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I. INTRODUCTION.

Regulator design for dynamical systems is usually performed on the basis of a nominal model

of the plant to be controlled. Modelling errors are unavoidable and, in fact, often desirable because

they may result in simpler designs. It is therefore essential that the regulator based on the nominal

model is robust; that is, it preserves its qualitative properties (namely, the stability of the closed-

loop system) in the face of modelling errors.

The robustness and sensitivity to modelling errors of controlled linear systems has been exten-

sively studied in the past [2, 6]. The robustness (stability margins) of regulators has been traditionally

described in terms of gain and phase margins, although more recent approaches [3, 9, 12] focus on

the singular values of the return difference or of the inverse return difference matrix.

One of the most appealing features of optimal linear quadratic (LQ) regulators are their

guaranteed stability margins. Namely, LQ regulators remain stable when the control gains are mul-

tiplied by any number greater than 1/2. They also have guaranteed phase margins of sixty degrees

11, 13, 14, 16]. These results can be obtained directly by appropriately manipulating the associated

Riccati equation [13].

A recent paper by Glad [5] has shown that gain margins of optimal regulators for nonlinear

systems can be derived from the associated Hamilton-Jacobi-Bellman (HJB) equation, under suitable

assumptions. This result ties nicely with the results on LQ regulators, because the Riccati equation

is a direct consequence of the IHJB equation associated with LQ problems. However, the results of [5]

are only applicable to single-input, deterministic systems, perturbed by memoryless nonlinearities

thus allowing only derivation of gain margin results; no phase margin results were derived in [5].

In this paper we derive general robustness margins of optimal regulators for multi-input nonlinear

systems. Our results are valid for both deterministic and stochastic systems (controlled diffusion

processes). In contrast to [5], we allow dynamical, (i.e. not just memoryless) perturbations inside the

loop and obtain, as a corollary, a generalization of the phase margin results of [13]. In particular,

we show (Theorem 3) that the robustness margins of LQ regulators (including the 60 degree phase

margin) hold for optimal regulators of any nonlinear plant which is linear in the control, provided

that the cost functional contains a quadratic control penalty.

In the stochastic case, we consider two distinct classes of controlled processes: a) Those for which

the state can be steered to an equilibrium point (assumed to be the origin). Such is the case for



diffusion processes in which the intensity of the noise decreases to zero as the equilibrium point is

approached. We then consider the associated infinite horizon, expected total cost, optimal control

problem. b) Those for which the intensity of the noise is allowed to be everywhere positive. (The

LQG problem with perfect observations is an example.) In that case no control law can achieve

finite total cost; we consider, however, the associated infinite horizon, expected average cost, optimal

control problem. We then derive the same results, provided that stability is now given an appropriate

meaning: that no sample path converges to infinity.

We reiterate that the above robustness results are only valid for nonlinear optimal control

problems in which all state variables can be measured exactly and can be used in the implementation

of the nonlinear feedback regulator. Robustness properties of nonlinear stochastic regulators that

arise when only noisy measurements of output variables are available are not addressed in this paper;

they remain the subject of future research.

II. PROBLEM FORMULATION.

Notation: Throughout this paper, scalar functions will be indicated by lowercase letters; vector

functions by lowercase underlined letters; matrix functions by uppercase letters. For any vector

function f we will use subscripts (e.g. fA) to denote its scalar components. For any scalar function f

of a vector input x, we let Of/x_ denote the transpose of the gradient of f (a row vector).

Case A: Deterministic Optimal Control.

Consider the controlled deterministic system

dx
(t) = f((t), U(t)); *0) = S (1)

where x, u are n- and m-dimensional state and control vectors, respectively, and f is a continuous

function from Rn+m into R n such that f.(O, 0) = 0. A control law is a measurable function kI:Rn i R m

such that the closed-loop equation

dx
dx (t) = f(x(t), k(x(t))); X(0) = t, (2)

has a unique solution, for all xoR n. (If k(.) is not continuous some more care may be needed in

defining what is meant by a solution to (2); see [4].) Let l:R 'n - R and h:Rm f R be nonnegative
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measurable functions denoting the penalties to the state and the control, respectively, satisfying

1(0) = h(O) = 0. We consider the performance criterion

J - )) + h(u(t))) dt. (3)

The general dynamic programming conditions for optimality for such control problems are well-

known and easy to establish formally. However, for our purposes, we do not need to concern ourselves

with the particular assumptions that can guarantee existence of optimal control laws or that the

IHamilton-Jacobi-Bellman (HJB) equation is satisfied. Such issues are treated, for example, in [4] for

finite horizon problems. We will assume instead that the data of the control problem are sufficiently

well-behaved to guarantee that no complication will arise. In particular, we assume:

Assumption la: There exists an optimal control law k(.). Moreover, the optimal cost-to-go (value)

function V:R ' F-+ R is continuously differentiable and satisfies the HJB equation

o = (2) f(x, k(x)) + h(k(x)) +1 • f(9, x ) + h(u) <+ 1(), VxRERn? VuERm' (4)

Finally, V(x) > 0, Vx_40 and lim inflljl.oo V(x) > 0.

Case B: Stochastic Optimal Control; Total Cost.

Consider the perfectly observed controlled diffusion process

dz(t) = f(x(t), uI(t)) dt + E(x(t)) dw(t); x(O) = , (5)

where x, u, f are as in Case A, except that f is now allowed to be any measurable function; E(x)

is a measurable n X n matrix function, w_(t) is a standard n-dimensional Brownian motion and x

is the initial state. We also assume that w(t) is defined on some probability space (Q, F, 'P) and we

denote by 'St the smallest a-field in 55 such that W(r) is St-measurable, for all r<t.

A control law is a measurable function k:Rn" R" such that the stochastic differential equation

dx(t) = f(_(t), k(x(t))) dt + E(x(t)) dw(t); x(O) = (6)
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has a unique solution in the Ito sense [15]. We consider the performance criterion

J2 = imrE[ (l(z(t)) + h(u(t)))dt], (7)

where 1(.) and h(.) are as for Case A. Let ST(x) denote the transpose of E(x). Let A(x) = (1/2) (x)ZT(x)

and aij(_z) be the i, j-th entry of A(x). We define a differential operator L u by

7, n d9

Lu" = Tfi(x,U) d + El aij(x) (8)
i=1 (8) ij- -- 9~

As in the deterministic case, we will assume:

Assumption lb: There exists an optimal control law k(.). Moreover, the optimal cost-to-go (value)

function V:Rn - R is twice continuously differentiable and satisfies the HJB equation

0 = (Lk(-)V)(x) + h(k(x)) + I(x) < (L-V)(x) + h(u) + I(_), VxERn, VuER m . (9)

Finally, V(x) > 0, Vx_0 and lim infllzlj_. V(x) > 0.

Conditions under which assumption lb is satisfied may be obtained along the lines of [4,7,10]

and they need not concern us here.

Case C: Stochastic Optimal Control; Average Cost.

Let everything be as in Case B above, except that the performance criterion is modified to be

J3 = lim E[f l(x(t)) +h(x(t)) dt (10)
T-oo T

We also require that {x: 1(x) < c} is bounded, for any constant c.

Assumption lb must then be modified as follows:[8]

Assumption ic: There exists an optimal control law k(.), a constant g and a function V:R n - R

which is twice continuously differentiable and satisfies the HJB equation

g = (Lk(z)V)(x) + h(k(x)) + I(x) < (LUV)(x) + h(u) + I(x), VRn ' , VER". (11)
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Suppose that the optimal regulator _u(t) = k(x(t)), for any of the problems A, B, or C above, is

perturbed to u(t) = (P(k(x(-)))(t), as in Figure 1. We are interested in the stability of the new closed-

loop system under suitable assumptions on (D. The perturbation 4) may be simply a memoryless

nonlinearity, in which case we can make statements about the gain margins of the optimal regulator.

It can also be a causal dynamical operator (e.g. a linear time-invariant system); in particular if (D

corresponds to a pure phase shift, we can make statements about the phase margins of the optimal

regulator.

We now proceed to define the class of admissible perturbations (D. Let k(.) be a control law for

any of the problems A, B or C. Let .At denote the set of measurable m-dimensional time functions

from [0, oo) into R. An admissible perturbation (D of k(-) is a map from A into .Al such that:

Case A: (Deterministic Systems) There exists some 1u4()CGAt such that

(i) The differential equation (1) has a unique solution x(-).

(ii) u(t)= )(_k(z(.)))(t), Vt.

Cases B and C: (Stochastic Systems) There exists a measurable stochastic process u(t) defined on

([, Gf, 9P) such that:

(i) _u(t) is adapted to {6ft}.

(ii) The stochastic differential equation (5) has a unique solution x(.).

(iii) For any sample path, _u(t) = cD(kz(x)))(t).

Assumption 2: Let Atbo {_u(.)C.A: f0 h(u(r)) dr < oo}. Then, ( maps Alb0 into JA30.

(For example, if h is a quadratic function, 4X must map L 2 into L 2.)

The solution x(t) of either equation (1) or (5), when u(t) is given as in the above definition, will

be called the "trajectory of the perturbed closed-loop system".

III. MAIN RESULTS.

Our first result is a multi-loop generalization of Theorem 3 of [5] which also covers stochastic

control problems. It shows that optimal regulators have an infinite gain margin, provided that the

following condition is satisfied:

Assumption 3: (i) f(_, u) is differentiable with respect to u, for any fixed xER' .
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(ii) For any fixed xERn, aR", iE{1, ..., m}, either

T(aT' f(, u)) >0, VUER", or (12)
Oui

(aT ' (x, u)) < 0, VUER m . (13)

Assumption 4: For each t, there exist functions si(', t):R H R such that

I(u(.))(t) = (0l(um(t), t), .. , q m(Um(t), t))T, Vu(-)Ct. (14)

Moreover, these functions satisfy, for each t, the sector condition (Figure 2)

C2 < cqi(c, t), VcCR, Vi. (15)

In other words, the perturbation 4) corresponds to a memoryless nonlinearity and, in particular, to

a gain increase.

Theorem 1: Consider the optimal control problems A, B, C and let assumptions la, lb, Ic, respec-

tively, as well as 3, hold and suppose that h(u) = Yl hi(ui), for appropriate scalar functions hi.

Let q) be an admissible perturbation of a corresponding optimal control law, satisfying assumptions

2 and 4, and let x(t) denote the trajectory of the perturbed closed-loop system. Then,

Case A: (Deterministic Problems) limt_,, x(t) = 0.

Case B: (Stochastic Total Cost Problems) limt-,, x(t) = 0, almost surely.

Case C: (Stochastic Average Cost Problems) No sample path converges to infinity, almost surely.

Thus, in all cases the perturbed nonlinear closed-loop system remains stable.

Proof: All proofs can be found in the appendix.

We now discuss the crucial assumption 3. Theorem 1 remains true even if f(x_,-) is not

differentiable, provided that assumption 3(ii) is appropriately modified, as in [5], (although the

more general version is more obscure). However, the proof of Theorem 1 reveals that it cannot be
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significantly further weakened. Assumption 3 essentially guarantees that the (expected) direction

of motion is still a descent direction (with respect to the value function V) under an arbitrary gain

increase. Given the importance of Theorem 1, it is a natural question to find particular cases for

which assumption 3 holds. Glad [5] provides the example (for the single input case)

f(x, u) = f (x) + b(x)f2 (x, u), (16)

where f':R" 'd- R", b:Rn - R n' f 2 :Rn+l H- R and where f 2 (x, .) is monotonic in u, for any fixed

x. Interestingly enough, the above example covers all cases allowed by assumption 3 and a similar

characterization can be also obtained for the multi-input case. This is the subject of the next

theorem, in which we assume that f is twice continuously differentiable with respect to u, because

this allows a significant simplification of the proof.

Theorem 2: Let f be twice continuously differentiable with respect to u, for any fixed x. Then, f

satisfies assumption 3(ii) if and only if, for any fixed x, it is of the form

q

f(u) = b° + E bkfk(u) (17)
k=l

where fk:Rm F- R. Moreover, for any component ui of u, at most one of the scalar functions fk

may depend on ui. Finally, each function fk is either increasing in ui, for all u, or decreasing in ui,

for all u. (That is the scalar functions fk satisfy themselves assumption 3. However, the way that

components are split to form the sum in (17) may change with x.)

As in [5] more assumptions on the dynamics are needed to obtain more specific robustness

margins. In what follows we assume that the dynamics are linear in the control:

Assumption 5: f(x, u) = f°(x) - F(x))u, where f:Rn - Rn and F(x) is a n X m matrix function, for

each xER n.

The next assumption describes the set of perturbations 4 that will be allowed. It may seem

counterintuitive as stated below in its full generality. In fact it is a generalization of the conditions

imposed in either [5] or [13] as will be shown later.
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Assumption 6: (i) h(.) is continuously differentiable.

(ii) There exists some e > 0 such that for any measurable m-dimensional time function u(.), and

for any t>0,

(ft [eu . -(21 )) [u())( + ( - h(u(r))] d >0. (18)

Theorem 3: Consider the optimal control problems A, B, C and let assumptions la, lb, Ic, respec-

tively, as well as 5, hold. Let 4> be an admissible perturbation of a corresponding optimal control

law, satisfying assumptions 2 and 6, and let x(t) denote the trajectory of the perturbed closed-loop

system. Then,

Case A: (Deterministic Problems) limt-o,, x(t) = 0.

Case B: (Stochastic Total Cost Problems) limt,, x(t) = 0, almost surely.

Case C: (Stochastic Average Cost Problems) No sample path converges to infinity, almost surely.

Thus, in all cases the perturbed nonlinear closed-loop system remains stable.

In order to apply Theorem 3, one mainly needs to verify that assumption 6 holds. This is

done below for certain particular problems. Proposition 1 shows that the robustness margins of LQ

regulators generalize to nonlinear systems which are linear in the control and in which the penalty

to the control is quadratic.

Proposition 1: Suppose that h(u)= -'l riui (ri > 0) and let ) be a linear time invariant system

with diagonal transfer matrix whose nonzero entries oi are proper, stable rational functions and, for

some e > 0, Re[qi(jw)]>1/2 + e, Vw. Then, assumption 6 holds. The condition Re[4i(jw)]>l/2 + e

is satisfied, in particular, if for some e > 0

(i) I is a memoryless gain, larger than 1/2 + 6, in each channel, or

(ii) I is a pure phase shift, smaller than 60 - e degrees at all frequencies, in each channel.

Proposition 1 showed that Theorem 3 generalizes the LQ gain and phase margin results of [13].

The next proposition shows that the same Theorem generalizes the single-input results of [5] as well.

Proposition 2: Suppose that h(u) = Em=l hi(ui) and let b be a memoryless nonlinearity such that

(U(.))(t) = (l (u (t), t), ., n(m((t), t))T (19)
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and, for some e > 0,

Ui)i(U>Uh VuiER, Vi. (20)
-ui' (Ui)

Moreover, assume that ui(ah/Oui)(ui)> 0, VuiO. Then assumption 6 is satisfied.

Proposition 2 may provide us with gain reduction margin results. As an application, let hi(ui) =

2nu2n for some positive integer ri. Inequality (20) becomesUiSi(Ui)>U2 1 2> U (21)

which shows that the stronger we penalize large inputs (n large), the worse become the gain reduction

margins, as should be expected.

IV. CONCLUSIONS.

This paper demonstrates that under suitable assumptions nonlinear optimal multi-input deter-

ministic or stochastic dynamic systems have certain guaranteed robustness properties, which may be

expressed as guaranteed gain and phase margins. These properties generalize the known robustness

results of optimal regulators for linear systems with respect to quadratic performance criteria. In

particular it is shown that if the nonlinear dynamic system is linear in the control variables and there

is a quadratic penalty on the control variables in the associated cost functional, then the resulting

nonlinear feedback design has a guaranteed infinite positive gain margin, a -6db gain reduction

margin, and a ±60° phase margin property.

Such guaranteed robustness properties are obtained from the Hamilton-Jacobi-Bellman equation

associated with the nonlinear optimal control problems.
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VI. APPENDIX.

This appendix contains all proofs for section III.

Lemma 1: Case A: Given some x_(0)EGR and a time function u(t), let x(t) be the corresponding solution

of (1), assuming that it exists. Assume that fo [l(z(r)) + h(u(r))] dr < oo. Then, limt_,, x_(t) = 0.

Case B: Given some x(0) and a stochastic process u(t), adapted to GJt, let z(t) be the corresponding

solution of (5), assuming that it exists. Assume that fJ'[1(x(jr)) + h(u(r))] dr < cc, almost surely,

and that supt V(x(t)) < oc, almost surely. Then limt_,, x(t) = 0, almost surely.

Proof: Case A: Let V(t) = fJ(I((x(r)) +h(_u(T))) dr. Then, V(t)>V(z(t)), since V is the optimal cost-

to-go function. Clearly, liInt_,, V(t) = 0, which implies that limt,_O V(x(t)) = 0. By assumption

la, it follows that limto,, x(t) = 0.

Case B: a) We first consider the case where

E[J (I (x(r)) + h(u(.r))) d] < oo

also holds. With \'(t) defined as for Case A, it is easy to see that limt,,E[tl(t) It] = 0, a.s..

Moreover, the definition of V implies that E[fV(t) I GFt]>V(x(t)), which shows that V(x(t)) converges

to zero and, using assumption lb, x(t) must converge to the origin.

b) We now consider the general case. Given the initial state x(0) and some M>0, N>0 let

TMN = inf {t>O: (I(x(r)) + h(u(r))) dr>N or V(;K(t))>M}.

If the above set is empty, let TMN = oo. We now define a new control law fi by

uf(t) = U(t), t < TMN

k(x(t)), t->TMN,

where k(.) is an optimal control law and let *(.) be the trajectory that results when _5 is used. Then,

E [ ((_(T)) + h(fu(7))) d -= Ef (1(x(Tr)) + h(u(T))) d + E[V(x(TMN))]<M + N.

Therefore, by part (a), limt,,oo0 _(t) = 0, almost surely. Let ŽQMN = {WECf: TMN = o0}. For all

WEQMN we have _(t) = x(t), Vt. Hence, limt,,o x(t) = 0, for almost all WCOMN, VM, N. On the
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other hand, the assumptions of the Lemma imply that almost all wEC also belong to QMN, for some

M, N, and the desired result follows.i

Proof of Theorem 1: We follow the approach of [5]. Fix some xER n. Then, by assumption 3,

dV/x_(x_). f(x, u) is either increasing or decreasing, as a function of ui. Assume it is increasing. From

either equation (4), (9) or (11), corresponding to cases A, B, C, respectively, we obtain

( x )' f(x, k_(4)) + h(_k())< (x) .f(_, u) + h(u), (Al)

for all u that differ from k(x) in the i-th component only. It follows that ki(x)<O because otherwise

hi(ki(x)) > hi(O)

and

a(C). f(x, k(z))> (~) f_(X, k_*(z))

where ki*(x) = O, kj*(x) = kj(x), j7i, which would contradict (Al). Similarly, we conclude that

ki(x)>0. whenever OV/x()(x)- f(x, u) is decreasing as a function of ui.

Assumption 5 implies that qi(ki(x), t)>ki(x) whenever ki(x)>O and qi(ki(x), t)<ki(x), otherwise.

Together with the preceding discussion we conclude that

a () f(x, (k(x), t))< a (z) f(X, k() (A2)

From now on, let x(t) denote the trajectory of the perturbed closed-loop system and let u(t) =

~(k(z(t))).
Case A: (Deterministic Problems) From inequality (A2) and equation (4) we obtain

dV 9V OV
Tt (:O) = 'x(t)) = Xf f(x(t), O(k(), t)) < lx (x(t)) · f((t), k(z(t))) = -- (z(t)) - h(k(z(t)))<0. (A3)

Integrating (A3), we obtain

[f(x(r)) + h(k(x(r)))] dr < V(x(O)) - V(_(t)) < V(1(O))
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and therefore, fo7[l(x_(T)) + h(k(x(T)))] dr < oo. In view of assumption 2, the last inequality also

gives foch(u(r)) dr < co. The desired result then follows from Lemma 1.

Case B: (Stochastic Total Cost Problems) From inequality (A2) and equation (9) we obtain

(L-( t)V)(x(t))<(Lk-(G(t))V)(x(t)) = -1(x(t)) - h(k(x(t))). (A4)

Applying the Ito formula [15] to (A4), it follows that V(x(t)) is a positive supermartingale, converges

almost surely [11] to a random variable VO and, in particular, supt V(x(t)) < 0c, almost surely. The

Ito formula also yields

E[ (1(x(r)) + h(k(x(T)))) d] V(x(O)) - E[V(x(t))]<V(x(O)). (A5)

Taking the limit, as t-,oo, we obtain f (l(1x((r)) + h(k(x(r)))) dr K< o, almost surely. Then invoke

assumption 2 and use Lemma 1 (as in the proof for Case A) to complete the proof.

Case C: (Stochastic Average Cost Problems) Similarly with (A5) we obtain

E 1((r)) d] - gt<V(x(O))- E[V((t))]<V(x(O)). (A6)

Dividing by t and using Fatou's Lemma [15] we obtain

E[lim inf /oI(x()) dr <lirn inf E- I(x(r)) dr<g.
t-00 t t-*oo tJO

Therefore, lim inft,,o(1/t) fo l((,()) d- < oo, almost surely, which, in view of Assumption 1c, implies

the last part of the theorem.3

Proof of Theorem 2: The proof of sufficiency is trivial, so we concentrate on the proof of necessity.

Since the theorem has to be proved for each x separately, we assume that a particular x has been

fixed and we drop the dependence on x from our notation.

Assume, without loss of generality, that there is no i such that dff/du(u) is identically zero.

For any i, let Hi = {(f/dui((u): uERm). If there exist u l , u2 such that Of/OcUi(ul ) and Of/Oui(u2) are
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not collinear, then there exists a vector a such that Of/dui(ul) .a > 0 and Of/dui(u2 ) - a < O, thus

contradicting assumption 3(ii). Therefore, Hi is contained in some one-dimensional subspace of R m ,

which may be repersented by some nonzero vector bigHi.

We now partition the set {1,..., m} of components of u into a set of classes A 1,..., Aq, as follows:

two components i, j will belong to the same class if and only if bi is collinear to bj.

Since49f/Oui is collinear to bi, so must beO2 f/OuiOuj. By interchanging the order of differentiation,

we conclude that either i and j belong to the same class, or (2f9/uiduj(u) = O, Vu. Based on

this observation, the representation (17) follows immediately. The fact that the functions fk must

themselves satisfy assumption 3(ii) is also straightforward. 1

Proof of Theorem 3: From any one of the formulae (4), (9) or (11), corresponding to cases A, B,

C, respectively, we obtain, by differentiating with respect to u,

Oh OV
h (k(z))+ V() F(x) = O, (A7)

Let x(t), u(t) be the trajectories of the state and the control resulting from the perturbed closed-

loop system. Let, for convenience,

c(t) = (k(z(t)))[(k(z()))(t) - k(x(t))] +- h(k(z(t))) =

a9 (Av)
_ (x(t))F(x(t))[k(x(t)) - $(_k(z(.)))(t)] + h(k(_(t))),

where the last equality following from (A7). Note that assumption 6(ii) states that

C(T) dr > h(k(x(r))) dr, Vt> O. (A9)

Case A: (Deterministic Problems) Using equation (4) and (A8)

dV 8_) 0V
dV ((t )) (x(t)) * (x(t)) + - (x(t))F(x(t)),D(k(x(-)))(t)

= ((t)) f((t)) + t (A10)

= -((t)) - (t).
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We now integrate (A1O), use (A9) and take the limit as t--oo to obtain

(1(t((T)) + Eh(k(x(T)))) < 00

and the desired result follows from Lemma 1, as in the proof of Theorem 1.

Case B: (Stochastic Total Cost Problems) Similarly with (A1O), we obtain from (9) and (A8),

(Lu(t)V)(x(t)) = -- (x(t)) - c(t)). (All)

We now integrate (All) and use the Ito rule to obtain, for O<t<T,

E[V(x(T)) I t] - V(x(t)) < -E[ c(T) dr 't.

Given that c(t) is adapted to {(ft}, it follows that

E[V(x(T)) + c(r) dr I Ht< V(x(t)) + i c(r) dr

which shows that V(x(t)) + fot c(r) dr is a (positive) supermartingale and therefore converges. Hence

V(x(t)) has bounded sample paths. From (A9), (All) and the Ito rule we obtain

E[ (l(x(r))+- h(k(x(r))))d] E[ (l(x(r))+c(r)) d]< V(x(O)), Vt>O. (A12)

In view of assumption 2, fo(1(xt(r)) + h(u(r))) d-r < oo, and the desired result follows from Lemma

1.

Case C: (Stochastic Average Cost Problems) Similarly with (A12) we obtain

This is the same)) < inequality as (A) + t, 1 and the rest of the proof is the same.

This is the same inequality as (A6) in the proof of Theorem 1 and the rest of the proof is the same

as in Theorem 1.!

Proof of Proposition 1: The proof of the first statement is immediate from Parseval's theorem. See

also [13, p. 177]. The next statements are Corollaries 4 and 5 of [13].!

Proof of Proposition 2: It is trivial to check that the integrand in the left hand side of (18) will be

nonnegative for all r; hence (18) is satisfied.!
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FIG. 1: The Perturbed Closed-Loop System.
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FIG. 2: A Memoryless Gain Increase.
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