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ABSTRACT

Window protocols for multiple access broadcast channels have

good throughput and stability characteristics. In this report we
examined the dynamic behavior of fixed and variable window size

protocols. For fixed window size protocols the equilibrium operating
point and its stability are discussed. By optimizing first and
second step window size a larger throughput can be obtained. We

suggest a variable window size protocol. The change of window size
and the dynamic process of the variable window protocols are treated

in detail.
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I. INTRODUCTION

The window protocol of multiple access broadcast channels was first

independently proposed as an extension to the Tree protocol [8,9] by

Gallager [1] and of the Urn protocol by Kleinrock and Yemini [2]. The

analysis and development of this protocol were given by [5,61.

The basic concept of a window protocol may be formulated as follows.

The N users are ordered (algorithmically speaking) on a circle as

shown in Figure 1. At first we choose a window size, referred to as the'

first step window size, in which users that have packets are allowed to

N 1 2

4 j WINDOW/ N-1 3 \\

6
9 s 7

Figure 1

transmit. That is, at the beginning of each slot, the access set for that

slot consists of all users within the window. When the transmission is

successful or a slot is empty, the window is advanced along the circle

by the first step window size. If a collision occurs, it means that more

than two users transmit messages in a slot, the tail of the window remains
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fixed while the window size decreases. The operation of the window protocol

enters a conflict resolution mode. In this case the protocol has additional

restrictions, using a time interval mechanism, one in which packets generated

by users currently in the window are not allowed to be transmitted. The reason

for this is that allowing new packets to enter the conflict resolution process

can only increase the uncertainty as to which users were originally involved

in the collision.

The generic operation of the window protocol was given in algorithmic

form by [5,6] as shown in [Appendix 1]. The protocol is fair to every user,

giving each the same opportunity to successfully transmit one packet in each

revolution. And the protocols for selecting the access set are so simple

that the only decision to be made by every user at the beginning of each slot

is the window size, which depends on whether there were 0, 1, or > 2 messages

being transmitted on the channel during the previous slot.

Step 1 of the protocol, as given in Appendix 1A, corresponds to the

situation when there was no previous unresolved conflict. Then each user

i will independently have a packet with probability [5]

T.

P. = 1 - (1 - p) (1)

where p is the packet generation probability, Ti is the positive integer

number of slots since user i was last included in the window. We re-

number the users so that user 1 is always the first user in the window

and user 2 is the next clockwise to 1 and so on; it follows then that

T1 T 2 ..... T (2)

so that

P1 P > .... >P (3)
1 - 2 - - N 

The positive integer variable T. is a convenient mechanism for tracking
1
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the system state upon which the window size decisions are based. It is

updated for each user i at the end of every slot following the observation

of the channel outcome.

At steps 2 and 3 of the protocol, the access set is after a collision,

and the protocol enters a conflict resolution mode. During this phase a

restricted class of users R is specified before the start of each slot.

Any packet a user generates while in R cannot be considered for trans-

mission until after the user leaves R.

The analysis of window protocols with finitely many users was given

by [5,6]. Using results from Markov decision theory, optimal protocols

are derived for the cases of two and three users. But the window protocol

state space grows exponentially with the population size and this makes

optimization techniques for large user population impractical. A sub-

class is defined with two restrictions on the window protocol structure:

(1) the window size w selected at step 2 consists of the users in the

first half of the restricted class R, and (2) at step 3, w = R. An

approximate analysis is used to determine the performance and dynamic

behavior of protocols in this subclass.

In this report we are interested in the following problems:

(1) the dynamic analysis of the mentioned subclass of window protocols with

fixed first and second step window sizes; and (2) the dynamic analysis

of window protocols with optimal variable first and second step window

sizes. The next sections are concerned with these problems.



-4-

II. DYNAMIC ANALYSIS OF FIXED WINDOW SIZE

1. Basic Equations

At the first step of the window protocol, each user i independently

has a packet with probability Pi determined by (1). For large N and small

window size w, we make the approximation of (3):

Pi = p 2 = p = ... =Pw = q (4)1 2 3 w

where q is referred to as the packet occupancy probability. This is a

valid approximation since when w << N the difference T - T is small1 w

relative to T., i = l,...,w. Thus, we may rewrite (1):

q = 1 - (1 - p)T (5)

where using the approximation q = P1 and T = T1.

We define a conflict resolution period (CRP) to be the interval of

time between two successive entrances to step 1 of the protocol. Then

A A

we have that P , the system throughput over one CRP, and yw, the average

rate at which the window advances along the circle during a CRP, are

given by

E[s] (6)

s E[t]

E[u]

¥w E[t] (7)

and

P = q y (8)
s w

where

E[s] = E[number of successes in a CRP]

E[u] = E[number of users processed in a CRP]

E[t] = E[duration of a CRP in slots]
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Let E[u/w] and E[t/w] denote, respectively, the dependence of E[u] and

E[t] on the step 1 window size w. In [5] the following recurrence relations

were obtained:

E[u/w] = E[u/w'] + E[u/w"] (e(w') + s(w')) (9)

E[t/w] = 1 - e(w') + (1 + s(w")) - e(w") (e(w') + 2 s(w'))

+ E[t/w'] + E[t/w"] (e(w') + s(w')) (10)

where

w' = window size for step 2 following a collision at step 1

W" = -W W'

e(w) = (1 - q)w

and

s(w) = w q(l - q)

Using these recurrence relations, we may obtain expressions for P

and r vs. the packet occupancy probability q.

For a given w, packet generation probability p, and user population

size N, we examine the dynamic behavior of the packet occupancy probability q.

Now we derive the basic equations. Let the initial value of q = q ; then

for the first revolution:

T

ql = 1 - (1 - p) (11)

where

A NT - (12)
o y(q)

°w (qo)

T represents the expected time for a complete revolution of the window
0

about the circle if q is held at qo.

From equations (11) and (12), we have:

Nkn(l-p)

q = 1 - e
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For given N and p, i.e. if we know the size of the population and the

packet generation probability, then N~n(l-p) = const., ql1 is a function

A A

of yw(qo) only. But from the recurrence relations (9) and (10), y (qo)

depends upon first step window size w, second step window size w and

qO' so we have:

ql = f(w ,w',qo) (14)

If we choose some fixed window size w and w', the new ql is only a

function of the old qo . From this function, we can easily discusss

the dynamic behavior of occupancy probability q and its stability.

It is obvious that the dynamic process starts from some initial qo;

at the first circle of revolution, we may find ql = f(q ), and at the

second circle of revolution we may find q2 = f(ql) etc. Therefore,

we have the following relations:

ql = f(qo)

q2 = f(q1)

............ ........... ' w (15)

qn = f(q n-l)

qn+l= f(qn)

so, we may rewrite (13) in general form:

Nkn(l-p)

w (qn) (16)

qn+l 1 - e

n = 0,1,2,...

This is the basic equation for further discussions. When the protocol is
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stable, the occupancy probability should approach an equilibrium operating

point qe'. The equilibrium condition is defined by

qn+l = qn = qe (17)

or

qn = f(q) (18)

At a stable point, we have

f'(qe) < 1 (19)

2. Equilibrium Point and its Stability

Now, we consider the fixed window size protocol: for a given first

step window size w, after a conflict the second step window size w' is

chosen as half of w , i.e. w' = [-]. In this case we may first use

the recurrence relations (7), (9), (10) to determine y (qn), and then

calculate qn+l from (16) for w = 2,3,4,... When we have the plot of the

function qn+l = f(w,w',qn) , we can discuss the dynamic behavior of q and

its stability, using the criterion equations (17), (18), (19).

Due to the complexity of the expressions of E[u/w] and E[t/w] in terms

of q, when the number w is large, it is difficult to obtain a closed

form expression of Yw (q) in terms of q. We have written a computer

program to solve this problem. In Appendix 2, some notes on the computer

program, as well as the program listings, are given. Some results of

the calculation are shown in Fig. 2 and Fig. 3.

Fig. 3a - d show the functions q +1 = f(qn) for given N, p and for

some w, which are chosen to discuss the dynamic behavior of q and its

stability. In Fig. 3a, w = 2, N~n(l-p) = -0.1, -0.2, -0.5, -1, -2, -5, -10,

The equilibrium operating points are determined by the intersections of

these curves and the diagonal. All the points are stable, because they

satisfy the stable equilibrium condition (19). For small absolute values
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of NMn(l-p), the stable points are located in the region of small q, and

for large absolute value of Nkn(l-p), the stable points are located in the

region of large q. For instance, the stable equilibrium point of Nkn(l-p)= -1

is at q = qn+l = 0.55. If the initial value of q = 0.1, from Fig. 3a,

the next ql = 0.4. In the same way we may find q2 = 0.48, q3 = 0.52,

q4 = .... etc. At the end of this process, the operating points approach

the stable equilibrium point qe = 0.55. If the initial value of q is

larger than qe, for example, qo = 0.9, then qo will decrease step by step

to the stable equilibrium point qe too. Sometimes, the equilibrium points

may be unstable. In Fig. 3b, when w = 20, Nkn(l-p) = -0.5, the middle

point of intersection (q +1 = qn = 0.2) is unstable, because f (q ) > 1.

And in Fig. 3c, when w = 30, Nkn(l-p) = -0.5, the lower point of inter-

section (qe = 0.1) is also unstable, for its f (q ) = 1. For large window

size w = 100, in Fig. 3d, when Nkn(l-p) = -0.5 the stable point is at

large q, and the unstable point is at small q.

Now let us return to examine Fig. 2, in which the curves of average

rate w (q), as a function of w and q are given. It was obtained

from (7), (9), (10). It is interesting to note that: (1) For each value

of q there exists a maximum value of Y w(q). Therefore, it is possible

to choose the optimal first step window size w for each q to get the

maximum average rate Y (q) or maximum throughput P . This situation will

be treated in the next section. (2) For fixed q, the average rate

Y (q) and throughput P decrease for large w. These results are evident.

For fixed occupancy probability q, the large window size w has to spent

more time to resolve the collisions, and the small window size has a
A

larger number of empty slots. In both situations Y (q) and P are decreasing.

The tradeoff of these two aspects leads to an optimal window size for

achieving the maximum () and P

achieving the maximum y (q) and P .
S
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III. DYNAMIC ANALYSIS OF VARIABLE WINDOW SIZE

In the previous section we discussed the dynamic behavior of q for

fixed first step window size w and with the assumption that the second

step window size w' = [-. It is obvious that we can release these restrictions.

At first for given w we may find an optimal value of w' as a function of q

to minimize the average rate Yw(q). And then we can also optimize w to

further maximize the average rate Yw(q). This is equivalent to maximizing

both w and w' at the same time. In this section we examine these

optimization problems and then deal with the dynamic process of the variable

window protocol.

1. Optimization of the Second Step Window Size w'.

It is difficult to resolve the optimization function directly with

the recurrence relations:

max max y (q,w,w') = max max E[/,w'] 
w we can resolve it numerically written

But we can resolve it numerically with a computer program. We have written

a computer program to find the best w' for each value of w from 1 to 20 for

given q (Appendix 3). The results are given in Fig. 4. For given q each

w has its own optimal w'. It is interesting to note that the best value

of w' is no more than half of w. The results also show that for large

occupancy probability q of second step window size should be smaller

to resolve the collosions, but for small q, w' approaches half of w.

2. Optimization of the First Step Window Size w.

For the purpose ofoptimizing the first step window size w, it is
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necessary to optimize w' at the same time. A computer program was given

in Appendix 4 to find both the optimal w and w'. Fig. 5 shows the average

rate yw(q) as a function of w with best value of w' for given value

of q. It is noted that for each value of q there exists an optimal window

size w that maximizes the average rate Y (q). The optimal w associated

with the best w' as a function of q are shown in Fig. 6. The maximum

average rate max yw(q) and the maximum throughput maxPs are shown in Fig. 6

also, but in different scale of the coordinate. Using these curves, we
A A

can easily determine w best max (q) and maxP for given q.

3. Dynamic Behavior of Occupancy Probability q.

Now, using equation (16), we can calculate the new occupancy probability

qn+l with respect to the old occupancy probability qn for given N and p.

In this case, w' = w' . Some of the results are shown in Fig. 7, which
best

are similar to Fig. 3 for fixed window size. For Nkn(l-p) = -0.5, the

values of qN+l are given in Table 1. It is noted that around the value

of Nkn(l-p) = -0.5, unstable points may occur. Therefore, for

Nkn(l-p) = -0.44 - -0.52, qn+l = f(q ) are given in Fig. 8a - 8d with

different window size respectively. From these figures we may point out

that even though there exist unstable points, there also exist stable point.

4. Variable Window Size Protocol.

Based on the window protocol, we suggest a variable window size protocol

as follows:

(A) For given N, p and qo ,every user in the system can decide w and

the corresponding w' according to Fig. 6.
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(B) At the end of first cicle of revolution each user observes

y (q) or To, and then using (11) determines the new ql for given N and p.

(C) From the new ql we may decide the new window size w and w' at

the second circle of revolution.

(D) At the end of second circle of revolution the procedure (B) will

repeate again.

The procedure mentioned above proceeds until q approaches stable

equilibrium point. But it should be noted that the observation value of

yw(q) or T is not the same as the expected value defined by (7) or (12).
0

Due to the difficulties of mathematical analysis we do not discuss the

stochastic fluctuation process here. The convergence of the process

depends upon the deviation of yw(q) or T . In the next subsection we will
0

discuss the dynamic process in the sence of expected values only.

5. Dynamic Process of Variable Window Size Protocol

As shown in Fig. 6 for given N and p we can calculatet '
wbest' best

max Y (q) and max Ps as a function of q. Using (16) we may have

qn+l = f(qn) for the above optimal values. We list these values in Table 1

formaQn(l-p) = -0.5. It is convenient for us to discuss the dynamic process.

In the variable window size case we can't use only one curve in Fig. 8

to discuss the dynamic process as we did in Fig. 3a for fixed window size.

Now we have to depict curves of qn+l = f(q ) for best window sizes in one

figure as shown in Fig. 9a. It will more clearly give us the picture of

how q and w change in the dynamic process.

The dynamic process may be described as follows. If the initial value

of q = 0.6, in Table 1, the corresponding w = 2, w' = 1 and ql = 0.35. At

the second circle of revolution, from the row of q] = 0.35 we may find
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w = 4, w' = 2 and q2 = 0.25. This process will continue until q approaches

stable equilibrium operating point, i.e. q = 0.6 - 0.35 -+ 0.25 -* 0.19 + 0.16

+ 0.15 ... . The changes of the best window sizes w, as the arrows show

in Table 1 is w = 2 + 4 - 4 - 7 ~ 8 - 9 + 11 ... . The stable point will

be 0.1 < qe < 0.15, which depends upon the requiring accuracy. We can also

describe this process in Fig. 9a. The operating points jump from one curve

to another due to the changes of w. It is interesting to note that the

operating points are located on the lowest curves of the set of best window

size curves. This conclusion can be proved by equation (16). Since

Nkn(l-p) is a negative value, (16) may be rewritten in the following form

1

qn+l = 1- _In(1-p) (20)

Yw(qn)

For given N and q, when w(qn) is maximum, the fraction is maximum, so

qn+l is minimum among curves at qn. The track is along the lower envelope

of the set of curves in Fig. 9a. The intersections of the curves at the

lower bound are the switching points, as shown by the vertical arrows in

Fig. 9a. The curve qn+1 min f(q ) is shown in Fig. 9b. The small circles
w n

and arrows in Fig. 9b show the dynamic process of the variable window size

protocol.

6. Maximum Throughput for Large N

Theoretically it is important to find the maximum throughput of the

variable window size protocol. The maximum throughput of window protocol

obtained by Gallager [1] is 0.4871. Humblet and Mosely [3,4] determined

that the maximum throughput could be increased to 0.4877. As for variable

window protocol we couldn't find the limit value of the maximum throughput,
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because it needs a great amount of computation when the window size is large

and q is small. But we may list the results in Table 5-3 of [5] and the results

in Table 1 of this report as following:

Table 5-3 of [5] Table 1 of this report

w q P(q) wqbestN max P
s Wbest s N 

-1 -1
32 0.4217x10 0.5113 31 0.3837x10 0.5112

64 0.2060xl-1 0.5011 63 0.1975x10 0.5014

128 0.1014x10 -1 0.4951 127 0.1004x10 -1 0.4956

The comparison shows that when the best window size is larger than 63,

the variable window size protocl should have larger thtoughput due to the

optimization of first and second step window size.
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Figure 4b
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Table 1 Nkn(l-p) = -. 05

qn Wbest best qn+ maxyw(q) max Ps

0.01 127 59 0.0100381 49.56 0.49560
0.015 85 39 0.0149429 33.21 0.49815
0.02 63 30 0.0197466 25.07 0.50140
0.025 51 23 0.0245206 20.14 0.50350
0.03 42 19 0.0292206 16.86 0.50580
0.04 31 15 0.0383682 12.78 0.51120
0.05 26 12 0.0474292 10.29 0.5145
0.06 20 9 0.0562277 8.64 0.5184
0.07 17 8 0.06 7.48 0.5236
0.08 16 8 .0.07 6.60 0.5280
0.09 14 6 0.08 5.90 0.5310
0.10 6 0.09 5.33 0.5330
0.11 5 0.10 4.87 0.5357
0.12 10l 4 0.11 4.50 0.54
0.13 4 0.11 4.19 0.5447
0.14 8 4 0.12 3.92 0.5488
0.15 8 4 0.13 3.69 0.5535
0.16 8 4 0.13 3.47 0.5552
0.17 7 3 0.14 3.28 0.5576
0.18 7 3 0.15 3.11 0.5598
0.19 3 0.16 2.96 0.5624
0.20 6t 3 0.16 2.82 0.564
0.25 f 2 0.19 2.32 0.58
0.30 4 2 0.22 2.00 0.6
0.35 © 2 0.25 1.74 0.609
0.40 3 1 0.27 1.56 0.624
0.45 2 1 0.30 1.42 0.639
0.50 2 1 0.31 1.33 0.665
0.55 2/ 1 0.33 1.25 0.6870
0.60 2 1 0.35 1.16 0.696
0.65 2 1 0.37 1.08 0.702
0.70 2 1 0.39 1,01 0.707
0.75 2 1 0.41 0.94 0.705
0.80 2 1 0.43 0.88 0.704
0.85 2 1 0.46 0.82 0.697
0.90 2 1 0.48 0.76 0.684
0.95 2 1 0.51 0.71 0.6745
1.00 2 1 0.53 0.67 0.67
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IV. CONCLUSIONS

1. For dynamic analysis of fixed and variable window protocl equations

(13) or (16) are the main to1l. We can solve it iteratively with a computer

program since yw(q) obeys recurrence relations with respect to q.

2. The dynamic behavior of occupancy probability q-indicates that the

fixed window size protocol has stable equilibrium operating point, even though

there exists another unstable equilibrium point.

3. We can optimize first and second step window size w and w' to obtain

a larger throughput. The suggested variable window size protocol may be

implemented by observing and calculating y (q) or T to uipdate the packet
w o

occupancy probability q and window size w and w'.

4. The dynamic process of variable window size protocol was shown in

Table 1 and Fig. 9. When the input rate and situation of the system change,

the protocol can adjust the system going to a new stable equilibrium

operating point.

5. Theoretically the variable window size protocols might be expected

to have a larger maximum throughput in comparison with the former window

protocols.
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APPENDIX 1

A. Window Protocol Operation

step 1. W = [i,j], R = 0
if empty or success
d.a. selects m E {1,2,...,N}
i - J+1
J -J+m
go to step 1

if collision
d.a. selects k E {i,i+l,...,j-1}
go to step 2

step 2. W = [i,k], R = [i,j]
if empty

i--k+1
d.a. selects k E {i,i+1,...,j-1}
go to step 2

if success
i - k+1
d.a. selects k E {i,i+l,...,j}
go to step 3

if collision
-- k

d.a. selects k e {i,i+l,...,j-1}
go to step 2

step 3. W = [i,kJ, R = [i,j]
if empty
i -- k+1

d.a. selects k {i,i+1,...,J}
go to step 3

if success
d.a. selects m E {1,2,...,N}
i -- k+1

j - k+m
go to step 1

if collision
j- k
d.a. selects k C {i,i+l,...,j-1}
go to step 2
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B. Ti Update Rules for Window Protocol

'(1) i ' W, .i ¢ R
Ti - Ti + 1

(2) i E W, iq R
if empty or success

Ti - 1

if collision
no change

(3) i O W, i e R
if success or collision at step 3 or collision at step 2

Ti-Ti + T

otherwise
no change

(1) i E W, i f R
if empty or success where user i did not transmit

T- T

if empty or success where user i transmitted
Ti 1

if collision
no change
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C. Operation of Window Protocol Subclass

step 1. W = [i,j], R = 0
if empty or success

d.a. selects w e {1,2,..,N}
i -J+1
j j+w
go to step 1

if collision
k-i + L(J-i+1)/2J
go to step 2

step 2. W = [i,k], R = ti,j]
if empty

i - k+l
k- i + L(j-i+1)/2J
go to step 2

if success
i- k+1
go to step 3

if collision
j- k
k- i + L(j-i+1)/2j
go to step 2

step 3. W = ti,j], R = [i,j]
if success
d.a. selects w E {1,2,...,N}
i . J+1
J-j+W
go to step t

if collision
k--i + L(j-i+l)/2j
go to step 2
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APPENDIX 2

Program Notes

The calculation of program is based on the following equations:

Nkn (l-p)

qN= 1 - e w(qo)

E[u w ]
Yw(q) = W

E[uiw] = E]ulw'] + E[ulw"] (e(w') + s(w'))

E[tw] = 1 - e(w')(l+s(w")) - e(w")(e(w') + 2s(w'))

+ E[tlw'] + Ett w"] (e(w') + s(w')Y

w' = w/2

W" = w - w

e(w) = (1- q) W

s-(w) = wq (l-qo )

E[u/l] = E[t/l] = 1

The range of calculation of parameters are chosen:

Nkn(l-p) = -0.1, -0.2, -0.5, -1, -2, -5, -10

W= 2 - 100

qo = 0.1 - 1

The corresponding notions in the program are:

qN+ Q1

q +Q

Y (q ) + RWQ
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E [u|wl +- EUW(w)

E[tlw] + ETW(w)

w w, W W 1 , w" + W2

e (w') + EW1, e (w") + EW2

s(w') + SW1, s(w") + SW2

Nkn(l-p) + NLP

The print out are:

Yw (q) and qN for given qo' w and N9n(l-p)
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c dynamic analysis of window protocol

c fixwin

Integer w_size
parameter (w size = 100)
real EUW(wsTze),ETW(w _sze),Q,RWQ,Q1(7),NLP(7)
integer W,W1,W2
data NLP/-0.i,-.2,-.5,-2.,-5 .,-10./

W=i
EUW(1)=l
ETW(i)=I
do 100 M=O,10
O=M/10.
write (10,1000)Q,NLP

1000 format(' Q=',f6.2/17x,'NLP=',7f6.2)
do 300 W=2,w_size
W1=(W/2)
W2=W-WI
EW=(1-Q)**W
EWI=(1-Q)**W1
EW2=(1-Q)**W2
SW=W*Q*(i-Q)**(W-1)
if (W1.ne.1) then

SW1=WI*Q*(t-Q)**(WI-I)
else

SWI=O
end if

If (W2.ne.1) then
SW2=W2*Q*(I-Q)**(W2-1)

else
SW2=Q

end if
EUW(W)=EUW(W1)+EUW(W2)*(EWI+SW1)
ETW(W)=1-EW1*(i+SW2)-EW2*(EWi+2*SWI)+ETW(W1)+ETW(W2)*(EWi+SW1)
RWQ=EUW(W)/ETW(W)
do 200 K=1,7

200 Q1(K)=1-exp(NLP(K)/RWQ)
write (10,2000) W,RWQ,QI

2000 format(' W=',I3,' RWQ=',f6.2,' Q1=',7f6.2)

300 continue
100 continue.

stop
end
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APPENDIX 3
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APPENDIX 4
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