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Abstract

The problem of reconstructing a multi-dimensional field from noisy, limited projection measurements is approached using an object-
based stochastic field model. Objects within a cross-section are characterized by a finite-dimensional set of parameters, which are estimated
directly from the projection measurements using maximum likelihood estimation. The computational structure, performance and
robustness of the ML estimation procedure are investigated.

Introduction

The problem of reconstructing an n-dimensional function from its (n-l)-dimensional projections arises, typically in the context of cross-
sectional imaging, in a diversity of disciplines. In the two dimensional version of this problem, let f(x) represent the value of the cross-
sectional function (for example x-ray attenuation coefficient) at the point x - (XI,x 2). The projection of f(x) at any angle 0 is a one-
dimensional (ID) function given by

g(t,q) - f f f(.x) (t-x'&)dxtdx2 - f(x)ds

(t,) E Y - 1(t,)): -o <t<oo , 098<r) (1)

where 5(t) is the Dirac delta function and 8 is the unit vector (cose sin0)'. Considered as a function, g: Y-R is called the Radon transform
of f(x).

Success in reconstruction from projections in radio astronomy, electron microscopy, medical CAT scanning and other fields has recently
led to suggestions to apply reconstruction techniques to a number of novel and technologically demanding tasks, such as real-time
monitoring of high production rate manufacturing processes, mesoscale oceanographic thermal mapping, quality control nondestructive
testing, and 'stop action' internal imaging of very rapidly changing media.l '- In virtually all problems involving the processing of projection
measurements, however, the ultimate goal is often far more modest than obtaining high-resolution cross-sectional imagery. Rather, imaging
is usually an intermediate step, and the ultimate goal involves extracting specific information, typically related to objects, regions or
boundaries within the cross-section. Such objects include, for example. organs, tumors, bone and metallic surgical clips in medical CAT
scanning, high-contrast thermal regions such as cold-core rings and the Gulf stream in oceanography, and interior cracks and flaws in
materials in non-destructive testing.:

Typically, object-related information (e.g. object location, size, or detailed boundary information) is extracted from projection
measurements by post-processing a reconstructed image, either visually or by automated techniques. The success of such an approch relies
upon reconstructed imagery that is accurate, rtifact-free and of high-resolution. Such imagery is known to require abundant low-noise
projection data taken over a wide viewing angle; if the projection measurements are limited in number or view angle, or have high noise
levels, the inverse problem is ill-posed and/or has a numerically sensitive or noisy solutions The acquisition of abundant, wide-angle
measurements, however, is not always practical or possible, due to time, economic, environmental or physical constraints that limit the
total measurement viewing angle or time, or limit the number or sensitivity of measurement transducers.

In this paper, we focus our attention on the processing of projection measurements when (1) the overall goal is to extract object-related
information about the cross-section, and (2) severe limitations on the total number, SNR, or overall view angle of the projection
measurements preclude the formation of accurate and artifact-free reconstructed imagery. We propose and investigate an alternative to full
image reconstruction by processing limited, noisy projection (Radon transform) measurements directly, in order to detect, locate and
characterize one or more objects within the cross-section. Specifically, a stochastic object-based field model is introduced, in which an
single object is represented by a finite number of parameters, characterizing, say, the object location, size, boundary shape, contrast, and/or
detailed internal density variations. These parameters are estimated, for the case of limited projection measurements corrupted by additive
white Gaussian noise, by maximum likelihood (ML) parameter estimation.4 In this paper, we present a brief overview of this object-based
fomulation and the associated analysis, and illustrate the results by way of a simple example.

. Cross-section and measurement model

Consider a 2D cross-section containing a single object

f(x) - fb(x) + d-fo(x-c;y) (2)

where fb(x) is a known background and d-f(.(x-c;y) is a randomly located object having known density or contrast d [where fo(x;y)-l]
and unknown location cE R2 ; y is a possibly unknown vector of parameters characterizing, for example, the size. shape and/or orientation
of the object. By the linearity of (I), the Radon transform of f(x) is the sum of two components,



g(t,8)- fb (x)ds + d&_ fof(x-c;y)ds

A gb(t,9) + d-g(t-c_',;-y) (3)

where go(t,0;y) is the Radon transform of f0 (x;y), the unit-contrast object located at the origin. Note that because the location of the
object cER 2 is unknown, the component of the Radon transform due to the object is characterized by an unknown sinusoidal shift

9- cicos8 + c2sinG in the t variable.

Let the noisy projection measurements be given by'

y(t,e) - [dgo(t-c'9,9;) - h(t)] + w(t,B)

- s(t,8;cy) + w(t,9) (t,O)E Sy C Y (4)

where * denotes one-dimensional convolution in the t variable, h(t) is a ID measurement aperture function, and w(t,G) is a zero-mean
Gaussian noise process." In terms of the present notation, the object-based detection and estimation problem may be stated as: given
noisy, limited measurements of the Radon transform on the set Sy as shown in (4), detect whether an object is present or not, and if so,
estimate the location cER2 and parameters y of the object. It should be noted that with the exception of the density parameter d, the
parameters characterizing the object enter the problem nonlinearly, and lead to a nonlinear estimation problem of small dimensionality.
This is in contrast to full image reconstruction, in which a linear estimation problem of high dimensionality is solved.

At this point, in order to illustrate this perspective toward processing projection measurements, we focus on the specific problem of
employing maximum likelihood (ML) techniques to estimate the location of a single object-which is situated at some unknown point within
the cross-section, but is otherwise completely known (i.e. y is assumed to be known). This problem allows us (I) to develop insight into
the structure of the parameter estimation computations, and (2) to demonstrate the quantitative tools that can be utilized in critically
evaluating the estimator performance and robustness to modeling errors. This problem serves to establish a framework within which more
sophisticated algorithms may be developed which take into account, for example, detailed a priori information about unknown object
shapes or the presence of multiple objects.5

ML object localization

In this section, we consider the special case offull-view measurements (i.e., S - Y), with w(t.9) a 2D zero-mean Gaussian noise process

with covariance Efw(t,9)w(,d)j - 2
8o(t-T,O8- -).t The maximum-likelihood (ML) location estimate CML is that value of the parameter c

that maximizes the log likelihood function. 4

I(c) - jIffy(t,9)s(t,;c)dtd - 1 fs2(t,9;c)dtd9 (5)
NO 0--O No0--

where y is known in the localization problem and has been suppressed. The first term in (5) corresponds to a matched filtering operation
in Radon space (this operation maps the Radon-space measurements into a function on R2); the second term in (5) compensates for the
energy in the Radon space matched filtering template. Since s(t,D;c) depends on c only via a shift in the t variable, the second term in (5)
is c-independent and can be dropped, as can the 2 scaling factor, to yield

L(c) - f y(t,9)s (t-c'9,8;O)dtd9 (6)
0-o

The log likelihood function for this problem is seen to be obtained by a convolution back-projection (CBP) operation (such as that used in
conventional image reconstructions), where the generally 8-dependent and nonsymmetric convolving kernel s(t,e;Q) has been specified in
the solution to the optimal object localization problem.

Performance analysis - an example

The ML location estimate CML is that value of the location parameter c maximizing the log likelihood function in (6). Noise in the
measurements y(t,O) leads to errors in the location estimate. These errors may be examined by substituting the signal and noise
measurement components in (4) into (6), and writing the log likelihood function as the sum of a 2D deterministic ambiguiryfunction and a
2D zero-mean correlated random field. By examining the effects of both local errors (Cramer-Rao bound analysis) and global errors
(anomaly analysis) in the estimation procedure, the covariance of the estimation error may be approximately quantified.5 6

As an example, consider a constant-density disk object of radius R,

fo(x ;,R) |- 0 otherwise (7)

which is located within a circular region of radius T >> R, and let the measurement aperture function h(t) correspond to an ideal spatial
low-pass filter of fixed bandwidth. In this full-view case the error analysis is circularly-symmetric. and the error covariance matrix is a-2

times a 2x2 identity matrix. Figure I is a plot of (a'/T) - 2, the inverse of the normalized error variance, versus the normalized object size
R/T, for several values of the ratio of contrast squared to noise level. This figure indicates a definite threshold behavior -- for given values
of the object contrast d and measurement noise level No , there exists a smallest object size for reliable localization.



Robustness analysis - an example

In the previous discussion, a number of assumptions were made in order to simplify the analysis so that insight could be more easily
obtained; in particular, it was assumed that (1) the object function fo(x) is known precisely, and (2) the cross-sectional field consists of at
most one object superimposed on a background that is known exactly. The sensitivity of the performance to each of these assumptions
may be evaluated by considering the effect of specific modeling errors, and in this way, the degradation in local performance (Cramer-Rao
analysis) and/or global performance (anomaly analysis) due to modeling errors may be studied. 5, 6 Here, we illustrate the robustness of ML
object localization by considering global performance degradation due to several modeling errors. A global error, or anomaly, corresponds
io the event that an ML location estimate is obtained that is not in the vicinity of the actual object location ( vicinity here corresponds to that
region of the plane close enough to the actual object location so that linearized Cramer-Rao error analysis is valid).

Let Po represent the probability that an anomaly does not occur, i.e., P0 represents the probability that the ML location estimate is in the
vicinity of the actual object location. Insight into the robustness of ML localization to modeling errors may be obtained by evaluating an
approximation to. or bound on, the probability P0 in the presence of modeling errors. As a simple example of this analysis applied to object
size and density modeling errors, consider the problem of attempting to locate the disk object of radius R in (7) with contrast d, when the'
actual field consists of a disk object of radius Ra and contrast da. Because the Radon transform in (3) is linear in object contrast, the
localization performance depends on da only through the measurement signal energy, which for the full-view case being considered is
E. - "id7 2R 3. A lower bound on the probability Po is plotted in Figure 2 versus the measurement signal-to-noise ratio (SNR) Ea/No, for
several values of radius ratio R/R,.

As indicated by this figure, the best global performance is obtained with perfect knowledge of the object size, and the performance is
quite robust to moderately-sized modeling errors. Even when the modeled object size (cross-sectional area) is in error by a factor of two,
the measurement SNR must be increased by only about 2 dB to overcome the performance degradation caused by the size mismatch. It
should be noted that the robustness of local and global performance may be evaluated in a similar way for other types of modeling errors,
e.g. errors in the detailed boundary shape of the actual object; 5-6 such analyses indicate that these ML localization procedures are very
robust to a variety of modeling errors.

These techniques may also be employed to evaluate the performance robustness to the presence of multiple unmodeled objects
contained within the background field. In particular, let the modeled field be given by the object in (7) with a contrast d, but let the actual
field consist of the object in (7) with contrast d, plus the superposition of N nonoverlapping disk objects in the background, where each of
these objects has the same contrast d and radius R, and has a random location point. As a final example, a lower bound on the probability
Po (the probability that the ML location estimate occurs in the vicintiy of the actual object location; was computed for the case of N=20
unmodeled background field objects. These background 'objects' may be thought of, in a sense, as corresponding to random fluctuations
in the background field about its nominal value, which thus far has been assumed to be known perfectly.

Figure 3 is a plot of a lower bound on P0, versus the unmodeled object contrast ratio d/d, for two values of object radius ratio R/R. and
a constant value of E/No = 16 7rd2R3 = 20 dB. As indicated by this figure, the global localization performance is extraordinarily robust3No

to the presence of smaller unmodeled objects, even if there are many of them and they are more dense than the object whose location is
being estimated.

Detailed object boundary estimation

Up to this point we have considered the problem of using noisy projection measurements to locate an object in a cross-section when its
density profile fo(x;y) is known, but its location c is unknown. One may similarly consider the problem of estimating the finite-dimensional
geometry parameter vector y from noisy projection data, by forming a log likelihood function for y (assuming the object location is
known), and finding those geometry parameter values at which the maximum occurs.

Various geometry parameterizations are possible. One parameterization capturing information about 'object size, elongation or
eccentricity; and principal orientation (if elongated) has been investigated,5 including a study of the robustness of ML geometry estimation
to errors in the assumed object location.

Conclusions

A framework has been presented for detecting, locating and characterizing objects in a cross-section by using noisy projection
measurements directly, rather than post-processing a reconstructed image. Within this framework, the performance, robustness and
computational structure of ML estimation procedures have been investigated for both object location and geometry parameters.
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By the stated assumptions, the -Radon transform of the background, gb(t,G), is known and its effect. has been subtracted from
the measurements.

The problem where y(t,G) is a counting process with a rate that depends on s(t,8;c,y) may also be considered; such a model
is appropriate, for example, in very low-dose x-ray problems.

t Incomplete measurement cases, in which views are available over only a limited view angle or at a finite number of views, are
treated similarly. 5
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FIGURE CAPTIONS

Fig. 1. Localization performance versus disk
object size.

Fig. 2. Po lower bound versus measurement SNR
in the presence of size modeling error.

Fig. 3. PO lower bound versus contrast ratio d/d;
20 unmodeled objects.
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