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Abstract

We formalize a probabilistic model of inter-species sequence conservation for motif
discovery, and demonstrate that adding large-scale genomic conservation data to an
existing motif discovery procedure improves the quality of that procedure's results.
Existing motif discovery algorithms reveal binding motifs that are statistically over-
represented in small sets of promoter regions. To the extent that binding motifs
form a reliable part of a cell's regulatory apparatus, and that apparatus is preserved
across closely related species, these binding motifs should also be conserved in the
corresponding genomes. Previous studies have tried to assess levels of conservation in
genomic fragments of several yeast species. Our approach computes the conditional
probability of inter-species sequences, and uses this probability measure to maximize
the likelihood of the data from different species with a motif model.
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Chapter 1

Introduction

We present a method for integrating global genome alignments into an existing motif

discovery procedure that uses the Expectation Maximization algorithm. We begin

with a brief survey of existing motif discovery algorithms, to place this procedure in

its larger context. We continue by showing results to support our contention that the

individual base alignments in regions of globally-aligned genomes are more commonly

conserved within known motifs than in the genome as a whole. We then give a

description of the data, and show how to modify the EM algorithm to incorporate

it. Finally, we present results showing that adding a global alignment to the data

improves the quality of discovered motifs, and the frequency with which known motifs

are re-discovered, relative to the unimproved algorithm.

1.1 Previous Motif Discovery Work

A "motif" might be intuitively defined as a short sequence of letters that repeats

throughout a larger set of words. Historically, biologists first searched for motifs in

the primary sequences of closely related proteins; this was referred to as the "local

alignment" problem, to distinguish it from procedures seeking global letter-for-letter

matches between two sequences. Global alignment algorithms seek to maximize a

total score on the alignment of two sequences, but it can be difficult to generalize the

algorithms to more than two sequences at a time and assessing the reliability of local
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matches can be problematic [1].

Local alignment algorithms take a different approach: ignoring global scores, they

seek to find the substrings in the given sequences with high local correspondence.

Many of these algorithms were originally used to search for corresponding regions

of homologous proteins, in order to infer functional or structural characteristics [2].

Later work applied the same algorithms to DNA sequences; these tools became more

useful as entire genomes were sequenced and made publicly available.

Starting with bacterial genomes, and later continuing with the genomes of yeast

and other more complex organisms, these tools were enlisted and refined to system-

atically uncover the coherent fragments of DNA that give clues to the structure of

the surrounding regulatory apparatus. Often the local alignments were organized to

reveal the portions of DNA that would bind to transcription factors; these binding

sites were summarized as instances of a "binding motif," and the process itself became

known as "motif discovery."

Three choices are implicit in any motif discovery algorithm: how locally aligned

sites are summarized into "motifs," how the algorithm searches the space of possible

alignments (or how it scores intermediate local alignments), and how reliably biolog-

ical conclusions can be drawn from the results, given the choice of algorithm and the

input data.

Current motif discovery algorithms often make the first choice in one of two ways.

Many algorithms choose to model the locally aligned sites as instances of an explicit

probabilistic model. Two frequently used algorithms, MEME and AlignACE, use a

product multinomial motif model [3, 4, 5]. This model contains a set of independent

multinomial distributions (over separate nucleotides or, in the case of motif discov-

ery in proteins, amino acids) modeling the contents of each position in the motif

separately. Other algorithms have used this model as well [6, 5, 7, 8]. Although

the independent column model is simplistic, it has been shown to accurately capture

enough content in known binding motifs to be useful [9, 10]. Some algorithms have

attempted to relax the independence assumption between distributions in adjacent

positions [11].
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Other algorithms have rejected the probabilistic modeling of motifs in favor of

exact or discrete models. This approach usually models a "motif" as either a set of

substrings or a substring along with an acceptable number of "mismatches." Sites

are instances of the motif if they either match a member of the set of substrings

[7, 12, 13, 14] or fall within a certain Hamming distance (the allowed number of

mismatches) from the given substring [15, 16, 17].

The choice of motif model affects the way the algorithm optimizes that model over

a given input data set, and different models also have different inherent advantages

and drawbacks. Probabilistic models often lead to more tractable search algorithms,

and describe position-specific ambiguities in a compact and easily-understood format.

The notion of the information content of a probabilistic model is attractive, as well as

the possibility of identifying sites that "almost" match the motif. Discrete models, on

the other hand, easily model site-independent ambiguity and lead (in certain restricted

circumstances) to exact or exhaustive search algorithms. Discrete models avoid the

question (unavoidable in probabilistic models) of identifying sites that match the

model; counting these sites is often essential to measures of "overrepresentation" or

"discrimination" essential to many algorithms.

Once the motif model is given, a choice of the search or optimization algorithm

for that model must be made. With the probabilistic models, two popular choices are

the Expectation Maximization (EM) algorithm [18, 4, 6, 7] and the Gibbs Sampling

algorithm [19, 5, 8, 20]. Fundamentally, these two optimization procedures are quite

similar. Associated with any motif model and set of sequences (the input data) is

a likelihood for each possible motif site within the input sequences. Gibbs sampling

randomly chooses subsets of these sites with probability proportional to their likeli-

hood and updates its motif model from those sites; this amounts to a random walk

through this set of potentially bound sites until a motif emerges. EM moves through

the same probabilistic landscape with its likelihood (Expectation) and update (Maxi-

mization) steps, but in a deterministic "hill-climbing" fashion. What Gibbs sampling

achieves through random walking, EM achieves through random restarts to this local

optimization step (since EM is performing the equivalent of gradient descent for local
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optimization, adequately searching the search space for a global optimum requires

"random restarts" of the algorithm at different points in the space to avoid re-finding

local optima).

Different independence assumptions in the EM and Gibbs sampling algorithms

produce corresponding constraints on the results of those algorithms. One common

assumption is the "single-sequence" assumption; this assumes that, at most, one motif

can occur per sequence. Several forms of EM commonly make this assumption. These

variants of EM for motif discovery are termed OOPS and ZOOPS, which stand for

"one occurrence per sequence" and "zero-or-one occurrenc per sequence," respectively.

Gibbs sampling commonly makes a different assumption, that individual bits of

the alignment vector are independent of each other (constrained by, at worst, over-

lapping motif effects). No requirements are enforced on the sum of the bits of an

alignment vector E. When this assumption is made in EM, it is commonly termed

TCM, or "two-component model" EM.

The algorithms built around a discrete motif model show a wider range of search

techniques. Some algorithms perform an exhaustive search [21, 7]. Others use data

structures (such as suffix trees) to discover "structured" discrete motif models [17, 15].

Some algorithms use a randomized search (such as random hashing) to look for exact

models that can't be discovered in an exhaustive search [16], or convert the input data

into a graph or other data structure, and apply greedy solutions to the intractable

problems that arise [14].

The third choice to be made, once a motif model and an algorithmic approach for

optimizing it are chosen, is one of interpretation: how do we choose the input data

(and incidental parameters) for our procedure? Under what conditions may we draw

biological conclusions from what are often statistical results? The primary choice to

be made for input data is, "Which biological sequences do we choose as input to our

local alignment algorithm?" In the context of searching genomic promoter regions for

binding sites (or some other functional piece of sequence), this is a question about the

division, classification, and selection of genomic sequence. In searching for a binding

motif, previous work has often assumed that co-regulated genes, those genes regu-
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lated by a common transcription factor, should share a similar simple binding motif

in their promoter regions. This lead to early approaches combining motif discov-

ery with expression clustering experiments; genes whose expression profiles clustered

tightly under different conditions were assumed to have a common regulator, and

their promoter regions were used as input to motif discovery tools [22, 23].

Once the motif discovery algorithm has suggested one or several putative binding

motifs, it is necessary to ask what biological conclusions can be drawn. Assuming that

the sequences given as input accurately reflect the phenomenon under investigation,

and that the relevant assumptions about binding mechanism (that a transcription

factor has a consistent binding motif between genes and that the genes or regions in

question are bound by a fixed set of factors) are accurate, it will generally follow that

discovered motifs are related to the mechanism in question.

The relevancy of discovered motifs is related to their correct generalization of the

input region set. A discovered motif is relevant in so far as it acts as an accurate

classifier: if the presence or absence of a motif correctly predicts whether a region

(or the corresponding gene) is part of the phenomenon under investigation, then the

motif is a good candidate for a role in the causal or mechanistic description of that

phenomenon.

This leads to characterizations of "enrichment" or "overrepresentation" in the

world of motif discovery. Algorithms that use discrete motif models often contain

steps to count instances of that motif in both the input and "background" set of re-

gions and calculate overrepresentations scores. The algorithm of Buhler and Tompa

uses a simple argument about expected counts to find enriched buckets in their ran-

domized hashing scheme [16]. Other algorithms, notably that of Friedman and that of

MDScan, use a hyper-geometric distribution to model expected motifs counts [7, 24].

Some algorithms eschew a background model in favor of a background region set; re-

ported motifs are those that discriminates well between foreground and background

region sets [13]. Explicit use of a "negative" sequence set should lower the number

of false motifs reported, a common problem among many motif discovery algorithms

[25].
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Algorithms with probabilistic motif models often use a statistical notion of the

"background" region set (that is, the sequence set from which the input set is drawn)

in the optimization of the model. Many algorithms estimate parameters of an n-th

order Markov model to use in conjunction with the motif model [4, 20, 26]. Some

algorithms assumed the use of a 0 th order model; others have investigated the advan-

tages of a higher order model [27, 28]. Ultimately, the likelihood of a site in these

algorithms depends not just on the current notion of the target motif, but also on how

well the background model explains either the site itself, or the surrounding sequence.

Finally, many probabilistic algorithms use a calculation of overrepresentation

either as a pre-processing step (culling the seeds to EM, for instance) or a post-

processing filter. Conversely, some discrete-model algorithms will use a probabilistic

tool as a means of refining discrete result [7, 24]. Ultimately, many tools mix and

match several of these options in complementary and overlapping ways, often tailored

to the specific problem at hand.

In this work, we will try to make as few irrevocable choices as possible in our

selection of a motif discovery algorithm. Instead we wish to modify an existing motif

discovery algorithm to incorporate the use of genomic conservation data. This is

followed with a comparison of the modified algorithm with the results of the original

method. We will assume the use of an algorithm with a probabilistic motif model and

we use calculation of motif overrepresentation as a post-processing step; in essence,

we are modifying a vanilla EM or Gibbs motif discovery tool to use the conservation

data.

1.2 Previous Genome-wide Conservation Work

Existing work on the conservation and evolution of genomic or proteomic sequences

consists of variations on one basic theme: simultaneous explanation of multiple se-

quences within one coherent, parametrized probabilistic model. Different methods

make different choices as to what kinds of models are admissible, which (if any) pa-

rameters are made explicit, what sorts of sequence regions are modeled, and to what
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end this modeling is performed [29, 30, 31, 32, 33, 34, 35, 36].

The most basic kind of conservation model assembles a parametrized tree structure

(a "phylogenetic tree") to accurately explain long sequences. Usually such a sequence

is the primary sequence of a protein or a gene, and the tree is used to aid multiple

alignment algorithms. The model of evolution in this case has two parts, the topology

of the tree itself, and the notion of branch length or evolutionary "time." While

these may have a tenuous relationship with the sequences' real evolutionary histories,

together they provide a framework for modeling different rates of parsimony between

sequence regions. Some models will account for insertion and deletion along with

substitution.

This conceptual framework is simple. The sequence regions are presumed to be

noisy instantiantions of an "ancestor" sequence. Inferring the structure and param-

eters of a single tree suggests a way in which the sequences may have evolved, or at

least provides a quantitative comparison of global similarity.

Sometimes the "distance" parameter is explicit, as in a maximum likelihood ap-

proach to phylogeny. Other times the parameter is implicit as in the parsimony

approach to tree-building.

One variation relaxes two of these assumptions. First, multiple models of con-

servation and evolution are admitted (we simultaneously consider several differently

structured and parametrized trees). Second, the assumption that different sites within

the same sequence region are related in the same way to other sequences is relaxed.

The multiple tree models are used to explain the differential conservation of different

sites in the same sequence region.

This relaxation leads, in turn, to a new use for conservation modeling. Conserva-

tion models are inferred as before, only at finer sequence detail. But if the scale of

the sequence sites that are explained with different models is small enough that the

same (or "similar") sites may occur multiple times in the same sequence regions, we

can now ask an important question: "Which abstract sequence strings are conserved

more frequently than we would expect if conservation was random?"

This question suggests a semantic generalization for the parameters of the inferred
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phylogenetic trees. Previously, the conservation tree models were parametrized with

some "distance"; assuming sequences are evolving at constant (or proportional) rates,

this distance can be read as an "evolutionary time."

When we model different sites in the same sequence with different models simulta-

neously, this definition needs to change. Presumably, most sites have been in a single

sequence for a similar length of (real) time. A significant difference in evolutionary

distance implies that different sites are changing at different rates.

Much work has gone into identifying functional sites through such differential

evolution. Those sites that share both sequence similarity and consistently high con-

servation parameters ("close" evolutionary distances) are more likely to be functional,

assuming that functional sites evolve more slowly than the surrounding sequence un-

der looser evolutionary stabilization. The parameter of the evolutionary model has

undergone a semantic loosening, from "time" to a sort of "importance."

Several other interesting questions can be asked in this regime of conservation

modeling. First, if the sequences we are modeling come from different species, we

may ask "which species will give assessments of differential conservation that best

pick out the functional sites?" Some previous papers have attempted to quantify the

answer to this question, at least in the case of closely-related yeast species [37].

An additional variation is available here in the choice of a tree parameter: should

it be real-valued or binary? We will designate these choices as the "distance" and

"functional" form of the conservation parameter, although the division is not so sharp.

Choosing a real-valued tree parameter implies a maximum-likelihood approach to

tree-building, and the final parameter often looks like an evolutionary distance. The

binary parameter instead assumes the sequences (and their sites) are noisy instantia-

tions of sites which are (in reality) either completely the same or completely different.

By assuming that sequence sites are modeled by the binary choice of "motif" or "back-

ground" conservation distributions in this work, we will be implicitly using the latter

approach.

But one major assumption still remains: the similarity of different sites is condi-

tioned on the parameters of the model, and no systematic restriction is made on the
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types of models available to represent the same sequence at different sites. If the goal

is not to build a realistic phylogenetic tree but to discover functional sequence sites,

then this is a reasonable assumption to make.

One recent paper, Kellis et. al., systematically makes this assumption and uses it

to search for sites considered to be functional [38]. The sites of a putative motif are

a priori classified according to a binary category (for instance, genic vs. intergenic

sites). An implicit alignment is assumed, and a single conservation model is inferred

for each kind of site. A putative motif is said to be "functional," and included in

the output, if the parameters of each model are sufficiently different. This process is

repeated for several different forms of conservation model.

Our approach in this work is most similar to this last method. Known functional

sites are used to infer a "functional" conservation model, and the corresponding "back-

ground" model. Rather than using these models exclusively to rank putative motifs,

however, we use this score of differential conservation to bias a traditional method

of motif discovery toward such regions of differential conservation. In this way, our

method provides an algorithm for simultaneously fusing sequence similarity between

sites and between species into a single model for motif discovery.

1.3 Outline of Work

The first part includes the Data section, the Models section, and the Methods sec-

tion. These three sections parallel each other. The Data section gives a qualitative

description of the data we will use in this paper, along with some preliminary statis-

tics and an outline of data's practical problems. The Models section presents a formal

mathematical description of the data, as well as the models whose parameters our

algorithm learns from the data. The Method section explains how these models are

evaluated; it also lays out our solutions to the practical data challenges explained in

the Data section.

The second part consists of the Results section, and the Discussion and Conclu-

sions sections. Here we summarize the results of running our modified algorithm, and

13



compare them to the results of the corresponding unmodified algorithm. Finally, we

discuss the choices we made, possible avenues for future work, and argue that adding

conservation data improves our results. We provide summary statistics in the Results

section, and a full listing of all results and corresponding statistics in the Appendix.
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Chapter 2

Data

We have four data sources available for input to both versions of the motif discovery

algorithm:

" Factor Set: A set of transcription factors in Saccharomyces cerevisiae, for which

binding motifs are known with high confidence.

" Genome: A reference sequence for each intergenic region of DNA in S. cerevisi-

aie.

" Binding Data: For each transcription factor, a list of genes whose promoter is

bound by that factor.

" Conservation: A global-alignment for each region of the reference genome to

the genomes of K other species.

2.1 Factor Set

The first data set we will use is a list of yeast transcription factors. In particular, to

test the results of our augmented algorithm (and compare against the results of the

original algorithm), we choose yeast transcription factors whose binding sites are well

characterized. From a list of factors with well-characterized TRANSFAC motifs [39],

we have chosen ten factors whose motifs are well-represented in their bound probes.

This factor set is summarized in Table 2.1.
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In this table, Bound Regions is the number of contiguous intergenic regions we

will use as input to the EM algorithm when trying to (re)discover the motif for this

factor. Each of these regions contains a probe in the binding data with a p-value

below a specific cutoff (0.001 in this case). Bound Motif Sequences is the number of

sequences in the bound set that contain at least one instance of the consensus motif.

"Total Motif Sequences" is the number of sequences in the total sequence set (4984

separate regions were considered as potential promoter-containing sequence regions)

that contain at least one instance of the consensus motif.

Consensus Bound Bound Motif Total Motif
Factor
ABFl
CBF1
GCN4
GCR1
HAP3
HAP4
MCM1
REB1
STE12
YAPI

Motif
TC nnnnnnACG
GTCAC TG
TGACTCA

CTTCC
CCAATnA
CCAATnA

CCnnn A GGTT A
CGGGTG G
TGAAACA
TTACTAA

Regions
168
26
50
13
20
39
57
90
43
35

Sequences

160
23
34
9
12
25

40

73
24
20

Sequences

1227

231
170
2441
975
975
783
660
540
595

Table 2.1: The base set of factors and corresponding known motifs.

2.2 Reference Genome

Our second data source is the reference sequence for yeast, the public Saccharomyces

cerevisiae genome. We discuss the procedure for choosing which portions of the

genome to search for motifs in Section 2.5. It is important to note, however, that we

view both the binding and conservation data as annotations to this reference genome.
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2.3 Binding Data

Once we choose a transcription factor to investigate, we select the genes that we

will consider to be co-regulated according to the results of a genome-wide binding

location assay [40, 41]. This data is given in a matrix: each experiment (combining

both a factor and a condition) contains 5419 values, the p-value for each probe in

the data set. Since our interest in discovering motifs is centered on the sequences

between ORFs (as opposed to the sequences of the bound probes from the binding

data), we consider a region to be bound when it contains one or more bound probes.

Furthermore, in this work we only focus on the bound probe sets of factors in the

YPD condition.

2.4 Conservation Data

Finally, the conservation data accompanies the reference sequence in the form of a

global alignment to each intergenic region. In particular, for each spatially adjacent

pair of ORFs in the genome, we are given the sequence covering the region between

these ORFs, and a global alignment of that region with the corresponding regions of

the other species [38].

2.5 Combining the Data

These data are consistent with each other and must be combined. The combination

of sequence, binding, and conservation data presents several hurdles; failure to con-

sistently clear these hurdles can introduce noise to the input data and harm later

results.

The first hurdle is selecting, for a given factor, the bound probes. For our purposes,

this is equivalent to the problem of choosing a p-value threshold for the binding data.

Some work has focused on sharpening the threshold of an arbitrary p-value through

combination with other data (with expression data for instance, see [42]). Here, we

sidestep the issue by first selecting the binding threshold to be sufficiently tight to
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avoid significant false positives (we hope) in the bound probe set: this is 0.001. We

then choose to focus only on those factors whose a priori motifs are well represented

within their bound regions. Since the ultimate question is not whether we re-discover

the motif, but whether one technique discovers it when the other does not, this should

not bias our conclusions. Instead, it should limit those cases where both techniques

fail to rediscover the known motif, thus allowing us to identify regions of improvement

more accurately.

The second hurdle is converting the selected probes into into a set of regions from

the genome. The sequences we wish to mine for motifs are the regions between two

consecutive coding sequences, what we call "intergenic" regions. Probes are smaller

sequences that sometimes fall within these larger regions, and probes are the units to

which the binding data assigns "bound" or "unbound" classification. As mentioned

earlier, we give the same classification to our intergenic regions by calling such a

region "bound" when it contains one or more bound probes.

Finally, we need to ensure that the sequences of Saccharomyces cerevisiae given

in the conservation data's global alignments match the sequences we have calculated

for our bound intergenic regions. Once we have performed this final check, we can use

the appropriate "bound" regions' global alignments as input to our motif discovery

algorithms.
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Chapter 3

Models

3.1 Sequence Data

We use S to denote the set of all possible intergenic sequences.

S = {s, ... Sm} (3.1)

Each sequence Si is a finite string of values from the set E, with length Li. Si can

be viewed as a function from the set of integers [1 ... Li] to E.

Si Si(l) ... Si(Li)

Si(j) E E (3.2)

E = {A, T, G, C, gap}

We will consider motif models with a fixed width W. To shorten our notation,

we use Sij to denote the W-width word beginning at position j in Si. Conversely, Sij

will denote the string of bases in Si with Sij removed.

Sij = Si(j),... Si(j+ W - 1)

S..z
(3.3)

= Si(1),..., Sij - 1), SiU + W),..., Si(Li)
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3.2 Conservation Data

This notation for a set of sequences can describe the input to most motif discovery

tools. The addition of conservation alignments, however, adds a new dimension to

our data. We now have up to K sequences from other species associated with each

sequence Si. These other sequences are given in the form of global alignments; that

is, they are matched base-for-base with the possibility of gaps. This explains the

addition of the "gap" symbol to the alphabet E in (eq. 3.3) above.

For each k E [1 ... K], we associate an "alignment function" for the kth species,

Ak. For each base Si(j) in the reference sequence, Ak(Si(j)) is the corresponding

base in aligned genome k; this aligned symbol is usually a nucleotide {A, T, G, C},

but may also be a gap symbol.

In a slight abuse of notation, we will allow the use of such an alignment func-

tion Ak on strings to denote application on each element of the string: Ak (Si1) =

Ak(Si(j)) ... Ak(SiU + W - 1)), and similarly with A(S; 3 ).

3.3 Motif Models

We indicate the parameters of the motif and background models with 0 = (OM, OB).

Typically, (B is the parameter set of a Markov sequence model. The technical details

of these background models are well-established [28, 27, 26, 4], and are orthogonal to

our choice of conservation model.

We use 0 m to denote the parameters of a product multinomial motif model,

as have almost all other probabilistic motif discovery tools. Our notation will be

straightforward; if our motifs are of length W, then:

OEm = [o ... Ow-1] (3.4)

Each 6O is a multinomial distribution over the elements of the alphabet E. We use

the notation Oi[Sj(k)] to name the likelihood of base Sj(k) under this model. We will

abuse notation (as above) to calculate the likelihood of an entire site simultaneously.
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W-1

0M[Sij] = fJ Ok[SiC] + k)] (3.5)
k=O

The likelihood of a base under the background model will be notated in a similar

way. If EB[Si(J)] is the likelihood of the base at position j of sequence Si (a calculation

which, under a Markov background model of order n implicitly takes into account

Si(j - n) ... Si(j - 1)), then:

j-1 Li-1

9B[Sij] = fl0B[S(k)] x 11 EB[s2 (k)] (3.6)
k=O k=j+W

Therefore, the simultaneous likelihood of a single motif site Sij and its surrounding

background sequence under the parameters of a model 0 is:

Pr{Si 0} = 0M[Sij]0B[Sij (3-7)

3.4 Site Models

Dual to the motif model E is, for a given input dataset S, the alignment vector. In

Expectation Maximization this is the hidden data; in Gibbs sampling, it is the vector

in whose space the sampling randomly walks. The alignment (as distinguished from

the "alignment functions" which encapsulate the conservation data) is the set of motif

sites that are generalized by the motif model.

To indicate an alignment, we define a vector E of equal size to the input set.

E = E1, .. ., Em (3.8)

The contents of this vector vary depending on the form of model evaluation we

use. If we are using a one-per-strand search algorithm (such as the OOPS or ZOOPS

variants of EM; c.f Section 1.1), each Ej is an integer in [1 ... Li], indicating the

starting position of the motif site in Si.
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(3.9)

If we use a per-site search algorithm (such as the TCM variant of EM, or a Gibbs

sampling algorithm) to evaluate our motif model, then each Ej is actually a bit vector

of length Li - W.

Ei = ei,O ... ei,L 2-W (3.10)

Each bit indicates whether the corresponding word is a site for the motif model.

We use M to name the set of sites for the current model 9. Therefore, if eij = 1 for

a particular pair (i, j), this implies that Si M.

The alignment vector E (equivalently, the set M) is a sufficient statistic for the

motif model Om. This is based on the assumption that we only ever calculate the

parameters of E from the frequencies of bases in fixed positions of the sites in M

(and possibly a set of unchanging psuedocounts). Given a threshold likelihood and a

fixed background model, the reverse calculation can be made: the motif model can

be used to check every potential site and find the positive elements of E (the sites

in M). These operations for converting 9 into E, and vice versa, form the basis

of most iterative probabilistic motif discovery methods (including both Expectation

Maximization and Gibbs sampling).

3.5 Conservation Models

As we will see in Section 3.7, our model of conservation will be estimated as if each

aligned position in the sequence set S was an independent sample from one of two

distributions. The likelihood of Ak (Si (j)) depends only on the identity of the reference

base Si (j) and whether the position is considered to be part of a motif site or not

(the latter information indicates whether the required probability is drawn from a

"foreground" or "background" distribution). We name this pair of distributions =

(EM, EB), and we estimate the two models Em and -B separately for positions that
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are a priori known to be in a site or in the background.

We assume, as described in Section 3.2, that there are K sequences aligned with

each region of the reference genome. At each position (i, j) the K-tuple (A,(Si(j)), . . , AKi(j)))

is an element of E1 x E 2 X -- EK. The calculation (from observed frequencies) of

Pr{A1(Si(j)) ... AK (Si (i)ISi( U)

for both foreground and background positions, is a key preliminary step in our

method. Therefore, using the shorthand A(Si(j)) = (A1(Si(j)) ... AK(Si))), we

define the shorthand symbols E:

M{A(Si(i))}

sB{A(Si(J))}

=PrA(Si(j))ISi(j), Sij E M}

= PrA(Si())Si(j),Sij M}

As before with E, we abuse notation slightly and let E apply to Sij and 532 as

well:

Bm(A(Sij))

B(A(Sij))

W-1

= m BM(A(Si(j + j')))
i'=0
j-1 Li

j=B(A(S(i')) x J B(A(S(i')))
j'=O j'~j+W

The justification for this expansion will be given in the following section.

3.6 Independence Assumptions

The central equations of Expectation Maximization and Gibbs sampling already en-

compass the sequence and motif models. As a final step, we will show how to rewrite

these equations to use the conservation model E as well. For this step, we need to

make two assumptions about the conservation model:
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* Independence: We assume that the conservation of a sequence region of identical

functional class is equivalent to the joint conservation of each included position

in the region, and that this joint probability factors into the probability of con-

servation at each position. In other words, that the probabilities of conservation

at different positions are independent. In the equations which follow, we use

the term pos as the name of a (hidden) variable whose value indicates where in

a given site a certain base is positioned.

B{A(Si)} = -M{A(Sij)} x EBJ{A(Sj)} (3-15)
W-1

u{A(Sij)} = 171 EM{A(Si(j + k)),pos = k} (3.16)
k=O

* Isotropism: We will assume that sequence conservation is determined up to its

functional class (functional or non-functional). This assumption requires that

sequence conservation behave identically across all known motifs.

We start by expressing the assumption that conservation "looks" the same

within a single site. If the variable pos denotes the relative position of a base

Si(j) within a motif site, we assume that conservation at a base is independent

of that position. If j* = j + k, then:

ZM{A(Sij), 0} = Zm{A(Sij)} (3.17)

Zm{A(S(i *)), pos = k} = M{A(Si(i + k))} (3.18)

Second, we wish to express the assumption that conservation looks the same

across different bases in the same site, across different sites: V(i, j), (i', Ij') e M

and Vk C [1 .. W],

_m{A(Si(j + k))} = Ef{A(Si (j' + k))} (3.19)
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3.7 EM Update Equations

Existing EM Equations

At its core, the Expectation Maximization algorithm is a method for finding the

parameter vector e which maximizes the posterior probability of an observed data set

D [43]. The algorithm is an iterative one, and depends on the presence of unobserved

data U.

EM(D) = arg max P(DIE') (3.20)of

When using EM to perform Motif Discovery, the data D is the observed set of

sequences S, and equation (3.20) has a similar form [4]. The unobserved data is the

"alignment vector" E.

MEME(S) = arg max P(SI0') (3.21)

EM's iterative process has two steps, an "Expectation" step (or E-step) and a

"Maximization" step (or M-step). The E-step calculates a posterior probability over

the unobserved data using the current parameter vector 0; the M-step maximizes the

expectation (calculated with respect to this probability distribution over the hidden

data) of the data's joint log likelihood. The next value of the E parameter is chosen

to maximize this last value.

In terms of standard motif discovery EM, the E-step equation is written:

7F,(j) = P(E, = jIS, E() (3.22)

Equation 3.22 is the equation for a probability distribution over the integers

[0, ... , Li - 1]; in other words, we will be explaining and deriving the equations for the

single-motif-per-sequence variants (OOPS and ZOOPS) of EM. Using the standard

assumptions of model-independence typical to an algorithm such as MEME, equation

(3.22) takes the form:
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7rold(j) = P(E = j|S, E(n)) (3.23)

Aj M[Si jEB[sj]

Z, AjEMu[Sij]B[sij1 (3.24)

In these equations, the variable Aj denotes the per-site prior probability of align-

ment, and is usually uniform (it will also encapsulate the per-sequence parameter y

for EM variants that allow zero alignments to a sequence). The values of jri(j) for

all possible j are the explicit parameters necessary for calculating an expected log

likelihood function of the joint hidden and observed data.

g(e) = E,,ec )){log P(S, E 1)} (3.25)

The corresponding M-step chooses a new value for the parameter vector that

maximizes this expected log likelihood:

( arg max E(e(n)){g(9')} (3.26)

The creators of the MEME algorithm showed how, as a result of the independence

assumptions implicit in their motif model, this equation is maximized by a matrix

of per-position base frequencies (with pseudo-counts), averaged over the posterior

probability of E.

New EM Equations

The first change we make to the equations of EM is that we assume our observed

data now consists of the aligned sequences A(S) along with any sequence S.

MEME+(S, A(S)) = arg max P(S, A(S) E', E) (3.27)
O'

Furthermore, the corresponding expectations over the hidden data E now involve

an additional fixed parameter ., the estimated foreground and background conserva-

26



tion probabilities.

7i(j) = P(E = jjS, A(S), ( B) (3.28)

The M-step equation has a similar updated form; furthermore, the independence

assumptions of the conservation model mirror those of the motif model to such an

extent that the maximizing form of E stays the same.

- arg max E.(e()) {log P(S, A(S), E I', B)} (3.29)
01

Therefore, we need only show how the updated E-step equation (3.28) is expanded

in terms of both the parameters 0 and B.

,r,"(j) = P(Ei = i IS, A(S), I )(n),) (3.30)
P(A(S) Ej = j, S, (N), )P(E, = jIS, 0(n), -)

P(A(S) S, 6(n), B)

P(A(S)I E = j, S, E(n), B)P(E = jiS, (), B)

Ej P(A(S)lEi = j, S, 0(n), B)P(E = j lS, (n) (332)

This final form for 7rfew(j) involves both the old (i.e., without conservation) equa-

tion for the expectation over j, and a new factor (in both numerator and denominator)

which explains the aligned sequences given the base sequence. These factors are the

new components of the EM equations which bias the search for conserved sequence

motifs. We start by re-writing this last equation in a way that illuminates the old

expectation equation's role.

7new(j) _ M[Sii]B [ij (i) (3.33)
(, [u[Sp] B io ld -i)

The sum in equation (3.22)'s denominator factors out, and we can rewrite this as:

7Few - fij~jAJM[Sij]0B [si(
ZjW E , fij1 A j 0 M [Sij 11 ] B [, ij( 3
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Here, the term fij = EM1[Sij]OBj1 indicates how a per-site factor for the con-

servation model is multiplied into the existing EM equations.

We will refer to EM (MEME and its variants) or Gibbs algorithms using the

original equations, (eq. 3.20), as "Plain" MEME or Gibbs. If the algorithm uses our

updated formula, (eq. 3.27), for its likelihood equation we will call it MEME+, or

MEME with conservation.
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Chapter 4

Method

We will detail the novel elements of our method in Sections 4.2 and 4.3. We have

already explained (in Section 3.7) the way in which the updated EM algorithm handles

our new data. We explain how we systematically learn the conservation parameters

for the updated EM, how we attempt to rediscover the known consensus motifs for

our factor set, and how we calculate the final post-processing statistics to assess our

success.

4.1 Conservation Assessment

We have used the symbols EM(A(Sij)) and ZB(A(Sij)) to indicate the probability of

seeing certain aligned configurations of bases (and gaps) in either the "functional"

(motif) or "background" regimes. Although we have indicated how these probabilities

are incorporated into the existing discovery algorithms, we need to explain how their

parameters are explicitly calculated. Since Em and EB differ only in which data they

summarize, we will refer generically to - in what follows to show how they are both

learned.

Since we assume a finite alphabet (E) and a finite number (K) of aligned se-

quences, E takes the form of an K-dimensional matrix with |E|K entries. Each el-

ement of the matrix will contain a raw count; we will denote these counts with the

notation E*. Therefore, E*(A 1 (Sj) = bi, ... ,AK(Sij) = bK) is the number of times
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we saw the bases (bi,.. . , bK) aligned together in the dataset.

Therefore, the probability B(A(Sjj)) of our model can be expressed:

z*(b, .. ., bK)
(b1 ... bK(b, b ... I b

All that remains is to indicate which aligned positions in the genome are used

as the data for learning the Em and -B and use in the rediscovery of a certain

factor's motif . We show how this is done in the following section, using the notation

CONSMOTIF and CONSBG to indicate the matrices _* and B* respectively.

4.2 Algorithms

We describe here the algorithms to learn the parameters of each conservation model,

and the subsequent use of those models in EM. The term FACTORSET is the set

of all known factors (Table 2.1). We use the notation CONS += r(i) to indicate

that the model CONS is updated to incorporate the data r(i). The em() function de-

notes the ZOOPS-variant of the EM algorithm; when given the additional parameters

CONSMOTIF and CONSBG, the learned conservation models, it incorporates them into

its likelihood equation as detailed in Section 3. The stats 0 function is the method

that calculates the statistics for each discovered motif. We state the formulae for

these statistics in Section 4.3.

In both both figures we define the set B to be the "probes bound by [a factor]

F." This is the direct interpretation of the binding location data; given a factor (and

a threshold p-value, which is always 0.001), the data indicates a set of probes that

the experiment determines are "bound." The set I(B) represents the translation of

that data into the conservation data set. For each probe, one or more intergenic

regions of sequence (that is, contiguous blocks of sequence between consecutive open

reading frames) are indicated. These regions are the input sequence set S to the EM

algorithm.

The first figure specifies how the conservation matrices (Em and _B) are calcu-
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lated, prior to any motif discovery process.

cons(FACTORS) =

1. For each factor F in FACTORS

2. Let M = motif of F

3. Let B = probes bound by F

4. Let I(B) = intergenic regions corresponding to B

5. For each R in I(B)

6. Let R = r(1)... r(L)

7. Let S = {i : r(i) is in a site of M}

8. For each i in S

9. CONSMOTIF += r(i)

10. For each i' in [1...L] - S

11. CONSBG += r(i')

12. return CONSMOTIF, CONSBG

The second half of our method attempts to re-discover the known motifs for our

training factor set, both with and without the conservation matrices. Motif discovery

is run twice for each factor, using all the same conditions and differing in only whether

conservation probability is incorporated. Finally, the statistics are calculated for both

sets of results.

main(FACTORSET) =

1. For each factor F in FACTORSET

2. Let B = probes bound by F

3. Let I(B) = intergenic regions corresponding to B

4. Let CONSMOTIF = cons(FACTORSET - {F})

5. Let CONSBG = cons(FACTORSET - {F})

6. Let MPLAIN = em(I(B))

7. Let MCONS = em(I(B), CONSMOTIF, CONSBG)

8. Let STATSPLAIN = stats(MPLAIN)

9. Let STATSCONS = stats(MCONS)
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10. return STATSPLAIN, STATSCONS

We show the entire method in a graphical form in Figure 4-1.

4.3 Statistics for Discovered Motifs

In this section we describe the statistics calculated for each motif discovered by the

EM algorithm, with and without conservation. These statistics are meant to measure,

in relatively independent ways, how close each motif is to either capturing the notion

of the "bound set" from the binding data, and how close it is to capturing the identity

of the known motif. The first such type of statistic would be calculated in a realistic

motif-discovery situation where the target motif is unknown; the second is specific to

this work, and gives an unbiased way to compare the results of each method.

Some of these statistics (the hypergeometric and binomial statistics are on a per-

sequence basis; that is, a motif is used to classify a sequence in a binary manner. A

disadvantage to this approach is that these statistics ignore information about multi-

ple motif instances. However, our motif discovery method (Zero-or-One-Occurrence-

Per-Sequence EM) doesn't model this explicitly during discovery (although it can

be re-discovered after the fact). A counter-balancing advantage to these statistics,

therefore, is that they are equally applicable to results from different forms of motif

discovery with different assumptions about motif exclusivity on sequences.

To determine whether a motif classifies a sequence into the "bound" category,

we convert the motif's frequency matrix into a PSSM, using a zero-order projection

of our background model. We then use a simple thresholding scheme to indicate

motif occurrence: 70% of the maximum possible PSSM score, given the (reduced) oth

order Markov background model parameters. One occurrence of a motif classifies a

sequence as "bound."
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4.3.1 Result Probability and Significance

Next we calculate the number of motif occurrences M in the total intergenic region

set of size N. If our bound set has size B, the number of observed sites m is a random

variable with a probability given by either the binomial distribution:

p(mjB, M, N) = (N) Rm (1 - R)B-n (4.2)
B

or the hypergeometric distribution:

(")N-M
p(mIB, M, N) = (-m (4.3)

(N)

where R = J, which is the observed rate of motif-bearing sequences across all

intergenic regions.

In either situation, we alsc calculate a p-value by summing the probability density

function over the "tail" of more significant results:

B

p-value(m IB, M, N) Z p(m'l B, M, N) (4.4)
m'=M

Therefore, given a fixed sized bound set, we calculate two similar significance

scores for any motif count result.

4.3.2 Motif Entropy

We also calculate the entropy of each discovered motif as a measure of its specificity.

W-1 Eli
E(O) = -+ B O logOj (4.5)

i=0 j=0

4.3.3 Site-Based Error Rates

Finally, we calculate the probability that the discovered motif is the "correct" motif.

This is done through the proxy of the "correct motif's" sites in the bound set.

The probability of being the "correct" motif is calculated in two parts: the ratio
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of false positive and false negative rates for the known motif sites. Given a motif for a

transcription factor, and the bound set of that transcription factor, we calculate the

set of known sites M. For any motif 0 that should explain that transcription factor's

binding, we determine a similar bound set Mo.

The set Mo can be determined in one of two ways. The first way takes the top

positions (by alignment score) from the final run of the EM algorithm and consider

those points to be the "best" instances of the motif. The second approach converts

the frequency matrix 0 into a PSSM (a log-ratio matrix incorporating some low order

perspective of the background model), and scores a match relative to an a priori score

threshold. We take the second approach in this work.

Given a set M and a discovered site set Mo, we then calculate the false positive

and false negative rates:

f -() = (4.6)

fn (0) = (4.7)
I

4.3.4 Mismatches with "Correct" Motif

False positive and negative rates show how well the set of discovered motif sites

matches the "known sites" of a reference motif. This is a model-agnostic way of

approaching the issue, and can be useful in situations (for instance) where the sites

are determined without use of a model, or when the reference motif model is not

available.

If both discovered and reference motifs have available models, however, we can

take the approach of directly comparison without the indirection of sequence sites. For

instance, if both discovered and reference motif models are in the same probabilistic

form we might compare them by calculating a Euclidean distance, or some form of

relative entropy.

In this work, the reference motifs come in the form of regular expressions. Even
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if we convert them to an equivalent probabilistic form, however, we also run into

the problems of registration and orientation; there is no guarantee that the motifs

we discover will be the same size and shape as the reference motif. We may also

encounter problems if the discovered motif partially overlaps the reference motif, or

is that motif's reverse complement.

Intuitively, both regular expressions and probabilistic motif models choose some

subset of possible sites (either by "accepting" the relevant site's string, or by assigning

it a non-zero probability). We have assumed, in this work, that we discover motifs

of the right "size" (that is, length) for comparison to the relevant reference motif.

Therefore, given the sequences of two sites, we may ask the question "How many

mismatches do these sites have?"

Expanding this to a regime with regular expressions and probabilistic motif mod-

els, we ask the larger question, "What is the expected number of mismatches between

a site drawn from the probabilistic model and a site accepted by the regular expres-

sion?" We assume that the regular expression chooses any accepted site string with

equal probability. We solve the registration and orientation problems by minimizing

over all possible overlapping shifts, and over both orientations.

If R is a regular expression, W the number of words accepted by R, 0 the prob-

abilistic motif model, and EA the totality of possible words accepted by either R or

E, then we begin by calculating a score for the "shifted" match of R to E, given the

shift of R (relative to 6) by i letters:

S(6, R, i) = I E E E[w']Mis(w, -i(w')) (4.8)
wG R W'EEA

Here a is a shift operator on words, and Mis(w, w') counts the number of mis-

matches between w and w'. This mismatch count should be intuitive, although we

note that when w' and w do not overlap exactly and one (or both) words contain un-

aligned letters, those unaligned letters are counted as mismatches. This fact means

that mismatch scores are not comparable between motifs of different sizes.

The number S is then minimized over all possible shifts to calculate our score M:
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M(0, R) - min S(R, , i)
ie[1-len(R),...,len(O)--1]

(4.9)

We report the value of M (minimized over both strand orientations as well) as

the expected number of mismatches. One technical detail of this calculation involves

the wrinkle that the regular expressions we use to express known motifs are not

"masked." This means that the mismatch scores of differently shaped motifs cannot

be compared; this is not a problem however, since we only need to compare mismatch

scores between motifs of the same shape discovered by different techniques.

4.4 ROC Curves

Hypergeometric and binomial probabilities and significance scores give some indica-

tion of how each motif is over-represented in the set of bound regions. However,

this measure is also dependent on the (arbitrary) binding threshold used to gather

these regions from the binding data. One interesting question would be to calculate

these statistic for a different threshold: do our results improve when the threshold is

loosened, or tightened?

An equivalent way of thinking about this problem was alluded to in the Introduc-

tion. The binding data, and any given motif, provide two different binary classifica-

tions on the set of possible regions. If we regard the binding data as roughly "ground

truth," one indication of a motif's quality is how well its classification overlaps with

the binding classification (or vice-versa). Given two such classifications, we could

calculate the false positive (accuracy) and false negative (specificity) rates.

A Receiver Operating Characteristic (ROC) curve is a plot of these values for a

parametrized classifier (against some fixed classifier). In this situation, the binding

data is our parametrized classifier, and we wish to plot how well it matches the clas-

sification given by a discovered motif. We can vary the p-value threshold of binding

continuously between 0.0 and 1.0, plotting accuracy and 1 .0 - specif icity at each

point. This is the ROC curve for a motif.

We will calculate these curves for all the known motifs, as well as for every dis-
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covered motif (given in the Results section). This will not play a major role in our

results and analysis, but the curves can give some indication of how well our results

(or the known motifs themselves) generalize across different binding thresholds. The

full tables of curves will be reported in the Appendix.

4.5 EM Algorithm Parameters

The EM algorithm for motif discovery requires the use of a number of parameters,

such as the choice of starting points, the length of the iteration process, the method

of sequential motif erasure, etc. In all procedural details, we try to follow the ZOOPS

EM specification from Bailey et. al. as closely as possible [4]. However, we attempt

to avoid model selection issues (each seed will take the pre-determined shape of the

known motif for which we're searching), and we do include a higher-order background

model.

We will also make the following choices for parameters to the EM algorithm:

" The motif mask for each seed is identical to the mask of non-wildcard (N)

positions in the corresponding known motif.

" Each motif search is initiated with five seeds: one completely uninformative,

and four additional seeds. Each of the four additional seeds is composed of

identical base distributions Oi, skewed (using pseudocounts) towards one of the

four possible bases. (i.e., for the re-discovery of GCR1's motif, we use the seeds

NNNNN, AAAAA, TTTTT, GGGGG, CCCCC).

" Starting at each seed, 15 sequential motif are discovered. Sequential erasure

is carried out between successive runs for a single seed; the erasure arrays are

maintained between different seeds.

" For all runs of the EM algorithm, we used a pre-calculated 2"d-order Markov

model for the background.
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* For each run, the EM algorithm was iterated until pairwise Euclidean distance

between motif models fell below a threshold of 1% the distance between the

starting seed and result of the first iteration, or until 150 iterations had passed.
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Figure 4-1: A diagram of the algorithm flow.
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Chapter 5

Results

Our results fall into two conceptual categories: the results of calculating prior param-

eters before motif discovery, and the results of motif discovery using those parameters.

The first category consists of the empirical parameters of our background and con-

servation models; the second is the list of discovered motifs for each factor, and the

statistics associated with those motifs. We present only examples or summaries of

results in each section; full tables of results are given in the appendix, Section A.

5.1 Background Model

We give the estimated parameters of the higher-order (2nd) Markov model we use to

model the background in Table 5.1. This shows the probability of seeing a given base

(whose identity is specified by the column labels) in the a consecutive position after

all possible combinations of two preceding bases (given in the two sets of row labels).

For example, in this table, a G is seen 17.772% of the time, if the two preceding bases

were AT.

5.2 Conservation Matrices

Our method depends on a representation of per-site conservation in "bound" po-

sitions. We calculate a joint distribution of bases (and gaps) across all K aligned
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A

T

G

C

Table 5.1: Markov Background Parameters

species at each position, for a matrix of frequencies with 5K entries. These matrices

are only relevant in the presence of an equivalent description of "background," or

non-functional, site conservation. Examples of two such matrices are given in the

following table, for the factor ABF1.

For display purposes, we have reduced the full matrices into three submatrices

each; a submatrix represents the comparison of the base sequence (Saccharomyces

cerevisiae) with one of the three other aligned species. The row labels are the ob-

served bases in cerevisiae, and the columns indicate the possible values in the aligned

sequence. The entry in row A and column T of such a matrix is the probability of

seeing a T in the corresponding aligned sequence, conditioned on the probability of

an A in the base sequence, marginalized over the values of all the other sequences,

and normalized across possible values for the given aligned sequence.
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_ A T G C
A 0.42649 0.25508 0.17772 0.1407
T 0.35432 0.32278 0.17316 0.14974
G 0.34511 0.27682 0.18792 0.19015
C 0.35722 0.30074 0.169 0.17304

A T G C
A 0.30443 0.36941 0.1507 0.17546
T 0.22736 0.42623 0.16125 0.18516
G 0.30168 0.31977 0.17239 0.20616
C 0.31414 0.35122 0.14922 0.18542

A T G C
A 0.41512 0.26395 0.18311 0.13782
T 0.3163 0.34069 0.196 0.147
G 0.32055 0.27852 0.18917 0.21177
C 0.33505 0.29836 0.17815 0.18844

A T G C
A 0.34854 0.2985 0.1766 0.17635
T 0.24855 0.39206 0.17899 0.1804
G 0.28437 0.30568 0.18855 0.2214
C 0.3055 0.33015 0.16716 0.1972



ABF1 Motif Conservation

- A T G C

A 0.05252 0.87735 0.02629 0.03212 0.01172

T 0.07136 0.02145 0.85431 0.01289 0.03999

G 0.03684 0.05189 0.01344 0.8894 0.00843

C 0.04125 0.01432 0.04759 0.02541 0.87142

- A T G C

A 0.18659 0.74765 0.019 0.03066 0.01609

T 0.2097 0.03143 0.70742 0.02145 0.03001

G 0.16055 0.05858 0.00843 0.74229 0.03016

C 0.1474 0.03175 0.05393 0.01115 0.75577

- A T G C

A 0.15016 0.71997 0.03941 0.06855 0.02192

T 0.15836 0.0514 0.67747 0.03143 0.08135

G 0.12711 0.06861 0.04186 0.73226 0.03016

C 0.15532 0.03967 0.06502 0.02858 0.71141

ABF1 Background Conservation

- A T G C

A 0.09314 0.74758 0.04915 0.07907 0.03106

T 0.09135 0.04977 0.74434 0.03163 0.08291

G 0.09507 0.13873 0.04942 0.67805 0.03873

C 0.0906 0.05451 0.13906 0.04103 0.67479

- A T G C

A 0.25279 0.55532 0.0659 0.08886 0.03712

T 0.25058 0.06887 0.55231 0.03977 0.08846

G 0.24988 0.16746 0.07027 0.46537 0.04702

C 0.25394 0.07378 0.16491 0.04812 0.45926

- A T G C

A 0.22899 0.51293 0.08777 0.10895 0.06135

T 0.22493 0.09092 0.5106 0.9323 0.11031

G 0.23333 0.16787 0.08841 0.4389 0.07149

C 0.22497 0.0904 0.1696 0.07248 0.44254



5.3 Motif Discovery Results and Statistics

We summarize the results of our attempt to rediscover the ten known motifs in the

Table 5.2. We give, for each factor and technique, the order in which the "best" motif

was discovered (here, "best" is defined as the minimum mismatch score relative to the

factor's known motif). In some situations, the best motif still has a high mismatch

score and doesn't appear to be the correct motif; we list these cases using parentheses

around the order value.

In one case (YAP 1) both methods fail to rediscover the known motif. In two more

cases, GCR1 and HAP3, the standard EM technique misses the known motif which the

MEME+ technique manages to adequately recover. The full set of mismatch values,

ordered by discovery time, from which this table is derived are found in Section A.4

in the Appendix.

Factor MEME+ MEME (Plain)
ABF1 1 3
CBF1 1 1
GCN4 2 3
GCR1 5 (12)
HAP3 3 (12)
HAP4 3 46
MCM1 14 22
REBI 1 1
STE12 1 48
YAPI (9) (24)

Table 5.2: Motif Rediscovery Order Summary

If we know which discovered motif was the "best," we can then ask the question,

"Where would we have ranked this motif without any prior knowledge?" As outlined

in the Introduction, many motif discovery algorithms include a post-processing step

to rank the algorithms results. One common ranking heuristic is "enrichment" in the

input regions (relative to the background set), and a common measure of enrichment

is the hypergeometric significance score (or p-value). For each of the "best" motifs

indexed in the table above, we ask what the motif's rank is when the total motif
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set is ordered by ascending hypergeometric score. The results are shown in table

5.3. We have also calculated the joint probability of the Saccharomyces cerevisiae

sequence (using both the background model, and the "best" motif aligned at the final

alignment vector output by the EM algorithm); the log-ratio of these probabilities

(for the "best" motifs of both techniques, for each factor) is calculated, and shown in

the table as well.

Factor MEME+ MEME (Plain) log( Pc
ABFl 1 1 -401.348
CBF1 1 1 -18.227
GCN4 1 1 -30.591
GCR1 17 49 33.450
HAP3 8 6 -24.643
HAP4 1 1 -17.837
MCM1 1 1 21.965
REB1 1 1 39.042
STE12 6 23 15.945
YAP1 71 26 -34.746

Table 5.3: Motif Scoring Order Summary

There are a variety of other ways to describe and compare the results of our two

motif discovery techniques. The sheer number (in this case, 1500) of discovered motifs

precludes listing them in a straightforward list. Furthermore, we have calculated over

a dozen different statistics for each motif. We can also calculate metrics (such as

the discovery time of the minimum mismatch score, from table 5.2) to describe the

differences in how each technique found its results. Instead of exhaustively quoting

these statistics, we will settle for giving the average of several common statistics,

calculated for the "top" motifs and separated by factor.

Tables 5.4 and 5.5 show the average of seven key statistics over only the best

20 motifs, ranked by hypergeometric p-value, for MEME+ and Plain MEME respec-

tively. The Entropy, FalsePos, and Mismatch averages depend only on the discovered

motif; however, the HG PValue, Bin PValue, Bound count, and Total count scores

depend on a binding threshold. For these latter scores, the standard threshold of

0.001 is used.
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Factor Bound Total HG PValue Bin PValue Entropy FalsePos Mismatches
ABF1 43.85 781.7 0.03315 0.00000 0.9234 0.9003 0.00095
CBF1 17.8 1,690.55 0.0368 0.03693 0.66149 0.866 4.90288
GCN4 41.3 3,092.35 0.04313 0.04103 0.62837 0.921 4.464
GCR1 11.95 4,720.5 0.73805 0.7382 0.2591 0.99583 3.10514
HAP3 16.45 3,355.5 0.23474 0.23496 0.4213 0.9475 0.94597
HAP4 28.6 2,663.9 0.01983 0.01499 0.52604 0.95676 0.94901
MCM1 26.8 1,263.45 0.02955 0.00000 0.39144 0.96696 0.07501
REB1 74.15 3,315.3 0.02081 0.0055 0.43709 0.91461 4.75924
STE12 37.2 3,425.95 0.0123 0.01236 0.55459 0.94878 4.03396
YAPI 30.85 3,669.55 0.11221 0.11276 0.44661 0.99286 4.7149

Table 5.4: MEME+: Average Statistics, Top 20 Motifs

Factor Bound Total HG PValue Bin PValue Entropy FalsePos Mismatches
ABF1 46.95 718.85 0.02466 0.00000 0.8249 0.91657 0.00094
CBF1 20.65 1,800.4 0.0229 0.02296 0.70268 0.868 4.90461
GCN4 41.8 3,139.6 0.02655 0.02669 0.68032 0.962 4.72736
GCR1 11.5 4,635.8 0.75762 0.75778 0.23263 0.95833 3.0693
HAP3 19.3 4,146.4 0.27816 0.27865 0.35633 0.9675 1.01288
HAP4 32 3,314.05 0.08135 0.08171 0.48588 0.94595 0.94448
MCM1 24 928.15 0.03319 0 0.39927 0.96875 0.07808
REB1 70.65 2,987.35 0.01897 0.00578 0.46419 0.9 4.91699
STE12 38.35 3,415.85 0.0072 0.0073 0.57572 0.93902 3.99954
YAPI 33.25 3,655.35 0.07261 0.07297 0.5689 0.97857 4.42765

Table 5.5: MEME (Plain): Average Statistics, Top 20 Motifs

In the appendix, we give lists the top discovered motif lists for each factor (Section

A.2), the average statistic tables for all motifs (Tables A.1 and A.2 in Section A.1),

plots of entropies for all discovered motifs (Section A.5), and ROC curves for all

known and discovered motifs (Figure A-21 and Section A.7, respectively)
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Chapter 6

Discussion

We discuss the assumptions in our conservation model, the choice of statistics in

analyzing the results of motif discovery both with and without conservation, and

avenues for future work.

6.1 Model Assumptions

In deriving our new equation for sequence likelihood (3.27) that takes conservation

into account, we made use of several assumptions. Some of these, such as the as-

sumption that the probabilities of motif and background sequence are independent or

the assumption of column independence in the product multinomial motif model, are

shared with other motif discovery algorithms. They may not be valid in all situations,

but our algorithm (founded on those assumptions) will remain valid in exactly the

situations which are valid for other algorithms.

The conservation isotropism and conservation independence assumptions (eqs.

3.17, 3.18, 3.19, 3.16, 3.15) are specific to our technique and to the conservation

data, and therefore warrant justification. The first part of the isotropism assump-

tion, expressed in the equation P(A(Si)|Si, e, 0) = P(A(Si)Si, e), is the conditional

independence of an aligned sequence from the parameters of the motif model, given

the reference sequence and the knowledge that the site in question is drawn from the

"functional" distribution.
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In other words, when it comes to conservation, there are no "special" motifs. If

a particular region is a motif site, it will be conserved across species with the same

probability as all other sites for the same motif, as well as sites for other motifs. This

is, in practical terms, one of the most important new assumptions we make: conser-

vation can be estimated (in both putatively functional and non-functional regions of

DNA) prior to any motif discovery. The base-by-base conservation of the reference

sequence with the aligned species' sequences provides a static re-weighting of the data

to sharpen our motif discovery.

Relaxing this assumption would imply the assumption of a functional relation-

ship between the motif model parameters and the conservation probability. This

approach would assume the use of a more complex model, a problem which would

be exacerbated by the relative scarcity of known motifs to learn the larger number of

parameters.

The independence assumption is expressed in equations 3.15 and 3.16. We choose

to make this assumption for two reasons. The first might be termed "aesthetic": the

independence of conservation across different positions of the same site mirrors the

position independence assumption implicit in the product multinomial motif model.

Of course, we could keep the form of the motif model's likelihood (maintaining the

latter position independence assumption) while modeling the conservation of a K-mer

as a whole and without further independence assumptions. This approach would, of

course, run into the same problem mentioned in our discussion of isotropism: the

scarcity of known motif sites is still a problem.

The second part of the isotropism assumption is expressed in the equation P(A(Si) Si, e, pos =

j) = P(A(Si) Sj, e). Having factored the likelihood of conservation in a potential site

into the product of likelihoods at each position in the site, we assert that relative

position within a site doesn't affect conservation.

One can imagine a situation where this is not a valid assumption: perhaps motifs

are uniformly better conserved in their centers than at their edges, or perhaps their

conservation depends on their orientation relevant to the downstream gene (for in-

stance, the downstream edge of a motif might be consistenly better conserved than

47



the upstream edge).

Simple tests of both these questions were performed: in general, known motifs

were too short to contain significant changes in conservation between the edges and

center, and no significant bias in direction of conservation was observed. In avoid-

ing unsupported hypotheses about conservation, this second isotropism assumption

allows us to learn a simpler conservation model with more data.

6.2 Data Analysis

One objection to our model of conservation is that it makes too many independence

assumptions. Specifically, we have built in the assumption of independence between

conservation probabilities at different positions from the very start. This assump-

tion is implicit in using "alignment functions" Ak to indicate base-to-base matchings

between species, and in the inclusion of the "gap" symbol in the alphabet E.

These assumptions certainly ease many of the technical difficulties associated with

the data. If we take each aligned position as a separate (independent) data point when

learning the conservation models, we avoid some problems associated with having

between 10 and 20 known motifs to work with.

We have also side-stepped any consideration of the global alignment technique

used to generate the conservation data. In general, our approach is orthogonal to the

underlying alignment algorithm: it will work no matter what the alignment algorithm

was, although its success depends on the accuracy of that alignment. An assumption

of independence between positions glosses over local irregularities in the alignment.

We presume only that the preponderance of positions from the reference sequence are

correctly aligned, and the conservation model will be accuarately estimated.

We can easily spot a problem with this approach. It is possible that a site of a

known motif in the reference sequence might be gapped, or aligned with a gapped

region. In this case the corresponding site in the aligned sequence will be too short

or too long, and it's not clear what that should mean for finding evidence of "conser-

vation" for the reference site.
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A second objection to our interpretation of results could be with the use of a

"mismatch" score. Clearly, in comparing the ability of two methods for re-discovering

the same motifs, we must establish some metric for accuracy. Our "expected number

of mismatches" score seems to reasonably capture an intuitive idea for the number of

site-strings simultaneously matched by a scoring matrix and a regular expression. In

the absence of such explicit models, however, it would be necessary to use a site-based

error model (for instance, the site false-positive and false-negative rates outlined in

Section 4.3.3). Furthermore, any method which relies on averaging across samples

from a probabilistic model will be sensitive to relative differences in the information

introduced in that model by the methods being compared.

A third objection with this method might arise with the small number of factors

tested for re-discovery. Our confidence in the success of adding conservation will

grow as the number of "difficult" motifs which are re-discovered with the new data

grows. However our method relies on both a relatively small set of known motifs

from TRANSFAC, and on the ability of the location data to indicate a set of "motif-

bearing" intergenic regions: we did not rely on the presence of a motif, or any other

data set, to choose the regions for input to the motif discovery algorithms. We were

therefore restricted to choosing, as test cases, those factors whose known motifs and

bound regions intersected. As the quality of the total known motif information in

Saccharomyces cerevisiae grows, this restriction can be relaxed. In the meantime, we

feel that the noticeable improvement of MEME when conservation is added gives us

hope for more comprehensive tests in the future.

6.3 Future Work

Some directions for future work are based on the choices we outlined in Section

1.1. For instance, we have used a simple form of EM: the ZOOPS, or "zero or

one occurrence per sequence," model. One generalization would be to use a more

complicated (and noise-resistant) method of evaluating the motif model. We could

also substitute the randomized Gibbs sampling method for the deterministic EM
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algorithm; our modifications to the likelihood equations in Section 3.7 should be

agnostic to the choice of evaluation algorithm.

The second direction for improving the results of our method would be to improve

the way we choose the EM starting points. We've attempted to ignore these issues

by choosing several equally spaced (and equally uninformative) starting seeds. We

have also side-stepped any model selection issues, explicitly choosing to learn motifs

with the correct width. We do this because issues of model selection have been dealt

with elsewhere, and are separate from the improvement brought by conservation.

A third avenue for future work would be to increase the complexity of either the

motif or background models. For the background, we could try using even higher-

order Markov models. For the motifs, we might not make the assumption of complete

independence between separate positions. This would work well hand-in-hand with

a similar relaxation of the corresponding assumption for conservation. We imagine a

method that simultaneously learns a motif model with correlations between sequential

positions, and a conservation model that pays attention to the total conservation score

of a W-word, as well as the possibility of gaps in the aligned species.

Another way of expanding the motif model is to introduce parameters describing

spatial arrangements and relative orientations. Current motif discovery tools are of-

ten generalized to discover multiple motifs. These generalizations rarely make any

assumptions beyond the mutual exclusion of sites in the same sequences (an assump-

tion we have made here). However, the discovery of motifs through analysis of spaced

"dyads" has been explored [44]. Other tehniques used deterministic algorithms for

finding variably-spaced motifs [17]. These are steps toward discovering motifs with

considerations of mutual spacing. Motif signals which would otherwise be too weak

to be discovered on the basis of sequence alone may become significant through their

non-random arrangement with respect to other motifs. Similarly, we can imagine

motif models that account for non-random orientation or spacing with respect to the

regulated gene.

Another direction for attacking the "multiple motif" question in the context of

conservation might be to discover simple (single) motifs using conservation, and then
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continue by assembling more complex motifs out of these conserved building blocks.

Other directions for future work lie in relaxing the assumptions of Section 3.7.

One major assumption implicit in our model was that of independence between the

probability of conservation and the (current) motif model (eq. 3.17). Relaxing this

assumption is a straightforward way to extend this work. Known motifs could be

used to assess a functional form for P(01A(Si), Si), or a functional form could be

assumed and known motifs used to learn the parameters of that function. The clear

generalization of considering each set of aligned bases from a site to be a product of

independent samples from the corresponding motif position is an example of such a

"functional form."

Extending the work in this way also depends on the semantics behind the prob-

abilistic motif model learned with the EM or Gibbs procedure. One logical way of

looking at the product multinomial model is that it expresses an ambiguity on the

part of the transcription factor itself: a model might assign equal probability to two

different sites simply because the factor binds those two sites with nearly equal fre-

quency. In this situation, our assumption of independence seems much too strong.

We would expect that knowledge of the motif and reference base should predict the

corresponding position in other species more surely than only knowing the reference

base. (In other words, what's being preserved is the status of "this site is bound"

across species, and what matters is whether our model's ambiguity means that this

"true" site status is ambiguous, or only our knowledge of the site.)

On the other hand, the uncertainty in the motif model could reflect our uncer-

tainty in what sequences are bound by the motif's factor. In this case, there might

be relatively few "true" bound words which are only noisily described by the dis-

covered sites. With these model semantics, assuming conditional independence of

conservation and motif models is more reasonable.

Another direction for relaxing conservation might be to relax the base-to-base

alignment assumption in a method that looks for coherent motifs from other species

in corresponding (or closely corresponding) positions.

Yet another direction would be to introduce a more elaborate model of evolution.
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Right now, with our multiple alignments, we've assumed a simple "one root, multiple

leaves" tree form of evolution. However, some methods of alignment construct a tree

simultaneously [45]; these differently-shaped phylogenies might affect our model of

conservation, that is, the functional form of B.

One final avenue for future work is in the direction of relaxing the strict "base-to-

base" alignment assumptions we have made here. This method would assume that

region alignments are given, not as mappings of positions in the reference genome

sequence to bases in aligned genomes, but as indications that corresponding regions

from two genomes should contain similar motif structure. Such a "region-to-region"

alignment, followed by the discovery of a motif (or motif constellation) within one

region, would bias the search towards a similar conclusion in aligned regions. In other

words, we would maintain a correspondence between regions while eliminating the A

base-to-base alignment information.

This generalization is not possible in the setting of single-motif OOPS EM setting.

However, the direction of modification to Gibbs sampling and more complex forms

of EM (ZOOPS and TCM) is immediately obvious: if the loose alignment indicates

regions i and i' correspond, then knowing Si contains a motif should influence the

prior per-site (or, in ZOOPS, per-sequence) probability of discovering a motif.
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Chapter 7

Conclusions

It would be difficult to conclude that adding the conservation data dramatically

changes negative results into positive: this is, in part, due to the fact that the training

examples are fairly easy. In six out of ten examples, the plain MEME algorithm oper-

ating on the 0.001 bound regions and without help from conservation will manage to

find the known motif within 10 or 15 motif-iterations (starting with the uninformative

prior motif).

However, we do conclude that adding even such a simple model of conservation

to motif discovery is useful. We make this claim in three parts. First, adding conser-

vation data does not harm the results: this is a necessary and non-trivial conclusion.

Adding an additional bias does not, in the test cases we have seen, drive the results

of the algorithm away from the correct answer. Furthermore, the motif discovery

time statistics bear out this conclusion. With the possible exception of YAP1, adding

conservation does not delay the discovery of the correct motif; when the plain MEME

algorithm finds the correct motif immediately, so does the MEME+ algorithm.

Our second conclusion is that adding the conservation data improves the re-

discovery of known motifs. In the the case of GCR1 and HAP3, MEME+ rediscovers

the known motif where standard MEME fails. In the cases of HAP4, MCM1, and

STE12, the enhanced MEME+ algorithm substantially improves the order in which

the correct motif is rediscovered. Only YAP1's motif presents a serious problem for

both approaches.
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These conclusions depend on the calculation of the mismatch score (this score

correlates well with low false positive/false negative site counts, as we would expect).

One way in which this score could be deceiving is if the MEME+ technique returns

"weaker" motifs that matched a larger set of strings, and therefore were more likely to

have lower mismatch scores. Our third conclusion is that this is not the case: the best

motifs (in terms of mismatch score) returned by MEME+ are comparable in entropy

to the corresponding best motifs of plain MEME. Another way of thinking about

this is that the traditional definition of "conservation" (conservation of base identity

across aligned sites, instead of aligned species) is maintained with the addition of

sequence conservation data.

Of course, as mentioned in the Discussion, adding a better understanding of con-

servation should improve these results. However, our work has outlined a general

framework for adding this data to existing techniques in a simple way. We have

shown its utility, and argued that the exploration of further improvements to this

approach is warranted.
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Appendix A

Appendix

A.1 Total Motif Averages

Factor Bound Total HG PValue Bin PValue Entropy FalsePos Mismatches
ABF1 37.09333 915.28 0.33048 0 1.15918 0.93494 0.00106
CBF1 16.46667 2,320.38667 0.12244 0.1229 0.23188 0.9408 5.69447
GCN4 40.18667 3,341.08 0.07555 0.04508 0.34416 0.96773 5.02476
GCR1 11.77333 4,606.72 0.60891 0.60911 0.22322 0.96444 3.30644
HAP3 15.54667 3,519.76 0.41525 0.41537 0.17409 0.95133 1.07731
HAP4 27.89333 2,844.58667 0.03838 0.03086 0.2052 0.9618 1.07793
MCM1 24.48 1,364.8 0.05366 0.00006 0.26358 0.9669 0.08153
REBI 74.08 3,461.44 0.05729 0.03464 0.25882 0.92794 5.11886
STE12 31.93333 2,996.22667 0.03114 0.01275 0.27503 0.98341 4.83941
YAP1 30.05333 3,441.32 0.05154 0.05193 0.24174 0.99581 5.16696

Table A.1: MEME+: Average Statistics, All Motifs

A.2 Discovered Motif Lists

For each factor, we show the list of the top 20 motifs discovered, sorted by their

(Hypergeometric p-value) score. Motifs discovered with and without conservation are

listed side-by-side; each motif is provided with its mismatch score as well, to indicate

how close it is to the "real" motif (although this mismatch score is not used to sort

the motifs in these lists).
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Factor Bound Total HG PValue Bin PValue Entropy FalsePos Mismatches

ABF1 36.36 821.22667 0.32537 0 1.13686 0.90675 0.00106
CBF1 17.42667 2,397.37333 0.12811 0.12856 0.25223 0.95627 5.70826
GCN4 41 3,427.45333 0.06737 0.06284 0.25874 0.97467 5.12889
GCR1 11.56 4,487.30667 0.60591 0.60611 0.18103 0.94889 3.36502
HAP3 16.92 3,757.16 0.38955 0.3898 0.21597 0.98533 1.08585
HAP4 31.34667 3,519.98667 0.08103 0.08168 0.17862 0.98523 1.0772
MCM1 24.06667 1,156.77333 0.0519 0.00002 0.30158 0.95833 0.08259
REB1 74.88 3,497.50667 0.06237 0.04689 0.25852 0.94772 5.18975
STE12 37.17333 3,513.49333 0.01282 0.01304 0.30612 0.98114 4.83652
YAP1 31.90667 3,685.66667 0.12644 0.12692 0.28153 0.99276 5.01991

Table A.2: MEME (Plain): Average Statistics, All Motifs

I
MEME+ (Conservation)
Motif
tCGTgcaaaGTG
gCCctgCGcaaA
aAAatTTTTCAg
agcGaTGagctg
GgCGCgCcgACC
GgtGAGgtGaGC
AGaggtTaAGCa
cGCaaAgggCGC
cGaGtTgGcgGA
GCcgAcCctCGg
GcgGGgGcAGGG
gCcaccaCAccc
ggggGaaaagtG
AccggACTcaAA
GcACGagcgGCC
GGAAtgaGTaAa
cActgAaAcaaa
TCacattTTcgc
gaAaCagTagAg
ggAAacaGCCgc

HypG Score
0.0000000
0.0000000
0.0000002
0.0000007
0.0000043
0.0000076
0.0000287
0.0000329
0.0000401
0.0001084
0.0001099
0.0001637
0.0002372
0.0003391
0.0004277
0.0005615
0.0010155
0.0018235
0.0023559
0.0031745

Mismatch Score
0.0006283
0.0010637
0.0011856
0.0010883
0.0009479
0.0009959
0.0010036
0.0008814
0.0007892
0.0010059
0.0009764
0.0009392
0.0010568
0.0011359
0.0008361
0.0010579
0.0010084
0.0009403
0.0011039
0.0010532

MEME (Plain)
Motif
TCACtttgtACG
GtACcaAAaCAC
tAGCgaTAtGgC
aAAAtTTTTCAg
CCtCCccTGCCC
caAGCcAAGCag
CAgCaatCAcCa
aaaatTtCAGca
AgGctTTtGaAA
GAgtgCgcTgGe
AcGcAGtTcAGa
CAgcTTtGAATc
GCaacggtttcA
tcgGCgGCtatT
gAAAAgtGaaAa
ctTcCTTCCtCa
gGGTtaaTcAGG
aacatacAtaCa
cCTtCttGGCTT
gCAgCaaCaaCA

HypG Score
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000002
0.0000003
0.0000005
0.0000007
0.000001
0.0000014
0.0000019
0.0000022
0.0000109
0.0000292
0.0000422

Mismatch sOre
0.000141
0.001124
0.000983
0.001208
0.000994
0.001094
0.000872.
0.001041
0.001076
0.001154
0.001031
0.001047
0.001003
0.000976
0.001156
0.000937
0.000937
0.001030
0.000986
0.000798

Table A.3: ABF1 Motifs
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MEME± (Conservation) MEME (Plain)
Motif
GTCACGTG
CACGTGAC
TCACGtGg
ggCaGCAC
CagtGcGC
GGGcgGgG
GGtgCgGt
gGtGGcAa
GtCCGTGA
GAtGGGGc
CCcTGagC
agatGaGG
aaCtGCAa
caAGcCAC
aCCaaCAA
tAacCGAa
gCAgCGGC
GaGCAaAA
aGAagCac
TggagAag

HypG Score
0.0000000
0.0000000
0.0000000
0.0000000
0.0000021
0.0000174
0.0000558
0.0000861
0.0001192
0.0001813
0.0005692
0.000633
0.0008448
0.0009675
0.003547
0.0042486
0.0080837
0.0194321
0.0304537
0.0602283

Mismatch Score
1.2538556
1.4890094
3.7555067
5.8444582
5.5199781
5.7534491
5.9753679
5.0225057
5.2052652
4.5621774
5.7728602
5.9167638
5.7046676
4.4642088
5.8858861
4.9875228
5.7620363
6.1320402
6.2675328
5.7268902

Motif
CACGTGAC
CACGTGAC
CACGTGAC
CtCaGCgC
GGTgagGG
CgGTgCGG
GGaAgGGc
CAatCAGt
GGtTGCAC
AGCaccAg
AaatGcGg
aACTTtac
CTCCtcCc
GCGGCcAA
GaGGgAGC
CgGaaaGC
AAAtcCAg
gGactGgG
TGAaTGaG
AaGtGGAA

HypG Score
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000001
0.0000001
0.0000002
0.0000043
0.0000086
0.0000104
0.0000158
0.0000243
0.0000299
0.0000936
0.0001044
0.0001329
0.0001741
0.0003632

Mismatch Score
1.3771077
1.5022658
1.4359919
5.5830942
5.7226663
5.7331878
5.8783685
5.8053504
6.2552329
5.281844
5.7118556
4.6362353
5.2096718
5.7092698
5.3981832
6.1504036
5.585007
5.4340025
5.6741139
4.9209064

Table A.4: CBF1 Motifs
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MEME+ (Conservation) MEME (Plain)
Motif
gTGACTC
GAGTCAc
GCCGCCG
cgGtGCG
gAAgaGC
CctGCgt
cAaCcCg
CtgaTtg
TgCGaGG
CgaAtcA
aGcgGgA
caAGTGA
CcCtctC
AAagGCA
ctCAgCa
GctcGCG
gcgggag
CCGcaAA
TTcCaaG
gcgggag

HypG Score
0.0000000
0.0000000
0.0000014
0.0000149
0.0000378
0.0002895
0.0003208
0.0003738
0.000557
0.0009255
0.0009441
0.0017248
0.0022732
0.0029695
0.0036912
0.0047662
0.0060971
0.0065299
0.0070612
0.0072722

Mismatch Score
2.5389899
2.6839278
4.3111174
5.5463455
5.0792734
5.3609233
4.9041661
5.1029782
4.4579924
4.0678108
4.467521
3.4549858
4.965524
4.5307216
4.9168871
5.1207109
5.2255149
4.7298977
5.1210328
5.2250842

Motif
GAGTCAt
gGCGATG
GGCGCCG
GcGcgGG
GGgtTGa
GGAAGcg
tgCGcaC
aTATAtA
cCAGCGC
CCTTaAG
GCgCaAA
AAAGGGA
cGttgGA
AAAAGAA
TaTATAt
AagtGAA
aatGAAA
AAAGAAA
GcAaAaG
cgcgcgc

HypG Score
0.0000000
0.0000000
0.0000000
0.0000000
0.0000383
0.0000582
0.0001986
0.000292
0.0002945
0.0004087
0.0006238
0.0026221
0.0032181
0.0033411
0.0042288
0.0098064
0.0120353
0.0132137
0.0165156
0.0192069

Mismatch Score
2.7967652
5.0077149
4.9626583
5.6009077
4.1236652
4.3316198
4.5893244
5.0090251
5.2015533
5.9806072
4.7540503
3.8512306
4.8869516
5.0409905
4.9263834
5.392566
5.1232835
4.7552144
5.5643397
5.2536613

Table A.5: GCN4 Motifs
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MEME+ (Conservation) MEME (Plain)
Motif HypG Score Mismatch Score Motif HypG Score Mismatch Score
TTGAG 0.0043499 3.2173474 cgcgc 0.0728085 3.7463096
cGGtg 0.0322537 3.1922068 cgcgc 0.0728085 3.746312
tGCgC 0.0478316 3.5322627 cgcgc 0.0728085 3.7463149
gGgtg 0.1389592 3.4503993 cgcgc 0.0728085 3.7463174
caGgg 0.1437718 3.532605 cgcgc 0.0728085 3.7463191
ggggg 0.1474809 3.3271428 cgcgc 0.0728085 3.7463212
ggggg 0.1600376 3.3905846 cgcgc 0.0728085 3.7463235
GCGGc 0.1606811 3.2456304 cgcgc 0.0728085 3.7463255
ggggg 0.1632118 3.4275735 cgcgc 0.0728085 3.746328
ggggg 0.1632118 3.4521464 cgcgc 0.0728085 3.7463305
gggtg 0.1876178 3.3073524 ggggg 0.118734 3.405019
AaGcT 0.1891834 4.3467173 ggggg 0.118734 3.4362444

ggggg 0.1961073 3.4677918 agGaA 0.1923376 3.1483346
gggtg 0.1993806 3.3296989 ggggg 0.2021465 3.4581064

ggggg 0.2004828 3.304208 ggggg 0.2021465 3.4779795
gggtg 0.2243453 3.37802 ggggg 0.2946543 3.2946072
GCaAG 0.2286403 1.7552734 ggggg 0.3391421 3.5182718
gggtg 0.2618573 3.3576527 ggggg 0.3454571 3.5680929
gggtg 0.2726417 3.4019814 ggggg 0.3454571 3.569564
gaGcg 0.3107719 3.5214411 ggggg 0.4100027 3.2978872

Table A.6: GCR1 Motifs
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MEME+ (Conservation) MEME (Plain)
Motif HypG Score Mismatch Score Motif HypG Score Mismatch Score
CgacTGT 0.0000512 0.7859438 CcGgaCC 0.0000351 1.0499719
TCTTCaC 0.0017302 1.0157905 CcCTtcC 0.0000418 1.0280708
AcCCGaA 0.0021599 1.1627359 AAATGCA 0.0000453 1.0012489
cGtACCC 0.0025422 1.143745 agGGAgG 0.0001135 1.0849801
CttTcTC 0.0035598 1.1292835 AGtTcAA 0.0001683 1.1162281
aGGggGa 0.0045729 1.0031318 CCCggTT 0.0002038 0.9257034
TGCaTtT 0.0050598 0.9684994 gCTGCaC 0.0002085 1.0633881
TcATTGG 0.0091423 0.2505321 CGTaCcC 0.0002711 1.1287432
tTTCCTT 0.0110132 1.1802055 gGGtacc 0.0038762 1.2455337
AaATAaC 0.0181119 1.0115547 AAaTgCG 0.0043234 0.9312306
GCAttta 0.0200317 0.6387078 AAtTtaA 0.0045207 1.0052966
caAGtTT 0.0289353 1.023051 AacTGcA 0.0054226 1.1270701
GctGAAA 0.1301338 1.1083257 GCtgAAa 0.0101985 1.0921387
atatata 0.1549358 0.9817326 AAaGAAA 0.1006442 1.0801467
aCaaagA 0.237374 0.6851173 aaagaAA 0.1240161 1.028764
TgTaCAt 0.240208 1.1002173 aaagaAa 0.1589801 0.9880949
atatata 0.2894488 1.0272125 AAagaAA 0.1735976 1.0685384
aaAGGGG 0.3071024 0.7897033 aaagaAa 0.2094648 1.0022772

ggggggg 0.5182324 1.121442 aaagaAa 0.2458606 1.0104638

ggggggg 0.5182324 1.1214605 aaagaaa 0.2919352 1.0196358

Table A.7: HAP3 Motifs
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MEME+ (Conservation) MEME (Plain)
Motif
TGaTTGG
GgtCCAA
GGagCGC
GgGCGGC
GgGtAAA
cgTTTAA
cCCCgC
GttCTTT
TCaATTG
GGacGGG
gCaTcTc

gggggcg
ggggggg
ggggggg
ggggggg
ggggggg
ggggggg
ggggggg
ccccccc
ccccccc

HypG Score
0.0000000
0.0000006
0.0000051
0.0000063
0.0000139
0.0000879
0.0002211
0.0002792
0.0002973
0.0003674
0.0004792
0.0004998
0.0030559
0.0030783
0.0037682
0.0038499
0.0042824
0.004533
0.0047919
0.0048613

Mismatch Score
0.2155934
1.2779894
1.0727802
1.061745
1.2200915
0.9194723
1.0714883
1.090879
0.7450138
0.7688436
0.9247769
1.1009904
1.1061946
1.1047471
1.1021094
1.1028262
1.1044277
1.1094042
1.1199402
1.1201409

Motif
TGaTTGG
CTGCcGC
CCcGCtt
tcAATTG
TTgAaCc
GGActGG
tgCTTcC
TTtAAcT
TtgGTtC
AtccTTC
TtcATTT
tTCCTtG
gAAAGAA
TgTATaT
cccgccc
cccgccc
gggcggg
gggcggg
gggcggg
gggcggg

HypG Score
0.0000000
0.0000028
0.0000029
0.0000033
0.0000064
0.0000073
0.000009
0.0000164
0.0000987
0.0015499
0.002286
0.0051877
0.0281187
0.0453342
0.0839595
0.0839595
0.0839595
0.0839595
0.0839595
0.0839595

Mismatch Score
0.1688499
1.1640292
1.0866546
0.6640833
1.1217152
0.6906105
0.8517307
1.1990826
0.9088252
1.1059885
0.9174646
0.9994358
0.8104999
1.0418691
1.1222117
1.1222107
1.1225382
1.1225395
1.122541
1.1225422

Table A.8: HAP4 Motifs
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MEME (Coservtio) MEE (Pain
Motif
CCtaAtgtGG
aatTtCCcga
gacGAAAAag
gGCGcGtGtC
GAAAtgTgcc
tGgTGGCTgg
AAAgGGGAAA
aatcGGGAAA
CtTGtAaATT
TccAAcgAaa
GGtaAtgCAa
TTTccactTC
CatGatacAG
ccgAgGCatG
GCGGgTAGga
gAacCctCGA
gAaAagtGCA
aCTtaAAaaG
gAtcGgGCAt
gTTTAcgTtt

HypG Score
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000001
0.0000001
0.0000001
0.0000002
0.0000006
0.000001
0.0000039
0.0000043
0.000019
0.0000252
0.0000254
0.0000362

Mismatch Score
0.0421805
0.075271
0.0735646
0.0960754
0.082774
0.0795302
0.0932764
0.091471
0.0752194
0.0809295
0.0847265
0.0862853
0.0666297
0.0700293
0.0707149
0.0837106
0.0898458
0.0630626
0.0971966
0.087075

Motif
ccAAATTtAG
cgAtTTGAgG
GGAAAtttcc
gAAaaGGGAA
gcAACttGgC
GtGaaTGCga
GGTAAgTaCA
caAAgTGaAa
AAAgcAGGAa
aATgaATGCA
TCAgatCAAG
AgATCaGGAA
AAgaGggaAA
aaatTaCCCa
GaAACgCTaA
GatCtTTaAa
GaAAcgtGCA
GCAggaGCgg
GCggCaGgAA
GGtaACCtAA

HypG Score
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

Mismatch Score
0.0666633
0.0718743
0.084998
0.0920103
0.0739202
0.0838056
0.0816083
0.0856098
0.0938164
0.0849316
0.072793
0.0901984
0.0936776
0.0834874
0.0943082
0.083775
0.0826903
0.0767648
0.0779035
0.0875258

Table A.9: MCM1 Motifs
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MEME+ (Conservation) MEME (Plain)
Motif HypG Score Mismatch Score Motif HypG Score Mismatch Score
TACCCGG 0.0000000 2.7538916 GGGTAAC 0.0000000 3.1767838
GGTAAcg 0.0000000 5.4318566 CCCGGat 0.0000000 4.586193
gtaCCCG 0.0000000 2.833123 cACCAAa 0.0000000 5.481346
CaCcgAa 0.0000003 4.7471576 cAgCtCA 0.0000002 4.8586944
GAGGgaG 0.0000201 4.8593045 gGCAGgg 0.0000026 5.1500161
AtgGaTG 0.0001053 5.2588692 CAactGC 0.0000035 5.1656689
GAaGaGG 0.0001577 5.3398974 GCtGgGC 0.0000039 5.3738754

ggggggg 0.0003063 5.1622467 GgTgaGC 0.0000133 5.4252434
gGcgCgG 0.0004239 4.6363894 attTGAG 0.0000152 5.5761332
ccgcgcc 0.0004667 5.2407539 gAAAGGa 0.0000199 5.6751924
ccgcgcc 0.0004667 5.2407739 GgAAGCt 0.0000271 4.8444961
ccgcgcc 0.0004667 5.2407999 cAtTGCA 0.0000853 5.2859548
ccgcgcc 0.0004667 5.240827 GCAgGaA 0.000148 5.3493053
ccgcgcc 0.0004667 5.2408533 GAgGcGG 0.000221 4.6135597
ccgcgcc 0.0004667 5.2408799 caaaTGC 0.0002427 4.7879039
ccgcgcc 0.0004667 5.2409045 CCCGtAC 0.0002839 4.2385961
ccgcgcc 0.0004667 5.2409303 ccccccc 0.0003398 5.2154507
ccgcgcc 0.0004667 5.2409559 ccccccc 0.0003932 5.2278655
ccgcgcc 0.0004667 5.2409899 cgggggc 0.0004667 5.2484559
ccgcgcc 0.0004667 5.2405694 cgggggc 0.0004667 5.2484562

Table A.10: REB1 Motifs
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MEME+ (Conservation) MEME (Plain)
Motif
cTgAAaC
GCaCCcG
tCGAgCc
AAaTTTG
CGaACtg
TGAAACa
AAGgGAA
GAataaG
aTTTCGC
AAAtGcA
CagcTtC
CAcTGaa
AcgtcaA
GGAAAgg
tgCcCGc
ccGCGCG
atAaAAG
AaGcggt
aCctGCa
ctCCtga

HypG Score
0.0000000
0.0000000
0.0000004
0.0000009
0.0000015
0.0000056
0.0000379
0.0000634
0.0001079
0.0001324
0.0001483
0.0002176
0.0002428
0.000262
0.0003458
0.0003645
0.0005254
0.0007
0.0010905
0.0018712

Mismatch Score
3.3920029
5.0507502
3.9629193
4.7009221
3.8541279
1.2385597
5.649683
4.8773301
4.6792229
4.6944774
5.0621322
5.1291829
4.9720475
3.3520416
5.1894324
5.5546213
4.0398275
5.3289558
4.1360419
4.6022306

Motif
GCAcCag
GAAACtc
ccctGAA
GGAAAaG
GAAgtGG
aAGTTCg
gAAtGCc
GCggGCA
AatTTTG
AAGaGcA
AAGCTGA
AaGtGAA
AAatGCA
TTCAgCt
GcatGaG
tGGCtTc
AAaTcaA
GCtcgAa
CAAgAAG
tgCTGCA

HypG Score
0.0000000
0.0000000
0.0000000
0.0000001
0.0000001
0.0000001
0.0000002
0.0000005
0.0000013
0.0000022
0.0000051
0.0000079
0.0000155
0.0000214
0.0000243
0.0000292
0.0000385
0.0000428
0.0000711
0.0001013

Mismatch Score
4.0822095
3.1710765
4.4680393
3.578633
5.0909535
3.8921054
4.5814121
4.8027963
4.2264882
4.4743445
4.1932898
5.1624696
4.5624419
4.0833908
4.8823451
4.3904602
4.2780871
5.2120536
4.8846896
3.3572671

Table A.11: STE12 Motifs
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MEME± (Conservation) MEME (Plain)
Motif
GCTGACt
ACCcaAA
CGGAagt
gcGAtGg
tCccGCc
GaACCgG
GCctgGG
cCCGctc
CCGagGa
GGGtgcc
TcTGcCC
GtTGaAt
GTtTAtA
ccCgtGC
gcgcgcc
GGcaCGC
GCGGAac
cccgcgc
cccgcgc
ggcgcgc

HypG Score
0.0000000
0.0000012
0.0000069
0.0000837
0.0001521
0.0002597
0.0003086
0.0004963
0.0007387
0.0008329
0.0010139
0.001701
0.0020359
0.0041147
0.0042922
0.0047461
0.0074823
0.0080749
0.0084664
0.0084854

Mismatch Score
5.5690116
4.3202396
5.9549575
5.3790442
5.3617703
4.9131201
6.1295252
4.8066117
5.8232162
5.8060099
4.8865377
4.836169
4.7513683
5.5777363
5.2527658
6.0850959
5.2923723
5.2565116
5.256214
5.2458367

Motif
TGCTTaC
TaCCTTC
CGAaTTT
aAagaGC
GGGCtGa
GCagGgG
TTCAACC
tGCtTTT
GCctTGC
GCgGAAa
GCTGaCT
cCTGCGT
ccGgTtC
GagAgTT
tTTCcGc
TTCGCtT
gGGaggG
TTCcgTT
GTaTAtG
TttACGG

HypG Score
0.0000000
0.0000000
0.0000000
0.0000000
0.0000001
0.0000001
0.0000002
0.0000003
0.0000005
0.0000009
0.0000013
0.0000017
0.0000033
0.0000033
0.0000113
0.0000341
0.0000916
0.000103
0.0001108
0.0006987

Mismatch Score
4.8165262
4.3483167
4.6837337
5.7016966
4.6999018
5.4915399
5.130679
5.5115417
5.085115
4.2507952
5.7467932
5.8055512
4.6983994
5.6342763
4.398035
4.2196881
5.2010311
4.2865443
5.0955053
4.9973447

Table A.12: YAPI Motifs
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- A T G C
A 0.05252 0.87735 0.02629 0.03212 0.01172
T 0.07136 0.02145 0.85431 0.01289 0.03999
G 0.03684 0.05189 0.01344 0.8894 0.00843
C 0.04125 0.01432 0.04759 0.02541 0.87142

- A T G C
A 0.18659 0.74765 0.019 0.03066 0.01609
T 0.2097 0.03143 0.70742 0.02145 0.03001
G 0.16055 0.05858 0.00843 0.74229 0.03016
C 0.1474 0.03175 0.05393 0.01115 0.75577

- A T G C
A 0.15016 0.71997 0.03941 0.06855 0.02192
T 0.15836 0.0514 0.67747 0.03143 0.08135
G 0.12711 0.06861 0.04186 0.73226 0.03016
C 0.15532 0.03967 0.06502 0.02858 0.71141

Table A.13: ABFl Motif Conservation

A.3 Conservation Matrices

We show the full set of conservation matrices used to re-discover each factor's motif

in our test set.
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- A T G C
A 0.0479 0.89879 0.02025 0.02663 0.00642
T 0.0639 0.01679 0.87002 0.00946 0.03982
G 0.03801 0.03341 0.0104 0.91123 0.00695
C 0.04106 0.01113 0.03773 0.01556 0.89452

- A T G C
A 0.1766 0.76584 0.01919 0.02876 0.00961
T 0.19162 0.02726 0.72973 0.01784 0.03354
G 0.15881 0.04146 0.015 0.76397 0.02075
C 0.153 0.02332 0.04881 0.00891 0.76595

- A T G C
A 0.13193 0.76158 0.03514 0.05429 0.01706
T 0.14347 0.04506 0.71508 0.02412 0.07228
G 0.11394 0.05527 0.03456 0.77432 0.02191
C 0.13305 0.0333 0.05436 0.0211 0.75819

Table A.14: CBF1 Motif Conservation

- A T G C
A 0.03775 0.90502 0.02051 0.02805 0.00866
T 0.05166 0.0169 0.87973 0.01058 0.04113
G 0.02807 0.03703 0.01013 0.918 0.00677
C 0.03163 0.01093 0.04143 0.01638 0.89963

- A T G C
A 0.17888 0.75958 0.01836 0.03021 0.01297
T 0.19178 0.02954 0.72381 0.01901 0.03586
G 0.15472 0.04376 0.01462 0.76445 0.02246
C 0.15469 0.02618 0.04905 0.00876 0.76132

- A T G C
A 0.13902 0.74988 0.03236 0.0593 0.01944
T 0.14964 0.04534 0.69431 0.02743 0.08327
G 0.12221 0.05945 0.03703 0.76221 0.0191
C 0.14054 0.03272 0.05559 0.02183 0.74934

Table A.15: GCN4 Motif Conservation
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Table A.16: GCR1 Motif Conservation

Table A.17: HAP3 Motif Conservation
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- A T G C
A 0.04662 0.89841 0.01971 0.02799 0.00729
T 0.05885 0.01449 0.87912 0.0083 0.03925
G 0.03352 0.02794 0.00897 0.92506 0.00451
C 0.0379 0.00895 0.03456 0.01229 0.9063

- A T G C
A 0.17806 0.76179 0.01867 0.03006 0.01143
T 0.18473 0.02996 0.73673 0.01655 0.03203
G 0.15961 0.03687 0.01455 0.76661 0.02236
C 0.1381 0.02454 0.04569 0.00895 0.78272

- A T G C
A 0.13045 0.75868 0.0342 0.05697 0.01971
T 0.14139 0.03822 0.71403 0.02584 0.08052
G 0.11051 0.05137 0.03575 0.78112 0.02125
C 0.12474 0.02565 0.05348 0.01897 0.77715

- A T G C
A 0.04864 0.89644 0.01969 0.02796 0.00728
T 0.06215 0.01633 0.87359 0.00819 0.03975
G 0.03575 0.03575 0.00978 0.91218 0.00654
C 0.04079 0.00944 0.03974 0.01571 0.89432

- A T G C
A 0.18201 0.75893 0.01762 0.02899 0.01245
T 0.19043 0.02957 0.72698 0.01837 0.03466
G 0.15477 0.04549 0.01411 0.76287 0.02277
C 0.1557 0.02407 0.04496 0.00735 0.76791

- A T G C
A 0.12825 0.76203 0.03416 0.05794 0.01762
T 0.14258 0.0428 0.71171 0.02244 0.08047
G 0.11582 0.05523 0.03575 0.77152 0.02168
C 0.13063 0.03138 0.05332 0.02198 0.76268



- A T G C
A 0.04431 0.90482 0.01516 0.02704 0.00868
T 0.05283 0.01271 0.88792 0.00849 0.03805
G 0.02977 0.03528 0.00885 0.91945 0.00665
C 0.03961 0.00967 0.03319 0.01608 0.90145

- A T G C
A 0.18251 0.75798 0.01732 0.03027 0.01192
T 0.19324 0.02855 0.72956 0.01588 0.03277
G 0.1564 0.04409 0.01326 0.76529 0.02096
C 0.15509 0.02464 0.04602 0.00646 0.76779

- A T G C
A 0.11881 0.77094 0.03135 0.06051 0.0184
T 0.13095 0.0391 0.719 0.02644 0.0845
G 0.10905 0.0584 0.03308 0.77741 0.02207
C 0.12729 0.03105 0.05351 0.02036 0.76779

Table A.18: HAP4 Motif Conservation

- A T G C
A 0.05213 0.90131 0.01476 0.02269 0.0091
T 0.06575 0.01318 0.8717 0.01099 0.03837
G 0.04165 0.03661 0.00635 0.90903 0.00635
C 0.04538 0.0074 0.03435 0.01598 0.89689

- A T G C
A 0.1846 0.76771 0.01363 0.02269 0.01137
T 0.19387 0.02413 0.73592 0.01537 0.03071
G 0.16142 0.03661 0.01266 0.76657 0.02274
C 0.15687 0.0221 0.03558 0.0074 0.77804

- A T G C
A 0.14158 0.75978 0.03288 0.04873 0.01703
T 0.15664 0.03728 0.7173 0.02085 0.06794
G 0.1299 0.05048 0.03409 0.76909 0.01644
C 0.15075 0.03068 0.04293 0.01843 0.75722

Table A.19: MCM1 Motif Conservation

69



- A T G C
A 0.05344 0.88962 0.0205 0.02731 0.00913
T 0.06842 0.01686 0.86196 0.01125 0.04152
G 0.04208 0.03953 0.01024 0.90046 0.00769
C 0.04916 0.01264 0.0479 0.01768 0.87263

- A T G C
A 0.19091 0.74419 0.01936 0.03186 0.01368
T 0.21076 0.03031 0.70504 0.01686 0.03703
G 0.17071 0.05227 0.01661 0.7349 0.02552
C 0.17759 0.02649 0.05671 0.00886 0.73035

- A T G C
A 0.13411 0.75442 0.03867 0.05231 0.0205
T 0.14351 0.04376 0.7028 0.02694 0.08299
G 0.11594 0.065 0.03571 0.76037 0.02298
C 0.12344 0.03531 0.06553 0.02649 0.74923

Table A.20: REB1 Motif Conservation

Table A.21 : STE12 Motif Conservation
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- A T G C
A 0.04647 0.90584 0.0159 0.02495 0.00684
T 0.049 0.01419 0.88777 0.00875 0.0403
G 0.03222 0.03333 0.00892 0.92104 0.00448
C 0.03775 0.00974 0.03991 0.0162 0.8964

- A T G C
A 0.16196 0.78243 0.01816 0.02722 0.01024
T 0.17628 0.02615 0.74526 0.01963 0.03268
G 0.15095 0.04554 0.01447 0.76458 0.02446
C 0.14549 0.02267 0.04852 0.00866 0.77466

- A T G C
A 0.14497 0.74393 0.03288 0.05779 0.02043
T 0.14147 0.0403 0.71806 0.02507 0.07511
G 0.11988 0.05885 0.02889 0.77124 0.02113
C 0.13579 0.03129 0.05283 0.02051 0.75958



- A T G C
A 0.04337 0.90342 0.01954 0.02712 0.00654
T 0.05829 0.01593 0.88015 0.01063 0.03499
G 0.03444 0.03552 0.00972 0.91382 0.00649
C 0.03962 0.01046 0.03858 0.0167 0.89465

- A T G C
A 0.1636 0.77452 0.01954 0.03037 0.01196
T 0.17691 0.02864 0.74353 0.01699 0.03393
G 0.15377 0.04519 0.01294 0.76439 0.02369
C 0.15209 0.024 0.04691 0.00733 0.76967

- A T G C
A 0.12894 0.76261 0.03146 0.05745 0.01954
T 0.13878 0.04135 0.71599 0.02652 0.07736
G 0.11615 0.05379 0.03552 0.77622 0.01832
C 0.13439 0.03129 0.05316 0.02087 0.7603

Table A.22: YAP1 Motif Conservation
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- A T G C
A 0.09314 0.74758 0.04915 0.07907 0.03106
T 0.09135 0.04977 0.74434 0.03163 0.08291
G 0.09507 0.13873 0.04942 0.67805 0.03873
C 0.0906 0.05451 0.13906 0.04103 0.67479

- A T G C
A 0.25279 0.55532 0.0659 0.08886 0.03712
T 0.25058 0.06887 0.55231 0.03977 0.08846
G 0.24988 0.16746 0.07027 0.46537 0.04702
C 0.25394 0.07378 0.16491 0.04812 0.45926

- A T G C
A 0.22899 0.51293 0.08777 0.10895 0.06135
T 0.22493 0.09092 0.5106 0.06323 0.11031
G 0.23333 0.16787 0.08841 0.4389 0.07149
C 0.22497 0.0904 0.1696 0.07248 0.44254

Table A.23: ABFl Background Conservation

- A T G C
A 0.09014 0.75487 0.04722 0.07808 0.02969
T 0.08772 0.04755 0.7532 0.02995 0.08157
G 0.08941 0.13992 0.04737 0.68561 0.03768
C 0.08745 0.05267 0.14013 0.03878 0.68097

- A T G C
A 0.24759 0.55988 0.06593 0.08938 0.03723
T 0.24498 0.06729 0.55945 0.03878 0.0895
G 0.2469 0.16868 0.06953 0.46839 0.0465
C 0.25091 0.07271 0.16747 0.04686 0.46206

- A T G C
A 0.2082 0.52958 0.08847 0.11191 0.06184
T 0.20349 0.09091 0.52923 0.06235 0.11402
G 0.21199 0.17344 0.08854 0.4539 0.07214
C 0.20634 0.08931 0.17702 0.07077 0.45656

Table A.24: CBF1 Background Conservation
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- A T G C
A 0.07292 0.76869 0.04795 0.08033 0.03011
T 0.07098 0.04833 0.76656 0.03098 0.08315
G 0.07086 0.14306 0.04814 0.6994 0.03854
C 0.07049 0.05276 0.14301 0.03996 0.69378

- A T G C
A 0.25161 0.55558 0.06598 0.08958 0.03725
T 0.24951 0.06741 0.55432 0.03901 0.08976
G 0.24936 0.16876 0.0699 0.46536 0.04662
C 0.25358 0.07289 0.16801 0.04732 0.4582

- A T G C
A 0.22015 0.5209 0.08733 0.11034 0.06128
T 0.21491 0.08946 0.52044 0.0621 0.11309
G 0.22365 0.17093 0.08737 0.4464 0.07166
C 0.2167 0.08882 0.1746 0.06982 0.45006

Table A.25: GCN4 Background Conservation

- A T G C
A 0.08364 0.76209 0.04621 0.07877 0.02929
T 0.0817 0.04624 0.76021 0.02986 0.08199
G 0.08305 0.13991 0.04626 0.69345 0.03733
C 0.08126 0.0513 0.13944 0.03858 0.68941

- A T G C
A 0.24085 0.56555 0.06574 0.09094 0.03691
T 0.23767 0.06748 0.56541 0.03911 0.09033
G 0.23914 0.17073 0.06947 0.47449 0.04616
C 0.24451 0.07263 0.1687 0.04769 0.46647

- A T G C
A 0.20773 0.52904 0.08796 0.11333 0.06193
T 0.20323 0.09007 0.52867 0.06275 0.11529
G 0.211 0.1733 0.08803 0.45548 0.07219
C 0.20508 0.08929 0.17689 0.07094 0.45781

Table A.26: GCR1 Background Conservation
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- A T G C
A 0.08458 0.75981 0.04708 0.07886 0.02967
T 0.08318 0.04735 0.75767 0.03016 0.08165
G 0.08448 0.13939 0.04694 0.69149 0.0377
C 0.0826 0.05218 0.13949 0.0391 0.68662

- A T G C
A 0.25171 0.55705 0.06508 0.08947 0.03669
T 0.24927 0.06683 0.55689 0.03861 0.0884
G 0.24986 0.1674 0.06838 0.46859 0.04578
C 0.25463 0.07201 0.16557 0.04671 0.46108

- A T G C
A 0.2111 0.52708 0.08759 0.11237 0.06187
T 0.20638 0.09023 0.52652 0.06265 0.11422
G 0.21378 0.17162 0.08726 0.45543 0.0719
C 0.20804 0.08937 0.17461 0.07102 0.45697

Table A.27: HAP3 Background Conservation

- A T G C
A 0.08801 0.76054 0.04506 0.07785 0.02854
T 0.08545 0.04601 0.7581 0.02902 0.08142
G 0.08635 0.13828 0.04498 0.6937 0.03669
C 0.08467 0.05016 0.13743 0.03853 0.68921

- A T G C
A 0.24913 0.56094 0.06388 0.09002 0.03603
T 0.2465 0.06591 0.56042 0.038 0.08915
G 0.24915 0.16788 0.06733 0.47036 0.04528
C 0.25464 0.071 0.16543 0.046 0.46293

- A T G C
A 0.20343 0.53437 0.08674 0.11373 0.06173
T 0.19967 0.08982 0.53147 0.06282 0.11623
G 0.20712 0.17371 0.08677 0.45932 0.07308
C 0.19984 0.08952 0.17643 0.07144 0.46277

Table A.28: HAP4 Background Conservation
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Table A.29: MCM1 Background Conservation

Table A.30: REB1 Background Conservation
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- A T G C
A 0.09632 0.74662 0.048 0.07887 0.03018
T 0.09345 0.04831 0.74587 0.03076 0.08161
G 0.09497 0.14055 0.04824 0.67807 0.03818
C 0.0927 0.05348 0.14032 0.03949 0.67401

- A T G C
A 0.25326 0.55437 0.06553 0.08978 0.03706
T 0.25049 0.06707 0.55454 0.03898 0.08892
G 0.25089 0.16849 0.06875 0.46541 0.04645
C 0.25623 0.07288 0.16741 0.04745 0.45603

- A T G C
A 0.22592 0.51538 0.08693 0.11028 0.06148
T 0.22015 0.08947 0.51579 0.06194 0.11265
G 0.22903 0.16896 0.08686 0.44394 0.07122
C 0.22326 0.08868 0.17338 0.07019 0.44448

- A T G C
A 0.09492 0.75119 0.04669 0.07743 0.02977
T 0.09285 0.04735 0.74972 0.03003 0.08005
G 0.09477 0.13903 0.04652 0.68202 0.03766
C 0.09166 0.05196 0.1389 0.03879 0.67868

- A T G C
A 0.2723 0.54227 0.06259 0.08714 0.03571
T 0.27152 0.06496 0.5408 0.03688 0.08585
G 0.27086 0.16367 0.0658 0.45424 0.04542
C 0.27746 0.06922 0.16086 0.04482 0.44764

- A T G C
A 0.21233 0.52753 0.08806 0.11125 0.06083
T 0.20753 0.09011 0.52854 0.06169 0.11213
G 0.21628 0.17168 0.08742 0.45234 0.07228
C 0.20959 0.08928 0.1755 0.07084 0.45478



- A T G C
A 0.07966 0.7684 0.04495 0.0785 0.02849
T 0.07861 0.04515 0.76582 0.02905 0.08137
G 0.07834 0.13915 0.04451 0.70214 0.03587
C 0.0785 0.05 0.13948 0.03831 0.69371

- A T G C
A 0.2308 0.57404 0.06584 0.09233 0.03699
T 0.22883 0.06713 0.57329 0.03939 0.09137
G 0.23161 0.17103 0.06891 0.48228 0.04616
C 0.23549 0.07274 0.1703 0.04817 0.4733

- A T G C
A 0.19729 0.53619 0.08868 0.11481 0.06303
T 0.1934 0.09101 0.53595 0.06317 0.11646
G 0.20006 0.17527 0.0881 0.46486 0.0717
C 0.19633 0.09046 0.17895 0.07228 0.46198

Table A.31: STE12 Background Conservation

- A T G C
A 0.08559 0.76228 0.04533 0.07848 0.02832
T 0.08412 0.04581 0.76014 0.02873 0.08121
G 0.08408 0.13897 0.04561 0.69488 0.03645
C 0.08237 0.05033 0.13762 0.0383 0.69139

- A T G C
A 0.21369 0.58592 0.06815 0.09402 0.03822
T 0.21534 0.06903 0.58291 0.03994 0.09277
G 0.21233 0.17542 0.07178 0.49241 0.04806
C 0.21916 0.07469 0.17381 0.0489 0.48344

- A T G C
A 0.19703 0.53651 0.08931 0.11449 0.06266
T 0.19313 0.09133 0.53547 0.06294 0.11713
G 0.19877 0.17526 0.08975 0.46382 0.07239
C 0.19329 0.09008 0.1795 0.07186 0.46528

Table A.32: YAPI Background Conservation
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A.4 Discovery Times

One of the points we have argued is that, even when both methods discover the

correct motif eventually, adding conservation often improves how quickly the correct

motif is found. This notion of "discovery time" is a reasonable metric to use; in

most probabilistic search motif discovery methods, the algorithm cannot be run to

exhaustively enumerate all "interesting" motifs. Instead, the search is stopped after

a period of time and the standing results are ranked by an independent metric (here,

the hypergeometric p-value). Therefore, a method which returns the correct result

sooner would raise confidence that the correct motif has been covered in a fixed set

of results.

To indicate this metric, we show two time series for each factor, for discovery with

and without conservation. The series' values are the mismatch score for motifs in the

order they were discovered. The minimum point of each series is the closest that the

algorithm came to discovering the "correct" motif.

(In these graphs, the red lines are the mismatch scores of MEME+, and the blue

lines are the mismatch scores of MEME Plain; the X axis indicates the order of

discovery, and the Y axis indicates mismatch scores for each of those motifs).

Figure A-1: ABF1 Mismatch Discovery Time

77



y
if -A

V

ft ~ WA

Figure A-2: CBF1 Mismatch Discovery Time

Figure A-3: GCN4 Mismatch Discovery Time
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Figure A-4: GCR1 Mismatch Discovery Time
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Figure A-5: HAP3 Mismatch Discovery Time
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Figure A-6: HAP4 Mismatch Discovery Time
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Figure A-7: MCM1 Mismatch Discovery Time

80

-- ---- 1--l- - -- I - - - n - - -- , - --:.F



Figure A-8: REBi Mismatch Discovery Time
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Figure A-9: STE12 Mismatch Discovery Time
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Figure A-1O: YAPi Mismatch Discovery Time
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A.5 Discovered Motif Entropies

For each factor we plot the entropy of each discovered motif against its mismatch score

(circles are MEME+, crosses are MEME Plain). We note that several graphs appear

to have tightly bunched clousters of motifs (often from the Plain MEME algorithm);

these are stretches of similar, uniformative motifs discovered after the initial motifs

reachable from the seed appear to be exhausted. We believe this to be an effect of

sequential motif masking during repeated motif discovery.
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Figure A-11: ABF1 Entropies vs. Mismatch Scores
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Figure A-12: CBF1 Entropies vs. Mismatch Scores
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Figure A-13: GCN4 Entropies vs. Mismatch Scores
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Figure A-14: GCR1 Entropies vs. Mismatch Scores
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Figure A-15: HAP3 Entropies vs. Mismatch Scores
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Figure A-16: HAP4 Entropies vs. Mismatch Scores
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Figure A-17: MCM1 Entropies vs. Mismatch Scores
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Figure A-18: REBi Entropies vs. Mismatch Scores

2 3 4 5

Figure A-19: STE12 Entropies vs. Mismatch Scores

87

X

4 x

D

a
3

1.7

1s

62

x x x x

xx 0

5

125

t

55 6



x

AX

x 
CX

NAA Cb x

84 x O

12

Si 4
F A s s

Figure A-20: YAPi Entropies vs. Mismatch Scores

88



A.6 Known Motif ROC Curves

Before presenting the results of our two motif discovery algorithms, we some of the

equivalent statistics for the known motifs. Some of these statistics have been quoted

already in Table 2.1; the given bound and total counts have hypergeometric and

binomial scores lower than any of the discovered motifs (what would be displayed as

0.0000 in the tables which follow). However, we may also calculate ROC curves for

the known motifs, which are shown in Table A-21.

ROC Curves of Known Motifs
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Figure A-21: ROC Curves of Known Motifs

A.7 Discovered Motif ROC Curves

Our final set of exhaustive statistics is the set of ROC curves for the discovered motifs.

As before, red curves are MEME+ motifs, and blue curves are derived from Plain

MEME motifs. Each graph also has the diagonal marked in a straight green line. It is

interesting to note that adding conservation does not appear to dramatically improve

the ability of a discovered motif to "generalize." However, in those situations where

informative motifs may be found (most notably ABF1), both techniques appear to

discover such a motif.
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Figure A-23: CBF1 Discovered Motif ROC Curves
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Figure A-24: GCN4 Discovered Motif ROC Curves
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Figure A-25: GCR1 Discovered Motif ROC Curves
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Figure A-26: HAP3 Discovered Motif ROC Curves
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Figure A-27: HAP4 Discovered Motif ROC Curves
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Figure A-29: REB1 Discovered Motif ROC Curves
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Figure A-30: STE12 Discovered Motif ROC Curves
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