (2.7)

where F" is the total muscle force, / is the total length of the muscle, v / is the

muscle lengthing/shortening velocity, and act is the level of neuromuscular activation.

Here, along with the components outlined above, the passive elasticity has been fur-

ther divided into two components. FP"1 represents the elastic recoil due to stretching

of connective tissue between muscle fibers, while Fpe2 represents the elastic resistance

due to the compression of thick filaments within muscle fibers during active muscle

shortening below a certain length.

2.2.2 Reduced Order Muscle Model

Motivated by the fact that extending the Hill model to the total muscle-joint sys-

tems immediately creates fairly high-order models [45], a quasi-linear approximation

to the full Hill-type model is used for our simulations. The model presented here

is similar to the Kelvin-Voight model used by Katayama and Kawato in [30]. One

aspect of the model presented here worth pointing out before presenting all of its de-

tails is that the series element (SE) is not included. This simplifying assumption is in

part justified by the relatively high stiffness (typically 10:1 SE:(PE+CE) stiffness ra-

tio) of the the tendons and aponeuroses when compared to the passive element (PE)

and contractile element (CE) stiffness (so that the SE effectively does not change

length much as the total muscle length changes). As a result of this assumption,

the developed muscle force can be separated into just two components corresponding
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Figure 2-4: Hill-based muscle model Force-Length-Velocity Curve. The three images

demonstrate the effects of increased neuromuscular activation on the output muscle

force. Model parameter values were obtained from [5]. Note that muscle contractile

force (i.e. the force that leads to a reduction of muscle length) is defined as being

positive.
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to PE and CE. Throughout the following section, forces in the direction of muscle

contraction will be defined as positive and will be referred to as muscle contractile

force.

The passive element force, FP'(l, 1), is represented as arising from an elastic element

and a viscous element arranged in parallel, i.e.

FPe(l, 1) = Ke(l - lo) + Bpvl (2.8)

where I is the length of muscle, 10 is the rest length of the muscle (defined as the length

of the muscle at passive equilibrium 0 0), Kp, is the linear passive stiffness, and B,,

is the linear passive viscosity of the muscle. Thus the passive element is modelled to

behave as a linear viscoelastic actuator around the limbs passive equilibrium, defined

by 10.

The change in muscle viscoelasticity together with the increasing output muscle

tension resulting from an increase in neural activation (attributed to CE) are modelled

by Equation (2.9).

FCe(act, 1,1) = Kccact LCatact - (Io - i)j+ + B..act [ij+ (2.9)

where [argjy max(arg. 0). Here K, is a linear contractile element stiffness., Cat

is a unit conversion constant relating neuromuscular activation to muscle length with

units of millimeters per unit activation, and act E [0, 1] is the level of neuromuscular

activation. Variables I and 4, are the same as those in Equation (2.8). Note that

the contractile element is only actively viscous when the muscle is lengthening. This

property is derived from the FV relation in the Hill model (see Figure 2-4). In addi-

tion, as a result of neglecting the series elastic element, the lengths of the contractile

and parallel elastic elements are assumed to be the same and equal to the total length

of the muscle, 1.

The total muscle force generated., similarly to Equation (2.7), is given by the sum

of the passive and contractile element force components, i.e.
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F' (act, 1, i) = Fce (act, 1, i) + FPe(l, ) (1

or alternatively, for a system of n muscles,

SFce (act,, li, li) + Fpel l)

F'(act, 1,1) = (2.11)

Fc (act, 1, nl ) + Fne(l l1 n)

Figure 2-5 plots Equation (2.10) alongside the Hill-type model from Figure 2-4 for

different levels of neuromuscular activation. It should be evident from Equation (2.10)

that the most significant limitation of the reduced order model occurs in the region

of large shortening velocities (ln < 0) where muscle contractile forces go to zero. In

this region, the reduced order model will overestimate the contractile force produced

by the muscle. However, for a moderate range of shortening velocities (i.e. slower

movements), the reduced order model and the full Hill model will predict similar

muscle forces.

The primary motivation for adopting the model developed above stems from the

absence of complete morphological data for all of the included muscles (see Table

2.2). In the absence of such data, the use of a full Hill model would have increased

the number of unknown model parameters dramatically and would have therefore

complicated the parameter estimation method presented in Chapter 4.

2.2.3 Neuromuscular Transmission and Excitation-Contraction

Coupling

The level of muscular activation (act in Equation (2.9)) is controlled by the rate

at which action potentials (voltage impulses [26]) are sent from the muscles' corre-

sponding alpha motor neurons (located in the anterior horns of the spinal cord) to

the muscle fibers. An increase in the rate of signaling commands a corresponding

increase in the muscle's level of contraction, whereas a decrease commands the op-

posite. The rate of these action potentials in represented in Figure 2-1 by the signal
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u (t). Large myelinated nerve fibers originating from these motor neurons carry the

action potentials to the muscle. On the way, each nerve fiber branches many times so

that a single action potential from one motor neuron stimulates anywhere from three

to several hundred skeletal muscle fibers (within a single muscle). The ensemble of

muscle fibers innervated by a single motor neuron is called a muscle unit, and that

ensemble together with its motor neuron is called a motor unit. The collection of all

motor units corresponding to a particular muscle is termed a motor nucleus. In the

case of our model, we assume (as is done in most muscle models) that fibers within

a muscle are identical and that they act in synchrony. Therefore, each muscle is

represented as having only one motor neuron associated with it. Physiologically, the

activity of this single motor neuron would represent the net activity (i.e. net rate of

action potentials) being commanded to a muscle by its entire motor nucleus.

Each nerve branch terminates at the neuromuscular junction (near the fiber's mid-

point). Once the action potential reaches the junction, it begins to travel towards

the muscle fiber ends (in both directions). The transmission of the action potential

from the nerve into the muscle by way of the neuromuscular junction is mediated

by the secretion of acetylcholine into the synaptic space between the nerve and the

muscle membrane. The time elapsed between the point when the action potential

leaves the motor neuron to the point it reaches the neuromuscular junction and is

propagated into the muscle varies from 3-10 ms depending on the length of the nerve

and the conduction velocity of the nerve [33]. Within our model, this neuromuscular

transmission delay is modelled by the time-delay (Teff in Figure 2-1). Assuming that

the length of the average efferent fiber is half the length of the frog limb (7.45 cm)

and that the conduction velocity of the fibers is (25 m/s), then Teff ~ 3 ms.

Once the postsynaptic membrane of the neuromuscular junction (i.e. the muscle

membrane) is depolarized to its threshold, an action potential propagates along the

membrane of the muscle fiber (the sarcolemma). Because a single action potential

in a motor neuron can activate hundreds of muscle fibers in synchrony, the resulting
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transmembrane currents sum to generate an electrical signal that is readily detectable

outside the muscle itself. When more than minimal force is required, many motor

neurons generate an asynchronous barrage of action potentials with overlapping action

potentials arising in each motor unit. The result is a complex pattern of electrical

potentials (typically on the order of 100 pV in amplitude) that can be recorded as an

electromyogram (EMG) using simple electrodes on the surface of the overlying skin.

The relative timing and amplitude of these patterns recorded over particular muscles

reflect the closely aggregate activity of motor neurons that innervate each muscle. The

rectified and integrated EMG (a rough estimate of the power of muscular activation)

is represented by the symbol m(t) in Figure 2-1.

The skeletal muscle fiber is so large that action potentials spreading along its surface

membrane cause almost no current flow deep within the fiber. To cause contraction,

these electrical currents must penetrate to the vicinity of all the separate myofibrils.

This is achieved by transmission of the action potentials along transverse tubules (T

tubules) that penetrate all the way through the muscle fiber from one side to the

other. The T tubule action potentials in turn causes the release of calcium ions into

the immediate vicinity of the myofibrils, and these calcium ions in turn cause the

muscles' contraction. The level of muscular activation, act in Figure 2-1, is then

directly related to the strength of the muscle contraction caused by this release of

calcium. This overall process is called excitation-contraction (EC) coupling.

Over a range of neural excitations the net behavior of this EC coupling has been

found to be substantially linear and can be approximately represented by a critically

damped low-pass filter with corner frequency from p=11 to 33 radians per second [10].

The transfer function from neural excitation to muscle contraction is represented here

as

p2
EC(s) = P (2.12)

(s + p) 2

where p = 33[radians/sec] ~ 5[Hz], and s is the Laplace variable [33]. Equation
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(2.12) can be rewritten in matrix notation as follows

ECI(s) 0 ... 0 0

0 EC2(s) 0 0 0

EC(s)= 0 . 0 (2.13)

0 0 0 EC_ 1 (s) 0

0 0 ... 0 ECn(s)

such that

act(t) = EC(t) * m(t) (2.14)

where * is the convolution operator and EC(t) is impulse response of the system

function matrix EC(s). The input signal to EC(s) is the EMG vector m(t), and the

output is the muscle activation vector, act(t), in Equation (2.10).

2.2.4 Muscle Geometry

Recall from Equations (2.8) and (2.9) that the passive and contractile element forces

in our model are functions of both the muscle length, 1, and rate of lengthening, 1,

while the output of the skeletal forward dynamic model is the vector of joint angles,

9. It is therefore necessary to relate angular changes in our kinematic model to the

corresponding muscle length changes in our muscle model. Clearly, muscle length

changes are dependent on the geometry of a particular muscle's origin and insertion,

and their relation is, in general, a nonlinear function of the joint angles. We make the

simplifying assumption that muscles have a constant moment arm at each joint. This

assumption is motivated by the fact that, within a limited range of the workspace,

muscle moment arm values do not change very much, such that they may be taken

to be constant to first order. Additionally, if this assumption were not made, the

parameter estimation method described in Chapter 4 would further complicated.

That is, since a number of moment arm curves were not available, it would have

been necessary to obtain estimated curves for each unknown moment arm as opposed

to just a single scalar value.
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Figure 2-6: Example to demonstrate the relationship between angular changes and

muscle length changes. Angles Oi are defined as positive in the counterclockwise

direction (standard robotic manipulator convention).
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Employing the constant moment arm assumption makes the relation between angu-

lar changes, A, and muscle length changes, Al, very simple. To illustrate, consider

muscles Mi, a biarticular hip-extensor and knee flexor, and M2, a biarticular hip

flexor and knee extensor, in Figure 2-6. At angles 010 and 02o the muscle is at length

110. At angles 01 and 02 the muscle's change in length is:

1i - 110 = +T'ri/ (01 - 01o) + r 2 mi (02 - 02o) (2.15)

Similarly, for muscle M2, at angles 01 and 02 the muscle's change in length is:

12 - 12o = -rlM 2 (01 - 01) - r 2M2 (0 2 - 02o) (2.16)

where we have defined Oi in accordance with the robotic manipulator convention such

that Oi increases in the counter-clockwise direction. This causes hip flexion and ankle

plantar extension to be associated with an increase in the hip and ankles joint angles

respectively, while knee flexion produces a reduction of the knee joint angle.

Extending Equations (2.15) and (2.16) for the case of n muscles acting about the

three joints, we can write the length changes resulting from corresponding angular

changes in matrix format, as follows:

11 - 10 nIl 2M1 0 01 010

03 -- 0ho 2 -h2 ~ -rIM -r2AJ 0

1,- 1, ±r1MO ±T2M, ±r3,

(2.17)

where n is the number of muscles being considered. Here M is the muscle moment arm

matrix representing the geometry of the n muscles acting on the hindlimb. Consistent

with the standard definition of muscle moment arms, we define entry j, k of M to be

positive if the forces generated by muscle j tend to increase 0 k, and negative otherwise.

Adopting this definition, it is clear that if muscle j works to increase Ok, its length

decreases - hence the minus sign on the right-hand side of Equation (2.17).
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Muscle MA about Hip [mm] (ri) MA about Knee [mm] (r2) MA about Ankle [mm] (r3)

RI -6.1011 -1.5349 0

AM -4.1747 0 0

SM -5.6510 -11.1481* 0

ST -4.0151 -3.6232 0

IL 3.2987 0 0

VI 2.0958 4.2567 0

RA 7.4820 4.2567 0

GA 0 -2.9897* -4.1101*

PE 0 4.2160* 3.6533*

BF -24.9584* -2.2842* 0

SA 4.4885 -3.0122 0

VE 0.8845 4.2567 0

Table 2.3: Muscle Moment Arms about the Hip, Knee, and Ankle. The three columns

in this table correspond to the three columns of MT in Equations (2.17) and (2.18).

The relation between i and e can be obtained by differentiating Equation (2.17)

with respect to time and noting that 1, and E0 are both constant. Thus,

i = -M T 0 (2.18)

Using Equations (2.17) and (2.18), it is possible to fully define the passive and con-

tractile element forces in Equations (2.8) and (2.9) in terms of the hindlimb joint

angles, e(t), and the vector of muscle activations, act(t).

Table 2.3 summarizes the individual muscle moment arms at each joint. The values

included were obtained by taking the average value of the muscle moment arm curves

in [29]. A moment arm of zero denotes that the corresponding muscle has no net

action at a given joint. Parameters denoted with an asterisk (*) were obtained via

the estimation method described in Chapter 4.
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2.3 Sensory Feedback

The proper control of muscle function requires not only excitation of the muscle by

the anterior motor neurons but also continuous sensory feedback of information from

each muscle to the spinal cord giving the status of the muscle at each instant in time.

To provide just this type of information, the muscles and their tendons are supplied

abundantly with two special types of sensory receptors: muscle spindles and Golgi

tendon organs. Muscle spindles are distributed throughout the belly of the muscle

and send information to the nervous system about both muscle length, 1, and the rate

of change of length, i. Golgi tendon organs, on the other hand, are located in the

muscle tendons and transmit information about tendon tension, Fm, and the rate of

change of tension, Fm. For the purpose of our simulation, which only implements the

segmental stretch reflex, it will be sufficient to focus on how muscle spindles encode

muscle length and and rate of change of length.

2.3.1 The Muscle Spindle

Spindle Structure

Each spindle is 3 to 10 millimeters long. It is composed of 3 to 12 very small

intrafusal muscle fibers that are pointed at their ends and attached to surrounding

large extrafusal skeletal muscle fibers. Structurally, the spindle can be thought of as

tiny muscle embedded within the larger skeletal muscle. In contrast to the extrafusal

fibers, however, the central region of each of the intrafusal fibers has either no or few

actin and myosin filaments. Therefore, this central portion does not contract when

the ends do. Instead, it functions as a sensory receptor. The end portions that do

contract are excited by small gamma motor nerve fibers that originate from the small

gamma motor neurons in the anterior horns of the spinal cord. These fibers are also

called the gamma efferent fibers, in contradistinction to the large alpha efferent fibers

that innervate the extrafusal skeletal muscle.
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The receptor portions of the spindle, from where sensory fibers originate, are stim-

ulated by the stretching of the spindle's midportion. One can readily see that the

muscle spindle receptor can be excited in two ways. First, if the whole muscle (intra-

fusal and extrafusal fibers) is stretched, the midportion of the spindle will also stretch

and excite the receptor. Alternatively, even if the length of the entire muscle does

not change, contraction of the ends of the spindle's intrafusal fibers will also cause

the spindle's midportion to stretch and, therefore, excite the receptor.

Two types of sensory endings are found in the receptor area of the muscle spindle.

The first called the primary ending is a large sensory fiber (averaging 17 micrometers

in diameter) that encircles the very central portion of the receptor area. This large di-

ameter fiber transmits sensory signals from the spindle to the spinal cord at velocities

of 70 to 120 m/sec. Alternatively, the secondary endings are smaller diameter fibers

(averaging 8 micrometers in diameter) that mainly encircle the intrafusal fibers on

one side of the primary ending. Although there is usually but one secondary ending

per spindle, it is not uncommon for one spindle to have two.

The spindle itself is composed of two types of intrafusal fibers: nuclear bag fibers

and nuclear chain fibers. Nuclear bag fibers are characterized by having a large

number of nuclei congregated in an expanded bag in the central portion of the receptor

area. Nuclear chain fibers are about half as large in diameter and half as long as the

nuclear bag fibers and have nuclei aligned in a chain throughout the receptor area.

The primary nerve ending innervates both the nuclear bag and nuclear chain fibers,

while the secondary ending usually innervates only the nuclear chain fibers.

Spindle Function

When the receptor portion of the muscle spindle is stretched slowly, the number of

impulses transmitted from both the primary and secondary ends increase almost in

direct proportion to the stretch. Conversely, when the spindle is contracted slowly,

the number of impulses decreases. This is called the static response since the primary
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and secondary endings continue to transmit their signals for as long as the receptor

itself remains stretched or contracted. Because the nuclear chain type of intrafusal

fibers is innervated by both the primary and secondary endings it is believed that

these nuclear chain fibers are mainly responsible for the static response. The static

response, therefore, encodes information relating to length, 1, of the muscle.

In contrast, when the length of the spindle receptor is increased or decreased sud-

denly, the primary ending (but not the secondary ending) is stimulated especially

powerfully. The primary ending responds extremely actively to a rapid rate of change

of the spindle length, i. Because only the primary endings transmit the dynamic re-

sponse and almost all nuclear bag intrafusal fibers have only primary endings, it is

assumed that the nuclear bag fibers are responsible for this powerful response. By

way of both the static and dynamic responses, the muscle spindle sends the spinal

cord information encoding both the current muscle length, 1, and its rate of change,

i.

Spindle Control

The gamma motor nerves, which connect the motor neurons to the muscle spindle,

can be divided into two types: gamma-dynamic (-y-d) and gamma-static (y-s). For

the frog, which lacks the gamma motor system, we will assume that the beta motor

neurons can be divided in the same manner. The first of these, -y-d, excites mainly

the nuclear bag fibers, and the second, 'y-s, mainly the nuclear chain fibers. When the

-- d fibers excite the nuclear bag fibers, the dynamic response of the muscle spindle

becomes tremendously enhanced, whereas the static response is hardly affected. On

the other hand, stimulation of the y-s fibers, which excite the nuclear chain fibers,

enhances the static response while having little influence on the dynamic response.

To emphasize the importance of the gamma efferent system, one needs to recognize

that 31 percent of all motor nerve fibers to the muscle are gamma efferent fibers

rather than large alpha motor fibers. Whenever signals are transmitted from the
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motor cortex or from any other area of the brain to the alpha motor neurons, in most

instances, the gamma motor neurons are stimulated simultaneously, an effect called

alpha-gamma coactivation. This causes both the extrafusal and intrafusal muscle

fibers to contract at the same time.

The purpose of contracting the muscle spindle fibers at the same time as the large

skeletal muscle fibers contract is twofold. First, it decreases the length of the spindle

in unison with the muscle. This prevents sensory information from the spindle from

opposing the muscle contraction being commanded to the muscles by way of the al-

pha motor neurons. Second, it maintains the spindle biased so the information it is

encoding is always relative to currently "commanded" muscle length. For instance, if

the muscle spindle should not contract and relax along with the large muscle fibers,

the receptor portion of the spindle would sometimes flail and at other times be over-

stretched, in neither case operating under optimal condition for the muscle spindle.

The rate of firing of the muscle spindle as a function of both muscle length, 1(t), and

rate of change of length, i(t), can be summarized as follows. Let Z(t) be the elongation

of the spindle sensory zone as a function of time and R(t) be the instantaneous rate

of discharge of the spindle, then

R(t) = K(Z(t) + pZ(t)) (2.19)

where K and p are both constants. In Equation (2.19) (modified from [16]) the

constant p reflects the rate sensitivity of the encoder process which is the same for

primary and secondary endings. This constant is therefore not altered by fusimotor

activity. Hasan in [16] finds that for the case of sinusoidal variations, the constant p

equals 0.1. Therefore in the frequency domain, Equation (2.19) becomes

R(s) = K(1 + 0.1s)Z(s) (2.20)

where s is the Laplace variable, K is the reflex gain (controlled by the gamma system),

and R(s) and Z(s) correspond to the Laplace transform of R(t) and Z(t) respectively.
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When Z(s) is an impulse function, we obtain the impulse response of the spindle,

R(s) = K(1 + 0.1s). R(s) can be written in matrix form as was done for EC(s) in

Equation (2.13). This system function matrix will be denoted R(s). The length of

the spindle sensory zone is given by

Z(t) = 1 - (1, - Catiact(t)) (2.21)

where 1, l, Cati, and act are as defined in Equation (2.9).

Putting Equations (2.20) and (2.21) together in matrix format, we obtain the spin-

dle responses for a system of n muscles. We shall denote this response as Ureflex (t)

for reasons that will become obvious when we discuss the monosynaptic stretch reflex

later. For now,

Ureflex(t) = R(t) * (1(t) - (1, - Catiact(t))) (2.22)

where, as before, * is the convolution operator and R(t) is the impulse response of the

system function matrix R(s). The term Catiact(t), denoted as up(t) in Figure 2-1,

represents the effects of alpha-gamma coactivation, so that the spindle rest length

(10 - ui(t)) changes in synchrony with that of the extrafusal muscle (see Equation

(2.9)).

2.3.2 Proposed Functions of Sensory Feedback

One of the most well accepted functions of sensory feedback is its role in the re-

inforcement of descending motor commands. For example, stretching of muscle pro-

duces an increase in spindle discharge, leading to muscle contraction and consequent

shortening of the muscle. But this muscle shortening leads to a decrease in spindle

discharge, a reduction of muscle contraction, and a lengthening of the muscle. Thus,

this stretch reflex loop (see Section 2.4.2 below) acts continuously, tending to keep

muscle length close to a desired or reference value, specified by Udesc(t). Therefore,

the stretch reflex pathway provides a mechanism for the rejection of disturbances

62



Posterior furruculu5'

Dor al rrnoi- otv1y K$*

Pw1oricf m"dlia sj murrn

Figure 2-7: Transverse section of the spinal cord in the lower cervical region

arising either from unknown variations in external loads or intrinsic irregularities in

the contraction of muscle. Other types of reflexes (such as long-loop cortical reflex

pathways and force feedback from Golgi tendons) are employed by the nervous system

to aid in the control of muscle as well, with the relative contribution of each reflex

pathway dependant on the particular muscle and the task.

2.4 Spinal Cord Circuitry

A detailed discussion of spinal cord anatomy is beyond the scope of this thesis. A

brief introduction is provided here to enable a more concise description of basic motor

functions. For further background and details, the reader is referred to several useful

texts [26] [15]. Figure 2-7 illustrates some of the most important anatomical features

of the cord, which will be helpful in understanding the following section.

2.4.1 Types of Neurons within the Cord

Located in each segment of the anterior horns of the cord gray matter are several

thousand neurons called the anterior motor neurons. These neurons, which are 50 to
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100 percent larger than most of the surrounding neurons, give rise to the nerve fibers

that leave the cord by way of the anterior roots and innervate the skeletal muscle

fibers. Anterior motor neurons come in two types - the alpha and gamma motor

neurons, which will be described subsequently. In actuality, the gamma system is

absent in the frog [13]. However, the beta system, which is thought to work in a

manner similar to the gamma system, is present. Since relatively little research exists

on the functional details of the beta system at this moment, we shall proceed with

the description of the gamma system with the understanding that the beta system in

the frog most likely parallels the gamma system's role.

The alpha motor neurons give rise to large nerve fibers (averaging 14 micrometers

in diameter) that innervate the skeletal muscle fibers. Stimulation of a single nerve

fiber excites from a few to as many as several hundred skeletal muscle fibers, which

are collectively termed the motor unit. In addition to the alpha motor neurons that

excite contraction of the skeletal muscle fibers, about one half as many much smaller

gamma motor neurons are located in the spinal cord anterior horns. These gamma

motor neurons transmit impulses through smaller fibers (averaging 5 micrometers in

diameter) to intrafusal fibers. These fibers are part of the muscle spindle discussed

previously.

Along with these two types of motor neurons, the spinal cord has a multitude of

smaller interneurons [15] which constitute the basic building block of most spinal

reflex circuits. Interneurons are present in all areas of the cord gray matter - in the

dorsal horns, the anterior horns, and the intermediate areas between these two. These

cells are numerous - about 30 times as numerous as the anterior motor neurons. They

are small and highly excitable, often exhibiting spontaneous activity and capable of

firing as rapidly as 1500 times per second. They have many interconnections with one

another, and many of them directly innervate the anterior motor neurons (see Figure

2-8). The interconnections among the interneurons and anterior motor neurons are

responsible for most of the integrative functions of the spinal cord that are discussed
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in Chapter 1 and the remainder of this chapter.

Only a few incoming sensory signals from the spinal nerves or signals from the

brain terminate directly on the anterior motor neurons. Most of these signals are

transmitted first through interneurons, where they are appropriately processed. For

example, also located in the ventral horns of the spinal cord in close association with

the motor neurons are a large number of small interneurons called Renshaw cells.

Almost immediately after the axon leaves the body of the anterior motor neuron,

collateral branches from the axon pass to the adjacent Renshaw cells. These in turn

are inhibitory cells that transmit inhibitory signals back to the nearby motor neurons,

an effect called recurrent inhibition. The primary effect of recurrent inhibition is to

regulate motor neuron excitability and stabilize motor neuron firing. Figure 2-8

illustrates an example of recurrent inhibition by a Renshaw cell.

The potential processing power of interneurons in the spinal cord becomes readily

apparent when one notes that more than one half of all the nerve fibers that as-

cend and descend in the spinal cord are propiospinal fibers. These fibers run from

one segment of the cord to another, transmitting the 'result' from interneuronal cir-

cuits at one level to the next. This allows spinal circuits to take the outputs of a

variety of interneuronal circuits and further process them to extract more detailed

information. In addition, as sensory fibers enter the cord from the dorsal cord roots,

they also bifurcate and branch both up and down the spinal cord. While some of

these branches transmit signals only a segment or two, others transmit the signals

for many segments. These ascending and descending fibers of the cord provide the

pathways for the integration of both interneuronal signals and sensory information

into multisegmental reflexes. One example of such a multisegmental reflex coordi-

nates simultaneous movement of the forelimbs and hindlimbs when they are placed in

direct contact with the ground (as would be experienced during normal walking)[26].
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spindle afferents

Renshaw cell
(In itory Interneuron)

Inhibitory
Interneurons

Alpha motor neurons

To flexor
muscle To extensor

muscle

Figure 2-8: Example of recurrent inhibition by a Renshaw cell. Renshaw cells also

send collaterals to synergist motor neurons (not shown) and inhibitory interneurons

(shown). Thus, descending inputs that modulate the excitability of the Renshaw cell

adjust the excitability of all the motor neurons around a joint. This figure also shows

how inhibitory interneurons in the spinal cord send inhibitory signals to antagonist

(extensor) motor neurons when muscle spindles in the agonist (flexor) are activated.

(Adapted from [26])
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2.4.2 Monosynaptic Muscle Stretch Reflex

The simplest manifestation of the iuscle spindle function is the muscle stretch

reflex (also called the myotatic or segmental reflex) - that is, whenever a muscle

is stretched, excitation of the spindles causes reflex contraction of the large skeletal

muscle fibers of the same muscle and closely allied muscles with similar mechanical

action.

Figure 2-9 demonstrates the neuronal circuit which implements the muscle stretch

reflex. It shows a nerve fiber which originates in a muscle spindle entering the dorsal

root of the spinal cord. In contrast to most other nerve fibers entering the cord,

one nerve branch passes directly to the anterior horn of the cord gray matter and

synapses directly with anterior motor neurons. These neurons then send nerve fibers

back to the same muscle from whence the muscle spindle fiber originated. Thus, this

is a monosynaptic pathway that allows a reflex signal to return with the shortest

possible delay back to the muscle after excitation of the spindle. The transmission

delay incurred by the spindle afferent signals on their way back to the spinal cord

is represented by Taff in Figure 2-1. For simplicity, we assume that Tff equals

Tf = 3ms.

Modelling the recruitment of anterior motor neurons as linear (i.c. their rate of

firing is directly proportional to the sun of the rates of all its synaptic inputs) we are

able to implement the effect of this monosynaptic reflex as,

uC () = Udesc(t) + Ureflex (t) (2.23)

where u,(t) is the total firing rate of the alpha motor neurons, Ureflex(t) is the vector of

spindle responses from Equation (2.22), and ud,,c(t) represents the signals descending

from higher motor centers towards the alpha motor neurons. It should be noted

that there are potentially important nonlinear effects associated with the recruitment

of motor units within the spinal cord [11]. For example, motor units tend to be

activated (recruited) in order of increasing size (and strength) as dictated by the
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Figure 2-9: Monosynaptic Stretch Reflex. In this example, suppose that the flexor

muscle is stretched by an external disturbance (the extensor muscle will be shortened

correspondingly). The spindle receptor within the flexor muscle would be vigorously

activated and increase its firing rate. This increased rate of firing would in turn cause

the flexor muscle to contract - correcting for the external stretch. Simultaneously,

the extensor's spindle would decrease its rate of firing (because of the extensor's

shortening) and cause the extensor to "give in" to the flexor's contraction. In this

way, the stretch reflex helps the muscles to maintain their current length.

68



Henneman size principle. It is also common that all or most of the available motor

neurons become recruited, so there is also a saturation of the motor signal (when

no motor neurons can be recruited). However, these effects are strongest at the

extremes of motor neuron recruitment, and we therefore treat them as second order

effects. Equation (2.23) neglects these second order effects and treats the recruitment

of motor neurons as linear.

2.4.3 Representation of Muscle Synergies Encoded within

the Spinal Cord

As discussed in Chapter 1, Saltiel et al. found seven muscle synergies whose linear

combination accounted for more than 91% of the variance of the pooled EMG data

from 12 hindlimb muscles [36]. These studies therefore suggest that the rectified and

integrated EMG, m(t), can be written as

m(t) = Wd(t) (2.24)

where W is the matrix whose columns are the muscle synergy vectors, wi ; i = 1..7,

and d(t) is the vector of synergy scaling coefficients as explained in Chapter 1. For

reference, the synergies are numerically summarized in Table 2.4, and graphically

represented in Figure 2-10.

Although experiments have not yet been carried out to verify how the muscle syner-

gies are actually implemented within the spinal cord, the findings of [36] demonstrate

the net effect of interneuronal networks within the spinal cord can be represented as

groups of static muscle ratios (muscle synergies, wi). These static muscle synergies

in turn can be recruited in a linear fashion by directly stimulating within the spinal

cord, resulting in the (linear) recruitment of alpha motor neurons (over a range of

activation) and the production of muscle EMG. The signal d(t) in Equation (2.24)

captures the effects of both the intraspinal stimulation (as performed in [36]) and

the effects of higher interneuronal circuits that might integrate descending command
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Muscles Names A B C D E F G

Rectus Internus (RI) 0 0.4060 0 0.0881 0.3412 0 0.0320

Adductor Magnus (AM) 0 0.6673 0.0102 0.0683 0.1218 0 0

Semimembranosus (SM) 0.0009 0.2135 0.1226 0.5737 0 0 0

Semitendinosus (ST) 0.0095 0 0.0772 0 0.8992 0 0

Iliopsoas (IP) 0 0 0 0.2605 0.2449 0.6280 0

Vastus Internus (VI) 0 0.0983 0 0 0 0.3145 0.4469

Rectus Anterior (RA) 0.2418 0 0.1929 0.0486 0 0.6013 0

Gastrocnemus (GA) 0.9541 0.0282 0 0 0 0 0.0338

Peroneus (PE) 0.1654 0 0.0011 0.1140 0.0013 0 0.8861

Biceps Femoris (BF) 0 0.1081 0.9704 0 0.0104 0 0.0622

Sartorius (SA) 0.0472 0.5675 0 0 0 0.3715 0.0119

Vastus Externus (VE) 0.0387 0 0 0.7584 0 0.0844 0.0940

Table 2.4: Synergies Vectors, wi, from [36]. The columns of this table correspond to

the columns of the W matrix in Figure 2-1. The labels above each column correspond

to the rows of Figure 2-10.
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Figure 2-10: Graphical representation of the columns of Table 2.4. This collection of

synergies is used for this simulation study because it constitute the constituted the

best solution (in terms of data variance explained) as described in [36]. (Reprinted

with permission from [36])
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information and sensory feedback to recruit muscle synergies. Note that interpreting

the signal d(t) in this manner is entirely consistent with the findings of Kargo and

Giszter [27], which observed that the recruitment of corrective force fields were trig-

gered on-line during wiping by cutaneous feedback signaling obstacle collision. Given

our demonstration in Chapter 1 that every muscle synergy, wi, has a corresponding

endpoint force field, the corrective force field can be thought of as arising from the

recruitment of a set of muscle synergies by corrective interneuronal circuits activated

by afferent feedback from the limb.

Furthermore, this conceptual interpretation of muscle synergies is also consistent

with the findings of convergent force fields (CFFs) observed within deafferented prepa-

rations by Giszter et al. [13]. That is, since deafferentation would only affect the

generation of the monosynaptic stretch reflex, Ureflex, along with any components of

d(t) arising from interneuronal sensory circuits, the underlying force fields (arising

from the static muscle synergies) would still persist.

Figure 2-11 demonstrates an example of how three muscle synergies between eight

muscles may be implemented by an interneuronal network. The static muscle syn-

ergies, wi, are encoded by the strengths of the synaptic connections, wj,i, between

the input and output interneurons. The rate of firing specified by c1 (t), for exam-

ple, is scaled down by factors w11,w61 ,and w81 , upon passing through the neuron w,

to become Udesci, Udesc 2 , and Udescs. Assuming that the output neurons (in red) are

recruited in a linear fashion (i.e. their output firing rates are the sum of their in-

put firing rates), the descending command can be written as arising from a linear

combination of static muscle synergies (w1 , W2, and w3 ).

Note that in Figure 2-11, we interpret the descending command to be equal to

Udesc(t) = Wd(t) (2.25)

This is done with the understanding that the net effect of alpha-gamma (alpha-beta)

coactivation is to help the muscular system track the descending command while
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Figure 2-11: Example demonstrating how static muscle synergies may be implemented

within the spinal cord. In Chapter 5, an alternative representation in terms of Kine-

matic Control Synergies will be presented.

73

=11



correcting any deviations that may occur from it. Therefore, the role of Ureflex is to

assure that the descending command, Udesc(t), is appropriately modified so that the

resulting alpha motor neuron drive and EMG are those required to drive the muscular

system as specified by Udesc(t). This partitioning has the implied assumption that

interneuronal networks at higher levels of the spinal cord contribute to the formation

of the signal, d(t). Interneuronal circuits only control movement via the recruitment

of muscle synergies and not via the direct interaction with motor neurons. However,

because only the spinal reflex is included in this model, there are no interneuronal

contributions to the signal d(t) in the model.
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Chapter 3

Plant Model Identification

As mentioned in Chapter 2, a small number of unavailable physiological parameters

- muscle model parameters and unknown muscle morphological parameters - required

estimation. In order to obtain parameter estimates that were both physiologically

plausible and resulted in a model that recreated realistic kinematics when driven with

actual EMG signals, a parameter estimation was performed. This section presents the

details of the developed estimation algorithm and presents the resulting parameters.

The chapter concludes with a short discussion of the physiological plausibility of the

parameters obtained via estimation.

3.1 Paritioning of Model Parameters for Estima-

tion

In order to reduce the total number of parameters requiring estimation, the muscle

model presented in Chapter 2 is partitioned in the following manner. Instead of

finding the corresponding values of Ke, Kpe, B, and B, for each individual muscle

(4 x 12=48 parameters), these parameters are made the same for each muscle so

that only four muscle parameters need to be found via estimation. The physiological

reason behind this partitioning is that individual muscles are structurally very similar

and the difference in the forces they generate is largely a result of their different sizes.
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Therefore, once the model is partitioned in this fashion, the vector of muscle forces,

FM, can be determined from the unscaled muscle forces, Ftm, simply by scaling each

by a measure of the relative strength of the individual muscles (represented by a

diagonal scaling matrix S). This is summarized by Equation (3.1).

FM = SFM (3.1)

As a measure of the relative muscle strengths both muscle physiological cross-

sectional area (PCSA) ratios and maximum isometric force (MIF) ratios from [29]

were used. Table 3.1 summarizes the values for the two types of ratios used. Note

that both the PCSA and MIF ratios were unavailable for muscles GA,PE, and BF

(from Table 2.4) and were found via estimation as well. All the ratios are computed

relative to the value of Vastus Internus (VI) which was the muscle with the largest

PCSA and MIF values in [29].

The estimation algorithm described below was run with both PCSA and MIF ratios.

In both cases, the estimation results were very similar. Therefore, for brevity, the

results presented will be those obtained with the PCSA values in Table 3.1 with the

understanding that the results with MIF values are essentially identical.

3.2 Parameter Estimation Procedure

3.2.1 Preprocessing of Raw EMG and Kinematic Signals

Raw EMGs from all twelve hindlimb muscles of intact bullfrogs during a variety of

kicking tasks at rate of 1KHz were obtained from Dr.Andrea D'Avella (data from

[8]). Each raw EMG was then full-wave rectified and filtered offline with a fifth-order

Butterworth filter with a corner frequency of 5Hz (Winter suggests in [43] a value of

3Hz, although this number varies from 3 - 50Hz from one researcher to the next).

This filtering provides a moving average of the raw EMG signal that can be better

related to kinetic data because it follows a similar trend to the tension at the tendon
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Muscle Physiological Cross-sectional Area Estimated Maximum Isometric Force

RI .4554 .4553

AM .2748 .1455

SM .3389 .3390

ST .2094 .2093

IL .1147 .1047

VI 1.0000 (51.96 [rrm,2 ]) 1.0000 (14.19 [NI)

RA .0837 .0839

GA .4088* .3524*

PE .2126* .1754*

BF .4046* .4614*

SA .0706 .0712

VE .2748 .2740

Table 3.1: Muscle Physiological Cross-sectional Area (PCSA) and Estimated Maxi-

mum Isometric Force (MIF) Ratios from [29]. (*) denotes values unavailable in [29]

and estimated via parameter estimation.
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Figure 3-1: Comparison of Raw EMG to Filtered EMG

in both patterning and timing [43]. Once the raw EMG has been processed in this

manner, and all the negative components of the filtered signal have been set to zero,

it is treated as equivalent to the m(t) vector described in Chapter 2. The negative

components of the filtered EMG signal are set to zero in order to keep the muscle

activation signals, act(t), in the range of zero to one. Joint kinematics (1(t)), also

obtained from Dr. D'Avella, were derived from videotape recordings of the motion

using a digital video camera (29.97 frames/s, Sony TRV-9) as described in [8].

Figure 3-1 illustrates the effects of filtering the rectified raw EMGs with a fifth-order

butterworth, followed by zeroing of the signals negative components. Although the

raw and filtered EMG look very different (in both their time duration and amplitude),
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Figure 3-2: Graphical representation of raw EMG processing and its relation to the

model described in Chapter 2. Compare with Figure 2-1

it will be demonstrated in Chapter 4 that the resulting kinematics from both are very

similar. The reason for their similarity can be attributed to the low-pass filtering

effects of the Excitation-Contraction Coupling filter (EC(s)) whose corner frequency

is also 5Hz. Therefore, the activation signal vector, act(t) received by the muscles

in either case is qualitatively very similar. In order to correct for the amplitude

difference observed in Figure 3-1, the filtered signal was scaled to the same amplitude

as the original.
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Figure 3-2 demonstrates how the raw EMGs were processed and input to the model

described in Chapter 2. Once the raw EMGs have been filtered, they are held to

be equivalent to the EMG vector signal, m(t). In terms of notation, whenever it is

necessary to differentiate between the two sources of EMG, the result of the raw EMG

processing will be denoted by mactuai(t), and the corresponding joint kinematics by

eactuai (t).

3.2.2 Parameter Estimation Algorithm Description

A gradient descent algorithm on the kinematic error, summarized in Figure 3-3,

was used in order to obtain the optimal (in the least squared error sense) unknown

model parameters for our model. Using the filtered EMGs, mactuai(t), as input to the

hindlimb model (Figure 3-2), the model's predicted kinematics, 6(t), were compared

to the recorded kinematics, eactuai(t). The unknown model parameters (Kc, K 9,,

Bee, B, ,,Cat,. moment arms for SM, GA PE, and BF, and relative strengths for

GA,PE, and BF) were then varied until the resulting squared kinematic error was

minimized.

3.3 Parameter Estimates

Table 3.2 summarizes the muscle model parameter values obtained via estimation.

Tables 2.3 and 3.1 summarize the values obtained for both the estimated moment

arms and the relative muscles strength (PCSA and MIF) ratios respectively.

3.3.1 Physiological Plausibility of the Parameter Estimates

In order to determine if the muscle parameter values obtained from the parame-

ter estimation were within physiological ranges, we begin by comparing the model-

predicted and actual stress generated by one of the muscles in our model., the Sarto-

rius.
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Parameter Value

Kce 2.20[ N

Kpe 0.26[ ]

Bev 0.22[N1

Bp, 4.07.- 10-'[N-

Cati 36.9960 [mm]

Table 3.2: Muscle Model Parameter Estimation Results.Tables 2.3 and 3.1 summarize

the values obtained for both the estimated moment arms and the relative muscles

strength (PCSA and MIF) ratios respectively.
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Figure 3-4: Sartorius Stress Strain Curve [17]
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Figure 3-4 shows the stress versus strain for the Sartorius muscle of frog (20" C)

[17]. To assess the potential for power output a cyclical work protocol was used here

with a sinusoidal length trajectory, with a total strain of 16% or 20% and a frequency

of 5 Hz. The average power (averaged over the entire cycle) is 94 t 7W/kg, with a

peak power of 333 ± 19W/kg.

In order to determine the stress developed by the Sartorius muscle in our model as

a function of its length, we divide the muscle stiffness, Kce, by the physiological cross

sectional area of the Sartorius, ACS, as shown in Equation (3.2).

Kce 2.2N x 7.06% NMM _ -42.34 (3.2)
AcS 51.96mm 2 x 7.06% cm3

Assuming that the rest length of the Sartorius is l = 6cm (similar to the size of

the femur) then at = 0.025,= 0.15[cm], the stress developed by the Sartorius,

according to our muscle model, is 42.34 N x 0.15cm = 6.35N. This value matches

quite closely with that observed in Figure 3-4. It should be noted, however, that at

higher fractional length changes, y, the discrepancy between the predicted and actual

stress values becomes much larger. Therefore, our model makes accurate prediction

of the generated muscle stress for small muscle length changes about equilibrium. At

= 0.1, l = .6cm, the predicted Sartorius stress is 25.4

Along with the similarity between the predicted and actual muscle stress values

for the Sartorius, the estimated values for moment arms and physiological cross-

sectional areas are well within the range of both known parameter values and agree

(to first order) with the values that would be expected from visual inspection of these

hindlimb muscles. However, because the actual physiological values for the estimated

parameters are unavailable for the bullfrog at this time, this argument based on

the qualitative anatomical correspondence and similar parameter ranges is far from

rigorous. One particular value which needs to be verified is the estimated moment

arm value for biceps femoris at the hip, since it was 2.4cm, slightly over twice as high

as any other muscle moment arm in the model.
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Chapter 4

Plant Model Assessment

In this chapter we demonstrate the performance of the model presented in Chap-

ter 2 with the parameter values obtained via the algorithm described in Chapter 3.

Throughout this section, the results presented are those obtained when the model

input's were the filtered EMGs, mactuaz(t). Surprisingly, as mentioned in Chapter 3,

the estimation results using both PCSA and MIF ratios yielded qualitatively similar

results (explained by the similarity between PCSA and MIF values in Table 3.1).

Therefore, for brevity, this section only presents the results obtained when utilizing

the PCSA ratios.

4.1 Reproduction of Recorded Kinematics

Figures 4-1 through 4-4 illustrate the similarities between the actual joint kinemat-

ics. eactuai(t), and those predicted by the model., (t), when the model was driven

with the filtered EMGs. mactual(1).

4.1.1 Effect of Raw EMG Filtering

As mentioned in Section 3.2.1, although the filtered and unfiltered EMGs look very

different, the resulting kinematics are indeed very similar. Figure 4-5 presents the

actual joint kinematics, the model predicted kinematics resulting from the raw EMG,
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Recorded Kinematics from trial:50
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Figure 4-1: Trial 50-Simulated vs. Actual Kinematics.
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Recorded Kinematics from trial:57
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Figure 4-2: Trial 57-Simulated vs. Actual Kinematics.
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Recorded Kinematics from trial:61
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Figure 4-3: Trial 61-Simulated vs. Actual Kinematics. Note that because of the

way in which the EMG and kinematic information were recorded for this trial, both

images have been aligned manually. However, the signal duration and amplitude are

very similar.
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Recorded Kinematics from trial:63
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Figure 4-4: Trial 63-Simulated vs. Actual Kinematics
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and the model predicted kinematics resulting from the filtered EMG. Both the filtered

and unfiltered EMGs produce very similar joint kinematics. The largest qualitative

difference between the two is the time-shift arising from the fifth-order butterworth

filter (so that the unfiltered signal produces the kinematics slightly earlier than the

filtered kinematics). The reason why the kinematics arising from the unfiltered EMG

appear to lead the actual kinematics is that the raw EMGs were manually shifted in

time so that the kinematics from the filtered EMG were aligned with the recorded

kinematics. Therefore, the delay between the raw and filtered EMGs results from

time-delay induced by the EMG filtering.

The finding that both raw and filtered EMGs lead to the production of similar kine-

matics suggests that much of the important kinematic information within the EMG

is actually encoded within the low frequency components of the EMG. Additionally.,

the low frequency component of the EMG consists of sets of simple pulse-like signals

for each muscle (see Figure 3-1). This shape of the low frequency EMG components

will be used in the development of KCS in Chapter 5.

4.2 Ankle Force Fields

In order to compute the passive (no neural activation) isometric ankle force field

(i.e. the passive stiffness component of the ankle field), we hold the limb fixed at

distinct locations of the workspace and sample the restoring joint torques applied

by the limbs musculature. Equation (2.6) is then applied to the joint torques, T, to

determine the corresponding ankle forces, F. Figure 4-6 shows a reconstruction of

the hindlimb's passive stiffness field about passive equilibrium using this method.

4.2.1 Ankle Forces During Limb Movements

As described in Chapter 2, it is also possible to reproduce the ankle forces generated

during limb movement using Equation (2.6). Figure 4-7 demonstrates the computa-

tion of ankle forces generated during the kick in Trial 63 (see limb kinematics in
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Figure 4-5: Comparison of recorded kinematics to model-generated kinematics using

both filtered and unfiltered EMGs. The reason that the kinematics arising from the

unfiltered EMG appear to lead the actual kinematics is that the raw EMGs were

manually shifted in time so that the kinematics from the filtered EMG were aligned

with the recorded kinematics.
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Figure 4-6: Reconstruction of the ankle's stiffness field using Equation (2.6). The frog

hindlimb is shown at its equilibrium position determined by limbs' starting position

in the recorded joint kinematics, Oactuai(t)).
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Figure 4-7: Computation of ankle forces generated during a kick (Trial 63)

Figure 4-4). An important feature of Figure 4-7 is that, as noted in [31], the ankle

forces generated by the frog rarely exceed 2N. For this particular kick, the ankle

forces do not even exceed .6N.

4.2.2 Muscle Synergy Force Fields

In Chapter 1 it was pointed out that each muscle synergy vector has an associated

ankle force field given by either Equation (4.1) or (4.2) depending on whether the

mapping from EMG to muscle force was approximately linear. In the case that the

mapping is linear, the ankle force field can be computed as
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(4.1)

where F' is the linear operator relating muscle EMGs to muscle force, represented

here by its equivalent matrix. Alternatively, if the mapping is experimentally found

to be nonlinear, the ankle force field can be computed as

F(x, t) J(e)TlM()exp(Wc(t)) (4.2)

where Iexp is now the experimentally derived mapping between m(x, y, t) and F(x, y, t).

Because at this time it is not known whether the mapping between EMG and muscle

force is indeed approximately linear, results pertaining to both types of transforma-

tions will be presented here. In fact, recalling our discussion in Chapter 2, it is quite

likely that the mapping is indeed nonlinear (see Hill Model Force-Length-Velocity

curve in Figure 2-4). Then, the most likely reason why ankle forces where found

to scale linearly with spinal activation in [31 is due to a small range of activation

levels tested. Further experiments will be required to establish whether the linearity

of muscle force field scaling with activation holds for larger values of spinal activa-

tions. However, if such experiments demonstrate that force fields still scale linearly

with spinal activation over the entire physiological range, it would be suggested that

spinal networks are linearizing the mapping from spinal activation to muscle force.

As will be seen in the following sections, a nonlinear mapping will, in general.

cause the ankle force field vectors to change orientation as a function of activation

- a result inconsistent with the findings of invariant force fields by Giszter ct al. in

[13]. However, in this case, the resulting force fields will be convergent. If F' is linear,

however, it will be shown that the resulting force field shapes are indeed activation

invariant and scale linearly with activation as observed by Giszter et al., yet not

convergent. These points will be discussed further in Chapter 6.

94

F (x, y, t) = j (E))T - M (9)F'WC(t)



Nonlinear EMG to Force Mapping

Figure 4-8 demonstrates the results of treating the mapping from EMG to muscle

force as a nonlinear one. We represent this mapping by the full equation describing

the muscle contractile element in our muscle model. That is,

F' (act, 1, 1 0) = Fc"(act., 1,0) = Keact Catact - (l - 1) (4.3)

where the viscosity terms are neglected because the ankle is held fixed at each

workspace location where the force field is being computed. Also, the passive force

component is not included in order to make these fields equivalent to the active force

fields described by Giszter ct al. in [13]. Lastly, because the limb is not in motion,

act(t) = m(t), as a result of the unity DC (s=0) gain of the EC filter.

Figure 4-10 demonstrates that the force fields arising from Equation (4.3) actually

change orientation as a function of activation, while Figure 4-9 demonstrates that

each of the fields has a convergent equilibrium point. The location of this equilibrium

point depends on the magnitude of act, while the amplitude of the force fields scales as

the square of act. For very high levels of act (such as in Figure 4-8) the equilibrium

point has moved so far from passive equilibrium that the fields begin to look like

parallel fields.

Linear Mapping

Figure 4-11 shows the force fields corresponding to each of the seven synergies., w.

when the mapping from EMG to muscle force is represented as linear. For this linear

mapping we use.,

F'(act) = Fc"(act) = KceCatiact = 'act = F'm (4.4)

where both the contractile element length dependance, and the second order term

in act have been neglected. When F' is represented as such a linear transformation,

the shape of the force field remains invariant with synergy activation. Increased

activation only causes a linear increase in the magnitude of the force field vectors,
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here.

IC

Svnerav B. W2

40

30
20

0

0

20 10 W 3D 40 50 s

Svnerqv D, W4

so

40

30

20

10

0 10 20 30 40 50 s

Svnerav F, W4

50-

40

30

20

10

0 li 1d ft
4 1 t

4
f i i

I10

iI

1

i1 10 20 30 40 so

1 10



Synergy A, wi

20

30

10

20

30

40

30

20

10

0S
0

0

30

0 10 20 30 40 50 0

Synergy E, W5

50,

40

30

10 s-

0.

0 -

100

, - J" - -- ,

10 20 30 40

Synergy C, W3

Synergy F, W6

0

40

30

20

10 -

20 - '

0 10 430 0 s0 

Synergy G, W7

50
30

10 ~. -

10 -- . .

30 - - -

0 10 M0 30 40 s0 so

97

Figure 4-9: Muscle synergy primitive force fields computed with Equation (4.3) show

a fixed position which begins at passive equilibrium when act=0, and moves as act is

increased. ci(t) = .01 for the fields shown here.
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and no net change in the orientation of the force field vectors. Each synergy was

activated to its maximum (ci(t) = 1) for each of the force fields in Figure 4-11.

Although the force fields in Figure 4-11 are consistent with both the magnitude scaling

and orientation invariance properties observed by Giszter et al., they do not show a

convergent equilibrium point for any level of activation.
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Chapter 5

Kinematic Control Synergies

In this Chapter, we demonstrate the control benefits of reorganizing the muscle

synergies set derived in [36] into synergistic groups with simple, orthogonal kinematic

functions. Subsequently, we present a linear optimization whereby these Kinematic

Control Synergies (KCS) can be obtained, and illustrate the synthesis of a few typical

ranine behaviors as simple linear combinations of these control synergies. Reorgani-

zation of muscle synergies into these KCS (or a similar reorganization) by spinal

interneurons would be potentially beneficial from a control perspective for two rea-

sons. First, it would allow for the specification of movement in terms of the movement

goals (i.e. specification of what the limb should do, not how it should do it). Second,

incoming sensory information (in world coordinates, such as detection of an obstacle)

could be used by the spinal cord to directly recruit a KCS which will move the limb

away from the obstacle.

5.1 Functional Hindlimb Control

Although the muscles synergies identified by Saltiel et al. effectively constitute a

basis for the space of all EMGs producible by the bullfrog, the kinematic effects of two

synergies may be similar, while others may not be particularly useful for controlling

certain types of movements (although possibly useful for others!). Given that the

hindlimb of the bullfrog is constrained to the horizontal plane in our model, we seek
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the simplest reorganization of the Saltiel et al. synergies that will allow the formation

of a wide range of behaviors within this constrained workspace. Additionally, we

impose the constraint that these reorganizations should allow for the control signals

to be specified in terms of functional kinematic goals, instead of individual muscle

activations.

From a limb control perspective, it is precisely this type of representation that

is required if movement is to be coordinated from linear combinations of muscle

synergies within the spinal cord. For instance, if the frog wanted to produce a caudally

directed wipe, which muscle synergies would it need to activate, in what ratios, and

during which movement phases? Alternatively, if a neuroprosthetic device were being

designed to actively control the hindlimb, which muscle groups would it need to

activate in order to reproduce a caudally directed wipe in a natural fashion? In order

to answer such questions it becomes necessary to look at the muscular synergies in

the context of the entire spinal/musculoskeletal system. Such an approach is essential

because information such as relative muscle strengths, moment arms, and muscle

stiffness and viscosities are completely absent from the muscle synergy representation

due to the manner in which the synergies were obtained (through the characterization

of produced EMG arising from spinal stimulation). By viewing the Saltiel et al.

synergies in terms of their kinematic functions, it will become possible to obtain the

representation we seek.

An optimization algorithm is developed in order deduce a reordering of the Saltiel

et al. synergies in terms of their kinematic function, and demonstrate the utility

of these KCS in movement formation. If a kinematic decomposition of the muscle

synergies could be obtained, it would seem most beneficial for the decomposition to

yield synergies whose kinematic effects are orthogonal in workspace coordinates. We

believe that such an orthogonal decomposition of spinal muscle synergies would be

advantageous for higher-level movement formation for a number of reasons. First, an

orthogonal control basis in workspace coordinates would allow for the simple forma-

102



tion of behaviors. To illustrate, suppose that it was possible to recombine the available

muscular synergies into groups that controlled the azimuthal angle and radial extent

of the hindlimb. Such a polar representation of the workspace would reduce the con-

trol of a multi-joint limb to the specification of only two control signals (compared to

seven individual synergy drives, or twelve individual muscle drives) that are directly

related to the desired kinematic role.

Second, an orthogonal kinematic decomposition of the spinal muscle synergies

would present a simple mechanism for behavioral learning whereby kinematic error

in workspace coordinates (from sensory afferents) could be used (as real-time feed-

back) to correct errors that arise in the movement while it is being performed. In

addition, since the kinematic error and the control synergies would be in the same

coordinate system, it would become possible to use the error information to tune

the interneurons responsible for movement formation (i.e. learning the appropriate

interneuronal weights to perform a movement correctly). If an executed movement

resulted in an overshoot of the desired azimuthal angle of the limb, for example, the

synapse strength of the interneurons controlling the azimuthal angle could be reduced

to decrease future overshoot errors.

5.1.1 Formulation of Linear Optimization

Motivated by the above discussion, we describe a method in which an orthogonal

recombination of the Saltiel et al. muscle synergies can be found. Specifically, we

seek a decomposition that allows for the specification of a single vector summarizing

the desired limb behavior,

bhip flex (

b(t) = bhipextend( (5.1)
bradialflex t)

bradialextend (t)

where bhipf lex(t) specifies the desired amount of hip flexion, bhipextend(t) the amount of

hip extension, bradialflex(t) the amount of radial hindlimb flexion, and bradialextend(t)
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the amount of radial extension. Note that these four signals specify the desired

behavior of the limb in polar coordinates. Because muscles activation signals are

required to be positive, we require four activation signals instead of two to fully

describe the polar coordinate position of the limb. These signals would be used to

specify the limb's displacement about its passive equilibrium position.

Recalling from Chapter 2 that the muscle forces are related to the muscle torques

via the moment arm matrix, M, as

r = MFm  (5.2)

and substituting Equation (2.9) into 5.2, we obtain

r = MKce(act)LCatiact - (1- 10)j+ + Bc,(act)Lij+ (5.3)

T = MKce(act)LCatiact - (1 - 10)]+ (5.4)

Equation (5.4) is obtained by neglecting transient viscous effects. Note that the

multiplicative activation dependance of Ke from Equation (2.9) is implicitly shown

by making Ke a function of activation. It follows that, focusing on the component

of muscle force due to neuromuscular activation and imposing the constraint that

act = W , we obtain

T = MKceCat (W)2 ( ) 2  (5.5)

where ()2 implies element-wise squaring of each of the elements of the matrix or

vector. Here W is the matrix whose columns are the seven synergies in Table 2.4,

and represents the corresponding combination of the muscular synergies that yields

the desired vector of joint torques. The squaring of the elements of W is required

because of the nonlinear dependance of muscle force on neuromuscular activation.

Using the above equations, the problem of obtaining the desired KCS is then re-

duced to finding the vectors, i (note that points in the same direction as 2),

that yield torques corresponding to pure hip flexion (Ti = [1 0 0 ]T), hip exten-

sion (Ti = [-1 0 0 ]T), radial flexion( ri = [0 - 1 0 ]T), and radial extension
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(TF = [0 1 0]T). These torque values were chosen because they would yield mo-

tions in the required directions. This problem could also be formulated in terms of

obtaining a set of desired joint angular acceleration directions, E, instead of joint

torques. If e was the control parameter of interest, Equation (5.5) would be pre-

ceded by H- 1 , the inverse of the system inertia matrix. Using torque as the desired

control variable, the problem can be formulated as the following linear optimization

problem:

= min(rT - MKce Cat(W) 2V) (5.6)

s.t. 0 < W Z <1

where the linear constraint on i arises from the fact that we constrain the neuromus-

cular activations, act (and EMG, m(t)) to be c [0, 1].

Performing the optimization in Equation (5.6) and defining the control synergies

as

k =W [ hipfIex hipextend &radialf lex Gadialextend] = W (5.7)

we are able to reorganize the Saltiel et al. synergies into four groups (the four columns

of KC) that control orthogonal directions in hindlimb workspace coordinates. We refer

to the columns of the matrix IC as Kinematic Control Synergies (KCS). As a side note,

it was found by this same method that there is no combination of muscle synergies

which result in the production of EMG but and no net joint torques (i.e. ri

[0 0 0]T). A result that suggests that the ability to cocontract (increase stiffness

isometrically) at a joint is not possible as a combination of the muscle synergies, wi.

Figure 5-1 summarizes the i vectors obtained from the linear optimization in terms

of their corresponding synergies ratios. The letters along the horizontal axis corre-

spond to the synergy labels in Table 2.4 and Figure 2-10. It is important to note that

the results of this optimization coincide with some of the preferred synergy combi-

nations in [36]. The preferred combinations that resulted from the optimization are

ADF (11), ACG (9), and CF (25). The number of times that each combination was
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observed in [36] is included in parenthesis. Note that ADF combination is used in

both hip flexion and radial extension but in slightly different ratios. All of the ratios

obtained from the optimization algorithm were observed in [36]. It is also important

to note that not all of the seven synergies vectors, wi, are used to form the KCS. It

is therefore likely that these synergies help to control either variations of movements

within the horizontal plane, movements out of the plane, or a reorientation of the

plane itself.

Using the KCS vectors obtained via the described optimization, it is possible to

define the simulated vector of EMG signals, m(t), in terms of the new descending

command vector, b(t), as

bhipf lex (1)

M(I) = udsc((t) + Ur"ficx(I,) = W iapflcx vipextend 'radialflex radialcxtendl bhipexted

bradialfle (Ic)

bradialcxtd ()o

m(t) = kb(t) + urtjiex(t) (5.8)

where IC is the matrix whose columns are the four KCS and d(l) is the control vector

specifying the hindlimb commands in polar coordinates.

5.2 Hindlimb Control using Control Synergies

In this section we illustrate the control benefits of having obtained a orthogonal

reorganization of the Saltiel et al. synergies by reproducing a variety of typical frog

behaviors using a simple set of pulse like control signals as might be generated by

brainstem, cerebellum, or spinal locomotive generators.

5.2.1 Kick Reproduction

Because all of the kinematic data available for this study consisted of a wide range

of kicks in the horizontal plane, we focus our first example on this type of kinematic
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behavior. Using the control synergies described above, the kick observed in Figure 5-2

was reproduced by activating the radial extension and hip extension synergies. The

command signal essentially directed the hindlimb to actively extend radially from

passive equilibrium, while the hip was extended slightly to obtain the appropriate

kick direction. Once the command signals cease, the hindlimb returns passively to

the body.

Figure 5-3 shows both the actual and simulated kinematics and EMGs for Trial 63.

Note the similarity between both the EMGs and kinematics between the simulated
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and recorded trials. The small secondary burst of EMG in the simulated kick is due

to the spinal stretch reflex as the limb draws back towards the body. Because the

spindles are no longer being activated by alpha-gamma coactivation, their stretch as

the limb draws back to the body causes a small burst of firing to occur. This burst of

spindle firing helps the limb settle at its equilibrium position as it passively returns

towards the body.

As can be seen in Figure 5-3, both simulation kinematics and EMG line up quite

closely with the actual recorded signals. However, there are two major differences

between the actual and simulated EMGs. The first is that while the actual EMG

has a large component of ST activation, the simulated EMG does not. Given the

similarity between the two kicks it is quite possible that the small extra activation

of SM in the simulated kick is able to compensate for the absence of ST activation.

That is, because the two muscles are quite similar (in both size and mechanical

action), it is possible that one redundant muscle performs the function of the other.

This discrepancy between actual and simulated EMGs is not surprising given the

number of similar muscles included in the model, although it might suggest that

future models deal with redundant muscle by combining them into one equivalent

muscle. Combining muscles in this fashion may have predicted the correct EMG level

for the aggregate (SM + ST) muscle.

The second difference between the EMGs is that while VE is very strongly acti-

vated in the actual EMG, it is minutely recruited in the simulated kick. Accordingly,

it appears that two other kinematically redundant muscles, RA and SA, are activated

at a higher intensity. This slightly higher activation of VE and SA apparently coin-

pensate for the absence of VE in the simulated EMG because the resulting kinematics

are very similar. Again, the finding that one redundant muscles is activated more

or less than observed is not surprising given that a description of how muscles are

recruited is not included within our model. Physiologically, kinematically redundant

muscles have a number of important differences that may lead to their preferential
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Figure 5-4: Swim Commands

recruitment for certain types of movement such as different types of fibers (fast twitch

vs. slow twitch) and varying moment arms that allow certain muscles to operate more

optimally than others within some workspace locations.

5.2.2 Swimming Pattern Generation

Having shown that realistic kicks can be reconstructed as simple linear combinations

of our derived KCS, we now demonstrate another typical frog behavior, swimming.

Figure 5-4 illustrates the control of a swimming pattern by simply toggling the radial

extension and hip extension synergies (a small amount of radial flexion is done at

the end of the extension phase of the kick). It remains to be seen how accurately
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the simulated kinematics describe an actual swimming movement (as well as other

common behaviors) in the frog.

5.3 Kinematic Control Synergy Ankle Force Fields

Figure 5-6 shows the ankle force fields resulting from the activation of each of the

Kinematic Control Synergies. For the fields presented in Figure 5-6, the nonlinear

mapping from EMG to muscle force from Equation (4.3) was used. Using this non-

linear mapping, the KCS force fields are convergent. Also, as seen in Figure 5-6, for

increasing levels of activation (i.e. increasing bi(t)) the equilibrium point of each of

the ankle force fields moves in either the radial or azimuthal directions. As with the

synergy force fields computed with Equation 4.3 in Chapter 4, the KCS force fields

do not scale linearly with activation (bi(t)) and lack an activation invariant structure.

The location of the KCS force field equilibrium points depends on the magnitude of

act, while the amplitude of the force fields scales as the square of act (see Equation

5-6 in Chapter 2.
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Chapter 6

Discussion

In this section we present a brief summary of the main results of this thesis. Several

important features of the results from Chapters 4 and 5 are then presented, sum-

marized, and their implications explained. Finally, we elaborate on some potential

applications of this work and present suggestions for future research.

6.1 Summary of Results

In this thesis we have described a model of the spinal cord/hindlimb system of a

bullfrog including the full nonlinear skeletal dynamics, 12 hindlimb muscles, spinal

reflexes, and muscle synergies encoded within the spinal cord (Chapter 2). The

implemented model was assessed by demonstrating its ability to recreate realistic

kinematics when driven with EMG signals recorded from intact bullfrogs (Chapter

4). Additionally, the primitives of Giszter et al. and Saltiel et al. were discussed

and some possible connections considered. In particular, under the assumption that

both the synergy and force field experiments stimulated identical spinal sites, the

force field primitives associated with each synergy were shown (Chapter 4). It was

demonstrated that when the transformation from EMG to muscle force, r', was linear:

1) the primitive synergy force fields were shape-invariant with increased activation,

and 2) the magnitude of the primitive synergy force vectors increased linearly with

activation. However, the synergy force fields showed no fixed position equilibrium,
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an observation inconsistent with the findings of Giszter et al.. The linearity of F' is

thus a sufficient condition for the ankle force fields to be invariant in shape, although

the necessity of this condition for force field shape invariance remains to be shown.

It was also shown that if F' was nonlinear, all of the resulting ankle force fields

showed a convergent equilibrium point. However, resulting fields showed neither a

fixed position equilibrium nor linear scaling with activation. Because the force fields

scaled approximately as the square of the descending activation, it is possible that

over a small range of activation the force fields appear to be scaling linearly.

In Chapter 5, it was shown that muscle synergies, wi, from [36] can be reorganized

into a set of Kinematic Control Synergies, JCi, defined as synergistic muscle groups

with simple, orthogonal kinematic functions. The reorganization of muscle synergies

in this manner allows for the synthesis of a wide range of ranine behaviors from

simple pulse-like signals that specify the radial extent and azimuthal angle of the

limb. Physiologically, such a formulation is plausible because such simple pulse-like

neural activation signals could easily be generated by higher-level CNS structures

such as the brainstem or cerebellum. Moreover, reorganization of the muscle synergies

into KCS allows for both descending synergy recruitment signals and proprioceptive

signals to be encoded with the same limb coordinate frame. Thus KCS allow for a

simple mechanism whereby sensory information (such as collision with an obstacle)

could be used by spinal interneurons to recruit the muscle groups required to correct

the limb's movement (i.e. by activating a synergy that moves the limb away from the

obstacle) (Chapter 5). To demonstrate the control benefits of the KCS, it was shown

that ranine kicks can be recreated quite accurately at both the level of muscle EMG

and limb kinematics using linear combinations of the KCS.

6.1.1 Mapping Muscle Synergies to Ankle Force Fields

An important issue addressed in this thesis has been whether the convergent, lin-

early scaling, and activation invariant ankle force fields observed by Giszter et al.

could be directly explained in terms of the muscle synergies found by Saltiel et al..
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In Chapter 1, it was demonstrated that if Equation (1.6) is found to be true experi-

mentally, then the mapping from muscle EMG to muscle force, P', must necessarily

be linear. Under this supposition of linearity, it was then demonstrated in Chapter 4

that the resulting ankle force fields were structurally invariant with activation. That

is, increasing the level of synergy activation only changed the magnitude of the ankle

force field vectors but not their directions. This finding thus implies that the linearity

of r' is a sufficient condition for the ankle force fields to exhibit the invariant behavior

with activation observed by Giszter et al.. At this time, however, it cannot be shown

whether linearity of F' is also a necessary condition for ankle force field invariance.

In order to demonstrate the necessity of this condition, one would need to show

that there exists no nonlinear transformation from EMG to muscle force such that

the resulting ankle force fields are invariant. A demonstration that requires testing

all nonlinear transformations from EMG to muscle force before the conclusion can

be reached. Alternatively, it could be demonstrated that force field shape invariance

with activation implies that the mapping between EMG and force is linear. At this

time, neither of these conditions could be shown. In fact, it is quite likely that neither

of them can be shown, since the mapping from muscle EMG to muscle force is quite

nonlinear as discussed in Chapter 2. But how then are activation invariant ankle

force fields achieved? One possibility is that the nervous system has found a (or the)

nonlinear mapping from EMG to muscle force that preserves the structure of the

ankle force fields as spinal activations are varied.

Already it has been demonstrated in Chapter 4, that when the nonlinear contractile

element force equation is used as the mapping from EMG to muscle force, the resulting

ankle force fields change orientation with increasing activation. However, the resulting

fields now show a convergent equilibrium point and linearity of force field scaling may

be observed over a small range of muscle activations.

Together, these findings suggest a number of possibilities for how the invariant

ankle force fields are achieved. First, it is possible that our muscle model is not
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sufficiently accurate and that when these simulations are repeated with the full Hill

muscle model as the mapping from EMG to muscle force, the ankle force fields that

arise are in fact invariant with activation. This would imply that the muscles are

built in such a manner that ankle field invariance arises simply from their structure.

Second, it is possible that additional spinal networks (not captured by synergy

extraction method) are actually actively compensating for the changing orientation

of the ankle force fields, by either recruiting individual muscles or muscle synergies

in such a manner that the end result is an invariant ankle force field. If this is the

case, however, it is quite surprising that invariant force fields were observed in deaf-

ferented preparations [13]. One possibility is that active feedback from Renshaw cells

(or other cells that receive efferent motor commands) is being used to preserve the

invariant force field structures. Such cells would remain intact even after deafferenta-

tion. Renshaw cells have already been implicated by Bullock and Grossberg [3] as

implementing spinal circuits which factor the specification of muscle force and muscle

length. Therefore, future work should focus on modelling the function of the Reshaw

cells within the spinal cord/hindlimb system.

Last, it is possible that the spinal sites stimulated in the experiments of Giszter et

al. actually stimulated neuronal networks that restricted the levels by which muscle

synergies were activated. If the levels of synergy activation are restricted enough

by these networks, it is possible that the resulting net change in the ankle force

field orientations may have been interpreted as experimental variability in the data

rather than an actual change in the force field orientation. At this moment, the

exact mechanism leading to the activation invariance of ankle force fields cannot be

determined.
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6.1.2 Identifying the Source of Ankle Force Field Conver-

gence

By contrasting the equations used as the linear and nonlinear mappings from EMG

to force (Equations (4.4) and (4.3) respectively), it can be hypothesized that conver-

gent force fields arise as a result of the activation dependent muscle rest length term:

[Catiact - (l - l)j+ = [(1 - (l - Catiact))J+. At a given level of act the equilibrium

length of the muscle is given by

'eq = 1, - Catiact (6.1)

Any displacements of the hindlimb from the equilibrium workspace position implied

by the activation of several muscles would then cause a restoring force in the direction

of this activation dependance equilibrium point. In light of this observation, it is

not surprising that CFFs were observed by Giszter et al. in both afferented and

deafferented preparations.

6.1.3 Possible Interpretation of Activation Invariant, Lin-

early Scaling, Fixed Equilibrium Ankle Force Fields

Another interesting property of the force fields characterized by Giszter et al. [13],

Mussa-Ivaldi et al. [24], and Lemay et al. [31] was that a large number of the active

force fields found had the following properties: 1) They were linearly scalable with

activation, 2) showed a fixed position equilibrium within the workspace, and 3) were

invariant in shape with activation. Contrary to experimental findings, the force fields

predicted by our model show: 1) a nonlinear (squared) force magnitude scaling with

activation, 2)an activation dependant equilibrium point, and 3) a variation in shape

with activation. The following section attempts to reconcile some of our findings with

the known experimental observations.

In regards to the linear scaling of ankle force fields with activation observed by

Lemay et al., our results suggest two possible interpretations. First, it is possible
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that ankle force fields do not scale linearly with activation. Instead, due to the low

activation range tested in [31], it is possible that the scaling appeared to be linear.

Since within our model, the scaling relation goes as the square of the activation, over

a small range of activations ankle forces would indeed appear to scale in a linear

fashion. Alternatively, it is possible that spinal interneuronal networks (not modelled

here) make the transformation from spinal activation to muscle force a linear function

even though the transformation from muscle force to EMG is nonlinear.

In regards to the last two observations, there exists the exciting possibility that

activation dependant force fields with activation dependant shapes are functionally

equivalent to the static, activation invariant force fields observed by Giszter et al..

In the formulation of Giszter et al., a set of static activation invariant force fields

are located at different sites of the workspace and ankle movement results from the

recruitment of these by the coefficients ci(t). The resulting force field at the ankle

is then the vector sum of the scaled position invariant force fields and will have a

convergent equilibrium point somewhere in the middle of the primitive force fields.

In our model, however, the KCS force fields have an activation dependant equilib-

rium position which starts at the limbs passive equilibrium and moves in the direction

which the KCS controls. As activation increases, the shape of the individual KCS

force fields changes such that the limb is drawn in the particular direction specified by

bi(t). In the limiting case that only one bi(t) is stimulated to maximum (and all oth-

ers are zero) the limb will be drawn towards one particular workspace direction. As

illustrated in Figure 6-1, the KCS force field at this location, oI, will be convergent.

When the bi(t) are activated in unison, the limbs equilibrium point will be drawn to

a location between the activated <IN. Therefore, by defining the KCS force fields at

their maximum activation values, they become "position-invariant" convergent force

fields like the active force fields of Giszter et al.. Further theoretical studies must be

performed in order to fully verify the functional relationship presented here between

the KCS force fields and those observed by Giszter et al., Mussa-Ivaldi et al., and
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Lemay et al.and determine if both concepts are indeed equivalent interpretations of

the same experimentally observed phenomena.

6.1.4 Muscle Synergies Lack Cocontractive Effects

Along with yielding a reorganization of muscle synergies into Kinematic Control

Synergies, the optimization algorithm in Chapter 5 allowed us to conclude that there

is no combination of the muscle synergies, wu, that leads to the production of muscle

EMG and no net limb movement. This finding suggests that the ability to actively

cocontract at a joint is not encoded within the muscle synergies of Saltiel et al..

Therefore, either the frog is unable to cocontract at a joint (if muscle synergies sum-

marize all of the net behaviors that the frog is able to produce), or this finding is a

direct result of the the experimental protocol used for synergy extraction in [36].

6.2 Possible Research Implications

6.2.1 Structure of Spinal Locomotor Generators

The physiological decomposition of the muscle synergies encoded within the spinal

cord into groups of control synergies has strong implications for the structure of

spinal locomotor generators. As was noted from Figure 5-4, control synergies allow for

rhythmic locomotor patterns to be generated using a simple set of pulses. Pulses such

as these could represent the net activity of a population of neurons in the spinal cord,

with the amplitude corresponding to the number of active neurons, and the duration

to the length of time the majority of the neuron pool is active. In this manner, a

variety of rhythmic locomotor behaviors may be encoded by simple reverberatory

circuits within the cord.

6.2.2 Implications for Understanding Human Spinal Injury

The absence of the corticospinal tract in frogs presents the interesting possibility

that the entire behavioral repertoire of the frog might be summarized by our sim-
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ple set of control synergies. That is, since higher-level CNS structures lack a direct

pathway to the a - motorneuron pool, it is most likely that these structures synthe-

size movement through direct interaction with muscle synergies encoded within the

cord. Therefore, since our control synergies represent a reorganization of the muscle

synergies identified by Saltiel et al. into orthogonal kinematic groups in workspace

coordinates, they represent an efficient way in which a large set of behaviors may be

constructed. It still remains to be determined whether the EMG and kinematic pre-

dicted by using KCS for movement formation corresponds to the actual EMG signals

generated in vivo during similar tasks.

In the big picture, our work also suggests the tantalizing possibility that mammalian

spinal cord functions like the frogs' but has added input "ports" for descending com-

mands from the cortex. The absence of the corticospinal tract in the frog might

also suggest that our model may fairly accurately describe humans who have suffered

corticospinal tract injury.

6.2.3 Implications of a Muscle Synergies on the Neural Co-

ordination of Movement

From a control standpoint, the existence of only a small number of muscular syn-

ergies and the observed linearity of the spinal/musculoskeletal system may have im-

portant implications for neural circuitry required to coordinate movement [40]. The

ability to control muscles as groups or synergies, rather than individually, affords the

possibility of reducing the number of effective degrees of freedom of the musculoskele-

tal system. Equation (1.10) illustrates how the effective number of hindlimb degrees

of freedom is reduced from 12 (no. of muscles) to 7 (no. of synergies). In Chapter 5,

we demonstrate how this number can be further decreased to 4, by introducing a no-

tion Kinematic Control Synergies (KCS), muscle synergies with orthogonal kinematic

effects.
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Equation (1.10) also has a direct implication to how supraspinal circuits might

form movements. Suppose, for example, that it was the goal of the CNS to generate

a particular endpoint force, FP(x, y, t), using only the muscle synergies, wi, encoded

within the spinal cord. An equivalent control problem is to find the input, c(t), such

that the product <b(x, y)c(t) comes as close to F,(x, y, t) as possible. Because <b(x, y)

as derived above is a 2 x 7 matrix, there are in general either no solutions or an

infinite number of them if the input c(t) is unconstrained. Therefore, if solutions

exist, the CNS must be (in some sense) invoking an addition criteria to select the

control vector c(t). Although the control vector, c(t), is already constrained to con-

tain nonnegative components, an infinite number of solutions may still exist. As a

consequence of Equation (1.10), supraspinal circuits could form movements (i.e. find

c(t)) by projecting the desired control variable (endpoint force, joint torques, etc.),

F,(x, y, t), into the space of controllable directions <b(x, y), and choosing from the

solutions, if any, subject to some constraint criterion.

Along with the benefit of reduced dimensionality, however, the existence of spinal

synergies might also constrain the range of possible movements that can be syn-

thesized at the spinal level. That is, if all movements were produced by the linear

combination of spinal synergies, all possible movements must also lie in the subspace

spanned by the synergies. Thus, if supraspinal structures could only synthesize move-

ment via the combination of these synergies, there may be types of movements that

simply cannot be achieved as described above. However, a control strategy where

supraspinal circuits synthesize movement by finding the combination of spinal syn-

ergies that comes closest to the desired movement, c(t), and supraspinal structures

independently control muscles around this "spinal trajectory", might yield a signifi-

cant simplification to the role of supraspinal structures in limb control.
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6.3 Future Research

This works suggests a number of possibilities for future research. First, because

the available kinematic data was focused to kicking trials in the horizontal plane, we

are only able to compare the simulated EMGs for kicking behaviors. If other sets of

kinematic task data were available, a more comprehensive evaluation of the models'

ability to generate both realistic EMG and kinematics could be carried out. It would

also be of interest to record kinematic data from deafferented preparations so that the

role of the beta system in the the synthesis of movement can be better understood.

Specifically, due to the lack of knowledge on the function of the beta system, our

model treated the beta system as functionally identical to the gamma system under

alpha-gamma coactivation. Detailed studies on the function of the beta system are

therefore required in order validate or invalidate this assumption.

As illustrated in Chapter 1, if Equation (1.6) can be shown to hold true exper-

imentally, then necessarily the mapping from EMG to muscle force must be linear

and as a consequence, the ankle force fields arising from synergy recruitment will be

activation invariant. Otherwise, as explained in Section 6.1.1, there are a number of

scenarios that need to be considered in order to determine the mechanism whereby

ankle force fields are made activation invariant.

Lastly, our findings demonstrate that a wide range of movements can be synthe-

sized as linear combinations of muscle synergies or KCS. Additionally, our findings

suggest that movement formation as linear combinations of KCS may be equivalent

to linear combinations of position invariant, convergent ankle force fields hypothe-

sized by Giszter et al.. Future work should be directed toward demonstrating if both

formulation for movement formation are indeed equivalent.
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Appendix A

Limb Parameter Estimates

A.1 Limb Physical Parameters

In order to estimate the link masses and lengths for the bullfrog from data published

[28] for the Rana Pipiens, we make a simple physical scaling argument. First, we

assume that the mass of individual segments scales linearly with the size, i. e.

mbf,i = mrp,,rbf (A.1)
Mrp

where mbf,i is the mass of the ith link of bullfrog, mp,i is the mass of the ith link of

the Rana Pipiens, mbf is the total mass of the bullfrog (~ 240grams), and mrp is the

total mass of the Rana Pipiens (- 28grams).

Next, in order to estimate the link lengths for the bullfrog, we note that mass ~

Volume ~ (length)3 . Therefore, we obtain the relation that

lbf,i = lrp,i M ) (A.2)

where lbf,i is the length of the bullfrog's ith link, lrp,i is the length of theRana Pipiens'

ith link, mbf is the total mass of the bullfrog, and mrp is the total mass of the Rana

Pipiens. Tables A.1 and A.2 summarize the link masses, lengths, and inertias as

computed with Equations (A.1), (A.2), and (2.1).
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Length [cm] Mass [grams] I [grams - cm 2]

Femur 2.68 2 2.3

Tibia/Tibiofibula 3.07 1.4 1.4

Tibiale/Fibulare 1.54 .4 .2

Table A.1: Rana Pipiens physical parameter data obtained from [28]

Length [cm] Mass [grams] I, [grams -cm 2]

Femur 5.48 17.1 42.9

Tibia/Tibiofibula 6.28 12.0 39.4

Tibiale/Fibulare 3.15 3.40 2.8

Table A.2: Bullfrog physical parameter data estimated from Equations (A.1), (A.2),

and (2.1).
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Appendix B

Skeletal Dynamics - Equations of

Motion

Note: This section closely follows the notation of Chapter 6 in [39]. The interested

reader is referred to this text for a more complete treatise of rigid body mechanics.

In this section we present the derivation of the equations of motion (EOM) for

a three-link rigid body with revolute (rotary) joints as shown in Figure B-1. For

completeness and validation purposes we assume the rigid body is in the vertical

plane and include the effects of gravity. The EOM in the horizontal plane (an then

be obtained by setting gravity to zero.

B.1 Lagrangian Method in Analytical Mechanics

A variety of systematic methods exist in analytical mechanics for deriving the

EOM for arbitrary open-kinematic chains of rigid bodies. As with most things in

engineering., the particular application determines which type of method is the most

appropriate or conceptually simplest to apply. For the particular configuration in

Figure B-1 we use the Lagrangian formulation.
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Figure B-1: Hindlimb reference diagram for derivation of equations of motion
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The Lagrangian method consists of writing down the system's Lagrangian, L, in

terms of the generalized coordinate vector, q = [01, 02, 0 2]T, and the generalized ve-

locity vector, q. The general form of the system's Lagrangian is

L(q, 4) = K(q, q) - V(q) (B.1)

where K is the kinetic energy of the system and V is the potential energy. Once the

Lagrangian has been obtained, the equations of motion of the system are then found

by application of the Euler-Lagrange equations defined as

d OL - L DCd& =D - (B.2)
dt a<ji aqi (L.L

where qi is the ith component of the generalized coordinate vector and ri is the

generalized torque acting about the ith joint. Our task is then reduced to finding

expressions of the system's kinetic and potential energies in terms of the generalized

coordinates and velocities.

B.2 Kinetic Energy

Let us denote the radius vectors from the origin of the inertial frame to the center

of mass of each of the links by rei where i = 1, 2, 3, i.e.

1/2 11 ci

= 1/2lisi (B.3)

0

11 c1 + 1/2 12 C12

rc2 = 11 s1 + 1/212s 12

0

11 C1 + 12 c12 + 1/2 13 C123

r3 = lisi + l 2 12 + 1/2l 3S1 23

0
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where

k

Cijk = cOS(Z On)

k

(B.4)

Sijk = sin(Z On)

Next, let us define the jacobian, Jo, of each of the rei (i=1,2,3) with respect to

the generalized coordinate vector q.

-1/211si 0 0

1/2 li ci 0 0

0 0 0

-11 s1 - 1/2 12 S1 2

11 c1 + 1/2 12 C1 2

0

(B.5)

-1/212s12 0

1/212 c 12  0

0 0

-l 1 s1 - 12 S12 - 1/2 13S 123

11 C1 + 12 c 12 + 1/2 13 C1 2 3

0

-l2 12 - 1/2 13 S123

12 c 12 + 1/2 13 C1 23

0

-1/213 123

1/2 13 C1 2 3

0

The velocity of the center of mass of the ith link, vci, is then

(B.6)vci = Jvcq

Hence the translational part of the kinetic energy is

Ktrans

Ktrans

1 1 T 1 T
= mivcv + m2vc 2 Vc2 + -m3vc 3vc32 2 2

12
= 4qT{m 1 JoT Jo + m 2 JLc23c2 m 3JLcJc,}q

(B.7)

(B.8)

We deal next with the rotational kinetic energy of the system. First, because of

the particular arrangement of links, it is clear that the angular velocity, wi, of each
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of the links about their center of masses are

W = [0 0 41]T (B.9)

W2 = [0 0 q1 + 2 ]T

W3 = [0 0 41 + 42 + 43]T

Moreover, since wi is aligned with the z-axis, the triple product wTIiwi reduces to

(13,3)i times the square of the magnitude of the angular velocity. The quantity (13,3)i

is the inertia of the ith link about an axis located at the center of mass and pointing

out of the page in Figure B-1. Since only one moment of inertia is relevant to the

rotational energy expression, we shall refer to (1,3)i as Ii. The rotational kinetic

energy of the overall system is then

(1 0 0 1 1 0 1 1 1

Krot = U {11 0 0 0 +12 1 1 0 +13 1 1 1 }l (B.10)

0 0 0 0 0 0111

The total kinetic energy of the system is then simply

Ktotai = Ktran + Krot (B.11)(1 + 12 + 13 12 + 13

Ktotai = 1 CT {mJTJ + m2J' 2 JV2 + m 3JI3 JV3 + I2 + 13 12 + 13 13

13 13 13)

Ktotal = -4H(q)q (B.12)
2

where the matrix H(q) is referred to as the system inertia matrix.

B.3 Potential Energy

The expression for the potential energy is simply the sum of the potential energies of

each of the individual links, i. e. the mass of each link multiplied by the gravitational

acceleration and the height of its center of mass. Thus
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V mglSl 128I 13813V = g + m 2g{lisi + -} + m 3g{lisi + 12s12 + 3} (B.13)2 2 2

B.4 Equations of Motion

With expressions for the kinetic and potential energies of the system obtained, the

EOMs can be derived by applying the Euler-Lagrange equations to the Lagrangian

according to Equation (B.2). The resulting equations can be written in matrix form

as

H(q)4 + C(q, q)4+ g(q) = T (B.14)

where H is the system inertia matrix (as defined in Equation (B.12)), C is the matrix

consisting of the Corioli and centrifugal terms, and g(q) consists of the terms arising

from differentiation of the potential energy. There is a direct relation between the

elements of the H and C matrices as demonstrated in [39]. The k, j-th element of

the C matrix is defined as

hkJ + hki ___ (B. 15)

k E 1 + h - =h-CkiZ-{ 0 k &il }O(.k
=1 2 aqi NJ 094k

This relation between the C and H matrices presents an alternative method

whereby the EOMs may be derived once Equations (B.12) and (B.13) were obtained.
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