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Abstract

Instruction scheduling on software exposed architectures, such as Raw, must be per-
formed in both time and space. The complexity and variance of application scheduling
regions dictates that the space-time scheduling task be divided into phases. Unfortu-
nately, the interaction of phases presents a phase ordering problem.

In this thesis, the structure of program scheduling regions is studied. The schedul-
ing regions are shown to have varying characteristics that are too diverse for a single
simple algorithm to cover. A new scheduling technique is proposed to cope with
this diversity and minimize the phase ordering problem. First, rather than main-
taining exact mappings of instructions to time and space, the internal state of the
scheduler maintains probabilities for different assignments of instructions to time and
space resources. Second, a set of small scheduling heuristics cooperatively iterate over
the probabilistic assignments many times in order to minimize the effects of phase
ordering.

A simple spatial instruction scheduler for Raw machines based on this technique
is implemented and shown to outperform existing spatial scheduling systems on av-
erage.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor
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Chapter 1

Introduction

In order to maintain a high rate of performance improvement, modern microprocessors

must continue to increase the number of instructions they execute per cycle by ex-

ploiting parallelism in applications. Unfortunately, this task is becoming increasingly

difficult to perform at run time due to wire delays and the complexity of discovering

and scheduling parallelism. Therefore, scalable microprocessor architectures of the

future must give compilers control over not only when each instruction is executed,

but on which processing element that execution takes place. The task of assigning

instructions to resources and ordering them temporally, called space-time instruction

scheduling, is critical to the performance of modern and future scalable architec-

tures [12] [141. This thesis explores the space-time instruction scheduling problem

and offers a new approach based on weighted decision making and phase-unification.

A spatial scheduling system based on this approach is implemented and targeted for

the MIT Raw architecture. This system yields favorable results when compared with

the existing spatial scheduling algorithms.

1.1 Software-Exposed Architectures

In order to maintain an increasing rate of performance improvement, microprocessor

designers have developed a number of features designed to let modern processors

exploit instruction level parallelism (ILP) in sequential programs. Currently, the

15



majority of these modern architectures attempt to maintain the external interface of

a single serial processor. Unfortunately the hardware resources required to exploit

ILP while maintaining this interface tend to have quadratic complexity and cannot

scale without a sacrifice in cycle time.

One solution to this scaling problem is to remove the restriction that the processor

maintain the single serial processor interface and shift the responsibility for discov-

ery and exploitation of ILP from hardware to software. Architectures of this kind

are referred to as software--exposed architectures [5]. The burden of achieving high

performance on a software-exposed architecture is placed almost entirely on the com-

piler, which determines how the hardware resources will be used through space-time

instruction scheduling and register allocation.

1.2 Space-Time Instruction Scheduling

On a conventional monolithic processor, the instruction scheduling problem addressed

by the compiler is purely temporal; the instructions must be ordered in time to form

a schedule that minimizes completion time while satisfying data dependencies. The

distributed nature of the computation and storage elements on a software exposed

architecture and their exposure to the compiler, however, generalizes the static in-

struction scheduling problem to one that is both temporal and spatial. Thus the com-

piler must explicitly schedule ILP across the available computation resources while

considering the trade-off between communication latency and completion time for

instructions executed in parallel or in sequence. This is called space-time instruction

scheduling [12].

To simplify the space-time instruction scheduling task, many compilers divide it

into phases. For example, the general purpose compiler for MIT Raw machines [12]

divides this task into the phases shown in Figure 1-1. First the instructions are par-

titioned into sets that can be executed in parallel. Then the sets of instructions are

placed on specific computation units. Finally, the instructions assigned to each com-

putation unit are scheduled temporally. After the schedule is finalized, the compiler

16



Low-level intermediate representation

Instruction Partitioning

Instruction Placement

Instruction Scheduling

Register Allocation

Assembly code

Figure 1-1: Back-end phase diagram for the MIT Raw compiler

assigns registers to program variables and temporary values and outputs the assembly

code.

1.3 Phase Ordering Problem

This division of the back-end code generation tasks of space-time instruction schedul-

ing and register allocation into multiple phases reduces the engineering and compu-

tational complexity of the tasks to a tractable level. Unfortunately decisions made

in each phase often affect the outcomes of other phases in hard to predict ways.

Furthermore, most decompositions of these tasks into phases suffer from the phase

ordering problem, meaning that different program instances will benefit from different

orders of the phases. For example, in some instances register pressure provides the

main performance bottleneck and early register allocation will produce the best code.

In others, instructions with long delays, such as I/O accesses, hamper performance,

meaning that priority should be given to temporal scheduling in order to minimize

the effects of those delays.

The phase ordering problem has two principle causes. First, the decisions made

17



by each phase tend to be irreversible. For example, when the scheduler chooses a

particular ordering of instructions, the register allocator is usually unable to make

changes to the ordering in order to improve register allocation. When such violations

of the phase interfaces are allowed, they must be very limited, with each phase only

given a small number of allowable modifications to the work of other phases. This

is necessary to keep the complexity of the individual phases under control since the

task of building a particular code generation phase that can effectively do the work

of the other phases as well is identical to the problem of building a single-phase code

generator.

The second cause of the phase ordering problem is the lack of information sharing

between phases. Generally each compilation phase passes only immediately relevant

information to the next phase in line. The instruction partitioner outputs only a

list of sets of partitioned instructions, the instruction placer outputs only a mapping

of sets of instructions to function units, the instruction scheduler outputs only an

ordering of the instructions or a mapping of instructions to time slots, and the register

allocator outputs only a mapping variables to registers. The problem with these

simple interfaces is that the phases often make arbitrary or uninformed decisions.

For example, the partitioner may have to choose between two partitions with similar

cost function values though one of them will perform much better due to the way it

is affected by scheduling or register allocation. The partitioner cannot always choose

correctly because it does not know how the decision will affect the future phases.

Making the decision by completing the code generation on both paths and comparing

the results quickly becomes intractable if the number of decisions made in this manner

is not kept extremely small. Similarly, passing both options to the future phases and

allowing them to make the decision also quickly becomes intractable as the number

of equivalent options to be passes will very likely be combinatorial in the size of the

input.

18



1.4 Combined-Phase Probabilistic Scheduling

This thesis offers a new approach to space-time instruction scheduling, that can over-

come both principle causes of the phase ordering problem given in Section 1.3. To

alleviate the irreversible decision problem, this approach uses a map of probabilities

to represent the assignment of instructions to processing resources and time slots in

place of a strict boolean mapping. Thus when a phase makes a decision that it has

low confidence in, it gives low weight to the results of that decision, leaving the door

open for future phases to reverse the decision. In the case where a phase makes a bad

decision and assigns a high weight to it, future phases can still reverse the decision

by decreasing its weight. The unshared information problem is mitigated by allowing

all phases to examine the entire probability map and see information resulting from

decisions that did not lead to the final output of the previous phases. When a phase

is unsure about a decision, it also gives some weight to the alternatives, which can

then be examined by future phases.

In the development of this approach, four steps were taken. First, the structure of

certain representative programs was studied empirically. This analysis demonstrated

that the variance in program structure was too great for a single spatial scheduling

algorithm to effectively cover all cases, resulting in the phase-ordering problem. The

combined-phase probabilistic scheduling approach was then developed to solve the

space-time scheduling problem while minimizing the effects of the phase-ordering

problem. Using this approach, a simple spatial scheduling phase was implemented,

tested, and evaluated on the MIT Raw Machine [19].

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the Raw

processor and RAWCC, the sequential compiler into which the work of this thesis is

integrated. In Chapter 3 the characteristics of spatial instruction scheduling prob-

lem instances are examined in detail with the assistance of graph visualization tools.
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The new combined-phase probabilistic scheduling approach developed for this thesis

is presented in Chapter 4. A spatial scheduling algorithm based on this approach

is detailed in Chapter 5. The results of an implementation of this algorithm on the

Raw benchmark suite are provided in Chapter 6. Chapter 7 analyzes some of the ad-

vantages and disadvantages of the combined-phase probabilistic scheduling approach.

Finally, Chapter 8 describes work related to the spatial instruction scheduling prob-

lem for Raw machines and Chapter 9 concludes.
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Chapter 2

Compiling for the Raw

Architecture

The Raw architecture is a distributed microprocessor architecture designed to scale

beyond the limits of current high performance processor architectures [1]. A Raw

machine is composed of a two dimensional mesh of simple replicated tiles. Each

tile contains a processing unit, a memory bank, and a switch. The tiles execute

independent instruction streams, though they are loosely synchronized by control

flow and instruction dependencies.

RAWCC is the parallelizing C and FORTRAN compiler for Raw machines. It is

implemented on top of the SUIF compiler infrastructure [20] and contains two main

components. First, memory disambiguation [5] is performed on the memory usage of

the program in order to discover memory accesses that are statically resolvable to a

particular bank. Then the space-time scheduler [12] parallelizes the computation by

assigning instructions to tiles, temporally scheduling the instructions assigned to each

tile, and orchestrating any communication between tiles required for the correctness

of the computation.
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Figure 2-1: A Raw Microprocessor

2. 1 Raw Architecture

The MIT Raw architecture [19] is a simple, highly scalable software-exposed archi-

tecture. A Raw machine, shown in Figure 2-1, is composed of an interconnected set

of identical tiles that execute independent instruction streams. Each tile contains a

simple five-stage RISC pipeline along with a portion of the machine's cache memory

and is interconnected with the other tiles over a pipelined, point-to-point network.

The tiles are kept simple and small in order to maximize the number of tiles that can

fit on a chip and to facilitate a high clock rate. The interconnect network is integrated

tightly with the processor on each tile to provide fast, register level communication.

Unlike modern superscalar architectures, this communication network is fully exposed

to the software.

2.1.1 Processing Unit

The main processing unit on each tile is a simple RISC pipeline that implements

the MIPS R4000 instruction set and a small number of additional network access

instructions. Table 2.1 lists latencies for the basic instructions supported by the
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Table 2.1: Tile processor latencies

Instruction Latency
Load 2 cycles
Store 1 cycle
Integer add or subtract 1 cycle
Integer multiply 2 cycles
Integer divide 36 cycles
Floating point add, subtract, or multiply 4 cycles
Floating point divide 10 cycles

processing unit. All operations, except for floating point divides, are pipelined.

The network access instructions control register-level communication between the

main processing unit and the switch. The input ports on the processing unit are

mapped into the register file name space so values from the network can be referenced

as ordinary registers in any instruction that takes input from a register. The output

port uses dedicated data pathways that are activated by the "S" bit, which is encoded

into the opcode. These data pathways are integrated directly into the bypass network

on the processing unit, allowing the processor to communicate values to the switch as

soon as they are available, rather than waiting for them to reach the writeback stage

of the pipeline. Using this feature, a word of data can be communicated between

neighboring tiles in only 3 cycles.

2.1.2 Communication Network

The point-to-point communication network on a Raw machine is implemented through

a dedicated switch processor on each tile. Each switch is connected to its processor

and its four neighboring switches via an input and output port. Ports on the perime-

ter of the machine are used for communication with external devices and memory

banks.

The network supports both static and dynamic routing. Static routing eliminates

the need to compose and route dynamic message headers and allows messages as

small as a single word to be efficiently communicated between tiles. This enables
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the Raw compiler to take advantage of very fine grained ILP in sequential programs.

The dynamic network is a slower, more traditional, runtime-routed network that can

handle unpredictable communication more easily than the static network.

Static Network

The static network is comprised of the static switch on each tile, the ports and wires

that connect them to their respective processors, and the ports and wires that connect

them to the switches on their neighboring tiles. Each switch processor on the static

network can be programmed, giving the software full control over communication on

the static network. A word of data in this network can travel across one tile in one

clock cycle so the total time to communicate a single word between two tiles is the

Manhattan distance between them plus one cycle to write the word into the network

and one cycle to read it.

The compiler uses this network to communicate data when both the source and

destination tiles are known at compile time. This includes all communication between

instructions due to data dependences since the compiler chooses which tile each in-

struction is assigned to. Thus most of the communication occurs on this network.

For the static network to route data correctly, the instruction stream of each

switch along the path must contain instructions to correctly pass the data to the next

switch on the route. This low overhead approach decreases communication latency

and increases available bandwidth by eliminating the need to create, send, and later

decode a message header for each message. Furthermore, the static scheduling of

routes means that routing channels can be set up before the arrival of the data words

destined for them.

In order to assist the static network in tolerating events of unknown or variable

latency, and to allow the compiler some slack in scheduling communication, the static

network implements near-neighbor flow control through blocking semantics on all

read and write ports. A write instruction will always block until the output buffer

has space available, and a read instruction will always block until a value is waiting

to be read on the requested port. This eliminates the need for the precise timing
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that would otherwise be required to prevent switches from overwriting values on

output ports or reading garbage on input ports. Blocking semantics allow the tiles

to execute instruction streams independently and loosely synchronized, rather than

operating in lock-step as is the case with VLIW machines. This flexibility increases

Raw's tolerance of dynamic events with unpredictable delays, such as cache misses

and I/O events, over that of an architecture that requires lock-step synchronization

of program counters.

One important property of communication in the static network is that it is stat-

ically ordered. This means that the relative order of arrival of messages at each port

on each tile is specified at compile time and guaranteed at run time. This property

holds by induction because the compiler fixes the order in which each switch processes

the messages it receives.

Dynamic Network

The dynamic network uses a dynamic switch on each tile, which performs traditional

worm-hole routing by making decisions based on the header of each message. This

network is used when either the source or destination of a message is unknown at

compile-time.

The dynamic network is much slower than the static network for a number of

reasons. First, messages on the dynamic network must carry a header which contains

additional information, such as the destination tile and a message ID. This header

must be constructed, inserted into the network, routed, and handled by the destina-

tion tile, using processing resources in every step. Second, since the arrival time and

order of messages on the dynamic network is unpredictable, the receiving tiles are

required to use expensive mechanisms, such as polling or interrupts, to receive them.

Third, due to the lack of flow control on the dynamic network, messages may need

to be spilled to memory if more arrive at a tile than can fit in the incoming message

queue.

Since RAWCC chooses the assignment of instructions to tiles, all communication

between instructions can be performed on the static network. Section 2.2.2 describes
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the alignment analysis which enables RAWCC to statically infer the resident tile for

many memory references, allowing on-chip memory references to be performed with

reduced use of the dynamic network. Through this extensive use of the static network,

Raw machines can exploit very fine grained ILP in sequential programs.

2.1.3 Distributed Memory

The cache memory for Raw processors is distributed across the tiles. This enhances

the scalability of the Raw architecture in many ways. First, by dividing the memory

into multiple banks, the wires are kept short and higher clock speeds can be achieved.

Second, since the memory banks are distributed among the processing resources, the

software may be able to take advantage of locality and keep computations, memory

references, and the banks they refer to close to each other in order to decrease memory

latency. Third, each tile that is added to the machine increases the on-chip memory

capacity and bandwidth without sacrificing clock speed. Fourth, if the memory and

instructions can be parallelized while preserving locality, the full available processing

power and memory bandwidth can be used without suffering from the high memory

latency due to long wires and complex arbitration logic usually found on architectures

with monolithic memory structures.

Raw is a bank-exposed architecture [5], meaning that it exposes its memory banks

to the software, and that memory references can be explicitly directed to different

banks at compile-time. Bank-exposed architectures have two primary scaling advan-

tages over hardware-based unified systems: they can avoid the non-scalable delays

associated with hardware arbitration logic and poor on-chip locality. However, these

advantages are only gained when most of the memory instructions are bank disam-

biguated, meaning that they reference known banks at compile-time. Since the backup

arbitration logic, the dynamic network in the case of Raw, is often much slower than

dedicated hardware arbitration logic, the compile-time task of discovering which bank

each memory instruction refers to is critical to the performance of these systems.

RAWCC uses loop unrolling and alignment analysis [10] to perform this task, known

as bank disambiguation.
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2.2 Memory Bank Disambiguation

A bank-exposed architecture, such as Raw, can only achieve a significant performance

advantage over a traditional architecture if most of the memory references are bank

disambiguated. The memory accesses must also be distributed among the banks so

that maximum memory bandwidth can be used. RAWCC uses two techniques to

satisfy these criteria: equivalence class unification and loop unrolling.

2.2.1 Equivalence Class Unification

Equivalence class unification [5] begins with a pass by the pointer analysis package,

SPAN [15]. SPAN assigns a unique location set number to each abstract object in the

program. An abstract object is either a variable declaration allocated on the stack or

a group of dynamic objects created at a single heap-memory allocation call site. All

elements of a single array belong to the same abstract object, but the individual fields

of a struct are each considered separate objects. After assigning location set numbers

to abstract objects, SPAN assigns to each memory reference instruction a location set

list containing the location set numbers corresponding to the abstract objects that

the memory reference instruction may refer to.

After the pointer analysis is completed, RAWCC generates the program's alias

equivalence classes. Alias equivalence classes form the finest partition of the loca-

tion set numbers such that each memory reference instruction refers to location set

numbers in only one equivalence class. To find the alias equivalence classes, RAWCC

generates a bipartite graph with one node for each abstract object and each mem-

ory reference. Edges are added to the graph between each memory reference and all

abstract objects whose location set numbers are in that reference's location set list.

RAWCC then finds the connected components of the bipartite graph and for each

component constructs one equivalence class containing the memory references in that

component.

Finally, RAWCC assigns each equivalence class to a single tile. Since references

in different equivalence classes may never refer to the same object, equivalence class
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unification disambiguates all memory references while maintaining program correct-

ness.

2.2.2 Loop Unrolling and Alignment Analysis

Equivalence class unification correctly disambiguates memory references; however, it

is forced to map each array to a single tile, reducing opportunities for ILP exploitation

in loops. RAWCC uses loop unrolling and alignment analysis [10] to achieve bank

disambiguation and memory bank load balancing for array references with index

expressions that are affine functions of inner loop induction variables.

When such an array is discovered, RAWCC assigns is elements to the Raw tile

memory banks in a round-robin fashion. The enclosing loop is then unrolled by the

minimum number of iterations required to guarantee that each array reference in the

unrolled loop can be bank disambiguated.

On a software-exposed architecture, such as Raw, this provides opportunities for

ILP exploitation in two ways. First, the low-order interleaving of array elements

across memory banks means that multiple elements can be accessed simultaneously.

Second, the unrolled loop produces a larger basic block than the original version

which gives the compiler a greater opportunity to schedule instructions in parallel.

However, to achieve maximal performance benefit from modulo unrolling, the space-

time scheduler must generate code that effectively exploits ILP and takes advantage

of the increased opportunity for locality and memory bandwidth usage offered by

memory bank disambiguation.

2.3 Space-Time Scheduler

The space-time instruction scheduler in RAWCC performs the task of assigning in-

structions in each forward control flow region, or scheduling region, to processor re-

sources and ordering them in time so that the computation executes correctly and

completes as quickly as possible. Since this module is responsible for the discovery

and exploitation of ILP, its effectiveness is critical to achieving the goal of high per-
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formance generated code. The RAWCC space-time scheduler divides its tasks into

two phases: spatial scheduling and temporal scheduling.

RAWCC further decomposes the spatial instruction scheduling problem into two

components: partitioning and placement. Instruction partitioning is the task of iden-

tifying ILP in a sequential instruction stream and dividing that stream into paral-

lel streams, while placement is the related task of assigning the parallel streams to

individual tiles. To partition the instructions, RAWCC first forms clusters of in-

structions that have no exploitable parallelism given the communication cost of the

target processor. Then clusters with high levels of communication between them are

merged until the number of clusters equals the number of available tiles. To perform

placement, RAWCC then creates a bijection between tiles and sets of partitioned

instructions using a greedy algorithm that attempts to minimize the incurred cost of

communication over the entire schedule.

After the instructions have been spatially scheduled, RAWCC uses a greedy list

scheduling algorithm to construct the temporal schedule for each tile. This scheduler

is also responsible for scheduling the communication instructions required to satisfy

instruction precedence and data dependence constraints in a way that is guaranteed

to produce a computationally correct, deadlock-free schedule.

This approach to spatial instruction scheduling produces promising results though

it has one significant shortcoming. Many of the instructions to be scheduled are

disambiguated memory references that must be executed on a specific tile, and using

this system, RAWCC is unable to efficiently consider information about pre-placed

instructions when generating a schedule. Due to the non-uniformity of the Raw

communication network, long communication delays are often introduced when the

results of these memory references are transmitted to the tiles that need them.

This system also suffers from the phase ordering problem. One particular prob-

lem is a result of the division between spatial and temporal scheduling. When the

partitioner seeks to minimize communication between partitions, it sometimes cre-

ates partitions that cannot be executed in parallel and must be executed sequentially

instead. This defeats the purpose of partitioning.
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The spatial scheduling system described in Chapter 5 addresses the pre-placed

instruction and phase ordering problems faced by RAWCC. The pre-placed instruc-

tions are used as hints for determining the structure of the instruction stream to be

scheduled and often point to areas of exploitable ILP. The phase ordering problem is

addressed using a combined-phase probabilistic scheduling approach that takes tem-

poral scheduling information into account when spatial scheduling is being performed.
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Chapter 3

Empirical Analysis of Program

Characteristics

The problem of performing optimal space-time instruction scheduling for software-

exposed architectures is NP-hard. Since a tractable algorithm for exact solutions

is unlikely, a heuristic approach leading to approximate solutions is required. In

this chapter the structure of the individual scheduling regions taken from benchmark

applications is examined and analyzed. This analysis yields an understanding of the

program characteristics critical to effective space-time scheduling. The conflicting

needs presented by these characteristics are then used to derive the structure of the

phase ordering problem.

3.1 Benchmark Suite

Table 3.1 describes the set of benchmark applications used in this thesis. With the

exception of SHA, they were extracted from the SPEC [6], Rawbench [3], and Medi-

abench [11] benchmark suites. The version of SHA used in this thesis was provided

by Matt Frank. The benchmark set includes dense matrix applications, multimedia

applications, and an application without regular memory usage.

With the exception of Life-static and Mxm, no ILP-enhancing modifications were

made to the benchmarks, though a small number of other modifications were per-
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Table 3.1: Benchmark characteristics. Sequential time is the run-time for uniprocessor
code generated by the Machsuif MIPS compiler [18]

Benchmark Type Source Language Lines Seq. Primary Description
of time Array

code (cycles) size
Life-perf Dense Rawbench C 136 258K 32 x 32 Conway's Game of Life

Matrix
Cholesky Dense NASA7 FORTRAN 175 113K 4 x 4 x 16 Cholesky Decomposi-

Matrix (Spec92) tion & Substitution
Tomcatv Dense Spec92 FORTRAN 267 261K 18 x 18 Mesh Generation with

Matrix Thompson's Solver
Vpenta Dense NASA7 FORTRAN 192 175K 16 x 16 Inverts 3 Pentadiag-

Matrix (Spec92) nols Simultaneously
Mxm Dense NASA7 FORTRAN 58 1.61M 32 x 64, Matrix Multiplication

Matrix (Spec92) 64 x 8
Adpcm Multi- Media- C 302 340K 1024 Speech Compression

media bench
SHA Multi- Matt Frank C 615 1.21M 512 x 16 Secure Hash Algo-

media rithm
Fpppp-kernel Irregular Spec92 FORTRAN 1013 1.92K - Electron Interval

Derivatives
Jacobi-small Dense Rawbench C 69 39.5K 16 x 32 Jacobi Relaxation

Matrix

formed. Currently the Raw architecture does not support double-precision floating

point arithmetic, so all floating point operations were converted to single-precision.

In addition, data set sizes were reduced to improve simulation time. Table 3.1 lists

the data set sizes used for each benchmark in this thesis.

Since the outer loop of Mxm had already been unrolled four times for increased

performance on VLIW machines, this unroll factor was increased to 16 to improve

performance on 8 and 16 tile Raw machines. Due to the small data set size, Life

contained a disproportionately large number of dynamic memory references. These

dynamic references were made static through array padding.

3.2 Visualizing Scheduling Regions

A direct approach to understanding the structure of program scheduling regions is to

look at them. Through visual analysis, the characteristics of the space-time scheduling

problem can be examined in detail. Heuristics that effectively exploit these charac-

teristics can then be developed to approximately solve the problem.

For visualization purposes it is convenient to represent a scheduling region by
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Figure 3-1: Shapes of nodes assigned to specific tiles

a directed acyclic graph with nodes representing instructions and edges representing

dependencies. To simplify the layout, only true dependencies, edges from instructions

that produce values to instructions that use them, are included. Output, and anti-

dependences are omitted from the visual representation as they clutter the image and

often obscure the underlying structure of the graph.

Once the scheduling region is in the proper form, the dot [9] directed graph layout

system is used to generate an image. When the image is used for screen viewing or

color printing, nodes can be shaded with different colors to signify placement on dif-

ferent tiles. In this chapter, however, nodes assigned to distinct tiles are differentiated

by their shape. Figure 3-1 enumerates the shapes used for instructions assigned to

particular tiles in this thesis.

Many of the scheduling regions studied in this thesis contain a small number of

instructions that copy a value for the use of a very large number of other instructions.

Figure 3-2 shows a region with this behavior. It was taken from Cholesky compiled

for eight tiles. Removal of the edges representing these copy operations simplifies the

graph structure and allows the layout engine to more clearly display that structure,

as seen in Figure 3-3. Whenever a graph for a scheduling region has been modified in

this way, the caption will contain a string of the form, "(n)", where n is the number

of copy instructions whose outgoing edges have been removed. The scheduling region

graphs in this thesis contain directed edges that point from left to right or top to

bottom depending on the aspect ratio of the graph. Note that appendix A contains

full-page representations of all scheduling region graphs displayed in this chapter.
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Figure 3-2: Cholesky 8 tiles

Figure 3-3: Cholesky 8 tiles (4)
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3.2.1 Choice of Scheduling Regions

Most of the benchmark programs contain tens or hundreds of scheduling regions rnean-

ing that a subset must be chosen for detailed study. The scheduling regions chosen

for presentation in this thesis are derived from the inner loops of the benchmark ap-

plications. Analysis of these regions is important for two reasons. First, applications

tend to spend the majority of their execution time in the inner loops, meaning that

optimizing the schedules for the bodies of these loops is essential for rapid program

execution. Second, the innermost loops are often unrolled by the compiler. Thus,

the scheduling regions derived from these inner loops are generally the largest regions

for each application and provide the greatest source of parallelism available in the

application.

3.2.2 Dense Matrix Applications

All of the dense matrix applications examined in this thesis contain scheduling regions

similar to the region taken from Mxm, compiled for 8 tiles, shown in Figure 3-5. This

type of scheduling region is the result of performing loop unrolling on a loop that

indexes an array or set of arrays using affine transformations of induction variables.

The eight unrolled loop iterations present in this scheduling region are disconnected

from each other after the initial copy edges are removed. Thus there are no dependen-

cies between unrolled iterations of the loop, allowing them to be executed in parallel

as long as the memory usage pattern does not create bottlenecks.

The scheduling region shown in Figure 3-6, taken from Vpenta compiled for 8

tiles, exhibits similar structure to the previously examined regions from Cholesky and

Mxm. Once again, the loop has been unrolled and there is no communication between

iterations. Two multicast nodes with nearly 200 children each were removed from this

graph to simplify the layout.1 This region has the property that for each iteration of

the original loop, all static memory references are confined to a single tile. Thus it is

'The communication code generator for RAWCC will allow at most one copy of a particular value
to be sent to each tile, and since the children of these nodes are likely to be distributed across all
tiles, the communications become simple broadcasts.
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Figure 3-4: Life 8 tiles (2)

possible to execute this entire region without performing any communication on the

static network after the initial multicasts have taken place. This property is shared

by the Cholesky, Tomcatv, and Vpenta benchmark applications.

3.2.3 Multimedia Applications

Unlike the parallel structure exhibited by the dense matrix applications, the multi-

media applications examined in this thesis exhibit highly serial structure. Represen-

tative scheduling regions taken from Adpcm and SHA are shown in Figure 3-7 and

Figure 3-8 respectively. Any exploitable ILP in these regions has much finer grain

and less regular structure than the available parallelism found in the dense matrix ap-

plications. These applications will therefore derive an extremely limited performance

benefit from increases in the number of available tiles. After detailed inspection of

the scheduling region in SHA, we estimate that it contains at most three or four-way

parallelism.
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Figure 3-5: Mxm 8 tiles (3)

Figure 3-6: Vpenta 8 tiles (2)
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Figure 3-9: Fpppp 8 tiles

3.2.4 Irregular Applications

The Fpppp-kernel is the only application examined in this thesis without regular

memory usage. Figure 3-9 displays the single scheduling region contained in this

kernel. While the kernel contains a large amount of ILP, it is more fine-grained than

the ILP found in dense matrix applications. Another point of interest in this region

is the long reduction that dominates the lower half of the graph. A transformation of

this reduction from its linear form to a tree topology could improve the performance

of this region when it is compiled for a large number of tiles.

3.3 Discussion

Visual examination of scheduling region graphs offers many clues for effectively solving

the space-time scheduling problem for software-exposed architectures.
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3.3.1 Pre-Placed Instructions

The memory reference distribution and disambiguation efforts of RAWCC result in

many static memory references. Since the memory banks accessed by these instruc-

tions are known at compile time, each static memory reference instruction is assigned

to the tile containing the memory bank it refers to. These instructions are called

pre-placed instructions. If instruction pre-placements are ignored, particularly when

performing spatial scheduling, a large amount of unnecessary communication is often

the result.

The instruction partitioning module in the initial implementation of RAWCC

ignores instruction pre-placement information. Though the instruction placement

module considers the locations of pre-placed instructions when mapping the parti-

tion to tiles, the pre-placed instructions are rarely mapped to the same tile as their

neighbors due to uninformed decisions made by the partitioner. This increases the

delay associated with memory references, making the temporal scheduling task more

difficult and potentially eliminating some of the most efficient schedules from consid-

eration. Also, since these memory references usually occur at the same point in each

of the original loop iterations, network congestion delay may become a factor if all of

the tiles attempt to perform the remote memory accesses at the same time. This sug-

gests that dividing the instruction assignment task into partitioning and placement

phases is inappropriate in the presence of pre-placed instructions.

Conveniently, the pre-placed instructions generated by loop unrolling and align-

ment analysis often provide useful information about the structure of a scheduling

region. For unrolled loops without loop-carried dependencies, the disambiguated

memory references are spread across the breadth of the region and thus point to good

starting locations for the search for parallelism. In cases such as Cholesky, where each

loop iteration contains disambiguated references destined for only a single tile, the

pre-placed instructions immediately suggest an almost perfect partition. On an ap-

plication like Mxm, the pre-placed instructions do not suggest as clean of a partition

though they still make a good starting point.
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Figure 3-10: A scheduling region with a critical path marked by diamonds

The serial nature of the multimedia applications, and their less easily identified

memory-access structure, means that the pre-placed instructions provide less assis-

tance in the partitioning of their scheduling regions. The sparse distribution of pre-

placed instructions throughout the regions does offer some guidance for the placement

task, however.

As the only disambiguated memory references in the Fpppp kernel occur at the

very end of the scheduling region, pre-placed instructions play very little role in the

space-time instruction scheduling of this application.

3.3.2 Critical Path

A critical path in a scheduling region is a linear sequence of connected instructions

whose total latency is the maximum over all such sequences in the region. Figure 3-10

shows a small scheduling region from the Cholesky benchmark with instructions on

a critical path displayed as diamonds. On a machine with unlimited parallel com-

putation resources and zero communication latency, the shortest possible execution

time for a scheduling region will be exactly the latency of the critical path since, by

definition, instructions on the path cannot be executed in parallel.

41

10.4p



The critical path is an important consideration for temporal scheduling, as in

reality, the principle task of a temporal scheduler is to hide the long latencies along

the critical path by scheduling other useful work during those latencies.

Instruction partitioning systems must also be aware of the critical path. Instruc-

tions on a critical path generally ought to be assigned to a single tile since any

inter-tile communication on the critical path immediately increases the total latency

of the path. This suggests that an instruction partitioner for a highly serial applica-

tion, such as SHA, may achieve good results if it first assigns the critical path to a

single tile, and then searches for groups of instructions not on the critical path that

can be assigned to a different tile without increasing the total length of the schedule.

The critical path plays a different role in applications with a high degree of par-

allelism, which includes all of the dense matrix applications described in this thesis.

In these applications, each separate loop iteration has a critical path and the most

important consideration is that the loop iterations be executed in parallel if possible.

While the temporal scheduler must observe the critical path to ensure that the in-

structions assigned to each tile execute as efficiently as possible, the partitioner should

instead focus on the high-level structure of the graph. If the partitioner chooses a

critical path to partition and then concentrates on discovering ILP near that critical

path, it may miss the opportunity to take advantage of the coarse-grained parallelism

at the loop iteration level.

The Fpppp kernel demands a hybrid approach to space-time scheduling. The first

part of the scheduling region contains a large amount of ILP, which a purely critical

path-based system may not make efficient use of. Then the second part of the region

is dominated by a reduction which presents a critical path. If the partitioner is solely

concerned with discovering ILP, it may distribute the instructions along the reduction

path among the tiles and introduce many unnecessary communication delays in the

portion of the schedule that is dominated by the critical path. Thus an effective

partitioner for this region must be aware of how to effectively exploit ILP, how to

partition around the critical path, and how to tell when and where each technique is

appropriate.
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The scheduling region taken from the Life benchmark shown in Figure 3-4 also

presents these mixed demands. Each loop iteration contains a number of parallel

threads anchored by pre-placed instructions. These threads are combined by a reduc-

tion shortly after the pre-placed memory operations. A good schedule for this region

requires that the threads be executed in parallel across the tiles with proper consid-

eration given to the locations of pre-placed instructions. Then the reduction must be

assigned to a single tile, preferably the tile of the pre-placed instruction nearest to

the beginning of the reduction.

3.3.3 Register Pressure

The Fpppp scheduling region contains 28 nodes with five children or more for a total

of 228 values. Most of these nodes have few, if any, ancestors and therefore tend to be

scheduled early in the computation. Since the early portion of Fpppp exhibits a large

amount of ILP, each of these nodes is likely to have children assigned to many different

tiles. This has two implications. First, it is likely that the network is congested at the

start of the schedule as these instructions communicate their values to their children.

Second, each value is replicated by the number of tiles it is sent to which means that

the schedule also suffers from high register pressure. This means that a partitioner

that is too aggressive in seeking ILP may cause over-replication of values and suffer

a performance loss, due to the spilling of these values to memory, when compared to

a less aggressive approach.

This mistake can also be made by the temporal scheduler. Temporal schedulers

often interleave instructions from unrelated tasks in order to maximize processor

usage in the presence of long-latency instructions. If a scheduler interleaves tasks too

aggressively when it is presented with a region containing a high degree of parallelism,

such as those found in Fpppp or Vpenta, the processor may need to maintain more

intermediate values than it can store in registers. This requires values to be stored

in memory and drastically slows the execution of the schedule.
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Chapter 4

Combined-Phase Probabilistic

Scheduling

In this chapter, a combined-phase probabilistic approach to the space-time instruction

scheduling and register allocation problems is presented. Rather than mapping each

instruction to a single point in time, space, and register file, this approach maintains

a probability distribution over time, space, and registers for each instruction. A series

of simple heuristic algorithms then modify the probability distributions in order to

iteratively improve the final schedule.

4.1 Motivation

The empirical analysis of benchmark application characteristics detailed in Chapter 3

clearly indicates that different classes of scheduling regions have different needs that

must be met for efficient code generation. Furthermore, many applications contain

regions requiring different techniques at different points within the region. Finally,

even within very localized areas there are often multiple conflicting factors, such as

communication cost, load balance, and register pressure, to be considered, and it is

often the case that elimination of any of those factors from consideration will result

in a poor schedule.

The task of performing optimal space-time scheduling and register allocation si-
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multaneously is NP-hard so searching for an optimal solution is unreasonable. To

make matters worse, both instruction scheduling and register allocation are also NP-

hard, meaning that those phases must be performed heuristically. The engineering

complexity of combining heuristics in order to build a computationally feasible algo-

rithm that is directly capable of analyzing and considering all of these factors and

their tradeoffs is extremely daunting. The classical solution to this problem has been

to divide the space-time scheduling and register allocation tasks into separate phases

and give each phase responsibility for ensuring that a subset of the constraints and

tradeoffs are taken into account. Unfortunately this leads to the phase ordering prob-

lem.

The probabilistic scheduling framework proposed in this chapter is designed to

minimize the effects of the phase ordering problem and facilitate the use of many

simple space-time scheduling and register allocation heuristics to produce a scheduling

system that is both flexible and effective. This is accomplished by giving the heuristic

algorithms, or phases, two new abilities: they can apply their knowledge and analysis

to the previous work of other phases and make modifications to that work, and they

can express their level of uncertainty with a decision and suggest alternatives.

4.2 Detailed Description

The combined-phase probabilistic scheduling system, shown in Figure 4-1, consists

of three main components: a probabilistic schedule representation that maintains

the current schedule state, a set of small heuristic space-time scheduling and register

allocation algorithms that modify the schedule, and a driver that chooses heuristic

algorithms to apply to the schedule in order to iteratively improve it.

4.2.1 Probabilistic Schedule

A conventional schedule representation maps each instruction to a single processing

resource, time slot, and register. The probabilistic schedule generalizes this represen-

tation by associating with each instruction a probability distribution over time, space,
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Figure 4-1: Combined-phase probabilistic scheduling system

and registers. This distribution describes the desirability of assigning that instruction

to each (processing resource, time slot, register) triple. Note that while the schedule

is discussed in terms of probabilities, decisions made in the probabilistic scheduling

approach are rarely random, especially when a concrete schedule is extracted from

the probabilistic schedule. If this step was performed randomly, the quality of the

schedule would worsen due to low-probability events that would occasionally cause

instructions to be scheduled at inappropriate times, on inconvenient tiles, or in con-

flicting registers based on the assignments of their predecessors and successors.

This generalized representation gives the heuristic scheduling phases much more

flexibility than a conventional representation. Rather than simply accepting or revers-

ing the decisions made by previous phases, algorithms can make gradual modifications

to the schedule. Also, if one phase determines that a particular assignment is a bad

idea, it can reduce the probability of that assignment without actually reversing it,

thereby increasing the probabilities of any alternatives suggested by previous phases.

In addition to modifying the work of previous phases, the local heuristic algorithms

are also given more control over how they express their own decisions. Conventionally,
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compiler phases do not have the opportunity to express uncertainty about decisions

or provide alternatives. Using the probabilistic schedule, however, algorithms can

express high confidence in some decisions while expressing low confidence in others

and giving some probability to the alternatives.

4.2.2 Local Heuristics

Local heuristics are small simple algorithms that work cooperatively to iteratively

improve the probabilistic schedule. Each heuristic is responsible for applying some

specific piece of knowledge to the schedule. By applying many different local heuris-

tics, knowledge about many different aspects of the space-time scheduling and regis-

ter allocation problem is built up to produce an efficient schedule. The term, local

heuristic, does not mean that the algorithms are prohibited from examining the entire

scheduling region. Instead it means that each algorithm employs some specific piece

of knowledge that is local to their area of the scheduling problem domain.

The heuristic algorithms used for combined-phase probabilistic scheduling gen-

eralize conventional compiler back-end phases in two ways. First, they may output

a probability distribution over space and time instead of a single mapping for each

instruction. Second, they may examine previously generated scheduling information

directly related to their task. This differs from conventional interfaces where the

phases perform non-overlapping tasks, such as temporal scheduling and register allo-

cation.

There are three general types of algorithms used in the probabilistic scheduling

approach. Improvers apply local scheduling heuristics in order to produce a more

efficient schedule. Selectors make specific decisions and increase their probabilities

in order to make the schedule more concrete. Finally, constraint enforcers apply

constraints to the schedule in order to insure its validity.
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Improvers

Improvers embody the heuristic scheduling techniques required to produce good

schedules. They take the current schedule and consider individual factors such as

pre-placed instructions, load balance, and communication cost in order to make im-

provements to it. It is their task to ensure that good schedules are produced.

For example, a critical path improver may find a critical path in the dependence

graph and give all of the instructions on it higher weight on the most popular tile for

those instructions. A communication improver may modify an instruction's proba-

bility map so that it is more likely to be assigned to the same tile as one or more of

its neighbors. A register allocation improver may look for areas of the schedule with

many live ranges and attempt to rearrange instructions in time and space to reduce

register pressure.

Selectors

Selectors ensure that the probabilistic schedule eventually converges to a concrete

schedule. Without the intervention of selectors, probability distributions for instruc-

tions may stay wide and flat indefinitely, with no clear concrete schedule ever forming.

A selector alleviates this problem by iterating over the instructions, selecting entries

in their probability maps based on selection criteria, and increasing the probabili-

ties for those entries. For example, a single-entry selector may choose to increase

the probability of the highest time, tile, and register triple for an instruction. A

maximum-tile selector may choose to increase the probabilities for all time slots on

the tile with maximum total probability for a particular instruction. A median-time

selector may increase the probability of an instruction being assigned to any of the

tiles in its median time slot.

Constraint Enforcers

Constraint enforcers are responsible for preventing the probabilistic scheduling system

from outputting an invalid schedule or spending an inordinate amount of time working
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on one. For example, a constraint enforcer can ensure that pre-placed instructions are

always mapped to their proper tile. A precedence constraint enforcer can make sure

that an instruction is always scheduled before its children and that there is sufficient

time between the instructions to allow for the proper communication delay due to

their tile assignments. Constraint enforcers are necessary to guarantee the correctness

of the schedule and ensure that the other heuristics are performing productively by

not spending too much time improving impossible schedules.

4.2.3 Application of Local Heuristics

Because this scheduling approach employs a set of distinct local heuristics to produce

space-time schedules and register allocations, it risks suffering from the phase ordering

problem. If each local heuristic is applied to the schedule only once and in some

fixed order, the phase ordering problem will negatively effect many schedules, as it

does with conventional scheduling approaches. To minimize the effects of the phase

ordering problem the local heuristics must each be applied multiple times. If the

number of iterations is large and the order of heuristic application varies, the effects

of going first or last or immediately before or after some other heuristic diminish. Thus

the decision of which heuristic to apply at which time is of significant importance to

the effectiveness of this approach.

The primary responsibility for choosing local heuristic algorithms to apply to

the schedule is given to the driver. Through these decisions, the driver chooses

which local knowledge should be applied to the schedule in the next iteration. If the

driver performs well, the solution will improve over time as additional local knowledge

builds with each iteration. In addition to this task, the driver must initialize the

probabilistic schedule at the start of the procedure and output a concrete schedule

when it determines that the schedule is complete.

The principle task of the driver is to choose algorithms to apply to the probabilistic

schedule in order to ultimately produce an efficient schedule. This can be as simple as

iterating over a fixed set of algorithms for a fixed number of iterations; however, more

sophisticated approaches are likely to produce considerably better results. Another

50



possibility is for the driver to examine the graph and favor algorithms that are more

relevant to it. For example, algorithms based on critical path optimization could be

favored on highly serial graphs, while algorithms that try to balance the load among

tiles could be used for parallel graphs. An even more sophisticated driver may observe

the effects of different local heuristics on the schedule and more frequently apply those

that were able to improve the schedule in previous iterations.

The decision by the driver to terminate and output the concrete schedule can

be based on a fixed list of algorithms to run or adapted to the task at hand. One

possibility is to measure the quality of the schedule and terminate when the quality

stagnates or worsens for a period of time.

When outputting the concrete schedule, the driver must finalize assignments based

on the probability distributions in the probabilistic schedule. Though the driver is

free to use any selection criteria to make these assignments, simply choosing the

time, tile, register triple with maximum probability in each instruction's distribution

is completely general. If different selection criteria are desired, such as choosing the

median time slot, a selector that uses the proper criteria can be run to ensure that the

preferred entry has maximum probability immediately before the concrete schedule

is issued.

4.3 Example

Figure 4-2 gives a simple example of the operation of a combined-phase probabilistic

scheduler. To simplify the example, only spatial scheduling is performed, though

multiple heuristics interact to produce the schedule. Assume the target machine

contains two tiles and communication of a word between tiles requires one clock cycle.

The lower portion of Figure 4-2 displays the probabilistic schedule after each of four

heuristics are applied to the schedule. Large circles represent high probability for the

instruction to be assigned to that tile while small circles represent low probability.

When the schedule is initialized, each instruction is uniformly distributed across

the tiles. Then the critical path heuristic identifies the critical path as containing
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instructions 1, 2, 3, 6, and 7 and probabilistically places them on tile 2. Next the

pre-placed nodes heuristic increases the probability that instructions 2, 3, 4, 5, 6, and

7 are placed on tile 2. After this the driver notices that the schedule is imbalanced

and invokes the load balance heuristic. This heuristic chooses to place instructions 1,

2, and 7 on tile 1 in order to improve load balance. Finally the critical path heuristic

is executed again, except that this time tile 1 is chosen to hold the critical path. At

this point, the driver decides that the schedule is complete and terminates execution.
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Chapter 5

Algorithm

This chapter describes a spatial instruction scheduling system that uses the proba-

bilistic scheduling approach. It has been implemented in C++ and integrated with

RAWCC [12]. The system accepts a data dependence graph and a machine descrip-

tion as input and returns a mapping between instructions and tiles as output. The

RAWCC temporal list scheduler and register allocator are then used to complete the

code generation task.

5.1 Probabilistic Schedule Representation

An efficient probabilistic scheduling representation cannot represent arbitrary proba-

bility distributions for each instruction. Each instruction could potentially condition

its probability distribution on the distributions of every other instruction in the re-

gion, giving the representation combinatorial space complexity. In order to achieve

tractable space requirements while attempting to allow enough freedom and expres-

siveness for the scheduler to work well, the probabilistic schedule in this algorithm

is represented by a three-dimensional array of probability values, Pijk, indexed by

instruction ID, time slot number, and tile number. This allows each instruction to

maintain a joint probability distribution over time slots and tile numbers. While

the quadratic space requirement of this representation becomes prohibitive on large

scheduling regions, it is hoped that the additional expressiveness of the joint distri-
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bution over separate unconditional distributions for space and time will allow better

interaction through local scheduling heuristics due to information sharing. The num-

ber of time slots is chosen to be the exactly the length of the critical path in order

to save space. This means that temporal scheduling information is slightly coarse-

grained; however, this is acceptable since it is only used within the probabilistic

scheduler. For each instruction, the space-time probability map is initialized with a

uniform distribution over all tiles and all time slots in which the instruction could in

principle be scheduled. The set of possible time slots is based on the longest paths

from the instruction to root and leaf instructions.

Each dimension of the probability map is incremented by one to create storage

space for commonly accessed sums of probabilities. Using this additional storage on

the perimeter of the matrix, sums over each node, tile, time slot, node and tile, node

and time slot, and tile and time slot can be maintained along with the data associated

with each node, tile, and time slot triple. This facilitates constant time lookup of sums

over any combination of node, tile, and time slot. In order to ensure that single-value

updates run in constant time, the old value to be updated is subtracted from the new

value and this difference is added to each of the seven affected totals in addition to

the entry being updated.

One important feature of the representation is its handling of probability normal-

ization. For each instruction, the sum of the values over the entire joint probability

distribution should equal 1. For performance reasons, rather than adjusting the en-

tire probability map for an instruction every time a value is changed, the probability

maps are only normalized when the driver or one of the scheduling heuristics requests

the operation.

The probabilistic schedule representation provides a number of functions to sim-

plify common tasks. These include finding the tiles with greatest and least probability

for a given instruction, finding the median time slot in the time probability distribu-

tion for an instruction, and finding the tiles with greatest and least probability for a

given time slot. Functions are also provided to multiply any of the totals, and their

constituent values, by a given factor.
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Let N equal the number of instructions in the region, T equal the number of time

slots used, and S equal the number of tiles on the target architecture. Then let the

probabilistic schedule

P = {pnet|0 < n < N and 0 < t < T and 0 < s < S}

such that

Pnt, = Pr[instruction n is scheduled at time t on tile s].

Next define
T-1

PnTs Pnts,
t=O

N-1 T-1

PNTs E Pnts,
n=0 t=O

N-1 T-1 S-1

PNTS Z Z E Pnts,
n=0 t=0 s=0

and so on. Note that PnTS = 1Vn.

5.2 Heuristics Implemented

This section contains a list, and short descriptions, of the heuristic algorithms imple-

mented for the probabilistic scheduling approach to the spatial scheduler.

5.2.1 do-preplaced-nodes

This improver heuristic gives instructions an increased probability of being assigned

to the same tile as their nearest pre-assigned instruction. It executes in two phases.

First the heuristic iterates over the tiles and uses breadth first search to calculate

the distance in the dependence graph from each instruction to the nearest instruction

pre-assigned to that tile. Then it iterates over the instructions. If an instruction is

pre-assigned to a particular tile the heuristic sets the probability of that instruction

being assigned to any other tile to zero. If the instruction is not pre-placed, then for
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each tile, the probability of the instruction being assigned to that tile is divided by

the distance to the nearest pre-placed node assigned to that tile.

do.preplacednodes()

For each instruction n do:

If n is preplaced on tile s then

Set P[n][T][s] = 1 and P[n][T]Es'] = 0 for all s' != s

Else

For each tile s do:

Set P[n][T][s] = 1 / min. dist. from n to preplaced instr. on tile s

End

End If

End

5.2.2 balance Aile-load

This improver heuristic iterates through the time slots and attempts to equalize the

total weight assigned to each tile in each time slot. This is accomplished by multi-

plicatively scaling the probabilities for lightly loaded tiles in each time slot.

balance-tileload()

For each time slot t do:

For each tile s do:

Set P[N] [t] [s] = P[N][t] [S] / S

End

End

5.2.3 round-robin Ailes

This selector assigns instructions to tiles in a round-robin fashion by increasing the

probability of assignment to the selected tile by fifty percent.
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round-robintiles()

Let a = 0

For each instruction i do:

Let a = a + 1

Set P[i] [T] [a mod S] = 1.5 * P[i] [T] [a mod S]

End

5.2.4 strengthen-maxAiles

This selector heuristic iterates through the instructions and increases each instruc-

tion's probability on the tile it already has highest probability on by fifty percent.

strengthenmaxtiles()

For each instruction i do:

Let s = maximum probability tile for i

Set P[i][T] [s] = 1.5 * P[i][T][s]

End

5.2.5 find parallelism

This improver heuristic iterates over the time slots and attempts to increase paral-

lelism usage in time slots with high load imbalance. High load imbalance is considered

to be cases where the tile with highest total weight has more than fifty percent more

weight than the least heavily loaded tile. The heuristic creates a set of nodes that

may be allocated to the heavily loaded tile in the current time slot and finds the

pair of nodes that are the greatest distance apart in the graph, while memoizing all

computed distances. If these nodes are sufficiently far apart, one of them, along with

its near neighbors, has its probability for the heavily loaded tile in that time slot

reassigned to the most lightly loaded tile in the time slot.

find-parallelism()

For each time slot t do:
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Let b = most heavily loaded tile in time slot t

Let 1 = most lightly loaded tile in time slot t

If P[N] [t] [b] / P[N] [t] [b] > 1.5 Then

Let I = {instructions iIP[i][t][b] > thresholdl}

Let instructions i and j be instructions in I with max distance between them

If distance between i and j > threshold2 Then

Let p = P[i] [t] [1]

Set P[i] [t] [1] = P[i] [t] [b]

Set P[i][t][b] = p

For each neighbor n of i do:

Let p = P[n] [t] [1]

Set P[n] [t][l] = P[n] Et] [b]

Set P[n][t][b] = p

End

End If

End If

End

5.2.6 examine-neighbors

This improver heuristic iterates over the instructions and attempts to reduce com-

munication by placing them on the same tile as their neighbors. It first counts the

number of neighbors of an instruction that are likely to be assigned to each tile. Then

for each tile the heuristic multiplies the probability for the instruction on that tile by

the number of neighbors that were counted for that tile.

examineneighbors 0

For each instruction i do:

For each tile s do:

Let C[s] = 0

End
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For each neighbor n of i do:

Let s = most likely tile for n

Let C[s] = C[s] + 1

End

For each tile s do:

Set P[i] [T] [s] = P[i] [T] [s] * C[s]

End

Let Total = P[i] [T] [S]

For each tile s do:

Set P[i] [T][s] = P[i] [T][s] / Total

End

End

5.2.7 highlight-critical-path

This selector heuristic begins by building a set of instructions that comprise a critical

path in the data dependence graph. If any instructions on the critical path are pre-

placed instructions, the critical path is assigned to the tile pre-placed instruction.

Otherwise the critical path is assigned to the least weighted tile.

highlight-criticalpath()

Let C = a critical path in the dependence graph

Let s = least weighted tile

For each instruction i in C (in topological order) do:

If i is pre-placed Then

Let s = tile for i

Break

End If

End

For each instruction i in C (in topological order) do:

If i is pre-placed Then
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Let s = tile for i

Else

Set P[i][T][s] = 1.5 * P[i][T][s]

End If

End

5.3 Driver Implementation

The driver used for this implementation is very simple. It applies a fixed set of

scheduling heuristics to the probabilistic schedule in a fixed order and assigns each

instruction to the tile with maximum total probability for that instruction.

This primary design goal for this driver was simplicity. A more complex driver that

iterates over the local heuristics many times could produce improved schedules if the

heuristics were properly tuned for multiple iterations. To work well on a more varied

set of scheduling regions, the driver needs to incorporate some kind of feedback during

the scheduling process. At the minimum, the termination condition could be based

on the amount of recent improvement made to the schedule. Also, using feedback

to choose which heuristic to run based on their past performance could enhance the

efficiency and effectiveness of the scheduling process.
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Chapter 6

Implementation and Results

This chapter presents an implementation of the probabilistic spatial scheduler de-

scribed in Chapter 5 targeted for the Raw architecture. Benchmark application per-

formance results were obtained using the Raw simulator, a cycle-accurate simulator

of the Raw architecture described in section 2.1.

6.1 Implementation

The probabilistic schedule in this implementation is represented by a three-dimensional

array of double precision floating point values indexed by instruction ID, time slot

number, and tile number.

Of all combinations and orders of scheduling heuristics studied for this thesis,

the most efficient schedules were generated by the sequence: do-preplaced-nodes,

balance-tile-load, and strengthen-max-tiles. All benchmark results presented in this

thesis were obtained using this driver. Part of the reason for this simplicity is nearly

all of the benchmarks had pre-placed nodes that were very effective at giving spatial

scheduling hints. Any additional work after do-preplaced-nodes tended to worsen the

schedules rather than improve them.
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6.2 Methodology

The probabilistic spatial instruction scheduler described above was integrated with

RAWCC, the sequential compiler for Raw. The back end phase ordering for this

compiler is: alignment analysis, loop unrolling, pointer analysis, data and memory

placement, spatial instruction scheduling, temporal list instruction scheduling, and

graph-coloring register allocation.

Application performance results were obtained using the cycle-accurate Raw sim-

ulator. This simulator properly models the communication network, including con-

gestion, as well as the execution activities of each tile. We obtained experimental

results for the suite of benchmarks detailed in section 3.1. Each tile is modeled ex-

actly with an extended MIPS R4000 core and switch processor. Instruction latencies

for arithmetic instructions are listed in Table 2.1.

Speedup values are derived from comparison to the execution time of each bench-

mark compiled by the Machsuif [18] MIPS R4000 compiler and executed on the MIPS

R4000 core located on a single Raw tile.

Section 3.1 describes the set of benchmark applications used to generate the results

presented in this chapter.

6.3 Speedup

Figure 6-1 presents the speedup from compilation with RAWCC with conventional

partitioning and RAWCC with probabilistic partitioning compared to single-processor

performance. Cycle counts and speedup from conventional to probabilistic parti-

tioning are given in Table 6.1. Probabilistic partitioning improves on conventional

partitioning on most of the benchmarks.

Both versions of RAWCC demonstrate significant speedup on all dense matrix

benchmark applications. Probabilistic partitioning generates more efficient schedules

than conventional partitioning on all dense matrix applications and all tile quantities

except for Vpenta on 16 tiles, where probabilistic partitioning performs two percent
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Table 6.1: Execution cycle counts for probabilistic partitioning and original parti-
tioning of Raw benchmarks

Number of tiles 01 02 04 08 16
Conv. part. 346,568 328,748 206,348 148,757 113,857

Life-perf Prob. part. 347,011 294,993 193,113 132,802 103,225
speedup 0.999 1.11 1.07 1.12 1.10

Conv. part. 136,735 156,801 93,818 81,154 76,614
Cholesky Prob. part. 136,737 116,993 77,409 65,546 59,716

speedup 1.00 1.34 1.21 1.24 1.28

Conv. part. 337,279 271,073 194,175 107,436 73,460
Tomcatv Prob. part. 334,694 243,887 152,524 91,057 58,807

speedup 1.01 1.11 1.27 1.18 1.25

Conv. part. 214,168 226,056 153,616 109,362 82,249
Vpenta Prob. part. 212,602 200,263 133,483 98,376 83,759

speedup 1.01 1.13 1.15 1.11 0.982

Conv. part. 1,893,783 1,388,108 860,460 505,527 266,442
Mxm Prob. part. 1,893,783 1,314,319 714,924 444,181 252,611

speedup 1.00 1.06 1.20 1.14 1.05

Conv. part. 973,051 1,149,439 908,910 739,167 805,888
Adpcm Prob. part. 972,028 11115,093 970,617 894,493 948,292

speedup 1.00 1.03 0.936 0.826 0.850

Conv. part. 1,300,544 1,100,046 790,878 760,884 678,299
SHA Prob. part. 1,290,816 949,533 775,043 - -

speedup 1.01 1.16 1.02 - -

Conv. part. 1523 1752 800 590 531
Fpppp-kernel Prob. part. 1552 2545 2521 2210 1438

-speedup 0.981 0.688 0.317 0.267 0.369

Conv. part. 47,052 39,773 22,989 15,784 11,500
Jacobi-small Prob. part. 47,052 34,492 19,361 12,388 8838

-speedup 1.00 1.15 1.19 1.27 1.30
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worse than conventional partitioning.

The results are mixed for the two multimedia benchmark applications. Prob-

abilistic partitioning demonstrates improvement over conventional partitioning on

SHA for two and four tile Raw machines; however, the algorithm runs out of memory

when compiling SHA for 8 and 16 tiles due to unrolling of a very large loop and

the quadratic space requirements of the chosen probabilistic schedule representation.

Both partitioning algorithms perform poorly on Adpcm due to a large number of

dynamic memory references.

The results on Fpppp-kernel illuminate the dependence of the current probabilistic

partitioning algorithm on pre-placed instructions for information about scheduling

region structure. Fpppp-kernel contains exploitable ILP; however, with no preplaced

nodes to serve as guides, the probabilistic partitioner is unable to effectively use it.
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Chapter 7

Analysis

This section presents an analysis of the positive and negative features of the proba-

bilistic spatial scheduler implementation described in Chapter 6.

7.1 Potential Problems

This combined-phase probabilistic scheduling approach presents a number of chal-

lenges that must be addressed in a successful implementation. Some of these chal-

lenges include working with unconditional probabilities, ensuring that the schedule

converges in a meaningful way, finding the right balance between overly aggressive and

overly passive heuristics, and composing the heuristics so that the resulting schedule

is positively affected by the running of multiple heuristics.

7.1.1 Unconditional Probabilities

One of the most challenging aspects of the probabilistic scheduling approach is the

lack of conditioning between the probability maps of instructions. This inhibits simple

operations on groups of instructions.

Consider the critical path heuristic. The primary goal of the critical path heuristic

is to place all instructions along the critical path on the same tile. The actual identity

of that tile is unimportant. What the critical path heuristic would like to specify is
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that all instructions on the critical path will be assigned to the same tile; however,

the choice of which tile they should be assigned to is left to a future heuristic, perhaps

a pre-placed instruction or load balancing heuristic, that is better equipped to make

that decision. Unfortunately there is no way to represent this in the current design

of the probabilistic scheduling system.

The critical path heuristic is left with two choices. One option is to attempt

to express that the critical path can be placed on any tile but giving the nodes on

the critical path uniform distributions across the tiles. This is unacceptable as it

fails to form any sort of link between instructions on the critical path, which is the

intended purpose of the critical path heuristic. The second option is to make the

conditional probabilities unconditional by choosing a tile and assigning the critical

path instructions to that tile. While the critical path heuristic is satisfied, this method

of "deconditioning" conditional probabilities as one serious drawback. It brings back

the irreversible decision problem that the probabilistic scheduling system had hoped

to overcome. If the probability distributions of all instructions on the critical path

were conditioned on a single instruction in in the path, changing the assignment

of that instruction would change the assignment of the entire critical path and the

irreversible decision problem would be alleviated. Without modification, however,

the probabilistic scheduling system cannot represent conditional probabilities between

instructions explicitly and care must be taken to work around this problem instead.

One possible solution is to represent the conditional probabilities implicitly in the

heuristics. For example, the critical path heuristic may choose a small number of

instructions to act as indicators, and ensure that the other critical path instructions

are always placed consistently with those indicators. For this technique to succeed,

the driver must cycle through the heuristic set many times to ensure that all important

conditional relationships are represented.

7.1.2 Schedule Convergence

Another challenge that must be addressed when implementing a probabilistic schedul-

ing system is the need for the schedule to converge to something meaningful. Due to
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the unconditional probability problem discussed in the previous section, it is easy to

end up with a set of heuristics that are incapable of making a firm decision. When

faced with seemingly interchangeable solutions, as can be the case with the critical

path heuristic, they balk at the task of selecting one of the solutions and implementing

it. The result is that noise effects, rather than the intentional efforts of the scheduling

heuristics, dominate the scheduling process as selectors are forced to make arbitrary

decisions in order to make progress. While some amount of this seems essential to

stimulate the scheduling process, developing improvers that can also perform the role

of selectors seems desirable.

7.1.3 Heuristic Cooperation

Tuning the heuristics so they work well with each other is a task that requires careful

consideration. When heuristics are either too aggressive or too passive, the schedules

they produce suffer. Heuristics that are overly aggressive continually reverse the

decisions of other heuristics without regard for the fact that the overridden decisions

may have been more appropriate for the current situation. Heuristics operating in

this manner are not cooperating, and this can result in unpredictable, and even cyclic,

behavior.

On the other hand, if the heuristics are tuned to be too passive and only make

small changes to the schedule probabilities, little progress will be made. All decisions

will be made by selectors, and while selectors are good at making decisions, they are

ill-suited for the task of producing good schedules on their own.

Machine learning techniques may be able to effectively automate the task of prop-

erly tuning heuristics for efficient cooperation. This problem is essentially a search

problem across the space of tunable parameters. Machine learning may be able to

discover patterns in the space to aid solution, or at least cover a much greater area

of the space than would be possible with manual experiments.

71



7.1.4 Heuristic Composition

Finally, when many heuristics with dissimilar goals are applied to the probabilistic

schedule, it is hoped that the composition of their effects brings out the best that

each has to offer with the bad decisions of each overridden by the good decisions of

the others. If the reverse of this occurs, and the good decisions of each are overridden

by the bad decisions of others, the resulting schedule is unlikely to perform well. This

means that at some level there must be compatibility between heuristics. Perhaps

they even need to be aware of each others' goals and actions.

Local heuristic algorithms developed for this system require slightly different struc-

ture than conventional back end compilation phases. The most significant of these

is that they must be able to examine knowledge previously added to the schedule by

other algorithms and effectively integrate their new knowledge with it. Success in

this area is key to good heuristic composition and, as a consequence, good schedules.

A second area in which heuristic algorithms in this system differ from conventional

compiler phases is that they must judge their decisions and report those judgments

in terms of a confidence measure. Furthermore, along with this confidence measure

they may express some confidence in alternatives to the decision they made. As many

heuristics already employ cost functions in their work, giving confidence in decisions

may come easily. Suggesting good alternatives, however, may require more work.
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Chapter 8

Related Work

8.1 MIMD and VLIW Compilation

The space-time scheduling problem for Raw is similar to the scheduling problems

faced by compilers for Multiple Instruction Multiple Data (MIMD) and Very Long

Instruction Word (VLIW) architectures. Many of the components of the Raw com-

piler are borrowed from work targeted for these architectures.

The division between spatial and temporal scheduling in the Raw compiler is par-

tially motivated by Sarkar's work with MIMD machines [16]. Yang and Gerasoulis

also separate spatial and temporal scheduling though they do not address the place-

ment problem because their targeted machine has a symmetric network [21]. The

MIMD scheduling problem has been studied in great detail, and [2] provides a survey

of some representative work. One major difference between the scheduling problems

for Raw and MIMD machines is the presence of predetermined processor mappings in

the Raw scheduling problem. The predetermined processor mapping problem, which

is the primary focus of this project, does not occur in MIMD machines.

The Bulldog [8] compiler faces a scheduling problem similar to the Raw schedul-

ing problem. It targets a VLIW machine with distributed processing units, register

files, and memory banks. Thus Bulldog must also address the issue of predetermined

processor mappings for memory accesses. Bulldog also solves the scheduling problem

in two phases, assignment and scheduling. The assignment algorithm uses a greedy
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depth-first traversal that schedules each rooted subgraph in the precedence graph

separately. This type of greedy approach is shown in [13] to be inappropriate for

parallel precedence graphs such as those produced by the Raw compiler through par-

allel loop unrolling. To produce efficient schedules for parallel precedence graphs, the

algorithm may need to intermingle instructions from different connected components

of the dependence graph.
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Chapter 9

Conclusions

9.1 Summary

In this thesis the structure of scheduling regions found in representative applications

was studied empirically. This study revealed that significant variance exists in the

structure of scheduling regions; however, most scheduling regions can be characterized

by a small number of specific features. Thus, while enough structure exists to be

exploited by simple scheduling heuristics, the range of possible structures is too great

for a single heuristic or composition of heuristics to efficiently and effectively schedule.

Following the analysis of scheduling regions, this thesis offers an architecture that

facilitates the use of local heuristics to iteratively improve a schedule. This architec-

ture is based on a probabilistic schedule representation that allows local heuristics to

share a rich knowledge base and an iterative improvement paradigm that allows each

heuristic to make multiple contributions to the final schedule. Using this architecture,

local knowledge is collected and combined to form an effective global solution.

A simple implementation of a spatial scheduler for Raw machines was built using

this architecture. While much of the implementation remains to be completed, the

system already shows promise on most benchmarks. This leads to the suggestion that

pre-placed instructions are critical constraints in the spatial scheduling problem.
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9.2 Future Work

This thesis lays the groundwork for a large amount of future work. There are many

distinct directions in which the work of this thesis can be expanded or completed.

9.2.1 Scheduling and Register Allocation

First and foremost, the probabilistic scheduling system implemented in this thesis only

addresses one phase of the code-generation task, that is spatial scheduling. One logical

extension to this work is to implement temporal scheduling and register allocation in

the probabilistic scheduler as well. One possible approach is to generate priorities for

instructions and pass those priorities to the temporal list scheduler. A more thorough

solution is to implement the list scheduler as a phase in the probabilistic scheduler

and then develop a set of improvers that work with temporal scheduling information.

A more ambitious extension to this research would be to add register allocation. A

probability distribution over the register set for each instruction could be added either

independent of the space-time probability map or as a three-way joint probability

distribution. Additional heuristics that perform register allocation could then be

added to complete the phase-unification aspect of the combined-phase probabilistic

scheduling system.

9.2.2 Better Heuristics and Tuning

One area in which this research should certainly be extended is in the set of schedul-

ing heuristics. While the current set of heuristics performs well on many of the

benchmarks there is much room for improvement.

Each heuristic is intended to add some piece of local knowledge about the problem

structure to the solution. Heuristics that can effectively recognize parallelism in

applications lacking pre-placed nodes, such as Fpppp, would greatly enhance the

effectiveness of this system. Also, heuristics could be added that consider factors

such as cache misses, alternative instruction selection, and unusual quirks of the

target architecture.
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The current set of heuristics could also benefit from tuning. Some seemed to be

too passive while others proved themselves to be much too aggressive. More moderate

approaches on both counts could yield improvement.

9.2.3 Driver Improvement

Finally, the driver is another source of interesting opportunities for future work.

Currently the implemented driver does not examine the probabilistic schedule except

for the sake of outputting it. The driver could certainly examine the schedule and

choose heuristics based on their previous performance or based on the apparent needs

of the scheduling region. If the schedule is spatially unbalanced, the driver may use a

load-balancing heuristic. If the schedule is overly fragmented, it may use a heuristic

that swaps blocks of instructions between tiles in order to reduce communication and

streamline flow. If the schedule contains too many live values, it may use a heuristic

that reduces register pressure. This type of adaptive driver could potentially perform

well over a much wider range of benchmarks than the current driver. An immediate

extension of the current driver in this area is to examine pre-placed instructions and

if they exist and are distributed throughout the graph, use the pre-placed instruction

heuristic. If pre-placement information is not available, or if it does not provide

helpful information, the driver may use a different spatial scheduling heuristic that

makes some seed decisions at the beginning.

Another interesting way in which the driver could be improved is to use some

type of machine learning algorithm to discover patterns of scheduling heuristics that

produce good schedules. Genetic programming is one approach that may yield good

results when applied to this system.
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Figure A-3: Life 8 tiles (2)
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Figure A-4: Mxm 8 tiles (3)
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Figure A-5: Vpenta 8 tiles (2)
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Figure A-7: Adpcm 8 tiles
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Figure A-8: SHA 2 tiles
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