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ABSTRACT

A multivariable analog system can be controlled by a sampled-data
compensator. A conic sector that can be used to analyze the closed
loop stability and robustness of this feedback system is presented
in this letter.
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1. INTRODUCTION

Conic sectors can be used to analyze closed loop stability and robustness

of some very general feedback systems [1,2,3,4,5]. The usefulness of this

analysis, however, depends on the existence of a particular conic sector, or

cone, for the particular feedback system of interest. This cone should be

both computable and yield nonconservative sufficient conditions for closed loop

stability and for robustness margins. In this letter a cone that is useful for

the analysis of sampled-data feedback systems is presented. The main purpose

of this letter is to prove that the cone is mathematically correct. An

example is included to demonstrate that the cone is computable and nonconservative.

In Section 2 conic sectors are defined and discussed. In Section 3 the same

is done for sampled-data feedback systems. In Section 4 the main result is

presented, Theorem 1, which shows the existence of a conic sector that contains

a sampled-data operator. An example of how to use Theorem 1 is presented in

Section 5. A corollary to the main result is used to find the gain of a sampled-

data operator in Section 6, followed by a summary in Section 7.

2. CONIC SECTORS

The notation and definitions that follow lead up to the definition of a

conic sector and are consistent with references [1] to [5]. Define L r as the

extended normed linear space of square integrable functions. Elements of L2e

are functions e:R++Rr , from the set of real numbers >0 to the set of

r-dimensional vectors that have finite truncated norm for all truncations TER+:
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I1-11, I [ S ile(t) i E dt ] (1)
0

The subscript "E" indicates the Euclidean vector norm. In the limit as T-t

the truncated function norm becomes the L2 function norm denoted by IeIIlL
r m 2A relation A is any subset of the product space L2eXL2em The inverse

relation A I always exists and is defined by

AI {(y,x) £ L2eXL2e (x,yy) A} (2)

An operator A is a special case of a relation that satisfies two conditions:

(1) the domain of A is all of L2e and (2) for every x in the domain there exists

a unique y in the range such that (x,y) £ A.

The gain of the relation A is induced by the truncated function norm and

is defined by

II Ax II1
[lAll | sup ~ T (3)

where the suprenum is taken over all x in the domain of A such that J|%JT-/ o,

all corresponding Ax in the range of A, and all T ER+. The relation A is

L2e-stable if [1AIl < O.

The conic sector inequalities are now defined. Define A to be a relation

define Cand R to be operators. If

2 2 2
Y - Cx < | R|[ -_ | lll 1 (4)

for all (x,y) c A, all T eR+, and some £ >0 then Ais strictly inside cone(C,R)

with center C and radius R. On the other hand, if
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2 x - Cy 2> II Ry 112 (5)

for all (x,y) c-AI and all T eR then -AI is outside cone(C,R).

To use conic sectors to determine closed loop stability first divide the

feedback system into two relations K and G as shown in Figure 1. Sufficient

conditions for closed loop stability are

K is strictly inside cone(C,R) (6a)

-GI is outside cone(C;R) (6b)

These sufficient conditions are a robustness as well as a stability result

because stability is determined not just for a particular K and G, but for

any such relations which satisfy the above conic sector conditions.

3. THE SAMPLED-DATA FEEDBACK SYSTEM

The sampled-data feedback system is a special case of the general feedback

system of Figure 1, and therefore conic sectors can be used to analyze sampled-

data feedback systems. There are two parts to the sampled-data feedback system:

the analog plant and the sampled-data compensator. The analog plant, be it an

airplane, helicopter, missile, spacecraft, motor, chemical process, and so on,

is modelled by the linear time invariant (LTI) operator G. The sampled-data

compensator contains a digital computer embedded in a prefilter, sampler, and

hold device, as shown in Figure 2, and is modelled by the sampled-data operator

K, which is a linear time varying (LTV) operator. The objective of the conic

sector analysis is to construct a cone(C,R) that contains K, and then to show

that -GI is outside of the same cone.

Because the analog system is LTI it can be modelled by the Laplace transform

matrix G(s). When it is evaluated on the jw-axis then it becomes the Fourier
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transform matrix G(jw). Given the Fourier transfrom u(jw) of the input, the

Fourier transform of the output y(jw) is

y(jw) = G(jw)u(jw) (7)

Multivariable systems are analyzed using singular values [6,7]. The maximum

and minimum singular values of G(jw) are respectively amax[G(jw)] and amin[G(jw)].

The sampled-data compensator contains a prefilter, modelled by the Laplace

transform matrix F(s); a computer, modelled by the z-transform D(z); and a

hold device, modelled by the Laplace transform matrix H(s). The sampler is

assumed to be synchronous, with a sample period of T seconds. From an input-

output point of view the sampled-data compensator transforms an analog signal

e into another analog signal a, and using operator notation this transformation

is written

a = Ke (8)

Given the Fourier transform e(jw) of the input then the Fourier transform u(jw)

of the output is

u(jw) = H D* kF (9)

where = F(jw-jwsk), s:T (9a)

D* = D(z) evaluated at z=ejwT (9b)

( ') = sum from k = -I to X (9c)
k

This does not define a transfer function from e(jw) to u(jw), only an input-

output transformation. Equations (7) and (9) can be used to find the closed-

loop transformations of the sampled-data feedback system, see [8] for more

details. This completes the preliminary sections.
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4. PRESENTATION AND PROOF OF A NEW CONIC SECTOR

In Theorem 1 a cone(K,R) is presented which contains a sampled-data

operator K. Both the center K and the radius R are LTI operators, and hence

have associated with them the Fourier transform matrices K(jw) and R(jw),

Theorem 1 Define the sampled-data operator K and the LTI operators

K and R. Assume that K, K, R, and RI are L2e-stable. Then K is strictly

inside cone(K,R) if

amin [ R(jw)] = 1 1[ 2 2 max D*F n) + max (T Dk -
(l-c) k nk m ax- nfk -

for all w and some e>O (10)

Furthermore, the choice of center

K(jw) = 1 H D* F Il1)

called the "optimal center," minimizes amin [ R(jw)] for each w. ·

Remarks The center K must be open-loop stable but is otherwise arbitrary.

It is a LTI approximation to the sampled-data operator. A poor choice of

center will make the radius large. The optimal center minimizes the radius

and is therefore usually the center that is chosen. The radius R(jw) is

periodic with period ws.

Before moving on to the proof of Theorem 1 the critical step in the proof

is highlighted as Lemma 1. This is a frequency domain inequality which is in

turn a consequence of the Cauchy-Schwartz inequality [9, p. 30]. The notational

burden is lessened by the following definition:
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1 H(s)D(eST)_ F(s) _ K(s) ; n=O

IK(s) sT (12)

T H(s)D(eST)F(s-j sn) ; nfO

Lemma 1 Define the K (s) as in (12). Then it follows that

-co n -o k n max -

Proof of Lemma 1 Two of the steps leading up to (13) are shown below:

f i K (j)ie(jw-jwsn)I12E dw < r ax[Kh(jw)] lle(j-jwsn)E (14)
-00 n n max-

n cc n ) dm (12)

< f(Z amax[ Kn(jW)])( I e(jw-jisk)lE ) dw (15)

(By the Cauchy-Schwartz inequality. Define

an=amax[Kn(j)] and bn= lle(jw-jwsn)IIE. Define

a and b to be t2 vectors with components an and

bn for all integers n. Then, IaTb]2<hla]]E2 [Ibl2E2 ).

< z z amax[ K (ijw-jw s k) l t(jw)E dw (16)

This completes the proof.

Remarks Between steps (15) and (16) the summation over k is brought outside

of the integral, the variable of integration is shifted from w to w+rsk, and

then the summation over k is brought back inside the integral. This interchanging
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of infinite summations and integrals requires that the condition of Lebesgue

Dominated Convergence be satisfied [10, p. 44], but this is assured here

because each term of the infinite summation is a positive real number. It

may be the case that the infinite summations do not converge, in which case

Lemma 1 remains valid, if not particularly informative,

It is of interest to know when the infinite summations in (13) converge.

They converge if max[F(jw)] and a [H(jw)] each have at least a 1 polemax- max 2

rolloff, which is mathematically stated: if they are upperbounded by alw 1l/2+ B

for w sufficiently large and for some a,B>0.

Proof of Theorem 1 The objective is to show that K is strictly inside

cone(K,R). Except for the step in which Lemma 1 is applied, this proof is

similar to [4, Lemma A4]. Define the truncated function:

(t) (Re)(t) t <T(17)

0 ; t >T

For all ee L2e and all T R+:

II(K-K)e II2= (K-K)R TII T (18)

I< i(k-K)RI e1 2 (19)

2 c 2
<'- f I| z Kn R e (jw) rI dw (by Parsevals' Theorem) (20)

-a n

< e a_(2 [j (jd
maxK j k)])IR le (j)llE2dw (21)

(by Lemma 1)

2nf (l-c) lie T(j) E dw [by (10) of Theorem 1] (22)
-00
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:(1 ) l 1~e 2 (by Parsevals' Theorem) (23)
2

<lReQI2 - E (where s' = eIIR I) (24)

Inequality (4) has just been verified, and therefore k is inside cone(KR). It

still remains to show that the optimal choice for center given by (11) minimizes

the radius. This can be shown by inspection, because this choice of center

zeros out the single summation over k in (10). This completes the proof.

5. EXAMPLE

In this example a single-input-single-output (SISO) sampled-data feedback

system is defined, a cone is constructed that contains the sampled-data operator K,

and then a check is made to see if -GI is outside of the same cone, If this

check succeeds then the sampled-data feedback system is closed-loop stable.

Define:

g(s) = plant (25a)

f(s) : s a = prefilter (25b)s + a

d(z) = computer, which must be stable (25c)

-sT
h(s) = 1 -5 = zero-order-hold (25d)

To keep the example as general as possible only the prefilter and the hold have

been specified, and the only restriction is that d(z) is open-loop stable. It

is left to the reader to substitute in numerical values,

The cone(K,R) which contains K is now constructed. Choose the optimal center:

k(s) = 1 h(s)d(eST)f(s) (26)



-10-

The radius, via (10) of Theorem 1, is:

1 2r(s) = 72 k lhkd*fni (27a)
k nOk

lh k2) ld*2 El - 22 Flhkd*fkl2 (27b)

The double summations have been converted to single summations by adding and then

subtracting the n=k term, The single summations can be analytically solved by

use of the following identity which is well known from digital filtering:

T ak TT1b 2 b(z) _ (28)
k k k = z=ejwT

where b(s) = a(s)a(-s) (28a)

b(z) = z-transform of samples of b(t) (28b)

Hence, after much algebra:

(29)bl(z) = z1hkl2 =T (29)

b2(z) =1 zlfn2 2T 2 (30)
n2 z Bz+l

where a = e-aTeaT B = e-aT+eaT (30a)

b(Z) T lhf 2 T z + 1 (31)
b3 4 ~Ikfk k 2aT z2_-z+l



And finally:

r(s) = Id(z) [bl((z)b(z)- b3() (32)

z=eT

In the next part of the example a check is made to determine is -GI is

outside of cone(K,R). Using [4, Lemma A3], this will be true if (1) the analog

system with the loop transfer function k(s)g(s) is closed loop stable and (2)

the following inequality is satisfied:

Irg(l+kg) -l (jw) l < 1 for all w (33)

This inequality can be checked, for instance, using a Bode plot. Whether or

not it is satisfied depends, of course, on the numerical values chosen for

the sampled-data feedback system. Because conic sectors give only sufficient

conditions for closed-loop stability, failure of (33) does not neccessarily mean

that the closed-loop system is unstable,

6. OPERATOR GAIN

One of the properties of an operator is its gain, which was defined earlier

in Section 2, equation (3). In this section an upperbound for the gain of the

sampled-data operator is presented.

Operator gains and conic sectors are closely related. If an operator A

is inside cone(C,R) then it follows that II(A-C)RII1 < 1. Hence, by setting the

center C=O, the radius R can be used to find an upperbound for the gain of A.

The following result is considered to be a Corollary of Theorem lc

Corollary 1 Define the sampled-data operator K. An upperbound for its gain is:

K < T2 k ax(H D*F (34)iki sp Lmax n +,a -- 1/
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Furthermore, this upperbound actually is the gain when H(s), D(z), and H(s)

are SISO. U

Proof of Corollary 1 Starting with equation (10) of Theorem 1, substitute

K(s)=O for the center, and then maximize over the fundamental frequency range,

This procedure yields the upperbound (34) for the gain. For the SISO case the

following input signal achieves the upperbound as T+ -:

e(t) = 7 lanI cos[(w0-wsn)t + Arg(an)] (35)
n

where an = d(e )f(-jwo+jwsn) (35a)

This completes the proof.

Remarks The gain for a multivariable K remains to be found. A conjecture

is made that the gain is given by (34), but a signal [a vector version of (35)]

has not yet been found that achieves this upperbound.

The gain of k depends on (1) the gain of the computer, (2) the aliasing of

the prefilter, and (3) the aliasing of the hold. In particular, when there is

no prefiltering, i.e. when F(s)=I, then the operator gain in infinite, thereby

indicating extreme sensitivity to noise. This result about infinite gain with

no prefiltering was stated previously in [ll].
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7. SUMMARY

A conic sector that is useful for the analysis of sampled-data feedback systems

is presented as Theorem 1. The crucial step in the proof is an application of

the Cauchy-Schwartz inequality, which is highlighted in Lemma 1. A corollary

of Theorem 1 is used to find an upperbound for the gain of a sampled-data operator.

The example in Section 5 demonstrates that the cone is computable and that

it can be used to determine closed-loop stability. More examples are in [5],

where it is shown how to include plant uncertainty in the analysis and thereby

determine robustness margins.

Further research is being conducted to (1) lessen the conservativeness of the

stability and robustness results, (2) remove the restriction that the computer

must be open-loop stable, and (3) extend conic sector analysis techniques to

multi-rate sampled-data problems.
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FIGURE 2: The sampled-data compensator


