
-1

The Design and Implementation of a 3D Graphics Pipeline

for the Raw Reconfigurable Architecture

by

Kenneth William Taylor

B.S., Computer and Systems Engineering and Computer Science
Rensselaer Polytechnic Institute, 2002

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

@ Kenneth William Taylor, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author
Department of Electrical Engineering and Computer Science

May 20, 2004

Certified by...

/

Accepted by

Anant Agarwal
Associate Professor, CSAIL

Thesis Supervisor

Arthur C. Smith
Chairman, Department Committee on Graduate Students

MAssACHUSETTS INS TE
OF TECHNOLOGY

JUL 2 6 2004

LIBRARIES BARKER

2

The Design and Implementation of a 3D Graphics Pipeline for the Raw
Reconfigurable Architecture

by
Kenneth William Taylor

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2004, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis presents the design and implementation of a 3D graphics pipeline, built on top
of the "Raw" processor developed at MIT. The Raw processor consists of a tiled array of
CPUs, caches, and routing processors connected by several high-speed networks, and can
be treated as a coarse-grained reconfigurable architecture. The graphics pipeline has four

stages, and four-way parallelism in each stage, and is mapped on to a 16-tile Raw array.
It supports basic rendering functions such as hardware transform and lighting, perspective
correct texture mapping, and depth buffering, and is intended to be used as a slave processor
receiving rendering commands from a host system. The design process is described in

detail, along with difficulties encountered along the way, and a comprehensive performance
evaluation is carried out. The paper concludes with many suggestions for architectural and
performance improvements to be made over the initial design.

Thesis Supervisor: Anant Agarwal
Title: Associate Professor, CSAIL

3

4

Acknowledgments

I would like to thank my thesis advisor, Anant Agarwal, for first introducing me to the Raw

architecture and all the interesting thesis ideas revolving around that rich project. I also

thank Anant for being so patient with me in the hours nearing the submission deadline.

I would also like to thank the members of the Computer Architecture Group, who either

directly or indirectly assisted me greatly on this project: from the innumerable maintainers

of the starsearch testing suite and all its amazingly useful examples, to the maintainers of

the BTL simulator (notably, Michael Taylor, who personally fixed one bug just for me), to

others such as Paul Johnson who set me up with the CAG computer system, on which I

did a large amount of the work for this project.

I also tip my hat to Kurt Akeley and Pat Hanrahan, whose online lectures for their

Stanford Real-Time Graphics course originally inspired me to do a graphics architecture

project, even though I knew very little about the subject to begin with.

Finally, I would like to send many, many thanks to April for her support and sympathy

through the last few weeks of this project, and also for spending a large amount of her time

helping me proofread.

5

6

Contents

1 Introduction and Motivation 15
1.1 G oals . 16
1.2 M ethodology 16

1.3 Outline of this Thesis 16

2 3D Rendering Algorithms 19
2.1 Introduction to 3D Rendering in General 19

2.1.1 Defining a Scene . 20

2.1.2 Geometry Transformation . 20

2.1.3 Rasterization and Interpolation . 23

2.1.4 Rendering to the Framebuffer . 26

2.2 3D Rendering Implementation of this Project 27

2.2.1 Geometry Transformation . 27

2.2.2 Rasterization and Interpolation . 29

2.2.3 Texture Mapping and Blending . 32

2.2.4 Rendering to the Framebuffer . 33

2.3 Sum m ary . 33

3 Designing the Parallel Rendering Architecture 35

3.1 Design G oals . 35
3.2 Basic Parallelization . 36

3.2.1 Graphics Pipelines . 36

3.2.2 Mapping Parallel Pipelines to the Raw Architecture 39

3.3 Difficult Design Problems . 39

3.3.1 Distributing Primitives Across the Pipelines 41

3.3.1.1 Communication in the Raw Architecture 41

3.3.1.2 Choosing a Network for Commands 42

3.3.1.3 Techniques for Using the Static Network Dynamically . . . 42

3.3.1.4 Developing the Distribution Algorithm on the Switch . . . 43

3.3.1.5 Improving on Round Robin Distribution 45

3.3.2 Maintaining Sequential Correctness 46

3.3.2.1 Dealing With Sequence Number Rollover 48

3.3.3 Synchronization in the Compositing Stage 50

3.3.3.1 Attempts at Cache Coherence 50

3.3.3.2 A Simpler Approach . 51
3.3.4 Other Difficult Issues . 52

3.3.4.1 Asynchronously Reseting the Processor 52

7

3.3.4.2 Switching Modes and Flushing the Pipeline 52
3.4 Sum m ary . 53

4 Implementation of the 3D Processor 55
4.1 Overview of Architectural Organization . 55
4.2 Detailed Description of Implementation . 58

4.2.1 The Boot Sequence . 58
4.2.2 Command Mode . 58

4.2.2.1 Render State Commands 62
4.2.2.2 Texture Management Commands 62
4.2.2.3 Depth and Framebuffer Commands 63
4.2.2.4 Miscellaneous Commands 63

4.2.3 Scene Streaming Mode . 63
4.2.3.1 Distributing Commands Among the Pipelines 64
4.2.3.2 Stage 1 . 65
4.2.3.3 Stage 2 . 68
4.2.3.4 Stage 3 . 69
4.2.3.5 Stage 4 . 69

4.3 Interfacing the Graphics Architecture in a System 70
4.3.1 The Framebuffer Side . 70
4.3.2 The Host Side . 72

4.4 Summary . 72

5 Testing, Validation and Performance Results 73
5.1 The Testing Framework . 73

5.1.1 The BTL Simulation Environment 73
5.1.2 Framebuffer Controller . 74
5.1.3 Render Host Interface . 76

5.1.3.1 External Program Control 76
5.1.3.2 Performance Profiling . 77

5.2 Feature Validation . 78
5.3 Performance Results . 79

5.3.1 Performance Model . 80
5.3.2 Empirical Performance Results . 82

5.4 Sum m ary . 87

6 Improvements and Suggestions for Future Work 89
6.1 Improving Parallelization Efficiency . 89

6.1.1 Reducing Pipelining Overhead . 89
6.1.2 Reducing Parallelization Overhead 90
6.1.3 Improving Load Balancing . 91
6.1.4 Improving Parallelization Bottlenecks 92

6.2 Improving Raw Performance . 93
6.3 Scaling the Graphics Architecture . 94
6.4 Ways to Extend This Thesis. 94
6.5 Sum m ary . 95

7 Conclusion 97

8

A Additional Rendered Images 99

B Single-Tile Code Listing 103
B.1 SingleTilexc... 103

C Full Implementation Code Listing 151
C.1 Common-sw.h.. 151
C.2 Common-sw.S.. 152
C.3 render-datatypes.h.......................................153
C.4 Stagel1-datatypes. h.......................................160
C.5 ZBuLdatatypes.h.. 164
C.6 render-cmds.h.. 165
C.7 Stagel-Mainxc... 169
C.8 StagelI-Main-sw. S..189
C.9 Stagel-Aux.c.. 190
C.10 Stagel-Commonxc...................................... 192
C.11 Stagel-sw.S... 210
C.12 Stagel-sw-0.S...212
C.13 Stagel-sw-.S 217
C.14 Stagel-sw-2.S 222
C.15 Stagel-sw-3.S 227
C.16 Stage2-Commonx.c.. 230
C.17 Stage2-sw.S. 241
C.18 Stage3-Commonx.c.. 242

C-19 Stage3-sw.S. 255

C.20 Stage4-Commonx.c.. 256

C.21 Stage4-sw.S. 267

D Verification Framework Code Listing 271
D.1 Renderlnterface.bc 271
D.2 renderlframebuffer.bc 272
D.3 renderlhost.bc. 284
D.4 renderlframebuffer.h 294
D.5 render-.client.h. 298
D.6 triangletest-c 318
D.7 cubetest.c. 327
D.8 texturetest.c. 335
D.9 ordertest.c 339

9

10

List of Figures

Orthographic vs. Perspective Projection . . .
Interpolation in Screen Space
Primitives that Intersect the Clipping Plane .
Transformation of Normals
Triangle Rasterization to Pixels

3-1 Basic Concepts of Pipelining .
3-2 A Simple 3D Graphics Pipeline
3-3 Basic Pipeline Layout on Raw .
3-4 Problems with Simple Sequencing

4-1 Overview of Implementation .
4-2 State Transition Diagram for a Typical Stage 1 Switch Processor

4-3 The Processor in a System Context

. . . . 21

. . . . 24

. . . . 28
. . . . 29
. . . . 30

. 37

. 38

. 40

. 47

. 57

. 67

. 71

. . . . 75

. . . . 79

. . . . 80

. . . . 83

. . . . 85

. . . . 86

. . . . 88

Framebuffer Message Header .
Sample Screenshots .
Triangle Performance Test Pattern
Performance: Speedup, Utilization, and Estimated Overhead . .

Performance: Utilization per Stage
Performance: Active Cycles per Stage
Performance: Triangles and Pixels per Second

11

2-1
2-2
2-3
2-4
2-5

5-1
5-2
5-3
5-4
5-5
5-6
5-7

12

List of Tables

2.1 Coordinate Mapping in Different Texture Modes 32

3.1 Sequence Numbers Assigned to a Stream of Primitives 48

4.1 Render State Variables Stored in the First Pipeline Stage 59

4.2 Rendering Processor Commands . 61

4.3 Full State Transition Table for Stage 1's Switch Code 66

5.1 Summary of Meta Commands for the RenderHost Interface 77

13

14

Chapter 1

Introduction and Motivation

The "Raw" Architecture [21] is a tiled microprocessor array with tightly coupled interpro-

cessor networks, programmable static routing, and direct software access to pin I/O. The

architecture can be implemented on a single chip, and supports a wide variety of parallel

processing paradigms, such as shared memory, message-passing, and systolic array process-

ing. A Raw Processor is, at its basic level, an array of microprocessors; however, it can also

be configured and treated as a deeply pipelined stream processor [8], a wide-issue processor

for instruction-level parallelism [22], or a coarse-grained reconfigurable architecture.

This latter use is of particular interest in this paper, and was one of the original moti-

vations for the Raw project. The idea was to create, with Raw, an architecture that could

be fine-tuned to different tasks, but which was coarser-grained than FPGAs and therefore

on which datapath and other higher-level structures were easier to implement, and perhaps

more efficient in terms of performance and space cost, as well.

In this vein, the paper presents an implementation of an architecture for real-time

3D graphics on the Raw processor, hoping that, while not being as efficient as a full-

custom design, the processor will attain a large performance improvement over a software-

only implementation on a general-purpose CPU. Also, it is hoped that implementing the

processor on Raw will prove a much easier engineering task than a full-custom design might

be.

A real-time 3D graphics processor is, in general, a co- or slave processor which receives

rendering commands from a host processor and outputs a rendered image to a memory

known as a "framebuffer." The framebuffer may also be connected to a Video DAC (digital

to analog converter) for display on a screen, but this is not strictly necessary. The goal

is to offload the chore of rendering 3D images from the main processor so that it may

continue to do other useful work, and also to provide a highly optimized datapath for that

3D rendering to attain performance that a general processor would not be able to attain. 3D

rendering hardware is used in a wide range of applications, from high-end workstations for

scientific and medical imaging to consumer devices such as video game consoles. 3D graphics

accelerators have become increasingly popular as consumer-level add-ons to computers,

especially for use with video gaming. In this market, the engineering goals include not only

high performance, but also low cost and moderate power usage.

The actual process of performing 3D rendering (explained in more detail in Chapter 2)
is highly parallelizable due to the typical lack of much dependence between separate parts of

a rendered image. Modern graphics processors generally gain large amounts of performance

through a combination of pipelining the computation, and running several computations in

15

parallel. Such a structure might map nicely to a two-dimensional mesh like that of the Raw
processor. Additionally, the Raw processor's many modes of communication - streaming
messages, dynamic messages, shared-memory - and large amount of I/O bandwidth would
prove very useful in a complex multi-featured device such as a 3D rendering processor. For
more detail regarding the parallelization of 3D algorithms and how it was applied to the
Raw see Chapters 3 and 4.

1.1 Goals

The major goal of this thesis was to design and verify a 3D rendering architecture on a
Raw chip from scratch in order to gain insight into the major performance and implemen-
tation issues that would come up, especially those specific to the Raw architecture itself.
The 3D architecture itself does not need to support state-of-the-art features, but should
implement some relatively interesting (if well-known) techniques such as texture mapping,
alpha blending, directional lights, and hardware transform and lighting operations. The
performance should be reasonable - as in, it should be feasible that the architecture could
operate interactively, even if that would require very low resolution or simple scenes. De-
tailed performance measurements should be possible, to allow for a good deal of insight into
the performance issues that come up. It was hoped that by the end of the project, much
more would be known about the bottlenecks and performance pitfalls about implementing
such an architecture on Raw, and that this knowledge would be useful to advise future
endeavors in the area.

1.2 Methodology

The project described in this thesis was implemented solely as a simulation, although it could
conceivably be implemented on existing hardware. A framework was developed around the
simulation to be able to verify its correct functionality and to measure detailed information
about its performance. Several simple tests were run to verify functionality - not a full test
suite by far but enough for reasonable confidence that the device was functioning correctly
for the most part. One such test was modified to allow it to run over many different
combinations of rendering modes and parameters, and output large batches of performance
results to the disk to be analyzed later by scripts. These results were distilled down, and are
presented in this thesis along with an intuitive performance model to try to pinpoint where
the inefficiencies stemmed from. This information is then used to motivate suggestions for
future improvement in similar lines of inquiry.

For more details about the testing methods used in this thesis and their results, see
Chapter 5.

1.3 Outline of this Thesis

This thesis begins with a general introduction to 3D rendering algorithms in Chapter 2,
both to serve as background information for those not familiar with the topic, and to
describe the algorithms used in this project so that the rest of the paper can concentrate
on the architectural features of the design. Chapter 3 talks about the design process of
trying to parallelize those rendering algorithms on to the Raw, including several hurdles and
abandoned ideas along the way. The final design of the rendering architecture as presented

16

in this thesis is described in detail in Chapter 4. Chapter 5 introduces the verification and

performance framework used with the architecture, and presents the performance results

along with some discussion. The majority of the discussion, however, is left for Chapter 6,
which analyses many ways in which this architecture could be improved upon, and its

performance made more competitive with today's technology. Chapter 7 quickly summarizes

the thesis.
Additionally, there are several appendices attached to this paper. Appendix A presents

some additional rendered images to ease the image clutter in Chapter 5. Appendices B

through D present the actual code used to program the Raw, and to build the verification

and testing framework. Finally, Appendix E lists the raw data that were used to generate

the performance results seen in Chapter 5.

17

18

Chapter 2

3D Rendering Algorithms

This chapter serves to introduce the 3D rendering algorithms used by the architecture

described in this paper. How these algorithms are parallelized across the Raw chip is

described in Chapter 4. The purpose of this chapter is twofold: firstly, as background

information on how real-time 3D rendering is generally done, for those readers who may

not be very familiar with the subject, and secondly, to describe the specific algorithms used

in this project, as a reference for the rest of the paper which assumes this information is

known.

As this thesis is intended to study architecture and not algorithms, the actual rendering

methods used are relatively standard and simple. Enough rendering features are supported

to allow exploration of some non-trivial aspects of the architecture, but many advanced and

complex features (which most modern rendering processors support) were not implemented

due to the limited time available and scope of the thesis. Namely, features such as bump

mapping, environment mapping, programmable shaders, mip-mapping, trilinear filtering,
anisotropic filtering, anti-aliasing, and multi-texturing, which have become common on

modern graphics cards, were not implemented in this project. However, in the interest of

presenting a reasonably usable and interesting rendering pipeline, features such as hardware

geometry transform, hardware lighting (supporting one directional hardware light and one

ambient), perspective-correct texture mapping (in fact, perspective-correct interpolation of

all values), smooth or "Gouraud" shading, hardware z-buffer support, and transparency

were implemented, and the algorithms used for these features, among others, are presented

here. A good comprehensive source on many aspects of rendering is [11]

Several sources were consulted in the process of writing the rendering algorithms used

in this project, primarily the lecture notes available at [3]. and [1].

2.1 Introduction to 3D Rendering in General

3D Rendering is the process of presenting a three-dimensional model as a two-dimensional

image, with correct perspective such that its three-dimensionality is recognizable. More

precisely, 3D Rendering is a projection of the three-dimensional model to a two-dimensional

plane, and the subsequent rasterization of that projection to a digital image, which is

usually displayed on a computer monitor. The projection to a two-dimensional plane may

be a perspective projection, in which objects further from the virtual viewer appear smaller,

or it may be an orthographic projection, in which objects appear proportional to their

original size no matter what distance they are from the viewer.

19

Real-time 3D Rendering requires that the digital images of a scene be produced very
quickly - ideally at least 30 frames per second and typically 60 frames per second and
beyond - in order to fool the eye into believing that the scene is in constant motion, and
also to allow instantaneous feedback to user controls or other inputs, such as in a video
game. Generally, certain methods of 3D Rendering are suitable for real-time rendering
while others are not, though the latter may create images of improved quality or realism.
For example, ray-tracing [13] is almost exclusively used for non-real-time rendering.

2.1.1 Defining a Scene

When rendering a 3D image, the geometry of the world is generally broken down into sim-
pler shapes, known as primitives. With real-time rendering, these primitives are almost
exclusively flat triangles, although quadrilaterals are sometimes used as well. Some advan-
tages of triangles are that three points uniquely describe a triangle, and that all triangles
are guaranteed to fall completely in a plane (which is defined by the same three points as
the triangle). Flat surfaces can be easily broken down into patterns of these primitives, and
curved surfaces must be approximated as a mesh of primitives. From here on in this paper,
it will be assumed that all primitives in the scene are triangles, and the terms "triangle"
and "primitive" will be used interchangeably.

Each triangle may have other information associated with it, such as color, texture,
light reflectance, transparency, normals (vectors parallel to the original surface of the ob-
ject which are used for smoother lighting), and blending mode, to be used in drawing the
triangle. More advanced renderers may even support shaders, which are custom programs
that determine how to draw each triangle. Additionally, the scene has information asso-
ciated with it, such as ambient light and location of lights, position of the camera (which
defines the view to be rendered), and so on.

2.1.2 Geometry Transformation

The first step in drawing a scene is to transform the coordinates of the vertices of the trian-
gles to coordinates in the two-dimensional image that is to result. In a 3D transformation,
straight lines in the scene will always map to straight lines in the final image, and therefore
triangles will map to triangles (or polygons to polygons, etc). Actually, this transformation
is usually a larger set of transformations each applied consecutively. For example, a scene
may contain a model of a desk. That desk model, for the convenience of whomever created
the scene, may have its own local coordinate system in which all its primitive vertices are
defined. The desk may then be scaled, rotated, translated, and skewed (though desks are
rarely askew) to its final position in world coordinates. In fact, it may go even further than
this, as there may be a pencil sharpener model on the desk itself, with its own local coor-
dinate system. In this case, the pencil sharpener could to be transformed into the desk's
coordinate system, and then the desk (plus sharpener) could be transformed into world
coordinates. This structure of local coordinate systems for objects, built into compound
objects, and finally built into a scene is known as a scene hierarchy

Once all primitives are defined in world coordinates, they are then transformed into the
local coordinate system of the viewer, also known as eye space or camera space. In eye
space, one axis is generally aligned in the direction that the eye is looking, and the other
two specify up-down and left-right directions. For example, the z coordinate may specify
distance from the camera, while the y and x coordinates specify up-down and left-right

20

Image Plane- IaePae

, ~

3D Geometry Eye Point 3D Geometry

Projected' Projected'
Image Image

a) Orthographic Projection b) Perspective Projection

Figure 2-1: Orthographic vs. Perspective Projection

Figure 2-la shows an orthographic projection, where the depth coordinate is truncated

and the geometry appears as a direct projection from the scene to the final image plane.

Figure 2-1b shows the same world geometry with a perspective projection, which causes

more distant objects to appear smaller on the image plane. With perspective projection,

there is a virtual "eye point" where all the lines of projection converge.

coordinates respectively.

Next, these three-dimensional coordinates must be projected into two-dimensional co-

ordinates for use in the final image. There are several ways to perform this projection.

Orthographic projection would simply discard the z coordinate, resulting in a direct projec-

tion to the 2D plane. Perspective projection, however, would divide the x and y coordinates

by the distance from the viewing plane (which is related to, but not generally the same as

z). This makes distant objects look smaller, creating an image that looks like a realistic

two-dimensional representation of a three-dimensional scene. Figure 2-1 illustrates how the

scene geometry is projected to the final image plane using orthographic and perspective

projection.

Other transformations usually occur, as well. For example, often times the geometry is

transformed into a set of coordinates that specifies the visible parts of the scene within a

normalized range (such as 0 to 1 or -1 to 1), and any geometry that has coordinates outside

that range is partially or fully off the screen (or to close to or too far away from the viewer).

These are known as normalized device coordinates, and the range of visible coordinates

defines what is known as the viewing frustum. Discarding objects outside of that frustum

before further processing is known as culling. Sometimes, objects appear partially within

the frustum and must be split up, so that the part outside of the frustum can be culled; this

process is called clipping. Generally, culling and clipping is done for performance reasons,
although some geometry must be culled for correct operation - most notably, any geometry

that has a vertex on the eye point must be culled to avoid a divide by zero error when doing

perspective projection, and any geometry behind the image plane usually must be culled to

avoid rendering geometry that appears behind the virtual viewer.

Finally, the coordinate system is transformed to the actual coordinate system of the

resulting digital image, where each pixel is addressed by an integer coordinate.

To specify all these transformations, matrices are used, and coordinates expressed as

vectors multiplied with matrices result in the new, transformed coordinates. In fact, if

several multiplications must happen sequentially, all the matrices for those transformations

21

Imagie Plane-Image Plane,

may be multiplied together to produce one matrix that performs all the transformations
in one step. This can result in a large performance gain over doing every transformation
individually for every single vertex in the system.

In general, a three-dimensional coordinate can be represented by a column 3-vector, and
transformed with a 3x3 matrix, like so:

(
1
0
0

[a
d

g

b
e
h

c
f
i \

x

y
z)

Here are some examples of matrices used for various transforms (adapted from [5]):

cos 9

sin 9
0

- sin 9
cos 9

0

0
0
1

A rotation by 9
about the z axis.

I 0 01
cos0 -- sin0
sin9 cos9

A rotation by 9
about the x axis.

sE 0 0
0 sy 0
0 0 sz

Scaling by sx, sy,
and sz.

However, this simple matrix multiplication cannot represent all the transformations one
would be interested in performing. For example, translations are not representable, and
neither are perspective projections. To represent all these transformations, 4x4 matrices
are used, along with four-dimensional vectors for the coordinates:

C a
e
i

m

b

f
j
n

c

g
k
0

d
h
1
p

ICx
y
z
w

Three-dimensional coordinates are represented in the four-dimensional vector by treating w
specially - the true values of x, y, and z are obtained by dividing them all by the value of
w. Coordinates represented in this way are known as homogeneous coordinates. Most of the
time, w = 1, and the rest of the coordinates can be treated normally. Homogeneous coor-
dinates are used because now translations and perspective projections of three-dimensional
coordinates can be represented in a 4x4 matrix:

1 0 0 t
0 1 0 ty
0 0 1 tz
0 0 0 1I

A translation by t , ty,
and tz (from [5]).

[1 0 0 0
0 1 0 0
0 0
0 0

1
1

1
0
0

A simple perspective projection, where x and y coor-
dinates are divided by the distance z (from [2]).

Generally, if w is nonzero, then the homogeneous coordinates specify a point in space
that can be translated, scaled, rotated, etc. However, if w is zero, then the coordinates
specify a direction (towards a point at infinity). Directions can be scaled and rotated, but
cannot be translated. Normals to surfaces and light directions are two values for which
representation as a direction would be appropriate1 .

'In the actual implementation of the 3D architecture described in this paper, normals are represented

22

As stated earlier, a large number of transformations can be combined together into

one matrix, to speed computation. Generally, geometry is transformed from whatever

model space it is in to normalized device coordinates. Then culling occurs, and perspective

divide (where the three coordinates are divided by the value of w). Finally, the resulting

coordinates are transformed into pixel addresses for display on the screen (though this can be

done by a simple scaling, and does not require a full matrix multiplication). One exception

is that normals to surfaces are transformed to world coordinates, rather than directly to

normalized device coordinates, for use in lighting calculations (as lights are generally also

defined in world coordinates).

2.1.3 Rasterization and Interpolation

Once the image pixel coordinates that correspond to triangle vertices are calculated, then

the triangles can be "filled in" with pixels, and this process is called rasterization. One

method of performing rasterization is to trace one edge of a triangle, and fill in the rest

horizontally from that edge. Another method is to calculate three inequalities, one for each

edge, and use them to determine whether a pixel is inside the triangle. Then, for all pixels

in a bounding box around the triangle, if it is inside the triangle, draw it.

Along with simply drawing the correct pixels, values from the vertices are interpolated

across the triangle. These values can include color, texture coordinates, light intensity, and

depth (depth for each pixel is used for depth buffering, described later). Alternatively, each

triangle may use the same value for color and light intensity across the entire shape, instead

of smoothly interpolating values.

One way to linearly interpolate the values from the three vertices of the triangle is to

solve a plane equation of the form v = Ax + By + C, which takes the location on the screen

(x, y) and returns an interpolated value at that point, v. The values for A, B and C can be

solved for using routine linear algebra using the known solutions at the three vertices of the

triangle. Also, to speed things up, instead of calculating the entire formula for every pixel

(which requires two multiplies and two adds), one can calculate an initial value for each row

of pixels, and an incremental value for the row, which is how much the equation changes

for each pixel (O-Ax, where Ax is the spacing between pixels, generally 1). For each pixel

in the row, this incremental value is added to the current total, which only requires one

addition per pixel.
However, unless the primitive is aligned parallel to the image plane, simply interpolating

the parameters of the vertices linearly across the screen will not produce accurate results.

The reason for this is illustrated in Figure 2-2. Equally spaced points on the screen are

spaced further apart on a primitive as it becomes more distant from the viewer, and likewise

equally spaced points on the primitive are spaced more closely together on the screen as the

primitive becomes more distant. The result is that the parameters, which are assumed to be

distributed linearly across the primitive's surface, are distributed in a non-linear fashion on

the screen. Interpolating in screen space is usually acceptable for smooth parameters such

as color and light intensity, since the inaccuracy will not be easily noticeable. However, with

texture coordinates, the resulting textures can easily look incorrect with simple screen-space

interpolation, and so-called perspective correct interpolation is generally a must.

To determine how to interpolate variables correctly, recall that in a perspective projec-

tion, the coordinates of a vertex in screen space are divided by the distance from the viewer

with a nonzero w. This was simply an oversight, and special logic was needed to make sure normals were

not affected by translations.

23

Figure 2-2: Interpolation in Screen Space
Equally spaced points across the screen result in nonlinearly spaced points across the
surface of the primitive, and vice versa. Therefore, interpolating a parameter linearly

across the screen will not result in the same values for the pixels as interpolating linearly
across the primitive. Interpolating correctly in these situations is called perspective correct

interpolation.

(non-linear interpolation is only required in perspective projections). Before this perspec-
tive division, equally spaced coordinates on a triangle's surface can be linearly interpolated
across the triangle from its vertices due to the planar nature of a triangle. After the per-
spective divide, however, each coordinate on the surface of a triangle must be divided by
the distance from the viewer, Z, to produce the equivalent screen coordinate. If x1 and
X2 are the x coordinates of one edge of a triangle before perspective divide, and zi and Z2
are the depths of each of those points respectively, and s is a parameter that is stepped
in equally spaced increments from 0 to 1, then a set of undivided x coordinates that are
evenly interpolated across the primitive is given by X1 +s(X2 - x1), and a set of screen-space
coordinates that correspond to these undivided x coordinates on the triangle's edge is given
by (from [4]):

X1 + s(X2 - X1)

Z1 + s(Z2 - Z1)

However, polygon filling algorithms work the other way: they step linearly across the screen,
and need to determine how far along the primitive's surface they have gone for each position
on the screen. That is, if x' and x' are (post-perspective-divide) coordinates of the edge
of a triangle in screen-space, which correspond to points x1 and X2 with depths z, and Z2
before perspective divide, and t is a parameter that is stepped in equally spaced increments
from 0 to 1 as the rasterizing algorithm is moving across the primitive, then the current
screen coordinate that corresponds to t is given by (from [4]):

xi +tXx'+ -)= +t (X2 _X1

Z1 \Z2 z1

The challenge is to determine a value for s, and hence the distance along the surface of
the triangle, for every value of t, which represents the distance along the projected image
of the triangle on the image plane. To do this, we set screen coordinates equal to screen
coordinates:

x1 + X2 _X1 X1 + s(X2 - X1)

zi Z2 Z1 Z1 + s(Z2 - Z1)

24

and solve for s in terms of t (also from [4]):

tzi

Z2 + t(zi - Z2)

Now as t is stepped linearly in screen space during rasterization, the corresponding distance

along a primitive's surface can be found with the above formula, and the value of s used to

interpolate any parameter from one vertex to the other. The resulting interpolated values

of the parameter will be perspective correct. This method can be easily extended to two

dimensions.
In practice, the above method is rarely used directly, as calculating the formula to

map t to s for every pixel is relatively expensive - tzi must be interpolated, which at best

requires an addition per pixel for incremental interpolation; then s must be calculated which

requires an add and a divide (assuming that the z value in the denominator is incrementally

interpolated); and finally the actual parameter must be calculated using vI+s(v2-vi), which

requires a multiply and two adds. Instead, parameters at each vertex are pre-multiplied

with - as part of the perspective divide step, then are interpolated linearly in screen space,
and finally are divided by the screen-space interpolated value of - for that point to produce

the interpolated parameter. Assuming incremental interpolations, this method requires two

adds and a divide per pixel, in contrast to the 4 adds, one multiply, and one divide required

for the straightforward method. This method can be shown to be correct by substituting

for s in vi + S(V2 - vi), to get:

tz (

z 2 + t(zi - Z2)

Manipulating this formula further results in:

tl1
VZ + Z2 (v 2 - vi)

1 1 1
)1 V1 -+t - - - +t-V2-t-V1

1+t [Z 1(Z2 Z1 Z2 Z2
Z1 G2 Z1

1 1 V 1 t 1 1 + t 1 V 2
)1 -1 - t-V1 + t- 2)

+t1 1 i - i)Z1 Z1 (Z

This is exactly what we are looking for: the value, v, pre-multiplied by 1, linearly interpo-

lated in screen space (due to the parameter t), divided by . linearly interpolated in screen

space. The value v can represent any parameter that is defined at the vertices of the trian-

gle that must be interpolated in a perspective-correct manner, such as texture coordinates,

color value, light intensity, and so on.

The resulting pixel objects, which contain x and y screen coordinates along with a

depth value and interpolated (or perhaps flat-shaded) values of all its parameters, are called

fragments. Fragments go through an optional texture lookup, then all their values are

blended together to get the final value to be sent to the resulting image, which for the

25

purposes of this paper is stored in special memory known as the framebuffer.

2.1.4 Rendering to the Framebuffer

When fragments from primitives are drawn to the final buffer that stores the resulting
digital image, care must be taken to make sure that closer objects are drawn on top of more
distant objects. One method to ensure this is known as the painter's algorithm, in which
primitives are first sorted from back-to-front, and then drawn in this order to ensure that
closer fragments are overwriting those that are further away, and not vice-versa. However,
the painter's algorithm has a hard time dealing with intersecting primitives, and is not very
efficient for parallelized rendering schemes, and so a different method is used. This method,
known as z-buffering or depth buffering, uses another buffer, separate from the framebuffer,
where the current depths of the pixels stored in the framebuffer are kept. When a fragment
is to be drawn, first its depth is compared with the pixel already in the framebuffer, by
looking up the latter's depth in the z-buffer. If it is in front of that pixel; it is rendered,
otherwise it is discarded. Note that even with a z-buffer, translucent primitives must be
drawn back-to-front to ensure that they are correctly blending with the polygons behind
them, but that opaque polygons can be drawn in any order.

The value stored in the z-buffer is typically not the actual z coordinate of the pixels,
but rather a value 1) monotonically related to the depth, so that fragments maintain the
correct depth ordering relative to one another, and 2) that when linearly interpolated in
screen space provide the same depth ordering as perspective-correct interpolated z values,
so that the overhead of perspective-correct interpolation can be avoided in the rasterization
stage (see Section 2.1.3). A typical value that could be used in the z-buffer is

(far + near) - 2near - fart
far - near

where near and far are the distances of the near and far clipping planes of the viewing
frustum, respectively (see Section 2.1.2). The projection matrix can be arranged to auto-
matically produce this value for the transformed z' coordinate, after perspective divide.

Using these nonlinearly distributed values instead of z directly also causes the precision
of the z-buffer to be much higher closer to the viewer than in the distance, which is usually
desirable, depending on the application. When z-buffer precision is not high enough to
accurately discern between two very close fragments, then unwanted visual effects can occur.
To reduce the likelihood of these effects, the values are stored in the z-buffer with as much
numerical precision as possible, usually using 16 or 32-bit fixed point numbers. It is also
recommended that the programmer place the near clipping plane as far away from the
viewer as possible, and the far clipping plane as close as possible, to make best use of
available precision.

This section has introduced the basics on which the 3D rendering algorithms used in
this project are based, intended for those without much background on the subject. The
next section details the actual implementation of these algorithms used in this project, for
reference use with the rest of this paper, which expands on the parallelization of these
algorithms, and assumes that the basic implementation is understood.

26

2.2 3D Rendering Implementation of this Project

A single-processor version of the 3D Rendering code used in the processor described in this

paper is available in Appendix B. This code is basically a stripped-down version of the fully
parallelized code (Appendix C), with code used for parallel synchronization removed and

code spread across multiple processors placed into one thread. However, it still retains some

elements of the structure of the parallelized code, as it was not written from scratch. The

parallelized code and the rendering architecture in general is described in more detail in

Chapters 3 and 4. This section serves to describe the actual 3D rendering algorithms used

in the project - to this end, the actual structure of the code and some implementation

details are not considered to be very important.

2.2.1 Geometry Transformation

The processor receives from an external source input that is primarily organized by prim-

itive, consisting of the coordinates of three vertices to define a triangle, and the texture

coordinates for those vertices. The rest of the info that is needed for each vertex (color,
normal, texture mode, lighting mode, transparency, etc) is taken from the current render

state. The external source can send commands at any time to change the render state, and

the new render state will take effect for all subsequent vertices and primitives.

The render state also specifies the transformation matrices that are currently in use

- the external controlling program provides a matrix that transforms from the current

model coordinates to world coordinates, ModelToWorld, and a matrix that transforms from

world coordinates to normalized device coordinates, as well as performing any perspective

projection desired, WorldToView. Internally, two more matrices are kept: ModelToView,

which is the matrix multiplication of WorldToView and ModelToWorld, and is used to

transform incoming geometry directly to normalized device coordinates in one step; and

NormalToWorld, which is used specifically to transform vertex normals from model-space

to world-space for lighting calculations, and is discussed further below. The WorldToView

matrix, after the transformed vector is normalized by dividing all the coordinates by the

resulting w value (the fourth coordinate), causes all the x, y, and z coordinates within the

viewing frustum to lie in the range -1 to 1. x specifies the horizontal screen coordinate

and increases from left to right. y specifies the vertical screen coordinate and increases

from top to bottom. z specifies the depth value to be stored in the z-buffer, and therefore

should be linearly interpretable as described in Section 2.1.4, and increases from near to far

coordinates.

The model-space x, y, z vector is multiplied by the ModelToView matrix, to result

in pre-perspective-divide coordinates (this is sometimes known as clipping space). Simple

clipping is performed here to remove any geometry that is closer than the near clipping

plane, which both removes geometry behind the viewer and vertices that are too close to

the eye point. This must occur before perspective divide, as a point too close to the eye

point could result in w ~ 0, and a possible divide by zero. Since the perspective divide has

not occurred yet, z is compared against ±w instead of +1. Also, the case of w being close

to zero is checked for explicitly, in case the transformation matrix is badly formed, or just

doing something unexpected.

If a primitive intersects the near clipping plane (rather than being fully on one side or

the other), it is simply dropped. Tests against the other planes in the frustum were not

implemented due to limited time, although a full implementation would ideally perform

27

Clipping Plane

a) Original Primitive b) Primitive Split into Three

Figure 2-3: Primitives that Intersect the Clipping Plane
Ideally, a primitive that partially intersected a clipping plane would be split into smaller

primitives that are either entirely without or outside of the viewing frustum. However, the
project described in this paper does not implement this algorithm due to time constraints.

these. Also, a full implementation, instead of dropping a primitive that intersected one
of the clipping planes, would instead break the primitive up into smaller primitives, so
that each would be fully in or out of the frustum, resulting in a better quality rendering
(Figure 2-3). This feature was also not implemented due to time constraints.

At this point, if the primitive is still visible, a quick backface culling check is performed2 .
Backface culling removes any polygons that are facing away from the viewer - where in
this case having vertices specified in a clockwise order is defined as facing the viewer.
Backface culling is done for performance (as most objects are solid, and the sides' backfaces
are interior to the object and cannot be seen), and also because the rasterization algorithm
used (Section 2.2.2) requires primitives to be oriented in this fashion for it to work correctly.
A programmer who desires a double-sided primitive can either render two primitives back
to back, or re-arrange vertices in software as necessary.

If the primitive turns out to not be visible at this point, it is discarded and the code moves
on to the next primitive. If it is visible, then next up comes the directional and ambient
lighting calculations, if lighting is enabled for this primitive. Ambient light's intensity is
modulated with the primitive's reflectivity, using a fixed point representation which uses 0-
255 to represent 0.0-1.0. The code also uses one global directional light, and the intensity of
the light is calculated at every vertex by the negative dot product of the global light direction
vector and the "normal" of the vertex. The normal defines a direction perpendicular to the
surface of the object at the vertex, and if light is shining directly along the normal it should
be brightest, while if it is shining parallel to the surface (at a 90* angle to the normal), it
should be darkest. Light shining from the other side of the surface should have no effect
(i.e., negative results from the dot product are treated as zero).

The normals for the vertices need to be transformed to world coordinates before they are
compared with the light vector, which is also stored in world coordinates. However, there are

2Actually, it was discovered late in the process that this is implemented incorrectly - backface culling
should be performed after perspective division, as the division can re-arrange the vertices and change the
primitive's orientation with respect to the viewer. However, this was discovered too late to be able to fix,
test, and re-run simulations with the new code, so the older version remains in this paper.

28

a) b) c)

Figure 2-4: Transformation of Normals

Figure 2-4a shows a surface and its normal before translation. Figure 2-4b shows the

normal transformed using the same matrix as the geometry, which results in a skewed

image. Figure 2-4c shows a correctly transformed normal under the same geometry

transformation.

two things one must be careful of when transforming normals: 1) that normals should not

be translated, and 2) that under certain transformations, the normal cannot be transformed

to world coordinates by the same matrix that is used for the geometry vertices. The code

creates a special transformation matrix to be used on normals called NormalToWorld, using

the function MatrixInvTrans. This function ensures the former consideration by only using

the upper 3x3 part of the matrix, which results in no translation. The latter problem is

illustrated in Figure 2-4. To correctly transform a normal under all circumstances, one must

use the transpose of the inverse of the geometry-to-world transformation matrix. However,
the scaling of the normal is not important, as it is normalized after it is transformed;

therefore, only the adjoint needs to be calculated instead of the full inverse (which is the

adjoint divided by the determinant). The code to do this calculation is from [11]. Given

the input matrix M, the transposed adjoint is:

mllm 2 2 - m 12 m 2 1 m 1 2 m 2 O - mlOm 2 2 mIOm 2 1 - m 11 m 2 0 0

m21mO2 - m 22mOl m 22mOO - m 20 mO2 m 20 mOl - m 2 1mOO 0
molm12 - m 02m 11 m 02m 10 - moom12 mOm 11 - m 01m 10 0

0 0 0 1]

Finally, the vertices' new coordinates x', y', and z', the color and alpha values r, g, b,
and a, the texture coordinates u and v, and the light intensity intensity are all multiplied

by }, if applicable. i is also stored as wi, and all these values, along with mode information,
are sent to Stage 2, which performs rasterization and interpolation.

2.2.2 Rasterization and Interpolation

To rasterize the triangle, the code first calculates a bounding box around the triangle using

the min and max coordinates of its vertices. Then it sets up the incremental interpolation

for each parameter that is to be interpolated, scans across the entire bounding box region,

and for every pixel within the polygon, sends an "Untextured Fragment" to the next stage,
along with its interpreted parameters.

Before the triangle is rasterized, however, the final transformation step is performed:

transforming from normalized coordinates to screen pixel coordinates, where the pixel coor-

dinates run from 0 to VWIDTH and VHEIGHT, which are defined at compile time. Vertex

coordinates are defined as floating point numbers, where 0 is the left or top screen edge,

29

0.25 1.875 3.25

0 0- - -- -- - -- - 0.25
0.5 - -

1.5---

2.5 - -2.675

3.5- --

4 -----...-.-- .. 3.875

0 4
0.5 1.5 2.5 3.5

Figure 2-5: riangle Rasterization to Pixels
The dotted grid represents the actual screen pixels, with the black dots in the center of
each square representing the center of the pixel. The coordinates to the left and bottom
are screen-space coordinates. A triangle to be rendered has heavy dashed lines, and dots

for its vertices, with its vertex coordinates given above and to the right of the image. The
black rectangle represents the initial bounding box used for rasterization of the triangle,

and the shaded pixels are those which are actually generated once rasterization is
complete.

and VWIDTH + 1 and VHEIGHT + 1 are the right and bottom edges, respectively. Pixels
are centered on .5 values - 0.5, 1.5, 2.5, etc., up to VWIDTH + 0.5 or VHEIGHT + 0.5.
In this system, a floating point value can simply be truncated to give you its nearest screen
pixel neighbor. When rasterizing, a pixel is only filled in if its center point is within the
primitive - therefore, the actual bounding box need only include those pixels whose centers
are within the primitive's general (floating point) bounding box. An example triangle on a
small grid of pixels is shown in Figure 2-5, with the bounding box shown, and pixels within
the primitive shaded grey.

Next, the stage sets up the equations for each line of the primitive, as well as each
variable that is to be interpolated (see Section 2.1.3). To determine whether a pixel is
within the triangle, three plane equations are set up, one for each line, that evaluate to
less than or equal to zero if the pixel is on the "inside" side of the line, or on the line, and
greater than zero if the pixel is on the "outside" side of the line. The sides are determined by
assuming that the triangle vertices are given in a clockwise ordering. If any pixel evaluates
all three line equations to less than or equal to zero, then it is inside the triangle and a

fragment is generated. Given line vertices (x 1 , yi) and (x 2 , y2), the equation for each line is:

1 = ax + by + c

a = Y2 - Yi

b =x - X2

30

C = y1X2 - Y2Xl

where 1 < 0 means the pixel (x, y) is on the right-hand side of the line going from (x1, yi)

to (x2, Y2), which is the inside of the triangle made up of three of such lines defined in a

clockwise order.
The set-up of equations to interpolate the vertex parameters is the same for each pa-

rameter to be interpolated (color r, g, b, alpha a, texture coordinates u and v, depth z',
light intensity i, and perspective correction factor 1). The generic parameter p, along with
the parameter's values at each of the vertices, po, p1, and P2, where the vertices themselves

have coordinates (x0, yo), (xI, yi), and (x2, Y2), will be used in place of the above variables

to demonstrate the form of the set-up equations:

P = Pax+ PbY + Pc

1
Pa = (PO(Y1 -Y2) - YO(PI - P2) + be)det M

1
Pb = (xO(PI - P2) - P0(x1 - x 2) + b2e)

det M
1

Pc = (Pome - x 0bie - yob2e)
det M

1 _1

det M x0(y1 -y2) - Y0(X 1 - X2) + me

me = Xly2 - X2Y1

bie = P1Y2 - P2Y1

b2e = X1P2 - X2P1

The det M, me, bie, and b2e variables are calculated separately as they are used in more

than one location, and calculating them once saves set-up time3 .

When stepping through the bounding box to perform the rasterization, the equations

for the triangle's lines and for each of the parameters are evaluated incrementally. The

initial value for each row is calculated, as well as an incremental amount that is added to

the value for each pixel traversed. Since all the equations are linear, this generates a very

accurate solution very quickly (one add per pixel). In the case of generic parameter p, the

incremental value is RAx, where Ax is the spacing between pixels, and with a pixel spacing

of 1, this ends up being simply pa (which would be called "pdx" in the code). The starting

value of each row is also generated incrementally from the starting value of the previous

row, by adding 2Ay, which is simply Pb, or "pdy" in the code. One final optimization

performed is that when pixels within the triangle are found in a row, the loop ends as soon

as another pixel outside of the triangle is found, instead of always going to the end of the

bounding box.
One exception is that the z values are calculated from the full equations each time

instead of via incremental evaluation. They are also stored in a fixed point representation

from this point forward. Both of these are to help increase the dynamic range of the z-

buffer - however, the current implementation of this code does not take full advantage of

3Note that there may be vastly more efficient ways to perform these same calculations, and all the
calculations in this project. This project was mostly concerned about generating a correct and reasonably
fast implementation, so not as much time was spent on trying to optimize it as much as possible, nor research
the best possible algorithms for the job

31

Texture Coordinates

Original -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Repeat 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2
Mirror 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0.0 0.2
Clamp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2.1: Coordinate Mapping in Different Texture Modes
This table shows how the original texture coordinates for each fragment get mapped into
a 0-1 range for texture lookup. Repeat repeats the same texture over and over in either
direction; Mirror does the same but flips every other instance of the texture; and Clamp
sets the coordinate to the closest edge of the 0-1 range (actually, Clamp uses the color of

the last texel on either edge instead of 0.0 and 1.0 exactly, which have different
interpretations when used under bilinear filtering).

the range available with the fixed point notation, as the calculation still occurs with 32-bit
floating point numbers.

Each untextured fragment generated by this algorithm is passed then to Stage3, where
texturing and blending occur.

2.2.3 Texture Mapping and Blending

At this point, the fragment's texture value is looked up if necessary, and the final color
value and alpha of the fragment is determined from the texture value, the light intensity,
the color value, and its blending modes.

Texture coordinates are defined as floating point values from 0 to 1, where 0 is the left or
top edge of the texture, and 1 is the bottom or right edge. Just like with screen coordinates,
the texture pixels' (or texels') centers fall on 0.5, 1.5, 2.5, etc. Values less than 0 and greater
than 1 are allowed, and they are interpreted according to the primitive's wrapping mode:
none, repeat, mirror, and clamp. A wrapping mode of "none" means that texels outside
of the 0-1 range should be left black. "Repeat" means that the texture should be treated
as an infinite tiled array, such that a coordinate of 1.3 should be treated as 0.3, 4.6 should
be treated as 0.6 and -3.9 should be treated as 0.1. "Mirror" is similar to repeat, except
that alternating tiles are flipped, so that adjacent tiles are mirrors of one another. "Clamp"
simply takes the texel value of the closest actual texture edge (0 or 1) and uses that value
forever in either direction. Table 2.1 demonstrates the mapping of coordinates in different
texture modes.

The normalized texture coordinates are then multiplied by the width or height of the
texture to generate texel coordinates - these coordinates are simply truncated in nearest-
neighbor mode, which produces a blocky-looking texture but renders more quickly. Also
available is bilinear filtering, which interpolates linearly between texel colors to create
a smoother appearance (it is called bilinear because the interpolation occurs on a two-
dimensional texture). For bilinear filtering, the colors of the four texels that surround the
given point are retrieved from memory, and the final color is a weighted average of the texels
according to the given point's distance from their texture centers. To make this easier, the
code shifts everything by 0.5, so that pixel centers are aligned with integers, and then the
actual texel coordinates are compared with the truncated coordinates, and the truncated
coordinates plus one. Special care must be taken so that the Repeat, Mirror, and Clamping
modes work correctly under bilinear filtering, by re-wrapping after the shift occurs, and

32

fetching the correct four texels for blending even when on a wrapping edge.
After the texture lookup, the code then blends the texture, color, and ambient and

directional light together to create the final fragment color and alpha. First, if a hard alpha
threshold is specified for the texture or color values, then that is applied (a hard alpha
threshold specifies a value, below which the color is completely transparent and above
which it is completely opaque). A slight hack is applied at this point, which allows a
hard alpha texture to be blended with colors without resulting is 50% transparency in the
transparent areas of the hard-alpha texture - this is reasonable, as not only would such
partial transparency look wrong, but it would also slow down the rendering considerably.
Next, the color and texture values are combined according to the texture mode: none, in
which no color is applied to this fragment at all; color only, in which just the color is passed
through; texture only, in which just the texture is passed through; col/tex blend, where the
result is a weighted average of the color and texture; tex-on-color decal, where the texture
is primarily shown, and the color values are shown only where the texture is transparent;
color-on-tex decal, where the color is primarily shown, and the texture is shown only where
the color is transparent; and color/texture modulation, where the result is the normalized
modulation of the color and texture values (treating 255 as 1.0).

Finally, if the primitive is lit, then the color of each fragment (but not the alpha value,
of course) is modulated with the directional light and ambient light separately. These two
results are then added together (using saturating addition, which maxes out at 255 for each
of red, green and blue) to create realistic lighting. If the primitive is unlit, then the color is
sent through as-is.

2.2.4 Rendering to the Framebuffer

The final color is a 32-bit value, 8 bits each for red, green, blue, and the alpha value (to
blend with what is already on the screen). The framebuffer maintains two "pages" for the
screen - one is the "front" buffer, which is currently displayed, and the other is the "back"
buffer, which is generally where the next frame is being drawn. When the frame is finished,
the pages will generally be flipped, so that the process of drawing the scene is hidden from
the viewer. However, the external program sending commands to the processor has full
control over which buffer to draw to.

First, if necessary, the code checks the z-buffer to see if the fragment should be drawn to
the screen (the z-buffer check can be disabled by the user). Then, if the fragment is being
drawn, and it is transparent, the pixel value already on the screen at that point (in the
appropriate buffer) is retrieved, and blended with the current color value. Then the new
pixel color is sent out (again, to the appropriate buffer), and the z-buffer is updated with
the new value of z' (again, if necessary, as the z-buffer write can also be disabled).

This process repeats for every fragment in the primitive. When the primitive is finished,
the process starts over by reading in the next command.

2.3 Summary

In this chapter, some basic theoretical groundwork for the process of 3D rendering was
introduced. Also, this chapter described the actual rendering algorithms that were used
in the processor described by this paper. This information is provided as background
information to the parallelization of the rendering architecture, and its performance analysis,
which was the focus of this project and of the remaining chapters of this thesis.

33

34

Chapter 3

Designing the Parallel Rendering
Architecture

This chapter describes the design process for the architecture presented in this paper. The

initial goals and starting point are outlined, and several interesting problems and the de-

velopment of their solutions are discussed. For a full description of the final design of the

processor see Chapter 4.

3.1 Design Goals

The first design goal was to implement this architecture on Raw in such a way that it could

conceivably be run on currently available hardware. At the time, this meant using a 4x4

Raw tile configuration, along with some glue logic for specialized I/O. Also, the design

was to be implementable mostly in C, rather than direct assembly, for ease of development

and debugging, except for static switch routing code and low-level cache manipulation and

interrupt control.

The Raw processor was to be used as a slave, or co-processor, which accepted external

commands and outputted rendered images through a relatively simple interface: a render

host interface which took commands from the host system and sent them with minimal

translation and flow control into the Raw processor, and a framebuffer controller which

interpreted messages coming from Raw as pixels sets and reads in some generically defined

framebuffer memory, that could conceivably be connected to a DAC for video display. A
major design goal of both the host and framebuffer interfaces was to be able to treat the

Raw processor as a black box of sorts: the external logic should require a minimum of

knowledge about what exactly is going on inside the Raw processor, how many tiles it has,
what its parallelization algorithms are, etc.

Internal to the processor, on major goal was balanced parallelization across all 16 tiles,
with tiles remaining active as much as possible. However, the resulting image should be

exactly equivalent to the image produced on a single-tile implementation of the algorithm

(See Chapter 2). Finally, though it was not expected that performance be very good on the

first pass of this architecture, a reasonable performance on 320x240 images was expected

(on the order of 30 frames per second at least) 1 .

1Note that this is an incredibly meek goal compared to modern graphics accelerators, which are pushing
1600x1200 frames, with multiple passes for anti-aliasing and such, at frame rates above 60Hz. Analysis and
recommendations on the speed issue are given in Sections 5.3.2 and 6.1.4.

35

3.2 Basic Parallelization

The design of this project began blindly in a way, with no idea what the bottlenecks would
be, how different computations would balance against each other, or how efficiently different
parallelization techniques would use the processing power available. The project was treated
as a sort of exploration, in the hopes that the end result would offer a good deal of insight
as to how the architecture could be more efficiently laid out. In this sense, the results were
successful, as many insights into improvements where noted in the process of doing this
project - see Chapter 6 for a detailed rundown of many of these suggestions and insights.

However, this meant in order to begin the parallelization, a starting point had to be
determined in the design stage without much guidance in terms of hard performance data
for different structures. This starting point began by using a result well-known in computer
graphics - that rendering is well-suited to deep pipelining and massive parallelization,
due to few dependencies between different primitives. In fact, a "graphics pipeline" is a
construct so common that it even influences the models of high-level graphics APIs such as
OpenGL [16].

3.2.1 Graphics Pipelines

The concept of a graphics, or rendering pipeline is similar to that of pipelines in digital
architecture in general: split a computation up into several stages, and advance the data
items to be computed along one stage at a time, so that every stage is doing work simul-
taneously, much like an assembly line for an automobile. In hardware, pipelining is a huge
win, since oftentimes all the hardware to do each computation is already there, and simply
sits idle waiting for the rest of the computation to complete. Pipelining usually requires
two additions to a non-pipelined setup: adding a small to moderate amount of state storage
between stages, and making sure that cases where one computation depends on another
and handled correctly (i.e., one computation may need to wait for another one to complete
before it can continue). However, the speed improvements can be substantial - instead of
each piece of data taking n cycles, multiple pieces of data can be processed in that same
n cycles, improving the throughput of the computation. One downside is that it may take
longer for each individual piece to go through the computation - an increase in latency -
but when there are not many dependencies between computations, latency is not a huge
problem. Figure 3-1 illustrates some basic concepts of pipelining.

A graphics algorithm, such as the one described in Chapter 2, can be easily pipelined
- one primitive may be going through perspective transformation while another is being
rasterized, while yet another's pixels are going through z-buffer lookup. In fact, a full
rendering pipeline may look like Figure 3-2, with an Application that generates geometry
and textures to render, interpretation of the rendering Commands, Geometry transform
(which may include sub-stages such as Transforming to eye coordinates, Clipping, and
doing Projection), Rasterization into fragments, Texture mapping, combining Fragments
into final colors, and outputting to the Display. In a full system, parts of this pipeline may
be implemented in software and other parts in hardware.

In fact, often a rendering algorithm can be pipelined arbitrarily deeply, as the only
dependence between simple primitives is their rendering order, which is preserved with a
simple pipeline. More complex dependencies can occur, however, such as primitives that
blend with the image in the framebuffer - these primitives must make sure not to read the
framebuffer until the primitives before it have written. This could be solved via interlocking

36

a) Unpipelined Clocking Period = 95ns

Computation 1 Computation 2 Computation 3 Throughput

Time = 30ns Time = 40ns Time = 25ns = 1/95ns

b) Pipelined Throughput Clocking Period = 40ns

Computation 1 Computation 2 Computation 3 Throughput

Time = 30ns Time = 40ns Time = 25ns = 1/40ns

c) Pipelined Latency
Clocking Period 40ns

.0I Computation 1 Computation 2 Computation 3
Time = 30ns Time = 40ns Time = 25ns

H0 Computation 1 Computation 2 Computation 3
Time = 30ns Time = 40ns Time = 25ns

Computation 1 Computation 2 Computation 3 Total Time

Time = 30ns Time = 40ns Time = 25ns = 120ns

Figure 3-1: Basic Concepts of Pipelining
Figure 3-la pictures a three-step computation, which has a total running time of 95ns. If

data is clocked through this pipeline once every 95ns, then the computation would have a

throughput of 1/95ns. Figure 3-lb shows the same computation, but pipelined, so that

three sets of data can be going through it at once, one per step of the computation. On

each clock each piece of data moves ahead one step. The whole pipeline must be clocked

at the speed of the slowest computation, 40ns, and so on average data comes out of the

pipeline every 40ns, and the throughput would be 1/40ns. However, as shown in

Figure 3-1c, the time it takes one individual piece of data to get through the pipeline is

120ns - this is the "latency" of the pipeline.

37

Application

Command

Geometry

Rasterize

Texture

Fragment

Figure 3-2: A Simple 3D Graphics Pipeline

(stalling the primitive) or forwarding the data needed before writing it to the framebuffer.
Generalized shaders for primitives can cause more complex dependencies to occur.

It is also possible to run several graphics pipelines in parallel with each other; although
now more effort must be taken to ensure that ordering and dependencies are handled cor-
rectly. Due to the nature of graphics data, this is generally a much easier and more efficient
effort than with general-purpose CPUs. One possible classification of graphics paralleliza-
tion is described in [12], where the location in the pipeline where dependencies are handled
and correct render order is determined is of key importance. A so-called "sort-first" archi-
tecture separates primitives according to where they appear on the screen, with one parallel
pipeline dedicated to each region or set of regions in screen space. Since there is no over-
lap between regions, there will be no dependencies between the parallel pipelines for basic
fragment operations. A "sort-middle" architecture is similar to sort-first, except that the
full geometry processing and transformation occurs before sorting into different pipelines
according to screen region. In a "sort-last" architecture, all primitives are transformed and
rasterized in any distribution across the parallel pipelines, and the final image is composed
together from the separate fragments, often using a depth buffer to ensure correct ordering
between dependent fragments (i.e., those on top of each other). However, primitives which
do not use the frame buffer (such as writes directly to the framebuffer) and transparent
primitives that depend on the values of what was drawn before them cannot be ordered
correctly simply through the use of a depth buffer. Solving the problems with these kinds
of dependencies is discussed more in Section 3.3.2.

38

3.2.2 Mapping Parallel Pipelines to the Raw Architecture

It was decided to use a sort-last organization for this project, primarily due to load balancing
concerns. Sort-first and middle architectures separate computation based on screen regions,
and it is difficult to balance this load across pipelines without complex regioning algorithms.
Sort-last algorithms also allow primitives to be distributed in any arbitrary fashion across
the parallel pipelines, and require minimal communication between the pipelines until the
final compositing step, and so give the designer a large amount of flexibility in deciding how
to implement the rest of the pipeline.

The 4x4 configuration of the Raw processor suggested a very intuitive pipeline configu-
ration: four pipeline stages, with four-way parallelism in each stage. Deciding upon exactly
how to split up a graphics pipeline into four balanced pipeline stages was a bit of a shot in
the dark at this point, but a reasonable starting point was assumed: That the first stage
could do command interpretation and geometry transforms, the second would do rasteri-
zation, the third would do texture lookup, and the fourth would do the final compositing.
This seemed reasonable because the balance between geometry and rasterization depends
on the primitive size (larger primitives spend more time rasterizing, while smaller primitives
spend more time in geometry transformation), and texture mapping and final compositing
both are on par with rasterization in terms of computation cost 2. Each stage would consist
of four Raw tiles, implementing the same processing step with four-way parallelism. The
data to be rendered would be somehow distributed across the pipelines at the top stage,
then would proceed straight down each pipeline until the last stage, at which point writes
to (and possible reads from) the Framebuffer would be serialized. Each pipeline stage has
a bank of RAM off to the side of the Raw chip, where shared data such as the render state,
texture memory and the depth buffer can be stored. A simple diagram of this setup, with
basic data flow indicated, is shown in Figure 3-3.

Finally, this discussion is assuming that all the tiles are being used to actively process
the 3D data, and that none are being used as control or communication tiles.

Given these starting points, constraints, and goals, the design task moved on to devel-
oping exactly how each point of the architecture was to be implemented. Some parts were
relatively straightforward, but others presented very tricky problems. These problems are
the focus of the rest of this chapter.

3.3 Difficult Design Problems

In moving from a basic picture of the architecture to a fully operable implementation, several
interesting and difficult problems in parallelization, communication and synchronization
were encountered, and the design process in tackling these problems is described here. The
first major challenge was developing a method to distribute incoming primitives evenly
across the top four tiles, while meeting the goals of a black-box external interface and not
using a specialized control tile. Next, the problem of sequential correctness in the face of
transparent primitives or primitives that do not fully use the z-buffer, in light of the fact
that primitives can go out-of-order in parallel pipelines, is described. Finally, the issue of
synchronizing the bottom four tiles, which perform the compositing of the fragments to the
framebuffer, so that only one can access the z-buffer and frame buffer at a time, is tackled.
For a description of the final design of the rendering architecture, see Chapter 4.

2Whether these initial assumptions were accurate or reasonable can be determined by looking at the
actual performance data in Section 5.3.2.

39

Render
Host F-2

A

Render
State

Texture
Memory

Depth
Buffer

Frame
Buffer

Figure 3-3: Basic Pipeline Layout on Raw

The data comes in to the Raw processor from an external Render Host interface on the

top left. It is then split among the four parallel pipelines, and send down through the four

pipeline stages as it is processed. Finally, it is recombined in the last stage where reads to,

and writes from, the framebuffer are serialized. Each pipeline stage also has shared RAM

memory, which is shown to the right of the Raw processor.

40

p.- -~

P,

I F I F I F

I F I F

P, I

3.3.1 Distributing Primitives Across the Pipelines

Basically, the processor takes rendering commands from an external source, and somehow
splits these commands into blocks to be (more or less) evenly distributed across the parallel
pipelines. It was a goal to be able to do this with reasonable load-balancing, without the
external source needing any special knowledge about the internal setup of the processor,
and without needing to dedicate a tile to command interpretation and distribution (or at
best hamper a tile's performance by making it perform both the command distribution and
calculations for the first pipeline). To lay the groundwork for determining the best way to
communicate with the external device, and internally among the tiles, all the major modes
of communication on the Raw chip are summarized in the next section.

3.3.1.1 Communication in the Raw Architecture

On the Raw processor, there are several methods available to communicate between tiles and
with external (I/O) devices [21]. There are two dynamic networks, which accept messages
with a header that specifies the destination tile or I/O port for the message and its length,
and then automatically route these messages to their appropriate destination. One dynamic
network - the Memory Dynamic Network or MDN - is intended for use only with memory
system messages and other low-level communication that is guaranteed not to deadlock.
The other - the General Dynamic Network or GDN - is for use by general user program
communication3 . However, both the MDN and GDN are functionally identical in terms of
the network behavior and hardware (they are implemented as two-dimensional wormhole-
routed [17] bidirectional mesh networks between the tiles with no end-around connections).

There are also two static networks that connect all the tiles on the Raw chip in a two-
dimensional mesh without end-around connections. However, there is no message routing
on the static network, and instead individual words are routed according to a statically
defined program on each tile. The static network program can be different for each tile, and
is usually defined by the programmer of the application that is doing the communication.
The program is run on a "static switch processor" on each tile, and can simultaneously route
any number of non-conflicting combinations between the network directions North, East,
South, and West, a small static switch register file, the other static network, and the inputs
and outputs of the main processor on the tile (though there are some other restrictions, such
as the fact that the register file is one-ported, meaning only one register can be written to and
one read from at a time, though that read value can go to many destinations). The switch
processor can also perform basic decision making (using comparisons to zero), decrement
registers, and perform branches, subroutines calls and loops. The static network is very
versatile if communication patterns are known beforehand, and has been used successfully
as a network for Instruction Level Parallelism [22] and Stream Processing [8].

Finally, tiles can communicate through shared memory. A tile is allocated a private
slice of all the memory available (in RAM modules external to the chip), but can access
the entire range of memory if needed. There is a data cache on each tile, and in case of a
cache miss a MDN message is sent to the appropriate RAM module to retrieve the data.
The caches are write-back, and there is no hardware cache coherence mechanism, though
software can specifically flush cache values out to memory or invalidate cache locations to

3 1f communication on the GDN deadlocks, then a complex deadlock recovery scheme is implemented
using the MDN to communicate. This is why the MDN must be guaranteed not to deadlock. However, the
specific details of these algorithms is beyond the scope of this paper. For more info, see [20].

41

load the newest value, allowing some limited use of shared memory communication.

3.3.1.2 Choosing a Network for Commands

One major drawback, for this application, of using the dynamic network to inject commands
into the processor from the external source is the fact that the dynamic network requires
the sender to know exactly which tile to send the message to. If the external source sent
the messages directly to the tiles that were to process them, then the external source would
have to know the internal configuration of the rendering processor, and also would be in
control of the load balancing algorithm for the whole architecture! This did not seem to be
a viable situation, given the goals above.

This could be ameliorated by having the external source always send commands to a
certain tile - say (0,0), the upper-left corner tile - and have that tile then redistribute
the commands to the other pipelines according to some load-balancing algorithm. However,
this solution does not go along with the goal of having every tile being involved in processing
the data, with no special control tiles.

Therefore, it was decided to use the static network, at least for the external interface.
With the static network, external I/O devices can simply "push" bytes into the Raw pro-
cessor, without caring about where they end up being routed. The static network would
also be used for inter-tile communication in the top stage if possible.

However, the static network has its own drawback - it is designed for times when the
routing patterns can be determined at compile time, or by very simple decision making at
runtime. Dynamic events are difficult to handle with static routing; dynamic events such
as when commands come in from the external source, and when the tiles are finished with
their geometry processing and can accept new data cannot be predicted easily by static
network code.

Additionally, if the static switch is blocked waiting for a value to appear at the source
of a specified route, then the entire switch blocks and no other simultaneous routes proceed
until the value arrives. This method of flow control guarantees correct route ordering to the
programmer, but can also limit the use of the switch in dynamic situations. For example
if the switch is waiting for a command to input from the west, it cannot also be routing
the output of the main tile processor south to the next pipeline stage. Any waiting means
that all the routes for that switch processor will be suspended (this also applies to blocking
because an outgoing buffer is full).

Obviously, these limitations of the switch processor must be overcome, or worked around,
in order to program the static network to work with the dynamic events of the first stage
of a parallel rendering architecture.

3.3.1.3 Techniques for Using the Static Network Dynamically

If the programmer wants the static network to be able to respond to dynamic events in some
way, there are basically two choices available. The first is to use the available decision mak-
ing and looping commands, which can decrement registers and make conditional branches
based on comparisons of registers to zero (including greater than or less than comparisons).
For example, the end of a series of commands intended for one processor could be marked
with a zero, or a certain number of zeros in a row. The switch could then start passing
commands on to the next processor. Alternatively, a count of the number of words in this

42

command group could be sent to the switch, and it could count down from that number

until zero, and then take some action.

The other technique is to have the main tile processor forcefully change the switch's

current program counter, and cause it to execute some other program. One has to be

careful, though, to make sure there are no routes in-flight at this time, or to make sure that

any current routes are maintained in the switch-over. This can be done to respond to a

dynamic event known to the tile processor - for example, that it has done processing its

current set and can take more commands now.

A more difficult problem is using the static network to perform two independent com-

munications, such as communicating incoming data across the top row of tiles, and sending

transformed primitives down each pipeline. The problem, as mentioned in the previous

section, is that while the switch is waiting on one stream of data, it cannot simultaneously

be sending another stream - all waits have to be synchronized. So if no commands are

coming in from the external host, the switch physically cannot route data coming out of the

processor. One possible solution to this that was considered was to have a constant stream

of zeros in place of any dynamic stream, so that the switch never had to block on anything.

Data could be marked by a nonzero count value, and then that many words could be sent.

Finally, some esoteric solutions are possible. For example, the switch processor supports

a jump-to-register command to support returning from procedure calls. However, it could

also be used to jump to an address sent to the tile over the static network, allowing the

switch in effect to make more complex decisions on incoming data than simply comparison

to zero. However, using this technique can be tricky and should not be necessary.

3.3.1.4 Developing the Distribution Algorithm on the Switch

It was decided at the outset that data should be distributed by primitive, where each

subsequent primitive would be processed by a different tile in the top row. Therefore,
the switch would have to recognize end-primitive markers in the incoming stream to know

when to start sending data to a different processor. Using a zero word or series of a certain

number of zero words to represent the end of a primitive was considered, but this leads

to the problem of dealing with zeros or series of zeros that normally appear in the data

stream (for example, in sending a transformation matrix in to the processor). They could

be somehow escaped, but a simpler method was desired. Another idea was to have the

switch stop after every word or every n words and wait for the tile processor to tell it

if the primitive has ended yet or not (the tile processor can do more complex decision

making on the incoming data, and send a 1 or 0 to the switch). However, this seemed

inefficient, and other tiles also may need to know when the primitive ends to rearrange

their routing patterns, requiring all the switches to periodically stop and wait for messages

from the switch for the currently active tile, resulting in even more inefficiency and complex

communication. Finally, a solution was decided upon which seemed to work well: first, the

command would send a byte giving a count of the number of words left to route, and the

switch would subsequently route that many words. After the block of data had been sent,
the next word would again be a count of the number of words to follow. Each block could

be an individual command, for example, or perhaps several commands grouped together.

The switch would continue reading the count, and routing the words, until it came across

a count of zero. This would signify the end of a primitive, and the switch (and all other

switches which were routing that stream) could act accordantly.

The next problem was to decide exactly how to distribute the primitives to different

43

tiles. The easiest method would be a purely round-robin approach, where each primitive
goes to the next tile in the row, and then wraps around at the end back to the first tile. To
implement this, each switch processor would have three states: active, where it is currently
routing commands to its own tile processor; passing, where it is currently passing commands
to its east to send them to the active tile down the way; and idle, where the active tile is
to its west and the switch is just waiting for a message to arrive so it can become the
next active tile. A tile in the active state would route commands to its processor until it
encountered an end-primitive marker as described above. Then it would switch to passing
mode (or directly to idle if it is the last processor in the row), and begin to count the
number of end-primitives that go by until the active processor wraps around back to the
beginning, and it no longer has to pass commands and can switch to idle mode. Note that
the first (westernmost) processor in the row would switch directly from passing to active
mode again on wrap-around.

In the single processor version (Section 2.2), each command that changes the renderstate
has an immediate effect on subsequent vertices and primitives. This means that the updated
renderstate must somehow be communicated to the other tiles that receive commands after
the active tile. One way to do this is to use a shared memory location in the off-chip RAM,
and have each tile invalidate its renderstate before starting the computation, and flush any
changes from its cache before the next tile starts up (this can be made more efficient by
keeping a "changed" variable, which each processor will look at before deciding whether to
invalidate all of its cached renderstate). However, a tile must make sure that it has finished
flushing its updated renderstate before it allows a new tile to begin processing. This can
be accomplished by having the switch, after reaching and end prim, wait for the processor
to send it a word before passing the commands to the next tile in the chain. Note that
this ok-to-go word must be passed along to other tiles as well, so they can wait before
rearranging their routing patterns to the new tile.

What if the next active processor is not yet ready to receive another primitive? In this
case, the switch for that processor would block trying to send data to it, causing it to stop
reading the stream coming from the west. This stream would back up, filling up buffers
and causing switch processors that were sending the stream to also block. Eventually, the
stopped stream would back up until it reached the I/O interface where the external source
of commands was connected. The static network interface has flow control signals that
would tell the external source that it has to block and wait for there to be room for new
commands to be sent, and the external source would have to follow these flow control rules.
Therefore, the static network's own flow control capability should handle limiting the rate
of incoming commands.

Now when a processor has finished transforming its primitive, it will want to send the
result south to the next stage in the pipeline. Originally, the plan was to use the static
network for this as well. However, if the static switch is currently blocking on the command
stream, then it will not be able to route data coming out of the processor (note that having
two static networks does not help this situation, as they are both routed by the same
switch and if one is blocking, the other blocks as well). The solution described in the
previous section of having a constant stream of zeros moving through the static network
was considered, but one problem with that method was how to generate the stream of zeros
during idle times between messages. It would be easy enough to modify the external source
glue logic to send zeros into the Raw chip when no commands were available, but zeros
would also have to be sent south from each processor along the paths to the next pipeline
stages as well, and the processor is busy doing transformations, and does not have time to

44

send constant zeros to the switch! Additionally, this solution only works for the case where

the switch would be blocking because there is no data coming in - the situation where the

switch blocks because the stream is backed up is not addressed at all. Therefore, this idea

was discarded.
Eventually it was decided that the transformed primitives sent from the first stage to

the next would be send as messages over the GDN. This does not result in too much of a loss

of efficiency, and allows the static network program to concentrate wholly on distributing

the primitives among the top four tiles.

3.3.1.5 Improving on Round-Robin Distribution

The above scheme would work as a final solution. However, pure round-robin distribution as

described above has one drawback: it will wait for the next tile in line to accept the current

primitive, even if there are other tiles ready for a new primitive that are now waiting idle.

This can result in poor utilization of the parallel pipelines and uneven load balancing. An

ideal solution would send the commands to the next available tile, not simply the next tile

in the round robin sequence.
In order to do this, the static network programs would have to somehow know when each

tile has finished its computation and is ready to accept new commands. This is a purely

dynamic event, and can happen at any time after the tile finishes getting its primitive.

One way to deal with this, as described earlier, would be to have the processor actually

change the program counter of the switch processor when the event occurs. If the switch

processor is set up like a state machine, then the main processor can change its program

counter to a new state based on its current state. One thing to be careful about using this

method is to make sure that any routes in flight are still routed after the switch - this can

be accomplished by making sure that every program line in every state in the switch code

that can be forcefully interrupted by the processor like this has an equivalent line in the

resulting state, with the same routes to perform. The main processor must make sure to

change the switch to the correct state.

The switch code will now have at least five states: Active, as before, passing-busy where

it is passing commands to the east and its own processor is still busy, passing-ready where it

is passing commands to the east and its own processor is ready for new commands, idle-busy

where it is waiting for input from the west and its processor is busy, and idle-ready where it

is waiting for input from the west and its processor is ready to accept new commands. When

the switch leaves the active state, it immediately goes to a -busy state. When the processor

is finished, it forcefully changes the switch state from its -busy state to the corresponding

-ready state. A switch will only enter the active state and start routing commands to the

processor if it is in a -ready state.

Realizing a full-utilization round robin scheme actually requires quite a bit more states

and communication between the switch processors, the nitty gritty details of which are

described in Section 4.2.3.1. But generally, when one processor finishes, and the static

network starts redirecting data to the next processor in the chain; if that processor is not

ready for data the switches must pass it and redirect to the processor after that. In fact,

if all the processors are busy, the static network would spin around the chain of processors

waiting for one to become ready. During this time, the commands coming from the external

source must be blocked so they do not become lost in the static network. Each switch must

communicate with all the others about whether its processor is going to take its turn or

pass it on (for example, by sending a 1 or 0 value west), so that the other switches can

45

change their routing state accordantly. Once all the details were worked out, however, the
final solution worked just as intended, and no processor was left idle for more than a few
cycles as its turn came around.

3.3.2 Maintaining Sequential Correctness

One goal of this project is that the parallelized version of the pipeline should produce the
exact same results as the sequential single-tile version described in Section 2.2. And as men-
tioned in Section 3.2.1, one issue that affects parallel pipelines is dealing with dependencies
between primitives processed in parallel. Basically, a dependency exists between primitives
if they overlap on screen (or more specifically, dependencies exist between the overlapping
fragments of those primitives). A depth buffer can solve many of these dependencies, by
making sure only the frontmost of the fragments is rendered, no matter in which order they
are actually processed in the pipelines. However, if a primitive does not use the z-buffer
(which can be specified by the programmer), or if a primitive is transparent (in which case
all the geometry behind it must be rendered before it is), then the z-buffer alone will not
ensure a sequentially correct result; some other method must be used.

Fine grained interlocking between dependent fragments would conceivably yield the best
results, but is difficult to implement without dedicated hardware, as it would require a large
amount of inter-tile communication on an architecture like Raw. Therefore, a more coarse
grained solution was devised: make sure that primitives that are either transparent or do
not use the z-buffer, known from here on as "in-order" primitives, must be rendered in
the same order with respect to other primitives as they arrived in the graphics processor.
Other primitives, known from here on as "out-of-order" primitives, can execute in any order
relative to each other, but must still execute in the same order with respect to any in-order
primitives that may be rendering alongside them.

This scheme is rather conservative - not all in-order primitives would depend on one
another and on out-of-order primitives, only those that overlapped each other. Also, some-
times out-of-order and in-order primitives that overlap can still be rendered in any order,
such as when a transparent primitive is behind an opaque primitive. But for simplicity, this
project implemented this strict ordering policy whenever in-order primitives are involved.
Suggestions for improvements over this policy appear in Section 6.1.2.

The next step, after determining the desired ordered rendering policy, is determining
how to implemented. A simple starting point is to give every in-order primitive a sequence
number, and have another sequence number stored in the last stage of the pipeline. An
in-order primitive can only go forward to the framebuffer when its sequence number is the
same as the current sequence number in the last stage, and will increment the last stage's
sequence number when it is completed. This solves the issue of in-order primitives being
ordered relative to each other.

The problem now is getting out-of-order primitives to be rendered in the correct relation
to the in-order primitives, but still allow them to render in any order amongst themselves.
First, out-of-order primitives must not be allowed to render in the middle of a group of
in-order primitives. This can be accomplished by resetting the sequence number to zero
after the group of in-orders has completed, and only allowing out-of-orders to proceed in
the last stage if the sequence number is zero. However, two problems can still occur in
this situation: out-of-order primitives that should have gone before the group of in-order
primitives could be delayed in the pipeline and end up rendering after the in-orders, and
out of order primitives that should go after the in-orders could end up rendering before

46

i 2 3

I I I

OIV

3 ' '

4.'

a)

X X

b)

Figure 3-4: Problems with Simple Sequencing

This figure illustrates the simple sequencing algorithm described in the text where

in-order primitives receive sequence numbers, and out-of-order primitives receive zeros.

The large "X" in each figures represents some sort of blocking or long delay in the

pipeline. In Figure 3-4a, the out-of-order primitive, represented by "0", should go before

the group of in-order primitives, but ends up being blocked and going after them. In

Figure 3-4b, the out-of-order primitive should go after the group of in-order primitives,
but the first in-order primitive is blocked, and the other two are waiting for the sequence

number to increment, so the out-of-order primitive ends up going before them.

them (for example, if the in-orders are delayed somehow). See Figure 3-4 for illustrations

of some of these situations.

A solution was developed for the latter problem, but it assumed that the incoming

primitives were distributed in a purely round-robin fashion, and could not "skip" over a

processor if it was busy. The solution involved sequencing a certain number of out-of-order

primitives after the end of an in-order primitive group, to make sure that these out-of-

orders will not render before the in-order group goes. The number that needed to be

sequenced was no greater than the number of pipeline stages minus one, as the round-robin

distribution guaranteed that only this many primitives could ever skip ahead of a primitive

that arrived before them. Using the improved round-robin algorithm, however, the problem

becomes much more difficult, as an unbounded number of primitives could skip ahead of

any particular primitive (this is also illustrated by Figure 3-4; if the blockages never clear,

innumerable other primitives could pass by the ones stuck in the blocked pipelines). No

good solution was discovered for the former problem, either, since there was no way to tell

47

1 2 3Q

1

Primitive Type: 0 0 0 1 1 1 0 0 0 0 I 1 0 1 0 1 0 0 0 1
Sequence Number: 1 1 1 4 5 6 7 77 7 11 12 13 14 15 16 17 17 17 20
Completed Number: 3 1 2 4 5 6 8 9 7 10 11 12 13 14 15 16 17 19 18 20

Table 3.1: Sequence Numbers Assigned to a Stream of Primitives
This table demonstrates how sequence number assignment works in the sequential

consistency algorithm used in this project. A primitive marked I is considered in-order,
and one marked 0 is considered out-of-order. Out-of-order primitives get the sequence
number of the last in-order primitive plus one, while in-order primitives get a number

corresponding to their position in the total stream of primitives. "Completed Number"
shows a possible final ordering of this stream of primitives, in terms of the order that they

complete in (as out-of-order primitives can be rendering simultaneously).

an in-order primitive to wait for out-of-order primitives before it that had not gone yet.
To solve all these problems, it was decided to simply give every primitive entering the

processor a sequence number. To allow out-of-order primitives to render out-of-order, they
were given the sequence number of the last in-order primitive to go plus one, and are allowed
to go whenever the sequence number in the last stage is equal to or greater than their own
sequence number. This makes sure that out-of-order primitives will not skip ahead of groups
of in-order primitives. In-order primitives are given a sequence number that has a value as if
every out-of-order primitive was given its own sequence number, and out-of-order primitives
increment the last-stage sequence number whenever they complete their rendering. In this
way, in-order-primitives will wait for all previous out-of-order primitives to complete, in
whichever order they choose, before being able to proceed. This algorithm achieves the
ordering goal stated at the beginning of this section, and is implemented as described in
Section 4.2.3.2. Table 3.1 demonstrates the sequence numbers that a sample stream of
in-order and out-of-order primitives might generate.

3.3.2.1 Dealing With Sequence Number Rollover

This algorithm works with no problems but assumes that the sequence number is un-
bounded. In a real implementation, the sequence number would be represented in a format
with a finite upper bound. For example, if the sequence number is represented as a 32
bit unsigned integer, it will "roll over" if it reaches 232 - 1, or 4,294,967,295. Rolling over
means that incrementing this value will result in 0, instead of the value plus one (basically,
the addition is modulo 232). The roll over is actually not a problem for in-order primitives,
as they simply check to see if their number has arrived yet, and will handle the rollover
case just as well as a normal increment. The problem is with out-of-order primitives, which
will go as long as the sequence number in the last stage is equal to or greater than their
own sequence number. When the last-stage sequence number wraps around to zero, sud-
denly primitives which believe they should be able will no longer do so, since their sequence
number is greater than zero. As a result, the whole pipeline could lock up.

It may seem like 4 billion is a large enough number to not have to worry about the roll-
over case, but consider a high performance 3D application with 100,000 visible primitives
running at 60 frames per second4 . Assuming that the sequence numbers are not reset
between frames (they are not, in the final version of this architecture - this simplifies the

4 These numbers are just an example. For actual performance data on the 3D processor designed in this
thesis, see Section 5.3.2.

48

design of the last stage). Every second, the sequence number would increase by 6,000,000.

It would take merely 715.8 seconds, or 11.9 minutes, for the sequence number to reach 232

and roll over - certainly a short enough time that it cannot be ignored!

One early attempt at a solution to the roll over problem was, instead of giving the

out-of-order primitives the sequence number of the last in-order primitive, to make sure

that the out-of-order primitives' sequence numbers were never more than a fixed amount

below the current sequence number (defined as the number that would be given to an

in-order primitive at this point). This number would be far enough behind the current

sequence number to guarantee that the out-of-order primitive receiving it would not end

up waiting for its turn when it actually should have been able to go. This would occur if

the out-of-order primitive got to the last stage before the last stage's sequence number had

incremented to the level of the primitive, and can be guaranteed not to happen by realizing

that when a sequence number is given to an in-order primitive, the sequence number in the

last stage at that exact point in time cannot be more than some number t greater than the

number given to the in-order primitive, where t is the number of pipeline stages multiplied

by the number of parallel pipelines. That is, in the worst case, if every tile is processing

a different primitive, then the current first stage in-order sequence number minus the last

stage sequence number at the same time cannot be greater than the number of tiles in the

system.

If an out-of-order primitive, therefore, is given a sequence number that is the in-order

number minus the number of tiles in the system, then it can never get to the last stage

before its sequence number has come up if it should be able to go. If it is not supposed to be

rendered yet - for example, if several in-order primitives have gone before it but got held

up, and it has reached the last stage before all of them - then the last stage's sequence

number can never be more than t less than the out-of-order primitive's sequence number5 .

However, rollover will cause the last stage's number to be less than this value, as it will be

0, but any out-of-order primitives in the last stage at that point will have sequence numbers

up near the top of the range (due to the algorithm described in the previous paragraph).

Therefore, a primitive can detect a roll-over and continue to operate normally.

Anyway, this method works for the case of a simple rollover where the last-stage sequence

number suddenly becomes zero. However, there is also the case of "double-rollover" where

the last stage sequence number increases until it re-enters the range where the out-of-order

primitives think it is not their turn yet (t below the primitives' sequence numbers) and no

longer realize that rollover has occurred. A good amount of time was spent trying to solve

this double-rollover problem, but the schemes got more and more complex and exceptions

and cases where they did not work correctly were numerous.

In the end, a much simpler solution was found to handle the roll-over case: When the

sequence number that would be given to an in-order primitive rolls back over to zero in

the first stage, freeze the first stage and let the entire pipeline flush out before sending

any primitives with the rolled over sequence number down the pipe (See Section 3.3.4.2

for more info on flushing the pipeline). This guarantees sequential consistency at the cost

of a little performance every 4 billion triangles. The performance cost is so low given the

number of primitives between rollovers that the solution is acceptable for now, though not

theoretically ideal.

5 Actually, t, which is the number of tiles in the system, is a conservative number. The optimal number
could be even smaller than it, but it is not important to have the closest possible bound in this algorithm.
A conservative bound works fine.

49

3.3.3 Synchronization in the Compositing Stage

In the final stage of the pipeline, fragments from several different primitives must be com-
bined correctly into the framebuffer to generate the final image, with possibly several frag-
ments ready to be composed at any particular time. To update a typical fragment the
z-buffer must be read, then written, then the framebuffer must be written. In the case of a
transparent primitive, the framebuffer must be read as well. The final stage of each pipeline
must be synchronized in such a way that the actions of reading the z-buffer, writing the
z-buffer, and reading/writing the depth buffer occur as one atomic action. That is, no two
fragments that have any dependency between themselves should be able to overlap accesses
to the z-buffer or framebuffer, or else the final image may not be the correct result.

For example, consider two fragments on top of each other, near and far. The correct
final result is that near's color ends up in the frame buffer, and its depth ends up in the
z-buffer. However, consider the case where far reads the z-buffer first and sees that it can be
drawn, but there is no lock to prevent another primitive from accessing the z-buffer before
far is done with it, and near also reads the z-buffer and sees that it can be drawn. Assume
that near is faster, and is able to update the z-buffer and draw to the framebuffer during
this time as well. Then far continues, writes the z-buffer and updates the framebuffer.
Now far's values are stored in the framebuffer and depth buffer, exactly the opposite of the
correct result!

If, however, the frame and depth buffers were correctly locked, z would have gotten
access to the z-buffer, seen that it can be drawn, updated the z-buffer and updated the
depth buffer. Near would not be able to go until far had completed its actions. When near
went, it would update the z-buffer and framebuffer with the correct values. Several other
situations can be easily described where overlapping accesses to the buffers can result in
the wrong final image.

This is basically describing the common mutual exclusion problem in computer science
[10]: several concurrent processes (the tiles in the last stage of the pipelines) want to access
shared resources (the depth and frame buffers), but only one can access them at a time. We
need alocking mechanism to ensure that while one can access the resources, the others are
forced to wait until the one with the access finishes what it is doing. Technically, this lock
only needs to occur between dependent primitives, but for simplicity this design locks any
attempts to access the depth or frame buffers (this of course results in less performance than
may be possible otherwise. See Section 6.1.4 for suggestions on improving this performance).

First, several shared-memory algorithms for mutual exclusion were examined, such as
the Bakery algorithm [9] and Peterson's algorithm for mutual exclusion [15]. However, both
of these algorithms require a cache coherence mechanism to operate properly.

3.3.3.1 Attempts at Cache Coherence

The Raw processor affords no hardware cache coherence mechanism for shared memory,
though it provides software the ability to flush and invalidate cache entries. One simple
way to ensure cache coherence is to simply not cache any shared variables - follow every
write to the variable by a flush, and precede every read by an invalidate. This, however,
would generate a large amount of memory network traffic, especially with several processors
simultaneously spinning on a shared variable, waiting for it to change.

An attempt was made at a simpler invalidate-based cache coherence protocol. Invalidate
protocols work by caching shared data, and when a processor writes to the shared location,

50

sending a message that invalidates any other cached copies of the shared data. The raw

tiles support what is called an "external interrupt" - a specially formed header with no

payload sent on the MDN, which causes an interrupt trap in the processor. It is generally

intended for external devices to send to raw tiles (hence the name), but it can also be sent

from one tile to another. The idea was to use these interrupts as the invalidate messages,
and have the interrupt service routine perform the invalidation of all the shared memory

locations.
From the programmer's perspective, this should be transparent, as the interrupt will

invalidate the cache, and then the next read of the location will read in the new value. On

the tile that is writing to the shared memory, the algorithm is obviously not transparent,

as it will have to explicitly flush the value and then send interrupts to the other tiles.

However, this algorithm did not initially work. It turns out that the reason it did not

work is that the writing tile did not wait for acknowledgments from all the other tiles

after sending invalidate messages before continuing. But to send back acknowledgments,
the other tiles must know which tile is performing the interrupt - information that is not

readable by software from the interrupt message alone. This information had to be sent

via some other route, though sending standard messages between tiles in the MDN can

mess up the memory management algorithms of the Raw, and using the GDN to send these

messages seemed to have some problems as well (such as the lack of ordering between MDN

and GDN messages, and the risk of GDN deadlock considering that the GDN was also being

used for other things, such as communication with the framebuffer).

Finally, even if it could have been made to work, these shared memory mutual exclusion

algorithms required a large number of cycles and overhead to access a lock once it was

unlocked, but it turns out that the performance of the compositing stage is critical (See

Section 5.3.2). Obviously, a simpler method for ensuring mutual exclusion was required.

3.3.3.2 A Simpler Approach

Instead of using a shared-memory algorithm for mutual exclusion, a simple message-passing

algorithm was attempted. In this algorithm, a token is sent in round-robin fashion between

the processors in the last stage. If a processor needs to access the framebuffer or depth

buffer, it has to wait for the token to arrive to do so. Once it has the token, then it will not

pass it on until it is finished with the shared resource, and another processor can access it.

If any processor does not need to access the shared resource, then it can simply pass the

token on to the next.

Using the GDN to send the token around, along with the ability for incoming GDN
messages to trigger an interrupt, turns out to be a pretty efficient method for mutual

exclusion on the Raw processor. The value of the token could also be set to the final stage's

current sequence number (See Section 3.3.2), removing one more shared memory lookup.

Finally, a tile can buffer and partially process fragments while waiting for the token, and

then quickly read and update the depth and frame buffers when it finally gets the token,

for better processor utilization and optimized pixel writing (the original version of this

algorithm performed the lock for one fragment at a time as they came out of the previous

pipeline stage, causing most of the tiles in previous stages to be waiting for the last stage

tile to get its turn, only to have one fragment drawn and then have to wait again. Other

techniques were experimented with, such as drawing more than one fragment per turn if

they were available, but this buffering technique was the best performing).

As well as this method works, however, it still does not bring about an optimal pixel

51

rate for the graphics processor, as many cycles are still spent between pixel writes to the
framebuffer, performing z-buffer access and looping and control code. For some suggestions
on improving the pixel rate further, see Section 6.1.4.

3.3.4 Other Difficult Issues

This section describes two miscellaneous design problems that did not fit into the three
major categories above, but are interesting nonetheless.

3.3.4.1 Asynchronously Reseting the Processor

One design idea near the beginning of this project was to have an asynchronous software
reset capability - where the controller could send a signal at any point in the operation of
the processor to reset its state. This would be useful, for example, for an operating system
if a rendering process is killed, or for when the computer itself is soft-reset, or for recovery
if the processor locks up (though it would be nice if the processor never locked up on its
own!) The original plan was to have the external interface send an interrupt to tile (0,0),
and then have that tile propagate the interrupt to all other tiles in the processor. All the
tiles would then work together to reset the processor. The hard part would be to remove
all the in-flight messages from the static and dynamic networks before performing the reset.
It was determined that this feature was not incredibly important for this thesis and would
require too much time to implement, and so it was skipped. It would be a useful feature in
a finished product, however.

3.3.4.2 Switching Modes and Flushing the Pipeline

It was decided later on in the design that the processor would operate in two modes: com-
mand mode and scenestream (see more about these two modes in Chapter 4). Scenestream
mode is when primitives are being pushed through the processor to produce a final image,
and is the main focus of the design decisions in this chapter. Command mode is for more
complex interactions that did not map well to scenestream's architecture, such as texture
management and direct framebuffer access. Before switching from scenestream to command
mode, the graphics pipeline had to be flushed of all in-flight primitives, to make sure that all
the commands before the invocation of command mode had been fully processed. Another
time when flushing the pipeline is necessary is when the sequence numbers for primitive
ordering roll over, as described in Section 3.3.2.

A pipeline flush is basically a barrier-type synchronization which makes sure that all
the pipelines have finished their current computations before continuing any processing.
A simple way to implement such a flush is to send marker primitives down each pipeline
which cause messages to be sent back up when the markers hit the bottom, and the bottom
tiles finish all their work. When all the marker responses are received, then it is known
that the pipeline has been flushed. One way to get all the markers to be sent is to send
GDN messages to all the tiles in the top row, letting them know that it is time to flush
the pipeline. A GDN message can trigger an interrupt, so a tile can service it even while
waiting on something else (for example, waiting for new commands to come in from the
static network). The flushing tile can refuse to send the message to the static network that
allows it to start sending commands to the next tile in the chain, which is usually used
to make sure that shared memory is flushed before another tile tries to read it, to make
sure that computation is halted until the flush is completed. When the markers reach the

52

bottom, each tile in the last stage can send a GDN message back up to the originating tile
(whose address is stored in the marker), who will then either continue the computation or

send another message to the top row tiles informing them that scenestream has ended and
to start command mode.

3.4 Summary

This chapter presented the initial goals for the design of the processor architecture presented
in this paper, as well as a rationale for the design decisions which provided a starting point
for the rest of the design. Then, several difficult problems encountered in this project

and the processes by which they were solved were presented. Chapter 4 will describe the

final architecture produced by this design process, and Chapter 5 presents the performance
results of the implementation of this architecture. Chapter 6 suggests several improvements

to be made to the architecture, based on what was learned in implementing this project.

53

54

Chapter 4

Implementation of the 3D
Processor

This chapter describes the actual implementation of the parallel rendering pipeline that
resulted from the design process described in Chapter 3. The rendering algorithms are the
same as described in Section 2.2, so this chapter will focus specifically on architectural and
parallelization issues instead of the 3D algorithms. For reference the source code for the
final version (as of the writing of this thesis) of the processor is available in Appendix C.

4.1 Overview of Architectural Organization

As described in Section 3.2.2, a 16-tile Raw processor is divided into four pipeline stages
with four-way parallelism each. Rendering commands arrive from the west side of the chip

into the upper left tile1 , and are distributed in modified round-robin fashion among the top
four tiles on the chip, so that the incoming command stream will not block as long as at least
one tile is ready to receive the commands. Each parallel pipeline then acts independently
of the others, with data passing vertically down from one tile to the next, until the fourth
and last stage in the chip, in which the tiles must take turns updating the depth and frame
buffers with the correct image data, taking care not to violate sequential consistency where
necessary (Section 3.3.2).

The rendering steps in a typical graphics pipeline were distributed among the four avail-
able stages, in a fashion that a priori was hoped to produce reasonable load balancing. The
first stage handled command interpretation, geometry transformation and lighting, visibil-
ity culling and perspective projection. It would send transformed primitives (in normalized
device coordinates, and with perspective-divided parameters for each vertex) to the second
stage. Stage 2 would perform rasterization and parameter interpolation across the primi-
tive, resulting in a stream of fragments with interpolated values for the parameters being
sent to the next stage. Stage 3 would blend together the different parameters to create the
final color value for each fragment depending on the current primitive's blending modes -
this also includes doing texture lookups, and lighting modulation. The textured fragments
would be then sent to Stage 4, where their depths would be compared with the current

'These commands would supposedly come from some glue logic, which then connected to an I/O interface
of a controlling computer. The glue logic would implement the flow control algorithms described in later
sections, as well as the static network interface itself, but would otherwise pass the command data through
unaltered.

55

values in the z-buffer, and where their colors would possibly be sent out to the frame buffer,
which is attached to the south side of the bottom left tile.

This implementation uses a variety of different methods to communicate between tiles.
Command data being sent from the external source arrives on the static network (See
Section 3.2.2 for a discussion of the available communication networks on Raw), and is
distributed to the next available processor also via the static network. The first Stage of
processors holds the current render state (which can be altered by commands) in a memory
bank connected to the easternmost tile in the row2. The processors will invalidate their
cached copies of render state data when a change has occurred, and will flush out their
caches when they cause a change themselves. Finally, Stage 1 sends its results to Stage
2 via a series of messages over the General Dynamic Network (the static switch program
that distributes the incoming commands is too busy and complex to support yet another
stream, so the static network is bypassed altogether).

Stage 2 receives the commands from the north, rasterizes, and sends its commands out
via the static network on to Stage 3. Stage 2 does not need to store any state in memory.
Stage 3, however, stores the texture maps (if used) in the RAM block to the east, as well
as any indexing information for the texture maps. When finished, Stage 3 streams textured
primitives down to the final stage over the static network.

Only one tile at a time can access the z-buffer and framebuffer in Stage 4, which preserves
sequential consistency for most primitives but is a pretty conservative approach. To ensure
the mutual exclusion between tiles, a "token" is passed among the tiles in a round-robin
fashion using the General Dynamic Network (GDN). Only when a tile is in possession of
this token can it access the depth and frame buffers, and when it does not need it anymore,
it passes it to the next tile. In order to accommodate the fact that the tiles will often be
blocked waiting for data to arrive over the static network, the incoming GDN messages can
produce an interrupt, and much of the token-passing functionality can be handled in the
interrupt service routine. The z-buffer is stored in a RAM chip off the east side of the Raw,
and is accessed the same way as the other external memory. The framebuffer is accessed by
sending GDN messages to the framebuffer controller, which is south of the bottom leftmost
tile in the Raw chip. The framebuffer controller may also send GDN messages back to the
tiles in the case of reads from the framebuffer for blending.

The graphics pipeline normally operates in what is called "scenestream" mode while
rendering a scene. It is in this mode that primitives and fragments are being streamed
through the processor and rendered to the display. However, there is another mode known
as "command" mode, in which only one tile is active (the others are idling waiting for
scenestream to begin again), and that tile handles all commands coming in from the external
interface. Command mode is useful for commands such as texture memory management,
direct framebuffer access, and other commands that do not map well to the communication
structure of scenestreaming mode.

Figure 4-1 illustrates the basic layout of this implementation on Raw. The remainder
of this chapter will describe the implementation of each part of the 3D processor in much
more detail.

2 Having memory banks along the east edge of the processor is actually the default configuration to use
in the simulation environment for Raw. It turns out that it is also convenient for this particular design.

56

Primitive Distribution

Render
Host

Transformed
Primitives

Untextured
Fragments

Textured
Fragments

Pixel
Reads/Writes

I

I

I I

I
A

L
I ~\ TI

Stage 1: Geometry

S2 Rder
zStZ5 ate)

Stage 2: Rasterize

Stage 3: Texture

Texture
Memory

Stage 4: Fragment

Depth
Buffer

Synchronization Token

Frame
Buffer

Static
Network

Dynamic Shared
Network Memory

Figure 4-1: Overview of Implementation

This figure presents an overview of the implementation on Raw, the name of each stage in

the pipeline, what data is communicated between tiles, and the different means of

communication used.

57

, i , . .

Render Commands /

4.2 Detailed Description of Implementation

4.2.1 The Boot Sequence

When the 3D processor is first powered on, the upper left tile in the Raw array, tile (0,0),
takes control. All the other tiles are either waiting for messages from this tile or need no
initialization and are simply waiting for scenestream mode to begin.

Tile (0, 0) first initializes its own interrupts and certain global variables (actually, most
tiles do this right on startup). Then it allocates render state information, which due to the
way memory is allocated on Raw will be stored in the RAM module to the east of the first
stage, and sends a pointer to the render state structure via the GDN to every other tile
in the first stage. The values stored in the render state and their meanings are given in
Table 4.1 for reference. The tile waits for acknowledgments back from all the tiles in the
first row before continuing.

Next, the control tile sends a message to the westernmost tile in Stage 3 to request
a pointer to the texture memory control structure, TexManager. Stage 3 had allocated
TexManager, as well as texture memory itself, right after boot-up, causing it to be stored
in the RAM to the east of Stage 3's tiles. When the westernmost tile of Stage 3 receives the
GDN message from the control tile, it sends a pointer to the TexManager structure to all
the other tiles in Stage 3, and waits for responses back, before finally sending the pointer
to TexManager back to the control tile. This sequence makes it possible to sort out the
different GDN purely by the order in which they arrive, without having to tag them with
extra identifying data.

After receiving the response from Stage 3, the control tile finally sends a message to the
westernmost tile in Stage 4, requesting a pointer to the Depth Buffer. This tile, upon boot-
up, allocated the Depth Buffer structure (which also contains a shared variable specifying
which page in the framebuffer to render to) and initialized the depth buffer to Ox7FFFFFFF,
the furthest number in its fixed point range. When it receives the GDN message from the
control tile, it sends a pointer to the depth buffer to all the other tiles in the row, waits
for acknowledgments, and then sends the pointer to the control tile. After finishing with
the startup GDN messages, the Stage 4 tiles turn on the GDN-AVAIL interrupt, which
triggers an interrupt whenever a GDN message arrives, and is used for its synchronization
algorithm. (See Section 4.2.3.5).

After all these initializations have completed, all the tiles in the processor except the
upper-leftmost tile enter "scenestreaming" mode (See Section 4.2.3), including setting up
their static networks to route in this mode, and wait for scene data to be passed down the
pipeline. The upper-leftmost tile, or the control tile, sets up its static network for and then
enters "command" mode, which is the subject of the next section.

4.2.2 Command Mode

In Command Mode, the external host computer can send instructions to the graphics pro-
cessor (via the static network through the western port of the top left tile) to update the
render state, read and write the frame buffers and depth buffers directly, flip the frame-
buffer's active page, and upload to and manage texture memory. Basically, it can do
everything except send geometry through the pipeline, which requires the processor to be
in a different mode called "scene streaming." Of course, the external host can change the
mode to scene streaming from command mode, as well.

58

Variable: I Description:
Updated

ModelToWorld
WorldToView
ModelToView

NormalToWorld

nx, ny, nz
rgba
pInfo.p.Mode.

... draw
.lit

... useamb

... usedir

... texmode

... texalpha

... colalpha

... colinterp

... litinterp

... texinterp

... outoforder

... textile

... nousez

... nowritez
plnfo.p.SeqNum

pInfo.TextureID
plnfo.alphaThresh
plnfo.ambColor
pInfo.dirColor
ldx, ldy, ldz
ambreflect
dirreflect
dirdefined

LaggedSeqNum

Bit vector for whether the renderstate has been updated since the
last time each processor had seen it (and therefore must be invali-
dated); one bit per processor. must be invalidated)
Matrix to transform from model to world coordinates.
Matrix to transform from world to homogeneous view coordinates.
WorldToView * ModelToWorld, maps from world coordinates to
homogeneous view coordinates.
Matrix to transform the normal from model space to world space;
equals the transpose of the inverse of ModelToWorld.
Current vertex normal.
Current vertex color.
Mode bits, which pretty much all the stages need, are contained
together in this substructure.
Whether or not to draw the primitive at all.
Whether to perform lighting modulation on the primitive (1), or
leave it fully bright (0).
Whether to use ambient light in the lighting calculations.
Whether to use directional light in the lighting calculations.
The color/texture blending mode. One of: 0, none; 1, color only;
2, texture only; 3, color/texture blend; 4, decal texture over color;
5, decal color over texture, or 6 color/texture modulated.
0 = none, 1 = soft, 2 = hard (alpha is clamped to 100% or 0%).
0 = none, 1 = soft, 2 = hard (alpha is clamped to 100% or 0%).
Whether to linearly interpret color, or just flat shade it.
Whether to linearly interpret lighting, or just flat shade it.
0 = nearest-neighbor mode; 1 = bilinear filtering mode
Whether to force a primitive to be considered out of order, no
matter what its parameters are.
Texture tiling mode: 0 = none; 1 = repeat; 2 = mirrored; 3 =

clamp.
Do not check the z-buffer when rendering, just write to the screen.
Do not update the z-buffer when writing to the screen.
The number of primitives that have gone, and the sequence number
to give the next ordered primitive
Current Texture ID number.
Threshold to clamp alpha values in "hard alpha" modes.
Color and intensity of ambient light, stored as eight-bit fields.
Color and intensity of directional light, stored as eight-bit fields.
Directional vector for use with directional lighting.
Reflectance of the ambient light by the current primitive.
Reflectance of the directional light by the current primitive.
Whether the data for directional light has been defined yet by the
controlling program
The sequence number given to out-of-order primitives, equal to one
plus the last sequence number of an in-order primitive.

Table 4.1: Render State Variables Stored in the First Pipeline Stage

59

Because commands in command mode can return information to the external host after

certain commands (such as reading the framebuffer or checking the amount of texture

memory free), and these return values are also sent over the static network, there must

be a kind of dynamic flow control in the static network's switch program (Recall from

Section 3.3.1.1 that all routes that are simultaneously specified on one line of the switch

program must go together, or they all will block, even if some are ready to go. If one is trying

to route commands from the west to a processor, and from the processor back west with one

line of switch code, then there must be data moving in both directions simultaneously for it

to work. In order to take turns sending and receiving data, the switch processor must have

some way of knowing exactly how many words are going to be transferred in each direction).

Therefore, the switch program acts as follows: the first word from the external command

source is routed to the processor, so the processor knows what command it is dealing with.

Then, the processor sends to the switch the number of additional words to read in from

the external source. The switch processor stores this number in a register, and then routes

that many words from the west to the processor, decrementing the register until it reaches

zero in order to do the counting. Next, the processor sends the switch the number of words

that are to be returned from the processor out to the external host (this number, or the

previous one, can be zero). The switch routes these words, and when finished, returns to

the beginning of its cycle waiting for the first word of a command to route to the processor.

All the commands understood by the processor, which modes they can be used in, and how

many words of data they contain and how many are sent in return are listed in Table 4.2.

Command CM SS Words Returned
RENDERJBEGINSCENE X 0 *

RENDER.ENDSCENE X 0 *

RENDER-VERTEX X 5 0
RENDER-COLOR X X 1 0
RENDERMODELMATRIX X X 16 0
RENDERVIEWMATRIX X X 16 0
RENDERNORMAL X X 3 0
RENDERSETLIT X X 1 0
RENDERSET-USEAMB X X 1 0
RENDER-SETUSEDIR X X 1 0
RENDER.SETTEXMODE X X 1 0
RENDERSET-TEXALPHA X X 1 0
RENDERSET-COLALPHA X X 1 0
RENDER-SET-COLINTERP X X 1 0
RENDERWSETLITINTERP X X 1 0
RENDERSETTEXINTERP X X 1 0
RENDERSETOUTOFORDER X X 1 0
RENDER-SET..TEXTILE X X 1 0
RENDER.SETNOUSEZ X X 1 0
RENDERSETNOWRITEZ X X 1 0
RENDERSETTEXTUREID X X 1 0

Table 4.2: Rendering Processor Commands (continued...)

60

Table 4.2: (continued...)

Table 4.2: Rendering Processor Commands
This table lists the mnemonics for the rendering commands understood by the processor,

whether they can be run during Command Mode and Scene Streaming, the number of
words of data sent with the command, and the number of words the command expects in
return. A + signifies a variable number of words, with the minimum listed. The * signifies

that the ENDSCENE command does not require a return value, but that the command
interface controller will pause after sending this command, waiting for the processor to

send a word to let it know that it is okay to continue.

Commands with variable data sizes must be read in two passes. The first pass reads the
minimum set of data, including the parameter that specifies the length of the rest of the data.
Next, if there is additional data, the control tile reads the next word in (which the switch
automatically routed to it), then tells the switch to route the rest of the data. The only
commands with special flow control requirements are RENDEREND and BEGINSCENE,
which can only occur during scene streaming, and that will halt and not send any subsequent
commands until the processor has left or entered scenestreaming mode, signaled by a word
being sent in response to the ENDSCENE/BEGINSCENE command.

61

Command CM SS Words Returned
RENDER-COLTEXBALANCE X X 1 0
RENDERALPHATHRESH X X 1 0
RENDER-AMBCOLOR X X 1 0
RENDER.DIRCOLOR X X 1 0
RENDER-DIRLIGHT X X 3 0
RENDER-AMBREFLECT X X 1 0
RENDERDIRREFLECT X X 1 0
RENDER-CLEARFB X 2 0
RENDERCLEARZ X 0 0
RENDER-SETPAGE X 1 0
RENDERFLIPPAGE X 1 0
RENDERALLOCATETEXTURE X 2 1
RENDERDEALLOCTEXTURE X 1 0
RENDERUPLOADTEXTURE X 2+ 0
RENDER-TEXMEMAVAIL X 0 1
RENDERCOMPACT-TEXMEM X 0 0
RENDERWRITEFB X 4 0
RENDERWRITE-FB-BLOCK X 4+ 0
RENDERREADFB X 3 1
RENDER-READYB-BLOCK X 4 0+
RENDERWRITE.Z X 3 0
RENDER-WRITEZ-BLOCK X 3+ 0
RENDER-READ-Z X 2 1
RENDER-READ.Z-BLOCK X 3 0+
RENDER-RESET X 0 0
RENDERHALT X 0 0

The commands executable in command mode fall into three general categories: render

state commands, texture management commands, and depth/frame buffer manipulation

commands. RENDER.BEGINSCENE, which causes the processor to enter scene streaming

mode, is in a category of its own, as are RENDER-RESET and RENDER-HALT.

4.2.2.1 Render State Commands

The commands from RENDERCOLOR to RENDERDIRREFLECT in Table 4.2 simply
modify the corresponding value in the render state (See Table 4.1. These commands can

be used in either command mode or scenestreaming mode, and it is up to the programmer

whether they find the ability to do state updates outside of scenestreaming mode use-

ful. A changed state value affects all subsequent primitives and vertices until the value is

changed again or the program sends a RENDERRESET command. Note that the code

for this project implements the render state commands separately for command mode and

scenestreaming mode; this is due to the differing flow control algorithms used for the two

modes.

4.2.2.2 Texture Management Commands

Textures are handled by the commands RENDERALLOCATETEXTURE through REN-
DERCOMPACTTEXMEM. To add a new texture to the processor's memory, first the

command RENDERALLOCATE-TEXTURE is called with a width and a height as pa-
rameters. The processor allocates that space in texture memory if possible, and returns a

texture ID for use in subsequent references to that texture. If space cannot be allocated,
it returns -1. Next, the texture data for a specific texture ID can be uploaded using REN-

DER-UPLOAD_-TEXTURE. This can also be used to overwrite textures already in texture

memory with new images. RENDERDEALLOCTEXTURE deallocates the memory for

a particular texture ID to free up more space. RENDERITEXMEMAVAIL returns the

total amount of texture memory free, and RENDERCOMPACT.TEXMEM attempts to

compress fragmented free space in texture memory into a contiguous block3 .

Textures are stored internally as contiguous chunks of data in the texture memory space,

with no alignment or size restrictions (beyond the 32-bit boundaries imposed by the Raw

processor). The data are indexed in two ways: a linked list of texture allocations which

specify the beginning and end addresses for all textures stored in memory, and an array of

texture IDs with pointers to the beginning of each texture's data. The linked list is used to

search for available space when allocating textures, and the array is used for quick texture

lookup from an ID when rendering a scene. When a texture is deallocated, a space is left in

texture memory where it used to be. Another texture may fit in that space, but over time,
the free space can become fragmented and no longer usable (as textures need to be stored

contiguously). The program controlling the 3D processor may decide to compact texture

memory to make use of this extra free space, if necessary.

If more textures to render a frame than there is room for in texture memory, the scene

rendering may be suspended by leaving scenestream, deallocating textures and uploading

the new ones, and then resuming scenestream. Obviously this would have a negative impact

on performance. It is expected that texture memory management will be handled on a lower

level than the application software - perhaps in the API or driver for the 3D processor

(See Section 4.3).

3Texture memory compaction is not implemented in this version of the 3D processor code.

62

4.2.2.3 Depth and Framebuffer Commands

The 3D processor also provides commands to allow the application to directly modify the

framebuffer or depth buffer. These are not implemented in scene streaming mode because

they complicate sequential consistency, and because only one tile can access the frame and

depth buffers at a time and synchronizing the controlling tile with the tiles in Stage 4 would

have been difficult.

RENDERCLEARFB and RENDER-CLEARZ can be used to blank out the buffers
before every frame. RENDERSETPAGE and RENDERFLIPPAGE can be used to ma-
nipulate the paging mechanism of the framebuffer, allowing drawing to go on in a "back

buffer" while a steady image is sent to the screen. The FLIPPAGE command can also be

set to wait for a VBLANK signal before flipping the page - the VBLANK signal4 speci-

fies that the beam of a CRT monitor has gone off the bottom edge of the screen and has

not started over at the top yet. Flipping the page during VBLANK generates a better

image than flipping while the beam is in the middle of the CRT, which can create a sort of

"shearing" or "tearing" effect in the image.

The remaining commands allow direct reads and writes to the framebuffer (specifying

a page, as well) and the depth buffer, either one pixel at a time or in a block of pixels.

4.2.2.4 Miscellaneous Commands

There are three other commands, which do not fit into the above categories. REN-

DERRESET performs a synchronous reset of the processor, clearing texture memory and

resetting the render state to the default. Asynchronous reset (i.e., resetting at any time no

matter what else is going on in the processor) is not implemented, for reasons described

in Section 3.3.4.1. RENDERHALT simply halts the 3D Processor permanently (perhaps

in later versions, it could enter some power saving mode). And RENDERBEGINSCENE

enters scene streaming mode, which is the topic of the next section.

4.2.3 Scene Streaming Mode

Scene streaming mode accepts vertex commands, and renders geometry using the fully par-

allelized pipeline configuration. Communication is very one-way in this mode: commands

enter the processor with no return values, and are pushed down the pipes until the final

image is rendered to the framebuffer at the bottom - this is why it is called the scene

streaming mode.

When entering scenestream, most tiles do not have to do anything special, as they are

basically always in scene streaming mode, but are simply waiting for incoming data to arrive.

The upper left tile, however, must transition from command mode to scene streaming. It

does this by changing its static switch program to the scenestreaming program, sending

some initialization data to the switch, enabling GDN-AVAIL interrupts (which are used for

part of the scenestream algorithm in the first stage), then sending a word out over the static

network to tell the external command source that the BEGINSCENE command is finished,

and it can start sending data again. The tile then jumps to the same code as is used in all

the other first stage tiles during scene streaming.

4 As of the writing of this thesis, the testing framework does not yet simulate a VBLANK signal, and this
feature has not been tested.

63

4.2.3.1 Distributing Commands Among the Pipelines

The static network in the first stage (top four tiles) has the job of taking commands into
the chip and distributing them among the tiles such that no tile is ever left idle if a new
primitive is ready. The development of the algorithms to do so is described in Section 3.3.1.

In order to do this, the static network must be able to detect the transitions between
primitives (which are in a way synchronization boundaries). To accomplish this, in scen-
estreaming mode the external command stream must be broken up into blocks. Each block
contains one word which specifies the size of the rest of the block, and then a series of data
words which make up the normal instruction stream. Block boundaries can occur at any
place in the stream, and do not necessarily have to line up with commands. One exception
is that a block of zero length must occur between command boundaries. This is because a
block of zero length is a special marker which signifies the end of a primitive, and that the
next primitive should be forwarded to a different processor.

The distribution algorithm in the static network delivers primitives in a relatively fair
ordering: the scheme is generally round-robin but "skips" over processors that are currently
busy to forward primitives to those that can process them. However, the static network
is subject to some strict communication and synchronization constraints, as described in
Section 3.3.1.2, and so a rather complex scheme is employed to produce the desired result.

Each switch processor has four major states: Idle, Active, Passing, and Counting (actu-
ally there are several more states, which are described shortly). Several of the states have
two sub-states: one for when the tile processor is Busy, and cannot accept new commands,
and one for when the tile processor is Ready for another primitive. Each state is located in
a separate section in the switch processor's code, produces a certain routing pattern, and
responds to events by switching to other states, again depending on the current state.

In the Active state, for example, the switch routes all incoming data from the west to
the processor, while simultaneously monitoring it for an end-of-primitive marker. In the
Idle state, the processor would do nothing, as all the current routing would be going on to
its west, and would simply be waiting for a word to appear from the west signifying that
something had happened. The processor would react differently depending on whether it
was in the Idle-Ready or Idle-Busy state; for example, if the incoming event was a notice
that the routing pattern had gone around and now it was that tile's turn to get a primitive,
the switch would accept the turn if it was in Idle-Ready and head to the Active state.
However, if it were in Idle-Busy, it would reject the turn and, depending on its location,
might go to the Counting state. The Counting state is used to determine the next tile to
route commands to. Basically, every tile sends words west specifying whether they have
taken or passed their turn when it comes to them. The Counting state counts the number
of passed turns so the tile knows when its own turn comes up, and it can take it or pass
accordingly (Counting modes also have Busy and Ready sub-states). If a tile to its east
ends up taking its turn, then the current tile has to start routing commands west - this is
the Passing state. In this state, the switch is also monitoring the data for an end primitive
command, so that it knows when the routing pattern has to be rearranged, by returning to
the Counting state.

The Counting and Passing states only occur when the active tile, or tile whose turn it is,
are to the current tile's east. When the active tile is to the west, the processor remains in an
Idle state, simply waiting for a message to arrive from the west. Note that the westernmost
tile in the top row will never be in an Idle state, as it is always either the active tile or
Passing/Counting due to an active tile to its east. Its tile code will have to jump directly

64

from the highest count in the Counting state to deciding whether to take the turn or not, as

the turn transfers from the last tile in the row to the first. Likewise, the last or easternmost

tile in the row has no Counting or Passing states, and only alternates between Active and

Idle. The middle tiles remain Idle until they get a message from the west, then it is their

turn, then after their turn they Count or Pass for a certain number of tiles to their east

before returning to Idle mode.

In other words, tile 0 goes from Active/PassTurn to Counting/Passing to Count-

ing/Passing to Counting/Passing and back to Active, where each transition happens either

on an endprimitive, or on the signal that a tile down the line passed its turn. Tile 1 goes

from Idle to Active/PassTurn to Counting/Passing to Counting/Passing and back to Idle.

Tile 2 goes from Idle to Active/PassTurn to Counting/Passing and back to Idle. Tile 3

simply goes from Idle to Active/PassTurn and back. There is, of course, additional state

needed: all of these modes except for Active need to have sub states for their tile processor

being Ready and Busy. Also, the Counting and Passing states need some way to count,

and this is accomplished by the use of sub states as well. Finally, transitional states such

as TakeTurn, PassTurn and DoneActive make the state machine more manageable.

One additional detail is that, after an end primitive, the just recently active tile must

wait for the tile processor to signal that it is okay for another tile to start (since shared

memory must be flushed, etc.). It uses this signal (just a word sent from the processor) to

send to the next tile to the east to wake it from Idle mode. An exception is the last tile in

the row, which must send a signal to the first tile in the row when this occurs, and the first

tile must not take its turn until it receives that signal. Therefore, when all the tiles have

detected the endprimitive while Passing commands to the last tile in the row, they can then

route the okay-to-go signal east to west from the last tile back to the first before heading

into Idle state. A state transition diagram for a typical middle tile's switch program is

given in Figure 4-2. The first and last tiles' programs would be modified as described in

this and the previous paragraphs. Notice that this code can be extended to any number

of processors by increasing the number of Counting and Passing states that each tile goes

through. One could conceivably even write a script which automatically generated such

code for any processor width desired.

Finally, to signal to the switch that the tile processor is now ready to accept new

commands, the tile processor forcefully changes the switch's program counter to point to

the new state. The code to do this has to be careful, though, to move the program counter

to a location that is performing the same routing as the original. Therefore every state

that can be interrupted from Busy to Ready must have a line-for-line equivalent state to be

transitioned to. Table 4.3 lists all the states in the final implementation of this code and

some of their nitty gritty details.

When scenestream ends, the switch programs must return to their starting points. Scen-

estream ending is discussed in more detail in the next section.

4.2.3.2 Stage 1

After commands start arriving from the static network, the active processor first invalidates

the Update word in the render state and checks one bit which corresponds to its processor

number. If the bit is 1, that means the render state has been changed and it must invalidate

its entire cached copy. If it is zero, then the tile can continue to use the copy of the render

state in its cache, though the Sequence Number values (SeqNum and LaggedSeqNum) need

to be invalidated each time. The tile then sets its bit in the Updated word to zero, clears

65

State Name

Idle-Ready

IdleBusy

Active

DoneActive

DoneActive-Ready

PassingNReady

PassingNBusy

CountingN-Ready

CountingN.iBusy

Take-Turn

Pass-Turn

Description
Route once E->W (or, in the last tile, Processor-+W). (this
route is skipped on startup, and at certain other times).
Wait for token from W. On token, go to Take-Turn.
Route once E--W (or, in the last tile, Processor-+W). (this
route is skipped on startup, and at certain other times).
Wait for token from W. On token, go to Pass-Turn. On
ProcReady, go to Idle-Ready.
Route data W-+Processor, until End-Primitive. On
End-Primitive, go to Done-Active (unless it is the last tile,
then go to IdleBusy)
Wait for word from processor. On data, route the
word--E, and go to Counting-1 -Busy. On Proc-Ready, go
to Done-Active-Ready.
Wait for word from processor. On data, route the word-+E,
and go to Counting_1_Ready.
Route data W-+E, until EndPrimitive. On End-Primitive,
if this is the max N for the tile, go to IdleReady (or if it
is tile 0, Take-Turn). If it is not the max N, go to Count-
ing-N+1-Ready.
Route data W-+E, until EndPrimitive. On EndPrimitive,
if this is the max N for the tile, go to Idle-Busy (or if it
is tile 0, Pass-Turn). If it is not the max N, go to Count-
ing.N+1_Ready. On Proc-Ready, go to PassingNReady.
Wait for data from the east. On data, route it west. If the
data was non-zero, go to Passing-NReady. If it was zero,
and this is the max N for the tile, then go to Idle..Ready,
skipping the first E-+W route (or if it is tile 0, Take-Turn,
skipping the wait for token). If this is not the max N for
the tile, go to CountingN+1-Ready.
Wait for data from the east. On data, route it west. If the
data was non-zero, go to PassingNiBusy. If it was zero,
and this is the max N for the tile, then go to IdleBusy,
skipping the first E-+W route (or if it is tile 0, Pass-Turn,
skipping the wait for token). If this is not the max N for
the tile, go to CountingN+1-Busy. On Proc.Ready, go to
Counting..NReady.
If this is tile 0, wait for a token from the east. If this is
not tile zero, send a non-zero number west. Finally, go to
Active.
If this is tile 0, wait for a token from the east. Send a token
east. Next, if this is not tile 0, send a zero west. Finally,
go to Counting-l.Busy (unless it is the last tile, then go to
IdleBusy, skipping the first route). On Proc-Ready, go to
TakeTurn.

Table 4.3: Full State Transition Table for Stage l's Switch Code
This table summarizes the complicated state transitions involved in the first stage routine.
Proc-Ready occurs when the tile processor signals the switch that it can accept new data.

66

Input from W, and tile Busy PassT urn
Idle Send 0->W

Send Token East

E=O

Input Counting_3 E=O Counting_2 E=O Counting_1

from W, Send E->W Send E->W ->W

and
tile Send E->W E=1 E= E=
Ready

, Passing_3 Passing_2 Passing_1

Route W->E Route W->E Route W->E

TakeTurn

Send]->W
Active DoneActive

Route W->Proc EndPrim Send Token from Proc->E

Figure 4-2: State Transition Diagram for a Typical Stage 1 Switch Processor

See text for complete discussion.

some variables, and starts to read and execute commands from the static network (including

the block word counts in the stream), flushing any state variables that are changed from

the cache. When it arrives at an endprimitive command, it stops reading commands, and

processes the primitive (or perhaps end scene command) it received.

First, if the command was an endscene command, it initiates a flush of the pipeline. The

pipeline flush starts by sending a GDN message to all the other Stage 1 tiles, containing

the flusher's tile number in the message. These GDN messages will trigger interrupts on

the receiving tiles, which will set a flag saying that a flush request was received. After

the tiles are done processing their current primitive (or immediately, if they are currently

idle), they will check the flush request flag and send a special pipeline flushing primitive,
which includes the tile number of the tile that initiated the flush, to the next stage. This

pipeline-flushing primitive will travel down to the last stage, at which point the last stage

will send a response back to the initiator of the flush via the GDN. When the initiator has

received all four responses (it also sends its own pipeline-flushing primitive down the pipe),
then it knows that the flush is complete, and there are no more in-flight commands in the

pipeline.

After flushing out the pipeline, it sends another GDN message to every Stage 1 tile

with OxFFFFFFFF as the data, which signifies an end-of-scenestream event. When the

tiles receive this message, they reset the static networks and leave the "DoSceneStream"

function - which does nothing but cause it to be called again in a loop on all the tiles except

for the first (westernmost) tile, which returns to command mode. The endscene command

itself causes the external command interface controller to wait for acknowledgment from

the processor before sending any more commands in, guaranteeing that the static network

is empty when it is reset to command mode.

Note that an endscene command still needs to be followed by an end primitive marker,

67

so that the tile will process it and not be stuck in command-reading mode.

If the command was not an endscene, then it must have been a command to render
a triangle, or primitive. Processing only occurs if at least 3 vertices were sent (any less
would be a programmer error on the side of the external application, and cause the tile
to discard this primitive). If there were at least three vertices, then the code calculates
whether the primitive should be considered "unordered" or "ordered" (see Section 3.3.2).
Unordered primitives can be rendered in any order among themselves, because they use the
z-buffer and have no partially transparent bits. Ordered primitives must be rendered in the
exact order they are sent in as commands among themselves, and have to be in the same
relative position versus any unordered primitives. The code uses a conservative heuristic to
determine the ordering status of the primitive - if its blending mode and the alpha values
of its vertices could ever possibly lead to a situation with partially transparent fragments
(fully opaque and fully clear are okay), then it is marked as ordered. The sequence number
and "lagged sequence number" (the number of the last ordered primitive plus one, given to
all subsequent unordered primitives) are updated, and flushed from the cache. Finally, in
the case that this primitive is going to be sent while SeqNum is rolled over (detected when
SeqNum = 0, as on boot-up SeqNum starts at 1), then the tile flushes the pipeline clear
before continuing (using the same method as the pipeline flush on endprimitive described
above). After all this, then the tile sends a word to the static network letting it know
that the next tile can begin processing commands. (How the sequence numbers are used to
ensure correct ordering in the last stage of the pipeline is described in Section 4.2.3.5).

Finally, the stage performs projection, visibility culling, perspective division, and
streams out the new primitive south. If the primitive turns out to be not visible or culled,
dummy primitive info is streamed south anyway. This info has the ModeBit "draw" set to
zero, and further stages do not bother doing any computation on it; they simply pass it
south. The last stage uses it to increment the sequence number, but nothing else. When
Stage 1 passes its primitive info south, it sends it over the GDN, in messages no greater
than 31 words (a restriction imposed by Raw), because the static network is too busy with
the command distribution algorithm to be able to easily handle the primitive streaming as
well.

4.2.3.3 Stage 2

Stage 2 needs to perform very little above its basic rendering algorithm in the parallel
pipeline. It basically reads in the primitive info from Stage 1, sends some of that primitive
information (such as rendering modes) south over the static network to Stage 3, then pro-
ceeds to rasterize the primitive, interpolating whichever variables are necessary according to
the primitive's render mode, and sending the fragments south, also over the static network
(For more info on rasterization and variable interpolation, see Section 2.2.2). Before each
fragment, it sends a marker value specifying that a fragment is coming up next. This is to
differentiate it from the case where the primitive has finished, and a new batch of primitive
info is coming up next, which uses a different marker. Also, the each primitive is preceded
by a marker specifying whether it's actually a primitive, or a one-word-long pipeline flush
command (which simply gets forwarded south).

68

4.2.3.4 Stage 3

Stage 3 also does not need to do much beyond its basic rendering algorithms (which are

described in Section 2.2.3, and include looking up texture values and blending together

the final color for the fragment from its interpolated color, texture and light values). One

exception is ensuring that shared texture memory is cache coherent, while still taking ad-

vantage of the cache for multiple lookups of the same texture (which is common in 3D

scenes, especially with tiling and bilinear filtering. - for more discussion of the benefits of

texture caching, see [7].) It does this via two mechanisms: first, whenever there is a pipeline

flush, it invalidates the texture ID array, just in case the processor had gone into command

mode and added or removed textures. Secondly, there is a word in each texture ID entry

that specifies if it has been updated yet since the last invalidate, with one bit per processor

in Stage 3. When a processor looks up the texture, it invalidates it if this bit has been set,

and then clears the bit. This way, each processor in the row gets a chance to load the new

texture data into its cache if there is any change.

This stage receives primitive info and fragments from the prior stage over the static

network, and sends some of that primitive info and textured/blended fragments south to

the next stage, also via the static network. It uses the same system of markers before each

data structure (i.e., primitive info vs. pipeline flush, new fragment vs. end-of-primitive).

However, because it is asking the static network to do both sending and receiving, it must

use some kind of flow control. It ends up doing something similar to the control tile in

command mode, where the switch sends the first word it receives from the north, then

waits for a count of subsequent words to send from the north. After sending those words

to the processor, the switch waits for a count of words to send south. The processor sends

those words out, and the cycles repeats.

4.2.3.5 Stage 4

Stage 4 takes the textured fragments sent from Stage 3 and combines them into the depth

and frame buffers. However, only one tile in stage 4 can access the depth and frame buffers

at any time. To solve this mutual exclusion problem, a one-word "token" is passed around

the tiles in a ring. Whichever tile has the token can access the shared resources, and sends

the token to the next tile when it is done with them. The token passing is generally handled

by a GDN-AVAIL interrupt routine, which, upon receiving the GDN token, checks a global

variable ("taketurn") to see if the normal tile code wants to take its turn yet. If so, then

it puts the token into another global variable (as its value is used as described below), and

resets the taketurn flag, which the tile code would typically be spinning on. If not, then

it simply sends the token to the next processor in the chain (note that if the tile code

successfully acquires the token, then it is its responsibility to send the token along when

finished).
The value of the token is also the current sequence number for Stage 4. This ensures

sequential consistency by only allowing "ordered" primitives to be rendered when the se-

quence number is exactly equal to the sequence number stored in the primitive, and only

allowing "unordered" primitives to be rendered if the sequence number is equal to or greater

than the primitive's number, for reasons described in Section 3.3.2. When a primitive is

finished rendering, it increments the sequence number (unordered primitives may give up

the token before they are finished rendering, in which case they leave the sequence number

unchanged) and send it to the next tile.

69

The code in the last stage was heavily tweaked to try to keep the token for as short a
time as possible, but do as much work as possible during that time. Also, it tries to keep
the previous stages from stalling unless absolutely necessary. When rendering unordered
primitives, while a tile does not have the token yet (or its sequence number has not arrived
yet), the tile buffers as many fragments from Stage 3 as possible, while simultaneously
waiting for its turn to come around (as long as it has at least one fragment buffered up).
It accomplishes this by busy-waiting on multiple variables (namely, the taketurn flag and
the number of entries in the static network's input buffer). As soon as it gets its turn, it
runs through all the fragments on its buffer as quickly as possible, invalidating and checking
the z-buffer values, updating and flushing with new z-buffer values, reading from the frame
buffer, and blending and writing to the frame buffer all as necessary. Several attempts
were made to restructure the code to try to make it run a bit faster, such as copying the
value of a "volatile" variable to a non-volatile one when it was known that the value would
not be changed, and explicitly pulling out commonly used expressions that the compiler
optimizations did not catch. If time constraints had allowed it, a hand-coded assembly
version of the inner loop would have been useful - in fact, hand-coding all the inner loops
in the project might have been a good idea, see Chapter 6.

Ordered primitives do not do this buffering, but rather render the fragments as soon as
they come out of Stage 3, as only one primitive will be rendering at a time.

When interacting with the framebuffer, the tile has to be careful to disable the
GDN.AVAIL interrupt before sending a read to the framebuffer, as the framebuffer
responds via the GDN.

Finally, when Stage 4 gets a pipeline-flushing marker, it sends a GDN message to the
originator of the pipeline flush, as described in Section 4.2.3.2.

4.3 Interfacing the Graphics Architecture in a System

This whole paper so far has made allusions to the frame buffer and the command generating
interface, but not much has been spoken about how these interfaces would couple the 3D
processor into an entire system. That is the purpose of this section. An illustration of all
the components of a full system is given in Figure 4-3.

4.3.1 The Framebuffer Side

The "framebuffer" interface on the south of the Raw chip is actually a simplified interface,
tailored to Raw and implemented on some glue logic outside of the Chip6 . The framebuffer
controller would handle GDN messages and other aspects of the "framebuffer" protocol, and
would translate these into actual reads and writes to an actual framebuffer - implemented
as high-speed VRAM connected to a Video DAC. The Video DAC would continuously scan
through VRAM (VRAMs are usually dual-ported) while the Raw was also updating its
image, and convert the stored colors to an analog signal to be sent to a display or monitor.
The VRAM would be dual-paged, and the controller could select that the DAC display
one page or the other. A complete implementation would also allow the video to change

5Although buffering could have been used for in-order primitives as well, letting them queue up values
to render while waiting for their turn.

6The original plan for this thesis included implementing this glue logic in an FPGA, but there was not
enough time to actually do so, and it was a very non-critical part of the project.

70

Render Host
Interface

I/O Bus
Interface

Memory -DRAM
Controller

Memory -DRAM
Controller

Memory -DRAM
Controller

Framebuffer
Controller

Vid~e Dspa

Framebuffer
ADipa

Figure 4-3: The Processor in a System Context
The Raw Processor, being used as a 3D graphics processor as described in this paper, is
shown here integrated into a host system. Its host interface communicates with an I/O

bus interface, which in turn communicates over the bus to the host processor. That host
processor may be running an operating system, which includes a driver for the 3D

processor. The driver is used by software applications through an API. The 3D Processor
is also connected to the framebuffer controller, which in turn drives the framebuffer and a

video DAC (Digital to Analog Converter) to display the image on a screen.

71

Operating
System

Driver

API

Application

3D Processor
On a Raw Chip

resolutions and modes, but this implementation remains fixed with a 32-bit color mode with

compile-time video resolution.

4.3.2 The Host Side

This processor receives its rendering commands from an external host, through the render

host interface attached to the north-westernmost tile. This interface is also connected to

glue logic, which takes the raw rendering commands and both performs static network
flow control as well as flow control and blocking required by the higher level 3D processor
input algorithms. The interface would receive commands from some host-specific bus or
I/O channel, such as PCI or AGP, and could implement things like DMA based texture

transfer.
On the other end of the I/O channel would be a controlling host processor. Basically,

this processor is running a program that is generating rendering commands for the 3D
processor. However, the software-side approach is typically layered. There is an operating

system, which controls I/O accesses in general, a driver, which controls the I/O interfacing
with this 3D rendering device in particular, an Application Programming Interface (API)
which presents a higher level view of 3D rendering to user applications (e.g., one that
did automatic texture management or had higher level primitive calls), and finally the
application itself, which determines what all the other components are going to be doing.

The point in looking at the whole system's approach is that, the abilities and perfor-
mance of this device cannot be truly evaluated unless studied as part of an entire system.
For example, it is quite possible for drivers, for instance, to implement optimizations that
the hardware does not implement (such as selectively setting primitives to be outoforder
if they do not overlap), or for the VRAM memory technology to determine the maximum
pixel fill rate. However, there was not enough time in this project to simulate such a full

system's approach, so (as seen in the next chapter), simply the two immediate interfaces to
the Raw chip are simulated (along with a simplistic VRAM model).

4.4 Summary

This chapter has described in more detail the implementation of the various parallelization,
synchronization and communication techniques used in this project, and how they fit to-

gether to make the final 3D Graphics processor. Also described was how such a processor
would fit into a total system from the application end to the video display. The next two
chapters analyze the actual performance of the implementation of this chip, suggest some
ways that it can be improved, and generally talk about the lessons learned in implementing
this architecture.

72

Chapter 5

Testing, Validation and
Performance Results

This chapter describes the testing and verification methods used with the project described
in the last several chapters. The actual code for much of the testing framework is at-
tached in Appendix D. Verification and performance results are then presented, and the
performance results are analyzed. Additional images from verification are available in Ap-
pendix A. Chapter 6 expands on the results in this chapter to describe some suggestions
for improvement over this design and possible future work.

5.1 The Testing Framework

This section describes the framework used to test this architecture, which was used for
development, debugging, feature validation and performance measurement. Although the
Raw hardware that this processor targeted is available, the project itself was never imple-
mented on actual hardware, and instead was completed and tested solely in simulation,
using a simulator known as BTL [18].

5.1.1 The BTL Simulation Environment

"BTL" is a cycle-accurate simulator/debugger for the Raw architecture. It is highly exten-
sible [19] through a programming language known as "bC." Pretty much any aspect of the
simulation can be changed through bC code, however it is most useful for simulating exter-
nal I/O devices that interact with the Raw processor, or linking them to other processes
running on the computer, such as a Verilog simulation. The bC code can also examine any
aspect of the running processor's state and generate detailed profiling information.

The BTL simulator was used through a build environment known as "starsearch."
Starsearch is primarily aimed at keeping an array of regressive tests to be used to ver-
ify the build environment, including the BTL simulator itself, but it also provides a very
simple interface to build and get Raw programs up and running quickly. What would other-
wise be a rather complex build process - involving compiling and linking several programs,
packing them together into a boot module, along with the boot program and other helper
code that needs to be compiled for the particular Raw geometry in use, and starting up
BTL to simulate the program (or downloading it to an actual Raw testboard for real-world
verification) - is presented as a simple makefile interface with commands such as "make

73

run" and "make debug," with easily customizable makefiles for each project.

To add devices to a BTL simulation, one must specify a "machine file," which is simply
a bC code file which is executed at the beginning of simulation, and which is supposed to

set up all the devices that are attached to the Raw chip. A default machine file is provided

with BTL, which has the capability to produce memory modules, a "print service" for quick

debug output, a "host interface" for allowing the Raw chip to make system calls on the host

computer (not to be confused with the render host interface described in this thesis, which
supplies commands to the 3D Processor), a PCI interface, and several other possible devices.
A "device" in bC code is really a subroutine which is cooperatively multitasked with the rest

of the devices in the simulation, where each device is run until it yields, then the simulation

is advanced one clock, then the devices are run again. Each device can access any point
of the Raw simulation, and send and receive data on whichever Raw I/O ports it wishes,
though it will generally stick to the point to which it was assigned, as they are generally

made to simulate real devices.

The verification of the 3D processor built on top of Raw uses two major bC devices -
one to simulate the frame buffer controller, and one to simulate the render host interface

that streams commands into the Raw chip. (Actually, there are two more bC devices used in

the framework: the framebuffer itself is simulated as a separate device from the framebuffer

controller, and another device exists solely to gather performance data from the running

simulation.)

5.1.2 Framebuffer Controller

The framebuffer controller accepts commands from the GDN for reading and writing its
memory, as well as commands that flip the active buffer and back buffer. It interfaces with

a separate device which implements a very simple RAM-like interface, and stores the actual

values of the framebuffer for retrieval. The reason for this split was to make it easier to

record the signals coming in and out of the framebuffer controller itself for later verification

tests against a Verilog model, but this idea never came to fruition.

The framebuffer's default size is 640x480, though it can be changed via command-line
arguments to the BTL simulator (practically all of this project used 320x240 for a working
resolution). Also, the framebuffer controller can optionally (again, specified by command

line arguments) display on the screen an image of what is currently in the framebuffer's
memory. This image can also be updated in realtime, and the switch to do so can be
toggled on and off by the user of BTL while in an interactive debugging environment using

render-realtimeupdateon() and render-realtimeupdateoff() (since any BTL function can
be called from the command line in that environment). Also, due to the slowness of the
rendering method in X window, the entire framebuffer image is not refreshed if it is covered
up by another window and then uncovered - the refreshing has to be done manually by
the user using render-refresh.displayo.

GDN messages sent to the framebuffer controller consist of a standard GDN header with
no extra information in it, which is followed by a special framebuffer header which contains
a 3-bit command, a 2-bit page specifier, and a 19 bit offset address into video memory,
which can support just above 640x480x32 bit resolution, which is enough for this project

(though a more robust product would support higher resolutions). The layout of this header

word, along with the meanings of the different bit combinations, is given in Figure 5-1. The

message may contain subsequent words depending on the particular command: read single,
page flip, and reset commands have no further data; write single carries a second word:

74

Bits in the Header Word:

29128 2120 1918 31

Reserved Address into Page
(Set to Zero) Page:

10 - Back Buffer
Command: 01 - Front Buffer
000 - Write Single 11 - Both (Writes Only)
001 - Read Single
010 - Write Block
011 -Read Block
100 - Page Flip No Wait
101 - Page Flip Wait for VSYNC
110 - Reserved
111 - Reset

Figure 5-1: Framebuffer Message Header

the color data to write; read block's second word is the length of the block to read; finally,

write block sends a word for length, and then the data to write and the message may
go all the way up to the raw-imposed limit of 31 words in the message1 . Additionally,
for the commands read single, read block and page flip+wait-for-vsync, the framebuffer

controller will construct a GDN message and send it back to the original requesting tile (as

garnered from the GDN header in the original message). After the requisite GDN header,
the read single command sends back the read word of data. The read block command

simply sends back multiple read words of data, depending on the length specified in the

original command. The flip+wait-for-vsync command waits for VSYNC, then flips the page

and sends a one-word GDN message back to the requesting tile (the word is incidentally

the same framebuffer header that was the original page flip request).

Internally, the framebuffer controller then updates or reads to/from the framebuffer

itself using a simplified RAM interface with 5 control bits, a data bus D and an address bus

A. The control bit PAGE specifies which page to display on the monitor: 1 or 0. nCSO and

nCS1 are low-active chip select signals, which select the bank for page 0 or 1 for reading

and writing (though only one bank should be selected for reading at a time, as they share

address and data busses). nWE specifies a low-active write enable, and nOE specifies a low-

active output enable. Again, only one should be active at any time as both reads and writes

are performed on the same data bus. The VRAM would supposedly have an independent

data bus that attaches to a Video DAC for output to a monitor. In the simulations, the

RAM is synchronous, but it does not have to be - this is simply a side-effect of the fact

that the BTL simulation itself is synchronous.

'Note that this 31-word limit only requires 5 bits to store the length. Therefore, sending a whole 32-bit

word for the length is overkill, and that value would fit much more snugly into some of the 9 bits that are

not used in the framebuffer's header word. Block read/write mode is not used in the current implementation

of the 3D Processor, but it is a viable performance optimization, and removing one more word of overhead

would make it that much more efficient.

75

131

5.1.3 Render Host Interface

The render host interface, in a real-world implementation of this architecture, would map
between some sort of host-specific communication, such as an AGP or PCI bus, and the
static network stream of commands that the 3D Processor expects. In the simulation frame-
work, the host interface simply takes a pre-defined stream of render commands, and sends
them into the static network. The host interface also responds to certain "meta" com-
mands, which instruct it to do certain things other than streaming into the processor, such
as waiting for the processor to send a word back before continuing, printing out debugging
information or halting the simulation. In a sense, then, the simulated render host interface
is much less intelligent than a real host interface controller would have to be - practically
all of the flow control details of the static network interface to the 3D Processor (such as
waiting for responses after certain commands, and sending commands during scene stream-
ing in "blocks") are coded into a pre-defined input sequence rather than generated by the
interface logic itself.

5.1.3.1 External Program Control

Originally, the test input sequences would be taken directly from files. However, this would
have been tedious, inflexible and hard to debug. Many 3D rendering tasks lend themselves
to programmable control - for example, rendering a scene with multiple instances of the
same object can be done by making a subroutine that draws the object, then calling that
subroutine multiple times with different ModelToWorld matrices set. Describing a scene
often benefits from looping and modularity that cannot be exploited by using a raw stream
of the rendering commands. Additionally, commands that return data to the controlling
program can be tested more accurately by having a program that actively makes a decision
on the returned data. Finally, for something like performance measurement, where a large
set of different combinations of render modes must be tested, being able to programmati-
cally cycle through all the combinations is a must - a static command file could become
untenably huge to maintain in such situations.

One solution is to write programs to automatically generate a command file, and then
use those files as inputs. But for maximum flexibility, it was decided to simply spawn a
controlling process at the same time as the BTL simulation was running, and use pipes2 to
connect the output of the process to the input of the render host interface, and vice versa.
In this way, a program can communicate completely interactively with a simulated version
of the 3D processor. To further the abstraction, a header file was written (render-client.h),
which wrapped the low level pipe communications up into a series of procedure calls resem-
bling a reasonable 3D rendering API. Test programs could be easily developed in this API,
making validation and performance testing much more efficient.

The actual data transferred over the pipe is formatted as a series of 11 byte ASCII
strings. By default, the string was a hexadecimal number representing the word to send
over the static network next, such as "0x1234ABCD" (the 11th byte allows for a newline
after the string). The interface is not very lenient or resilient to errors, so the 11 byte
alignment must be strictly kept. Along with hexadecimal values, several "meta" commands
are recognized by the render host interface, which instruct it to act in special ways. These
are summarized in Table 5.1.

2A "pipe" in Unix is simply a channel through which two separate processes can communicate. What
one puts in one end the other will read out the other end.

76

Meta Command: Description
wait****** Causes the interface to wait for a word from the 3D processor

before continuing.

halt****** Causes the interface to interrupt the simulation.

read****** Immediately after, program will send a hex number specifying

number of words to read. Then interface sends that many words

from static network to the external program.

debug***** Next 11 characters after this command are printed to the simu-

lator's output to be read by the operator or logged.

pstart**** Starts recording performance profiling data (see next section).
pstop***** Stops recording performance profiling data

penterss** Marks the beginning of scene stream (for performance prof.)

pexitss*** Marks the end of scene stream (for performance prof.)

pframe**** Marks the beginning of a new frame (for performance prof.)

pprim***** Marks the beginning of a new primitive (for performance prof.)

preport*** Prints out a report of gathered performance prof. statistics, to

be read by operator or logged.

preset**** Resets all performance counters and state.

Table 5.1: Summary of Meta Commands for the RenderHost Interface

These commands instruct the renderhost bC device to carry out special actions relevant to

debugging and simulating the hardware. They are inserted in the stream of hexadecimal

numeric values which specify actual words to send over the network.

All the commands that begin with "p" are used for performance profiling, which is the

subject of the next section.

5.1.3.2 Performance Profiling

The render host interface code, in addition to providing communication between the simu-

lated 3D Processor and an external controlling processor, also serves to monitor the perfor-

mance of the processor, under the direction of certain meta commands, in order to report

on the results of performance tests. It collects data for the performance comparison in three

ways:

e Directly recording number of cycles passed, number of cycles in scenestreaming mode,
and number of primitives and frames, all from its own observations or the meta com-

mands that specify these things. Also, code in the render framebuffer bC device keeps

track of the number of pixels rendered, and shares it with the render host's data

collection.

e The render host spawns a new device whose only purpose is to monitor all the tiles

in the processor to see which are actively running commands and which are currently

blocking on something. This is part of the way the profiling code records active cycles

in the code (vs. total cycles), from which the processor utilization is estimated

0 "magc" instructions are Raw assembly instructions that cause the simulator to hook

into bC code. Some magic instructions are used to count internal event occurrences,
such as the number of drawn primitives (those that are not discarded after the first

77

stage), the number of fragments generated by the second stage, the number of texels
drawn by the third stage, as well as the number of textured fragments sent to the
fourth stage (which may be less than the number of untextured fragments in case
the blending rendered it 100% invisible. Also, generating active cycles by looking at
whether the processor is blocked or not is not completely adequate, as the processors
in this design spend a good amount of time busy waiting, which shows up as active
when it should be waiting. To solve this, two more magc commands are used to signify
the beginning and end of a busy waiting period that should not be counted towards
active cycles.

In the end, the render host reports the total active cycles for each stage in the pipeline.
Dividing by four gives the average active cycles per processor in each stage, and dividing
by the total cycles that have passed gives the average processor utilization for each stage.

5.2 Feature Validation

Feature correctness validation, for the most part, was a simple matter of writing programs
in the above framework to test various features, and check to see if the visual output was
correct. This was a very informal process; however, it was decided that an incredibly
rigorous feature verification scheme was not necessary for this project. The point of this
project was to examine one possible way of parallelizing rendering computations on the Raw
architecture, and to look at the performance and design tradeoffs. Of course, the various
rendering features had to be pretty much correct in order to make sure that no "cheating"
was going on, increasing performance at the price of correct operation, and also to make
sure that all the details necessary to make a 3D processor with this feature set were fully
considered. In other words, if a certain performance claim was made, good or bad, about a
feature that actually did not work correctly at all, then that performance claim is basically
made bogus and incomparable to other systems. Therefore, general feature correctness was
a goal, although complete elimination of bugs was not attempted3 .

Near the beginning of the development and debugging cycle, while the code was first
being implemented, the biggest verification challenge was to get the processor to run through
all the commands without locking up due to a synchronization error. During this time, the
basic triangletest.c code was developed, which featured several triangles of varying sizes
and colors rotating around the screen (the triangletest code eventually evolved into code to
perform the complete performance analysis of the processor, as described in Section 5.3).

Once basic issues of synchronization and lockups were addressed, general feature cor-
rectness tests were performed, such as displaying triangles with various texture modes with
texturetest.c, opaque and transparent triangles rendering in the correct order relative to
each other with ordertest.c, and finally full 3D scenes with depth and lighting and various
transformations, such as cubetest.c. A few screenshots of these tests are shown in Fig-
ure 5-2; several more appear in Appendix A. The correct performance of these tests, plus
the fact that the performance test could run for days and did not lock up (and seemed to
be producing the correct images) was enough to satisfy the lax requirements for correct
operation of this project, and most likely weeded out the larger show-stopper type bugs
completely.

3One good (or bad, depending on your perspective) thing about using a reconfigurable architecture like
the Raw or an FPGA is that bugs can be fixed "in the field" without having to replace hardware, making
the pressure to produce a perfect first iteration much lower.

78

Figure 5-2: Sample Screenshots
Top row: Untextured, unlit, flat shaded cubes, and then fully textured and lit cubes.

Bottom row: Texture test showing bilinear filtering, a test for correct ordering of
transparent primitives, and another texture test showing tiling.

5.3 Performance Results

As mentioned previously, the program used to generate performance data descended from
a simple rotating triangle test program. In fact, it uses the same triangle pattern to do
the test (Figure 5-3), except it draws the pattern four times (for a total of 42 primitives),
and does not rotate it. It does, however, scale the pattern in order to get data for the
effects of different primitive sizes on the screen, using sizes 1.0, 0.5, 0.3, 0.2, 0.1, 0.05, and
0.01 times the original size. The largest primitive in the largest size takes up roughly one
eight of the screen, while taking up only one pixel in the smallest scaling (all the other
primitives in the test pattern generate no pixels at at that scaling). The test script runs
through all sorts of combinations of render modes (though not every possible combination,
as that would create an untenably huge amount of data): texture mode is varies between
COLOR, TEXTURE and BLEND (other modes are approximately the same computation-
wise as blend); texinterp, which chooses between nearest neighbor and bilinear filtering;
whether the primitives should be lit (with both ambient and directional light); colinterp,
and litinterp, which choose between flat shading and interpolated shading; whether the
primitives should be transparent (they are either all transparent or all opaque in the test);
nousez and nowritez, which determine the usage of the depth buffer; and finally unordered,
which forces normally in-order primitives to render out-of-order anyway, and only has an
effect if the primitive is transparent or one of nousez and nowritez are on (also, it does
not have an effect on the single tile implementation). Every combination of these modes is
simulated with every primitive scaling factor listed above. In addition, the entire test is run

79

Figure 5-3: Triangle Performance Test Pattern

.4both on the full implementation of the processor and on the single-tile implementation .
This all generates a large amount of data, for which a Perl script was written to process
and generate tables of the information in various relationships.

After as much performance data about various modes had been recorded, the next
task was to analyze the data for certain meaningful relationships and performance results.
One important metric is overall speedup with the 16-tile parallel configuration versus the
single-tile implementation of the same algorithms, which will tell us generally how good
the parallelization was. Ideally, the speedup will equal the number of processors times
the processor utilization - this should be checked against the actual numbers and any
differences analyzed. The processor utilization per stage can also be used to determine where
the bottlenecks are, and why the system achieves less-than-ideal speedup. The speedup and
utilization is expected to change according to the test parameters, as different stages will
have differing loads. The direct effect of the test parameters on the load of the different
stages can be estimated by looking at the active cycles of each stage, although this ignores
aspects of the basic rendering algorithm that require waiting, such as accessing memory or
reading from the framebuffer. The analysis of the different load balancing and parallelization
efficiency will lead to some key insights for improvements described in Chapter 6.

In addition to the performance metrics above, certain absolute measures, such as trian-
gles per second and pixels per second are of interest. These metrics will assume a nominal
Raw processor frequency of 300MHz, though the equivalent metrics of cycles-per-triangle
and cycles-per-pixel can be used as well. These metrics are commonly used to classify mod-
ern graphics processors, as they describe the basic limitations of the processor: pixel rate
limits the maximum frequency a certain resolution can be drawn at (which is worse if there
is overdraw, or multiple overlapping primitives drawn over each other), and the triangle rate
limits the maximum frequency for a scene of certain geometric complexity. Analyzing how
to improve on these two important metrics will also be an important aspect of Chapter 6.

5.3.1 Performance Model

The parallelized version of the pipeline should achieve speedup over the single-tile imple-
mentation in two ways: pipelined execution, and parallel pipelines. Whereas the execution

4 Originally, the tests were also to be run with and without texture caching enabled, to analyze the effects

of having cached textures on the performance of the pipeline. However, there was an error in the code that
simulated disabling the cache, which produced incorrect results that were not discovered until it was too

late to re-run the simulations for inclusion in this thesis.

80

time of the single tile processor will equal the total sum of all the execution times for each

individual stage's work done, the execution time of a pipelined implementation will equal
the maximum of all the execution times for each individual stage's work done. However,
the individual execution times may be significantly longer due to parallelization overhead.
Also, the maximum speedup is only achieved if all the stages in the pipeline are balanced
- otherwise, stages which have less work to do will be sitting idle, wasting potential cycles,
while the other stages finish what they are doing.

The measure of active versus total cycles is an approximation of the cycles wasted
by each tile; however, it is not completely accurate, as even the single tile case will not
achieve 100% utilization - certain occurrences, such as cache misses, data hazards, and
waiting for framebuffer reads can result in a blocked processor. Therefore, it is difficult

to determine exactly how many wasted cycles are added by parallelization overhead and
balancing problems, and how many are inherent to the algorithm's structure. Also, as
mentioned above, the parallelized tiles may have more work to do per tile, which does not
come across in a pure utilization measurement.

Ideally, the speedup for multiple pipelines in parallel will be the speedup of one pipeline
times the number of pipelines. However, there is some added overhead to the work that
must be done by each stage due to parallelization: this includes overhead to distribute the
primitives among tiles at the top, plus overhead to run the mutual exclusion algorithm
at the bottom, along with extra wait times due to flushing, invalidating, and handling
cache misses when accessing shared memory between tiles. For example, a single pipeline

implementation could cache all renderstate and z-buffer accesses, leading to significantly
less work to be done by the first and last stages (the single-tile implementation would also

have such an advantage). Also, if the final compositing stage cannot keep up with the
rate of fragments to render, the pipelines will end up stalling waiting for its last stage

processor to gain access to the framebuffer and depth buffers to be able to process its
buffered fragments. Note that effectively only one final stage tile will be active at any
time, and therefore the maximum throughput of the final compositing stage is that of one
tile in the compositing stage (this, of course, is complicated by having finite buffering -
though if the buffers fill this generally means that the throughput of the final stage is not
adequate for the amount of data coming out of Stage 3). The stages can of course do some
of their work while it is not their turn, such as reading in and buffering the fragments to be
drawn - but generally, the utilization of the final stage is expected to remain around 25%.
For reasonable parallelization performance, each tile in the final stage must be capable of
handling the total fragment bandwidth of all the previous pipeline stages. Having in-order
primitives can make the performance much worse, as only one primitive is being rendered
at a time, causing the final stage to be slowed down to the rate of only one pipeline at a
time, while it usually is fast enough to handle multiple pipelines simultaneously.

The relationship between pipeline overhead, parallelization overhead, pipeline load bal-
ancing, the throughput of the final stage, buffering and other factors, and their effects
on total work to be performed, utilization, and speedup is complicated. Attempts were
made to generate an analytical model to relate all these parameters, but they came out
confusing, with many variables that could not be verified empirically and many relation-
ships left unsolved (such as the relationship between a pipeline having to wait on the last
stage to output its fragments, the utilization of processors in that stage, and the amount of
buffering between the stages). Therefore, no analytical model for performance is presented,
and rather the empirical results from the next section are compared against the intuitive

understanding of what impacts performance that has been developed in this section.

81

5.3.2 Empirical Performance Results

Most of the measurements of performance in this section look at how the variables change
across a set of different typical render modes: starting from a baseline of flat colored only,
this is modified by individually adding interpolated color, nearest neighbor texture, bilinear
texture, flat colored lit, interpolated lit, transparent, and unordered transparent. Also, for
comparison, a mode with interpolated color, texture, and lighting turned on is included, run
as opaque, transparent, and unordered transparent. Finally, flat colored with no z access
(but still unordered) is measured for the best case scenario. This set of data allows a feel for
the individual contributions of different features, how the contributions combine together,
and the full performance range from worst to best case. Each chart is displayed versus
scaled primitive size on the horizontal axis, and the variable of interest on the vertical axis.

While preparing preliminary versions of these graphs, an anomaly was noticed when the
triangle scaling was very small, especially at 0.01, both Stage 1 and Stage 4 would be at
around 25% utilization. This was unexpected, as Stage 1 should have had more utilization
(since the triangles were so small, the computation was geometry-limited and stage 1 did
not have to wait for subsequent stages to finish rasterization), and Stage 4 should have had
less (as there were only 4 pixels drawn per test, and it should have been waiting idly for
pixels to arrive the rest of the time). However, the data indicated that only one tile of
stage 1 was active at a time, and stage 4 was running at almost full speed! Two problems
were discovered that lead to these anomalous results: an earlier bug fix in Stage 1 caused
it to incorrectly wait until after geometry transform calculations before it sent the token
into the network allowing the switches to start routing data to the next tile. Therefore,
each tile would only start up after the previous had finished completely. In Stage 4, most
of the cycles were used up passing the token around while waiting for input from the static
network, and these were counted as active cycles by the profiling code. Stage 1 was fixed
by rearranging the algorithm to send the token as soon as possible (and the efficiency
regarding how render data was flushed from the cache was improved), and Stage 2 was
fixed by labeling the automatic token-passing code in the interrupt handler as a busy-wait
section. There was not enough time to re-run all the performance tests (the full suite takes
over a week to simulate, even when spread across a dozen or so machines), but the scalings
of 0.01 and 0.05, which are believed to be the most affected, were re-run and inserted into
the results from before. Higher scalings cause the processor to be rasterization-limited,
so the first stage is spending most of its time waiting for the latter stages anyway (and
therefore parallelization of the first stage is not as big an issue), and the last stage spends
most of its time drawing pixels and less processing the token-passing interrupts.

Figure 5-4 compares the speed-up over a single-tile implementation, the average proces-
sor utilization in the parallelized architecture, the expected speedup based on that utiliza-
tion, and the estimated overhead based on the difference between that expected speedup
and the actual speedup. The maximum speedup this architecture can achieve over the
single-tile implementation, it appears, is a little less than 5. And that is for flat-shaded
untextured unlit primitives that do not access the z-buffer at all. The speedups for various
combinations of rendering modes fall within a 3 to 4.5 times improvement, with the speedup
peaking somewhere at moderate triangle sizes. Transparent primitives cause the speedup
to drop to less than 3, even when allowed to render out-of-order, and to fall to less than 2
when strict ordering is maintained. Very small primitives also cause the speedup to drop
to less than 2. For a 16-tile processor, speedups in this range mean that there is either a
lot of overhead, or that a lot of potential processing power is being wasted.

82

0.3
0.25
0.2

0.15
0 .1

0.05
0

6
5

4
3

2

1

0

Total Processor Utilization in the
Parallelized Implementation

0.01 0.05 0.1 0.2 0.3 0.5 1

Primitive Scaling

Speedup over Single Tile

F--

0.01 0.05 0.1 0.2 0.3 0.5 1

Primitive Scaling

-*- Flat Colored
-- Transparent Unordered

-)K- Interpeted Color
-- Bilinear Tex.
,!!r Interpreted Lit
-+- Color, Tex., Lit, Transparent

0.6
0.5
0.4
0.3
0.2
0.1

0
-0.1

Estimated Parallel Pipeline
Overhead

0.01 0.05 0.1 0.2 0.3 0.5 1

Primitive Scaling

Expected Speedup over Single Tile
from Utilization

6

5-
4-

3 --- .-....

2-

1
0

0.01 0.05 0.1 0.2 0.3 0.5 1

Primitive Scaling

-0 Transparent
-X- No Blending or Z, Unordered
-E- Nearest Neighbor Tex.
-E- Flat Lit
-I- Color, Tex., Lit
-A- Color, Tex., Lit, Transparent, Unordered

Figure 5-4: Performance: Speedup, Utilization, and Estimated Overhead

83

To determine where the problem lies, the speed-up is compared to the total processor
utilization of the Raw chip. The processor utilization is used to calculate an "expected
speedup," which assumes that there is no parallelization overhead. This expected speedup
is equal to processor utilization on the Raw chip divided by the utilization on a single
tile (not shown, though it ranged from about 60% to 80%), times the number of tiles
(sixteen). When the actual speedup does not match the expected speedup, the discrepancy
is assumed to be due to pipeline overhead (note that negative pipeline/parallelism overhead
is possible - in these cases, the parallelized pipeline algorithm performs less overall work
than the single tile algorithm) 5 . Based on this analysis, the overhead varies from around
50% with small primitives to less than 15%, down to a negligible amount of overhead for
large primitives. This does not account for the poor efficiency of this parallel design, which
varies from around 28% to around 9.4%. A large part of the inefficiency must be due to
poor processor utilization - and indeed, the utilization on the raw never seems to go above
25% or so - and so the causes of this poor utilization must be explored.

Figure 5-5 breaks down the average processor utilization by stage, and Figure 5-6 plots
the total active cycles for each stage. (The large discrepancy between primitive scalings of
0.05 and 0.1 in the total active cycles for stage 1 is caused by the fix mentioned earlier that
was only re-run for these two data sets. It turns out that the fix also made Stage 1 have
to do less work, and so its active cycles decreased.) Obviously the amount of utilization
between the stages varies widely, indicating a problem with load balancing: Stage 1 only
achieves decent utilization with very small primitives, and its utilization drops off rapidly as
the primitives get larger; Stage 2's utilization is the best for primitives which require very
little processing other than rasterization, but drops off progressively more with blended
fragments, texture mapped fragments, transparent and unordered fragments in different
combinations; Stage 3's utilization, on the other hand, is best when a lot of blending and
texture mapping is taking place, and worst when transparency and out-of-order fragments
are passing through - the completely unblended primitive lands right in the middle; Finally,
Stage 4's utilization is best for the unblended fragments (probably because they can be
rasterized quickly enough to saturate the 4th Stage's bandwidth), worst for the out of order
primitives, and about the same for everything else. Another way to view the load balancing
problem is to look at the total active cycles per stage - when a stage has a lot of work
to do, it typically has a better utilization, at the expense of other stages who have to slow
down their own computations to wait for the busiest stage.

In addition to load balancing concerns, however, is the fact that the processor utilization
still does not go about 50% for any stage at any time, which implies that some other ineffi-
ciencies are involved - recall that the single tile implementation achieved around 60-80%
utilization. Perhaps stages are still waiting on one another even when they are relatively un-
loaded due to inherent pipeline overhead, or unavoidable bottlenecking at the compositing
stage. Also, perhaps some parallelization overhead is involved - this is certainly the case
with Stage 4, whose 25% utilization cap stems from the fact that its synchronization algo-
rithm only allows one tile to be doing most of the work at any time. Stage 1 may also stuffer
from parallelization overhead, though not as severe. Finally, the abysmal performance of in-
order primitives is due to the bottlenecking that occurs given the current over-conservative
and inefficient sequential consistency algorithm for such in-order primitives.

Figure 5-7 displays the triangles per second and pixels per second achieved by the single-

5 Overhead could also be estimated by looking at the total number of active cycles computed by the Raw
processors versus the number computed in the single tile. The answers come out identical.

84

1

0.1

0.01

0.001

0.0001

0.5

0.4

0.3

0.2

0.1

n

Average Utilization for Stage 1

0.01 0.05 0.1 0.2 0.3 0.5 1

Primitive Scaling

Average Utilization for Stage 3

0.01 0.05 0.1 0.2 0.3 0.5 1
Primitive Scaling

- Flat Colored
-- Transparent Unordered

-M- Interpeted Color
-- Bilinear Tex.
-- Interpreted Lit
-*- Color, Tex., Lit, Transparent

Average Utilization for Stage 2

0.6

0.5~
0.4

0.3

0.2

0.1

0

0.3

0.25

0.2

0.15

0.1

0.05

0

'V - -. .

-*- Transparent
-*- No Blending or Z, Unordered
-E- Nearest Neighbor Tex.

* Flat Lit
-i- Color, Tex., Lit

A Color, Tex., Lit, Transparent, Unordered

Figure 5-5: Performance: Utilization per Stage

85

S
-

- -

-E

-F

0.01 0.05 0.1 0.2 0.3 0.5 1

Primitive Scaling

Average Utilization for Stage 4

0.01 0.05 0.1 0.2 0.3 0.5 1

Primitive Scaling

Total Active Cycles in Stage 2

60000
50000
40000

30000
20000

10000
0

100000000

10000000

1000000

100000

10000

100000000

10000000

1000000

100000

10000

1000

Primitive Scaling

Total Active Cycles in Stage 3

ON @ 0>
0* 0 Q* P (P

Primitive Scaling

-0- Flat Colored
-Transparent Unordered
-*- Interpeted Color
--- Bilinear Tex.
-A- Interpreted Lit
--- Color, Tex., Lit, Transparent

0N ,
0* QO*Z 0* 0 0

Primitive Scaling

Total Active Cycles in Stage 4
100000000

10000000

1000000

100000

10000
N 6N Q;-(P4 N

Primitive Scaling

-4- Transparent
-X- No Blending or Z, Unordered
-E- Nearest Neighbor Tex.
-9- Flat Lit
-+- Color, Tex., Lit

A Color, Tex., Lit, Transparent, Unordered

Figure 5-6: Performance: Active Cycles per Stage

86

-I

-A

- - --

Total Active Cycles in Stage 1

tile and parallelized implementations on a 300MHz Raw chip. The peak pixel rate achieved
looks to be just below 4 million pixels per second, compared with 800,000 pixels per second
for a single tile, and the peak triangle rate is around 200,000 triangles per second, compared
with around 100,000 for a single tile. For a screen resolution of 320x240, this pixel rate can
achieve around 50 frames per second (less for more complicated primitives), which could not
have any more than around 4,000 triangles so to sustain that frame rate. A 640x480 image
would run (at peak) at around 13 frames per second with a maximum of 15,400 triangles,
though this frame rate is not very ideal for interactive use, especially since most scenes use
more complicated operations such as texturing that would slow it down even further.

For comparison, commercial graphics processors of a few years ago could readily push
300 million pixels per second, and transform 6 million vertices per second; And modern
graphics processors claim numbers of up to 6 billion pixels per second and 300 million
vertices per second! Although these numbers represent peak rates, rather than achieved
rates, and are no doubt inflated by marketing, they still demonstrate that even at its best,
this architecture has a huge amount of room for improvement compared to the current
state of the art in consumer graphics accelerators, or even the state of the art several years
ago. While the architecture described in this paper is only comfortable at 320 by 240
resolution, modern graphics accelerators perform quite well at resolutions closer to 1600 by
1200, handle multiple textures per primitive, and perform techniques such as anti-aliasing
and anisotropic filtering that require huge amounts of pixel throughput. Also, in terms of
triangle and geometry throughput, though modern CPUs can only source around 2 million
triangles per second to the graphics card, modern graphics cards can procedurally generate
many more primitives than that through techniques such as "vertex shaders," and have
been able to achieve triangle rates into the hundreds of millions.

All is not lost, however, as there are many ways the architecture described in this paper
can be improved immensely, and they are the subject of the next Chapter. In particular,
the Raw architecture can be scaled by adding more processor tiles to the chip, and the
ability for this 3D architecture to scale along with it is analyzed in Section 6.3.

5.4 Summary

This section presented the framework used for verification and performance testing of the
architecture described in this paper, and then presented the verification and performance
results garnered from that framework. The speedup from parallelization was not ideal, due
partially to overhead from parallelization and communication that was not present in the
single-tile version, but mostly due to an imbalance in the workloads performed between the
different stages of the pipeline. However, in this kind of architecture, such imbalance is
hard to avoid because of the differing requirements of different images to render.

The absolute performance of the architecture implemented on a 300MHz Raw chip is
far below that of most commercial 3D Graphics implementations (though it is adequate to
render images in 320x240 resolution in realtime). This can be somewhat improved by scaling
the architecture horizontally - that is, adding more parallel pipelines - but eventually
the speed will be limited by the bandwidth of the last stage, where only one tile can be
rendering at a time. Suggestions on modifying this architecture in various ways to improve
its performance and efficiency are the topic of the next chapter.

87

Pixels Per Second in Parallelized

4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000

0

250000

200000

150000

100000

50000

0

Implementation

Primitive Scaling

Triangles Per Second in Single-Tile
Implementation

0.01 0.05 0.1 0.2 0.3 0.5 1

Primitive Scaling

- Flat Colored
- Transparent Unordered
-)K- Interpeted Color
-U- Bilinear Tex.
-6- Interpreted Lit
-+- Color, Tex., Lit, Transparent

4000000
3500000
3000000
2500000
2000000
1500000
1000000
500000

0

250000

200000

150000

100000

50000

0

Implementation

_'

Primitive Scaling

Triangles Per Second in
Parallelized Implementation

0.01 0.05 0.1 0.2 0.3 0.5 1

Primitive Scaling

-*- Transparent
-*- No Blending or Z, Unordered
-B- Nearest Neighbor Tex.
-&- Flat Lit
-i- Color, Tex., Lit
-A- Color, Tex., Lit, Transparent, Unordered

Figure 5-7: Performance: Triangles and Pixels per Second

88

I-It,

- - -

Pixels Per Second in Single-Tile

Chapter 6

Improvements and Suggestions for
Future Work

This chapter will describe some ideas for improvements over the current rendering architec-
ture, and suggestions for future work in similar projects. From the results of the previous
chapter, it is apparent that this rendering architecture has a way to go before realizing the
full benefit of parallelizing the rendering algorithms, and before coming within the same re-
gion of performance as commercial offerings of even several years ago. However, the results
from the last chapter allow us to analyze the bottlenecks and imbalances in the pipeline
and make some suggestions based on what was learned from this project. Next, the issue of
scaling the architecture to larger Raw arrays is discussed, including why the current archi-
tecture does not lend itself very well to scalability and what can be done about it. Finally,
other ways in which this project could have been extended or improved, but was not due
to time constraints, are discussed.

6.1 Improving Parallelization Efficiency

There are basically four ways in which the parallelization of this architecture is made less
efficient: overhead due to pipelining, overhead due to parallel pipelines, load imbalance in
the pipelines, and the serialization bottleneck at the end of the pipelines.

6.1.1 Reducing Pipelining Overhead

Pipelining overhead is defined here as operations that the processor would not have to
perform if all the code was in one tile, but that it does because of the pipelining. The major
culprit is communication overhead between the tiles. There is no pipeline interlocking or any
further synchronization required, so these are not a problem. Note that pipelining overhead
does not include extra work required due to the existence of multiple parallel pipelines -
that is discussed in the next section. It also does not include processors stalling for extra
cycles due to imbalance in the pipeline - that is discussed in Section 6.1.3.

As mentioned, the major overhead to pipelining the graphics algorithms is the need
to package up, send and receive all the data from one stage to the next, whereas in a
single processor implementation one could just leave all relevant variables in memory. In
a way, this is unavoidable (and attempting to use shared memory would be even more
inefficient), but techniques could possibly be devised to reduce the amount of data that

89

needs to be transferred, and the overheads for sending and receiving that data. The full set
of fragment parameter information does not have to be sent for a fragment that does not
have all the modes turned on (for example, it makes no sense to send "intensity" down the
pipe if it is a non-lit primitive). The same argument holds for primitive info, which can be
likewise reduced to the bare minimum necessary. The trick is to be able to do this without
introducing too much additional overhead in decision making logic to reduce and expand
the information being passed.

One may try more advanced schemes such as compression, and even temporal com-
pression (where the data for the current primitive or fragment is related to previous ones),
though the cost of such techniques would be an issue. However, there is one case where
such a temporal scheme might make sense: untextured fragments, textured fragments, and
pixels all are rasterized row by row, but their full x and y coordinates are sent with every
fragment. With hundreds of thousands of fragments on the screen, this can be a significant
amount of additional transfer. A simple improvement would assume that each subsequent
fragment has the coordinates (x +1, y) relative to previous fragments in the same primitive,
unless a special marker came down the pipe setting up a new x or y coordinate (for example,
starting a new row or skipping over 100% opaque fragments). This optimization could be
combined with the "block" writing mode for the framebuffer for even more optimal pixel
performance.

Also, flow control overhead could be reduced, such as in Stage 3, where it must send
flow control words to the static network (See Section 4.2.3.4). Using the GDN in such
cases would avoid such flow control overhead but add the overhead of GDN headers and the
message length, so may or may not afford an improvement, depending on the circumstances.

6.1.2 Reducing Parallelization Overhead

Parallelization overhead is defined as the additional work required by each of the tiles in a
pipeline when there are multiple parallel pipelines among which the rendering data is split.
This additional work may include non-active cycles due to cache misses and the like, but
in general extra waiting due to load imbalancing or bottlenecks are not included in this
overhead - they are discussed in the next two sections.

Most of the overhead from parallelization occurs in two areas: communication and
synchronization. In the architecture described in this paper, synchronization overhead only
occurs in the first and final stages. The first stage's synchronization overhead is minimal: a
handful of extra cycles are required by the static network to determine to which processor
to send new primitives, and a few extra cycles are required by the tile code to begin and end
every primitive transaction. The final stage is a bit tricker to analyze, because only one tile
is truly active at any time, leading to some tricky performance analysis, but it also usually
has low synchronization overhead, as handling the token only requires a handful of cycles
per pass. However, when ordered primitives are rendered, the sequential synchronization
of the last stage makes it so that only one pipeline is rendering for a long chunk of time,
making it impossible to overlap rendering and take full advantage of the speed of the last
stage.

One possible solution to the ordered primitive problem is to somehow split ordered
primitives across several rasterizing pipelines, and let the pieces all render simultaneously
just like unordered primitives do. Another solution is to implement less conservative se-
quential locking, and only lock out an ordered primitive if another primitive that overlaps
it or may overlap it is present in the final stage. The locking could even be done on a

90

fragment-by-fragment basis; however, such dynamic fine grained locking becomes difficult

to do efficiently on a coarse-grained machine like the Raw, though this solution can be used

to great effect on fully custom hardware.

Communication overhead occurs whenever parallel tiles need to communicate some state

information with each other. This occurs primarily in this architecture through use of shared

memory structures. The problem with shared memory structures is that flushes, invalidates,
and cache misses are an inherent part in keeping data consistent. It would be much more

efficient if instead of having to flush data all the way back to main memory, then have the

tile right next to you load that data again from main memory, one could send the data

updates directly between tiles, via GDN or static messages (though static messages would

be difficult given that the static network is already being used to route the primitive and

fragment data).
The two major uses of shared memory communication in the pipeline are the render

state in the first stage, and the z-buffer in the last stage. Both use round-robin type

synchronization (though the first stage is more complex, and done transparently through
the static network), so perhaps sending render state updates and z-buffer changes round-

robin would also work. Such a technique would have to be careful about synchronization and

deadlocking, however, and would probably require a lot of work to get working efficiently.

Still, the benefits could be pretty substantial.

One improvement to z-buffer handling that was discovered too late to add to the im-

plementation described in this paper is that the tile currently invalidates before and flushes

the z-buffer after every single pixel write, even if the one tile is doing several writes in a row.

Invalidating the z-buffer before all the buffered writes, and flushing afterwards may result

in more efficient cache usage. Also, the current methods for cache flushing and invalidating

are not optimal - see Section 6.2 for more information.

An inefficiency that is related to communication overhead and shared memory is the

fact that each tile in the texture-mapping stage has its own cache, so each would have to

load the texture from main memory individually, even if the same texture was used for all

primitives. Though a solution to this problem is not known, perhaps some sort of direct

inter-tile communication could again alleviate it a bit.

6.1.3 Improving Load Balancing

The graphics pipeline gets the best performance improvement over an unpipelined imple-

mentation if none of the stages need to wait idly on previous (or subsequent) stages to finish

up. The best way to achieve this is to give all stages approximately the same amount of

work to do. This is difficult with a 3D rendering processor, however, because different data
sets will stress the stages differently - for example, lots of small primitives will spend more

time doing geometry transformations, while a few very large primitives will spend much

more time during rasterization, and untextured primitives will spend considerably less time

than textured primitives doing texture lookup and combination.

For the most part, this seems like an unavoidable problem. However, it is not incon-

ceivable to somehow develop a dynamically load-balanced system, where more resources are

given to the parts of the pipeline that need it the most. The pipeline could be made incredi-

bly small-grained and modular, and could reconfigure itself for whichever kind of primitives

are being rendered. Untextured primitives would leave the texture mapping stage right

out, lots of small primitives would provide more resources for geometry transformations,

few very large primitives may cause the geometry transformation to occur on the same tile

91

as the rasterization. The amount of communication and synchronization required to do such
realtime reconfiguration seems mind-boggling, though perhaps it could be implemented on
a lesser scale - such as having a handful of pre-defined pipeline configurations to choose
from based on the kinds of primitives that are being rendered (e.g., a for a textured prim-
itive, Stage 2 may not only do rasterization but also perform texture coordinate mapping
and maybe even load the texture color from memory, while for an untextured primitive
Stage 2 would only perform half of the interpolation steps - with these kinds of variations
hard-coded into Stage 2 itself based on the kind of primitive). Such a technique would
still face some communication and caching difficulties, but could produce much better load
balancing over the entire processor.

A dynamic, modular pipeline structure could also scale much more easily to larger Raw
fabrics; See Section 6.3.

6.1.4 Improving Parallelization Bottlenecks

A parallelization bottleneck is a slowdown when too many parallel events have to be serial-
ized to some extent, and therefore can be data-dependent (as opposed to overhead, which
happens generally due to the structure of the pipeline). Bottlenecks can also limit the
performance of the system when scaled; See Section 6.3.

The major bottleneck in this architecture is the fact that pixel writes have to be se-
rialized. This is generally not a problem, as the pixel writing stage can usually process
more fragments than the previous stages (rasterization and texture/blending) can generate.
However, the performance of the previous stages can be improved by adding more parallel
pipelines, while the performance of the last stage remains the same bottleneck. As noted in
the previous chapter, the pixel rate for the current implementation of this 3D architecture
on Raw is pretty slow, and the maximum pixel rate that the final stage can perform at is
not much better, and so improving the performance of this last stage is critical in increasing
the overall performance of the architecture.

The bottleneck of the last stage can be improved in two ways: by keeping the serialization
point and improving its maximum throughput, or by attempting to remove the serialization
point and letting the architecture scale to improve performance.

One interesting method to improving the maximum throughput of the final stage is,
instead of using four processors in parallel to render the pixels, use four processors in another
pipeline configuration. Each processor could perform one step of the pixel rendering (z buffer
read, z buffer write, frame buffer read + blending, frame buffer write), to hopefully increase
the throughput of pixel writing and reduce the number of cycles per pixel. Stage 3 would
have to somehow serialize its outputs to arrive at the first tile in this sub-pipeline, though
some method using the GDN or even interestingly programmed static network messages may
be workable. The stages of the pipeline would also have to worry about interlocking when
there are z-buffer or frame-buffer dependencies among the multiple fragments that would be
in-flight, which may require some tricky communication on the Raw architecture. However,
such a setup may gain the benefits of fine-grained synchronization between primitives that
were described in Section 6.1.2. Additionally, if this pipeline was implemented in a modular
way, as described in the previous section, it could be scalable when there are more tiles
available in larger Raw processors.

However, even with the fastest, most efficient pixel pushing pipeline in the world, the
processor could never go above one pixel per cycle simply due to the communication speed
of the Raw networks. But Raw has several networks in parallel, which add up to even more

92

pixel bandwidth! If somehow primitives could be sent to the framebuffer in parallel, instead

of in a serialized fashion, large performance gains could be realized as the architecture

scales up. The framebuffer system may have to be modified to increase its bandwidth, as

well, and many modern graphics cards have huge memory bandwidth available just for this

purpose. Modern consumer-level graphics processors and memory systems can sometimes

output up to eight pixels per cycle, and even more! However, one must devise a method

to ensure sequential consistency among the parallel primitives without compromising the

parallel performance benefits, and also one must up the bandwidth of the depth buffer to

accommodate the scaling of the architecture, as well.

It might also be possible to combine these techniques, such as having a couple short

pipelines in parallel. Such a compromise solution may end up giving the best overall results,
but it is uncertain at this point.

Finally, accesses to shared memory such as the z-buffer and texture memory are subject

to parallelization bottlenecks as well. Perhaps spreading the memories across several chips,

and taking fuller advantage of the Raw processor's massive I/O bandwidth would lead to

some substantial gains.

6.2 Improving Raw Performance

All the previous sections concentrate on reorganizing the way the rendering algorithms are

parallelized and pipelined, in order to squeeze more utilization and performance out of them.

However, that is not to say the original rendering algorithms are optimal! The performance

of the 3D processor can probably be vastly improved by spending time to optimize the

critical parts of the 3D rendering algorithms themselves.

Firstly, the inner loops for each stage, especially the rasterizing, texture blending, and

pixel pushing loops, could be hand-coded in assembly to squeeze every possible cycle of

performance out of them. The current C code is primarily aimed at correctness, not optimal

performance, and there is probably lots of room for improvement (although some attempts

were made to make Stage 4's pixel pushing loops a bit more efficient). There are also some

sections of the code that are quite un-optimal in their current form - especially flushes and

invalidates for shared memory blocks. These will loop over every word in the data structure

and attempt to flush it or invalidate it from the cache, without regard to block size or (for

very large structures) whether the entire structure can even fit in the cache. The result is

that much of the time these cache management loops spend more time than the need to

spinning on the data. A smarter algorithm could save a lot of cycles, especially with things

like render state and texture memory.

In addition to more efficiently coding the existing algorithms, those algorithms could

be modified to increase their performance. Math could be migrated from floating point to

fixed point in many cases. The triangle rasterization algorithm could be improved to waste

less cycles between rows. There may be more efficient ways to calculate bilinear filtering,
etc.

More significant changes and additions could also be made to the algorithms used. Fast

z clear, hierarchical z buffers, or even z compression could be used to reduce the delay in
checking the z buffer for every pixel. The changes could even occur with external hardware

support - for example, the framebuffer controller could be modified to be able to do

blends into the framebuffer for you, significantly reducing the latency when trying to render

a transparent primitive.

93

Another example of an algorithmic improvement would be to accept mesh structures
instead of only individual primitives. A mesh structure is a set of primitives who share
certain vertices, and therefore less vertex calculations would have to be performed (along
with less I/O bandwidth needed to send all the vertices).

Basically, having been written for correctness and under a strong time constraint, the
code for the underlying algorithms has a good amount of room for improvement in terms
of its basic performance. A release version of such a 3D processor should obviously be
optimized as fully as possible.

6.3 Scaling the Graphics Architecture

Several previous sections have mentioned how some improvements can affect the scalability
of the processor (intuitively defined as the ability for the parallel application to take ad-
vantage of increased parallel resources). This is an important concern on Raw, as a major
premise of the Raw architecture is that, as technology improves, more and more tiles can fit
on a single chip, resulting in improved performance. So the question is, can this rendering
pipeline be easily modified to attain improved performance on a larger Raw chip with more
processing tiles?

As for being easily scaled, the architecture can readily be extended horizontally, adding
more rendering pipelines in parallel with each other. Some code will have to be rewritten,
and constants changed, but the basic structure of the code will remain the same (it may
even be possible to automate the generation of scaled code). However, scaling in the vertical
direction, adding more pipeline stages per pipeline, would require radical rewrites of all
the tile code to accommodate the new pipeline structure. As mentioned previously in
Section 6.1.3, having a modular, more finely-grained pipeline structure may make scalability
much more attainable. A dynamically rebalanced pipeline may also be able to take fuller
advantage of more pipeline resources.

However, there is still an upper limit to the scalability of any pipeline, where the com-
putation is divided so finely that the overhead of pipelining dominates each tile's activity.
To avoid this, some of the extra "vertical" processors could also be used for parallelizing the
pipelines (that is, for "horizontal" scaling). This would require a more complicated place-
ment of the tiles and of the routing between them, but may result in improved utilization
of the extra processor resources.

Parallel scaling may still run up against performance bottlenecks, however, especially
with the final stage serializing accesses to the framebuffer, and with simultaneous shared
memory accesses. As suggested in Section 6.1.4, the I/O itself can be scaled so that several
accesses to the framebuffer and the RAM can be processed at any time. However, synchro-
nization between such accesses (to resolve dependencies, for instance) will become more
complicated as the number of simultaneous accesses increases. In the end, the scalability
of this architecture can be improved greatly over the current implementation, but it will
run up against some very challenging limits as the number of tiles available continues to
increase.

6.4 Ways to Extend This Thesis

Besides performance improvements and general suggestions for future work, there are many
other ways that the project developed in this thesis can be extended. In the vein of im-

94

proving the processor itself, for example, the available feature set could be made more rich:

more blending modes, mip-mapping and multi-texturing, anti-aliasing, additional hardware

lights, programmable shaders, line drawing routines and innumerable other features could

be added to the processor. The processor could also be modified to support multiple reso-

lutions and image modes, standard 2D PC graphics, and so on.
Another possibility would be to write an OpenGL interface for the graphics AI, to allow

a much larger set of programs to be run and tested on the architecture. The processor could

also be implemented in actual hardware, perhaps even with a low-level driver to interface

the hardware through an API layer with a 3D application.
A final possibility - though there surely are many more - is to port the architecture to

something like StreamIt [6], a streaming programming language for Raw, which may allow

more flexible, dynamic pipeline designs. Using stream processing for polygon rendering has

shown to produce good results [14].

6.5 Summary

This chapter took the performance results from the previous chapter, and the experience

from implementing this 3D architecture in general, and provided some avenues for improve-

ment over the current implementation, and suggestions for future work in the area. The

suggestions mentioned various ideas on reducing pipelining and parallelization overhead,
improving load balancing, reducing the impact of key bottlenecks, and improving the scal-

ability of the architecture.

95

96

Chapter 7

Conclusion

This paper presented the background, design, implementation and analysis of a complete 3D
graphics processor built on the Raw reconfigurable architecture. Starting from the basics

of the 3D rendering algorithms themselves, the paper worked through the development

of pipelining and parallelizing those algorithms on the Raw architecture. A fully-working
rendering architecture was developed, with several of the difficult problems involved detailed

in this report, and implemented on a simulated Raw processor. Exhaustive performance

measurements were taken, and it was found that the performance of this from-scratch 3D
architecture was well below that of any modern 3D processor. The major culprits for this

were discussed, and improvements and directions in which to head were suggested. In order

for a 3D processor on Raw to be successful, it is critical that it make the most use of

available processors as possible, and waste as few cycles as possible. Perhaps the solution

would be a more efficient, less parallelized but deeper pipeline - or perhaps the other

direction would be more fruitful. Whatever the case, the fact remains that this is a very

challenging application, that will provide much fruitful and interesting work to anyone who

decides to pursue it further.

97

98

Appendix A

Additional Rendered Images

99

I

0

0

101

102

Appendix B

Single-Tile Code Listing

Note: the single-tile code uses headers from the complete implementation in Appendix C,
and uses the same testing framework that is in Appendix D.

B.1 SingleTile.c

//Single Tile.c

//
// Ken Taylor, MIT Master's Thesis 2004

//
// Last Updated: 4/18/2004

/1
/ the whole renderer implemented as a single tile for speedup comparison

#include "module-test .h" // includes raw.h
#include "raw-compiler-defs. h" // for PASS (testing) 10
#include ". /implement/Stagel-datatypes.h" // shared datatypes
#include ". /implement/ZBuftdatatypes.h" // for z-buffer/stage-4 interaction
#include ". /implement/render-framebuffer.h"
#include ". /implement/render- cmds.h" // command defines
#include ". /implement/Common-sw.h"

// Start up the switch (code in assembly)
void setup-switch-main(void);
void setup-switch-scenestream(void);

20
RenderState *prs;
TexManager *ptm;
ZBufData *pzbd;

// matrix multiply! r = M*e
void MatrixMult(float *rO, float *rl, float *r2, float *r3,

TransformMatrix M,
float eO, float el, float e2, float e3)

{

103

*rO = M[O][O]*eO + M[O][1]*el + M[O][2]*e2 + M[O][3]*e3; 30

*rl = M[1][O]*eO + M[1][1]*el + M[1][2]*e2 + M[1][3]*e3;
*r2 = M[2][O]*eO + M[2][1]*el + M[2][2]*e2 + M[2][3]*e3;

*r3 = M[3][O]*eO + M[3][1]*el + M[3][2]*e2 + M[3][3]*e3;

}

// matrix to matrix multiply! X = M* Y

void MatrixMatrixMult(TransformMatrix X, TransformMatrix M,
TransformMatrix Y)

{
int i,j,k; 40

for(i = 0; i<4; i++)
for(j = 0; j<4; j++)

{
X[i]j] = 0;
for(k = 0; k < 4; k++)

{
X[i][j] += M[i][k] * Y[k][j;

}
}

} 50

//invert and transpose a matrix! X = (Y- 1)^T

// note: used only for normals, so:

/ - only computing the adjoint, not the inverse, and,

// - only computing it for the upper left 3x3 (no translation on normals)

// code from http://www.gignews.com/realtime020100.htm, accessed 4/20/04

void MatrixInvTrans(TransformMatrix X, TransformMatrix Y)

{
X[0][0] = Y[1][1] * Y[2][2] - Y[1][2] * Y[2][1];

X[0][1] = Y[1][2] * Y[2][0] - Y[1][0] * Y[2][2]; 60

X[0][2] = Y[1][0] * Y[2][1] - Y[1][1] * Y[2][0];
X[1][0] = Y[2][1] * Y[0][2] - Y[2][2] * Y[O][1];
X[1][1] = Y[2][2] * Y[0][0] - Y[2][0] * Y[0)[2];
X[1][2] = Y[2][0] * Y[0][1] - Y[2][1] * Y[0][0];
X[2][0] = Y[0][1] * Y[1][2] - Y[0[2] * Y[1][11;
X[2][1] = Y[0][2] * Y[1][0] - Y[0][0] * Y[1][2];
X[2][2] = Y[0][0] * Y[1][1] - Y[0][1] * Y[1][0];
X[0][3] = X[1][3] = X[2][3] = 0;
X[3][3] = 1;

70

// clears the renderstate (prs) to its initial values

void ClearRenderStateO

{
int ij;

104

prs->Updated = OxE;
for(i = 0; i < 4; i++) // init all matrices to the identity matrix

for(j = 0; j < 4; j++)
{

prs->ModelToWorld[i][j] = prs->WrldTView[i][j] =

prs->ModelTView[i][j] = prs->NormalToWorld[i][j] =
(i == j) ? 1.Of : 0.0f;

}
// temp projection matrix
// near = -3, far = -1
// left = -1, right = 1

// top = -1, bot = 1

//
// -3 0 0 0
// 0-3 0 0
// 0 0-2-3
// 0 0 1 0
/*prs-> WorldTo View[0][0]
prs-> WorldTo View[1][1] =
prs-> WorldTo View[2][2] =
prs-> World To View[3][3] =
prs-> World To View[2][3] =
prs-> WorldTo View[3][2] =

for testing

= prs-> Model To View[0][0]
prs-> ModelTo View[1][1] =
prs->ModelTo View[2][2] =
prs-> ModelTo View[3][3] =
prs-> ModelTo View[2][3] =
prs-> ModelTo View[3][2] =

prs->nx = 1.Of;
prs->ny = 0.0f;
prs->nz = 0.0f;
prs->rgba = OxOOOQOFF;
prs->pInfo.p.Mode.lit = 0;
prs->pInfo.p.Mode.useamb = 0;
prs->pInfo.p.Mode.usedir = 0;
prs->pInfo.p.Mode.texmode = 1;
prs->pInfo.p.Mode.texalpha = 1;
prs->pInfo.p.Mode.colalpha = 1;
prs->pInfo.p.Mode.colinterp = 1;
prs->pInfo.p.Mode.litinterp = 0;
prs->pInfo.p.Mode.texinterp = 0;
prs->pInfo.p.Mode.outoforder = 0;
prs->pInfo.p.Mode.textile = 1;
prs->pInfo.p.Mode.nousez = 0;
prs->pInfo.p.Mode.nowritez = 0;
prs->pInfo.p.SeqNum = 1;
prs->pInfo.TextureID = 0;
prs->pInfo.ColTexBalance = 0.5f;
prs->pInfo.alphaThresh = 128;
prs->pInfo.ambColor = 0;
prs->pInfo.dirColor = 0;
prs->Adx = 1.0f;

105

80

90

= -3;

-3;
-2;
0;
-3;
1;*/ 100

110

120

prs->ldy = 0.0f;
prs->ldz = 0.0f;
prs->ambreflect = 255;
prs->dirreflect = 255;
prs->dirdefined = 0; 130

prs->LaggedSeqNum = 1;

}

/ takes cmd, and executes it.

// returns true if going into scenestream, false if not.

// potentially uses prs, ptm, pzbd.

unsigned doCommand(unsigned cmd)
140

int ij;

switch(cmd)

{
case RENDER-BEGINSCENE:

static-send(0);
staticsend(O);
return 1;
break;

150

case RENDERCOLOR:
static-send(1);
prs->rgba = static-receive();
static-send(O);
prs->Updated = OxE;
break;

case RENDER-MODELMATRIX:
static-send(16);
for(i = 0; i < 4; i++) 160

for(j = 0; j < 4; j++)
{

prs->ModeToWorld[i][j] = static..receivefo;

}

static-send(0);

MatrixMatrixMult(prs->ModelToView, prs->WorldToView,
prs->ModelToWorld);

170

MatrixInvTrans(prs->NormalToWorld, prs->ModelToWorld);

prs->Updated = OxE;

106

break;

case RENDERIVIEWMATRIX:
static-send(16);
for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++) 180

{
prs->WrldTView[i][j] = static-receive-(;

}

static-send(O);

MatrixMatrixMult(prs->ModelToView, prs->WorldToView,
prs->ModelToWorld);

prs->Updated = OxOE; 190

break;

case RENDER-NORMAL:
static-send(3);
prs->nx = static-receivefo;
prs->ny = static-receive-f();
prs->nz = static-receive-f();

static-send(0); 200

prs->Updated = OxOE;
break;

case RENDERSET-LIT:
static-send(1);
prs->pInfo.p.Mode.lit = static-receive(;
static-send(0);
prs->Updated = OxOE;
break; 210

case RENDERSETUSEAMB:
static-send(1);
prs->pInfo.p.Mode.useamb = static-receiveo;
static-send(0);
prs->Updated = OxOE;
break;

case RENDER-SETUSEDIR:
static-send(1); 220

prs->pInfo.p.Mode.usedir = static-receive();

107

static-send(O);
prs->Updated = OxOE;
break;

case RENDERSETTEXMODE:
static-send(1);
prs->pInfo.p.Mode.texmode = static-receive();

static-send(O);
prs->Updated = OxOE; 230

break;

case RENDERSET-TEXALPHA:
static-send(1);
prs->pInfo.p.Mode.texalpha = static-receiveO;
static-send(O);
prs->Updated = OxOE;
break;

case RENDERSETCOLALPHA: 240

static-send(1);
prs->pInfo.p.Mode.colalpha = static-receive();
static-send(O);
prs->Updated = OxOE;
break;

case RENDERSETCOLINTERP:
static-send(1);
prs->pnfo.p.Mode.colinterp = static-receive();
static-send(O); 250

prs->Updated = OxOE;
break;

case RENDERSETLITINTERP:
static-send(1);
prs->pInfo.p.Mode.litinterp = static-receiveO;
static-send(O);
prs->Updated = OxOE;
break;

260

case RENDER-SET-TEXINTERP:
static-send(1);
prs->pInfo.p.Mode.texinterp = static-receiveO;
static-send(O);
prs->Updated = OxOE;
break;

case RENDERSETOUTOFORDER:
static-send(1);

108

prs->pInfo.p.Mode.outoforder = static-receive(); 270

static-send(O);
prs->Updated = OxOE;
break;

case RENDERSETTEXTILE:
static-send(1);
prs-->pInfo.p.Mode.textile = static-receive();
static-send(O);
prs->Updated = OxOE;
break; 280

case RENDER-SET-NOUSEZ:
static-send(1);
prs->pnfo.p.Mode.nousez = static-receive();
static-send(O);
prs->Updated = OxOE;
break;

case RENDERSET-NOWRITEZ:
static-send(1); 290

prs->pInfo.p.Mode.nowritez = static-receiveO;
static-send(O);
prs->Updated = OxOE;
break;

case RENDER-SETTEXTUREID:
static-send(1);
prs->pnfo.TextureID = static-receive();
static-send(O);
prs->Updated = OxOE; 300

break;

case RENDERCOLTEXBALANCE:
static-send(1);
prs->pInfo.ColTexBalance = static-receive-f;
static-send(O);
prs->Updated = OxOE;
break;

case RENDERALPHATHRESH: 310

static-send(1);
prs->pInfo.alphaThresh = static-receive();
static-send(O);
prs->Updated = OxOE;
break;

case RENDERAMBCOLOR:

109

static-send(1);
prs->pInfo.ambColor = static-receiveo;
static-send(O); 320

prs->Updated = OxOE;
break;

case RENDERDIRCOLOR:
static-send(1);
prs->pnfo.dirColor = static-receiveo;
static-send(O);
prs->Updated = OxOE;
break;

330

case RENDERDIRLIGHT:
static-send(3);
prs->ldx = static-receivef(;
prs->ldy = static-receiveA(;
prs->ldz = static-receivefo;
static-send(O);
prs->dirdefined = 1;
prs->Updated = OxOE;
break;

340

case RENDERAMBREFLECT:
static-send(1);
prs->ambreflect = static-receive();
static-send(O);
prs->Updated = OxOE;
break;

case RENDER-DIRREFLECT:
static-send(1);
prs->dirreflect = static-receiveo; 350

static-send(O);
prs->Updated = OxOE;
break;

case RENDERCLEARFB:

int i;
unsigned page, rgbx;

static-send(2); 360

page = static-receive(); // page (like z->fbmode)

rgbx = static-receiveo; // rgbx
static-send(O);

for(i = 0; i < VWIDTH * VHEIGHT; i++)

110

{
fb-set-pixel-rawaddr(i, rgbx, page & FBMODE-BACK,

(page & FBMODE-FRONT)>>1);

}
} 370
break;

case RENDERJCLEARZ:

{
int i;
static-send();
static-send(O);

for(i = 0; i < VWIDTH*VHEIGHT; i++)

{ 380

pzbd->buf[i] = Ox7FFFFFFF;
}

// flush zbd
flush.variable(pzbd, sizeof(ZBufData));

}

break;

case RENDERSETPAGE: 390

static-send(1);
// page .. FBMODE-NONE, BACK, FRONT, BOTH
pzbd->fbmode = static-receiveo;
flushLword(&pzbd->fbmode);
static-send(O);
break;

case RENDER-FLIPPAGE:
static-send(1);
if(static-.receive())// wait for vsync? 400

fb-flip-page-vsync(;
else

fb-flip-page(;
static-send(0);
break;

case RENDER-ALLOCATETEXTURE:

{
unsigned sizex, sizey;
unsigned totalsize; 410

signed nexttexID, texID = -1;
TexAllocation *pAlloc = 0;

111

// get next texture id to use

for(nexttexID = 0; ptm->pTexEntryTable[nexttexID] .valid && nexttexID
< ptm->MaxTextures; nexttexID++);

static-send(2);
sizex = static-receive();
sizey = static- receive(); 420

if(nexttexID < ptm->MaxTextures)

{
totalsize = sizex*sizey;

if(ptm->pAllocHead == 0)

{
// base case, all memory is clear
if(totalsize*sizeof(unsigned) <= ptm->TexMemorySize)

{ 430

pAlloc = (TexAllocation*)malloc(sizeof(TexAllocation));
if(pAlloc)

{
ptm->pAllocHead = ptm->pAllocTail = pAlloc;
pAlloc->ID = texID = nexttexID;
pAlloc->pBegin = ptm->pTexMemory;
pAlloc->pEnd = ptm->pTexMemory + totalsize;
pAlloc->pNext = 0;
pAlloc->pPrev = 0;
ptm->TexMemoryFree -= totalsize*sizeof(unsigned); 440

}
}

}
else

{
// search for a block large enough to hold the texture

if(totalsize*4 <= ptm->TexMemoryFree)

{
TexAllocation * pta;
unsigned * lastbegin = ptm->pTexMemory + 450

ptm->TexMemorySize/sizeof (unsigned);
for(pta = ptm->pAllocTail; pta != 0;

lastbegin = pta->pBegin, pta = pta->pPrev)

{
if(lastbegin - pta->pEnd >= totalsize)

{
// here's a spot that will work, allocate it right after

// pta->pEnd, and allocate new texallocation at pAlloc.

pAlloc = (TexAllocation *) malloc(sizeof(TexAllocation));
if(pAlloc) 460

{

112

if(pta->pNext)
pta->pNext->pPrev = pAlloc;

else

ptm->pAllocTail = pAlloc;

pAlloc->pNext = pta->pNext;
pAlloc->pPrev = pta;
pta->pNext = pAlloc;
pAlloc->ID = texID = nexttexID; 470

pAlloc->pBegin = pta->pEnd;
pAlloc->pEnd = pAlloc->pBegin + totalsize;
ptm->TexMemoryFree -= totalsize*sizeof(unsigned);

}
}

}

if(pta == 0)
{ // went all the way to the beginning, do final check

/1 if there's room at beginning, allocate new texalloc at pAlloc. 480

if(lastbegin - ptm->pTexMemory >= totalsize)

{
pAlloc = (TexAllocation*)malloc(sizeof(TexAllocation));
if(pAlloc)

{
ptm->pAllocHead->pPrev = pAlloc;
pAlloc->pNext = ptm->pAllocHead;
pAlloc->pPrev = 0;
ptm->pAllocHead = pAlloc; 490

pAlloc->ID = texID = nexttexID;
pAlloc->pBegin = ptm->pTexMemory;
pAlloc->pEnd = pAlloc->pBegin + totalsize;
ptm->TexMemoryFree -= totalsize*sizeof(unsigned);\

}
}

} /1 if(pta == 0)
} 1/ if(totalsize*4 <= ptm-> TexMemoryFree)

} // else (if(ptm->pAllocHead == 0))
} // if(nexttexID < ptm->MaxTextures) 500

if(pAlloc && texID != -1)

{
// allocated the texture correctly, now add the texture entry
ptm->pTexEntryTable[texID].valid = 1;
ptm->pTexEntryTable[texID].updated = OxOF;
ptm->pTexEntryTable[texID].Width = sizex;
ptm->pTexEntryTable[texID].Height = sizey;
ptm->pTexEntryTable[texID].pAlloc = pAlloc;

113

ptm->pTexEntryTable[texID].pBegin = pAlloc->pBegin;

ptm->NumTextures++;

// and flush texentry out
flush-variable(&ptm->pTexEntryTable[texID], sizeof(TexEntry));

/ don't need to flush TexAllocation, as only the main

/ processor (this one) ever uses that data.

/ likewise, don't need to flush TexManager out.
520

}

static...send(1);
static-send(texID);

}
break;

case RENDERDEALLOC-TEXTURE:
{ 530

signed id;
TexAllocation *pAlloc;
static-send(1);
id = static-receiveO;

if(id >= 0 && id < ptm->MaxTextures)

{
pAlloc = ptm->pTexEntryTable[id].pAlloc;
if(ptm->pTexEntryTable[id.valid && pAlloc)

{ 540
if(pAlloc->pNext)

pAlloc->pNext->pPrev = pAlloc->pPrev;
else

ptm->pAllocTail = pAlloc->pPrev;

if(pAlloc->pPrev)
pAlloc->pPrev->pNext = pAlloc->pNext;

else
ptm->pAllocHead = pAlloc->pNext;

550

ptm->TexMemoryFree +=
(pAlloc->pEnd - pAlloc->pBegin)*sizeof (unsigned);

ptm->NumTextures--;
free(pAlloc);
ptm->pTexEntryTabe[id].pAlloc = 0;
ptm->pTexEntryTable[id].valid = 0;
ptm->pTexEntryTable[id].updated = OxF;

114

510

flush-variable(&ptm->pTexEntryTable[id], sizeof(TexEntry));
560

// don't need to flush TexAllocation, as only the main

/ processor (this one) ever uses that data.

// likewise, don't need to flush TexManager out.

}
}

static-send(O);

}
break;

570

case RENDERUPLOAD-TEXTURE:

{
unsigned size, temp;
signed id;
unsigned *texbegin = 0, *texend = 0, *texiter;

static-send(2);
id = static-receiveO;
size = static-receiveo;
static-send(0); // reading back 0 580

// hack: at this point, static network sends us
// next word unconditionally

if(size > 0)

{
if(id >= 0 && id < ptm->MaxTextures)

if(ptm->pTexEntryTable[id].valid && ptm->pTexEntryTabe[id].pAlloc)

{
texiter = texbegin = ptm->pTexEntryTable[id].pAlloc->pBegin; 590

texend = ptm->pTexEntryTable[id].pAlloc->pEnd;

}

// get first word
temp = static-receive();
size--;

if(texiter != texend)
*texiter = temp;

600

texiter++;

static-send(size); // get rest of words
for(;texiter < texend && size > 0; size--, texiter++)

{

115

*texiter = static-receive();

}

// program screwed up, but try not to lock up...

for(; size > 0; size--)
static-receiveo;

// flush out what we uploaded
if(texbegin != texend)

flush-variable(texbegin, (texend - texbegin)*sizeof (unsigned));

static-send(0); // reading back 0

}

}
break;

case RENDER-TEXMEM-AVAIL:
staticsend(0);
static-send(1);
static-send(ptm->TexMemoryFree); // texmem avail
break;

case RENDERCOMPACTTEXMEM:
// TODO
static-send(0);
static.send(0);
break;

case RENDERWRITEFB:

{
int xy;
unsigned page,rgbx;
staticsend(4);
x = static-receiveO; // x
y = static-receiveO; // y
page = static-receiveo; /
rgbx = static-receiveO; /
fb-set-pixelrgbx(x, y, rg

(page &
(page &

640

/ page
/ rgbx

FBMODEBACK) != 0,
FBMODEFRONT) != 0);

static-send(0);

}
break;

case RENDER-WRITEFB-BLOCK:

116

610

620

630

650

{
unsigned length;
// TODO
static-send(4);
static-receive(); // x
static-receive(); // y
static-receiveo; // page 660
length = static-receive(); // length
static-send(O);

if(length > 0)

{
// first rgbx in block
static-receiveO;
length--;
static-send(length);
for(; length > 0 ; length--) 670

static-receive(); // rest of rgbx's
static-send(0);

}

}
break;

case RENDER-READFB:

int xy; 680
unsigned page;
static-send(3);
x = static-receive(); // x
y = static-receiveO; // y
page = static-receiveo; // page - 0 = back, 1 = front
static-send(1);
static-send(fbread-pixel(x, y, page));

}
break;

690

case RENDERREAD-FBBLOCK:

{
unsigned length;
// TODO
static-send(4);
static-receiveo; // x
static-receive(; // y
static-receive(); // page
length = static-receiveo; // length
static-send(length); 700

for(; length > 0; length--)

117

static-send(O); // read rgbz

}

break;

case RENDER-WRITEZ:

{
unsigned x,y;
signed val; 710

static-send(3);
x = static-receiveO; // x
y = static-receive(); // y
val = static-receiveo; // val

pzbd->buf[x+VWIDTH*y] = val;
flush-word(&pzbd->buf[x+VWIDTH*y);
static-send(O);

}
break;

720

case RENDERWRITE-ZBLOCK:

{
unsigned length;
// TODO
static-send(3);
static-receive(); // x

static-receive(); // y
length = static-receiveo; //length
static-send(O);

730

if(length > 0)

{
// first val in block
static-receive();
length--;
static-send(length);
for(; length > 0 ; length--)

static-receive(); // rest of val's

static-send(0);
} 740

}
break;

case RENDERREAD-Z:

{
unsigned x,y;
static-send(2);
x = static-receive(); //x

118

y = static-receiveO; //y 750
static-send(1);
invalidate_ word(&pzbd->buf[x+VWIDTH*y);
static-send(pzbd->buf[x+VWIDTH*y]); // val

}
break;

case RENDERREAD-Z-BLOCK:

{
unsigned length;
// TODO 760

static-send(3);
static-receiveo; // x
static-receive(); // y
length = static-receive(); // length
static-send(length);
for(; length > 0; length--)

static-send(0); // read val

}
break;

770

case RENDERRESET:

{
int i;
static-send(O);
static-send(0);

// clear out render state

ClearRenderStateO;

// clear out texture memory 780

// (assuming that everything is set up correctly!)
for(i = 0; i < ptm->MaxTextures; i++)

{
if(ptm->pTexEntryTable[i].valid)

{
ptm->pTexEntryTable[i.valid = 0;
free(ptm->pTexEntryTable[i.pAlloc);

}
} 790

ptm->TexMemoryFree = ptm->TexMemorySize;
ptm->NumTextures = 0;
ptm->pAllocHead = 0;
ptm->pAllocTail = 0;

119

// clear out z buffer
pzbd->fbmode = FBMODEBACK;

800

#ifdef INIT-ZBUF
for(i = 0; i < VWIDTH*VHEIGHT; i++)

{
pzbd->buf[i] = Ox7FFFFFFF;

}

#endif

// tell fb to reset
fb-reset(; 810

}
break;

case RENDER-HALT:
static-send(0);
static-send(O);
// halting!
while(1);
break;

820

default:
static-send(0);
static-send(0);

}

return 0;

}

void DoSceneStream(void);
830

void begin(void)

int i;
//things we need to do on initial bootup:

/ for framebuffer code
// funny desty (sender xy = 0)
fbinit-fbhdr(0,0);

//// allocate shared memory for stagel. 840

prs = (RenderState*)malloc(sizeof(RenderState));

//// set renderstate to startup defaults
ClearRenderStateO;

120

/7/ allocate tex mem, and tex control structures.
ptm = (TexManager*)malloc(sizeof(TexManager));
ptm->pTexMemory = (unsigned*)malloc(TEXMEMSIZE*sizeof(unsigned));
ptm->TexMemorySize = ptm->TexMemoryFree= TEXMEMSIZE;
ptm->pTexEntryTable = (TexEntry*)malloc(TEXENTRIES*sizeof(TexEntry)); 850

ptm->MaxTextures = TEXENTRIES;
for(i = 0; i < TEXENTRIES; i++)

{
ptm->pTexEntryTabe[i].valid = 0;
ptm->pTexEntryTable[i].updated = 0;

}
ptm->NumTextures = 0;
ptm->pAllocHead = 0; 7/ the funny thing, is that the allocation list will be in
ptm->pAllocTail = 0; // stage 1's memory, which is OK since we don't really need it.

860

pzbd = (ZBufData*)malloc(sizeof(ZBufData));

I/initialize zbd to zero
pzbd->fbmode = FBMODEBACK;

#ifdef INITZBUF
for(i = 0; i < VWIDTH*VHEIGHT; i++)

{
pzbd->buf[i] = Ox7FFFFFFF;

} 870

#endif

/// initialize framebuffers to all black (optional step with compiler def?)
#ifdef INITFBBLACK

// TODO
#endif

while(1)
{ 880

/7 going into command mode:

// set up the static network
setup-switch-mainO;

7/7/ send acknowledgement out to renderhost, telling it we're booted
7/7/ and ready for commands.
static-send(1);

/7 command mode:
77/7 loop reading command, performing action, sending back 890

/7/7 responses if necessary. Everything can be done with memory
accesses (make sure to flush changed memory) and gdn messages

/7/7 (for writing to framebuffer) except scenestream mode.

121

while(!doCommand(static-receive()));

// going into scenestream:

setup-switch-scenestreamO;

//// send one word out of static network to tell it we're ready to 900

/1/! accept messages/
static-send(1);

// scenestream mode:
DoSceneStreamO;

}

}
910

// a helper function - reads from the sn,
// and decrements the block variable. if it's
/ zero, reads a new one from the static network.
// assumes that *b is currently >0!
static inline unsigned block-receive(unsigned *b)

{
unsigned temp = static-receiveO;
if(--(*b) <= 0)

*b = static- receiveo;
return temp; 920

}
static inline float block-receive-f(unsigned *b)

{
float temp;
temp = static-receive-(;
if(--(*b) <= 0)

*b = static-receiveo;
return temp;

}
930

void Stage2(TransPrim *tp);

void DoSceneStreamo

{
while(1)

{
int ij;
unsigned blockLength;
unsigned numVerts = 0; // number of vertices we've got (don't render
// without 3. 940

InputPrim ip; // data stored on input

122

TransPrim tp; // object to output

float tnx,tny,tnz; // temp normal in world coords, for lighting
float tempz; // temp z before converting to fixed point.

unsigned unordered = 0; // is it an unordered prim, or ordered?

unsigned isendscene = 0;

unsigned visible = 0; // is visible or was clipped? 950

// clear input prim + trans prim
for(i = 0; i<3; i++)

ip.v[i].x = 0.0f;
ip.v[i].y = 0.0f;
ip.v[i].z = 0.0f;
ip.v[i].nx = 1.0f;
ip.v[i].ny = 0.0f;
ip.v[i].nz = 0.0f; 960

ip.v[i].u = 0.0f;
ip.v[i].v = 0.0f;
ip.v[i].rgba = 0;

tp.v[i].x = 0.0f;
tp.v[i].y = 0.0f;
tp.v[i].z = 0;
tp.v[i].wl = 1.0f;
tp.v[i].u = 0.0f;
tp.v[i].v = 0.0f; 970
tp.v[i].r = 0.0f;
tp.v[i].g = 0.0f;
tp.v[i].b = 0.0f;
tp.v[i].a = 0.0f;

}

// read blockLength from static network
blockLength = static-receive();

980

// now, loop while blockLength!=O:
while(blockLength > 0)

{
unsigned cmd;
//// read next command. decrement blockLength. if blockLength = 0 now,
//// read in blockLength.
cmd = block-receive(&blockLength);

123

/ ///switch on command:

/11/ read in command's data. update:
//// ip, *rs, numVerts.

/11/ when making a new vertex, get data from *rs.
/ /1/when changing normals or whatnot, update *rs.
//// keep track of blockLength, if it reaches 0,
//// read in blockLength again. if read blockLength = 0, break.
//// if command is endscene.... set isendscene = 1

switch(cmd)

{
case RENDER-ENDSCENE:

isendscene = 1;
break;

case RENDERVERTEX:
if(blockLength > 0)

{
ip.v[numVerts].x = block-receive-f(&blockLength);
ip.v[numVerts .y = block-receive-f(&blockLength);
ip.v[numVerts].z = block-receive-f(&blockLength);
ip.v[numVerts].u = block-receive-f(&blockLength);
ip.v[numVerts] .v = blockreceiveif(&blockLength);
ip.v[numVerts].nx = prs->nx;
ip.v[numVerts].ny = prs->ny;
ip.v[numVerts].nz = prs->nz;

ip.v[numVerts].rgba = prs->rgba;

numVerts++;

}

break;

case RENDERCOLOR:
if(blockLength > 0)

{
prs->rgba = block-receive(&blockLength);

}
break;

1030

case RENDERMODELMATRIX:
if(blockLength > 0)

{
for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++)
{

prs->ModelToWorld[i][j] = block-receive-f(&blockLength);

124

990

1000

1010

1020

}

MatrixMatrixMult(prs->ModelToView, prs->WorldToView,
prs->ModelToWorld);

MatrixlnvTrans(prs->NormalToWorld, prs->ModelToWorld);

}
break;

case RENDERVIEWMATRIX:
if(blockLength > 0)

{
for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++)
{

prs->WrldTView[i[j] = block-receive-f(&blockLength);
}

MatrixMatrixMult(prs->ModelToView, prs->WorldToView,
prs->ModelToWorld);

}
break;

1040

1050

1060

case RENDERNORMAL:
if(blockLength > 0)

{
prs->nx = block-receive-f(&blockLength);
prs->ny = block-receiveif(&blockLength);
prs->nz = blockreceive(&blockLength);

}
break;

case RENDERSETLIT:
if(blockLength > 0)

{
prs->pInfo.p.Mode.lit = block-receive(&blockLength);

}
break;

case RENDERSETUSEAMB:
if(blockLength > 0)

I
prs->pInfo.p.Mode.useamb = block-receive(&blockLength);

}
break;

case RENDERSETUSEDIR:
if(blockLength > 0)

1070

1080

125

{
prs->plnfo.p.Mode.usedir = block-receive(&blockLength);

}
break;

case RENDERSETTEXMODE:
if(blockLength > 0)

{
prs->pInfo.p.Mode.texmode = block-receive(&blockLength);

}
break;

case RENDER-SETTEXALPHA:
if(blockLength > 0)

{
prs->pInfo.p.Mode.texalpha = block-receive(&blockLength);

}
break;

case RENDERSETCOLALPHA:
if(blockLength > 0)

{
prs->pInfo.p.Mode.colalpha = block-receive(&blockLength);

}
break;

case RENDERSETCOLINTERP:
if(blockLength > 0)

{
prs->pInfo.p.Mode.colinterp = block-receive(&blockLength);

}
break;

case RENDERSETLITINTERP:
if(blockLength > 0)

{

}
prs->pInfo.p.Mode.litinterp = block-receive(&blockLength);

break;

case RENDERSETTEXINTERP:
if(blockLength > 0)

{

}
prs->pInfo.p.Mode.texinterp= block-receive(&blockLength);

1130

break;

case RENDERSET-OUTOFORDER:

126

1090

1100

1110

1120

if(blockLength > 0)

{
prs->pInfo.p.Mode.outoforder = block-receive(&blockLength);

}
break;

case RENDER-SETTEXTILE:
if(blockLength > 0)

{

}

1140

prs->pInfo.p.Mode.textile = block-receive(&blockLength);

break;

case RENDERSETNOUSEZ:
if(blockLength > 0)

{

}
prs->pnfo.p.Mode.nousez = block-receive(&blockLength); 1150

break;

case RENDERSET-NOWRITEZ:
if(blockLength > 0)

{

}
prs->pInfo.p.Mode.nowritez = block-receive(&blockLength);

break;
1160

case RENDERSET-TEXTUREID:
if(blockLength > 0)

{
prs->pInfo.TextureID = blockreceive(&blockLength);

}
break;

case RENDER-COLTEXBALANCE:
if(blockLength > 0)

{

}

1170

prs->pnfo.ColTexBalance = block-receive.f(&blockLength);

break;

case RENDERALPHATHRESH:
if(blockLength > 0)

{

}
prs->pInfo.alphaThresh = block-receive(&blockLength);

break;

127

1180

case RENDER-AMBCOLOR:
if(blockLength > 0)

f
prs->pInfo.ambColor = block-receive(&blockLength);

}
break;

case RENDER-DIRCOLOR:
if(blockLength > 0)

{
prs->pInfo.dirColor = block-receive(&blockLength);

}
break;

case RENDER-DIRLIGHT:
if(blockLength > 0)

p
prs->ldx = block-receive-f(&blockLength);
prs->Ady = block-receive-f(&blockLength);
prs->ldz = block-receive-f(&blockLength);

1190

1200

prs->dirdefined = 1;

}
break;

case RENDERAMBREFLECT:
if(blockLength > 0)

{

}
prs->ambreflect = block-receive(&blockLength); 1210

break;

case RENDER-DIRREFLECT:
if(blockLength > 0)

{
prs->dirreflect = block-receive(&blockLength);

}
break;

1220

default:

}

if(numVerts >= 3)

128

I

// do clipping first - we don't want to update the sequence number 1230

//if the primitive is clipped!

/ do screenspace transform

for(i = 0; i < 3; i++)
f

MatrixMult(&tp.v[i].x, &tp.v[i].y, &tp.v[i].z, &tp.v[i].wl,
prs->ModelToView,
ip.v[i].x, ip.v[i].y, ip.v[i].z, 1.0f);

/ todo: optimize for when we don't use z coordinate? 1240

}

/1 clipping. necessary:
// - backface culling

// - at least dropping polys behind near plane

// would be nice TODO:
// - full frustum culling
// - clipping to near plane, including splitting triangles, regen vertices+values

// (this can create more than one prim - complexifying this code!)
1250

visible = 1;

// near plane and singularity dropping
if(tp.v[0].wl>0 && (tp.v[0].z <= -tp.v[0].wl) Ij

tp.v[].wl<0 && (tp.v[0].z >= -tp.v[0].wl) 1|
tp.v[1].wl>0 && (tp.v[1].z <= -tp.v[1].wl) II
tp.v[1].wl<0 && (tp.v[1].z >= -tp.v[1].wl) |1
tp.v[2].wl>0 && (tp.v[2].z <= -tp.v[2].wl) ||
tp.v[2].wl<0 && (tp.v[2].z >= -tp.v[2].wl)
| abs(tp.v[0].wl) <= le-100 1260

II abs(tp.v[1].wl) <= le-100
I abs(tp.v[2].wl) <= le-100)

visible = 0;

// backface culling - vertices are defined clockwise when prim facing the screen

if(visible)
{

//if point 2 is on rhs of point 0-> 1 vector, keep...
// ax + by + c > 0
//a = yl - yO, b = xO - x1, c = yOxl-ylxO 1270

if((tp.v[1].y - tp.v[0].y)*tp.v[2].x + (tp.v[0].x - tp.v[1].x)*tp.v[2].y
+ tp.v[0].y * tp.v[1].x - tp.v[1].y*tp.v[O].x >= 0)

visible = 0;
}

}

129

if(isendscene) 1280

{
return;

}
else

{

if(visible)

{
/1 copy info over to transprim
tp.pInfo = prs->pInfo; 1290

// ambient light modulation
if(tp.pInfo.p.Mode.lit && tp.pInfo.p.Mode.useamb)

{ // modulate amb intensity with reflectivity
unsigned intens = prs->pInfo.ambColor & OxOFF;
prs->pInfo.ambColor &= OxFFFFFFOO;

// max of each is 255 - treated as 1.0 (fixed point modulation)
prs->pInfo.ambColor 1= ((prs->ambreflect * intens) + 255) 8;

}
1300

if(!prs->dirdefined)
tp.pInfo.p.Mode.usedir = 0;

// directed light modulation
if (tp.pInfo.p.Mode.lit && tp.pInfo.p.Mode.usedir)

for(i = 0; i < 3; i++)
{

float w;
float prod;
//// transform normal into world coordinates tnx tny tnz 1310

MatrixMult(&tnx, &tny, &tnz, &w,
prs->NormalToWorld,
ip.v[i].nx, ip.v[i].ny, ip.v[i].nz, 1.0f);

/ normalize normal
w = 1.f/sqrtf(tnx*tnx+tny*tny+tnz*tnz);
tnx *= w;
tny *= w;
tnz *= w;

1320

//// dot product tn<xyz> with rs->ld<xyz> (be careful of sign!)
prod = - tnx*prs->ldx - tny*prs->ldy - tnz*prs->ldz;

tp.v[i].intensity = (prod <= 0) ? 0
: (prod * ((float)prs->dirreflect)/255.Of

130

* ((float) (prs->pInfo.dirColor & OxOFF))/255.Of);

}

// perspective division and streaming! 1330

for(i = 0; i < 3; i++)
{

tp.v[i].wl = 1/tp.v[i].w1;
tp.v[i].x = tp.v[i].wl * tp.v[i].x;
tp.v[i].y = tp.v[i].wl * tp.v[i].y;
if (!(tp.pInfo.p.Mode.nowritez && tp.pInfo.p.Mode.nousez))

tp.v[i].z = tp.v[i].wl * tp.v[i].z;
if (tp.pInfo.p.Mode.texmode != 0 && tp.pInfo.p.Mode.texmode != 2)

{
tp.v[i].r = tp.v[i].wl * (ip.v[i].rgba >> 24); 1340

tp.v[i].g = tp.v[i].wl * ((ip.v[i].rgba << 8) >> 24);
tp.v[i].b = tp.v[i].wl * ((ip.v[i].rgba << 16) >> 24);

}
if (tp.pInfo.p.Mode.colalpha != 0)

tp.v[i].a = tp.v[i].wl * (ip.v[i].rgba & OxOFF);
if (tp.pInfo.p.Mode.texmode > 1)

{
tp.v[i].u = tp.v[i].wl * ip.v[i].u;
tp.v[i].v = tp.v[i].wl * ip.v[i].v;

} 1350

if(tp.pInfo.p.Mode.lit && tp.pInfo.p.Mode.usedir)
tp.v[i].intensity = tp.v[i].wl * tp.v[i].intensity;

}

magic-perf-drawnprim(;

Stage2(&tp);

1360

}

}
}

}

void Stage3(PrimInfo * pi, UntexFragment * utf);

void Stage2(TransPrim *tp)
{ 1370

int iij;
UntexFragment utf; // fragmetns we output
float ulx;

131

float uly;
float Irx;
float Iry;

unsigned correctinterp; // are we doing any perspective-correct interpolation?

float w1O,w11,w12;

/ line equations: L - line value for top left con

/1 (incremental tL - temp value for each line
// model for ttL - temp value for each pix
// better adx - x increment for L
/1 performance) bdy - y increment for L
float LO, tLO, adxO, bdyO; // vO->vl
float L1, tL1, adxl, bdyl; // vl->v2
float L2, tL2, adx2, bdy2; // v2->vQ
// clockwise, so rhs is < 0:
// a = y2-yl, b=xl-x2, c=ylx2-y2xl

// plane equations, x - top left corner value

// tx - temp for each line
// ttx - temp for each pixel
/1 xdx - x increment for x
|/ xdy - y increment for x
// don't do incremental model for z, do calc for
// each point (better accuracy?)
float za, zb, zC;
float r, tr, rdx, rdy;
float g, tg, gdx, gdy;
float b, tb, bdx, bdy;
float a, ta, adx, ady;
float u, tu, udx, udy;
float v, tv, vdx, vdy;
float i, ti, idx, idy;
float wl, twi, wldx, widy;
float me, ble, b2e, detM1;
// precalc me = x2y3-x3y2

// ble = z2y3-z3y2

// b2e = x2z3-x3z2

// det M = xl(y2-y3)-yl(x2-x3)+me
// det B1 = zl(y2-y3)-yl(z2-z3)+ble
// det B2 = xl(z2-z3)-zl(x2-x3)+b2e
// det B3 = -x1(b1e)-y1(b2e)+z1(me)
/1 A = detBl/detM, B=detB2detM, C=detB3/
/1 Ax+By+C = z

er axul+byul+c

el

1390

1400

1410

detM

// when wi is interped, invert and multiply each
// other interpreted value by it, for perspect correct.

132

1420

1380

//--this is where code actually begins--

unsigned nousez, nowritez, texmode, colinterp, colalpha;
unsigned lit, usedir, litinterp;

// unpack bitfields for better performance
nousez = tp->pInfo.p.Mode.nousez;
nowritez = tp->pInfo.p.Mode.nowritez; 1430

texmode = tp->pInfo.p.Mode.texmode;
colinterp = tp->pInfo.p.Mode.colinterp;
colalpha = tp->pInfo.p.Mode.colalpha;
lit = tp->pInfo.p.Mode.lit;
usedir = tp->pInfo.p.Mode.usedir;
litinterp = tp->pInfo.p.Mode.litinterp;

////// get inverses of (w^-1) values, to multiply with
I/I/I! parameters to get their real values.
wl0 = 1/tp->v[O].wl; 1440
w1l = 1/tp->v[1].wl;
w12 = 1/tp->v[2].wl;

////// scale prim's x and y values to screen space, using compiler defs.

////// VWIDTH, VHEIGHT. scale so -1 -> 0, and 1 -> VWIDTH/HEIGHT
////// (pixels are centered on .5 steps - pixel 0 is at 0.5, pixel 1 is at 1.5, etc.

tp->v[O].x = tp->v[].x*(VWIDTH/2.0f) + VWIDTH/2.0f;
tp->v[O].y = tp->v[O].y*(VHEIGHT/2.0f) + VHEIGHT/2.0f;
tp->v[1].x = tp->v[1].x*(VWIDTH/2.0f) + VWIDTH/2.0f;
tp->v[1].y = tp->v[1].y*(VHEIGHT/2.0f) + VHEIGHT/2.0f; 1450

tp->v[2].x = tp->v[2].x*(VWIDTH/2.0f) + VWIDTH/2.0f;
tp->v[2].y = tp->v[2].y*(VHEIGHT/2.0f) + VHEIGHT/2.0f;

/1 for bounding box
/ minimum is lowest n such that n+0.5 is greater than or equal to lowest pixel coord.
// maximum is highest n such that n+0.5 is less than or equal to highest pixel coord.
// we want the bounding box to be the lowest and highest n+0.5 that's within
/1 the prim.
1/ 3.1 ... min at 3, max at 2 ... 3.6 min at 4, max at 3

1460

ulx = (signed)(tp->v[].x+0.5f);
lrx = (signed)(tp->v[0].x-0.5f);
uly = (signed)(tp->v[].y+0.5f);
iry = (signed) (tp->v[O] .y-0.5f);

for(ii = 1; ii < 3; ii++)

{
ulx = (ulx <= (signed)(tp->v[ii].x + 0.5f)) ? uly : (signed)(tp->v[ii].x + 0.5f);
uly = (uly <= (signed) (tp->v[ii] -y + 0.5f)) ? uly :(signed) (tp->v[ii] y + 0.5f);

133

}

if (u
if(u
if(1r
if(1r
if(u
if(u
if(hr
if(1r

Irx = (lrx >= (signed)(tp->v[ii].x - 0.5f))
Iry = (Iry >= (signed)(tp->v[ii].y - 0.5f))

lx < 0) ulx = 0;
lx >= VWIDTH) ulx = VWIDTH - 1;
x < 0) ulx = 0;
x >= VWIDTH) Irx = VWIDTH - 1;
ly < 0) uly = 0;
ly >= VHEIGHT) uly = VHEIGHT - 1;
y < 0) uly = 0;
y >= VHEIGHT) Iry = VHEIGHT - 1;

? lrx : (signed)(tp->v[ii].x - 0.5f);
? Iry : (signed)(tp->v[ii].y - 0.5f);

// move to center of pixels
ulx+=0.5;
uly+=0.5 ;
lrx+=0.5;
lry+=0.5;

////// set up plane equations for each line, z, rgba, uv, intensity:

// a = y2-yl, b=xl-x2, c=ylx2-y2xl // rhs is inside
adx0 = tp->v[1].y - tp->v[0].y;
bdy0 = tp->v[0].x - tp->v[1].x;
LO = adx0*ulx + bdyO*uly + tp->v[0].y*tp->v[i].x
adxl = tp->v[2].y - tp->v[].y;
bdyl = tp->v[1].x - tp->v[2].x;
Li = adxl*ulx + bdyl*uly + tp->v[1].y*tp->v[2].x
adx2 = tp->v[0].y - tp->v[2].y;
bdy2 = tp->v[2].x - tp->v[0].x;
L2 = adx2*ulx + bdy2*uly + tp->v[2].y*tp->v[0].x

// clockwise faces front

- tp->v[1].y*tp->v[0].x;

- tp->v[2].y*tp->v[1].x;

- tp->v[0].y*tp->v[2].x;

correctinterp = 0;

// these values are the same for all parameters for x,y
me = tp->v[1.x*tp->v[2].y - tp->v[2].x*tp->v[1].y;
detM1 = 1/(tp->v[0].x*

(tp->v[1].y-tp->v[2].y)-tp->v[0].y*(tp->v[1].x-tp->v[2].x)+me);

if(!nousez | !nowritez)

{
// set up z interp:
ble = tp->v1].z*tp->v[2].y - tp->v[2].z*tp->v[1].y;
b2e = tp->v[1].x*tp->v[2].z - tp->v[2].x*tp->v[1].z;
za = detMl*(tp->v[0].z*(tp->v[1].y-tp->v[2].y)

-tp->v[0].y*(tp->v[1].z-tp->v[2].z)+ble);
zb = detMl*(tp->v[0].x*(tp->v[1].z-tp->v[2].z)

-tp->v[0].z*(tp->v[1].x-tp->v[2].x)+b2e);

134

1470

1480

1490

1500

1510

zc = detMl*(tp->vo].z*me - tp->v[O].x*ble - tp->v[O].y*b2e);

}
1520

if (texmode != 0 && texmode != 2)

{
if(colinterp)

{
//set up rg,b interp
correctinterp = 1;
ble = tp->v1].r*tp->v[2].y - tp->v[2].r*tp->v[1].y;

b2e = tp->v[1].x*tp->v[2].r - tp->v2].x*tp->v[1].r;
rdx = detMl*(tp->v[0].r*(tp->v[1].y-tp->v[2].y)

-tp->v[0].y*(tp->v[1].r-tp->v[2].r)+ble); 1530

rdy = detMl*(tp->v[O].x*(tp->v[1].r-tp->v[2].r)
-tp->v[0].r*(tp->v[1].x-tp->v[2].x)+b2e);

r = rdx*ulx + rdy*uly +
detMl*(tp->v[0].r*me - tp->v[O].x*ble - tp->v[0].y*b2e);

ble = tp->v[1].g*tp->v[2].y - tp->v2].g*tp->v[1].y;
b2e = tp->v[1].x*tp->v[2].g - tp->v[2].x*tp->v[1].g;

gdx = detMl*(tp->v[0].g*(tp->v[1].y-tp->v[2].y)
-tp->v[0].y*(tp->v[1].g-tp->v[2].g)+ble);

gdy = detMl*(tp->v[0].x*(tp->v[1].g-tp->v[2].g) 1540

-tp->v[0].g*(tp->v[1].x-tp->v[2].x)+b2e);
g = gdx*ulx + gdy*uly +

detMl*(tp->v[].g*me - tp->v[O].x*ble - tp->v[0].y*b2e);

ble = tp->v[1].b*tp->v[2].y - tp->v[2.b*tp->v[1].y;

b2e = tp->v[1].x*tp->v[2].b - tp->v[2].x*tp->v[1].b;
bdx = detMl*(tp->v[0].b*(tp->v[1].y-tp->v[2].y)

-tp->v[0].y*(tp->v[1].b-tp->v[2].b)+ble);
bdy = detMl*(tp->v[0].x*(tp->v[1].b-tp->v[2].b)

-tp->v[0].b*(tp->v[1].x-tp->v[2].x)+b2e); 1550

b = bdx*ulx + bdy*uly +
detMl*(tp->v[0].b*me - tp->v[0].x*ble - tp->v[0].y*b2e);

}
else

{
/ color is average of vertices

r = (tp->v[0].r*wlo + tp->v[1].r*wll + tp->v[2].r*w12)/3;
g = (tp->v[].g*wlO + tp->v1).g*w11 + tp->v[2].g*wl2)/3;
b = (tp->v[0].b*wlO + tp->v[1].b*wll + tp->v[2].b*wl2)/3;

} 1560

if (colalpha != 0)

{
if(colinterp)

{
// set up a interp

135

correctinterp = 1;

ble = tp->v[1].a*tp->v[2].y - tp->v[2].a*tp->v[1].y;
b2e = tp->v[1].x*tp->v[2].a - tp->v[2].x*tp->v[1].a;
adx = detMl*(tp->v[O].a*(tp->v[1].y-tp->v[2].y) 1570

-tp->v[O].y*(tp->v[1].a-tp->v[2].a)+ble);
ady = detMl*(tp->v[O].x*(tp->v[1].a-tp->v[2].a)

-tp->v[O].a*(tp->v[1].x-tp->v[2].x)+b2e);
a = adx*ulx + ady*uly

+ detMl*(tp->v[O].a*me - tp->v[O].x*ble - tp->v[O].y*b2e);

}
else

{
/ alpha is average of vertices
a = (tp->v[O].a*wlO + tp->v[1].a*wll + tp->v[2].a*wl2)/3; 1580

}
}

}

if (texmode > 1)

{
//set up u,v interp
correctinterp = 1;

ble = tp->v[1].u*tp->v[2].y - tp->v[2].u*tp->v[1].y; 1590
b2e = tp->v[1].x*tp->v[2].u - tp->v[2].x*tp->v[1].u;
udx = detMl*(tp->v[O].u*(tp->v[1].y-tp->v[2].y)

-tp->v[0].y*(tp->v[1].u-tp->v[2].u)+ble);
udy = detMl*(tp->v[].x*(tp->v[1].u-tp->v[2].u)

-tp->v[0].u*(tp->v[1].x-tp->v[2].x)+b2e);
u = udx*ulx + udy*uly +

detMl*(tp->v[O].u*me - tp->v[O].x*ble - tp->v[].y*b2e);

ble = tp->v[1].v*tp->v[2].y - tp->v[2].v*tp->v[1].y;
b2e = tp->v[1].x*tp->v[2].v - tp->v[2].x*tp->v[1].v; 1600
vdx = detMl*(tp->v[O].v*(tp->v[1].y-tp->v[2].y)

-tp->v[O].y*(tp->v[1].v-tp->v[2].v)+ble);
vdy = detMl*(tp->v[O].x*(tp->v[1].v-tp->v[2].v)

-tp->v[0].v*(tp->v[1].x-tp->v[2].x)+b2e);
v = vdx*ulx + vdy*uly +

detMl*(tp->v[O].v*me - tp->v[0].x*ble - tp->v[O].y*b2e);

}

if (lit && usedir)

{ 1610
if(litinterp)

{
// set up intensity interp

136

correctinterp = 1;

ble = tp->v[1].intensity*tp->v[2].y - tp->v[2.intensity*tp->v[1].y;
b2e = tp->v[1].x*tp->v [2].intensity - tp->v[2].x*tp->v[1].intensity;

idx = detMl*(tp->v[O].intensity*(tp->v[1].y-tp->v[2].y)

-tp->v[O].y* (tp->v [1].intensity-tp->v [2] .intensity) +ble);
idy = detMl*(tp->v[O].x*(tp->v[1].intensity-tp->v[2].intensity) 1620

-tp-> [0].intensity* (tp->v[1].x-tp->v[2].x)+b2e);
i = idx*ulx + idy*uly +

detMl*(tp->v[O].intensity*me - tp->v[O].x*ble - tp->v[O].y*b2e);

}
else

{
/ intens is average of vertices

i = (tp->v[O].intensity*wlO + tp->v[1].intensity*w11

+ tp->v[2].intensity*wl2)/3;
} 1630

}

if(correctinterp)

{
// set up wi interp

ble = tp->v[1].w1*tp->v[2].y - tp->v[2].wl*tp->v[1].y;

b2e = tp->v[1].x*tp->v[2].w1 - tp->v[2].x*tp->v[1].w1;
wldx = detMl*(tp->v[O].wl*(tp->v[1].y-tp->v[2].y)

-tp->[O].y*(tp->v[1].wl-tp->v[2].wl)+ble); 1640

widy = detMl*(tp->v[O].x*(tp->v[1].wl-tp->v[2].wl)
-tp->v[O].wl*(tp->v[1].x-tp->v2].x)+b2e);

wi = wldx*ulx + wldy*uly

+ detMl*(tp->v[O].wl*me - tp->v[O].x*ble - tp->v[O].y*b2e);

}

////// from uly to iry

for(ii = (int)uly; ii <= (int)lry; ii++) 1650

{
unsigned gotrow = 0;
tLO = LO; tL1 = Li; tL2 = L2;
LO+=bdy0; L1+= bdyl; L2+=bdy2;

/ also initialize incremental interp for r, g, b, a, u, v, i, and wi for row

/1 (surrounding everything by if clause adds too much overhead
if(colinterp)

{
tr = r; tg = g; tb = b; 1660
r+=rdy; g+=gdy; b+=bdy;

137

ta = a;
a+=ady;

}
tu = U; tv = v;
u+=udy; v+=vdy;
if(litinterp)

{
ti = i;
i+=idy; 1670

}
tw1 = w1;
wl+=wldy;

// from ulx to lrx
for(j = (int)ulx; j <= (int)lrx; j++)

{
if(tLO < 0 && tL1 < 0 && tL2 < 0)

{
float tempw; 1680

gotrow = 1;

// fill in utf with x,y.
utf.x = j;
utf.y = ii;

/ fill in as necessary: z (scaled), u/wi, v/wi,
// rgba (packed+scaled+/wi), intensity/wi
if(!nousez | !nowritez) 1690

// note: this loses precision. TODO: take full advantage of signed
/ fixed point precision somehow? (use software double-sized ints?)
float tempz;

tempz = za * ((float)j + 0.5f) + zb * ((float)ii + 0.5f) + zc;
utf.z = tempz*(signed) (Ox7FFFFFFF);

}

if(correctinterp) 1700

{
tempw = 1/twi;

}

if (texmode != 0 && texmode != 2)

if(colinterp)

t
utf.rgba = (((unsigned) (tr*tempw+0.5f)) &OxOFF) << 24

138

(((unsigned) (tg*tempw+0.5f)) & OxOFF) << 16 1710

(((unsigned)(tb*tempw+0.5f)) & OxOFF) << 8;

}
else

/ color is average of vertices

utf.rgba = (((unsigned)(r+0.5f)) & OxOFF) << 24

(((unsigned)(g+0.5f)) & OxOFF) << 16 I
(((unsigned)(b+0.5f)) & OxOFF) << 8;

}
if (colalpha != 0) 1720

{
if(colinterp)

utf.rgba 1= ((unsigned)(ta*tempw+0.5f)) & OxOFF;
else

utf.rgba 1= ((unsigned)(a+0.5f)) & OxOFF;

}
}

if (texmode > 1)
{

utf.u = tu * tempw; 1730

utf.v = tv * tempw;

}
if (lit && usedir)

if(litinterp)
utf.intensity = ti * tempw;

else
utf.intensity = i;

}
1740

magic- perf-fragment();

Stage3(&tp->plnfo, &utf);

}
else

f
if(gotrow == 1) // we were in the prim, and then left

I
break; 1750

tLO+=adx0; tLl+=adxl; tL2+=adx2;

// increment tInterp in dx for r,g, b, a, u, v, i, and wi
tr+=rdx; tg+=gdx; tb+=bdx;

139

ta+=adx;
tu+=udx; tv+=vdx;
ti+=idx; 1760

twl+=wldx;

}
}

}
static inline void texwrap(float *coord, unsigned mode)

signed intpart;
// *coord: map down to 0->1 range
// mode: (O=none, 1=repeat, 2=mirror,3=clamp) 1770

intpart = (signed)(*coord);

if(mode == 1)

{
*coord = (*coord) - (float)intpart; // fractional part
if(*coord < 0)

*coord = 1 + *coord;

}
else if(mode == 2) 1780

{
if(*coord < 0)

*coord = -*coord;

if(intpart % 2) // if it's odd, do a reverse mapping
*coord = 1 - (*coord - (float)intpart);

else
*coord = *coord - (float)intpart;

}
1790

/ for none and clamp, leave as is.

}

static inline void doFragment(Fragment *f, ZBufData *z,
unsigned nousez, unsigned nowritez)

{
unsigned alpha;
unsigned addr;
unsigned templ, temp;
unsigned *zloc; 1800

addr = f->x+f->y*VWIDTH;

if(!nousez)

{

140

zloc = &z->buf[addr];
if(*zloc < f->z)

{
return;

} 1810

}

alpha = f->rgba & OxFF;

if(alpha != OxOFF)

{ // there's some alpha, read from framebuf

if(z->fbmode & FBMODEBACK)

{
tempi = fb-read-pixelrawaddr(addr, 0); 1820

temp = (((((f->rgba>>24) * alpha) + 255)>>8) +
((((temp1>>24) * (255-alpha)) + 255)>>8)) << 24;

temp 1= ((((((f->rgba<<8)>>24) * alpha) + 255)>>8) +
(((((temp1<<8)>>24) * (255-alpha)) + 255)>>8)) << 16;

temp 1= ((((((f->rgba<<16)>>24) * alpha) + 255)>>8) +
(((((temp1<<16)>>24) * (255-alpha)) + 255)>>8)) << 8;

fb-set-pixel-rawaddr(addr, temp, 1, 0);

}
1830

if(z->fbmode & FBMODEFRONT)

{
tempi = fbread-pixeLrawaddr(addr, 1);
temp = (((((f->rgba>>24) * alpha) + 255)>>8) +

((((temp1>>24) * (255-alpha)) + 255)>>8)) << 24;
temp = ((((((f->rgba<<8)>>24) * alpha) + 255)>>8) +

(((((temp1<<8)>>24) * (255-alpha)) + 255)>>8)) << 16;
temp 1= ((((((f->rgba<<16)>>24) * alpha) + 255)>>8) +

(((((temp1<<16)>>24) * (255-alpha)) + 255)>>8)) << 8;
1840

fb-set-pixel-rawaddr(addr, temp, 0, 1);
}

}
else

{
// note, optimizing with knowlege of exactly what FBMODEBACK and -FRONT

// are... be careful!
fb-set-pixel-rawaddr(addr, (f->rgba - alpha), 1850

z->fbmode & FBMODE-BACK,
(z->fbmode & FBMODEFRONT)>>1);

}

141

if(nowritez == 0)

{
if(nousez)

zloc = &z->buf[addr];

*zloc = f->z; 1860

}
}

void Stage3(PrimInfo * pi, UntexFragment * utf)
{

Fragment fin;
unsigned texrgba;
unsigned dotex; // do texture mapping
unsigned rgbaxlyl, rgbaxlyh, rgbaxhyl, rgbaxhyh; // 4 texture samples for bilinear 1870

signed ut,vt, utl,vtl;
TexEntry *pTEntry;
int i;

unsigned texinterp, textile, texalpha, colalpha;
unsigned texmode, lit, useamb, usedir;
unsigned nousez, nowritez;

// unpack bitfields for better performance
texinterp = pi->p.Mode.texinterp; 1880

textile = pi->p.Mode.textile;
texalpha = pi->p.Mode.texalpha;
colalpha = pi->p.Mode.colalpha;
texmode = pi->p.Mode.texmode;
lit = pi->p.Mode.lit;
useamb = pi->p.Mode.useamb;
usedir = pi->p.Mode.usedir;
nousez = pi->p.Mode.nousez;
nowritez = pi->p.Mode.nowritez;

1890

pTEntry = &ptm->pTexEntryTable[pi->TextureID];

// see if we're actually doing texture mode
dotex = 0;
if (texmode >= 2 && pi->TextureID < ptm->MaxTextures)

{
if(pTEntry->valid == 1)

dotex = 1;

} 1900

142

texrgba = 0;

#ifdef NOTEXCACHE

invalidate-variable(pTEntry->pBegin,
pTEntry->Width * pTEntry->Height
* sizeof(unsigned));

#endif //NOTEXCACHE
1910

fm.x = utf->x;
fm.y = utf->y;
fm.z = utf->z;

if(dotex)

{
magic-perLtexel();

if(texinterp == 0)

{ // nearest neighbor 1920

signed tempu, tempv;
//map u,v into 0-1 range, based on pi->p.Mode.textile

// (Q=none, 1 =repeat, 2=mirror, 3=clamp)

texwrap(&utf->u, textile);
texwrap(&utf->v, textile);

|/scale up to texel index
utf->u *= (float)pTEntry->Width;
utf->v *= (float)pTEntry->Height; 1930

// truncate u,v down to int.
tempu = (signed)utf->u;
tempv = (signed)utf->v;

// do clamping
if(textile == 3)

{
if(tempu < 0) tempu = 0;
if(tempu >= pTEntry->Width) tempu = pTEntry->Width - 1; 1940

if(tempv < 0) tempv = 0;
if(tempv >= pTEntry->Width) tempv = pTEntry->Width - 1;

}

if(tempu >= 0 && tempv >= 0 &&
tempu < pTEntry->Width && tempv < pTEntry->Height)

texrgba = pTEntry->pBegin[tempu+pTEntry->Width*tempv];
else

143

texrgba = 0; 1950

}
else

{ // bilinear filtering

1/shift u,v by 0.5 texel, so "0" is centered at a texel

utf->u - 0.5/(float)pTEntry-> Width;
utf->v -= 0.5/(float)pTEntry->Height;

1960

//map u,v into 0-1 range, based on pi->p.Mode.textile

// (0=none, 1 =repeat, 2=mirror,3=clamp)
texwrap(&utf->u, textile);
texwrap(&utf->v, textile);

//scale up to texel index
utf->u *= (float)pTEntry->Width;
utf->v *= (float)pTEntry->Height;

// do clamping 1970

if(textile == 3)

{
if(utf->u < 0.0f) utf->u = 0.0f;
if(utf->u > (float)pTEntry->Width - 1.0f)

utf->u = pTEntry->Width - 1;
if(utf->v < 0.0f) utf->v = 0.0f;
if(utf->v > (float)pTEntry->Height - 1.0f)

utf ->v = pTEntry->Height - 1;

}
1980

//truncate u,v down to ut,vt to get lower,

//and add one to get upper (for rgbaxl/hyl/h)
Ut = (signed) utf->u;
vt = (signed) utf->v;
uti = ut+1;
vtl = vt+1;

/ in case uti or vt1 wraps around

if(utl >= pTEntry->Width) 1990

{
if(textile == 3)// clamp

uti = Ut;

if(textile == 1)// repeat
ut1 = 0;

if(textile == 2)// mirror
uti = (Ut == 0) ? 0 : Ut - 1;

144

}
if(vtl >= pTEntry->Height)

{ 2000
if(textile == 3)// clamp

vtl = vt;
if(textile == 1) // repeat

vtl = 0;
if(textile == 2)// mirror

vtl = (vt == 0) ? 0 : vt - 1;
}

if(ut >= 0 && vt >= 0&& 2010

ut < pTEntry->Width && vt < pTEntry->Height)
rgbaxlyl = pTEntry->pBegin[ut+pTEntry->Width*vt];

else
rgbaxlyl = 0;

if(ut >= 0 && vtl >= 0&&
ut < pTEntry->Width && vtl < pTEntry->Height)

rgbaxlyh = pTEntry->pBegin[ut+pTEntry->Width*vtl];
else

rgbaxlyh = 0; 2020

if(utl >= 0 && vt >= 0&&
uti < pTEntry->Width && vt < pTEntry->Height)

rgbaxhyl = pTEntry->pBegin[utl+pTEntry->Width*vt];
else

rgbaxhyl = 0;

if(utl >= 0 && vtl >= 0 &&
uti < pTEntry->Width && vt1 < pTEntry->Height)

rgbaxhyh = pTEntry->pBegin[utl+pTEntry->Width*vtl]; 2030

else
rgbaxhyh = 0;

// blend between four corners
texrgba = (((unsigned) ((rgbaxlyl&0xFF) *(1. Off- (utf->u- (float)ut)) +

(rgbaxhyl&0xFF) *(utf ->u- (float)ut)))&OxFF)

I ((((unsigned) (((rgbaxlyl> >8)&OxFF) *(1.Of- (utf->u- (float)ut)) +
((rgbaxhyl>>8)&0xFF)*(utf ->u-(float)ut)))&0xFF)<<8)

I ((((unsigned) (((rgbaxlyl> >16)&0xFF)*(1.0f - (utf->u- (float)ut)) +
((rgbaxhyl>>16)&OxFF)*(utf->u-(float)ut)))&OxFF)<<16) 2040

S(((unsigned) ((rgbaxlyl> >24) *(1.0f- (utf->u- (float)ut)) +
(rgbaxhyl>>24)*(utf->u-(float)ut)))<<24);

texrgba = (((unsigned) ((texrgba&OxFF) * (1.0f-(utf->v-(float)vt)) +
((rgbaxlyh&0xFF) *(1.0f- (utf->u- (float)ut)) +

145

(rgbaxhyh&xFF)*(utf->u- (float)ut)) *
(utf->v- (float)vt)))&OxFF)

I ((((unsigned) (((texrgba> >8)&OxFF) * (1.Of-(utf->v-(float)vt)) +
(((rgbaxlyh>>8)&OxFF)*(1.0f-(utf->u-(float)ut)) +
((rgbaxhyh>>8)&OxFF)*(utf->u-(float)ut)) * 2050

(utf->v-(float)vt)))&OxFF)<<8)

I ((((unsigned) (((texrgba>>16)&OxFF) * (1.Of-(utf->v-(float)vt)) +
(((rgbaxlyh>>16)&OxFF)*(1.0f-(utf->u-(float)ut)) +
((rgbaxhyh>>16)&OxFF)*(utf->u-(float)ut)) *

(utf->v-(float)vt)))&OxFF)<<16)

I (((unsigned) ((texrgba>>24) * (1.Of-(utf->v-(float)vt)) +
((rgbaxlyh> >24) * (1.0f- (utf->u- (float)ut)) +
(rgbaxhyh>>24)*(utf->u-(float)ut)) *

(utf->v-(float)vt)))<<24);
2060

}
}

// truncate alphas in texrgba and utf->rgba, according to pi->p.Mode.texalpha and colalpha
/1 and pi->alphaThresh

if(texalpha == 0)
texrgba 1= OxOFF;

else if(texalpha == 2) 2070

{ // hard alpha
if((texrgba & OxOFF) >= pi->alphaThresh)

texrgba 1= OxOFF;
else

texrgba &= OxFFFFFFOO;
}

if(colalpha == 0)
utf->rgba 1= OxOFF;

else if(colalpha == 2) 2080

{ // hard alpha
if((utf->rgba & OxOFF) >= pi->alphaThresh)

utf->rgba 1= OxOFF;
else

utf->rgba &= OxEFFFFQO;
}

// sort of a hack - if we're in blend mode, and
// either col or tex is hard alpha, and is OxOC (under 2090

I/the threshold), then make the final alpha OxOO
/1 this is so we can have a hard-alpha texture be
// blended with a color map without creating a soft

146

}

/1
//
/1

// alpha result. Note that such a prim will be out-of-order

if(texmode == 3)

{
if(texalpha == 2 && (texrgba&OxFF) == 0)

utf->rgba &= OxFFFFFFOO;
if(colalpha == 2 && (utf->rgba&OxFF) == 0)

texrgba &= OxFFFFFFOO;

now blend texrgba and utf->rgba, according to pi->p.Mode.texmode
(O=none, 1=color, 2=tex, 3=blend, 4=texdecal, 5=coldecal, 6=modulate)
and pi-> ColTexBalance (0 = all tex, 1 = all color) -> utf->rgba

switch(texmode)

{
unsigned alpha;

case 1: // color only

fm.rgba = utf->rgba;
break;

case 2: // texture only

fm.rgba = texrgba;
break;

case 3:// col/tex blend
case 4: // tex on top of color decal
case 5: // color on top of tex decal

switch(texmode)

{
case 3:// col/tex blend

alpha = pi->ColTexBalance * 256;
if(alpha >= 256) alpha = 255;
break;

case 4: // tex on top of color decal
alpha = 255 - (texrgba & OxFF);
break;

case 5: // color on top of tex decal
alpha = (utf->rgba & OxFF);
break;

default: I/this shouldn't happen

}

// fixed point modulation
fm.rgba = (((((utf->rgba>>24) * alpha) + 255)>>8) +

((((texrgba>>24) * (255-alpha)) + 255)>>8)) << 24;
fm.rgba 1= ((((((utf->rgba<<8)>>24) * alpha) + 255)>>8) +

(((((texrgba<<8)>>24) * (255-alpha)) + 255)>>8)) << 16;
fm.rgba 1= ((((((utf->rgba<<16)>>24) * alpha) + 255)>>8) +

(((((texrgba<<16)>>24) * (255-alpha)) + 255)>>8)) << 8;

147

2100

2110

2120

2130

2140

fm.rgba 1= ((((((utf->rgba<<24)>>24) * alpha) + 255)>>8) +
(((((texrgba<<24)>>24) * (255-alpha)) + 255)>>8));

break;
case 6: // color/tex modulated

// max of each is 255 - treated as 1.0 (fixed point modulation)
fm.rgba = ((((utf->rgba>>24) * (texrgba>>24)) + 255)>>8) << 24;
fm.rgba 1= (((((utf->rgba<<8)>>24)

* ((texrgba<<8)>>24)) + 255)>>8) << 16;
fm.rgba 1= (((((utf->rgba<<16)>>24) 2150

* ((texrgba<<16)>>24)) + 255)>>8) << 8;
fm.rgba 1= ((((utf->rgba<<24)>>24) * ((texrgba<<24)>>24)) + 255)>>8;
break;

case 0:
default:

fm.rgba = OxOOOOOOFF;

}

// finally, modulate output with light values, based on
// pi->p.Mode.lit, useamb, usedir, pi->ambColor, 2160

// pi->dirColor, utf->intensity into fm.rgba.
if (lit)

{
unsigned temp, ambrgb=0, dirrgb=0, intens, tempr, tempg, tempb;

// calculate ambient component - light values times intensity (i field)

modulated with surface color
if(useamb)

{ // more fixed point modulation. fun! 2170

intens = (pi->ambColor & OxFF);
temp = ((((pi->ambColor>>24) * intens) + 255)>>8) << 24;

temp 1= (((((pi->ambColor<<8)>>24) * intens) + 255)>>8) << 16;
temp 1= (((((pi->ambColor<<16)>>24) * intens) + 255)>>8) << 8;
ambrgb 1= ((((temp>>24) * (fm.rgba>>24)) + 255)>>8) << 24;
ambrgb 1= (((((temp<<8)>>24)

* ((fm.rgba<<8)>>24)) + 255)>>8) << 16;
ambrgb 1= (((((temp<<16)>>24)

* ((fm.rgba<<16)>>24)) + 255)>>8) << 8;
} 2180

// calculate directional component - light values times intensity
// modulated with surface color

if(usedir)

{
intens = utf->intensity*256;
if(intens > 255) intens = 255;

temp = ((((pi->dirColor>>24) * intens) + 255)>>8) << 24;

148

temp (((((pi->dirCoor<<8)>>24) * intens) + 255)>>8) << 16; 2190

temp 1= (((((pi->dirCoor<<16)>>24) * intens) + 255)>>8) << 8;
dirrgb 1= ((((temp>>24) * (fm.rgba>>24)) + 255)>>8) << 24;
dirrgb 1= (((((temp<<8)>>24)

* ((fm.rgba<<8)>>24)) + 255)>>8) << 16;
dirrgb 1= (((((temp<<16)>>24)

* ((fm.rgba<<16)>>24)) + 255)>>8) << 8;
}

// saturate-add the two together.
/ only affects color values, alpha stays the same! 2200

tempr = (ambrgb>>24) + (dirrgb>>24);
if(tempr > 255) tempr = 255;
tempg = ((ambrgb<<8)>>24) + ((dirrgb<<8)>>24);
if(tempg > 255) tempg = 255;
tempb = ((ambrgb<<16)>>24) + ((dirrgb<<16)>>24);
if(tempb > 255) tempb = 255;

fm.rgba &= OxOFF;
fm.rgba 1= tempr << 24 1 tempg << 16 1 tempb << 8; 2210

}

magic-perLtexfragment();

if(fm.rgba & OxOFF)

{
doFragment(&fm, pzbd, nousez, nowritez);

}
}

2220

149

150

Appendix C

Full Implementation Code Listing

C.1 Common-sw.h

7/ include file for Common-sw.S
// Ken Taylor 2004 Master's Thesis

#ifndef COMMONSWH
#define COMMONSW-H

#define invalidate-word(val) __rgcc.one-input("ainv %0, 0", val)
#define flush-word(val) -_rgc-one-input("af 1 70, 0", val)

10

// magic instructions for performance measurements.
#define
#define
#define
#define
#define
#define
#define
#define

magic-perLstartbusywait() ASM-VOLATILE_3(magc $0,$0, Oxfed0)
magic-perLendbusywait() ASMVOLATILE_3(magc $0,$0, Oxfedl)
magic-perLfragment() ASMVOLATILE-3(magc $0,$0, Oxfed2)
magic-perLtexfragment() ASMVOLATILE_3(magc $0,$0, Oxfed3)
magic-perLtexel() ASMVOLATILE-3(magc $0,$0, Oxfed4)
magic- perLdrawnprim() ASM-VOLATILE-3(magc $0,$0, Oxfed5)
magic-perLstartintbusywait() ASM-VOLATILE_3(magc $0,$0, Oxfed6)
magic-perLendintbusywait() ASMVOLATILE_3(magc $0,$0, Oxfed7)

20

void flush-variable(void *, unsigned);
void invalidate-variable(void *, unsigned);

#endif |/COMMON-SW-H

151

C.2 Common-sw.S

// flush-variable and invalidate-variable defined here

.text

.align 2

.global flush-variable

.ent flush-variable
$4 = address to startflush, $5 = bytes to flush (4 bytes per word)

flush.variable:
addu $8, $0, $4 # copy start to temp reg 10
addu $9, $8, $5 # upper limit = start + # bytes

fviloop:
beq- $8, $9, fvdone
afi $8, 0 # flush

addiu $8, $8, 4

j fviloop
fv-done:

ainy $8, 0
1w $0, 0($8) #initiate a load of memory to make sure

#flush is 100% complete before continuing 20

jr $31
.end flush-variable

.global invalidate-variable

.ent invalidate-variable
$4 = address to startflush, $5 = bytes to flush (4 bytes per word)

invalidate-variable:
addu $8, $0, $4 # copy start to temp reg

addu $9, $8, $5 # upper limit = start + # bytes 30
iv-loop:

beq- $8, $9, ivdone
ainy $8, 0 # invalidate
addiu $8, $8, 4

j iviloop
iv-done:

jr $31
.end invalidate-variable

152

C.3 render datatypes.h

render- datatypes. h

Ken Taylor, MIT Master's Thesis 2004

Last Updated: 5/182004

This file defines data types that are shared between different

stages of the pipeline, such as texture memory maps, primitive blocks,
untextured fragment blocks, and textured fragment blocks.

Data types that are only used for one stage are defined in the

respecitve stage headers.

#ifndef RENDER-DATATYPES-H
#define RENDER-DATATYPES-H

// unit used for linked list of texture memory allocation

// space. See TexManager description for detail.

typedef struct -TexAllocation {

unsigned ID; // Texture ID, index into texEntry table.

unsigned *pBegin; // pointer to beginning in texture memory

unsigned *pEnd; // pointer to one word beyond end in texture memory

// pEnd should equal pBegin + (Width*Height*4) in bytes (not in pointer arith! in

// pointer arith there'd be no 4!) - so is it necessary? - maybe not, but it's useful.

struct _TexAllocation *pNext; // next item in list

struct _TexAllocation *pPrev; // previous item in list

} TexAllocation;

// unit used for quick-lookup array of textures. Adding a texture

// is slower though, as it requires a linear search through this array

// for an empty spot. See TexManager for more.

typedef struct _TexEntry {
unsigned valid:1; // is there an entry here?

unsigned updated; // has it been changed since the last time this proc

// accessed it? bit field... one per column
unsigned Width; // Texture width

unsigned Height; // Texture height

// texture size in memory is implicitly Width*Height*4 bytes

153

//
//
//
I-
I!
//
//
1/
//
//-
I!
//

10

20

30

40

unsigned *pBegin; // pointer to beginning in texture memory
TexAllocation *pAlloc; // pointer to tex allocation data.

} TexEntry;

// tex entries are in stage3's memory, while tex allocation data is 50

I/in stage0's memory... so i put width, height, and an extra pbegin in
1/ tex entry for quicker lookup.

/ texManager is a texture memory manager structure shared by
/1 Stagel and Stage3. It consists of a pointer to texture memory,
// and some basic info on the total room and room left in texture memory,
// a doubly linked list of allocated textures, in order they appear in memory,
/ for linear search of space for a new texture, and a quick index
//that maps texture ids to allocation blocks, for quick texture lookup. 60

typedef struct _TexManager {

unsigned *pTexMemory; // a pointer to texture memory.
// textures are word-aligned and stored as rgba.

unsigned TexMemorySize; // total size of texture memory
unsigned TexMemoryFree; // total free space in texture memory
unsigned MaxTextures; // maximum number of textures that can be listed
unsigned NumTextures; // current number of textures being listed

70

TexAllocation * pAllocHead; // head of texture allocation list (NULL if none)
TexAllocation * pAllocTail; // tail of texture allocation list (NULL if none)

TexEntry * pTexEntryTable; // table of texture entries for quick lookup
// (texture ID is an index into the tex entry array.)

} TexManager;

// vertex used in transformed primitives 80

typedef struct .Vertex {

// x and y are normalized between -1 and 1.
float x;
float y;
float z;

/ wi is one over the normalization factor w, and is used for

/1
float wl; 90

// texture coordinates (divided by old w after perspective divide)
float u;

154

float v;

/ rgba are floats internally, for correct color interpolation
1/ (they're all divided by old w), although on input they're

// packed into one 32-bit color (rgba).
float r;
float g; 100
float b;
float a;

// directional light intensity should also be interpolated correctly
1/ for gourad shading, and this will be intensity/(old w). But for
/1 flat shading, the average is used, and this is just intensity with
// no extra division. Intensity is scaled from 0 to 1.

float intensity;
110

} Vertex;

// ModeBits are the primitive-level rendermode descriptors.
// they're stored in a separate structure as a bitmask to make
/1 things a bit more convenient.

typedef struct _ModeBits {

unsigned draw:1; // whether to actually draw it 120

unsigned lit:1; // 0 means fullbright. 1 means final color depends on lighting.
unsigned useamb:1; // whether or not to use ambient light
unsigned usedir:1; // whether or not to use directional light

unsigned texmode:3;
/ 0 = neither texture nor color (renders black)
// 1 = no texture (color only)
/ 2 = no color (texture only)
1/ 3 = tex/color blend (see ColTexBalance) 130

/1 4 = decal, texture on top
/1 5 = decal, color on top (in decal mode, the "bottom" can be seen through the
/1 "top"'s alpha)
// 6 = tex/color modulated (useful to make textures translucent)

unsigned texalpha:2;
// 0 = no alpha
7/ 1 = soft alpha
/7 2 = hard alpha (cut between 0 and 100% at alphaThresh point)

140

unsigned colalpha:2;

155

// 0 = none
1 = soft

/7 2 = hard

unsigned colinterp: 1;
/7 0 = average vertices
/7 1 = smooth interpolation (perspective correct)

unsigned litinterp: 1; 150
/7 0 = average vertices (flat shading)
/ 1 = smooth interpolation (perspective correct gourad shading)

unsigned texinterp: 1;
// 0 = nearest-neighbor
7/ 1 = bilinear filtering.
/7 note the implementation of texinterp isn't quite parallel to col and lit interp.

// col and lit interp interpret the vertex parameters. texinterp interpolates between
/7 pixels in a texture map - texture mapping *always* does perspective correct

//interpolation of parameters. 160

unsigned outoforder: 1;
// for the RenderState, they hold the user's input, as such:
// 0 = default (in order for any soft alpha/translucency, or if

7/ either nousez or nowritez is on. out of order otherwise)
7/ 1 = always out of order (optimization, basically)
I/but when being passed down the pipeline, they hold the heuristic result
/7 of whether to treat it as in-order or out-of-order, as such:
/7 0 = always in-order
/71 = always out-of-order 170

/1 see Stage1-datatypes.h

unsigned textile:2;
/7 0 = no tiling (rest will be treated as black, with zero alpha)
7/ 1 = repeat
/7 2 = repeat mirrored
/ 3 = clamp (outer pixel values repeated forever)

unsigned nousez: 1;
7/ 0 = default (checks z buffer before updating) 180
7/ 1 = don't check the z buffer, always update

unsigned nowritez: 1;
7/ 0 = default (writes to z buffer when updating, unless alpha = 0)
77 1 = don't write to the z buffer when updating.

} ModeBits;

156

// PrimaryPrimInfo is data that is needed by stage 4, which is less 190

// than that needed by earlier stages.
typedef struct _PrimaryPrimInfo {

ModeBits Mode;

// in RenderState, this is the next sequence number to use

// (see Stage1datatypes.h)
// when being passed down the pipe, this is the sequence number
// of the current primitive
unsigned SeqNum; 200

} PrimaryPrimlnfo;

// PrimInfo holds data that is global to a particular
// primitive. This data should be sent once per primitive
// in the otherwise fragment-based streams between
/1 Stage2 and 3, and Stage3 and 4. Number of fragments
I/in the prim will be sent separately, as that's more of
// a flow control value than an inherent part of the primitive. 210

typedef struct .PrimInfo {

// data needed by last stage stored in PrimaryPrimInfo. other data
// needed by previous stages stored in this struct (PrimInfo)
PrimaryPrimInfo p;

unsigned TextureID;

// balance between color and texture for color-texture blend mode
float ColTexBalance; //(0 = all tex, 1 = all color) 220

// alpha threshold for "hard alpha" modes
unsigned alphaThresh;

I/the ambient light intensity here is the modulation of the
/7 actual light intensity, and the primitive's light reflection factor.
/7 to modulate two numbers on a zero-to-255 scale, a and b:
/1 ((a * b) + 255) >> 8
/1 - intermediates need 16 bits!

230

// ambient light color and intensity rgbi
unsigned ambColor;

/7 directional light color rgb (no intensity sent between stages at the
/7 prim level, this is calculated and sent per vertex in first stage
/7 from light intensity, primitive light reflection, and the dot product
/1 of the normal and the light direction. After stage 2, directional light

157

// intensities are interpolated and sent in the fragments.)
unsigned dirColor;

240

//lighting modulation is finally applied to fragment color data either after

// texture lookup in stage 3 or during recombining in stage 4 (before background

//blending. Probably stage 3. (though putting off all combining to stage 4
1/ could take advantage of visibility culling...) decided: put it in stage 3,
// since stage 4 needs to get as much pixel throughput as possible

/1 NOTE: RenderState in Stage1-datatypes.h uses this data structure, but

// the light values mean different things. *both* amb and dir store

// the intensity field, but it's the basic light intensity, and not the

// modulated-with-prim-reflection intensity. 250

} PrimInfo;

// TransPrim is a transformed primitive (gone through projective

// transform and perspective division) sent from Stagel to Stage2.

/ Vertex coords are in normalized screen coordinates (-1 to 1).
typedef struct -TransPrim {

PrimInfo pInfo; 260

Vertex v[3];

} TransPrim;

// UntexFragment is a fragment before texture mapping/blending

// has been done. As such, it still stores interpolated texture

/1 coordinates and light intensity. It's passed from Stage2 to Stage3.

typedef struct -UntexFragment { 270

// x and y are clipped and in screen coordinates now.

/1 (so Stage2 needs to know about the screen dimension)

//top left is 0,0, increasing positively down and right

unsigned x;
unsigned y;

// z is interpolated - although nonlinear, it's monotonic

// (ie, this isn't the *real* z for the point, but it works for

I/ a z-buffer) 280

|/ fixed point representation still.

signed z;

// correctly interpolated texture coords, still normalized
/ to texture size (0 to 1. Greater or less implies

158

// wrapping)
float u;
float v;

// correctly interpolated color and alpha, packed together,
// on a zero-to-255 scale for each field (0% to 100%). This
// can result in gradient artifacts, but I'm not planning on
/1 having too many passes over the data, so storing each

// field as 8 bit now should suffice.
unsigned rgba;

// correctly interpolated directional light intensity, still a float.
float intensity;

} UntexFragment;

1/ Fragment is a fragment ready for blending with the
// framebuffer, passed from Stage3 to Stage4.
typedef struct -Fragment {

// screen coordinates still
unsigned x;
unsigned y;

// fixed point still
signed z;

/ final color and alpha from combining texture and color
/1 based on mode bits. 0-to-255 scale still. lighting
// information is blended by stage3 for now (todo: this might change)
unsigned rgba;

} Fragment;

290

300

310

320

// tag words sent down pipe
#define RENDERPPRIM 0
#define RENDERP-FLUSH 1
#define RENDER-PFRAG 0
#define RENDERP-ENDPRIM 1

#endif //RENDERDATATYPESH

159

C.4 Stage1-datatypes.h

/1 Stage1-datatypes. h

//
// Ken Taylor, MIT Master's Thesis 2004

II
// Last Updated: 5/18/2004

//
// This file defines data types that are used by the first

// stage of the pipeline (transform & lighting, aka geometry).

//
// For datatypes that are shared between stages, see render-datatypes.h 10

#ifndef STAGEKDATATYPESH
#define STAGEK-DATATYPESH

#include "renderdatatypes.h"

// InputVertex holds vertex information as
// it's being inputted from the user

I/these are all in model coordinates. The ModelToView matrix

// projects them to the current view (this is the combination 20

// of the ModelToWorld transform and the WorldToView matrix).

// Normals can be turned into world coordinates (for lighting

// calculation) by the NormalToWorld transform (which is the

// ModelToWorld transform inverted and transposed).

// See "RenderState" for all these matrices.

typedef struct _InputVertex {

// coordinates
float x;
float y; 30

float z;

// normal
float nx;
float ny;
float nz;

// tex coords

float u;
float v; 40

// color+alpha
unsigned rgba;

} InputVertex;

160

7/ InputPrim stores vertices of a primitive
/7 as it's being inputted from the user
/7 things like ModeBits, TextureID, and lighting info, 50

7/ which are carried over between prims, are stored
/7 in RenderState
typedef struct AInputPrim {

InputVertex v[3];

// vertices after the 3rd are ignored.

} InputPrim;

60

/1 TransformMatrix holds 4x4 matrices used for
/1 transformations. elements are m[row][column]
typedef float TransformMatrix[4][4];

7/ RenderState stores information on the current
7/ rendering state, from transform matrices to current render and blending
/7 modes to current texture, color, and normal. Basically, any information
7/ that can be common between primitives.
typedef struct .RenderState { 70

//just one bit of renderstate-updated information isn't enough,
/7 because all m parallel procs need to see it before it can be
/7 cleared (m = 4 in my case). So a bit vector of m bits is used.
77 when a proc updates the renderstate, it sets them all to 1. Then
7/ when each proc sees a 1 in its spot, it loads the new state and
7/ clears just that spot.

unsigned Updated;
80

7/ the user specifies these two matrices.

TransformMatrix ModelToWorld;
TransformMatrix WorldToView;

/7 these matrices are pre-calculated whenever the user
7/ changes one of the two above.

TransformMatrix ModelToView; / World To ViewModelTo World
TransformMatrix NormalToWorld; // (ModelTo World -1) ^T 90

7/ per-vertex data that can be carried between vertices
7/ normal

161

float nx;
float ny;
float nz;

// color+alpha
unsigned rgba;

100

1/ PrimInfo is from render-datatypes.h
// PrimInfo contains per-primitive data that can be carried

// between primitives: p.Mode, TexturelD, ColTexBalance,
// p.SeqNum, and alphaThresh

// And also Global lighting params: ambColor, and dirColor

// these are used differently here than when PrimInfo is passed

// between stage 1 and stage 2 - ambColor and dirColor

// both use the intensity field, and it's the base light intensity

// and not the modulated light+reflectivity intensity.

1/ p.Mode.outoforder and p.SeqNum have different meanings when 110
// stored here in RenderInfo versus being passed down the pipe.

// see comments in render-datatypes.h and below for info.

PrimInfo pInfo;

// other global lighting params:

/1 light direction, in world coordinates
float ldx;
float Idy; 120

float ldz;

// ambient light reflectivity, from 0 to 255
unsigned ambreflect;

// directional light reflectivity, from 0 to 255
unsigned dirreflect;

// amb light is defaulted to 100% fullbright if not changed
130

I/is there even a directional light?

unsigned dirdefined: 1;

/ there's an optimization where instead of transforming every normal

// for light calculations, the light is transformed into model space.
/ however, this doesn't work for Nonorthogonal transforms, such as

// shearing and nonisotropic scaling.

// sequence numbers for in-order rendering (soft alpha prims)

// notice the seq # algorithm requires that whether a prim is 140

/ in-order or out-of-order to be known apriori. For color alpha,

162

/ we can do a rough heuristic on the vertex values to determine
/7 whether a "soft" rendering poly will have any actual soft values.
/7 but if it's possible for a texture to create "soft" alpha holes,
/ we have to assume that the poly will be soft, and treat it as in-order.

/7 so, whether a poly should be treated as in-order or not is a complex
/ / function of its vertex colors, texmode, texalpha, colalpha, outoforder,
/7 nousez and nowritez. But this is worthwile to calculate, as
/7 putting things out of order helps gain a lot more parallelism. 150

/7 anyway, there's the current sequence number given to in-order prims.
/7 SeqNum now defined in PrimInfo.p. See render-datatypes.h

/7 and the "lagged" sequence number given to out-of-order prims. This
/7 number is n+1, where "n" is the last SeqNum given
//to an out-of-order prim. Rollover is dealt with by flushing the
// pipeline before sending the prim with SeqNum 0 down. With a large
/ enough number space for sequence numbers, this shouldn't be
//too much of a performance hit. 160

unsigned LaggedSeqNum;

// In the final stage, an in-order prim will only go if the rendering
/7 sequence number down there (different than our SeqNum) is equal to
7/ the prim's SeqNum, and will increment the rendering sequence
/7 number when done. (in-order prims also go a whole prim at a time).
/7 However, an out-of-order prim will go whenever its SeqNum
/7 is less than or equal to the rendering sequence number. Out-of-
7/ order prims can be split up into any size groups of fragments, as 170

/7 long as they only update the sequence number when they've rendered
7/the last of their fragments.

} RenderState;

#endif 7/STAGEl-DATATYPESH

163

C.5 ZBufldatatypes.h

// ZBuf-datatypes. h

I-
// Ken Taylor, MIT Maste

/1
// Last Updated: 5/18/2004

//
// this file defines inter-stag

// and stage4, mostly for z-

r's Thesis 2004

e shared variables between stage1
buffering.

#ifndef ZBUFDATATYPES-H
#define ZBUFDATATYPES-H

#define FBMODE-NONE 0
#define FBMODEBACK OxO1
#define FBMODEFRONT 0x02
#define FBMODEBOTH Ox03

typedef struct ZBufData {

unsigned fbmode;
// fbmode: 00 - don't render anywhere

|/ 01 - render to back buffer
// 10 - render to front buffer

/1 11 - render to both

signed buf[VWIDTH*VHEIGHT];

} ZBufData;

30

#endif //ZBUFDATATYPESIH

164

10

20

C.6 render-cmds.h

1/ render-cmds.h

/1
// Ken Taylor, MIT Master's Thesis 2004

1/
// Last Updated: 5/18/2004

1/
// This file holds defines for all the render opcodes.

#ifndef RENDERCMDSH
#define RENDERCMDS-H 10

// command mode only
/ no params

#define RENDERBEGINSCENE 1

/ scenestream only

/ no params. . wait for reply from renderer before continuing
#define RENDERENDSCENE 2

// scenestream only 20

// params are float xy ,z,u,v
#define RENDERVERTEX 3

// param is unsigned rgba

#define RENDERCOLOR 4

// param is 16 floats, one row at a time
#define RENDERMODELMATRIX 5

// param is 16 floats, one row at a time 30

#define RENDERVIEWMATRIX 6

// param is 3 floats: xy,z
#define RENDER-NORMAL 7

// param for these is unsigned:
#define RENDERSETLIT 8
#define RENDER-SETUSEAMB 9
#define RENDER-SET-USEDIR 10
#define RENDERSETTEXMODE 11 40

#define RENDERSET-TEXALPHA 12
#define RENDERSETCOLALPHA 13
#define RENDERSETCOLINTERP 14
#define RENDERSETLITINTERP 15
#define RENDERSETTEXINTERP 16

165

#define RENDERSETOUTOFORDER
#define RENDER-SETTEXTILE 18
#define RENDERSET-NOUSEZ 19
#define RENDERSET-NOWRITEZ 20
#define RENDER-SET-TEXTUREID 21 50

// param is a float
#define RENDER-COLTEXBALANCE 22

// param is unsigned
#define RENDERALPHATHRESH 23

// param is unsigned rgbi
#define RENDERAMBCOLOR 24

60

// param is unsigned rgbi
#define RENDERDIRCOLOR 25

// param is 3 floats, xy,z
#define RENDERDIRLIGHT 26

// param is unsigned
#define RENDER-AMBREFLECT 27

// param is unsigned 70

#define RENDERIDIRREFLECT 28

/ command mode only
I/takes unsigned param - which page (or both)
// and rgbx param for color
#define RENDERCLEARFB 29

/ command mode only
/ no params
#define RENDERCLEARZ 30 80

/ command mode only
// param is unsigned
#define RENDER-SETPAGE 31

// command mode only
// param is unsigned (wait for vsync)

#define RENDERFLIPPAGE 32

// command mode only 90

// params are sizex, sizey

// returns either a token or -1 (OxFFFFFFFF) if no space

#define RENDERALLOCATETEXTURE 33

166

17

// command mode only
/ param is unsigned token
#define RENDERDEALLOCTEXTURE 34

// command mode only
// param is token, then length of data in words, then data for 100
// texture

#define RENDER-UPLOAD-TEXTURE 35

// command mode only
/ no params, returns unsigned total size available
#define RENDER-TEXMEMAVAIL 36

// command mode only
// no params

#define RENDER-COMPACT-TEXMEM 37 110

// command mode only
// params are xy,page(s),rgbx
#define RENDER-WRITEFB 38

// command mode only
1/ params are starting xy, page(s), length, then rgbx's
#define RENDERWRITEFBBLOCK 39

// command mode only 120

// params are xy,page
// returns unsigned rgbx
#define RENDER-READFB 40

// command mode only
1/ params are starting xy, page, length
// returns many unsigned rgbx according to length
#define RENDERREADFB-BLOCK 41

// command mode only 130

// params are xy,signed value
#define RENDER-WRITEZ 42

/ command mode only
// params are starting xy, length, then signed zs
#define RENDER-WRITEZ-BLOCK 43

/ command mode only
// params are x,y
// returns signed z 140

#define RENDER-READZ 44

167

/ command mode only
/1 params are starting xy, length

/ returns many signed z's according to length

#define RENDER-READ-Z-BLOCK 45

/ command mode only
/ no params, returns nothing
#define RENDER-RESET 46 150

/ command mode only
/ no params, returns nothing

#define RENDER-HALT 47

#endif RENDERCMDSH

160

168

C.7 Stagel-Main.c

// Stagel-Main.c

//
// Ken Taylor, MIT Master's Thesis 2004

//
// Last Updated: 5/18/2004

//
// This file implements the startup and control code for tile 0.
/ When tile 0 goes into scenestream mode, it branches into code

// which runs under "Stagel-Common.c". Assembly helper functions
// for this code are in Stage1-Main-sw.S, while assembly functions 10

/ for scenestream and that are otherwise common among the tiles
// are in Stagel-sw.S.

#include "moduletest .h" // includes raw.h
#include "raw.compiler-defs.h" // for PASS (testing)
#include "Stage 1-datatypes.h" // shared datatypes, includes render-datatypes.h
#include "ZBufdatatypes.h" // for z-buffer/stage-4 interaction

#include "render_framebuffer.h"
#include "rendercmds. h" // command defines 20

#include "Common-sw.h" // flush/invalidate

// Start up the switch (code in assembly)
void setup-switch-main(void);
void setup-interrupts(void);
void setup-switch-scenestream(void);

#define gdn-send-hdr(F, 1, u, oY, oX, dY, dX) \
gdn-send(F<<29j1<<241u<<20oY<<15|oX<<10ldY<<5IdX)

30

|/ functions from Stagel-Common.c that are used
void MatrixMatrixMult(TransformMatrix X, TransformMatrix M,

TransformMatrix Y);
void MatrixInvTrans(TransformMatrix X, TransformMatrix Y);

RenderState *prs;
TexManager *ptm;

ZBufData *pzbd;

40

// clears the renderstate (prs) to its initial values
void ClearRenderStateO

{
int ij;

169

prs->Updated = OxE;

for(i = 0; i < 4; i++) // int all matrices to the identity matrix
for(j = 0; j < 4; j++)

prs->ModelToWorld[i][j] = prs->WrldTView[i] [j = 50

prs->ModelTView[i][] = prs->NormalToWorld[i][] =

(i == j) ? L.Of : 0.0f;

I

prs->nx = 1.0f;
prs->ny = 0.0f;
prs->nz = 0.0f;
prs->rgba = OxOQOOOFF;
prs->pInfo.p.Mode.lit = 0;
prs->pInfo.p.Mode.useamb = 0; 60
prs->pInfo.p.Mode.usedir = 0;
prs->pInfo.p.Mode.texmode = 1;
prs->pInfo.p.Mode.texalpha = 1;
prs->pInfo.p.Mode.colalpha = 1;
prs->pInfo.p.Mode.colinterp = 1;
prs->pInfo.p.Mode.litinterp = 0;
prs->pInfo.p.Mode.texinterp = 0;
prs->pInfo.p.Mode.outoforder = 0;
prs->pInfo.p.Mode.textile = 1;
prs->pnfo.p.Mode.nousez = 0; 70
prs->pInfo.p.Mode.nowritez = 0;
prs->pInfo.TexturelD = 0;
prs->pInfo.ColTexBalance = 0.5f;
prs->pInfo.alphaThresh = 128;
prs->pInfo.ambColor = 0;
prs->pnfo.dirColor = 0;
prs->ldx = 1.0f;
prs->ldy = 0.0f;
prs->ldz = 0.0f;
prs->ambreflect = 255; 80

prs->dirreflect = 255;
prs->dirdefined = 0;

}

// takes cmd, and executes it.
/ returns true if going into scenestream, false if not.
// potentially uses prs, ptm, pzbd.

unsigned doCommand(unsigned cmd) 90

{
int i,j;

170

switch(cmd)

I
case RENDER-BEGINSCENE:

static-send(O);
static-send(O);
return 1;
break; 100

case RENDER-COLOR:
static-send(1);
prs->rgba = static-receive();
static-send(O);
prs->Updated = OxE;
break;

case RENDER-MODELMATRIX:
static-send(16); 110
for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++)
{

prs->ModelToWorld[i][j] = static-receive-(;
}

static-send(0);

MatrixMatrixMult(prs->ModelToView, prs->WorldToView,
prs->ModelToWorld); 120

MatrixInvTrans(prs->NormalToWorld, prs->ModelToWorld);

prs->Updated = OxE;

break;

case RENDERIVIEWMATRIX:
static-send(16);
for(i = 0; i < 4; i++) 130

for(j = 0; j < 4; j++)
{

prs->WorldToView[i][j] = static-receive-(;

}

static-send(0);

MatrixMatrixMult(prs->ModelToView, prs->WorldToView,
prs->ModelToWorld);

140

prs->Updated = OxE;

171

break;

case RENDER-NORMAL:
static-send(3);
prs->nx = static-receivef();
prs->ny = static-receivef(;
prs->nz = static-receive-(;

150

static-send(O);

prs->Updated = OxOE;
break;

case RENDER-SET-LIT:
static-send(1);
prs->pInfo.p.Mode.lit = static-receiveo;
static-send(O);
prs->Updated = OxOE; 160

break;

case RENDERSETUSEAMB:
static-send(1);
prs->pInfo.p.Mode.useamb = static-receiveO;
static-send(O);
prs->Updated = OxOE;
break;

case RENDERSETUSEDIR: 170

static-send(1);
prs->pInfo.p.Mode.usedir = static-receive();
static-send(O);
prs->Updated = OxOE;
break;

case RENDERSETTEXMODE:
static-send(1);
prs->pInfo.p.Mode.texmode = static-receive();
static-send(O); 180

prs->Updated = OxOE;
break;

case RENDER-SETTEXALPHA:
static-send(1);
prs->pInfo.p.Mode.texalpha = static-receive();
static-send(O);
prs->Updated = OxOE;
break;

172

190

case RENDERSET-COLALPHA:
static-send(1);
prs->pInfo.p.Mode.colalpha = static-receive();
static-send(O);
prs->Updated = OxOE;
break;

case RENDER-SETCOLINTERP:
static-send(1);
prs->pInfo.p.Mode.colinterp = static-receiveo; 200

static-send(O);
prs->Updated = OxOE;
break;

case RENDERSETLITINTERP:
static-send(1);
prs->pInfo.p.Mode.litinterp = static-receiveO;
static-send(O);
prs->Updated = OxOE;
break; 210

case RENDER-SETTEXINTERP:
static-send(1);
prs->pInfo.p.Mode.texinterp = static-receiveO;
static-send(O);
prs->Updated = OxOE;
break;

case RENDER-SETOUTOFORDER:
static.send(1); 220

prs->pInfo.p.Mode.outoforder = static-receive();
static-send(O);
prs->Updated = OxOE;
break;

case RENDER-SET-TEXTILE:
static-send(1);
prs->pInfo.p.Mode.textile = static-receiveO;
static-send(O);
prs->Updated = OxOE; 230

break;

case RENDER-SETNOUSEZ:
static-send(1);
prs->pInfo.p.Mode.nousez = static-receive();
static-send(O);
prs->Updated = OxOE;

173

break;

case RENDER-SET-NOWRITEZ: 240

static-send(1);
prs->pInfo.p.Mode.nowritez = static-receive();

static-send(O);
prs->Updated = OxOE;
break;

case RENDERSETTEXTUREID:
static-send(1);
prs->pnfo.TextureID = static-receive();
static-send(O); 250

prs->Updated = OxOE;
break;

case RENDER-COLTEXBALANCE:
static-send(1);
prs->pInfo.ColTexBalance = static-receivef(;
static-send(O);
prs->Updated = OxOE;
break;

260

case RENDER-ALPHATHRESH:
static-send(1);
prs->pInfo.alphaThresh = static-receiveo;
static-send(O);
prs->Updated = OxOE;
break;

case RENDER-AMBCOLOR:
static-send(1);
prs->pInfo.ambColor = static-receive(); 270

static.send(O);
prs->Updated = OxOE;
break;

case RENDERDIRCOLOR:
static-send(1);
prs->pInfo.dirColor = static-receive();
static-send(O);
prs->Updated = OxOE;
break; 280

case RENDERDIRLIGHT:
static-send(3);
prs->ldx = static-receive-(;
prs->ldy = static-receive-(;

174

prs->ldz = static-receive-f(;
static-send(O);
prs->dirdefined = 1;
prs->Updated = OxOE;
break; 290

case RENDERAMBREFLECT:
static-send(1);
prs->ambreflect = static-receiveo;
static-send(O);
prs->Updated = OxOE;
break;

case RENDER-DIRREFLECT:
static-send(1); 300

prs->dirreflect = static-receiveO;
static-send(O);
prs->Updated = OxOE;
break;

case RENDER-CLEARFB:

{
int i;
unsigned page, rgbx;

310

static-send(2);
page = static- receive(); // page (like z->fbmode)
rgbx = static-receive(); // rgbx
static-send(O);

for(i = 0; i < VWIDTH * VHEIGHT; i++)

{
fb-set-pixel-rawaddr(i, rgbx, page & FBMODEBACK,

(page & FBMODE-FRONT)>>1);
} 320

}
break;

case RENDERCLEARZ:

{
int i;
static-send(0);
static-send(O);

for(i = 0; i < VWIDTH*VHEIGHT; i++) 330

{
pzbd->buf[i] = Ox7FFFFFFF;

}

175

// flush zbd
flush-variable(pzbd, sizeof(ZBufData));

}

break;
340

case RENDERWSETPAGE:
static-send(1);
// page.. FBMODENONE, BACK, FRONT, BOTH
pzbd->fbmode = static-receiveO;
flush-word(&pzbd->fbmode);
static-send();
break;

case RENDERFLIPPAGE:
static-send(1); 350

if(static-receive())// wait for vsync?
fb-flip-page-vsyncO;

else
fb-flip-pageO;

static-send(O);
break;

case RENDERALLOCATE-TEXTURE:

unsigned sizex, sizey; 360

unsigned totalsize;
signed nexttexID, texID = -1;
TexAllocation *pAlloc = 0;

// get next texture id to use
for(nexttexID = 0; ptm->pTexEntryTable[nexttexID].valid && nexttexID

< ptm->MaxTextures; nexttexID++);

static-send(2);
sizex = static-receive(); 370

sizey = static-receiveo;

if(nexttexID < ptm->MaxTextures)

{
totalsize = sizex*sizey;

if(ptm->pAllocHead == 0)
{

/ base case, all memory is clear
if(totalsize*sizeof(unsigned) <= ptm->TexMemorySize) 380

{

176

pAlloc = (TexAllocation*)malloc(sizeof(TexAllocation));
if(pAlloc)

{
ptm->pAllocHead = ptm->pAllocTail = pAlloc;

pAlloc->ID = texID = nexttexID;
pAlloc->pBegin = ptm->pTexMemory;

pAlloc->pEnd = ptm->pTexMemory + totalsize;
pAlloc->pNext = 0;
pAlloc->pPrev = 0; 390

ptm->TexMemoryFree -= totalsize*sizeof(unsigned);

}
}

}
else

{
/1 search for a block large enough to hold the texture

if(totalsize*4 <= ptm->TexMemoryFree)

{
TexAllocation * pta; 400

unsigned * lastbegin = ptm->pTexMemory +
ptm->TexMemorySize/sizeof (unsigned);

for(pta = ptm->pAllocTail; pta != 0;
lastbegin = pta->pBegin, pta = pta->pPrev)

{
if(lastbegin - pta->pEnd >= totalsize)

{
// here's a spot that will work, allocate it right after
1/ pta->pEnd, and allocate new texallocation at pAlloc.
pAlloc = (TexAllocation *) malloc(sizeof(TexAllocation)); 410

if(pAlloc)

{
if(pta->pNext)

pta->pNext->pPrev = pAlloc;
else

ptm->pAllocTail = pAlloc;

pAlloc->pNext = pta->pNext;
pAlloc->pPrev = pta;
pta->pNext = pAlloc; 420

pAlloc->ID = texID = nexttexID;
pAlloc->pBegin = pta->pEnd;
pAlloc->pEnd = pAlloc->pBegin + totalsize;
ptm->TexMemoryFree -= totalsize*sizeof(unsigned);

}
}

}

if(pta == 0)

177

{ // went all the way to the beginning, do final check 430

/ if there's room at beginning, allocate new texalloc at pAlloc.

if(lastbegin - ptm->pTexMemory >= totalsize)

{
pAlloc = (TexAllocation*)malloc(sizeof(TexAllocation));
if(pAlloc)

{
ptm->pAllocHead->pPrev = pAlloc;
pAlloc->pNext = ptm->pAllocHead;
pAlloc->pPrev = 0; 440

ptm->pAllocHead = pAlloc;
pAlloc->ID = texID = nexttexID;
pAlloc->pBegin = ptm->pTexMemory;
pAlloc->pEnd = pAlloc->pBegin + totalsize;
ptm->TexMemoryFree -= totalsize*sizeof(unsigned);

}
}

} /1 if(pta == 0)
} // if(totalsize*4 <= ptm-> TexMemoryFree)

} // else (if(ptm->pAllocHead == 0)) 450

} /1 if(nexttexID < ptm-> MaxTextures)

if(pAlloc && texID != -1)

{
// allocated the texture correctly, now add the texture entry
ptm->pTexEntryTable[texID].valid = 1;
ptm->pTexEntryTable[texID].updated = OxOF;
ptm->pTexEntryTable[texID].Width = sizex;
ptm->pTexEntryTable[texID].Height = sizey;
ptm->pTexEntryTable[texID].pAlloc = pAlloc; 460

ptm->pTexEntryTable[texID].pBegin = pAlloc->pBegin;

ptm->NumTextures++;

// and flush texentry out
flush-variable(&ptm->pTexEntryTable[texID], sizeof(TexEntry));

/ don't need to flush TexAllocation, as only the main
/ processor (this one) ever uses that data.
// likewise, don't need to flush TexManager out. 470

}

static-send(1);
staticsend(texID);

}

178

break;

case RENDERDEALLOCTEXTURE: 480

signed id;
TexAllocation *pAlloc;
static-send(1);
id = static-receive();

if(id >= 0 && id < ptm->MaxTextures)

{
pAlloc = ptm->pTexEntryTable[id].pAlloc;
if(ptm->pTexEntryTable[id] .valid && pAlloc) 490

{
if(pAlloc->pNext)

pAlloc->pNext->pPrev = pAlloc->pPrev;
else

ptm->pAllocTail = pAlloc->pPrev;

if(pAlloc->pPrev)
pAlloc->pPrev->pNext = pAlloc->pNext;

else
ptm->pAllocHead = pAlloc->pNext; 500

ptm->TexMemoryFree += (pAlloc->pEnd - pAlloc->pBegin)
*sizeof (unsigned);

ptm->NumTextures--;
free(pAlloc);
ptm->pTexEntryTable[id].pAlloc = 0;
ptm->pTexEntryTable[id].valid = 0;
ptm->pTexEntryTable[id].updated = OxF;

flush-variable(&ptm->pTexEntryTable[id], sizeof(TexEntry)); 510

/ don't need to flush TexAllocation, as only the main
/1 processor (this one) ever uses that data.
// likewise, don't need to flush TexManager out.

}
}

static.send(O);

}
break; 520

case RENDERUPLOADTEXTURE:

{
unsigned size, temp;
signed id;

179

unsigned *texbegin = 0, *texend = 0, *texiter;

static-send(2);
id = static- receiveo;
size = static-receiveO; 530

static-send(0); // reading back 0

// hack: at this point, static network sends us

// next word unconditionally

if(size > 0)

{
if(id >= 0 && id < ptm->MaxTextures)

if(ptm->pTexEntryTable[id.valid && ptm->pTexEntryTabe[id].pAlloc)

{ 540
texiter = texbegin = ptm->pTexEntryTable[id].pAlloc->pBegin;
texend = ptm->pTexEntryTable[id].pAlloc->pEnd;

}

// get first word
temp = static-receive();
size--;

if(texiter != texend)
*texiter = temp; 550

texiter++;

static-send(size); // get rest of words

for(;texiter < texend && size > 0; size--, texiter++)

{
*texiter = static- receive();

}

// program screwed up, but try not to lock up... 560

for(; size > 0; size--)
static-receiveO;

// flush out what we uploaded
if(texbegin != texend)

flush-variable(texbegin, (texend - texbegin)*sizeof (unsigned));

static.send(0); // reading back 0

} 570

}
break;

180

case RENDER-TEXMEMAVAIL:
static-send(O);
static-send(1);
static-send(ptm->TexMemoryFree); // texmem avail
break;

580

case RENDERCOMPACTTEXMEM:
// TODO
static-send(O);
static-send(O);
break;

case RENDERWRITEFB:

int xy;
unsigned page,rgbx; 590
static-send(4);
x = static-receive(); // x
y = static-receive(); // y
page = static-receive(); // page
rgbx = static-receive(); / rgbx
fb-set-pixel-rgbx(x, y, rgbx,

(page & FBMODEBACK) != 0,
(page & FBMODEFRONT) != 0);

static-send(0); 600

}
break;

case RENDER-WRITE-FBBLOCK:

unsigned length;
// TODO
static-send(4);
static-receive(); // x
static-receive(); // y 610

static-receive(); // page
length = static-receive(); // length
static-send(0);

if(length > 0)

{
// first rgbx in block
static-receive();
length--;
static-send(length); 620

for(; length > 0 ; length--)

181

static-receive(); // rest of rgbx's

static-send(O);

}

}
break;

case RENDERIREADFB:
{ 630

int xy;

unsigned page;
static-send(3);
x = static-receiveO; // x
y = static-receiveO; // y
page = static-receiveo; // page - 0 = back, 1 = front
static-send(1);
static-send(fb-read-pixel(x, y, page));

}
break; 640

case RENDERREAD-FB-BLOCK:

{
unsigned length;
// TODO
static-send(4);
static-receive(); // x
static-receiveo; // y
static-receiveo; // page

length = static-receiveo; // length 650

static-send(length);
for(; length > 0; length--)

static-send(0); // read rgbx

}

break;

case RENDER-WRITEZ:

{
unsigned x,y; 660

signed val;
static-send(3);
x = static-receive(); // x
y = static- receive(); // y
val = static-receiveo; // val

pzbd->buf[x+VWIDTH*y] = val;
flush-word(&pzbd->buf[x+VWIDTH*y]);
static-send(O);

}

182

break;

case RENDERWRITEZ-BLOCK:

{
unsigned length;
// TODO
static-send(3);
static-receive(); // x
static-receive(; // y
length = static-receive(); // length
static-send(O); 680

if(length > 0)

// first val in block
static-receive();
length--;
static-send(length);
for(; length > 0 ; length--)

static-receiveo; // rest of val's
static-send(0); 690

}

}
break;

case RENDER-READ-Z:

{
unsigned x,y;
static-send(2);
x = static-receive(; //x 700

y = static- receive(); //y
static-send(1);
invalidate-word(&pzbd->buf[x+VWIDTH*y);
static-send(pzbd->buf[x+VWIDTH*y]); // val

}
break;

case RENDER-READZ-BLOCK:

{
unsigned length; 710

// TODO
static-send(3);
static-receiveO; // x
static- receiveo; // y
length = static-receive(); // length
static-send(length);
for(; length > 0; length--)

183

670

static-send(O); // read val

I
break; 720

case RENDER-RESET:

{
int i;

static-send(O);
static-send(O);

// clear out render state

ClearRenderStateO;
730

// clear out texture memory

/1 (assuming that everything is set up correctly!)

for(i = 0; i < ptm->MaxTextures; i++)

{
if(ptm->pTexEntryTable[i].valid)

{
ptm-> pTexEntryTable [i].valid = 0;
free(ptm->pTexEntryTable[i].pAlloc);

} 740

ptm->TexMemoryFree = ptm->TexMemorySize;

ptm->NumTextures = 0;
ptm->pAllocHead = 0;
ptm->pAllocTail = 0;

// clear out z buffer

pzbd->fbmode = FBMODE-BACK; 750

#ifdef INITZBUF
for(i = 0; i < VWIDTH*VHEIGHT; i++)

{
pzbd->buf[i] = Ox7FFFFFFF;

}

/1 flush zbd
flush-variable(pzbd, sizeof(ZBufData));

#else 760

flush-variable(pzbd->fbmode, sizeof(unsigned));
#endif

|/ TODO: init framebuffer if compiler define says so

184

// tell fb to reset

fb-reseto;

}
break;

770

case RENDERHALT:
static-send(O);
static-send(O);
// halting!
while(1);
break;

default:
static-send(0);
static-send(0); 780

}

return 0;

}

void begin(void)

//things we need to do on initial bootup:

//// set up the interrupt handlers
setup-interruptsO; 790

raw-set-statusEX-MASK(OxOOOOOOOO); // all off
raw-user-interrupts-onO;
raw-interrupts-on(;

/1 for framebuffer code
/1 funny desty (sender xy = 0)
fb-init-fbhdr(0,0);

//// allocate shared memory for stagel.
prs = (RenderState*)malloc(sizeof(RenderState)); 800

//// set renderstate to startup defaults, and invalidate
ClearRenderStateO;
/ only initialize seqnum at startup, not on reset since stage4
/ never gets wind of a reset happening
prs->pInfo.p.SeqNum = 1;
prs->LaggedSeqNum = 1;
flush-variable(prs, sizeof(RenderState));

/// send shared memory pointers to other tiles in stagel. 810

gdn-send-hdr(0, 1, 0, 0, 0, 0, 1);
gdn-send(prs);

185

gdn-send-hdr(O, 1, 0, 0, 0, 0, 2);
gdn-send(prs);
gdn-send-hdr(0, 1, 0, 0, 0, 0, 3);
gdn-send(prs);

//// wait for acknowledgements back
gdn-receive(; 820

gdn-receive(;
gdn-receiveo;

//// (we don't really need to ack on stage 2- they don't do

/ /1/ anything except in scenestream, and the network can buffer

//// for them until they're ready)

//// ask stage3 to allocate tex mem, and tex control structures.

gdn-send-hdr(0, 1, 0, 0, 0, 2, 0);
gdn-send(0); 830

//// wait for response from stage 3, and store pointers.
ptm = (TexManager *)gdn-receive(;

//// tell stage4 to allocate z-buffer and other shared mem it needs

gdn-send-hdr(0, 1, 0, 0, 0, 3, 0);
gdn.send(0);

//// wait for response from stage4, and store pointer
pzbd = (ZBufData*)gdn-receive(; 840

while(1)

{
/1 going into command mode:

//// set up the static network
setup-switch-maino;

/ ///send acknowledgement out to renderhost, telling it we're booted

//// and ready for commands.
static-send(1); 850

// command mode:
//// loop reading command, performing action, sending back
//// responses if necessary. Everything can be done with memory

accesses (make sure to flush changed memory) and gdn messages

//// (for writing to framebuffer) except scenestream mode.
while(!doCommand(static-receive()));

/1 going into scenestream:
//// make sure memory changes are all flushed. if any pixels were 860

/11/ written, do one more read and wait for response to make sure

186

//// it's serialized.

prs->Updated = OxO; // tiles always invalidate renderstate on start
flush-variable(prs, sizeof(RenderState));
flush-variable(ptm, sizeof(TexManager));
flush-variable(pzbd->fbmode, sizeof(unsigned));
fb-read-pixe(0,0,0);

//// enable gdn-avail interrupt (gdn messages sent when it's time

//// to endscene and flush pipe) 870

raw-set-status-EX-MASK(0x00000020);

//// set up the static network (and send 1, then 0)
setup-switch-scenestreamO;
static-send(1);
static-send(O);

//// send one word out of static network to tell it we're ready to
/11/ accept messagesl
static-send(1); 880

// scenestream mode:
DoSceneStream(prs, 0);

// old wordy description of scenestream follows:
1/1/ loop with algorithm defined in Stagel- Common. c. Commands are run
/11/ with no acknowledgements. When endscene command occurs, host will
//// wait for an acknowledgement before sending any more. Tile that gets
/1/! endscene will then perform a flush, which consists of sending a gdn
/11/ message to all the other Stagel tiles, and turning the gdn-avail 890

/11/ interrupt off for itself. All the tiles then send a specially encoded
/1/! primitive to the next stage and down the pipe. They then go back to
//// their normal scenestream mode. When the primitive gets to the
/ ///bottom stage, the bottom stage cleans up, and sends a
//// gdn message back to the tile that started the flush (this tile
//// number has to be both encoded in its original gdn message to the
//// other tiles, and in the special flush primitive).

//// When the flushing tile gets all 4 messages, then it knows that the
//// flush is complete, and sends another gdn message to all 4 tiles with a 900

/ ///special code that means the scene is done (this is needed because
//// the same flushing mechanism is used to clear the pipeline when the
/ ///sequence number rolls over). All tiles then reset their static networks
//// to the starting position. Tile 0 then leaves scenestream (gdn-avail
//// interrupt can be same for everyone)

/1 from scenestream back to command mode:
//// turn off gdn-avail interrupt
raw-set-statusEX-MASK(OxOOOOOOOO); // all off

187

910

// invalidate render state, if needed
invalidate- variable(&prs->Updated, sizeof(unsigned));

if(prs->Updated & OxO1)
invalidate-variable(prs, sizeof(RenderState));

prs->Updated &= OxE;

/1/! (note, all this will happen at beginning of while loop ->)
////// set the static network back up
////// send acknowledgement of endscene back out to renderhost 920

////// go to "command mode" above

}

/ async resets?
//// too complex to drain out dynamic network state. won't implement these

// sync resets? halts?
//// these can be implemented as standard commands. all other tiles will

//// be blocked waiting for something.
930

}

188

C.8 Stage1-Main-sw.S

//setup-switch from starsearch/examples/multi-tile/static-net/mixed/compute-sw.S

.text

.align 2
.global setup-switch-main

.ent setup-switch-main
setup-switch-main:

mtsri SW-FREEZE,
la $8, sw-start
mtsr SW.PC, $8
mtsri SWFREEZE,
jr $31

.end setup-switch-main

.swtext

.align 3
// Start of switch code.
sw-start:

nop

1 //
//
//

0 //
//!

Freeze the switch.
Get switch starting address.
Set the switch PC.
Get with switch running.
Return.

route $csto->$cWo // First word from proc to west
// to start render-host

read: nop route $cWi->$csti // send first word to proc

move $1, $csto // count of words to read

BEQZD $1, $1, reply
readL: BNEZD $1, $1, readL route $cWi->$csti

reply: move $1, $csto // count of words in reply
BEQZD $1, $1, read

replyL: BNEZD $1, $1, replyL route $csto->$cWo

j read

189

10

20

30

C.9 Stagel-Aux.c

||Stagel-Aux.c

//
// Ken Taylor, MIT Maste

/1
// Last Updated: 5/18/2004
/1
// This file implements the

// in stage 1. Does some ba

//loop.

r's Thesis 2004

startup and control code for tiles > 0
sic setup, then stays in a scenestream

10
#include "moduletest.h" // includes raw.h
#include "raw-compilerdefs h" // for PASS (testing)
#include "Stage1-datatypes.h" // shared datatypes, includes render-datatypes.h

#include "Common-sw.h" // flush/invalidate

#define gdn-send.hdr(F, 1, u, oY, oX, dY, dX) \
gdn-send(F<<291<<24u<<20oY<<15IoX<<10jdY<<51dX)

void setup-switch-scenestream(void);
20

void begin(void)

{
RenderState *prs;
int tileNum;

// set up interrupts
setup-interruptsO;
raw-set-statusEXMASK(OxOOOOOOOO); // all off
raw-user-interrupts-onO;
raw-interrupts-onO;

tileNum = raw-get-abs-pos-xO;

// receive global pointer to render state from tile 0
prs = gdn-receiveo;

// invalidate cache

invalidate-variable(prs, sizeof(RenderState));

// send back ack
gdn-send-hdr(0,1,0,0,tileNum,0,0);
gdn-send(0);

// turn gdn-avail interrupt on for scenestream
raw-set-statusEXMASK(0x00000020);

190

30

40

// we just stay in scenestream for the rest of the time
while(1)

{
// reset switch to start of cycle 50

setup-switch-scenestreamO;
static-send(1);
static-send(0);

// do scene stream until an endprim occurs.
DoSceneStream(prs, tileNum);

}

60

191

C.10 Stagel-Common.c

// Stagel-Common.c

//
// Ken Taylor, MIT Master's Thesis 2004

/ /
// Last Updated: 5/18/2004

/
/ This file implements the code used in common across stagel to

// run scenestreaming mode.

#include "raw.compiler-defs.h" 10

#include "raw.h"
#include "Stage 1-datatypes. h"

#include "rendercmds.h"

#include "Common-sw.h" // flush/invalidate

void signal-proc-ready(void);

#define gdn-send-hdr(F, 1, u, oY, oX, dY, dX) \
gdn-send(F<<2911<<241u<<20OoY<<15IoX<<10ldY<<5jdX)

20

// matrix multiply! r = M*e

void MatrixMult(float *rO, float *rl, float *r2, float *r3,
TransformMatrix M,
float eO, float el, float e2, float e3)

{
*rO = M[O][O]*eO + M[O][1]*el + M[O][2]*e2 + M[O][3]*e3;
*r= M[1][O]*eO + M[1][1]*el + M[1][2]*e2 + M[1][3]*e3;
*r2 = M[2][O]*eO + M[2][1I*el + M[2][2]*e2 + M[2][3]*e3;
*r3 = M[3][O]*eO + M[3][1]*el + M[3][2]*e2 + M[3][3]*e3; 30

}

// matrix to matrix multiply! X = M* Y
void MatrixMatrixMult(TransformMatrix X, TransformMatrix M,

TransformMatrix Y)

{
int i,j,k;
for(i = 0; i<4; i++)

for(j = 0; j<4; j++)
{ 40

X[i][j] = 0;
for(k = 0; k < 4; k++)

{
X[i][j] += M[i][k] * Y[k][];

}

192

}
}

// invert and transpose a matrix! X = (Y^-1)^T

/ note: used only for normals, so: 50

/1 - only computing the adjoint, not the inverse, and,

// - only computing it for the upper left 3x3 (no translation on normals)

// code from http://www.gignews.com/realtime020100.htm, accessed 4/20/04

void MatrixInvTrans(TransformMatrix X, TransformMatrix Y)

{
X[0][0] = Y[1][1] * Y[2][2] - Y[1][2] * Y[2][1];
X[O][1] = Y[1][2] * Y[2][0] - Y[1][0] * Y[2][2];
X[0][2] = Y[1][0] * Y[2][1] - Y[1][1] * Y[2[0];
X[1][0] = Y[2][1] * Y[0][2] - Y[2][2] * Y[O][1];
X[1][1] = Y[2][2] * Y[0][0] - Y[2][0] * Y[0][2]; 60

X[1][2] = Y[2][0] * Y[0][1] - Y[2][1] * Y[0][0];
X[2][0] = Y[0][1] * Y[1][2] - Y[0][2] * Y[1][1];
X[2][1] = Y[0][2] * Y[1][0] - Y[0][0] * Y[1][2];

X[2][2] = Y[0][0] * Y[1][1] - Y[O][1] * Y[1][0];
X[O][3] = X[1][3] = X[2][3] = 0;
X[3][3] = 1;

}

unsigned pipeHDR; 70

void SendFlushPrim(unsigned tileNum)

{
gdn-send(pipeHDR 1 2<<24);
gdn-send(RENDERP-FLUSH);
gdn-send(tileNum);

}

void FlushPipeline(unsigned tileNum)
{ 80

// turn gdn-avail interrupt off

raw-set-statusEXMASK(OxOOOOOOOO); // all off

// send gdn messages with our tile number to all other stage 1 tiles.

if(tileNum != 0)

{
gdn-send-hdr(0,1,0,0,tileNum,0,0);
gdn-send(tileNum);

}
if(tileNum != 1) 90

{
gdn-send-hdr(0,1,0,0,tileNum,0,1);
gdn-send(tileNum);

193

}
if(tileNum != 2)

{
gdn-send-hdr(0,1,0,0,tileNum,0,2);
gdn-send(tileNum);

I
if(tileNum != 3) 100

{
gdn-send-hdr(0,1,0,0,tileNum,0,3);
gdn-send(tileNum);

}

/ send flush command down pipe

SendFlushPrim(tileNum);

// wait for all gdn responses from last stage. 110
gdn-receiveo;
gdn-receiveo;
gdn-receiveo;
gdn-receiveo;

// turn gdn-avail back on.
raw-set-statusEXMASK(0x00000020);

}
120

/ a helper function - reads from the sn,
// and decrements the block variable. if it's
// zero, reads a new one from the static network.
// assumes that *b is currently >0!
static inline unsigned block-receive(unsigned *b)

{
unsigned temp = static-receiveO;
if(--(*b) <= 0)

*b = static-receiveO;
return temp; 130

}
static inline float block-receive-f(unsigned *b)

{
float temp;
temp = static-receive-(;
if(--(*b) <= 0)

*b = static-receiveO;
return temp;

}
140

// rs = pointer to the global RenderState structure

194

//if(blockLength > 0)
//A
// rs->rgba = block-receive(&blockLength);
// rs->Updated = OxOF;

// tileNum = our tile number, used for Updated checking and

// flushing
void ExeSceneStream(RenderState * rs, unsigned tileNum)
{ 150

int i,j;
unsigned blockLength;
unsigned numVerts = 0; // number of vertices we've got (don't render
/1 without 3.
InputPrim ip; // data stored on input
TransPrim tp; /1 object to output

float tnx,tny,tnz; // temp normal in world coords, for lighting
float tempz; // temp z before converting to fixed point.

160

unsigned unordered = 0; // is it an unordered prim, or ordered?
unsigned isendscene = 0;

unsigned visible = 0; //is visible or was clipped?

unsigned flushmode = 0;

// first, invalidate rs-> Updated.
invalidate_ word(&rs->Updated);

170

// check to see if our bit index is 1
if(rs->Updated & (1 << tileNum))

//if it is, invalidate all of rs in the cache
invalidate-variable(rs, sizeof(RenderState));

else

{
// else, just invalidate rs->pInfo.p.SeqNum and rs->LaggedSeqNum
invalidate_ word(&rs->pInfo.p.SeqNum);
invalidate-word(&rs->LaggedSeqNum);

} 180

// set our bit in rs-> Updated to be 0
rs->Updated &= ~(1 << tileNum);

// clear input prim
for(i = 0; i<3; i++)

{
//ip.v[i].x = 0.0f;

//ip.v[i].y = 0.0f;

195

//ip.vfi].z = O.Of; 190
ip.v[i].nx = 1.0f;
ip.v[i].ny = O.Of;
ip.v[i].nz = 0.0f;

//ip.v[i].u = 0.0f;
//ip.v[i].v = 0.0f;
ip.v[i].rgba = 0;

}

200

// read blockLength from static network
blockLength = static- receive();

// now, loop while blockLength!=O:
while(blockLength > 0)

{
unsigned cmd;
//// read next command. decrement blockLength. if blockLength = 0 now,
//// read in blockLength. 210

cmd = block-receive(&blockLength);

1/1/ switch on command:
/ /// read in command's data. update:
//// ip, *rs, numVerts.
//// when making a new vertex, get data from *rs.
//// when changing normals or whatnot, update *rs.
//// keep track of blockLength, if it reaches 0,
//// read in blockLength again. if read blockLength = 0, break.
1/1/ if command is endscene.... set isendscene = 1 220

switch(cmd)

{
case RENDERENDSCENE:

isendscene = 1;
break;

case RENDERVERTEX:
if(blockLength > 0)

{ 230

ip.v [numVerts] .x = block-receiveif(&blockLength);
ip.v[numVerts].y = block-receive-f(&blockLength);
ip.v[numVerts].z = block-receive-f(&blockLength);
ip.v[numVerts].U = block-receive.f(&blockLength);
ip.v[numVerts].v = block-receivef(&blockLength);
ip.v[numVerts].nx = rs->nx;
ip.v[numVerts].ny = rs->ny;

196

ip.v[numVerts].nz = rs->nz;

ip.v[numVerts].rgba = rs->rgba; 240

numVerts++;

}

break;

case RENDERCOLOR:
if(blockLength > 0)

I
rs->rgba = block-receive(&blockLength); 250

rs->Updated = OxF;
flush-word(&rs->rgba);

}
break;

case RENDER-MODELMATRIX:
if(blockLength > 0)

{
for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++) 260

{
rs->ModelToWorld[i][j] = block-receive-f(&blockLength);

}

MatrixMatrixMult(rs->ModelToView, rs->WorldToView,
rs->ModelToWorld);

MatrixInvTrans(rs->NormalToWorld, rs->ModelToWorld);

rs->Updated = OxF; 270

flush-variable(rs->ModelToWorld, sizeof(TransformMatrix));
flush-variable(rs->ModelToView, sizeof(TransformMatrix));
flush-variable(rs->NormalToWorld, sizeof(TransformMatrix));

}
break;

case RENDERVIEWMATRIX:
if(blockLength > 0)

{
for(i = 0; i < 4; i++) 280

for(j = 0; j < 4; j++)
{

rs->WorldToView[i][j] = block-receiveAf(&blockLength);
}

197

MatrixMatrixMult(rs->ModelToView, rs->WorldToView,
rs->ModelToWorld);

rs->Updated = OxOF;
flush-variable(rs->WorldToView, sizeof(TransformMatrix)); 290

flush-variable(rs->ModelToView, sizeof(TransformMatrix));

}
break;

case RENDER-NORMAL:
if(blockLength > 0)

rs->nx = blockreceive-f(&blockLength);
rs->ny = block-receive-f(&blockLength);
rs->nz = block-receive-f(&blockLength); 300

rs->Updated = OxOF;
flush-word(&rs->nx);
flush-word(&rs->ny);
flush-word(&rs->nz);

}
break;

case RENDERSET-LIT:
if(blockLength > 0) 310

{
rs->pInfo.p.Mode.lit = block-receive(&blockLength);

rs->Updated = OxOF;
flushmode = 1;

}
break;

case RENDERSETUSEAMB:
if(blockLength > 0) 320

{
rs->pInfo.p.Mode.useamb = block-receive(&blockLength);

rs->Updated = OxOF;
flushmode = 1;

}
break;

case RENDERSETUSEDIR: 330

if(blockLength > 0)

{
rs->pInfo.p.Mode.usedir = block-receive(&blockLength);

198

rs->Updated = OxOF;
flushmode = 1;

}
break;

340

case RENDERSET-TEXMODE:
if(blockLength > 0)

{
rs->pInfo.p.Mode.texmode = block-receive(&blockLength);

rs->Updated = OxOF;
flushmode = 1;

}
break;

350

case RENDERSETTEXALPHA:
if(blockLength > 0)

{
rs->pInfo.p.Mode.texalpha = block-receive(&blockLength);

rs->Updated = OxF;
flushmode = 1;

}
break; 360

case RENDERSETCOLALPHA:
if(blockLength > 0)

{
rs->pInfo.p.Mode.colalpha = block-receive(&blockLength);

rs->Updated = OxOF;
flushmode = 1;

} 370

break;

case RENDERSETCOLINTERP:
if(blockLength > 0)

{
rs->pInfo.p.Mode.colinterp = block-receive(&blockLength);

rs->Updated = OxF;
flushmode = 1;

380

}

199

break;

case RENDERSETLITINTERP:
if(blockLength > 0)

s
rs -> pnfo.p-Mode. litinterp = block-receive(&blockLength);

rs->Updated = OxOF;
flushmode = 1; 390

I
break;

case RENDER-SETTEXINTERP:
if(blockLength > 0)

s
rs->pnfo.p.Mode.texinterp= block-.receive(&blockLength);,

rs->Updated = OxOF;
flushmode = 1;

}
break;

case RENDERSETOUTOFORDER:
if(blockLength > 0)

s
rs->pnfo.p.Mode.outoforder = block-receive(&blockLength);

410

rs->Updated = OxOF;
flushmode = 1;

I
break;

case RENDER-SET-TEXTILE:
if(blockLength > 0)

{
rs->pInfo.p.Mode.textile = block-receive(&blockLength);

rs->Updated = OxOF;
flushmode = 1;

I
break;

case RENDER-SETNOUSEZ:
if(blockLength > 0)

200

400

420

{ 430

rs->pInfo.p.Mode.nousez = block-receive(&blockLength);

rs->Updated = OxOF;
flushmode = 1;

}
break;

case RENDER-SETNOWRITEZ:
if(blockLength > 0) 440

{
rs->pInfo.p.Mode.nowritez = block-receive(&blockLength);

rs->Updated = OxOF;
flushmode = 1;

}
break;

case RENDERSETTEXTUREID: 450

if(blockLength > 0)

{
rs->pInfo.TextureID = block-receive(&blockLength);

rs->Updated = OxOF;
flush-word(&rs->pnfo.TextureID);

I
break;

case RENDER-COLTEXBALANCE: 460

if(blockLength > 0)

{
rs->pnfo.ColTexBalance = block-receive-f(&blockLength);

rs->Updated = OxOF;
flush-word(&rs->pInfo.ColTexBalance);

I
break;

case RENDER-ALPHATHRESH: 470

if(blockLength > 0)

{
rs->pInfo.alphaThresh = block-receive(&blockLength);

rs->Updated = OxOF;
flush-word(&rs->pInfo.alphaThresh);

I

201

break;

case RENDER-AMBCOLOR: 480

if(blockLength > 0)

{
rs->pInfo.ambColor = block-receive(&blockLength);

rs->Updated = OxOF;
flush-word(&rs->pInfo.ambColor);

}
break;

490

case RENDER-DIRCOLOR:
if(blockLength > 0)

{
rs->pnfo.dirColor = block-receive(&blockLength);

rs->Updated = OxOF;
flushLword(&rs->pInfo.dirColor);

}
break; 500

case RENDERDIRLIGHT:
if(blockLength > 0)

{
rs->ldx = block-receive-f(&blockLength);
rs->ldy = block-receive-f(&blockLength);
rs->ldz = blockreceiveif(&blockLength);

rs->dirdefined = 1;
510

rs->Updated = OxOF;
flush-word(&rs->Adx);
flush-word(&rs->ldy);
flushLword(&rs->Adz);

}
break;

case RENDER-AMBREFLECT:
if(blockLength > 0) 520

{
rs->ambreflect = block-receive(&blockLength);

rs->Updated = OxOF;
flush-word(&rs->ambreflect);

202

}
break;

case RENDERDIRREFLECT:
if(blockLength > 0)

{
rs->dirreflect = block-receive(&blockLength);

rs->Updated = OxOF;
flush-word(&rs->dirreflect);

}
break;

540

default:

}
}

if(flushmode)

{
flush-variable(&rs->pInfo.p.Mode, sizeof(ModeBits));

}
550

if(isendscene)

{
/11/ flush the pipeline
FlushPipeline(tileNum);

1/1/ send endscene gdn message to all stage1 tiles, including ourself.

/|/1/ cleanup will occur in DoSceneStream after this proc leaves.

gdn-send-hdr(0,1,0,0,tileNum,0,0);
gdn-send(OxFFFFFFFF);
gdn-send-hdr(0,1,0,0,tileNum,0,1);
gdn-send(OxFFFFFFFF);
gdn-send-hdr(0,1,0,0,tileNum,0,2);
gdn.send(OxFFFFFFFF);
gdn-send-hdr(0,1,0,0,tileNum,0,3);
gdn-send(OxFFFFFFFF);

}
else

{
unsigned wordsleft, gdnleft;
unsigned *ptr;

203

530

560

570

if(numVerts >= 3)

{

//// set unordered according to heuristic

//// from rs->pInfo.p.Mode data, and alpha values in ip.v[0,1,2].

if(rs->pInfo.p.Mode.outoforder == 1) 580

unordered = 1;
else

{
unsigned vertextrans =

(((ip.v[O].rgba & OxOFF) != 0 I (ip.v[1].rgba & OxOFF) != 0
(ip.v[2].rgba & OxOFF) != 0) &&

((ip.v[0].rgba & OxOFF) != 255 11 (ip.v[1].rgba & OxOFF) != 255
(ip.v[2].rgba & OxOFF) != 255));

unordered = ! 590

(rs->pInfo.p.Mode.nousez | rs->pInfo.p.Mode.nowritez

(rs->pInfo.p.Mode.texalpha == 1 &&

((rs->pInfo.p.Mode.texmode & 0x2) || // 2,3,6...
((rs->pInfo.p.Mode.texmode & 0x4) && // 4, 5
vertextrans))) I I

(rs->pInfo.p.Mode.colalpha == 1 && vertextrans &&
(rs->pInfo.p.Mode.texmode == 1 rs->pInfo.p.Mode.texmode == 3

I rs->pInfo.p.Mode.texmode == 6)));
}

600

//// if ordered:
//// set rs->LaggedSeqNum to rs->pInfo.p.SeqNum + 1
if (!unordered)

{
rs->LaggedSeqNum = rs->pInfo.p.SeqNum + 1;

}

//// increment rs->pInfo.p.SeqNum
rs->pInfo.p.SeqNum++;

610

//// just flush Updated, SeqNum, LaggedSeqNum
flushword(&rs->LaggedSeqNum);
flush.word(&rs->pInfo.p.SeqNum);

}

flush-word(&rs->Updated);

////
//// check to see if rs->pInfo.p.SeqNum has wrapped around 620

/1/! (if we start it at 1 on startup, 0 will mean wraparound!)

204

//// note: doesn't matter if laggedseqnum is wrapped around before
seqnum, since first prim to use laggedseqnum will have
a seqnum = laggedseqnum anyway

//// if it has, flush the pipeline before continuing....
if(rs->pInfo.p.SeqNum == 0)

FlushPipeline(tileNum);

/1/!
//// send token to switch, telling it that rs has been flushed,
/1/! (and pipe flushed if wraparound) and that next tile can start.

static-send(1);

// clear transprim

for(i = 0; i < 3; i++)

{
tp.v[i].x
tp.v[i] .y
tp.v[i].z
tp.v[i].w
tp.v[i].u
tp.v[i].v
tp.v[i].r
tp.vli].g
tp.v[i].b
tp.v[i].a

}

= 0.0f;
= 0.0f;
= 0;
1 = 1.0f;
= 0.0f;
= 0.0f;
= 0.0f;
= 0.0f;
= 0.0f;
= 0.0f;

// copy info over to transprim
tp.pInfo = rs->pInfo;
tp.pInfo.p.Mode.outoforder = unordered;
tp.pInfo.p.Mode.draw = 0;
if (unordered)

{

}
tp.pInfo.p.SeqNum = rs->LaggedSeqNum;

else

{
tp.pInfo.p.SeqNum--;

}

if(numVerts >= 3)

{

// do screenspace transform
for(i = 0; i < 3; i++)

{
MatrixMult(&tp.v[i] .x, &tp.v[i] .y, &tp.v[i] .z, &tp.v[i] .wl,

205

630

640

650

660

rs->ModelToView,
ip.v[i].x, ip.v[i].y, ip.v[i].z, 1.0f);

// todo: optimize for when we don't use z coordinate?

}

clipping. necessary:
- backface culling
- at least dropping polys

would be nice TODO:
- full frustum culling
- clipping to near plane,

(this can create more

behind near plane

680

including splitting triangles, regen vertices+values
than one prim - complexifying this code!)

visible = 1;

// near plane and singularity dropping
if(tp.v[0].wl>0 && (tp.v[O].z <= -tp.v[O].wl)

tp.v[0].wl<0 && (tp.v[].z >= -tp.v[O].wl)
tp.v[1].wl>0 && (tp.v[1].z <= -tp.v[1].wl)
tp.v[1].wl<O && (tp.v[1].z >= -tp.v[1].wl)
tp.v[2].wl>0 && (tp.v[2].z <= -tp.v[2].wl)
tp.v[2].wl<0 && (tp.v[2].z >= -tp.v[2].wl)

I abs(tp.v[0].wl) <= le-100
I abs(tp.v[1].w1) <= le-100

I abs(tp.v[2].wl) <= le-100)
visible = 0;

// backface culling -
if(visible)

{

vertices are defined clockwise when prim facing the screen

7OO

//if point 2 is on rhs of point 0->1 vector, keep...
// ax + by + c > 0
// a = yl - yO, b = zO - x1, c = yOxl-ylxO

if((tp.v[1].y - tp.v[0].y)*tp.v[2].x + (tp.v[0].x - tp.v[1].x)*tp.v[2.y
+ tp.v[O].y * tp.v[1].x - tp.v[1].y*tp.v[O].x >= 0)

visible = 0;

}

}

if (visible)

{
tp.pInfo.p.Mode.draw = 1;

206

670

//
//
//
|//
//
//
||/

II
II
II
II
II

690

710

// ambient light modulation
if(tp.plnfo.p.Mode.lit && tp.pInfo.p.Mode.useamb)

{ // modulate amb intensity with reflectivity 720

unsigned intens = rs->pInfo.ambColor & OxOFF;

rs->pnfo.ambColor &= OxFFFFFFOO;

// max of each is 255 - treated as 1.0 (fixed point modulation)
rs->pnfo.ambColor 1= ((rs->ambreflect * intens) + 255) >> 8;

}

if(!rs->dirdefined)
tp.pInfo.p.Mode.usedir = 0;

// directed light modulation 730

if (tp.pInfo.p.Mode.lit && tp.pInfo.p.Mode.usedir)
for(i = 0; i < 3; i++)

{
float w;
float prod;
// transform normal into world coordinates tnx tny tnz

MatrixMult(&tnx, &tny, &tnz, &w,
rs->NormalToWorld,
ip.v[i].nx, ip.v[i].ny, ip.v[i].nz, 1.0f);

740

// normalize normal
w = 1.Of/sqrtf(tnx*tnx+tny*tny+tnz*tnz);

tnx *= w;
tny *= w;
tnz *= w;

//// dot product tn<xyz> with rs->ld<xyz> (be careful of sign!)

prod = - tnx*rs->ldx - tny*rs->ldy - tnz*rs->ldz;

tp.v[i].intensity = (prod <= 0) ? 0 : (prod * ((float)rs->dirreflect)/255.Of 750

* ((float) (rs->pInfo.dirColor & OxOFF))/255.Of);

}

/1 perspective division!

for(i = 0; i < 3; i++)
{

tp.v[i].wl = 1/tp.v[i].wl;
tp.v[i].x = tp.v[i].wl * tp.v[i].x;
tp.v[i].y = tp.v[i].wl * tp.v[i].y; 760
if (!(tp.pInfo.p.Mode.nowritez && tp.pInfo.p.Mode.nousez))

tp.v[i].z = tp.v[i].wl * tp.v[i].z;
if (tp.pInfo.p.Mode.texmode != 0 && tp.pInfo.p.Mode.texmode != 2)

{
tp.v[i].r = tp.v[i].wl * (ip.v[i].rgba >> 24);

207

tp.v[i].g = tp.v[i].wl * ((ip.v[i].rgba << 8) >> 24);
tp.v[i].b = tp.v[i].wl * ((ip.v[i].rgba << 16) >> 24);

}
if (tp.pInfo.p.Mode.colalpha != 0)

tp.v[i].a = tp.v[i].wl * (ip.v[i].rgba & OxOFF); 770

if (tp.pInfo.p.Mode.texmode > 1)

{
tp.v[i].u = tp.v[i].wl * ip.v[i].u;
tp.v[i].v = tp.v[i].wl * ip.v[i].v;

}
if(tp.pInfo.p.Mode.lit && tp.pInfo.p.Mode.usedir)

tp.v[i].intensity = tp.v[i].wl * tp.v[i].intensity;

}
}

780

/ stream all of tp south with however many gdn messages it takes.

// (max 31 byte payload. ..) - first byte tells it whether it's
/ a prim or a flush command. Rest is tp structure

if (visible)
magic-.perLdrawnprim();

wordsleft = sizeof(TransPrim)/sizeof(unsigned);
ptr = (unsigned*) &tp; 790

gdnleft = wordsleft >= 30 ? 30 : wordsleft;

gdn-send(pipeHDR I (gdnleft+ 1)<<24);
gdn-send(RENDERPPRIM);

for(; wordsleft > 0; wordsleft--, gdnleft--, ptr++)
{

if(gdnleft <= 0)

{ 800

gdnleft = wordsleft > = 31 ? 31 : wordsleft;
gdn-send(pipeHDR I gdnleft<<24);

}

gdn-send(*ptr);

}

}

810

//// signal switch that we're ready for more input
signal-proc-ready();

208

//I/
//// and that's it! quit and main program will call us for next
//// prim, unless there was an endscene command

}

extern volatile unsigned doFlush; 820
extern volatile unsigned FlushProcNum;
extern volatile unsigned endPrim;

1/ loops executing scene stream commands
// sends pipeline flush south when necessary
// exits on endprim.

void DoSceneStream(RenderState * rs, unsigned tileNum)

{
unsigned gotInput = 0;
doFlush = endPrim = 0; 830
pipeHDR = tileNum<<101<<5tileNum;

while(!endPrim)

{
magic-perf-startbusywait();
while(! (gotInput = raw-get-status-SWBUFl() & OxOOOQOEG)

&& !doFlush && !endPrim);
magic-perLendbusywait(;

if(doFlush) 840

{
doFlush = 0;
SendFlushPrim(FlushProcNum);

}
if(gotInput)

{
gotInput = 0;
ExeSceneStream(rs, tileNum);

}
} 850

}

209

C.11 Stagel-sw.S

// interrupt code inspired by starsearch/module-tests/interrupts/external/tests.S
.text
.align 2

interrupt vector
ivec: j HNDL-GDN-AVAIL

Copy ivec down to 0x50

.global setup-interrupts

.ent setup-interrupts 10
setup-interrupts:

addiu $9, $0, %lo(ivec)
aui $9, $9, %hi(ivec)
ilw $12, 0($9)
isw $12, Ox50($0)
jr $31
.end setup-interrupts

// cache-free saving point for interrupt
.swtext 20

gdn-availisavel: .word 0
gdn-avail-save2: .word 0

.text

HNDLGDN-AVAIL:
swsw $2, %lo(gdn-avail-savel)($0)
swsw $3, %lo(gdn- avail-save2)($0)

addu $2, $0, $cgni 30

// if gdn message is a tile num
sltiu $3, $2, 4
BEQ $3, $0, hga-endprim

// set doFlush and FlushProcNum
la $3, FlushProcNum
sw $2, 0($3)
la $3, doFlush
addiu $2, $0, 1 40

sw $2, 0($3)

j hga-done

hga-endprim:
// else if gdn message is all is

210

// set endPrim
la $3, endPrim
addiu $2, $0, 1
sw $2, 0($3)

50

hga-done:

swlw $2, %lo(gdn- avail-savel)($0)
swlw $3, %lo(gdn-avail-save2)($0)

dret

// a pointer to the shared memory, stored here so the assembly
// can access it.
.data 60

.global doFlush

.global FlushProcNum

.global endPrim
doFlush: .word 0
FlushProcNum: .word 0
endPrim: .word 0

211

C.12 Stagel-sw-O.S

// scene streaming static code, tile 0

.text

.align 2
.global setup-switch-scenestream

.ent setup-switch-scenestream
setup-switch-scenestream:

mtsri SWFREEZE, 1 // Freeze the switch.
la $8, SceneStreamSWBegin // Get switch starting address. 10
mtsr SWPC, $8 // Set the switch PC.
mtsri SWFREEZE, 0 // Get with switch running.
jr $31 // Return.

.end setup-switch-scenestream

// "signals" the switch state machine that the proc is
// ready by forcing its pc into a different state.
// Don't call this if the switch is already in a "ready"
// state or it '11 get messed up!
.global signal-proc-ready 20

.ent signal-proc-ready
signal-proc-ready:

mtsri SW-FREEZE, 1
nop
nop
nop
nop
mfsr $8, SWPC
// note: the logic here is assuming a certain ordering
// of states in the memory for <= >= comparison 30

la $9, ADone
beq $8, $9, sprDone-Active
la $9, Done-Active
beq $8, $9, sprDoneActive
la $9, Counting-1-Ready
sltu $9, $8, $9
bne $9, $0, sprPassing
la $9, Take-Turn
sltu $9, $8, $9
bne $9, $0, sprCounting 40

la $9, Pass-Turn
sltu $9, $8, $9
beq $9, $0, sprPass-Turn

j spr-done

212

sprDoneActive:
// it can only be at ADone if it *just* sent the last

// part of the prim to the tile.
la $8, Done-ActiveReady

j spr-done

sprPassing:
la
la
subu
addu

j

spr-Counting:
la
la
subu
addu

j

$9, Passing_1-Busy
$10, Passing_-AReady
$9, $8, $9
$8, $9, $10
spr-done

$9, Counting-1-Busy
$10, Counting-1Ready
$9, $8, $9
$8, $9, $10
spr-done

sprPass-Turn:
la $9, Pass-Turn
la $10, TakeTurn
subu $9, $8, $9
addu $8, $9, $10 70

spr-done:
mtsr
nop
nop
nop
nop
mtsri
jr

SWPC, $8

SWFREEZE, 0
$31

// Set the switch PC.

// Get with switch running.

.end signal-proc-ready

.swtext

.align 3

SceneStreamSWBegin:
// get a 1 and a zero from processor
MOVE $1, $csto
MOVE $0, $csto

90

// send processor token west to

// (only processor 1 does this)
NOP route $csto->$cWo

start scenestream

213

60

80

50

// start in Active state

/---------------------------------------//
Active:

// get size of next data chunk (route sizes to proc)
MOVE $2, $cWi route $cWi->$csti
// if chunk is zero, end prim 100

ADone: BEQZD $2,$2, Done-Active

ACount: // route chunk to processor
BNEZD $2,$2, ACount route $cWi->$csti

j Active

/---------------------------------------//
// (On ProcReady -> DoneActiveReady+offset, pc set by proc)
DoneActive:

// send a token east from proc 110
J Counting_1_Busy route $csto->$cEo

//---------------------------------------//
Done-Active-Ready:

// send a token east from proc
J Counting_1_Ready route $csto->$cEo

/---------------------------------------//
Passing-1-Ready:

// get the size of next data chunk, pass it east 120

MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, Counting_2_Ready

PiRCount:
BNEZD $2,$2, PiRCount route $cWi->$cEo

j Passing_1_Ready

Passing_2_Ready: 130

// get the size of next data chunk, pass it east
MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, Counting-3_Ready

P2RCount:
BNEZD $2,$2, P2RCount route $cWi->$cEo
j Passing_2-Ready

140

Passing_3-Ready:

214

// get the size of next data chunk, pass it east
MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, Take-Turn

P3RCount:
BNEZD $2,$2, P3RCount route $cWi->$cEo

j Passing_3-Ready 150

//-------------------------------- ------ //
// (On ProcReady -> PassingN-Ready+offset, pc set by proc)
Passing -lBusy:

// get the size of next data chunk, pass it east

MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, Counting-2-Busy

160

PlBCount:
BNEZD $2,$2, PlBCount route $cWi->$cEo

j Passing_1_Busy

Passing_2_Busy:
// get the size of next data chunk, pass it east

MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!

BEQZD $2,$2, Counting_3-Busy 170

P2BCount:
BNEZD $2,$2, P2BCount route $cWi->$cEo

j Passing_2-Busy

Passing-3-Busy:
// get the size of next data chunk, pass it east

MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim! 180

BEQZD $2,$2, Pass-Turn

P3BCount:
BNEZD $2,$2, P3BCount route $cWi->$cEo

j Passing-3_Busy

//-------------------------------- ----- /- /
Counting- _Ready:

BNEZ $cEi, Passing_1_Ready

215

190

Counting_2-Ready:
BNEZ $cEi, Passing_2_Ready

Counting-3_Ready:
BNEZ $cEi, Passing_3_Ready
J TTP1

//------------------------------------- -//
// (On ProcReady -> Counting- 1-Ready+offset, pc set by proc)
Counting-1-Busy: 200

BNEZ $cEi, Passing-1-Busy

Counting_2-Busy:
BNEZ $cEi, Passing_2_Busy

Counting-3-Busy:
BNEZ $cEi, Passing_3-Busy
J PTP1

//---------------------------------------// 210

Take-Turn:

// wait for token from east (from last proc)
MOVE $3, $cEi

TTP1: j Active

//-------------------------------------I--/
// (On ProcReady -> TakeTurn+offset, pc set by proc)
PassTurn:

// wait for token from east (from last proc)
MOVE $3, $cEi 220

// send a token east
PTP1: j CountinglBusy route $0->$cEo

//-------------------------------------//

216

C.13 Stagel-sw-1.S

// scene streaming static code, tile 1

.text

.align 2

.global setup-switch-scenestream

.ent setup-switch-scenestream
setup-switch-scenestream:

mtsri SWFREEZE, 1 // Freeze the switch.
la $8, SceneStreamSWBegin // Get switch starting address. 10
mtsr SWPC, $8 // Set the switch PC.
mtsri SWFREEZE, 0 // Get with switch running.
jr $31 // Return.

.end setup-switch-scenestream

// "signals" the switch state machine that the proc is
// ready by forcing its pc into a different state.
// Don't call this if the switch is already in a "ready"
// state or it '11 get messed up!
.global signal-proc-ready 20
.ent signal-proc-ready
signal-proc-ready:

mtsri SWFREEZE, 1
nop
nop
nop
nop
mfsr $8, SW..PC
// note: the logic here is assuming a certain ordering
// of states in the memory for <= >= comparison 30
la $9, Active
sltu $9, $8, $9
bne $9, $0, sprIdle
la $9, ADone
beq $8, $9, sprDoneActive
la $9, Done-Active
beq $8, $9, sprDoneActive
la $9, Counting-1Ready
sltu $9, $8, $9
bne $9, $0, sprPassing 40
la $9, TakeTurn
sltu $9, $8, $9
bne $9, $0, sprCounting
la $9, Pass-Turn
beq $8, $9, sprPassTurn

217

j spr-done

sprIdle:
la
la
subu
addu

j

$9, Idle-Busy
$10, Idle-Ready
$9, $8, $9
$8, $9, $10
spr-done

50

spr-DoneActive:
//it can only be at ADone if it *just* sent the last
// part of the prim to the tile.
la $8, DoneActive-Ready
j spr-done

60

sprPassing:
la $9, Passing_1_Busy
la $10, PassinglReady
subu $9, $8, $9
addu $8, $9, $10

j spr-done

sprCounting:
la $9, Counting_1_Busy
la $10, Counting-1_Ready
subu $9, $8, $9
addu $8, $9, $10
j spr-done

spr-Pass-Turn:
la $8, Take-Turn

70

spr-done:
mtsr SWPC, $8
nop
nop
nop
nop
mtsri SW-FREEZE, 0
jr $31

// Set the switch PC.
80

// Get with switch running.

.end signal-proc-ready

.swtext

.align 3

SceneStreamSWBegin:
// get a 1 and a zero from processor

218

90

MOVE $1, $csto
MOVE $0, $csto
j IRP1

// start in IRP1 state

//---------------------------------------//
IdleReady: 100

// send token west
NOP route $cEi->$cWo
// wait for token

IRP1: MOVE $3, $cWi
J Take-Turn

//--------------------------------------//
// (On ProcReady -> Idle-Ready+offset, pc set by proc)
IdleBusy:

// send token west 110
NOP route $cEi->$cWo

// wait for token
IBP1: MOVE $3, $cWi

J Pass-Turn

//---------------------------------------//
Active:

// get size of next data chunk (route sizes to proc)

MOVE $2, $cWi route $cWi->$csti
120

// if chunk is zero, end prim
ADone: BEQZD $2,$2, DoneActive

ACount: // route chunk to processor
BNEZD $2,$2, ACount route $cWi->$csti

j Active

//---------------------------------------//
// (On ProcReady -> DoneActive-Ready+offset, pc set by proc)
DoneActive: 130

// send a token east from proc
J Counting-lBusy route $csto->$cEo

//---------------------------------------//
DoneActiveReady:

// send a token east from proc
J Counting_-IReady route $csto->$cEo

//---------------------------------------//
Passing- 1 -Ready: 140

// get the size of next data chunk, pass it east

219

route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, Counting_2_Ready

P1RCount:
BNEZD $2,$2, P1RCount route $cWi->$cEo

j Passingf-lReady
150

Passing-2_Ready:
// get the size of next data chunk, pass it east
MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, IdleReady

P2RCount:
BNEZD $2,$2, P2RCount route $cWi->$cEo

j Passing-2_Ready 160

//---------------------------------------//
// (On ProcReady -> PassingNReady+offset, pc set by proc)
Passing-l-Busy:

// get the size of next data chunk, pass it east
MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, Counting_2_Busy

170

P1BCount:
BNEZD $2,$2, PlBCount route $cWi->$cEo

j Passing-1-Busy

Passing_2_Busy:
// get the size of next data chunk, pass it east
MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, Idle-Busy 180

P2BCount:
BNEZD $2,$2, P2BCount route $cWi->$cEo

j Passing-2_Busy

//--------------------------------- --- -/
Counting-1_Ready:

BNEZ $cEi, Passing_1_Ready route $cEi->$cWo

220

MOVE $2, $cWi

Counting_2_Ready: 190

BNEZ $cEi, Passing_2-Ready route $cEi->$cWo
J IRPI

//---------- ---------------------------- //
// (On ProcReady -> Counting_1_Ready+offset, pc set by proc)
Counting-1-Busy:

BNEZ $cEi, Passing-l-Busy route $cEi->$cWo

Counting-2_Busy:
BNEZ $cEi, Passing-2_Busy route $cEi->$cWo 200

J IBP1

//------ -------------------------------- //
Take-Turn:

j Active route $1->$cWo

/--------------------------------------//
// (On ProcReady -> TakeTurn+offset, pc set by proc)
PassTurn:

// send a token east 210

j Counting_1-Busy route $O->$cEo, $0->$cWo

//------ ------------------------------- //

221

C.14 Stagel-sw-2.S

// scene streaming static code, tile 2

.text

.align 2
.global setup-switch-scenestream

.ent setup-switch-scenestream
setup-switch-scenestream:

mtsri SW-FREEZE, 1 // Freeze the switch.
la $8, SceneStreamSWBegin // Get switch starting address. 10

mtsr SWPC, $8 // Set the switch PC.

mtsri SWFREEZE, 0 // Get with switch running.

jr $31 // Return.

.end setup-switch-scenestream

// "signals" the switch state machine that the proc is

// ready by forcing its pc into a different state.

// Don't call this if the switch is already in a "ready"

// state or it'll get messed up!

.global signal-proc-ready 20

.ent signal-proc-ready
signal-proc-ready:

mtsri SWFREEZE, 1
nop
nop
nop
nop
mfsr $8, SWPC
// note: the logic here is assuming a certain ordering

// of states in the memory for <= >= comparison 30

la $9, Active
sltu $9, $8, $9
bne $9, $0, spr-Idle

la $9, ADone

beq $8, $9, spr-Done-Active
la $9, DoneActive

beq $8, $9, sprDone-Active

la $9, Counting-1_-Ready

sltu $9, $8, $9
bne $9, $0, sprPassing 40

la $9, Take.Turn
sltu $9, $8, $9
bne $9, $0, sprCounting

la $9, Pass-Turn

beq $8, $9, spr-PassTurn

222

50

j spr-done

spr-Idle:
la $9, Idle-Busy
la $10, IdleReady
subu $9, $8, $9
addu $8, $9, $10

j spr-done

spr-Done-Active:
//it can only be at ADone if it *just* sent the last

// part of the prim to the tile.
la $8, Done-ActiveReady

j spr-done
60

spr-Passing:
la $9, Passing_1_Busy
la $10, Passing_1_Ready
subu $9, $8, $9
addu $8, $9, $10
j spr-done

spr-Counting:
la $9, Counting-lBusy
la $10, Counting_1_Ready
subu $9, $8, $9
addu $8, $9, $10
j spr-done

spr-PassTurn:
la $8, Take_-Turn

70

spr.done:
mtsr SWPC, $8
nop
nop
nop
nop
mtsri SWFREEZE, 0
jr $31

// Set the switch PC.
80

// Get with switch running.

.end signal-proc-ready

.swtext

.align 3

SceneStream-SWBegin:
// get a 1 and a zero from processor

223

90

MOVE $1, $csto
MOVE $0, $csto

j IRPI

// start in IRP1 state

//--------------------------------------// 100

IdleReady:
// send token east to west
NOP route $cEi->$cWo

// wait for token
IRP1: MOVE $3, $cWi

J Take-Turn

//--------------------------------------//
// (On ProcReady -> IdleReady+offset, pc set by proc)
Idle-Busy: 110

// send token east to west
NOP route $cEi->$cWo
// wait for token

IBP1: MOVE $3, $cWi
J PassTurn

/--------------------------------------//
Active:

// get size of next data chunk (route sizes to proc)
MOVE $2, $cWi route $cWi->$csti 120

// if chunk is zero, end prim
ADone: BEQZD $2,$2, DoneActive

ACount: // route chunk to processor
BNEZD $2,$2, ACount route $cWi->$csti

j Active

/--------------------------------------//
// (On ProcReady -> Done-ActiveReady+offset, pc set by proc) 130

Done-Active:
// send a token east from proc
J Counting_-lBusy route $csto->$cEo

//---------------------------------------//
DoneActive-Ready:

// send a token east from proc
J Counting_ IReady route $csto->$cEo

//---------------------------------------// 140
Passing_1_Ready:

224

// get the size of next data chunk, pass it east
MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, IdleReady

PIRCount:
BNEZD $2,$2, P1RCount route $cWi->$cEo

j Passing_1_Ready 150

//---------------------------------------//
// (On ProcReady -> PassingN-Ready+offset, pc set by proc)

Passing_1_Busy:
// get the size of next data chunk, pass it east

MOVE $2, $cWi route $cWi->$cEo

// if chunk is zero, end prim!
BEQZD $2,$2, IdleBusy

160

PlBCount:
BNEZD $2,$2, PlBCount route $cWi->$cEo

j Passing_1_Busy

//----------------- --- ---------------- //
Counting-1-Ready:

BNEZ $cEi, Passing-lReady route $cEi->$cWo

J IRP1

// (On ProcReady -> Counting_1_Ready+offset, pc set by proc)

Counting- 1_-Busy:
BNEZ $cEi, Passing-1_Busy route $cEi->$cWo

J IBP1

//---------------------------------------//
Take-Turn:

j Active route $1->$cWo

I/---------------------------------------// 180

// (On ProcReady -> TakeTurn+offset, pc set by proc)
PassTurn:

// send a token east
j Counting_1_Busy route $O->$cEo, $0->$cWo

/--------------------------------------//

225

226

C.15 Stagel-sw-3.S

// scene streaming static code, tile 3

.text

.align 2
.global setup-switch-scenestream

.ent setup-switch-scenestream
setup-switch-scenestream:

mtsri SWFREEZE, 1 // Freeze the switch.

la $8, SceneStreamSWBegin // Get switch starting address. 10
mtsr SW-PC, $8 // Set the switch PC.
mtsri SWFREEZE, 0 // Get with switch running.

jr $31 // Return.

.end setup-switch-scenestream

// "signals" the switch state machine that the proc is

// ready by forcing its pc into a different state.

// Don't call this if the switch is already in a "ready"

// state or it'll get messed up! 20

.global signal-proc-ready

.ent signal-proc-ready
signal-proc-ready:

mtsri SWFREEZE, 1
nop
nop
nop
nop
mfsr $8, SW.PC
// note: the logic here is assuming a certain ordering 30

// of states in the memory for <= >= comparison
la $9, Active
sltu $9, $8, $9
bne $9, $0, sprIdle
la $9, ADone
beq $8, $9, spr-ADone
la $9, Pass-Turn

beq $8, $9, spr-PassTurn
j spr-done

40

sprIdle:
la $9, Idle-Busy
la $10, IdleReady
subu $9, $8, $9
addu $8, $9, $10

227

j spr-done

sprADone:
// it can only be at ADone if it *just* sent the last
// part of the prim to the tile. 50
la $8, IdleReady

j spr-done

spr-Pass-Turn:
la $8, Take_-Turn

spr-done:
mtsr SW-PC, $8 // Set the switch PC.
nop
nop 60
nop
nop
mtsri SW-FREEZE, 0 // Get with switch running.
jr $31

.end signal-proc-ready

.swtext

.align 3 70

SceneStreamSWBegin:
// get a 1 and a zero from processor
MOVE $1, $csto
MOVE $0, $csto

j IRPI

// start in IRP1 state

//---------------------------------------// 80

IdleReady:

// send token from proc to west
NOP route $csto->$cWo
// wait for token

IRP1: MOVE $3, $cWi
J Take-Turn

/---------------------------------------//
// (On ProcReady -> Idle.Ready+offset, pc set by proc)
Idle-Busy: 90

// send token from proc to west
NOP route $csto->$cWo
// wait for token

228

IBP1: MOVE $3, $cWi
J Pass-Turn

/---------------------------------------//
Active:

// get size of next data chunk (route sizes to proc)

MOVE $2, $cWi route $cWi->$csti 100

// if chunk is zero, end prim
ADone: BEQZD $2,$2, IdleBusy

ACount: // route chunk to processor
BNEZD $2,$2, ACount route $cWi->$csti

j Active

//--------------------------------------//
Take_-Turn: 110

j Active route $1->$cWo

/--------------------------------------//
// (On ProcReady -> TakeiTurn+offset, pc set by proc)
Pass.Turn:

// send a token west
j IBP1 route $0->$cWo

//---------------------------------------//
120

229

C.16 Stage2-Common.c

// Stage2-Common.c

//
// Ken Taylor, MIT Master's Thesis 2004

1/
// Last Updated: 5/18/2004

I-
// This file implements the code used in common across stage2,
// stage2 does rasterization and perspective correct interpolation

/1 of parameters across the triangle sent from stagel. It sends

// untextured/unblended fragments to stage3. 10
#include "raw-compilerdefs.h"

#include "raw.h"
#include "renderdatatypes.h"
#include "Common-sw.h"

void setup-switch(void);

void begin(void)
{ 20

int tileNum;
int iij;
TransPrim tp; // the prim we input

UntexFragment utf; // fragmetns we output
float ulx;
float uly;
float Irx;
float Iry;

unsigned correctinterp; // are we doing any perspective-correct interpolation? 30

float wlO,wll,w12;

I/line equations: L - line value for top left corner axul+byul+c

|/ (incremental tL - temp value for each line
// model for ttL - temp value for each pixel

// better adx - x increment for L
/1 performance) bdy - y increment for L
float LO, tLO, adxO, bdyO; // vO->vl
float L1, tL1, adxl, bdyl; // vl->v2 40

float L2, tL2, adx2, bdy2; // v2->vO
// clockwise, so rhs is < 0:
// a = y2-yl, b=xl-x2, c=ylx2-y2xl

/ plane equations, x - top left corner value

230

/7 tx temp for each line

77 ttx - temp for each pixel

77 xdx - x increment for x

/7 xdy - y increment for x

7/ don't do incremental model for z, do calc for

77 each point (better accuracy?)
float za, zb, zc;
float r, tr, rdx, rdy;
float g, tg, gdx, gdy;
float b, tb, bdx, bdy;
float a, ta, adx, ady;
float u, tu, udx, udy;
float v, tv, vdx, vdy;
float i, ti, idx, idy;
float wl, twi, wldx, w1dy;
float me, ble, b2e, detMi;

/7 precalc me = x2y3-x3y2
/7 ble = z2y3-z3y2

77 b2e = x2z3-x3z2

7/ det M = xl(y2-y3)-yl(x2-x3)+me
/7 det B1 = zl(y2-y3)-yl(z2-z3)+ble
/7 det B2 = xl(z2-z3)-zl(x2-x3)+b2e
77 det B3 = -x1(b1e)-y1(b2e)+z1(me)
7/ A = detBl/detM, B=detB2/detM,
7/ Ax+By+C = z

/7 when wi is interped, invert and multiply each

77 other interpreted value by it, for perspect correct.

77--this is where code actually begins--

tileNum = raw.get-abs-pos-xo;

// start static network

setup-switcho;

/7 loop forever:
while(1)

{
unsigned word;

//7 read next word from gdn, also send byte south.
static-send(word = gdn-receiveo);

//7 if it's a flush byte
if(word == RENDERP-FLUSH)

231

50

60

C=detB3/detM
70

80

90

{
////// send next byte (proc #) south
static-send(gdn-receive();

}
else

{
unsigned nousez, nowritez, texmode, colinterp, colalpha; 100
unsigned lit, usedir, litinterp;
unsigned wordsleft, *ptr;

////// read in tp from gdn
wordsleft = sizeof(TransPrim)/sizeof(unsigned);
ptr = (unsigned *)&tp;

for(; wordsleft > 0; wordsleft--, ptr++)
{

(*ptr) = gdn-receive(; 110

}

////// stream tp.pInfo south

wordsleft = sizeof(PrimInfo)/sizeof(unsigned);
ptr = (unsigned*)&tp.pInfo;

for(; wordsleft > 0; wordsleft--, ptr++)

{
static-send(*ptr); 120

}

if(!tp.pInfo.p.Mode.draw)

{
// don't draw it, just pass the priminfo south (for sequencing)
static-send(RENDER-P-ENDPRIM);
continue;

}

/1 unpack bitfields for better performance 130

nousez = tp.pInfo.p.Mode.nousez;
nowritez = tp.pInfo.p.Mode.nowritez;
texmode = tp.pInfo.p.Mode.texmode;
colinterp = tp.pInfo.p.Mode.colinterp;
colalpha = tp.pInfo.p.Mode.colalpha;
lit = tp.pInfo.p.Mode.lit;
usedir = tp.pInfo.p.Mode.usedir;
litinterp = tp.pInfo.p.Mode.litinterp;

////// get inverses of (w^-1) values, to multiply with 140

/1/11/ parameters to get their real values.

232

w10 = 1/tp.v[O].w1;
w11 = 1/tp.v[1].w1;
w12 = 1/tp.v[2].w1;

// scale prim's x and y values to screen space, using compiler defs.
// VWIDTH, VHEIGHT. scale so -1 -> 0, and 1 -> VWIDTH/HEIGHT
// (pixels are centered on .5 steps - pixel 0 is at 0.5,
// pixel 1 is at 1.5, etc.
tp.v[0].x = tp.v[0].x*(VWIDTH/2.0f) + VWIDTH/2.0f;
tp.v[0].y = tp.v[0].y*(VHEIGHT/2.0f) + VHEIGHT/2.0f;
tp.v[1].x = tp.v[1].x*(VWIDTH/2.0f) + VWIDTH/2.0f;
tp.v[1].y = tp.v[1].y*(VHEIGHT/2.0f) + VHEIGHT/2.0f;
tp.v[2].x = tp.v[2].x*(VWIDTH/2.0f) + VWIDTH/2.0f;
tp.v[2].y = tp.v[2].y*(VHEIGHT/2.0f) + VHEIGHT/2.0f;

for bounding box
minimum is lowest n such that n+0.5 is
greater than or equal to lowest pixel coord.

maximum is highest n such that n+0.5 is
less than or equal to highest pixel coord.

we want the bounding box to be the lowest
within the prim.

3.1 ... min at 3, max at 2 ... 3.6 min at

= (signed) (tp.v[0].x+0.5f);
= (signed) (tp.v[0].x-0.5f);
= (signed) (tp.v[0].y+0.5f);
= (signed) (tp.v[0].y-0.5f);

for(ii = 1; ii < 3; ii++)

{
ulx

Uly

lrx

Iry

if(ulx
if(ulx
if(lrx
if(lrx
if(uly
if(uly
if(lry

160

and highest n+0.5 that's

4, max at 3

= (ulx <= (signed)(tp.v[ii].x + 0.5f))
ulx : (signed)(tp.v[ii].x + 0.5f);
= (uly <= (signed)(tp.v[ii].y + 0.5f))
uly : (signed)(tp.v[ii].y + 0.5f);
= (lrx >= (signed)(tp.v[ii].x - 0.5f))
Irx : (signed)(tp.v[ii].x - 0.5f);
= (iry >= (signed)(tp.v[ii].y - 0.5f))
Iry : (signed)(tp.v[ii].y - 0.5f);

< 0) ulx = 0;
>= VWIDTH) ulx = VWIDTH - 1;
< 0) ulx = 0;
>= VWIDTH) lrx = VWIDTH - 1;
< 0) uly = 0;
>= VHEIGHT) uly = VHEIGHT - 1;
< 0) Uly = 0;

233

150

UIX
IrxU1
I-y

ulx
lrx
lily
iry

170

}
180

if(lry >= VHEIGHT) Iry = VHEIGHT - 1;

// move to center of pixels
ulx+=0.5;
uly+=0.5;
lrx+=0.5;
lry+=O.5;

///// set up plane equations for each line, z, rgba, uv, intensity:

// a = y2-yl, b=xl-x2, c=ylx2-y2xl // rhs is inside // clockwise faces front

adxO = tp.v[1].y - tp.v[O].y; 200
bdyO = tp.v[O].x - tp.v[1].x;
LO = adxO*ulx + bdyO*uly + tp.v[O].y*tp.v[1].x - tp.v[1].y*tp.v[O].x;

adxl = tp.v[2].y - tp.v[1].y;
bdyl = tp.v[1].x - tp.v[2].x;
Li = adxl*ulx + bdyl*uly + tp.v[1].y*tp.v[2].x - tp.v[2].y*tp.v[1].x;

adx2 = tp.v[O].y - tp.v[2].y;
bdy2 = tp.v[2].x - tp.v[O].x;
L2 = adx2*ulx + bdy2*uly + tp.v[2].y*tp.v[O].x - tp.v[O].y*tp.v[2].x;

correctinterp = 0; 210

// these values are the same for all parameters for x,y

me = tp.v[1].x*tp.v[2].y - tp.v[2].x*tp.v[1].y;

detM1 = 1/(tp.v[0].x*(tp.v[1].y-tp.v[2].y)
-tp.v[0].y*(tp.v[1].x-tp.v[2].x)+me);

if(!nousez | !nowritez)

{
// set up z interp: 220

ble = tp.v[1].z*tp.v[2].y - tp.v[2].z*tp.v[1].y;

b2e = tp.v[1].x*tp.v[2.z - tp.v[2].x*tp.v[1].z;
za = detMl*(tp.v[0].z*(tp.v[1].y-tp.v[2].y)

-tp.v[0].y*(tp.v[1].z-tp.v[2].z)+ble);
zb = detMl*(tp.v[0].x*(tp.v[1].z-tp.v[2].z)

-tp.v[0].z*(tp.v[1].x-tp.v[2].x)+b2e);
zc = detMl*(tp.v[0].z*me - tp.v[0].x*ble - tp.v[0].y*b2e);

if (texmode != 0 && texmode != 2) 230

{
if(colinterp)

{
1/set up rg,b interp
correctinterp = 1;
ble = tp.v[1].r*tp.v[2].y - tp.v[2].r*tp.v[1].y;
b2e = tp.v[1].x*tp.v[2].r - tp.v[2].x*tp.v[1].r;

234

190

rdx = detMl*(tp.v[O].r*(tp.v[1].y-tp.v[2].y)
-tp.v[O].y*(tp.v[1].r-tp.v[2].r)+ble);

rdy = detMl*(tp.v[J.x*(tp.v[1].r-tp.v[2].r) 240

-tp.v[0].r*(tp.v[1].x-tp.v2].x)+b2e);
r = rdx*ulx + rdy*uly +

detM1*(tp.v[O].r*me - tp.v[0].x*ble - tp.v[0].y*b2e);

ble = tp.v[1].g*tp.v[2].y - tp.v[2].g*tp.v[1].y;
b2e = tp.v[1].x*tp.v[2].g - tp.v[2].x*tp.v[1].g;

gdx = detMl*(tp.v[O].g*(tp.v[1].y-tp.v[2].y)
-tp.v[O].y*(tp.v[1].g-tp.v[2].g)+ble);

gdy = detMl*(tp.v[O].x*(tp.v[1].g-tp.v[2].g)
-tp.v[O].g*(tp.v[1].x-tp.v[2].x)+b2e); 250

g = gdx*ulx + gdy*uly +
detMl*(tp.v[0].g*me - tp.v[0].x*ble - tp.v[0].y*b2e);

ble = tp.v[1].b*tp.v[2].y - tp.v[2].b*tp.v[1].y;
b2e = tp.v[1].x*tp.v[2].b - tp.v[2].x*tp.v[1].b;
bdx = detMl*(tp.v[0].b*(tp.v[1].y-tp.v[2].y)

-tp.v[0].y*(tp.v[1].b-tp.v[2].b)+ble);
bdy = detMl*(tp.v[0].x*(tp.v[1].b-tp.v[2].b)

-tp.v[0].b*(tp.v[1].x-tp.v[2].x)+b2e);
b = bdx*ulx + bdy*uly + 260

detMi*(tp.v[0].b*me - tp.v[0].x*ble - tp.v[0].y*b2e);

}
else

{
/ color is average of vertices

r = (tp.v[0].r*wlO + tp.v[1].r*wll + tp.v[2].r*wl2)/3;
g = (tp.v[0].g*wlO + tp.v[1].g*wll + tp.v[2].g*wl2)/3;
b = (tp.v[0].b*wlO + tp.v[1].b*wll + tp.v[2].b*wl2)/3;

}
if (colalpha != 0) 270

{
if(colinterp)

{
// set up a interp
correctinterp = 1;

ble = tp.v[1].a*tp.v[2].y - tp.v[2].a*tp.v[1].y;
b2e = tp.v[1].x*tp.v[2].a - tp.v[2].x*tp.v[1].a;
adx = detMl*(tp.v[0].a*(tp.v[1].y-tp.v[2].y)

-tp.v[0].y*(tp.v[1].a-tp.v[2].a)+ble); 280

ady = detMl*(tp.v[0].x*(tp.v1].a-tp.v[2].a)
-tp.v[0].a*(tp.v[1].x-tp.v2].x)+b2e);

a = adx*ulx + ady*uly +
detMl*(tp.v[0].a*me - tp.v[0].x*ble - tp.v[0].y*b2e);

}

235

else

{
/1 alpha is average of vertices
a = (tp.v[O].a*wlO + tp.v[1].a*wll + tp.v[2].a*w12)/3;

} 290

}
}

if (texmode > 1)

{
1/set up u,v interp
correctinterp = 1;

ble = tp.v[1].u*tp.v[2].y - tp.v[2].u*tp.v[1].y;
b2e = tp.v[1].x*tp.v[2].u - tp.v[2].x*tp.v[1].u; 300
udx = detMl*(tp.v[O].u*(tp.v[1].y-tp.v[2].y)

-tp.v[O].y*(tp.v[1].u-tp.v[2].u)+ble);
udy = detMl*(tp.v[O].x*(tp.v[1].u-tp.v[2].u)

-tp.v[O].u*(tp.v[1].x-tp.v[2].x)+b2e);
u = udx*ulx + udy*uly +

detMl*(tp.v[O].u*me - tp.v[O].x*ble - tp.v[O].y*b2e);

ble = tp.v[1].v*tp.v[2].y - tp.v[2].v*tp.v[1].y;
b2e = tp.v[1].x*tp.v[2].v - tp.v[2].x*tp.v[1].v;
vdx = detMl*(tp.v[0].v*(tp.v[1].y-tp.v[2].y) 310

-tp.v[O].y*(tp.v[1].v-tp.v[2].v)+ble);
vdy = detMl*(tp.v[O].x*(tp.v[1].v-tp.v[2].v)

-tp.v[O].v*(tp.v[1].x-tp.v[2].x)+b2e);
v = vdx*ulx + vdy*uly +

detMi*(tp.v[O].v*me - tp.v[O].x*ble - tp.v[O].y*b2e);

}

if (lit && usedir)

{
if(litinterp) 320

{
// set up intensity interp
correctinterp = 1;

ble = tp.v[1].intensity*tp.v[2].y - tp.v[2].intensity*tp.v[1].y;
b2e = tp.v[1].x*tp.v[2].intensity - tp.v[2].x*tp.v[1].intensity;
idx = detMl*(tp.v[0].intensity*(tp.v[1].y-tp.v[2].y)

-tp.v[O0].y*(tp.v[1].intensity-tp.v [2].intensity)+ble);
idy = detMl*(tp.v[0].x* (tp.v[1].intensity-tp.v[2].intensity)

-tp.v[0]. intensity*(tp.v[1].x-tp.v[2].x)+b2e); 330
i = idx*ulx + idy*uly +

detMl*(tp.v[O].intensity*me - tp.v[O].x*ble - tp.v[0].y*b2e);

}

236

else

{
/ intens is average of vertices
i = (tp.v[0J.intensity*w1O + tp.v[1].intensity*wl1

+ tp.v[2].intensity*w12)/3;
}

} 340

if(correctinterp)

{
// set up wi interp

ble = tp.v[1].wl*tp.v[2].y - tp.v[2].wl*tp.v[1].y;
b2e = tp.v[1].x*tp.v[2].w1 - tp.v[2].x*tp.v[1].wl;
wldx = detMl*(tp.v[O].wl*(tp.v[1].y-tp.v[2].y)

-tp.v[O].y*(tp.v[l].wl-tp.v[2].wl)+ble);
widy = detMl*(tp.v[O].x*(tp.v[1].wl-tp.v[2].wl) 350

-tp.v[O].wl*(tp.v[1].x-tp.v[2].x)+b2e);
wl = wldx*ulx + wldy*uly +

detMl*(tp.v[O].wl*me - tp.v[O].x*ble - tp.v[O].y*b2e);

}

////// from uly to iry
for(ii = (int)uly; ii <= (int)lry; ii++)

{ 360
unsigned gotrow = 0;
tLO = LO; tL1 = Li; tL2 = L2;
LO+=bdy0; L1+= bdyl; L2+=bdy2;

/ also initialize incremental interp for r, g, b, a, u, v, i, and wi for row

// (surrounding everything by if clause adds too much overhead
if(colinterp)

{
tr = r; tg = g; tb = b;
r+=rdy; g+=gdy; b+=bdy; 370

ta = a;
a+=ady;

}
tu = U; tv = v;
u+=udy; v+=vdy;
if(litinterp)

{
ti = i;
i+=idy;

} 380

tw1 = wi;

237

wl+=wldy;

// from ulx to lrx
for(j = (int)ulx; j <= (int)lrx; j++)

{
if(tLO < 0 && tL1 < 0 && tL2 < 0)

{
float tempw;

390

gotrow = 1;

// fill in utf with xy.
utf.x = j;
utf.y = ii;

/ fill in as necessary: z (scaled), u/wi,
/1 v/wi, rgba (packed+scaled+/wi), intensity/wi
if(!nousez | !nowritez)

{ 400
// note: this loses precision. TODO: take full
/1 advantage of signed fixed point precision
// somehow? (use software double-sized ints?)
float tempz;

tempz = za * ((float)j + 0.5f) + zb * ((float)ii + 0.5f) + zc;
utf.z = tempz* (signed) (Ox7FFFFFFF);

}

if(correctinterp) 410

{
tempw = 1/twi;

}

if (texmode != 0 && texmode != 2)

{
if(colinterp)

{
utf.rgba = (((unsigned)(tr*tempw+0.5f)) & OxOFF) << 24 I

(((unsigned)(tg*tempw+0.5f)) & OxOFF) << 16 I 420

(((unsigned)(tb*tempw+0.5f)) & OxOFF) << 8;

}
else

{
/ color is average of vertices

utf.rgba = (((unsigned)(r+0.5f)) & OxOFF) << 24

(((unsigned)(g+0.5f)) & OxOFF) << 16

(((unsigned)(b+0.5f)) & OxOFF) << 8;
}

238

if (colalpha != 0) 430

{
if(colinterp)

utf.rgba 1= ((unsigned)(ta*tempw+0.5f)) & OxOFF;

else
utf.rgba ((unsigned)(a+0.5f)) & OxOFF;

}
}

if (texmode > 1)

{
utf.u = tu * tempw; 440

utf.v = tv * tempw;

I
if (lit && usedir)

{
if(litinterp)

utf.intensity = ti * tempw;
else

utf.intensity = i;

}
450

magic-perf-fragment(;
// stream utf out on static network - first word indicates a utf

/1 (vs end-of-prim)
static-send(RENDER-.PFRAG);

wordsleft = sizeof (UntexFragment)/sizeof (unsigned);
ptr = (unsigned *)&utf;

for(; wordsleft > 0; wordsleft--, ptr++)
{ 460

static-send(*ptr);

}
}

else

{
if(gotrow == 1) // we were in the prim, and then left

{
break;

}
} 470

tLO+=adx0; tLl+=adxl; tL2+=adx2;

// increment tInterp in dx for r,g,b,a,u,v,i, and wi
tr+=rdx; tg+=gdx; tb+=bdx;
ta+=adx;
tu+=udx; tv+=vdx;

239

ti+=idx;
twl+=wldx;

} 480

}

////// send end-of-prim word out on sn

static-send(RENDERPENDPRIM);

////// i think that's it... end loop!

}
}

}
490

240

C.17 Stage2-sw.S

// setup-switch from starsearch/examples/multi..tile/static-net/mixed/compute-sw.S

.text

.align 2
.global setup-switch

.ent setup-switch
setup-switch:

mtsri SW-FREEZE,
la $8, sw-start
mtsr SW-PC, $8
mtsri SWFREEZE,
jr $31

.end setup-switch

1 //
//
//I

0 //
//

.swtext

.align 3
// Start of switch code.

sw-start:
j sw-start route $csto->$cSo

Freeze the switch.
Get switch starting address.
Set the switch PC.
Get with switch running.
Return.

// Everything goes south!

241

10

20

C.18 Stage3-Common.c

// Stage- Common. c

/ /
// Ken Taylor, MIT Maste

/
// Last Updated: 5/18/2004
II
// This file implements the

// does texture lookup and
// textures and (mostly ble

#include
#include
#include
#include

r's Thesis 2004

code used in common across stage3, which
blending in the pipeline, and sends

nded) fragments south to stage 4.

"raw.h"
"raw-compiler-defs.h"

"renderdatatypes.h"

"Common-sw.h" // flush/invalidate

#define gdn-send-hdr(F, 1, u, oY, oX, dY, dX) \
gdn-send(F<<291<<24ju<<20OoY<<15IoX<<10ldY<<5dX)

void setup-switch(void);
20

static inline void texwrap(float *coord, unsigned mode)

I
signed intpart;
/ *coord: map down to 0->1 range
/ mode: (0=none, 1 =repeat, 2=mirror,3=clamp)

intpart = (signed)(*coord);
30

if(mode == 1)

{
*coord = (*coord) - (float)intpart; // fractional part

if(*coord < 0)
*coord = 1 + *coord;

}
else if(mode == 2)

{
if(*coord < 0)
*coord = -*coord;

if(intpart % 2) //if it's odd, do a reverse mapping

*coord = 1 - (*coord - (float)intpart);
else

*coord = *coord - (float)intpart;

242

40

10

}

/7 for none and clamp, leave as is.

}
50

void begin(void) {
unsigned tileNum;
TexManager *tm;
PrimInfo pi;
UntexFragment utf;
Fragment fin;
unsigned texrgba;
unsigned dotex; // do texture mapping
unsigned rgbaxlyl, rgbaxlyh, rgbaxhyl, rgbaxhyh; // 4 texture samples for bilinear
signed ut,vt, utl,vtl; 60
TexEntry *pTEntry;
unsigned invalidateTex; // do we need to invalidate tex mem (first prim after a flush)
int i;

tileNum = raw-get-abs-pos-x(;

// if we're tile 0 in the row
if(tileNum == 0)

{
/7/7 allocate texture structures, and flush them. 70

tm = (TexManager*)malloc(sizeof(TexManager));
tm->pTexMemory = (unsigned*)malloc(TEXMEMSIZE*sizeof(unsigned));
tm->TexMemorySize = tm->TexMemoryFree= TEXMEMSIZE;
tm->pTexEntryTable = (TexEntry*)malloc(TEXENTRIES*sizeof(TexEntry));
tm->MaxTextures = TEXENTRIES;
for(i = 0; i < TEXENTRIES; i++)

{
tm->pTexEntryTabe[i].valid = 0;
tm->pTexEntryTable[i].updated = 0;
flush-variable(&tm->pTexEntryTable[i], sizeof(TexEntry)); 80

}
tm->NumTextures = 0;
tm->pAllocHead = 0; 7/ the funny thing, is that the allocation list will be in
tm->pAllocTail = 0; // stage 1's memory, though don't really need it.

flush-variable(tm, sizeof(TexManager));

// wait for gdn message (from control tile)
gdn-receiveo;

90

/77/ send pointers to tex struct to other 3 tiles in this row
gdn-send-hdr(O, 1, 0, 2, 0, 2, 1);
gdn-send(tm);

243

gdn-send-hdr(O, 1, 0, 2, 0, 2, 2);
gdn-send(tm);
gdn-send-hdr(0, 1, 0, 2, 0, 2, 3);
gdn-send(tm);

//// wait for 3responses back
gdn-receiveo; 100

gdn.receiveo;
gdn-receiveo;

//// send pointers to texture structures back to control tile

gdn-send-hdr(0, 1, 0, 2, 0, 0, 0);
gdn.send(tm);

}
else

{
//// tm = pointer read from gdn 110

tm = (TexManager*)gdn-receiveo;

//// send gdn message back to tile 0 in row

gdn-send-hdr(0, 1, 0, 2, tileNum, 2, 0);
gdn-send(0);

}

// set up static network
setup-switchO;

120

invalidateTex = 1;

// loop forever!
while(1)

{
unsigned word;
/ note: static network needs flow control now, since it's both sending data

/1 from north to us and from us to south.

// here's how it works: first word from north goes to us.

/ / (marker of prim vs flush or fragment vs endprim) 130

/1 then it waits for a count of number of subsequent words

/ / to sent to us, and does so.

/1 flush: one, for proc #
// prim: size of prim info

// endprim: zero
/ / fragment: size of untextured fragment info

// then it waits for a count of number of words to send south

// from us, and does so.
/1 flush: two: flush marker, and proc #
/1 prim: size of primary prim info + 1 for marker 140

/1 endprim: one, the endprim marker

244

/ / fragment: size of fragment info + 1 for marker

// and it repeats.

//// read byte from static network

word = static-receive();
if(word == RENDERP-FLUSH)

{
/1/! if it's a flush

150

// read proc #
static.send(1);
word = static-receiveo;

//// send flush and next by(proc #) south
static-send(2);
static-send(RENDERP-FLUSH);
static-send(word);

invalidateTex = 1; 160

}
else

{
unsigned texinterp, textile, texalpha, colalpha;

unsigned texmode, lit, useamb, usedir;
unsigned wordsleft, *ptr;

////// read in pi

wordsleft = sizeof(PrimInfo)/sizeof(unsigned);
static-send(wordsleft); 170

ptr = (unsigned*)π

for(; wordsleft > 0; wordsleft--, ptr++)

{
(*ptr) = static-receive();

}

//!!!/ send pi.p south
wordsleft = sizeof(PrimaryPrimInfo)/sizeof(unsigned);
static-send(wordsleft+1); 180

ptr = (unsigned*)&pi.p;

static-send(RENDER-P-PRIM);

for(; wordsleft > 0; wordsleft--, ptr++)

{
static.send(*ptr);

}

245

// unpack bitfields for better performance
texinterp = pi.p.Mode.texinterp;
textile = pi.p.Mode.textile;
texalpha = pi.p.Mode.texalpha;
colalpha = pi.p.Mode.colalpha;
texmode = pi.p.Mode.texmode;
lit = pi.p.Mode.lit;
useamb = pi.p.Mode.useamb; 200

usedir = pi.p.Mode.usedir;

pTEntry = &tm->pTexEntryTable[pi.TextureID];
invalidate-variable(pTEntry, sizeof(TexEntry));

// see if we're actually doing texture mode
dotex = 0;
if (texmode >= 2 && pi.TextureID < tm->MaxTextures)

{
if(pTEntry->valid == 1) 210

dotex = 1;

}

texrgba = 0;

#ifndef NOTEXCACHE
if(dotex && pTEntry->updated & (1 << tileNum))

{
#endif //NOTEXCACHE

// invalidate the texture 220

invalidate-variable(pTEntry->pBegin,
pTEntry->Width * pTEntry->Height
* sizeof(unsigned));

pTEntry->updated &= ~(1 << tileNum);
flushLvariable(&pTEntry->updated, sizeof(unsigned));

#ifndef NOTEXCACHE

}
#endif // NOTEXCACHE

230

}

while(1)

////// read next byte. if it's a utf byte:
if(static-receive() == RENDERP-FRAG)

{

246

if (pi. p. Mode. draw) 190

I/read in utf
wordsleft = sizeof(UntexFragment)/sizeof (unsigned);
static-send(wordsleft); 240

ptr = (unsigned*)&utf;

for(; wordsleft > 0; wordsleft--, ptr++)

{
(*ptr) = static-receiveo;

}

//copy x,y,z from utf to fm.

fm.x = utf.x; 250

fm.y = utf.y;
fm.z = utf.z;

if(dotex)

{
magic-perLtexel();

if(texinterp == 0)

{ // nearest neighbor
signed tempu, tempv; 260

//map u,v into 0-1 range, based on pi.p.Mode.textile

// (0=none, 1 =repeat, 2=mirror,3=clamp)

texwrap(&utf.u, textile);
texwrap(&utf.v, textile);

//scale up to texel index
utf.u *= (float)pTEntry->Width;
utf.v *= (float)pTEntry->Height;

270

// truncate u,v down to int.

tempu = (signed)utf.u;
tempv = (signed)utf.v;

// do clamping
if(textile == 3)

{
if(tempu < 0) tempu = 0;
if(tempu >= pTEntry->Width)

tempu = pTEntry->Width - 1; 280

if(tempv < 0) tempv = 0;
if(tempv >= pTEntry->Width)

tempv = pTEntry->Width - 1;

}

247

if(tempu >= 0 && tempv >= 0
&& tempu < pTEntry->Width
&& tempv < pTEntry->Height)

texrgba = pTEntry->pBegin[tempu+

pTEntry->Width*tempv]; 290

else
texrgba = 0;

}
else

{ // bilinear filtering

//shift u,v by 0.5 texel, so "0" is centered at a texel

utf.u -= 0.5/(float)pTEntry->Width;
utf.v -= 0.5/(float)pTEntry->Height; 300

//map u,v into 0-1 range, based on pi.p.Mode.textile

// (0=none, 1=repeat, 2=mirror,3=clamp)
texwrap(&utf.u, textile);
texwrap(&utf.v, textile);

//scale up to texel index
utf.u *= (float)pTEntry->Width;
utf.v *= (float)pTEntry->Height;

310

// do clamping
if(textile == 3)

{
if(utf.u < 0.0f) utf.u = 0.0f;
if(utf.u > (float)pTEntry->Width - 1.0f)

utf.u = pTEntry->Width - 1;
if(utf.v < 0.0f) utf.v = 0.0f;
if(utf.v > (float)pTEntry->Height - 1.0f)

utf.v = pTEntry->Height - 1;
} 320

//truncate u,v down to ut,vt to get lower,

// and add one to get upper (for rgbaxl/hyl/h)
Ut = (signed) utf.u;
vt = (signed) utf.v;
uti = ut+1;
vtl = vt+1;

/ in case uti or vtl wraps around
if(utl >= pTEntry->Width) 330

{
if(textile == 3) // clamp

utl = Ut;

248

if(textile == 1) // repeat
uti = 0;

if(textile == 2)// mirror

uti = (ut == 0) ? 0 : ut - 1;

I
if(vtl >= pTEntry->Height)

{ 340

if(textile == 3)// clamp

vt1 = vt;
if(textile == 1)/ repeat

vtl = 0;
if(textile == 2)// mirror

vtl = (vt == 0) ? 0 : vt - 1;

I

if(ut >= 0 && vt >= 0 && ut < pTEntry->Width
&& vt < pTEntry->Height) 350

rgbaxlyl = pTEntry->pBegin[ut+pTEntry->Width*vt];
else

rgbaxlyl = 0;

if(ut >= 0 && vtl >= 0 && ut < pTEntry->Width

&& vtl < pTEntry->Height)
rgbaxlyh = pTEntry->pBegin[ut+pTEntry->Width*vt1];

else
rgbaxlyh = 0;

360

if(utl >= 0 && vt >= 0 && uti < pTEntry->Width

&& vt < pTEntry->Height)
rgbaxhyl = pTEntry->pBegin[utl+pTEntry->Width*vt];

else
rgbaxhyl = 0;

if(utl >= 0 && vtl >= 0 && uti < pTEntry->Width

&& vtl < pTEntry->Height)
rgbaxhyh = pTEntry->pBegin[utl+pTEntry->Width*vtl];

else 370
rgbaxhyh = 0;

// blend between four corners

texrgba = (((unsigned) ((rgbaxlyl&OxFF)*
(1.0f-(utf.u-(float)ut)) +
(rgbaxhyl&OxFF)*
(utf.u- (float)ut)))&OxFF)

I ((((unsigned) (((rgbaxlyl>>8)&OxFF)*
(1.f-(utf.u-(float)ut)) +
((rgbaxhyl>>8)&OxFF)* 380

(utf.u-(float)ut)))&OxFF)<<8)

249

I ((((unsigned) (((rgbaxlyl> >16)&OxFF) *
(1.Of-(utf.u-(float)ut)) +
((rgbaxhyl>>16)&OxFF)*
(utf.u- (float)ut)))&OxFF) <<16)

S(((unsigned) ((rgbaxlyl> >24)* (1 .Of- (utf.u- (float)ut)) +
(rgbaxhyl> >24)* (utf.u- (float)ut))) <<24);

texrgba = (((unsigned)((texrgba&OxFF) *
(1.f-(utf.v-(float)vt)) + 390

((rgbaxlyh&OxFF)*
(1.f-(utf.u-(float)ut)) +
(rgbaxhyh&OxFF)*
(utf.u- (float)ut)) * (utf.v-(float)vt)))&QxFF)

((((unsigned) (((texrgba>>8)&OxFF) *

(1.f-(utf.v-(float)vt)) +
(((rgbaxlyh>>8)&OxFF)*
(1.f-(utf.u-(float)ut)) +
((rgbaxhyh>>8)&OxFF)*
(utf.u- (float)ut)) * (utf.v-(float)vt)))&OxFF)<<8) 400

1 ((((unsigned) (((texrgba>>16)&OxFF) *
(1.f-(utf.v-(float)vt)) +
(((rgbaxlyh>>16)&QxFF)*
(1.Of-(utf.u-(float)ut)) +
((rgbaxhyh>>16)&OxFF)*
(utf.u- (float)ut)) * (utf.v-(float)vt)))&OxFF)<<16)

I (((unsigned) ((texrgba> >24) * (1.Of- (utf.v- (float)vt)) +
((rgbaxlyh> >24)* (1.f- (utf.u- (float)ut)) +
(rgbaxhyh>>24)*(utf.u-(float)ut)) *

(utf.v-(float)vt)))<<24); 410

}
}

I/truncate alphas in texrgba and utf.rgba,
/1 according to pi.p.Mode.texalpha and colalpha
// and pi.alphaThresh

if(texalpha == 0)
texrgba 1= OxOFF; 420

else if(texalpha == 2)
{ // hard alpha

if((texrgba & OxOFF) >= pi.alphaThresh)
texrgba 1= OxOFF;

else
texrgba &= OxFFFFFFOO;

}

if(colalpha == 0)

250

utf.rgba I= OxOFF; 430

else if(colalpha == 2)
{ // hard alpha

if((utf.rgba & OxOFF) >= pi.alphaThresh)
utf.rgba I= OxOFF;

else
utf.rgba &= OxFFFFFFOO;

}

/ sort of a hack - if we're in blend mode, and

// either col or tex is hard alpha, and is OxOO (under 440

//the threshold), then make the final alpha OxCO

/ this is so we can have a hard-alpha texture be

// blended with a color map without creating a soft

// alpha result. Note that such a prim will be out-of-order

if(texmode == 3)
{

if(texalpha == 2 && (texrgba&OxFF) == 0)
utf.rgba &= OxFEFFFO;

if(colalpha == 2 && (utf.rgba&OxFF) == 0)
texrgba &= OxEFFFFFO; 450

}

// now blend texrgba and utf.rgba, according to pi.p.Mode.texmode

1/ (0=none, 1=color, 2=tex, 3=blend,

1/ 4=texdecal, 5=coldecal, 6=modulate)
// and pi.ColTexBalance (0 = all tex, 1 = all color) -> utf.rgba

switch(texmode)

{ 460
unsigned alpha;

case 1: // color only

fm.rgba = utf.rgba;
break;

case 2: // texture only

fm.rgba = texrgba;
break;

case 3:// col/tex blend
case 4: // tex on top of color decal

case 5: // color on top of tex decal 470

switch(texmode)

{
case 3:// col/tex blend

alpha = pi.ColTexBalance * 256;
if(alpha >= 256) alpha = 255;
break;

case 4: // tex on top of color decal

251

alpha = 255 - (texrgba & OxFF);
break;

case 5: // color on top of tex decal

alpha = (utf.rgba & OxFF);
break;

default: //this shouldn't happen

}

point modulation
= (((((utf.rgba>>24) * alpha) + 255)>>8) +

((((texrgba>>24) *

(255-alpha)) + 255)>>8)) << 24;
1= ((((((utf.rgba<<8)>>24) * alpha) + 255)>>8) +

(((((texrgba<<8)>>24) *
(255-alpha)) + 255)>>8)) << 16;

1= ((((((utf.rgba<<16)>>24) * alpha) + 255)>>8)
(((((texrgba<<16)>>24) *

(255-alpha)) + 255)>>8)) << 8;
1= ((((((utf.rgba<<24)>>24) * alpha) + 255)>>8)

(((((texrgba<<24)>>24) *
(255-alpha)) + 255)>>8));

// fixed
fm.rgba

fm.rgba

fm.rgba

fm.rgba

break;
case 6: //

// max
fm.rgba

fm.rgba

fm.rgba

fm.rgba

break;
case 0:
default:

fm.rgba

}
OxOOOOOOFF;

/ finally, modulate output with light values, based on
// pi.p.Mode.lit, useamb, usedir, pi.ambColor,
// pi.dirColor, utf.intensity into fm.rgba.
if (lit)

{
unsigned temp, ambrgb=0, dirrgb=O, intens, tempr, tempg, tempb;

// calculate ambient component - light values times

252

480

490

+-

color/tex modulated
of each is 255 - treated as 1.0 (fixed point modul
= ((((utf.rgba>>24) *

(texrgba>>24)) + 255)>>8) << 24;
1= (((((utf.rgba<<8)>>24) *

((texrgba<<8)>>24)) + 255)>>8) << 16;
1= (((((utf.rgba<<16)>>24) *

((texrgba<<16)>>24)) + 255)>>8) << 8;
1= ((((utf.rgba<<24)>>24) *

((texrgba<<24)>>24)) + 255)>>8;

500

ation)

510

520

+-

// intensity (i field) modulated with surface color
if(useamb)

{ // more fixed point modulation. fun!

intens = (pi.ambColor & OxFF);

temp = ((((pi.ambCoor>>24) * 530

intens) + 255)>>8) << 24;
temp 1= (((((pi.ambCoor<<8)>>24) *

intens) + 255)>>8) << 16;
temp 1= (((((pi.ambCoor<<16)>>24) *

intens) + 255)>>8) << 8;
ambrgb I= ((((temp>>24) *

(fm.rgba>>24)) + 255)>>8) << 24;
ambrgb 1= (((((temp<<8)>>24) *

((fm.rgba<<8)>>24)) + 255)>>8) << 16;
ambrgb 1= (((((temp<<16)>>24) * 540

((fm.rgba<<16)>>24)) + 255)>>8) << 8;

}
// calculate directional component - light values times

// intensity modulated with surface color

if(usedir)

{
intens = utf.intensity*256;
if(intens > 255) intens = 255;

550

temp = ((((pi.dirColor>>24) *

intens) + 255)>>8) << 24;
temp 1= (((((pi.dirCoor<<8)>>24) *

intens) + 255)>>8) << 16;
temp 1= (((((pi.dirCoor<<16)>>24) *

intens) + 255)>>8) << 8;
dirrgb 1= ((((temp>>24) *

(fm.rgba>>24)) + 255)>>8) << 24;
dirrgb 1= (((((temp<<8)>>24) *

((fm.rgba<<8)>>24)) + 255)>>8) << 16; 560

dirrgb 1= (((((temp<<16)>>24) *
((fm.rgba<<16)>>24)) + 255)>>8) << 8;

}

// saturate-add the two together.
/ only affects color values, alpha stays the same!

tempr = (ambrgb>>24) + (dirrgb>>24);
if(tempr > 255) tempr = 255;
tempg = ((ambrgb<<8)>>24) + ((dirrgb<<8)>>24); 570

if(tempg > 255) tempg = 255;
tempb = ((ambrgb<<16)>>24) + ((dirrgb<<16)>>24);
if(tempb > 255) tempb = 255;

253

fm.rgba &= OxOFF;
fm.rgba tempr << 24 1 tempg << 16 1 tempb << 8;

}

magic-perLtexfragmentO;
580

// stream fm south
wordsleft = sizeof(Fragment)/sizeof(unsigned);
static-send(wordsleft+1);
ptr = (unsigned*)&fm;

static-send(RENDER-PFRAG);

for(; wordsleft > 0; wordsleft--, ptr++)
{

static-send(*ptr); 590

}
}

else

{
//it's an end prim byte

// we have nothing to read
static-send(0);

// send end prim byte south 600

static-send(1);
static-send(RENDERP-ENDPRIM);
break;

}
}

}
// end loop

}

} 610

254

C.19 Stage3-sw.S

//setup-switch from starsearch/examples/multi-tile/static-net/mixed/compute-sw.S

.text

.align 2
.global setup-switch

.ent setup-switch
setup-switch:

mtsri SW-FREEZE, 1
la $8, sw-start
mtsr SWPC, $8
mtsri SWFREEZE, 0
jr $31

.end setup-switch

.swtext

.align 3
// Start of switch code.

sw-start: nop route

move $1, $csto

BEQZD $1, $1, reply
readL: BNEZD $1, $1, readL route

//
//
//
//
//

Freeze the switch.
Get switch starting address.
Set the switch PC.
Get with switch running.
Return.

10

20

$cNi->$csti // send first word to proc

// count of words to read

$cNi->$csti

reply: move $1, $csto // count of words in reply
BEQZD $1, $1, sw-start

replyL: BNEZD $1, $1, replyL route $csto->$cSo

sw-start

255

j

C.20 Stage4-Common.c

/1 Stage4- Common. c
/1
// Ken Taylor, MIT Mast

1/
// Last Updated: 5/18/2004
//
// This file implements the

/ take textured fragments,
// and updates the framebz

#include
#include
#include
#include
#include

r's Thesis 2004

code used in common across stage4, which
does z-buffer check if necessary,

iffer.

"rawcompilerdefs .h"
"renderdatatypes.h"

"ZBufdatatypes.h"
"renderframebuffer .h"

"Common-sw.h" // flush/invalidate

// defined in .S file
extern volatile unsigned taketurn;
extern volatile unsigned seqnum;
extern volatile unsigned inthdr;

void setup-switch(void);
void setup-interrupts(void);

// TODO: this is common
#define gdn-send-hdr(F, 1, u, oY, oX, dY, dX) \

gdn-send(F<<291<<24ju<<20oY<<15oX<<10ldY<<5dX)

// process a fragment, checking+ updating z buffer and updating fb as necessary
static inline void doFragment(Fragment *f, ZBufData *z,

unsigned nousez, unsigned nowritez)
{

unsigned alpha;
unsigned addr;
unsigned tempi, temp;
unsigned *zloc;

addr = f->x+f->y*VWIDTH;

if(!nousez)

{
zloc = &z->buf[addr];
invalidate_ word(zloc);
if(*zloc < f->z)

f

256

10

20

30

40

return;

}
}

alpha f->rgba & OxFF; 50

if(alpha != OxOFF)
{ // there's some alpha, read from framebuf

// turn interrupt off

raw-user-interrupts-off();

if(z->fbmode & FBMODEBACK)

{
tempi = fb-read-pixel-rawaddr(addr, 0); 60

temp = (((((f->rgba>>24) * alpha) + 255)>>8) +
((((temp>>24) * (255-alpha)) + 255)>>8)) << 24;

temp 1= ((((((f->rgba<<8)>>24) * alpha) + 255)>>8) +
(((((temp1<<8)>>24) * (255-alpha)) + 255)>>8)) << 16;

temp ((((((f->rgba<<16)>>24) * alpha) + 255)>>8) +
(((((temp1<<16)>>24) * (255-alpha)) + 255)>>8)) << 8;

fb-set-pixel-rawaddr(addr, temp, 1, 0);

}
70

if(z->fbmode & FBMODE-FRONT)

{
tempi = fb-read-pixelirawaddr(addr, 1);
temp (((((f->rgba>>24) * alpha) + 255)>>8) +

((((temp1>>24) * (255-alpha)) + 255)>>8)) << 24;
temp 1= ((((((f->rgba<<8)>>24) * alpha) + 255)>>8) +

(((((temp1<<8)>>24) * (255-alpha)) + 255)>>8)) << 16;
temp ((((((f->rgba<<16)>>24) * alpha) + 255)>>8) +

(((((temp<<16)>>24) * (255-alpha)) + 255)>>8)) << 8;
80

fb-set-pixel-rawaddr(addr, temp, 0, 1);
}

//turn interrupt back on

raw-user-interrupts-on(;

}
else

{
// note, optimizing with knowlege of exactly what 90

// FBMODEBACK and -FRONT are... be careful!
fb-set-pixel-rawaddr(addr, (f->rgba ^ alpha),

z->fbmode & FBMODE-BACK,

257

(z->fbmode & FBMODEFRONT)>>1);

}

if(nowritez == 0)

{
if(nousez)

zioc = &z->buf[addr]; 100

*zloc = ->z;
flush-word(zloc);

}
}

void begin(void) {

ZBufData * zbd;
PrimaryPrimInfo ppi; 110
Fragment fm[FRAGBLOCKS];
int tileNum;
int i, j;
unsigned invz = 1;
unsigned myinthdr, myseqnum,mytaketurn; // used for non-volatile access
unsigned mynousez, mynowritez; // isolate at prim level (bitfield values)

taketurn = 0;
myseqnum = seqnum = 0;

120

/1 set up static network
setup-switcho;

tileNum = raw-get-abs-pos-x(;
// inthdr for sending token to next tile
myinthdr = inthdr = 1<<241 3<<151 tileNum<<10 3<<51 (tileNum+1)%4;

// set up interrupts
setup-interrupts();
raw-set-statusEX-MASK(OxOOOOOOOO); // all off 130

raw-user-interrupts-onO;
raw-interrupts-on(;

// for framebuffer code
fb-init-fbhdr(3, tileNum);

// if we're tile 0 in the row
if(tileNum == 0)

{
zbd = (ZBufData*)malloc(sizeof(ZBufData)); 140

258

//initialize zbd to zero
zbd->fbmode = FBMODEBACK;

#ifdef INITZBUF
for(i = 0; i < VWIDTH*VHEIGHT; i++)

{
zbd->buf[i] = Ox7FFFFFFF;

}
150

// flush zbd
flush-variable(zbd, sizeof(ZBufData));

#else

flush.variable(zbd->fbmode, sizeof(unsigned));
flushvariable(zbd->buf, sizeof(unsigned));

#endif
160

// wait for gdn message from main tile
gdn-receiveo;

//// initialize framebuffers to all black (optional step with compiler def?)
#ifdef INIT-FB-BLACK
// TODO
#endif

//// send pointers to zbd to other 3 tiles in row
gdn-send-hdr(O, 1, 0, 3, 0, 3, 1); 170

gdn-send(zbd);
gdn-send-hdr(0, 1, 0, 3, 0, 3, 2);
gdn-send(zbd);
gdn-send-hdr(0, 1, 0, 3, 0, 3, 3);
gdn-send(zbd);

//// wait for 3 responses back
gdn-receiveo;
gdn-receive(;
gdn-receiveo; 180

/// send pointer to zbd back to main tile.
gdn-send-hdr(0, 1, 0, 3, 0, 0, 0);
gdn-send(zbd);

//// turn on gdn-avail.
raw-set-statusEXMASK(0x00000020);

//// send first round-robin token, seq # 1, to next tile.

259

gdn-send-hdr(O, 1, 0, 3, 0, 3, 1); 190

gdn-send(1);

}
else

{
// read gdn from tile 0
zbd = (ZBufData*)gdn-receive(;

//// turn on gdn-avail
raw-set-statusEXMASK(0x00000020);

200

//// send gdn message back to tile 0
gdn-send-hdr(0, 1, 0, 3, tileNum, 3, 0);
gdn-send(1);

}

// (with gdn-avail on, can be interrupted. Interrupt should:
//// check extern shared variable to see if we want to take turn. if so,
////// place seq num in another extern shared variable and change
////// reset variable to signal to main loop that you got the turn

//// if not, send token to next tile in loop. 210

while(1)

{
unsigned word;

// read word from static network
word = static-receiveo;

// if it's a flush byte
if(word == RENDERPFLUSH) 220

{
// next word is tile num

word = static-receiveo;

//// send gdn message to tile that started flush
raw-user-interrupts-off ();
gdn-send-hdr(0, 1, 0, 3, tileNum, 0, word);
gdn-send(0);
raw-user-interrupts-on(;

230

/1 flush may mean z->fbmode was changed between frames. invalidate!
invz = 1;

}
else

{
unsigned wordsleft, *ptr;

260

// read in ppi from sr
wordsleft = sizeof(PrimaryPrimInfo)/sizeof(unsigned);
ptr = (unsigned*)&ppi; 240

for(; wordsleft > 0; wordsleft--, ptr++)

{
(*ptr) = static-receiveo;

}

mynousez = ppi.Mode.nousez;
mynowritez = ppi.Mode.nowritez;

if(invz) 250

{
invalidate-word(&zbd->fbmode);
invz = 0;

}

// read in next word from sn

word = static-receive();

// if not an end-of-prim marker
if(word == RENDERPFRAG) 260

{
if(!ppi.Mode.outoforder)

{
//// wait for token to be = seqnum

magic-perf-startbusywait();
taketurn = 1;
do

{
while(taketurn);
myseqnum = seqnum; 270
mytaketurn = taketurn = (ppi.SeqNum != myseqnum);

// if not our turn in the sequence

if(mytaketurn)

{
gdn-send(myinthdr);
gdn-send(myseqnum);

}
} while(mytaketurn);

magic-perf-endbusywait();
280

//// do first fragment
//// go through all fragments until endprim
do

{
fm->x = static-receive();

261

fm->y = static-receive();
fm->z = static-receive();
fm->rgba = static-receiveo;

if(fm-->rgba & OxOFF) 290

doFragment(fm, zbd, mynousez, mynowritez);

} while(static-receive() == RENDERP-FRAG);

//// give up token to next stage (seqnum+1)
gdn-send(myinthdr);
gdn-send(myseqnum+1);

}
else // (unordered) 300

{
unsigned endprim = 0; // did we get an endprim header word
unsigned newfrag; 1/ have we started to get the newfrag's
//////////////////////// header word yet
unsigned numfrags, i;
while(!endprim)

{
// read next fm
fm->x = static-receive();
fm->y = static- receiveo; 310

fm->z = static-receive();
fm->rgba = static-receiveO;

if(fm->rgba & OxOFF)
numfrags = 1;

else
numfrags = 0;

newfrag = 0;
320

taketurn = 1;
mytaketurn = 1;

while(numfrags < FRAGBLOCKS)

{
// wait for something to appear on the SN
magic-perLstartbusywait();
while(! (raw-get-status-SWBUF1() & OxOOQOOQEG))

{
if(!taketurn) 330

{
myseqnum = seqnum;
if(ppi.SeqNum > myseqnum | numfrags == 0)

262

{
gdn-send(myinthdr);
gdn-send(myseqnum);

taketurn = 1;

}
else

{
mytaketurn = 0;
break;

i
}

}
magic..perf~endbusywait();

if(!mytaketurn)
break;

newfrag = 1;

if(endprim = (static-receive() == RENDERPENDPRIM))
break;

// wait for prim data now
magic-perLstartbusywaitO;
while(! (raw-get-status-SW-BUF1() & QxOOOOOOEO))

{
if(!taketurn)

{
myseqnum = seqnum;
if(ppi.SeqNum > myseqnum I numfrags == 0)

{
gdn-send(myinthdr);
gdn-send(myseqnum);

taketurn = 1;

I
else

{
mytaketurn = 0;
break;

}
}

magic-perLendbusywait(;

if(!mytaketurn)

break;

263

340

350

360

370

380

fm[numfrags].x = static-receiveo;
fm[numfrags].y = static-receive();
fm[numfragsj.z = static-receive();
fm[numfragsj.rgba = static-receiveo;

newfrag = 0;

if(fm[numfrags].rgba & OxOFF) 390

numfrags++;

}

// in case we haven't got taketurn yet
magic-perLstartbusywaitO;
if(mytaketurn)

{
do

{
while(taketurn); 400

myseqnum = seqnum;

mytaketurn = taketurn = (ppi.SeqNum > myseqnum);
// if not our turn in the sequence
if(mytaketurn)

{
gdn-send(myinthdr);
gdn-send(myseqnum);

}
} while(mytaketurn);

} 410

magic-perLendbusywait(;

// do it

for(i = 0 ; i < numfrags; i++)
doFragment(&fm[i], zbd, mynousez, mynowritez);

// give up token
gdn-send(myinthdr);
if(endprim)

{ 420

gdn-send(myseqnum+1);

}
else

gdn-send(myseqnum);

// need to read in next header if we didn't above
if(!newfrag)

{
endprim = (static-receive() == RENDERP-ENDPRIM);

264

if(endprim) 430

{
/1 oops, prim ends! better catch the sequence # and

// increment it

taketurn = 1;
while(taketurn);
gdn-send(myinthdr);

gdn-send(seqnum+1);

}
}

440

} // while(!endprim)
} // else (ppi.Mode.outoforder)

} //if (word == RENDERPFRAG)
else

{
1/ empty prim, treat as unordered, increment seqnum

// when it gets to our value or greater.

magic-perLstartbusywait();
taketurn = 1;
do 450

{
while (taketurn);
myseqnum = seqnum;
mytaketurn = taketurn = (ppi.SeqNum > myseqnum);

// if not our turn in the sequence

if(mytaketurn)

{
gdn-send(myinthdr);
gdn-send(myseqnum);

} 460
} while(mytaketurn);

magic-perf-endbusywaitO;

gdn-send(myinthdr);
gdn.send(myseqnum+1);

}
} // else (word != RENDERPFLUSH)

} // while(1)

remember to turn off gdnavail if expecting response from 470

// fb, and to turn it on before sending token away.

/7 - wait for token means set taketurn = 1, and wait for it to be 0.
/7 then you can chek seqnum (token seqnum) against ppi.SeqNum
7/ - give up token by sending gdn message to next tile modulo

/7 total tiles in row (m), with seqnum as body of the token.

/ NOTE: no method here to restart tokens at zero. not really needed.

7/ when they wraparound, pipeline will be flushed, and things

265

// will continue as normal. so don't reset
// seqnum to 0 at top, either!

480

}

266

C.21 Stage4-sw.S

//setup-switch from starsearch/examples/multi-tile/static-net/mixed/compute-sw.S

// interrupt code inspired by starsearch/module-tests/interrupts/external/tests.S

.text

.align 2
.global setup-switch

.ent setup-switch
setup-switch:

mtsri SWFREEZE, 1
la $8, sw-start
mtsr SWPC, $8
mtsri SWFREEZE, 0
jr $31

.end setup-switch

//
//
//
//
//

.swtext

.align 3
// Start of switch code.

sw-start:
j sw-start route $cNi->$csti

Freeze the switch.

Get switch starting address.
Set the switch PC.
Get with switch running.

Return.

.text

.align 2

interrupt vector

ivec: j HNDLGDNAVAIL

Copy ivec down to 0x50
.global setup-interrupts
.ent setup-interrupts

setup-interrupts:
addiu $9, $0, %lo(ivec)
aui $9, $9, %hi(ivec)
ilw $12, O($9)
isw $12, Ox50($0)
jr $31
.end setup-interrupts

// cache-free saving point for interrupt

.swtext
gdn-avail-savel: .word 0
gdn-avail-save2: .word 0

10

20

// Everything comes from north!

30

40

267

.text

HNDLGDN-AVAIL:
magc $0, $0, Oxfed6 // start busywait 50

// (don't want spinning token to count as active)
swsw $2, Xlo(gdn-avail-savel)($0)

swsw $3, Xlo(gdn-avail-save2)($0)

la $2, taketurn

1w $3, 0($2)

BEQ $3, $0, hga-notaketurn

// they are taking the turn, place seq num in shared variable
// and reset taketurn

sw $0, 0($2) 60

addiu $2, $2, 4 // taketurn+4 = seqnum
sw $cgni, 0($2)

j hga-done

hga-notaketurn:
// not taking the turn, send seqnum to next tile

addiu $2, $2, 8 // taketurn+8 = inthdr
1w $2, 0($2)

addu $cgno, $2, $0 70

addu $cgno, $cgni, $0

hga-done:

swlw $2, %lo(gdnavail-savel)($0)

swlw $3, Xlo(gdn-avail-save2) ($0)

magc $0, $0, Oxfed7 // end busywait
dret

// a pointer to the shared memory, stored here so the assembly 80

// can access it. make sure the C program or someone touches
// this point before turning on interrupts so that it doesn't
// cache miss... (though this doesn't guarantee no cache miss ..
// maybe it won't be a problem)
.data

.global taketurn

.global seqnum

.global inthdr
taketurn: .word 0
seqnum: .word 0 90

inthdr: .word 0

268

269

270

Appendix D

Verification Framework Code
Listing

TODO: directory structure

D.1 RenderInterface.bc

include(" <dev/basic .bc>");

if (LookupSymbolHash(gSymbolTable, "gMagicInstrHMS") == NULL)
include(" <dev/magic instruction. bc>");

include("render-host . bc ");
include("render-framebuf f er . bc

local result; 10

result = dev-render-host-init(15);

if (result == 0)
exit(-1);

result = dev-render-framebuffer-init(11);

if (result == 0)
exit(-1); 20

}

271

D.2 render-framebuffer.bc

/ render-framebuffer

// device that interfaces from the RAW processor to a framebuffer/ video DAC.
// Can optionally record all RAW and framebuffer interactions for use in
// testing a verilog drop-in for this module in the future. (can we use
// PLI to put it in here directly? look into this...)
// Also, can optionally display a constantly-updated image of what's
// in the framebuffer at any point for debugging/verification/cool

// purposes. (What good is a graphics card if you don't know what it's
// rendering?

10
//if i include this, it gives me "redefined" warnings
// if i don't, DrawLine is for some reason not linked when the reset
// routines are called. arrrgh!
include(" <bug/graphics .bc>");

//
1/ dev-renderjframebuffer-init

//

fn dev-render-framebuffer-init(ioPort) 20

{
local rfbStruct = hms-newo;
local result;

rfbStruct.ioPort = ioPort;
rfbStruct.fb-interface = hms-newo;

result = SimAddDevice("RenderFrameBuf f er",
"devrender-framebuffer-reset",
"devrenderframebuffercalc", 30

rfbStruct);

if (result == 0)

I
printf("// **** render_framebuffer: failed to add device to port /.d\n",

ioPort);
return 0;

}

result = dev-render-framebuffer-hw-init(rfbStruct.fb-interface); 40

if(result == 0)

f
return 0;

}

272

// handle to the device
return rfbStruct;

} 50

fn reset-fb-controller(rfbStruct)

{
rfbStruct.fb-interface.PAGE = 1; // active page is visible page
rfbStruct.fb-interface.nWE = 1;
rfbStruct.fb-interface.nOE = 1;
rfbStruct.fb-interface.nCSO = 1;
rfbStruct.fb-interface.nCS1 = 1;

}
60

global gLastFBHW = 0;

NativeFunctionLink(" atoi",1);

//
/ dev-renderjframebuffer-hw.init

//

fn dev-render-framebuffer-hw-init(fb-interface)

{ 70
local rfbhwStruct = hms-newo;
local result;

gLastFBHW = rfbhwStruct;

rfbhwStruct.fb-interface = fb-interface;

rfbhwStruct.vheight = 480;
rfbhwStruct.vwidth = 640;

80

arg-process(
& fn(argv, foundArg)

{
rfbhwStruct.vheight = atoi(gArgv[foundArg+1]);
printf("vheight set to %d\n", rfbhwStruct.vheight);

},
"-render-vheight");

90

arg-process(
& fn(argv, foundArg)

{

273

rfbhwStruct.vwidth = atoi(gArgv[foundArg+1]);
printf("vwidth set to %d\n", rfbhwStruct.vwidth);

},
"-render_vwidth");

rfbhwStruct.showdisplay = 0;
// 32 bit memory (24 used for rg,b) 100
rfbhwStruct.fbO = malloc(4 * rfbhwStruct.vwidth * rfbhwStruct.vheight);
rfbhwStruct.fbl = malloc(4 * rfbhwStruct.vwidth * rfbhwStruct.vheight);

if(arg-scan(" -rendershowdisplay") != -1)

{
rfbhwStruct.height = rfbhwStruct.vheight*2 + 1;
rfbhwStruct.width = rfbhwStruct.vwidth;
rfbhwStruct.display = wgxCreateWindow(rfbhwStruct.height,rfbhwStruct.width);
if(rfbhwStruct.display != 0)

{ 110

rfbhwStruct.displaydata = wgxReturnDrawingArea(rfbhwStruct.display);
rfbhwStruct.showdisplay = 1;
rfbhwStruct.realtimeupdate = 1;

}
}

result = SimAddDevice("RenderFrameBuf f erHW",
"devrender-framebuffer-hwreset",
"dev-render-framebuffer-hwcalc",

rfbhwStruct); 120

if (result == 0)

{
printf("// **** renderframebufferhw: failed to add device");
return 0;

}

// handle to the device
return rfbhwStruct;

} 130

/ dev-render-framebuffer-hw-reset

//

fn dev-render-framebuffer-hw-reset(rfbhwStruct)

{
local i;
local c;

140

// todo: set VSYNC with a timer

274

rfbhwStruct.fb-interface.VSYNC = 1;

// clear framebuffers
for (i = 0; i < rfbhwStruct.vwidth * rfbhwStruct.vheight; i++)
{

rfbhwStruct.fb0[i] = OxOQOOOQO;
rfbhwStruct.fbl[i] = OxOOOQOQO;

}
150

// set up the background
if(rfbhwStruct.showdisplay == 1)

{
wgxSetForegroundColor(rfbhwStruct.display,

wgxCreateColor(rfbhwStruct.display, OxOOQO, OxOOQO, OxOOQO));
wgxFillRectangle(rfbhwStruct.display, 0,0, rfbhwStruct.width, rfbhwStruct.height);
c = wgxCreateColor(rfbhwStruct.display, OxFFFF, Ox3333, OxFFFF);
wgxSetForegroundColor(rfbhwStruct.display, c);
wgxDrawLine(rfbhwStruct.display, 0, rfbhwStruct.vheight,

rfbhwStruct.width-1, rfbhwStruct.vheight); 160

DrawLine(rfbhwStruct.displaydata, rfbhwStruct.height, rfbhwStruct.width,
0, rfbhwStruct.width, rfbhwStruct.vheight, rfbhwStruct.vheight,
c);

wgxFlush(rfbhwStruct.display);

}
}

/1
/1 dev-render-framebuffer-hw-calc
// 170

fn dev-render-framebuffer-hw-calc(rfbhwStruct)

{
local i;
local j;

if(isatty(0)) // hacky way of not switching if there's no shunt. see default.bug
switch-to-textO;

while(1)
{ 180

if(rfbhwStruct.fb_interface.nWE == 0)

{
//printf("hw write!\n");
dev-render-framebuffer-hw-write(rfbhwStruct, rfbhwStruct.fb-interface.A,

rfbhwStruct.fbinterface.D,
!rfbhwStruct.fb_interface.nCSO,
!rfbhwStruct.fb-interface.nCS1);

}
else if(rfbhwStruct .fblinterface.nOE == 0)

275

{ 190

local page = -1;

//printf("hw read!\n");
if (rfbhwStruct.fbinterface.nCSO == 0

&& rfbhwStruct.fbinterface.nCS1 == 1)
page = 0;

else if (rfbhwStruct.fb_interface.nCS1 == 0
&& rfbhwStruct.fb-interface.nCSO == 1)

page = 1;

200

rfbhwStruct.fb-interface.D = dev-render-framebuffer-hw-read(rfbhwStruct,
rfbhwStruct.fbinterface.A, page);

}

yield;

}
}

//
// dev-render-framebuffer-hw-write 210

//

fn dev-render-framebuffer-hw-write(rfbhwStruct, address, data, p0, pl)

{
local i;
local j;
local c;

//printf("hw write: address: %05X data: %08X pO: %d pi: %d\n",
address, data, p0, p1); 220

if(rfbhwStruct.showdisplay == 1)

{
c = wgxCreateColor(rfbhwStruct.display, (data >> 24)<<8,

((data <<8) >> 24)<<8, ((data << 16) >> 24)<<8);
j = address / rfbhwStruct.vwidth;
i = address % rfbhwStruct.vwidth;
//printf("hw write display: color: %08X i: %d j: %d\n", c, i, j);

}
230

if(pO)

{
rfbhwStruct.fb0[address] = data;
render-drawpoint(rfbhwStruct,i,j,c);

}
if(pi)

{

276

rfbhwStruct.fbl [address] = data;

render-drawpoint(rfbhwStruct,i,j+rfbhwStruct.vheight+1,c);

} 240

if(rfbhwStruct.showdisplay == 1)
wgxFlush(rfbhwStruct.display); // flush slows it down, but

//lets it update properly on step.

}

/1
// dev-render-framebuffer-hw-read

//
250

fn dev-render-framebuffer-hw-read(rfbhwStruct, address, page)

{
if(page == 0)

return rfbhwStruct.fbO[address];
else if(page == 1)

return rfbhwStruct.fbl [address];
else

return OxBAADBEEF;

}
260

I-
1/ render-drawpoint
/ /

/1 plots the point xy in the realtime display (if it exists),
// both directly and to the back buffer.

fn render-drawpoint(rfbhwStruct,x,y,color)

{
if(rfbhwStruct.showdisplay == 1)
{ 270

if(rfbhwStruct.realtimeupdate == 1)

{
//printf("drawing point at x=%d,y=%d color %08X\n", x, y, color);

wgxSetForegroundColor(rfbhwStruct.display, color);
wgxDrawLine(rfbhwStruct.display, x,y,x,y);

}
*(rfbhwStruct.displaydata+((x+rfbhwStruct.width*y)<<2)) = color;

}
}

280

/ /
/n render-realtimeupdate.on

fn render-realtimeupdate-on()

277

{
gLastFBHW.realtimeupdate = 1;

}

// 290
// render-realtimeupdate off

//

fn render-realtimeupdate-off()

{
gLastFBHW.realtimeupdate = 0;

}

/
// render-refresh-display 300

/

/to be called by user, to refresh the fb image from back buffer

// (slow!)
fn render-refresh-display()

{
if(gLastFBHW != 0)

{
if(gLastFBHW.showdisplay == 1)

{ 310
wgxCommitImage(gLastFBHW.display);

}
}

}

/ /
// dev-render-framebuffer-reset

fn dev-render-framebuffer-reset(rfbStruct) 320

{
reset-fb-controller(rfbStruct);

}

/
// dev-render-framebuffer-calc

//

fn dev-render-framebuffer-cal(rfbStruct)

{ 330

local ioPort = rfbStruct.ioPort;
local hdr;
local dc; // don't care

278

local length;
local sY;
local sX;

local word;
local cmd;

local page; 340

local address;

local blength;

while(1)

{
if(isatty(0)) // hacky way of not switching if there's no shunt. see default.bug

switch-to-text();

//printf("hello! and welcome to the framebuffer calc loopf\n"); 350
yield;

// pull a command off the dynamic network

hdr = threaded-general-io-receive(machine, ioPort);
yield;
DecodeDynHdr(hdr, &dc, &length, &dc, &sY, &sX, &dc, &dc);
//printf("framebuffer: recieve header: %08X\n", hdr);

//printf("framebuffer: recieve length: %d, sY: %d, sX: %d\n", length, sY, sX);

if(length < 1) 360

continue; // ERROR!

word = threaded-general-io-receive(machine, ioPort);

yield;
length--;

cmd = word >> 29;
page = (word << 11) >> 30;
address = (word << 13) >> 13;

370

//printf("frame buffer: recieve word: %08X\n", word);

/printf("framebuffer: recieve cmd: %01X page: %01X addr: %05X\n",
// cmd, page, address);

if(cmd == 0b111)
{

//printf("reset.\n");

// reset
resetifb-controller(rfbStruct);

} 380

else if(cmd == Ob110)

279

{
//printf("reserved!\n");

//reserved
}
else if(cmd & Ob100)
{

// pageflip
if(cmd & ObM01) 390

{
//printf("waiting for vsync\n");

// wait for vsync
while(!rfbStruct.fb-interface.VSYNC)

yield;

}

rfbStruct.fb-interface.PAGE = !rfbStruct.fb-interface.PAGE;

if(cmd & ObM01) 400

{
// send reply
/ send "word" back to tile
hdr = ConstructDynHdr(0,1,0,0,0,sY,sX);
threaded-general-io-send(machine,ioPort,hdr);
yield;
threaded-general-io-send(machine,ioPort,word);
yield;

}
} 410
else

{
/ read or write

if(cmd & ObMlO)
{

//printf("block\n");
// block
if(length < 1)

continue; // ERROR! 420

blength = threaded-general-io-receive(machine, ioPort);
yield;
length--;

}
else

blength = 1;

if (cmd & ObM01)

280

{ 430

/printf("read.!\n");

// read
hdr = ConstructDynHdr(O, blength, 0, 0, 0, sY, sX);
threaded-general-io-send(machine, ioPort, hdr);

rfbStruct.fb-interface.nWE = 1;
rfbStruct.fb-interface.nOE = 0;

// active page if specified, else assume other page.
// can't read from both pages and can't read from none! 440

if(((page & ObOl) && rfbStruct.fb-interface.PAGE == 0)
| (!(page & ObOl) && rfbStruct.fb-interface.PAGE == 1))

{
rfbStruct.fbinterface.nCS1 = 1;
rfbStruct.fb-interface.nCSO = 0;

}
else

{
rfbStruct.fb-interface.nCS1 = 0; 450

rfbStruct.fb-interface.nCSO = 1;

I

for(; blength > 0 ; blength--)

{
rfbStruct.fb-interface.A = address;
yield;
threaded-general-io-send(machine, ioPort, rfbStruct.fb-interface.D);
address++;

} 460

rfbStruct.fb-interface.nOE = 1;
rfbStruct.fb-interface.nCS1 = 1;
rfbStruct.fb-interface.nCSO = 1;

// note: deadlock possibility if tile accidentally sent
// a too-long message, as we started sending a reply before
// the whole message was drained. Well, this is the tile's fault.

} 470
else

{
//printf("write.\n");
// write

rfbStruct.fb-interface.nCS1 =

!(((page & ObOl) && rfbStruct.fb-interface.PAGE == 1) ||

281

((page & Ob10) && rfbStruct.fb-interface.PAGE 0));

rfbStruct.fb-interface.nCSO = 480

!(((page & ObOl) && rfbStruct.fbinterface.PAGE == 0)
((page & Ob10) && rfbStruct.fb-interface.PAGE == 1));

// note: this timing may be naive. A more complete
// implementation would settle address and data, then
// strobe WE. Keeping it simple for now, but might
// make better in the future. TODO.

rfbStruct.fb-interface.nOE = 1;
490

for(; blength > 0 && length > 0; blength--)

rfbStruct.fb-interface.A = address;
rfbStruct.fb-interface.nWE = 1; // in case io-receive yields!

rfbStruct.fb-interface.D = threaded-general-io-receive(machine, ioPort);
length--;

rfbStruct.fblinterface.nWE = 0;
500

if(grhost-perfDoPerf)
grhost-perfNumPixels++;

yield;
address++;

}

rfbStruct.fb-interface.nWE = 1;
rfbStruct.fb-interface.nCS1 = 1;
rfbStruct.fb~interface.nCSO = 1; 510

}
}

// drain the rest of the message
// (SHOULDN'T HAVE TO, BUT JUST IN CASE)
for(; length > 0 ; length--)
{

//printf("WARNING extra word.\n");
word = threaded-general-io-receive(machine, ioPort); 520

yield;

}
}

}

282

283

D.3 render-host.bc

//render-host
// device that sends rendering commands to graphics processor
/ generally streams them in on static network
/ / front-side interface left undefined, depends on host interface
// commands piped in from a controlling process for debugging / simulation

NativePunctionLink(l"pipe",1);

// performance measurement info
global grhost-perfSceneStreamCycles = 0;
global grhost-perfStagelCyclesActive = 0; // only counted in scenestream these 4
global grhost-perfStage2CyclesActive = 0;
global grhost-perfStage3CyclesActive = 0;
global grhost-perfStage4CyclesActive = 0;
global grhost-perfRenderCycles = 0;
global grhost-perfNumFrames = 0;
global grhost-perfNumPrims = 0;
global grhost-perfNumPixels = 0;// get this data from the framebuffer
global grhost-perfNumFrags = 0; // get this through magic instructions
global grhost-perfNumTexFrags = 0; // get this through magic instructions
global grhost-perfNumTexels = 0;// also through magic instructions
global grhost-perfNumDrawnPrims = 0; // magic instr.

global
global
global
global

10

20

grhost-perfDoPerf = 0; // count rendercycles
grhost-perfSceneStream = 0; // count scenestream + active %'s
grhost-perfBusyWait;
grhost-perfintBusyWait; // busywait to use in interrupts.

30

//
// dev-render-host-init

//

fn dev-render-host-init(ioPort)

{
local rhostStruct = hms-newO;
local result;
local i;

40

rhostStruct.ioPort = ioPort;

result = SimAddDevice("RenderHost",
"devrender-host-reset",
"dev-renderhostcalc",

284

rhostStruct);

if (result == 0)

{
printf("// **** renderhost: failed to add device to port Xd\n", ioPort);
return 0;

}

grhostperfBusyWait = malloc(4*16);
grhostperflntBusyWait = malloc(4*16);

devrenderperfreset(0);

// these two state variables shouldn't be

/1 perf reset command

grhost-perfSceneStream = 0;

for(i = 0; i < 16; i++)

{
grhost-perfBusyWait[i] = 0;

grhost-perflntBusyWait[i] = 0;

}

reset on the general
60

result = SimAddDevice("RenderProfiler",
"devrender-perftreset",
"devrender-perf_calc",

0);

if (result == 0)

{
printf("// **** render-host: failed to add device to port %d\n", ioPort);

return 0;

}

rhostStruct.usingpipe = 0;
rhostStruct.outofdata = 0;

arg-process(
& fn(argv, foundArg)

{
rhostStruct.usingpipe = 1;
rhostStruct.piper = malloc(2*4);
rhostStruct.pipew = malloc(2*4);

/ pipe[0] is reading, pipe[] is writing

pipe(rhostStruct.piper);
pipe(rhostStruct.pipew);

285

50

70

80

90

if ((rhostStruct.pid = forko) == 0)

{
close(rhostStruct.pipew[1]);
dup2(rhostStruct.pipew[0], 0); // pipew is new stdin

close(rhostStruct.piper [0]); 100
dup2(rhostStruct.piper[1], 1); // piper is new stdout

// so ctrl-C doesn't kill child. see btl/system/util. bc:shell
setpgrpO;

execlp("/bin/sh", "/bin/sh", "-c",gArgv[foundArg+1],0);

}
else

{
close(rhostStruct.piper [1]); 110
close(rhostStruct.pipew[0]);
rhostStruct.pipewf = fdopen(rhostStruct.pipew[1],"a");

}

/ F-SETFL = 4
/ ONONBLOCK = 04000
fentl(rhostStruct.piper[0], 4, 04000);

//printf("// started render-host client: %s\n", gArgv[foundArg+1]);
120

"-render-hostcmd");

// add magc instruction handler
// rs = 0,
// imm = fedO - start busy waiting (nothing getting done)
// fedi - end busy waiting (doing work again)
/1 fed2 - count a fragment
/1 fed3 - count a textured fragment
// fed4 - count a texel
/1 fed5 - count a drawn primitive (nonclipped) 130

/1 fed6 - start busy waiting in an interrupt
// fed7 - end busy waiting in an interrupt
listi-add(gMagicInstrHMS.theList,

& fn(procNum, rs, imm, result-ptr)

{
if (rs == 0)
{

switch (imm)

{
case Oxfed0: 140

grhost-perfBusyWait[procNum] = 1;

286

return 1;
case Oxfed1:

grhost-perfBusyWait[procNum] = 0;
return 1;

case Oxfed2:
if(grhost-perfDoPerf)

grhost-perfNumFrags++;
return 1;

case Oxfed3: 150

if(grhost-perfDoPerf)
grhost-perfNumTexFrags++;

return 1;
case Oxfed4:

if(grhost-perfDoPerf)
grhost-perfNumTexels++;

return 1;
case Oxfed5:

if(grhost-perfDoPerf)
grhost-perfNumDrawnPrims++; 160

return 1;
case Oxfed6:

grhost-perflntBusyWait[procNum] = 1;
return 1;

case Oxfed7:
grhost-perflntBusyWait[procNum] = 0;
return 1;

default:
return 0; 170

}
}

return 0;

}

// handle to the device
return rhostStruct; 180

}

fn dev-render-perLreset(dummy)

{
local i;

// performance measurement info
grhost-perfSceneStreamCycles = 0;
grhost-perfStagelCyclesActive = 0;// only counted in scenestream these 4

287

grhost-perfStage2CyclesActive = 0; 190
grhost-perfStage3CyclesActive = 0;
grhost-perfStage4CyclesActive = 0;
grhost-perfRenderCycles = 0;
grhost-perfNumFrames = 0;
grhost-perfNumPrims = 0;
grhost-perfNumPixels = 0;// get this data from the framebuffer
grhost-perfNumFrags = 0;// how to get this? magic instructions?
grhost-perfNumTexFrags = 0; // get this through magic instructions
grhost-perfNumTexels = 0;
grhost-perfNumDrawnPrims = 0; // magic instr. 200

grhost-perfDoPerf = 0; // count rendercycles

}

// cycles counting up performance data in global variables
fn dev-render-perLcalc(dummy)

{
while(1)

{
if(grhost-perfDoPerf) 210

{
grhost-perfRenderCycles++;
if(grhost-perfSceneStream)

{
grhost-perfSceneStreamCycles++;
grhost-perfStagelCyclesActive +=

((Proc-GetStallReason(Machine-_GetProc(machine,0)) == 0)
&&(!(grhost-perfBusyWait[0]| Igrhost-perfIntBusyWait[0]))) +

((Proc..GetStallReason(MachineGetProc(machine, 1)) == 0)
&&(!(grhost-perfBusyWait[1]j grhost-perfIntBusyWait[1]))) + 220

((ProcGetStallReason(Machine- GetProc(machine,2)) == 0)
&&(!(grhost-perfBusyWait[2]1 jgrhost-perfIntBusyWait[2]))) +

((ProcGetStallReason(Machine- GetProc(machine,3)) == 0)
&&(!(grhost-perfBusyWait[3] jgrhost-perfIntBusyWait[3])));

grhost-perfStage2CyclesActive +=
((ProcGetStallReason(Machine- GetProc(machine,4)) == 0)
&&(!(grhost-perfBusyWait[4]j |grhost-perfIntBusyWait[4]))) +

((ProcGetStallReason(Machine- GetProc(machine,5)) == 0)
&&(!(grhost-perfBusyWait[5]j jgrhost-perfIntBusyWait[5]))) +

((Proc_ GetStallReason(Machine-GetProc(machine,6)) == 0) 230

&&(!(grhost-perfBusyWait[6]1 jgrhost-perfIntBusyWait[6]))) +
((ProcGetStallReason(Machine-GetProc(machine,7)) == 0)
&&(!(grhost-perfBusyWait[7]1 grhost-perfIntBusyWait[7])));

grhost-perfStage3CyclesActive +=
((Proc-GetStallReason(Machine- GetProc(machine,8)) == 0)
&&(!(grhost-perfBusyWait[8]! grhost-perfIntBusyWait[8]))) +

((ProcGetStallReason(Machine-GetProc(machine,9)) == 0)

288

&&(!(grhost_perfBusyWait[9]j jgrhost_perfIntBusyWait[9]))) +
((ProcGetStallReason(Machine_ GetProc(machine, 10)) == 0)

&&(!(grhost_perfBusyWait[10] jgrhost_perflntBusyWait[10]))) + 240

((Proc-GetStallReason(Machine GetProc(machine, 11)) == 0)

&&(!(grhostperfBusyWait[11 jgrhost-perfIntBusyWait[11])));

grhost-perfStage4CyclesActive +=

((ProcGetStallReason(Machine- GetProc(machine,12)) == 0)

&&(!(grhost_perfBusyWait[12]I jgrhost-perflntBusyWait[12]))) +
((ProcGetStallReason(Machine GetProc(machine, 13)) == 0)

&&(!(grhostperfBusyWait[13]j grhost_perflntBusyWait[13]))) +

((ProcGetStallReason(Machine GetProc(machine,14)) == 0)

&&(!(grhost-perfBusyWait[14]I jgrhost_perfIntBusyWait[14]))) +
((Proc-GetStallReason(Machine GetProc(machine, 15)) == 0) 250

&&(!(grhost_perfBusyWait[15]j Igrhost-perflntBusyWait[15])));
}

}
yield;

}
}

/ /
/ devzrender-host-reset 260

/ /

fn dev-render-host-reset(rhostStruct)

{
// we really should close the process here and restart it

}

NativeFunctionLink(" strtoul", 3);
NativeFunctionLink("f dopen", 2); 270

//
// dev-render-host-readfromhost(rhostStruct, buf)

/1/
// reads 11 bytes (next command) in from host and stores it in buf

fn dev-render-host-readfromhost(rhostStruct, buf)

{ 280

local numread = 0;
local nr = 0;

while(numread < 11)

{

289

nr = read(rhostStruct.piper [0], buf+numread, 11-numread);
if(nr == -1)

{
yield;
continue; // assuming EAGAIN is only error. Watch out for lockups! 290

}
else

numread += nr;

if(nr == 0)

{
printf("//**** renderhost: out of data\n");
rhostStruct.outofdata = 1;
break;

} 300
}

}

//
// render-reporthprofiling()
//

fn render-report-profiling() 310

{
printf("RenderCycles: %d StreamCycles: %d\n", grhost-perfRenderCycles,

grhost-perfSceneStreamCycles);
printf("ActiveCycles*4 Stage 1: %d, 2: %d, 3: %d, 4: %d\n",

grhost-perfStagelCyclesActive,
grhost-perfStage2CyclesActive, grhost-perfStage3CyclesActive,
grhost-perfStage4CyclesActive);

printf("Frames: %d, Prims: Xd, DrawnPrims: %d,\nFrags: Xd, \
TexFrags: %d, Texels: %d, Pixels: %d\n", 320

grhost-perfNumFrames, grhost-perfNumPrims, grhost-perfNumDrawnPrims,
grhost-perfNumFrags, grhost-perfNumTexFrags, grhost-perfNumTexels,
grhost-perfNumPixels);

}

II
/ dev-render-host-calc

/ /
330

fn dev-render-host-calc(rhostStruct)

{
local ioPort = rhostStruct.ioPort;

290

local buf = malloc(11);
local status;

// wait for a sn message to come in, to know the

// processor is ready.

threaded-static-io-receive(machine, ioPort); 340

if(isatty(O)) // hacky way of not switching if there's no shunt. see default.bug

switch-to-textO;

while(1)

{
if(rhostStruct.usingpipe)

{
local data;
dev-render-host-readfromhost(rhostStruct, buf);

if(!rhostStruct.outofdata) 350

{
//printf("// render-host: read \"%.10s\" \n", buf);

if(strncmp(buf, "wait", 4) == 0)

{ // wait for a word response

threaded.static-io-receive(machine, ioPort);

}
else if(strncmp(buf, "halt", 4) == 0)
{ // pause the simulation

gInterrupted = 1; 360

}
else if(strncmp(buf, "read", 4) == 0)

{ // send data to program from static network
local bytestosend = 0;
local j;

/ printf("// render-host requests read\n");

dev-render-host-readfromhost(rhostStruct, buf);
370

if(!rhostStruct.outofdata)

{
bytestosend = strtoul(buf, 0, 16);
//printf("// bytes to send: %d\n", bytestosend);

for(j = 0; j < bytestosend; j++)
{

data = threaded-static-io-receive(machine, ioPort);
//printf("// data: Ox%08x\n", data);

fprintf(rhostStruct.pipewf, "0x%08x\n", data); 380

fflush(rhostStruct.pipewf);

291

}

}
}
else if(strncmp(buf, "debug", 5) == 0)
{ // print out a debug string

dev-render-host-readfromhost(rhostStruct, buf);
if(!rhostStruct.outofdata)

{ 390

// (don't comment out this printf!)
printf("// renderhost: DEBUG: %.11s", buf);

}

}
else if(strncmp(buf, "pstart", 6) == 0)
{ // start profiling

grhost-perfDoPerf = 1;

}
else if(strncmp(buf, "pstop", 5) == 0) 400

{ // stop profiling
grhost-perfDoPerf = 0;

}
else if(strncmp(buf, "penterss", 8) == 0)

{ // enter scene stream
grhost-perfSceneStream = 1;

}
else if(strncmp(buf, "pexitss", 7) == 0)

{ // exit scene stream
grhost-perfSceneStream = 0; 410

}
else if(strncmp(buf, "pframe", 6) == 0)

{ // mark the beginning of a frame
if(grhost-perfDoPerf)

grhost-perfNumFrames++;

}
else if(strncmp(buf, "pprim", 5) == 0)

{ // mark the beginning of a prim
if(grhost-perfDoPerf)

grhost-perfNumPrims++; 420

}
else if(strncmp(buf, "preport", 7) == 0)
{ // report profiling info so far

render-report-profiling(;

}
else if(strncmp(buf, "preset", 6) == 0)

{ /1 reset profiling info
dev-render-perLreset(0);

I

292

else
{ // send data to proc

/ data comes in as 32-bit numbers in hex format

data = strtoul(buf, 0, 16);
//printf("// render-host: read \ "%.10s\" sending %08X\n", buf, data);

threaded-static.io-send(machine, ioPort, data);

I
I

}

if(rhostStruct.outofdata)
break;

yield;

I

// shouldn't get down here unless the

NativeFunctionLink(I"waitpid", 3);
feeder process died

waitpid(rhostStruct.pid, &status, 0);
printf("// renderhost: exit status of child: %d (%08X)\n",

(status & OxFFO) >> 8, status);

I

293

430

440

450

D.4 render-framebuffer.h

/ render-framebuffer. h

//
// Ken Taylor, MIT Master's Thesis 2004

I-
// Last Updated: 5/28/2004
/1
/ contains functions to interact with framebuffer. used by
// stagel in command mode and stage4 in scenestream

#ifndef RENDERFRAMEBUFFERH 10

#define RENDERFRAMEBUFFERH

#include "raw-compiler-defs.h"

unsigned fbhdr;
unsigned fbhdr_1;
unsigned fbhdr_2;

#define gdn-send-or(varl, var2) __rgcc-two-input("or $cgno, .0, X", varl, var2)
20

init fbhdr values for fast gdn sending
void fb-init-fbhdr(unsigned sendery, unsigned senderx)

{
/1 funny sendery senderx desty
fbhdr = 3<<291(sendery&OxlF)<<15j(senderx&OxlF)<<10j3<<5;
fbhdr_1 = fbhdr j 1<<24;
fbhdr_2 = fbhdr 2<<24;

}

static inline void fbset-pixel-rawaddr(unsigned addr, unsigned rgbx, int bp, int ap) 30

{
unsigned cmda, cmdb;

// ObOQO command for write single
cmda = (bp << 20) 1 (ap << 19);
cmdb = (addr&OxO7FFFF);

/ note: these functions take 2 cycles to send. For
// higher performance, put in assembly later?

1/ (or maybe release build with optimization would be faster? 40

/*prinLstring("SE TPIXELRGBX***");
print-hex(fbhdr-2);
print-hex(cmd);
print-hex(rbx);*/

294

gdn-send(fbhdr_2);
gdn-send-or(cmda, cmdb);
gdn-send(rgbx);

50

}

// set a pixel in the framebuffer
static inline void fb-set-pixelrgbx(int x, int y, unsigned rgbx, int bp, int ap)

{
fb-set-pixel-rawaddr(y*VWIDTH+x, rgbx, bp, ap);

I

static inline void fb-set-pixel(int x, int y, unsigned r, unsigned g,
unsigned b, int bp, int ap) 60

{
unsigned data;

// r, g, b, unused

data = (r << 24) 1 ((g << 24) >> 8) 1 ((b << 24) >> 16);

fb-set-pixel-rgbx(x, y, data, bp, ap);

}

70

/ send a flip page command to framebuffer (no wait for vsync)

static inline void fbflip-page()

{
gdn-send(fbhdri1);
gdn-send(0x80000000);

I

// wait for vsync
static inline void fb-flip-page-vsync()

{ 80

unsigned temp;

gdn-send(fbhdr_1);
gdn-send(OxAOOOOQO);

temp = 0;

// uhm... hope you're not expecting any other GDN messages!

while(temp != OxAQOOOQO)
temp = gdn-receive(; 90

}

// send a reset command to framebuffer

295

static inline void fb-reset()
{

gdn-send(fbhdrA1);
gdn-send(OxEOOOOOOO);

}

static inline void fb-set-pixel-block-rawaddr(unsigned addr, unsigned *bytes, 100
unsigned length, int bp, int ap)

{
unsigned cmda, cmdb;
int i;

cmda = (0x2 << 29) 1 (bp << 20) I (ap << 19);
cmdb = (addr&OxO7FFFF);

gdn-send(fbhdrl ((length+2) <<24));
gdn-send-or(cmda,cmdb); 110
gdn-send(length);
for(i=O; i<length; i++)

gdn-send(bytes[i]);
}

// set a block of pixels
static inline void fb-set-pixel-block(int x, int y, unsigned *bytes,

unsigned length, int bp, int ap)
{

fb-set-pixel-block-rawaddr(y*VWIDTH+x, bytes, length, bp, ap); 120

}

// read a pixel
// page = 0 for back, =1 for active
static inline unsigned fbread-pixel-rawaddr(unsigned addr, int page)
{

unsigned cmda, cmdb;
cmda = (Oxi << 29) 1 ((!page) << 20) 1 (page << 19);
cmdb =(addr&OxO7FFFF);

130

gdn-send(fbhdrA1);
gdn.send-or(cmda, cmdb);
return gdn-receive(; // hope you're not expecting any other gdn messages!

I

static inline unsigned fb-read-pixel(int x, int y, int page)
f

return fb-read-pixel-rawaddr(y*VWIDTH+x, page);

140

static inline void fb-read-pixel-block-rawaddr(unsigned addr, unsigned *bytes,

296

unsigned length, int page)

{
unsigned cmda, cmdb;
int i;

cmda = (Ox3 << 29) 1 ((!page) << 20) I (page << 19);
cmdb = (addr&OxO7FFFF);

gdn-send(fbhdr_2); 150

gdn-send-or(cmda, cmdb);
gdn-send(length);

for(i = 0; i < length; i++)
bytes[i] = gdn.receiveo;

}

static inline void fb-read-pixel-block(int x, int y, unsigned *bytes,
unsigned length, int page)

{ 160

fb-read-pixel-block-rawaddr(y*VWIDTH+x, bytes, length, page);

}

#endif // RENDERFRAMEBUFFERH

297

D.5 render-client.h

// render-client.h

// Ken Taylor Master's Thesis 2004

// Last Updated: 5/18/04

// This file provides user-friendly functions to interact with the

// RAW rendering processor. Right now, they just output hex values
I/to stdout, which are to be piped into renderhost.bc by setting the

/1 -render-hostcmd btl argument to the name of the executable. But
//they could possibly be made into some sort of library interface in the
|| future if the render slave is ever implemented in real hardware. 10
// Another possibility is wrapping OpenGL to call these functions, so
1/ OpenGL apps could be run.

#ifndef RENDERCLIENTH
#define RENDER-CLIENT-H

#include ". . /rendercmds.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h> 20

#include <stdlib.h>
#include <errno.h>
#include <math.h>

// helper functions for sending raw values
void RSendPVal(void *val)

{
//printf("RSendP Val\n");
printf("Ox%08x\n", *((unsigned *)val));

} 30

void RSendUnsigned(unsigned val)

{
//printf("RSendUnsigned\n");

RSendPVal(&val);

}

unsigned RReadUnsignedo

{
int numread = 0, nr = 0; 40

char buf [11];

while(numread < 11)

{
fflush(stdout);

298

nr = read(STDINFILENO, &buf [numread], 11-numread);
if(nr == -1)

{
fprintf(stderr, "ERRNO = Xd\n", errno);
break; 50

}
else

numread +=nr;

if(nr == 0)
return 0;

}

return strtoul(buf, 0, 16);
} 60

void RSendSigned(signed val)

{
//printf("RSendSigned\n");
RSendPVal(&val);

}

signed RReadSigned(

{
unsigned temp; 70

temp = RReadUnsignedo;
return *((signed *)&temp);

}

void RSendFloat(float val)

{
//printf("RSendFloat\n");
RSendPVal(&val);

}
80

float RReadFloato

{
unsigned temp;
temp = RReadUnsigned(;
return *((float *)&temp);

I

void RSendMeta(const char *val)

{
char send[12]; 90

int i;

for(i = 0; i < 10; i++)

299

send[i] = '*';

send[10] = '\n';
send[11] = '\0';

strncpy(send, val, ((strlen(val)>11) ? 11 : strlen(val)));

100
printf (send);

}

/ RMETA commands are for the bc code and not sent to the
// Raw processor
void RMETAHaltO

{
RSendMeta("halt");

} 110

void RMETAWaito

{
RSendMeta("wait");

}

void RMETARead(unsigned num)

{
RSendMeta("read");
RSendUnsigned(num); 120

}

void RMETADebug(

{
RSendMeta("debug");

}

// token to know if we're in scenestream of not, to know how
I/to do flow control 130

unsigned gRInSceneStream;

// camera and perspective matrices, stored as state so user only
/ has to change one at a time

float gRPerspective[4][4]; // eyespace -> canonical coords
float gRCamera[4][4]; // worldspace -> eyespace

// standard client commands 140

void RInitO

300

{
int ij;
gRInSceneStream = 0;
for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++)
{

if(i == j)
gRPerspective[i][j] = g-RCamera[i][j] = 1;

else 150

g-RPerspective[i][j] = gRCamera[i][j] = 0;

}

}

void RBeginScene(

{
if(!g-RInSceneStream)

{
RSendUnsigned(RENDER-BEGINSCENE); 160

RMETAWaito;
RSendMeta("penterss");
gRInSceneStream = 1;

}
}

void RBeginPrim(

{
if(gRInSceneStream)

{ 170

RSendMeta("pprim");

}
}

void REndPrimo

{
if(g-RInSceneStream)

{
RSendUnsigned(0);

} 180

}

void REndSceneo

{
if(gRInSceneStream)

{
RSendUnsigned(1);
RSendUnsigned(RENDERENDSCENE);
REndPrimo;

301

RMETAWaito; 190

RSendMeta(I"pexitss");
gRInSceneStream = 0;

}
}

void RVertex(float x, float y, float z, float u, float v)
{

if(g-RInSceneStream)

{
RSendUnsigned(6); 200

RSendUnsigned(RENDERVERTEX);
RSendFloat(x);
RSendFloat(y);
RSendFloat(z);
RSendFloat(u);
RSendFloat(v);

}
}

void RColorRGBA(unsigned rgba) 210

{
if(g.RInSceneStream)

RSendUnsigned(2);
RSendUnsigned(RENDERCOLOR);
RSendUnsigned(rgba);

}

void RColor(unsigned R, unsigned G, unsigned B, unsigned A)

I
RColorRGBA((R&OxOFF)<<241(G&OxOFF)<<16(B&OxOFF)<<8(A&OxOFF)); 220

}

// TODO: software-based pushmatrix/popmatrix functionality?

void RModelMatrix(float M[4][4])

{
int ij;

if(g-RInSceneStream)
RSendUnsigned(17); 230

RSendUnsigned(RENDERMODELMATRIX);

for(i = 0; i<4 ; i++)
for(j = 0; j<4 ; j++)

RSendFloat(M[i] [j]);
}

302

void RViewMatrix(float M[4][4])
{ 240

int ij;

if(gRInSceneStream)
RSendUnsigned(17);

RSendUnsigned(RENDERVIEWMATRIX);

for(i = 0; i<4 ; i++)
for(j = 0; j<4 ; j++)

RSendFloat(M[i][u]); 250

}

// matrix to matrix multiply! X = M* Y

void MatrixMult (float X[4][4], float M[4][4], float Y[4][4])

{
int i,j,k;

for(i = 0; i<4; i++)
for(j = 0; j<4; j++)

{ 260

X[i][j] = 0;
for(k = 0; k < 4; k++)

{
X[i][j] += M[i][k] * Y[k][];

}
}

void RUpdateMatriceso

{ 270

float M[4][4];
MatrixMult(M, g-RPerspective, gRCamera);
RViewMatrix(M);

}

void RSetProjMatrix(float M[4][4])

{
int ij;
for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++) 280

gRPerspective[i][j] = M[i]U];

RUpdateMatrices(;

I

303

void RProjMatrix(float 1, float r, float t, float b, float n, float f)

I
g.RPerspective[0] [0]
gRPerspective[0] [1]
g-RPerspective[0] [2]
g-RPerspective [0] [3]

g-RPerspective[1][01
gRPerspective [1][1]
g-RPerspective[1][2]
g.RPerspective[1] [3]

g..RPerspective[2] [0]
gRPerspective[2] [1]
gRPerspective[2] [2]
gRPerspective[2] [3]

gRPerspective[3] [0]
gRPerspective[3] [1]
g-RPerspective[3] [2]
g...RPerspective [3] [3]

RUpdateMatriceso;

2.0f*n/(r-l);
0;
-(r+1)/(r-1);
0;

0;
2.Of*n/(b-t);
-(b+t)/(b-t);
0;

0;
0;
(f+n)/(f-n);
-2.0f*n*f/(f-n);

=0;
=0;
=1;
=0;

I
310

center and right edge
center and top edge

/1 from http://en.wikipedia.org/w/wiki.phtml?title=3D-projection&oldid=2227008
/1 updated Jan 2004, accessed 4/2004
void RProjMatrixUV(float u, float v, float n, float f)

f
gRPerspective[0][0] = 1.0f/tan(u);
g-RPerspective[0][1] = 0;
gRPerspective[0][2] = 0;
gRPerspective[0][3] = 0;

gRPerspective[1][0] = 0;
g-RPerspective[1][1] = -1.Of/tan(v);
g.RPerspective[1][2] = 0;
g-RPerspective[1][3] = 0;

gRPerspective[2][0]
gRPerspective[2] [1]
g-RPerspective[2] [2]
gRPerspective[2] [3]

0;
0;
(f+n)/(f-n);
-2.0f*n*f/(f-n);

gRPerspective[3][0] = 0;
gRPerspective[3][1] = 0;

304

290

300

1/ u = angle between
/1 v = angle between

320

330

gRPerspective[3][2] = 1;
g_RPerspective[3][3] = 0;

RUpdateMatricesO;

}
340

void ROrthMatrix(float 1, float r, float t, float b, float n, float f)

{
gRPerspective[0] [0]
gRPerspective[0] [1]
g-RPerspective[0] [2]
g-RPerspective[0] [3]

gRPerspective[1] [0]
gRPerspective[1] [1]
gRPerspective[1] [2]
g-RPerspective[1] [3]

gRPerspective[2] [0]
g_RPerspective[2]{[1]
g-RPerspective[2] [2]

gRPerspective[2][3]

2.0f/(r-1);
0;
0;
-(r+1)/(r-1);

=0;
= 2.0f/(b-t);

=0;
= -(b+t)/(b-t);

=0;
=0;
= 2.0f/(f-n);

=-(f+n)/(f-n);

350

gRPerspective[3][0] = 0;
gRPerspective[3][1] = 0;
gRPerspective[3][2] = 0;
gRPerspective[3][3] = 1;

RUpdateMatricesO;

}

// VRP = viewer point
1/ FP = look-at point
1/ UP = up-direction point
// 0= x,1= y,2= z.
// method from http://www.siggraph.org/education/materials/
// HyperGraph/viewing/view3d/ 3dviewl htm

// accessed 4/20/04
// also used 04_transformations.pdf
void RCameraMatrix(float VRP[3], float FP[3], float UP[3])

{
float N[3], // normalized eye vector

UV[3], // up vector
V[3], |/ upwards normal to N
U[3]; // right hand normal to N

380

int i;

305

360

370

// compute eye vector
for(i = 0; i < 3; i++)

N[i] = FP[i] - VRP[i];

// normalize
for(i = 0; i < 3; i++)

N[i] = N[i]/sqrt(N[0]*N[0] + N[1]*N[1] + N[2]*N[2]);
390

/ compute up vector
for(i = 0; i < 3; i++)

UV[i] = UP[i] - VRP[i];

// compute upwards normal

for(i = 0; i < 3; i++)
V[i] = UV[i] - (N[0]*UV[0]+N[1]*UV[1]+N[2]*UV[2])*N[i];

// normalize
for(i = 0; i < 3; i++) 400

V[i] = V[i]/sqrt(V[0]*V[0] + V[1]*V[1] + V[2]*V[2]);

// U= Nx V
U[0] = -N[1]*V[2] + N[2]*V[1];
U[1] = -N2]*V[0 + N[0]*V[2];
U[2] = -N0]*V1] + N[1]*V[0];

g-RCamera[0]0] = U[0];
gRCamera[0][1] = U[1];
gRCamera[0] [2] = U[2]; 410

g-RCamera[0][3] = -VRP[]*U[0] - VRP[1]*U[1] - VRP[2]*U[2];

gRCamera[1][0] = V[0];
g-RCamera[1][1] = V[1];
gRCamera[1][2] = V[2];
g-RCamera[1][3] = -VRP[]*V[0] - VRP[1]*V[1] - VRP[2]*V[2];

gRCamera[2] [0] = N[0];
gRCamera[2][1] = N[1];
gRCamera[2] [2] = N[2]; 420

g-RCamera2][3] = -VRP[]*N[0] - VRP[1]*N[1] - VRP[2]*N[2];

g-RCamera3] [0] = 0;
gRCamera[3][1] = 0;
gRCamera3][2] = 0;
gRCamera[3] [3] = 1;

RUpdateMatriceso;

}

306

430

void RNormal(float x, float y, float z)

{
if(g-RnSceneStream)

RSendUnsigned(4);

RSendUnsigned(RENDERNORMAL);

RSendFloat(x);
RSendFloat(y);
RSendFloat(z); 440

}

// 1 or 0
void RSetLit(unsigned s)

I
if(gRInSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDER-SETLIT);
450

RSendUnsigned(s);

}

// 1 or 0
void RSetUseAmb(unsigned s)

{
if(gRlnSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDER-SETUSEAMB); 460

RSendUnsigned(s);

}

// 1 or 0
void RSetUseDir(unsigned s)

I
if(gRInSceneStream)

RSendUnsigned(2);
470

RSendUnsigned(RENDERSETUSEDIR);

RSendUnsigned(s);

I

#define RTEXMODE-NONE 0
#define R-TEXMODE-COLOR 1

307

#define RTEXMODETEXTURE 2
#define RTEXMODE-BLEND 3
#define RTEXMODETEXDECAL 4 480

#define RTEXMODE-COLDECAL 5
#define RTEXMODEMODULATE 6

void RSetTexMode(unsigned s)

{
if(gRInSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDERSET-TEXMODE);
490

RSendUnsigned(s);

}

#define RALPHA-NONE 0
#define R-ALPHASOFT 1
#define RALPHAHARD 2

void RSetTexAlpha(unsigned s)

{
if(gRInSceneStream) 500

RSendUnsigned(2);

RSendUnsigned(RENDERSETTEXALPHA);

RSendUnsigned(s);

}

void RSetColAlpha(unsigned s)

{
if(g-RInSceneStream) 510

RSendUnsigned(2);

RSendUnsigned(RENDERSETCOLALPHA);

RSendUnsigned(s);

}

void RSetColInterp(unsigned s)

{
if(gRInSceneStream) 520

RSendUnsigned(2);

RSendUnsigned(RENDERSETCOLINTERP);

RSendUnsigned(s);

308

I

void RSetLitlnterp(unsigned s)

I
if(g-RlnSceneStream) 530

RSendUnsigned(2);

RSendUnsigned(RENDERSETLITINTERP);

RSendUnsigned(s);

}

void RSetTexInterp(unsigned s)

if(g-RlnSceneStream) 540

RSendUnsigned(2);

RSendUnsigned(RENDER-SETTEXINTERP);

RSendUnsigned(s);

I

void RSetOutOfOrder(unsigned s)

f
if(gRInSceneStream) 550

RSendUnsigned(2);

RSendUnsigned(RENDER-SETOUTOFORDER);

RSendUnsigned(s);

I

#define RTEXTILENONE 0
#define R-TEXTILE-REPEAT 1
#define RTEXTILEMIRROR 2 560

#define R-TEXTILECLAMP 3

void RSetTexTile(unsigned s)

{
if(gRInSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDERSETTEXTILE);

RSendUnsigned(s); 570

}

void RSetNoUseZ(unsigned s)

309

f
if(gRInSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDER-SETNOUSEZ);

RSendUnsigned(s); 580

}

void RSetNoWriteZ(unsigned s)

I
if(gRInSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDERSET-NOWRJTEZ);

RSendUnsigned(s); 590

}

void RSetTextureID(unsigned s)

{
if(gRInSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDERSETTEXTUREID);

RSendUnsigned(s); 600

}

void RColTexBalance(float s)

{
if(gRInSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDER-COLTEXBALANCE);

RSendFloat(s); 610

}

void RAlphaThresh(unsigned s)

f
if(g-RnSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDERALPHATHRESH);

RSendUnsigned(s); 620

}

310

void RAmbColorRGBI(unsigned rgbi)

{
if(g-RnSceneStream)

RSendUnsigned(2);
RSendUnsigned(RENDER-AMBCOLOR);
RSendUnsigned(rgbi);

}
630

void RAmbColor(unsigned R, unsigned G, unsigned B, unsigned I)

{
I RAmbColorRGBI((R&Ox0F)<<241(G&Ox0F)<<161(B&Ox0F)<<81(I&Ox0F))

void RDirColorRGBI(unsigned rgbi)

{
if(g-RlnSceneStream)

RSendUnsigned(2);
RSendUnsigned(RENDER-DIRCOLOR); 640

RSendUnsigned(rgbi);

}

void RDirColor(unsigned R, unsigned G, unsigned B, unsigned I)

{
RDirColorRGBI((R&OxOF)<<241(G&OxOF)<<161(B&OxOF)<<8 (I&OxOF));

I

void RDirLight(float x, float y, float z)

{ 650
if(g-RJnSceneStream)

RSendUnsigned(4);

RSendUnsigned(RENDER-DIRLIGHT);
RSendFloat(x);
RSendFloat(y);
RSendFloat(z);

I

void RAmbReflect(unsigned s) 660

{
if(g-RInSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDERAMBREFLECT);

RSendUnsigned(s);

}

311

void RDirReflect(unsigned s) 670

{
if(gRlnSceneStream)

RSendUnsigned(2);

RSendUnsigned(RENDERDIRREFLECT);

RSendUnsigned(s);

}

#define RPAGENONE 0 680
#define RPAGEBACK OxOl
#define RPAGE-FRONT 0x02
#define R-PAGE-BOTH Ox03

void RClearFBRGBX(unsigned page, unsigned rgbx)

I
if(!gRInSceneStream)

f
RSendUnsigned(RENDER-CLEARFB);
RSendUnsigned(page); 690

RSendUnsigned(rgbx);

}
}

void RClearFB(unsigned page, unsigned R, unsigned G, unsigned B)

{
RClearFBRGBX(page, (R&OxOFF)<<24 I (G&OxOFF)<<16 I (B&OxOFF)<<8);

}

void RClearZ() 700

{
if(!gRInSceneStream)

{
RSendUnsigned(RENDERCLEARZ);

}
}

void RSetPage(unsigned page)

f
if(!gRInSceneStream) 710

{
RSendUnsigned(RENDERSETPAGE);
RSendUnsigned (page);

i

void RFlipPage(unsigned waitforvsync)

312

{
if(!gRInSceneStream)

{ 720

RSendUnsigned(RENDER-FLIPPAGE);
RSendUnsigned(waitforvsync);

}
}

unsigned RAllocateTexture(unsigned sizex, unsigned sizey)

{
if(!gRInSceneStream)

{
RSendUnsigned(RENDERALLOCATETEXTURE); 730

RSendUnsigned(sizex);
RSendUnsigned(sizey);
RMETARead(1);
return RReadUnsignedo;

}
return -1;

I

void RDeallocTexture(unsigned t)

{ 740

if(!gRInSceneStream)

{
RSendUnsigned(RENDERDEALLOC-TEXTURE);
RSendUnsigned(t);

}
}

void RUploadTexture(unsigned t, unsigned length, unsigned *data)

{
if(!g-RInSceneStream) 750

{
unsigned *ptr;

RSendUnsigned(RENDERUPLOADTEXTURE);
RSendUnsigned(t);
RSendUnsigned (length);
for(ptr = data; ptr <= data + length; ptr++)

{
RSendUnsigned(*ptr);

}
} 760

}

unsigned RTexMemAvail()

{
if(!gRInSceneStream)

313

f
RSendUnsigned(RENDER-TEXMEMAVAIL);
RMETARead(1);
return RReadUnsignedo;

} 770
return 0;

I

void RCompactTexMem(

{
if(!gRInSceneStream)

f
RSendUnsigned(RENDER-COMPACTTEXMEM);

}
780

}

void RWriteFBRGBX(unsigned x, unsigned y, unsigned page, unsigned rgbx)

{
if(!g-RInSceneStream)

{
RSendUnsigned(RENDERWRITEFB);
RSendUnsigned(x);
RSendUnsigned(y);
RSendUnsigned (page); 790

RSendUnsigned(rgbx);

}
}

void RWriteFB(unsigned x, unsigned y, unsigned page,
unsigned R, unsigned G, unsigned B)

{
RWriteFBRGBX(x,y, page, (R&OxOFF)<<24 I (G&OxOFF)<<16 I (B&OxOFF) << 8);

}
800

void RWriteFBBlock(unsigned x, unsigned y, unsigned page,
unsigned length, unsigned *data)

{
if(!gRInSceneStream)

{
unsigned * ptr;
RSendUnsigned(RENDERWRITEFBBLOCK);
RSendUnsigned(x);
RSendUnsigned(y);
RSendUnsigned (page); 810
RSendUnsigned (length);
for(ptr = data; ptr < data + length; ptr++)

RSendUnsigned(*ptr);

314

}
}

unsigned RReadFB(unsigned x, unsigned y, unsigned page)

{
if(!gRInSceneStream)

{ 820

RSendUnsigned(RENDER-READFB);
RSendUnsigned(x);
RSendUnsigned(y);
RSendUnsigned (page);
RMETARead(1);
return RReadUnsignedo;

}
return 0;

}
830

void RReadFBBlock(unsigned x, unsigned y, unsigned page,
unsigned length, unsigned *data)

{
if(!gRInSceneStream)

{
unsigned * ptr;
RSendUnsigned(RENDER-READ-FB-BLOCK);
RSendUnsigned(x);
RSendUnsigned(y);
RSendUnsigned(page); 840

RSendUnsigned(length);
RMETARead (length);
for(ptr = data; ptr < data + length; ptr++)

{
*ptr = RReadUnsignedo;

}
}

}

void RWriteZ(unsigned x, unsigned y, signed val) 850

{
if(!g-RInSceneStream)

{
RSendUnsigned(RENDERWRITEZ);
RSendUnsigned(x);
RSendUnsigned(y);
RSendSigned(val);

}

860

315

void RWriteZBlock(unsigned x, unsigned y, unsigned length, signed *data)
{

if(!g-RInSceneStream)

{
signed * ptr;
RSendUnsigned(RENDERWRITEZBLOCK);
RSendUnsigned(x);
RSendUnsigned(y);
RSendUnsigned (length); 870

for(ptr = data; ptr < data + length; ptr++)
RSendSigned(*ptr);

}
}

signed RReadZ(unsigned x, unsigned y)
{

if(!g-RInSceneStream)

{
RSendUnsigned(RENDERREADZ); 880

RSendUnsigned(x);
RSendUnsigned(y);
RMETARead(1);
return RReadUnsignedo;

}
return 0;

}

void RReadZBlock(unsigned x, unsigned y, unsigned page,
unsigned length, signed *data) 890

{
if(!g-RInSceneStream)

{
signed * ptr;
RSendUnsigned(RENDERREAD-ZBLOCK);
RSendUnsigned(x);
RSendUnsigned(y);
RSendUnsigned (length);
RMETARead (length);
for(ptr = data; ptr < data + length; ptr++) 900

{
*ptr = RReadUnsignedo;

}
}

}

void RReseto

{
if(!gRInSceneStream)

316

910

RSendUnsigned(RENDERRESET);
RInitO;

// note: doesn't do a RMETAHalt by default
void RHalto

{
if(!g-RInSceneStream)

{

}

920

RSendUnsigned(RENDER-HALT);

I
#endif // RENDER-CLIENT-H

317

}
}

D.6 triangletest.c

// triangletest.c

// started as simply a recreation of hostcmd-triangletest.txt
// using the render-client library, for testing.

//
/ now is a full testsuite for the performance of the arch.

Kr
// Ken Taylor 5/18/04

#include "renderclient.h"
#include <math.h>

void drawtriangles(unsigned alpha)

{
RBeginPrim(;
RColor(OxFF, 0, 0, alpha);
RVertex(0,0,0,0,0);
RColor(0, OxFF, 0, OxFF);
RVertex(0.5, 0, 0, 1, 0);
RColor(0, 0, OxFF, OxFF);
RVertex(0, 0.5, 0, 0, 1);
REndPrimO;

RBeginPrim(;
RColor(0xFF, OxFF, 0, alpha);
RVertex(0.9, 0.5, 0, 1, 0);
RColor(OxFF, 0, OxFF, alpha);
RVertex(0.9, 0.75, 0, 1, 1);
RColor(0, OxFF, OxFF, alpha);
RVertex(0.75, 0.75, 0, 0, 1);
REndPrimO;

RColor(OxFF, OxFF, OxFF, alpha);

RBeginPrim(;
RVertex(-0.5, -0.5, 0, 0, 1);
RVertex(-0.4, -0.7, 0, 0.5, 0);
RVertex(-0.3, -0.5, 0, 1, 1);
REndPrimO;

RBeginPrim(;
RVertex(-0.5, 0, 0, 0, 0);
RVertex(-0.4, 0, 0, 1, 0);
RColor(OxFF, 0, 0, alpha);
RVertex(-0.4, 0.1, 0, 1, 1);
REndPrimo;

318

10

20

30

40

RBeginPrim(;
RColor(0x50, 0, OxcO, alpha);

RVertex(-0.7, 0.9, 0, 0, 1);
RVertex(-0.7, 0.01, 0, 0, 0); 50

RColor(0, OxFF, OxCC, OxFF);
RVertex(-0.4, 0.45, 0, 1, 0.5);
REndPrimo;

RBeginPrim(;
RColor(OxFF, OxCO, Ox40, OxFF);
RVertex(0, 0, 0, 0, 1);
RColor(0, OxFF, Ox88, alpha);
RVertex(0, -1, 0, 0, 0);
RColor(OxFF, OxFF, OxFF, alpha); 60

RVertex(1, 0, 0, 1, 1);
REndPrim(;

}

// sets a matrix with a certain angle and (2D) scale

// not a general transform! only works for this test!

// assumes the rest of the matrix looks like an identity!

void SetMatrix(float Rot[4][4], double angle, double scale)

{ 70
Rot[1][1] = Rot[0][0] = scale * cos(angle);

Rot[1][0] = scale * sin(angle);

Rot[0][1] = -Rot[1][0];

}

// need to render several different scales. possible variables:

1/ RSetTexMode(RTEXMODENONE, COLOR, TEXTURE, BLEND,
// TEXDECAL, COLDECAL, MODULATE)
// RSetTexAlpha(RALPHA-NONE,SOFT, HARD 80

/ translucent or not.

// RSetColAlpha(RALPHA-NONE, SOFT, HARD
// RSetColInterp(1,0)
// RSetTexTile(R-TEXTILENONE, REPEAT, MIRROR, CLAMP)
// RSetTexlnterp(1, 0)

//
// RSetL it (1,0)
1/ RSetUseAmb(1,0)
1/ RSetUseDir(1, 0)
1/ RSetLitInterp(1,0) 90

//
// RSetNo UseZ(1, 0);
// RSetNo WriteZ(1, 0);

319

/1 RSetOutOfOrder(1,0);
/1 for full feature testing

/ for each size:

/1 (for simplicity:
/1 - don't care about all modes. care mostly about:
// - uncolored/textured, unlit, noz, outoforder (baseline)
1/ - colored/flatcolored/interpcolored 100
// - untex/nearesttex/bilintex
/1 - if both textured and colored, use blend
/1 - texture should have no transparent spots

/1 - color should be soft alpha
/1 - unlit/flatdiramblit/interpdiramblit
/1 - fullz,zreadonly,zwriteonly,noz
/1 - transparent, opaque

/1 - for zreadonly,zwriteonly, noz, transparent:
// - in order, out of order.

110

// so table looks like:
// texalpha = x

// colalpha = SOFT
// textile = REPEAT
/ useamb = 1
// usedir = 1

/1
/1 texmode colinterp texinterp lit, litinterp
/1 NONE 0 0 0 0 // baseline 120

/1 COLOR 0 x 0 x
I/COLOR 1 x 0 x
//COLOR 0 x 1 0
//COLOR 1 x 1 0
1/ COLOR 0 x 1 1
1/ COLOR 1 x 1 1

// TEXTURE x 0 0 x
// TEXTURE x 1 0 x
/1 TEXTURE x 0 1 0 130

// TEXTURE x 1 1 0
1/ TEXTURE x 0 1 1
// TEXTURE x 1 1 1

//BLEND 0 0 0 x
//BLEND 1 0 0 x
//BLEND 0 0 1 0
//BLEND 1 0 1 0
//BLEND 0 0 1 1
//BLEND 1 0 1 1 140

//BLEND 0 1 0 x

320

// BLEND
// BLEND
// BLEND
// BLEND
// BLEND

1
0
1
0
1

1
1
1
1

0
1
1
1

x

0
0
1

1 1 1

#define OTVSIZE 24

struct -OuterTestVec {
unsigned texmode;
unsigned colinterp;
unsigned texinterp;
unsigned lit;
unsigned litinterp;
const char *name;

} OTV[OTVSIZE] = { {RTEXMODECOLOR , 0, 0,
{RTEXMODECOLOR , 1, 0, 0, 0 ,
{R-TEXMODE-COLOR , 0, 0, 1, 0 ,
{RTEXMODE-COLOR , 1, 0, 1, 0,
{R-TEXMODECOLOR , 0 0, 1, 1 ,
{RTEXMODEWCOLOR , 1, 0, 1, 1 ,
{RTEXMODE-TEXTUR
{RTEXMODE-TEXTUR
{RTEXMODETEXTUR
{R-TEXMODETEXTUR
{RTEXMODETEXTUR
{RTEXMODETEXTUR
{R-TEXMODEBLEND
{RTEXMODEBLEND
{RTEXMODEBLEND
{R-TEXMODE-BLEND
{RTEXMODEBLEND
{RTEXMODEBLEND
{RTEXMODE-BLEND
{RTEXMODE-BLEND
{RTEXMODE-BLEND
{R-TEXMODEBLEND
{R-TEXMODEBLEND
{RTEXMODE-BLEND

0, 0 , "col0x0x"},
"colixOx" },
"colOxlO" },
"collxlO" },
"colOx1i1"},

"collx11"},

E, 0, 0, 0, 0 , "texx00x"},
,E, 0, 1, 0, 0 , "texxl0x"},
,E, 0, 0, 1, 0 , "texx010"},
,E, 0, 1, 1, 0 , "texx110"},
E, 0, 0, 1, 1 , "texx0ll"},
,E, 0, 1, 1, 1 , "texx111"},
,0, 0, 0, 0 , "blnOOOx"},
, 1, 0, 0, 0 , "bln1OOx"},
, 0 0, 1, 0 , "blnOO10"},
,1, 0, 1, 0 , "bln1010"},
, 0 0, 1, 1 , "blnOO11"},

1, 0, 1, 1 , "blnlOll"},
,0, 1, 0, 0 , "blnO100"},
, 1 1, 0, 0 , "bln11OO"},
, 0, 1, 1, 0 , "blnO110"},

1, 1, 1, 1, 0 , "bJn111O"},
, 0, 1, 1, 1 , "blnOlll"},

1, 1, 1, 1, 1 , "bln1111"} };

/1 for each mode:
1/ (note, trans only matters in color and
// trans, nousez, nowritez, ooo

II 0 0 0 x
1/ 0
// 0
1/ 0
// 1

0
1
1

1 0
0 0
1 0

0 0 0

321

150

160

170

blend modes)

180

// 1 0 1 0 190
1/ 1 1 0 0
// 1 1 1 0

// 0 0 1 1
// 0 1 0 1

// 0 1 1 1 // use this one for the NONE above (baseline)

// 1 0 0 1
// 1 0 1 1
// 1 1 0 1

/1 1 1 1 1
200

#define ITVSIZE 15

struct -InnerTestVec {
unsigned alpha;
unsigned nousez;
unsigned nowritez;
unsigned unordered;
const char *name;

} ITV[ITVSIZE] = { {0xFF, 0, 0, 1, "itv000x"},
{OxFF, 0, 1, 0, "itv0010"}, 210
{OxFF, 1, 0, 0, "itv0100"},
{OxFF, 1, 1, 0, "itv0110"},
{0x88, 0, 0, 0, "itv1000"},
{0x88, 0, 1, 0, "itv1010"},
{0x88, 1, 0, 0, "itv1100"},
{0x88, 1, 1, 0, "itv1110"},
{OxFF, 0, 1, 1, "itv0011"},
{OxFF, 1, 0, 1, "itv0101"},
{OxFF, 1, 1, 1, "itv0111"},
{0x88, 0, 0, 1, "it1001"}, 220
{0x88, 0, 1, 1, "itv1011"},
{0x88, 1, 0, 1, "itv1101"},
{0x88, 1, 1, 1, "itv1111"} };

unsigned TexID = -1;
unsigned Texture[8*8] = { OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF,

OxEEFFOOFF, OxFFFFOOFF, OxEFFFFOFF, OxFFFFOOFF,
OxFFFFOOFF, OxFFFFO0FF, OxOOFFFFFF, OxFFFFOOFF,
OxFFFFOOFF, OxOOFFFFFF, OxFFFFOOFF, OxEEFFOOFF,
OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF, OxEEFFOOFF, 230
OxFFFFOOFF, OxFFFFOOFF, OxEEFFOOFF, OxFFFFOOFF,
OxFFFFOOFF, Ox00000OFF, OxEEFFOOFF, OxEEFFOOFF,
OxFFFFOOFF, OxFFFFOOFF, Ox00000OFF, OxFFFFOOFF,
OxFFFFOOFF, Ox00000OFF, OxEFFFFOFF, OxFFFFOOFF,
OxFFFFOOFF, OxFFFFOOFF, Ox00000OFF, OxFFFFOOFF,
OxFFFFOOFF, OxFFFFOOFF, Ox00000FF, OxEEFFOOFF,
OxFFFFOOFF, Ox00000OFF, OxFFFFOOFF, OxFFFFOOFF,

322

OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF, OxOOOQOFF,
OxOOQOGOFF, OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF,
OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF, 240

OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF };

void DoOneTestSet(int o,int i, double scale)

{
unsigned alpha;
double angle = (0.0/360.0)*(2.0*M-PI);
float Rot[4][4] = {1, 0, 0, 0,

0, 1, 0, 0, 250

0, 0, 1, 0,
0, 0, 0, 1};

float Identity[4][4] = {1,0,O,0,
0,1,0,0,
0,0,1,0,
O,0,0,1};

RReseto;
RSendMeta("preset");

260

RViewMatrix(Identity);
SetMatrix(Rot, angle, scale);

RModelMatrix(Rot);

RSetTexMode(OTV[o].texmode);
RSetCollnterp(OTV[o].colinterp);
RSetTexInterp(OTV[o] .texinterp);
RSetLit(OTV[o].lit);
RSetLitInterp(OTV[o].litinterp); 270

alpha = ITV[i].alpha;
RSetNoUseZ(ITV[i].nousez);
RSetNoWriteZ(ITV[i].nowritez);
RSetOutOfOrder(ITV[i].unordered);

RSetColAlpha(R-ALPHASOFT);
RSetTexTile(RTEXTILE-REPEAT);
RSetUseAmb(1);
RSetUseDir(1);

280

TexID = RAllocateTexture(8, 8);
if(TexID == -1)

{
RMETADebugo;
RSendMeta("texerr! ");

323

RMETAHalt();

}
else

RUploadTexture(TexID, 8*8, Texture);
290

RSetTextureID(TexID);

RSendMeta("pstart");
RBeginScene(;

RSendMeta("pf rame ");
drawtriangles(alpha);

RSendMeta("pframe "); 300

drawtriangles(alpha);

RSendMeta("pf rame ");
drawtriangles(alpha);

RSendMeta(" pf rame ");
drawtriangles(alpha);

REndSceneo;
310

}

void DoTests(

{
int o,i;
unsigned alpha;

double scale;

i = 12; // change for starting in the midst of a test 320

o = 4;// ditto

for(; o < OTVSIZE; o++)
{

for(; i < ITVSIZE; i++)

{
RMETADebug(;
RSendMeta(OTV[o].name);
RMETADebugo;
RSendMeta(ITV[i].name); 330

RMETADebugo;
RSendMeta("s 0.01 ");
DoOneTestSet(o,i,0.01);

324

RSendMeta(" preport");

RMETADebugo;
RSendMeta(OTV[o].name);
RMETADebug(;
RSendMeta(ITV[i].name);
RMETADebugo; 340

RSendMeta(" s 0.05 ");
DoOneTestSet(o,i,0.05);
RSendMeta("preport");

RMETADebug();
RSendMeta(O T V/o]. name);

RMETADebug();
RSendMeta(ITV[i]. name);

RMETADebug(); 350

RSendMeta("s 0.1 ");

DoOneTestSet(o,i,0.1);
RSendMeta("preport");

RMETADebug(;
RSendMeta(OTV[o]. name);

RMETADebug();
RSendMeta(ITV[i]. name);
RMETADebug();
RSendMeta("s 0.2 "); 360

DoOneTestSet(o, i,0.2);

RSendMeta("preport");

RMETADebugo;
RSendMeta(O TV/o]. name);
RMETADebug();
RSendMeta(ITV[i]. name);

RMETADebugo;
RSendMeta("s 0.3 ");

Do One TestSet (o, i, 0.3); 370

RSendMeta("preport");

RMETADebug();
RSendMeta(OTV[o]. name);
RMETADebug(;
RSendMeta(ITV[i]. name);

RMETADebug();
RSendMeta("s 0.5 ");

Do One TestSet (o, i, 0.5);
RSendMeta("preport"); 380

325

RMETADebug();
RSendMeta(OTV/o]. name);
RMETADebug();
RSendMeta(ITV[i]. name);
RMETADebug(;
RSendMeta("s 1.0 ");

DoOneTestSet(o,i, 1.0);
RSendMeta("preport");

390

}
i = 0; // leave this line intact.

}
}

int main(void)

{
RInitO;

400

/ get startup crap out of the way, for performance measuring
RBeginScene(;
REndSceneO;

DoTestsO;

RMETAHaltO;

return 0;

} 410

326

D.7 cubetest.c

// cubetest.c

/
// Ken Taylor 5/18/04

#include "renderclient.h"

#include <math.h>

#define INVSQRT3 0.57735026918962576450915

void drawcubeO 10

{
// top
//
// (-0.5, 0.5, 0.5) - (0.5, 0.5, 0.5)

// I /
// (-0.5, 0.5, -0.5) - (0.5, 0.5, -0.5)

//
RColor(OxFF, 0, 0, OxFF);
RBeginPrimo;
RNormal(-INVSQRT3, INVSQRT3, -INVSQRT3); 20

RVertex(-0.5, 0.5, -0.5, 0,1);
RNormal(-INVSQRT3, INVSQRT3, INVSQRT3);
RVertex(-0.5, 0.5, 0.5, 0, 0);
RNormal(INVSQRT3, INVSQRT3, INVSQRT3);
RVertex(0.5, 0.5, 0.5, 1, 0);
REndPrimo;
RBeginPrimo;
RNormal(-INVSQRT3, INVSQRT3, -INVSQRT3);
RVertex(-0.5, 0.5, -0.5, 0,1);
RNormal(INVSQRT3, INVSQRT3, INVSQRT3); 30

RVertex(0.5, 0.5, 0.5, 1, 0);
RNormal(INVSQRT3, INVSQRT3, -INVSQRT3);
RVertex(0.5, 0.5, -0.5, 1, 1);
REndPrimo;

// front

//
// (-0.5, 0.5, -0.5) - (0.5, 0.s, -0.5)

// I /
// (-0.5, -0.5, -0.5) - (0.5, -0.5, -0.5) 40

//
RColor(0, OxFF, 0, OxFF);
RBeginPrimo;
RNormal(-INVSQRT3, -INVSQRT3, -INVSQRT3);
RVertex(-0.5, -0.5, -0.5, 0,1);

327

RNormal(-INVSQRT3, INVSQRT3, -INVSQRT3);
RVertex(-0.5, 0.5, -0.5, 0, 0);
RNormal(INVSQRT3, INVSQRT3, -INVSQRT3);
RVertex(0.5, 0.5, -0.5, 1, 0);
REndPrimo; 50
RBeginPrim(;
RNormal(-INVSQRT3, -INVSQRT3, -INVSQRT3);
RVertex(-0.5, -0.5, -0.5, 0,1);
RNormal(INVSQRT3, INVSQRT3, -INVSQRT3);
RVertex(0.5, 0.5, -0.5, 1, 0);
RNormal(INVSQRT3, -INVSQRT3, -INVSQRT3);
RVertex(0.5, -0.5, -0.5, 1, 1);
REndPrimO;

/ right 60

//
// (0.5, 0.5, -0.5) - (0.5, 0.5, 0.5)
// I / I
// (0.5, -0.5, -0.5) - (0.5, -0.5, 0.5)

//
RColor(0, 0, OxFF, OxFF);
RBeginPrimo;
RNormal(INVSQRT3, -INVSQRT3, -INVSQRT3);
RVertex(0.5, -0.5, -0.5, 0,1);
RNormal(INVSQRT3, INVSQRT3, -INVSQRT3); 70

RVertex(0.5, 0.5, -0.5, 0, 0);
RNormal(INVSQRT3, INVSQRT3, INVSQRT3);
RVertex(0.5, 0.5, 0.5, 1, 0);
REndPrimo;
RBeginPrim(;
RNormal(INVSQRT3, -INVSQRT3, -INVSQRT3);
RVertex(0.5, -0.5, -0.5, 0,1);
RNormal(INVSQRT3, INVSQRT3, INVSQRT3);
RVertex(0.5, 0.5, 0.5, 1, 0);
RNormal(INVSQRT3, -INVSQRT3, INVSQRT3); 80

RVertex(0.5, -0.5, 0.5, 1, 1);
REndPrimO;

// bottom

/1
// (-0.5, -0.5, -0.5) - (0.5, -0.5, -0.5)
// I /
// (-0.5, -0.5, 0.5) - (0.5, -0.5, 0.5)

RColor(OxFF, 0, OxFF, OxFF); 90

RBeginPrimo;
RNormal(-INVSQRT3, -INVSQRT3, INVSQRT3);
RVertex(-0.5, -0.5, 0.5, 0,1);

328

RNormal(-INVSQRT3, -INVSQRT3, -INVSQRT3);
RVertex(-0.5, -0.5, -0.5, 0, 0);
RNormal(INVSQRT3, -INVSQRT3, -INVSQRT3);
RVertex(0.5, -0.5, -0.5, 1, 0);
REndPrimO;
RBeginPrim(;
RNormal(-INVSQRT3, -INVSQRT3, INVSQRT3); 100

RVertex(-0.5, -0.5, 0.5, 0,1);
RNormal(INVSQRT3, -INVSQRT3, -INVSQRT3);
RVertex(0.5, -0.5, -0.5, 1, 0);
RNormal(INVSQRT3, -INVSQRT3, INVSQRT3);
RVertex(0.5, -0.5, 0.5, 1, 1);
REndPrimo;

// back
//
// (0.5, 0.5, 0.5) - (-0.5, 0.5, 0.5) 110

// I /
// (0.5, -0.5, 0.5) - (-0.5, -0.5, 0.5)
//
RColor(OxFF, OxFF, 0, OxFF);
RBeginPrimo;
RNormal(INVSQRT3, -INVSQRT3, INVSQRT3);
RVertex(0.5, -0.5, 0.5, 0,1);
RNormal(INVSQRT3, INVSQRT3, INVSQRT3);
RVertex(0.5, 0.5, 0.5, 0, 0);
RNormal(-INVSQRT3, INVSQRT3, INVSQRT3); 120

RVertex(-0.5, 0.5, 0.5, 1, 0);
REndPrimO;
RBeginPrim(;
RNormal(INVSQRT3, -INVSQRT3, INVSQRT3);
RVertex(0.5, -0.5, 0.5, 0,1);
RNormal(-INVSQRT3, INVSQRT3, INVSQRT3);
RVertex(-0.5, 0.5, 0.5, 1, 0);
RNormal(-INVSQRT3, -INVSQRT3, INVSQRT3);
RVertex(-0.5, -0.5, 0.5, 1, 1);
REndPrimO; 130

//left

//
// (-0.5, 0.5, 0.5) - (-0.5, 0.5, -0.5)
// I /
// (-0.5, -0.5, 0.5) - (-0.5, -0.5, -0.5)

//
RColor(0, OxFF, OxFF, OxFF);
RBeginPrim(;
RNormal(-INVSQRT3, -INVSQRT3, INVSQRT3); 140

RVertex(-0.5, -0.5, 0.5, 0,1);

329

RNormal(-INVSQRT3, INVSQRT3, INVSQRT3);
RVertex(-0.5, 0.5, 0.5, 0, 0);
RNormal(-INVSQRT3, INVSQRT3, -INVSQRT3);
RVertex(-0.5, 0.5, -0.5, 1, 0);
REndPrimo;
RBeginPrim(;
RNormal(-INVSQRT3, -INVSQRT3, INVSQRT3);
RVertex(-0.5, -0.5, 0.5, 0,1);
RNormal(-INVSQRT3, INVSQRT3, -INVSQRT3);
RVertex(-0.5, 0.5, -0.5, 1, 0);
RNormal(-INVSQRT3, -INVSQRT3, -INVSQRT3);
RVertex(-0.5, -0.5, -0.5, 1, 1);
REndPrimO;

}

int main(void)
{

unsigned Texture[16*16] = {OxFFOOOOFF, OxFFOOOOFF, OxFFOOOOFF, OxFFOOOFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOFFOOFF, OxFFOOQOFF, OxFFOOOOFF, OxFFOOOOFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOOOFFFF, OxFFOOQOFF, OxFFOOOOFF, OxFFOOOFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFOOOOFF, OxFFFFEF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxEFFEFFEFOxFFFFFFFF, OxFFFFFFFF,
OxOOFFOOFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOOOFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFOOOOFF, OxFFFFFFFF, OxFFFFFFcc, OxFFFFFF88,
OxFFFFFF44, OxEFFFFFO, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOFFOOFF, OxFFFFFFFF, OxFFFFFFCC, OxFFFFFF88,
OxFFFFFF44, OxFFFFFFOO, OxFFFFFFFF, OxFFFFFFFF,

330

150

160

170

180

OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, 190

OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOQOFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFOOOFF, OxFFFFFFFF, OxOOFFOOFF, OxOOQOFFFF,
OxOOQOFFFF, OxOOQOFFFF, OxOOFFOOFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFO, OxFFFFFFOO, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOFFOOFF, OxFFFFFFFF, OxOOQOFFFF, OxFFFFOOFF, 200

OxFFFFOOFF, OxFFFFOOFF, OxOOQOFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFOO, OxFFFFFFOO, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOQOFFFF, OxFFFFFFFF, OxOOOOFFFF, OxFFFFOOFF,
OxFFFFOOFF, OxFFFFOOFF, OxOOOOFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFOO, OxFFFFFFOO, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFOOOFF, OxFFFFFFFF, OxOOOOFFFF, OxFFFFOOFF,
OxEFFFFOFF, OxFFFFOOFF, OxOOOOFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFEFFFFO, OxFFFFFFOO, OxFFFFFFFF, 210

OxFFFFFFFF, OxFFFEFFFOxFFFFFFFF, OxFFFFFFFF,
OxOOFFOOFF, OxFFFFFFFF, OxOOFFOOFF, OxOOOFFFF,
OxOOOFFFF, OxOOOOFFFF, OxOOFFOOFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOQOFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, 220

OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFF };

unsigned Texture2[8*8] = { OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF, OxEEFFOOFF,
OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF,
OxFFFFOOFF, OxEEFFOOFF, OxOOFFFFFF, OxFFFFOOFF,
OxFFFFOOFF, OxOFFFFFF, OxFFFFOOFF, OxFFFFOOFF,
OxFFFFOOFF, OxEEFFOOFF, OxFFFFOOFF, OxFFFFOOFF,
OxFFFFOOFF, OxEEFFOOFF, OxFFFFOOFF, OxFFFFOOFF, 230

OxFFFFOOFF, OxOQOOOFF, OxFFFFOOFF, OxFFFFOOFF,
OxFFFFOOFF, OxFFFFOOFF, OxOOOQOFF, OxFFFFOOFF,
OxFFFFOOFF, OxOOOQOFF, OxEEFFOOFF, OxEFFFFOFF,
OxFFFFOOFF, OxFFFFOOFF, OxOOOOOOFF, OxFFFFOOFF,
OxFFFFOOFF, OxEEFFOOFF, OxOOOOOOFF, OxFFFFOOFF,
OxFFFFOOFF, OxOOOOOOFF, OxFFFFOOFF, OxFFFFOFF,
OxFFFFOOFF, OxEEFFOOFF, OxFFFFOOFF, OxOOQOQOFF,

331

OxOOQOQOFF, OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF,
OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF, OxFFFFOOFF,
OxFFFF0OFF, OxFFFFOOFF, OxFFFFO0FF, OxFFFFOOFF }; 240

float M[4][4] = {1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1};

float VRP[3] = {2.0,2.0,-3.0};
float FP[3] = {0.0,0.0,0.0};
float UP[3] = {0.0,10.0,0.0}; 250

signed texID, texID2;

RInitO;

// world coords oriented, x across, y up/down, z back/forth
/1 pos right pos up pos away

RCameraMatrix(VRP, FP, UP);
RProjMatrixUV(45.0*M_.PI/180.0,45.0*MPI/180.0,0.1,100);

260

texID = RAllocateTexture(16, 16);

if(texID == -1)

{
RMETADebugo;
RSendMeta("texerr");
//RMETAHalt();

}
else

{ 270
/R Upload Texture (texID, 16*16, Texture);

//RSetTextureID(texID);
//RSetTexMode(R- TEXMODEJBLEND);
//RSetTexAlpha(RALPHAHARD);
//RColTexBalance(0.3);

}

texID2 = RAllocate Texture (8, 8);

if(texID2 == -1) 280

{
RMETADebug();
RSendMeta("texerr2");
//RMETAHalt();

}

332

else

{
R UploadTexture (texID2, 8*8, Texture2);

*7 290

//void RAmbColor(unsigned R, unsigned G, unsigned B, unsigned I);

//void RDirColor(unsigned R, unsigned G, unsigned B, unsigned I);

RSetLitInterp(1);
RDirColorRGBI(OxFFFFFFFF);
//RAmbColorRGBI(OxFFFFFF88);
//RAmbReflect(OxFF);
RDirLight(-1/sqrt(1.5), -0.5/sqrt(1.5), -0.5/sqrt(1.5));
RDirReflect(OxFF); 300

RSetLit(1);
RSetUseAmb(O);
RSetUseDir(1);
RSetTexInterp(O);

//RSetNoUseZ(1);
//RSetNo WriteZ(1);
//RSetOutOfOrder(1);

310

RSendMeta("pst art ");

RBeginSceneo;

RSendMeta("pframe ");

M[0][3] = 0;
M[1][3] = 0;
M[2][3] = 0;
RModelMatrix(M); 320

drawcubeo;

M[2][3] = -1.5;
RModelMatrix(M);
RSetTextureID(texID2);
drawcubeo;

M[2][3] = 1.5;
RModelMatrix(M);
RSetTextureID(texID); 330

drawcubeo;

M[0][3] = -1.5;

333

M[2][3] = -1.5;
RModelMatrix(M);
drawcubeo;

M[2][3] = 0;
RModelMatrix(M);
drawcubeo; 340

M[2][3] = 1.5;
RModelMatrix(M);
drawcubeO;

M[0][3] = 1.5;

M[2][3] = -1.5;
RModelMatrix(M);
drawcubeo;

350

M[2][3] = 0;
RModelMatrix(M);
drawcubeo;

M[2][3] = 1.5;

RModelMatrix(M);
drawcubeO;

REndSceneo;
360

RMETAHalto;

return 0;

}

370

334

D.8 texturetest.c

// texturetest.c

/ /
// Ken Taylor 5/18/04

#include "render-client.h"
#include <math.h>

int main(void)

{
float Rot[4][4] = {1, 0, 0, 0,

0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1}; // 15 deg rotation around z axis

float Identity[4][4] = {1,O,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1};

unsigned Texture[16*16] = {OxFFOOOOFF, OxFFOOOFF, OxFFOOOOFF, OxFFOOOOFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOFFOOFF, OxFFOOOOFF, OxFFOOOOFF, OxFFOOOOFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOOOFFFF, OxFFOOOOFF, OxFFOOOOFF, OxFFOOOOFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxEFFEFFF, OxFFFFFFFF,
OxFFOOOOFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOFFOOFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFEF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOOFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFEFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFOOOOFF, OxFFFFFFFF, OxFFFFFFcc, OxFFFFFF88,
OxFFFFFF44, OxFFFFFFOO, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,

335

10

20

30

40

OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOFFOOFF, OxFFFFFFFF, OxFFFFFFCC, OxFFFFFF88,
OxFFFFFF44, OxFFFFFFOO, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, 50

OxOOQOFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFOOOFF, OxFFFFFFFF, OxOOFFOOFF, OxOOQOFFF,
OxOOQOFFFF, OxOOOFFFF, OxOOFFOOFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFOO, OxEFFFFFO, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOFFOOFF, OxFFFFFFFF, OxOOQOFFFF, OxFFFFOOFF,
OxEEFFOOFF, OxEFFFFOFF, OxOOQOFFFF, OxFFFFFFFF, 60

OxFFFFFFFF, OxFEFFFO, OxEFFFEO, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOOFFFF, OxFFFFFFFF, OxOOQOFFFF, OxEEFFOOFF,
OxFFFFQOFF, OxFFFFOOFF, OxOOQOFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxEFFFFFO, OxFFFFFFOO, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxEFFEFFF,
OxFFOOOFF, OxFFFFFFFF, OxOOOFFFF, OxFFFFOOFF,
OxFFFFOOFF, OxEEFFOOFF, OxOOOFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFOO, OxFFFFFFO, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, 70

OxOOFFOOFF, OxFFFFFFFF, OxOOFFOOFF, OxOOOFFFF,
OxOOOFFFF, OxOOOFFFF, OxOOFFOOFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxOOQOFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, 80

OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF,
OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFF };

double angle = (0.0/360.0)*(2.0*MPI);
signed texID;
unsigned alpha = OxCC;

RInitO;
90

RViewMatrix(Identity);

RSetNoUseZ(1);

336

RSetNoWriteZ(1);
RSetOutOfOrder(1);

texID = RAllocateTexture(16, 16);

if(texID == -1)

{ 100
RMETADebug(;
RSendMeta(" texerr");
//RMETAHalt();

I
else

{
RUploadTexture(texID, 16*16, Texture);
RSetTextureID(texID);
//#define RTEXMODENONE 0
//#define RTEXMODECOLOR 1 110

//#define R TEXMODE TEXTURE 2
//#define RTEXMODE-BLEND 3
//#define RTEXMODETEXDECAL 4
//#define RTEXMODEWCOLDECAL 5
//#define RTEXMODEMODULATE 6

RSetTexMode(RTEXMODECOLDECAL);
//RColTexBalance(0.2);

//#define RTEXTILENONE 0 120

//#define RTEXTILE-REPEAT 1
//#define R-TEXTILEMIRROR 2
//#define RTEXTILECLAMP 3
//RSetTexTile(R TEXTILE-CLAMP);

//#define RALPHANONE 0
//#define RALPHASOFT 1
//#define RALPHAHARD 2

RSetTexAlpha(RALPHA-NONE); 130

RSetColAlpha(RALPHAHARD);
RAlphaThresh(OxDD);

}

RSendMeta("pstart");

RBeginSceneo;

//while(1) 140

// {

337

Rot[1][1] = Rot[0][0] =(float) cos(angle);
Rot[1][0] = (float)sin(angle);
Rot[0][1] = -Rot[][0];

RSendMeta("pframe");

RModelMatrix(Rot);

RBeginPrimo; 150

RSetTexInterp(1);
RColor(OxFF, OxOO, OxOO, OxFF);
RVertex(0, 0, 0, 0, 1);
RColor(0, OxFF, OxOO, alpha);
RVertex(0, -0.5, 0, 0, 0);
RColor(0x00, Ox00, OxFF, alpha);
RVertex(0.5, 0, 0, 1, 1);
REndPrimO;

RBeginPrim(; 160

RSetTexInterp(0);
RColor(OxFF, OxOO, OxOO, OxFF);
RVertex(-0.5, 0, 0, 0, 1);
RColor(0, OxFF, OxOO, alpha);
RVertex(-0.5, -0.5, 0, 0, 0);
RCoor(OxOO, OxOO, OxFF, alpha);
RVertex(0, 0, 0, 1, 1);
REndPrim(;

170

angle += (15.0/360.0)*(2.0*MPI);

// }

REndSceneo;

RMETAHalto;

return 0;

}

338

D.9 ordertest.c

//ordertest. c
// tests proper sequential ordering constraints

//
// Ken Taylor 5/18/04

#include "render_ client.h"
#include <math.h>

int main(void)

{

339

10

20

float Rot[4][4] = {1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1}; // 15 deg rotation around z axis

float Identity[4][4] = {1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1};

double angle = (0.0/360.0)*(2.0*M_PI);
unsigned alpha = Ox88;

RInito;

RViewMatrix(Identity);

//RSetNo UseZ(1);
//RSetNo WriteZ(1);

//RSetOutOfOrder(1);

RSendMeta("pstart");

RBeginScene();

//while(1)

Rot[1][1] = Rot[0][0] =(float) cos(angle);
Rot[1][0] = (float)sin(angle);
Rot[0][1] = -Rot[][0];

RSendMeta(" pf rame");

RModelMatrix(Rot);

RBeginPrimo;

40

30

RColor(OxFF, 0, 0, OxFF);
RVertex(-0.8,-0.2, 0.0, 0, 0);
RVertex(-0.6, 0.0, 0.5, 0, 0);
RVertex(-0.8, 0.2, 0.0, 0, 0);
REndPrimo; 50

RBeginPrim(;
RColor(0, OxFF, 0, OxFF);
RVertex(-0.7,-0.2, 0.0, 0, 0);
RVertex(-0.5, 0.0, 0.5, 0, 0);
RVertex(-0.7, 0.2, 0.0, 0, 0);
REndPrimo;

RBeginPrimo;
RColor(0, 0, OxFF, alpha); 60

RVertex(-0.6,-0.2, 0.0, 0, 0);
RVertex(-0.4, 0.0, 0.5, 0, 0);
RVertex(-0.6, 0.2, 0.0, 0, 0);
REndPrimo;

RBeginPrimo;
RColor(OxFF, 0, OxFF, OxFF);
RVertex(-0.5,-0.2, 0.0, 0, 0);
RVertex(-0.3, 0.0, 0.5, 0, 0);
RVertex(-0.5, 0.2, 0.0, 0, 0); 70
REndPrimo;

RBeginPrim(;
RColor(OxFF, OxFF, 0, OxFF);
RVertex(-0.4,-0.2, 0.0, 0, 0);
RVertex(-0.2, 0.0, 0.5, 0, 0);
RVertex(-0.4, 0.2, 0.0, 0, 0);
REndPrimo;

RBeginPrim(; 80

RColor(0, OxFF, OxFF, alpha);
RVertex(-0.3,-0.2, 0.0, 0, 0);
RVertex(-0.1, 0.0, 0.5, 0, 0);
RVertex(-0.3, 0.2, 0.0, 0, 0);
REndPrimO;

RBeginPrimo;
RColor(OxFF, OxFF, OxFF, alpha);
RVertex(-0.2,-0.2, 0.0, 0, 0);
RVertex(0.0, 0.0, 0.5, 0, 0); 90

RVertex(-0.2, 0.2, 0.0, 0, 0);
REndPrimo;

340

RBeginPrimo;
RColor(OxFF, 0, 0, OxFF);
RVertex(-0.1,-0.2, 0.0, 0, 0);
RVertex(0.1, 0.0, 0.5, 0, 0);
RVertex(-0.1, 0.2, 0.0, 0, 0);
REndPrim(;

100
RBeginPrim(;
RColor(0, OxFF, 0, OxFF);
RVertex(0.0,-0.2, 0.0, 0, 0);
RVertex(0.2, 0.0, 0.5, 0, 0);
RVertex(0.0, 0.2, 0.0, 0, 0);
REndPrimo;

RBeginPrim(;
RColor(0, 0, OxFF, OxFF);
RVertex(0.1,-0.2, 0.0, 0, 0); 110
RVertex(0.3, 0.0, 0.5, 0, 0);
RVertex(0.1, 0.2, 0.0, 0, 0);
REndPrim(;

RBeginPrimo;
RColor(OxFF, 0, OxFF, alpha);
RVertex(0.2,-0.2, 0.0, 0, 0);
RVertex(0.4, 0.0, 0.5, 0, 0);
RVertex(0.2, 0.2, 0.0, 0, 0);
REndPrimo; 120

RBeginPrim(;
RColor(OxFF, OxFF, 0, alpha);
RVertex(0.3,-0.2, 0.0, 0, 0);
RVertex(0.5, 0.0, 0.5, 0, 0);
RVertex(0.3, 0.2, 0.0, 0, 0);
REndPrim(;

RBeginPrim(;
RColor(0, OxFF, OxFF, alpha); 130

RVertex(0.4,-0.2, 0.0, 0, 0);
RVertex(0.6, 0.0, 0.5, 0, 0);
RVertex(0.4, 0.2, 0.0, 0, 0);
REndPrimo;

/1angle += (15.0/360.0)* (2.0*JMPI);

REndScene(; 140

341

RMETAHalto;

return 0;

}

342

Note: ignore extraneous percent signs in URLs, they were caused by a bug in the bibli-
ography layout code.

343

344

References

[1] K. Akeley and P. Hanrahan. CS448A: Real-time graphics architectures (lecture

notes). [Online document, accessed 20 May 2004], Available HTTP: http: //graphics.

stanf ord. edu/courses/cs448a-01-fall/, October 2001.

[2] F. Durand and B. Cutler. The graphics pipeline: Projective transformations. [Online

document, accessed 20 May 2004], Available HTTP: http://graphics. csail.mit.

edu/classes/6.837/F03/lectures/13_transformat.ions.pdf, October 2003.

[3] F. Durand and B. Cutler. Lecture notes for 6.837 fall 2003. [Online document, accessed

20 May 2004], Available HTTP: http://graphics. csail.mit.edu/classes/6.837/
F03/lectures.html, October 2003.

[4] F. Durand and B. Cutler. Texture mapping & other fun stuff. [Online document, ac-

cessed 20 May 2004], Available HTTP: http://graphics. csail.mit. edu/classes/

6.837/F03/lectures/13_transformations.pdf, October 2003.

[5] F. Durand and B. Cutler. Transformations. [Online document, accessed 20

May 2004], Available HTTP: http://graphics.csail.mit.edu/classes/6.837/
F03/lectures/04_transformations. pdf, October 2003.

[6] Michael Gordon et al. A stream compiler for communication-exposed architectures.

In International Conference on Architectural Support for Programming Languages and

Operating Systems, San Jose, CA USA, October 2002.

[7] Ziyad S. Hakura and Anoop Gupta. The design and analysis of a cache architecture
for texture mapping. In Proceedings of the 24th International Symposium on Computer
Architecture, pages 108-120, 1997.

[8] H. Hoffmann, V. Strumpen, and A. Agarwal. Stream algorithms and architecture.
Technical Memo MIT-LCS-TM-636, Laboratory for Computer Science, MIT, March
2003.

[9] L. Lamport. A new solution of Dijkstra's concurrent programming problem. Commu-

nications of the ACM, 17(8):453-455, August 1974.

[10] L. Lamport. The mutual exclusion problem, parts I and II. Journal of the ACM,
33(2):313-384, April 1986.

[11] T. M611er and Eric Haines. Real-Time Rendering. Ak Peters Ltd, second edition, July
2002.

345

[12] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of parallel
rendering. IEEE CG&A, pages 23-32, July 1994.

[13] R. K. Morley and P. Shirley. Realistic Ray Tracing. Ak Peters Ltd, second edition,
July 2003.

[14] J. D. Owens et al. Polygon rendering on a stream architecture. 2000 SIGGRAPH /
Eurographics Workshop on Graphics Hardware, pages 23-32, August 2000.

[15] G. L. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, 12(3), June 1981.

[16] M. Segal and K. Akeley. The design of the OpenGL graphics interface. Silicon Graphics
Computer Systems (unpublished), 1994. Available from http: //graphics. stanf ord.
edu/courses/cs448a-01-f all/design-opengl. pdf [accessed 20 May 2004.

[17] C. L. Seitz et al. The hypercube communications chip. Display File 5182:DF:85,
Department of Computer Science, California Institute of Technology, March 1985.

[18] M. Taylor. btl debugging - for idiot savants. [Online document, accessed 20 May
2004], Available HTTP: http://cag.lcs.mit. edu/raw/memo/19/btl-debug .html.

[19] M. Taylor. btl extension - for jedi masters. [Online document, accessed 20 May 2004],
Available HTTP: http: //cag.1cs.mit. edu/raw/memo/19/btl-advanced. html.

[20] M. Taylor. The raw prototype design document, v5.00. [Online document, accessed
20 May 2004], Available FTP: ftp://ftp.cag.lcs.mit.edu/pub/raw/documents/
RawSpec99. pdf, October 2003.

[21] M. Taylor et al. The Raw microprocessor: A computational fabric for software circuits
and general purpose programs. IEEE Micro., March 2002.

[22] M. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar operand networks: On-chip
interconnect for ILP in partitioned architectures. In Proceedings of the International
Symposium on High Performance Computer Architecture, February 2003.

346

JL~ K7

