
From Nanohardness to Strength Properties of

Cohesive-Frictional Materials - Application to Shale Materials

by

Francois P. GANNEAU

Ing6nieur de l'Ecole Polytechnique (2002)

Submitted to the Department of Civil And Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Civil And Environmental Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2004

@ 2004 Massachusetts Institute of Technology
All rights reserved

The author hereby grants to MASSACHUSETTS INSTITUTE OF TECHNOLOGY
permission to reproduce and

to distribute copies of this thesis document in whole or in part.

Signature of Author..............................................
Department of Civil And Environmental Engiieering

13 August 2004

Certified by ...........
Franz-Josef Ulm

Associate Professor Lf Civil and Enviryr ental E ineering
Thesis ervisor

A SA

Accepted by......................... ........................ ......
Heidi Nepf

MASSACHUSETS INS Chairman, Departmental Committee on Graduate StudentsOF rECHNOLOGY

SEP 1 7 2004
BARKER

LIBRARIES



MIT Libraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://ibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Some pages in the original document contain color
pictures or graphics that will not scan or reproduce well.

* Color and grayscale pages contain a certain amount of
bleedthru. Best quality image available.





From Nanohardness to Strength Properties of Cohesive-Frictional Materials

- Application to Shale Materials

by

Francois P. GANNEAU

Submitted to the Department of Civil And Environmental Engineering
on 13 August 2004, in partial fulfillment of the

requirements for the degree of
Master of Science in Civil And Environmental Engineering

Abstract

Advanced experimental and theoretical micromechanics such as nanoindentation makes it pos-

sible today to break down highly heterogeneous materials to the scale where physical chemistry
meets (continuum) mechanics, to extract intrinsic material properties that do not change from

one material to another, and to upscale the intrinsic material behavior from the sub-microscale
to the macroscale.

While well established for elastic properties, the extraction of strength properties of cohesive-

frictional materials from nanoindentation tests has not been investigated in the same depth.

The focus of this thesis is to investigate in depth the link between nanohardness of cohesive-

frictional materials and strength properties. To address our objectives, we develop a rational
methodology based on limit analysis theorems and implement this methodology in a finite

element based computational environment.
By applying this technique to indentation analysis, we show that it is possible to extract the

cohesion and the friction angle from two conical indentation tests having different apex angles.
The methodology is validated on a model cohesive-frictional material, bulk metallic glass, and

a first application to a highly heterogeneous natural composite material, shale materials, is

shown. The results are important in particular for the Oil and Gas industry, for which the

reduced strength properties (cohesion and friction angle) are critical for the success of drilling

operations.

Thesis Supervisor: Franz-Josef Ulm
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Industrial Context

The Oil and Gas industry sustains financial losses due to wellbore failure of over $1 billion each

year. Yet, such an estimate may well be a conservative one as many critical issues related to

production stability are still neither well understood nor adequately evaluated. The analysis

of wellbore stability requires assessment of the rock strength and its potential risk of failure,

resulting in wellbore collapse, unwanted hydraulic fracturing, wellbore breakouts, sand produc-

tion, and perforation collapse. Some potential risks related to wellbore stability are sketched

in Figure 1-1.

Shales make up the majority of the geologic section in sedimentary basins, which is where

most oil and gas exploration and production occurs. An understanding of shales is thus essential

for petroleum-related earth sciences (e.g. geologic modeling, seismic interpretation) and drilling

engineering (e.g. wellbore stability, pore pressure prediction). It is well known that shale

materials in oil and gas drilling applications are the major source of wellbore drilling instability,

due to the highly heterogeneous and anisotropic composition of shale materials, with possible

heterogeneities that manifest themselves at multiple scales: from the scale of the platy minerals

of clays in the sub-micrometer range, to the scale of silt-size (quartz) grains in the micrometer

range, to the scale of the deposition layers of shales in the sub-mm to cm range.

The reduced strength properties, namely the cohesion c and the friction angle <p, of shales

and other surrounding rocks play a critical role in the stability. Equations for calculating the
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necessary drilling fluid density in order to ensure hole stability use both c and o [23]. If either is

off (usually more sensitive to c than to o), then the calculated fluid density will be off as well. If

the density is too low then the hole can become unstable during drilling, resulting in increased

costs and sometimes loss of the hole section (requiring redrilling). If the density is too high,

then unintentional creation of a hydraulic fracture may result. Knowledge of c (but usually

not p) is needed also for predicting whether or not one needs sand control' in the reservoir

section of the well in order to prevent sand production. In addition, in reservoirs subject to

large amounts of pore pressure reduction (depletion) during their lifetime, the effective stress

state can sometimes approach the yield or failure condition of the rock (as defined by c and p).

It is important to be able to predict and possibly avoid this risk of failure.

www.dpr.csiro.au/research/ dwe.html

Figure 1-1: Borehole and surrounding rock.

In order to appropriately choose the drilling fluid chemistry and density (i.e. bore hole stabil-

ity analysis, etc.), drilling through shale rock type materials still requires expensive macroscopic

material sampling for macroscopic material characterization of the mechanical, or more precisely

poromechanical behavior. Strength properties are usually estimated using triaxial test meth-

Sand control is a physical means of excluding sand particles from entering the well along with the produced

fluids or gas.
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ods. Figure 1-2 displays a triaxial equipment. To construct the strength domain, deviatoric

loading is applied at increasing confining pressure. By plotting measured effective compressive
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Figure 1-2: View of the triaxial cell assembly (from [36]).

strengths as a function of the effective confining stress (see e.g. [24]), the friction angle p and

the unconfined compressive strength Co is extracted (Fig. 1-3). For a Mohr-Coulomb material,

Co is linked to the cohesion c by:

Co(1 - sin(o)) = 2ccos() (1.1)

1.2 Research Motivation and Objectives

Advanced experimental and theoretical micromechanics such as nanoindentation (see Chapter

2 for a review of the state-of-the-art technique) makes it possible today to break down highly

22
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Figure 1-3: Triaxial strength domain of shale materials (from [24]).

heterogeneous materials to the scale where physical chemistry meets continuum mechanics, that

is where the intrinsic properties do not change from one material to another. Once this scale of

invariant material properties is identified, it is possible to upscale the intrinsic material behavior

from the sub-microscale to the macroscale. This approach has been successfully implemented by

Constantinides and Ulm [18] for cementitious materials to extract the intrinsic elastic properties

of the high density and low density C-S-H 2 phases; and by Hellmich and Ulm [33] for all minerals

tissues (bones). A similar approach is currently under development for shale materials. The

work presented here contributes to this effort.

Our purpose is to identify intrinsic strength properties through nanohardness measurements

obtained by nanoindentation techniques (see Fig. 1-4 for a schematic of the test). For metals,

which do not exhibit any frictional behavior, the link between hardness3 and uniaxial yield

strength is well established by now [10] [82]. For ceramics, hardness is commonly used to

characterize resistance to deformation, densification and fracture [70].

We will argue, however in this study that hardness H is not a material property, as it

varies with the indenter geometry. It is an experimental parameter, namely the mean contact

2C-S-H: Calcium Silica Hydrates, main binding phase in all Portland cement-based systems.

3Hardness H is usually defined as the average pressure below the indenter, i.e. H = P/At, rue where P and

AtrtIe are respectively the driving force and the "true" projected contact area below the nanoindenter.
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pressure below the indenter, from which "true" physical properties can be inferred [92]. With

regards to cohesive and frictional materials, hardness H is at least a function of c and o;

i.e. H = H(c, y, ... ). The focus of this thesis is to investigate in depth the link between

nanohardness of cohesive-frictional materials and strength properties. In contrast to metals or

ceramics, we deal with a two parameter problem that requires two different relations between

hardness and strength properties. Cohesion and friction angle need to be extracted from two

different indentation tests (i.e. with two different indenters). Whether and how this can be

achieved is the objective of this thesis.

1.3 Chosen Approach

To address our objectives, we develop a rational methodology based on limit analysis theorems

and implement this methodology in a finite element based computational environment.

Limit analyses is a powerful method for analyzing indentation problems: the lower and upper

bound theorems provide rigorous bounds on the exact collapse load. However, the conventional

analytical techniques used to solve limit theorems (e.g. methods of characteristics) are very

difficult to apply for complex geometries (such as cones) and loading conditions. Furthermore,

crude upper and lower bound loads may not adequately predict the collapse load. It is indeed

often difficult to construct statically admissible stress fields which give a lower bound close to

the true collapse load. Regarding the upper bound, an accurate estimation is very difficult to

obtain in cases where the material dilates at failure.

Therefore, a more robust numerical approach for computing lower and upper bound is

highly desirable. More precisely, it is the purpose of this work to derive, through lower and

upper bound approach, an accurate estimate of the dimensionless parameter P = H as a
cA C

function of p:
P H-- -_ (p) (1.2)
cA c

for different indenter shapes, where c is the cohesion, p the friction angle of the material, P

the driving force and A = 7rR 2 the projected contact area (Fig. 1-4).

Once this hardness-cohesion-friction angle relation is established, we will develop and val-

idate a method to extract meaningful strength properties from nano and microhardness mea-
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surements.

r

I
h

Figure 1-4: Conical indentation test schematic. (P is the driving force, h the penetration depth,
R the radius and i the semi-apex angle).

1.4 Thesis Outline

This report is divided into three major parts. The first part deals with the presentation of the

topic and comprises two Chapters. Following this introduction, Chapter 2 discusses the existing

knowledge about the extraction of material properties from nanoindentation tests.

The second part focuses on the computational implementation of the Limit Analysis theo-

rems in axisymmetric conditions. Chapter 3 describes the lower bound implementation; that

is the discretization of statically and plastically admissible stress fields. Chapter 4 discusses

the application of the method for different indenters and boundary conditions. We explore the

possibilities of the method for perfectly rough cones and frictionless indenters, and move on

to spherical indentation. Chapter 5 presents the implementation of the upper bound theorem,

based on the discretization of kinematically and plastically admissible velocity fields. Useful

upper bounds for conical and spherical indenters are derived in Chapter 6. In addition the

upper bound approach is verified and we address the same type of problems as in Chapter 4.

Part III of this thesis focuses on the validation and application of the derived solutions.

Chapter 7 concentrates on the validation of the derived hardness-cohesion-friction angle relation
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through application of the method to a model material: metallic glass. Chapter 8 deals with

the application to shales and aims at extracting the cohesion of these materials from nano and

micro-hardness tests. Finally Chapter 9 summarizes the main findings of this study, and gives

suggestions for future research.

In the Appendix, technical proofs and additional information are provided.

1.5 Research Significance

Providing the means of assessing the intrinsic strength properties of highly heterogeneous ma-

terials, such as shales and other frictional materials, is a significant contribution to the existing

knowledge of nanoindentation analysis. This shall make it possible to estimate critical prop-

erties for the wellbore drilling stability through very simple and fairly cheap nanoindentation

tests, on very small material samples.

In addition, at a completely different scale, the indentation solutions can also be applied to

the circular foundation problem, and especially to the problem of driving a pile (or any body

of revolution) into a cohesive-frictional soil. Both problems received much attention during the

past 20 to 30 years. Those stability problems are indeed of great interest for off shore rigs and

other marine foundations (e.g. [65] [32)). The methodology developed in this thesis may as well

be useful for these applications at the macroscale.
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Chapter 2

Instrumented Indentation

It has long been hypothesized that the localized contact response measured by an instrumented

indentation experiment can serve to characterize the mechanical properties of materials as

quantitatively as conventional testing techniques such as uniaxial compression and tension.

This Chapter gives a brief overview of the current knowledge on nanoindentation analysis.

From this discussion, the gap in the knowledge about the link between hardness and strength

properties of cohesive-frictional materials is identified.

2.1 Introduction

The instrumented indentation test provides a continuous record of the variation of the pen-

etration depth, h, as a function of imposed indentation load, P, into the indented specimen

surface. Figure 2-1 illustrates the operating principle of the nanoindentation test apparatus.

Advances in hardware and software control currently enable maximum penetration depths on

the nanometer scale, such that nanoscale instrumented indentation provides a convenient, non-

destructive means to evaluate the basic mechanical response of small material volumes of a

bulk, thin film, or composite materials. Commercially available indenters accommodate vari-

ous indenter geometries, including sharp pyramidal, conical or spherical probes, so that elastic

and plastic mechanical properties can be estimated at any scale within the limits defined by

the indenter dimensions and maximum penetration depth. Thus, instrumented indentation is

a versatile tool for material characterization, particularly at scales where classical mechanical
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tests based on volume-averaged stresses are inadequate.

Nanoindenter

Veroical translasor

toaang 0od

Nix Group, Stanford - http://mse.stanford.edu http:f/www.mts.com/

Figure 2-1: Nanoindentation setup and stress field below the indenter tip.

2.2 Historical Background

Contact Mechanics may be said to have started in 1882 with the publication by Heinrich Hertz

of his classic paper On the contact of elastic solids [35]. Members of the audience were quick

to perceive the importance of Hertz's theory, and persuaded him to publish a second paper in

a technical journal. However, developments in the theory did not appear in the literature until

the beginning of the 20th century (from [47]).

The engineering application of indentation methods to assess material properties can be

traced back to the work of the Swedish engineer Brinell. Pushing a small ball of hardened

steel or tungsten carbide against the surface of the specimen, Brinell empirically correlated the

shape of the permanent impression (indentation) with the strength of metal alloys. The first

accessible work of this pioneering approach of the Swedish engineer can be found in a 1900

International congress in Paris [10]. The merits of Brinell's proposal were quickly appreciated

by contemporaries: Meyer (1908), O'Neill (1944) and Tabor (1951) [82] suggested empirical

relations to transform indentation data into meaningful mechanical properties.
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The indentation test provides a P - h curve, and the extraction of material properties re-

quires an inverse analysis of these data. The theoretical foundation of elastic indentation is set

by Boussinesq's problem and the Hertz contact problem: Boussinesq's stress and displacement

solution of an elastic half-space loaded by a rigid, axisymmetric indenter [9], which was subse-

quently extended for conical and cylindrical indenter geometry, provides a linear P - h relation.

Hertz's elastic contact solution [35] of two spherical surfaces with different radii and elastic

constants provides a means of evaluating the contact area of indentation, and forms the basis

of much experimental and theoretical work in indentation analysis based on contact mechanics.

Subsequently, Sneddon [78] derived general relationships among load, displacement and contact

area for any indenter describable as a solid of revolution.

Incorporating plasticity phenomena in the indentation analysis is a much more complex

problem. The nonlinear nature of the constitutive relations, as well as the increased number of

material properties required to describe material behavior, complicate the derivation of analyt-

ical solutions. As a result, much of our knowledge of the importance of plasticity in indenter

contact problems has been derived through experimentation, and more recently through finite

element simulations. Various researchers have proposed semi-analytical procedures by which

the experimental P - h response can be used to derive elasto-plastic properties; such as the

elastic modulus E, the strain hardening exponent n and the initial yield stress o-O (at zero offset

strain) for a Von Mises type material [21], [69], [31], [96], [19], [16]. Experimental data has

demonstrated that analysis of indentation data via elastic solutions provides reasonable esti-

mates of the elastic modulus and hardness of the indented material, provided that the contact

area is measured or calculated accurately.

2.3 Indentation Analysis of Elastic and Elasto-Plastic Proper-

ties

A typical indentation test is composed of a loading and an unloading response (Fig. 2-2). The

slope of the unloading curve can be used as a measure of the elastic properties of the material.

The behavior of the material during unloading is assumed to be purely elastic, in which case

elastic punch theory can be employed to determine the elastic properties. For a linear elastic
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Figure 2-2: Principle of indentation test: (a) P-h curve. (b) Indenter with pile-up phenomenon

and projected contact area.
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material, use of the elastic solution for a flat cylindrical punch relating the applied force, P,

with the indentation depth, h, yields the following expression for the initial unloading response

dP/dh:

dP
= c*A1/2E* (2.1)

where c* = 2/#~2, A is the contact area, and E* the indentation modulus. For an isotropic

material, E* is related to the elastic constants of the indented material and indenter E, v and

Ein, vi, by:
V _1-v2 V? y"(22

E* E (2.2)

Eq. (2.1) is based on the elastic solution of the flat-ended cylindrical punch, but holds for any

punch that can be described by a smooth solid of revolution (spherical, conical, elliptical etc.)

[69]. Berkovich and Vickers indenters (three- and four-sided pyramidal cones, respectively),

which are more commonly applied in instrumented indentation techniques, cannot be described

as bodies of revolution. However, it has been found experimentally and by means of finite

element simulations that the deviation from relation (2.1) of pyramidal and other geometrical

shapes during unloading is negligible [50], [69] [19]. The constant c* = 1.142 for the Vickers

pyramid indenter (square cross section), and c* = 1.167 for the Berkovich indenter (triangular

cross section) differ little from c* = 2/\/r = 1.1284 of the flat cylindrical indenter. In other

words, relation (2.1) can be used without large error, even when the indenter is not a true

body of revolution; that is it can be considered as a general characteristic of elastic indentation

mechanics.

The key to an accurate estimation of the elasto-plastic properties is an accurate identification

of the true maximum contact area Ama at maximum indentation load Pma (see Fig. 2-2). For

a flat indenter, A coincides with the circular cylinder cross-section. Historically, A represents

the projected contact area. The determination of the true contact area requires consideration of

pile-up or sink-in phenomena that occur during loading as a consequence of plastic deformation.

These phenomena have received some attention in recent years [80], [79], [29], and led to the

development of unique correlations between penetration depth h and true contact area A for

commercially available sharp indenters [31], [19]. This method circumvents the need for contact
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area measurement through visual observations while, at the same time, taking into account

material pile-up and sink-in at the indentation perimeter. These developments provide a means

of determining the indentation modulus directly from the P - h response obtained during the

complete loading/unloading cycle:

E* = d* (2.3)
1 - Wp/Wt

where d* = 5 for the Vickers pyramid indenter and d* = 4.678 for the Berkovich indenter;

H = P/A (h) is the average pressure under the indenter; Wt = fo' P(s)ds is the total work done

by the indenter in deforming the material; and W, is the plastic work. These quantities are

extracted from the P - h curve, as sketched in Figure 2-2.

In practical applications, E* is determined with the help of (2.1) or (2.3) for the maximum

load Pmax and penetration depth hmax, that are associated with a specific material scale under

consideration. As a rough estimate, the effective material length scale of the bulk material

under investigation in an indentation test operated to penetration depth hmax is L ~ 4 x hmax

(see Fig. 2-2 (b)). The stiffness is computed by fitting the unloading curve to a power law as

suggested by Oliver and Pharr [69] (see also [68] for a more recent review of unloading curves):

P = a(h - hf) m  (2.4)

where h1 is the residual depth, and a and m are fitted parameters. For a conical indenter, h'

(i.e. the true penetration depth or "contact height", see Fig. 2-2) can be determined by the

following formula [69]:

h' = hmax - e imax (2.5)
S

where e is a geometric parameter (0.72 for a conical indenter) and S = is the unloading

slope1 . This formula implies that h' < h, meaning that the material sinks-in under the indenter.

However, for workhardening metals, pile-up may occur, implying h' > h. For such materials, E*

is overestimated. Loubet et al. [55] and Hochstetter et al [37] have proposed a different method

The accuracy of the determination of the slope S remains a question of debate.
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to estimate the contact height, which takes into account pile-up or sink-in of the material:

Pnx
h' = a(hmax - P ) (2.6)

S

with a = 1.2 for a Berkovich indenter.

More recently (2003), dual indentation reverse analysis algorithms have been proposed [16]

[12], which improve the accuracy of the property estimation. The methods are based on incor-

porating a second result from an indenter with a different apex angle. A flow chart of the dual

indentation reverse algorithm from [16] is presented in Figure 2-3. This algorithm resolves the

uniqueness of the problem within the range of the study in the aforementioned paper; that is

for a Von Mises type material.

In the case of thin films on substrate, the indentation is no longer geometrically self-similar

(for deep indentation in the order of the film thickness), thus allowing for determination of

mechanical properties other than hardness and stiffness. Huber et al. [41] developed a method

to extract reduced modulus as well as nonlinear hardening behavior of both the film and the

substrate. The approach is based on dimensionless quantities evaluated at different penetration

depths and the use of artificial neural network for solving the (complicated) inverse problem.

Bucaille et al. [11] modeled the viscoplastic behavior of a thin coating of polymer and

obtained the true strain-stress curve by fitting the experimental P - h curve with numerical

simulation. The results are in good agreement with previously known values.

2.4 Indentation Analysis of Hardness Measurements, Link With

Strength Properties

Within the context of continuum analysis, sharp pyramidal or conical indenters lead to geomet-

rically similar indentation states. That is, for a given indenter shape or included tip angle, the

average pressure below the indenter, P/A, is independent of the indentation load P or the true

contact area A, where A oc h2 (e.g. [31]). Indeed, the loading response is governed by Kick's

Law:

P=Ch2 (2.7)
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Figure 2-3: Flow chart of the dual indenter reverse algorithm (from [16]). Ca and Cb are the

indentation stiffnesses, 6 the indenter apex-angle, h, the residual depth (cf. hj in Eq. (2.4)),

hm the maximum penetration depth, d I, the initial unloading slope. E* is the indentation

modulus, Am the true projected contact area (with pile-up or sink-in effect taken into account),

Pave the average contact pressure (hardness), 00.033 the "representative stress", ay the initial

yield stress (at zero offset strain) and n the strain hardening exponent.
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where C is the loading curvature. This loading curvature is proportional to the historic de-

finition of hardness H. Theoretically, H can be determined at any point along the P - h

curve provided the true contact area (that is Atrue = A(h') in Fig. 2-2) is accounted for, i.e.

H = P/Atrue for any h' (e.g. [31]) when pile-up and sink-in effects are properly dealt with.

In the same way as for the elastic stiffness, the hardness H = Pmax/Amax is determined for

the maximum load Pmax and penetration depth hmax associated with a specific material scale

under investigation. In conventional (sharp) micro-hardness tests, the area of contact Amax is

determined by measuring the diagonal lengths of the indentation after load removal. This esti-

mate of the contact area is based on the assumption that the elastic recovery during unloading

is negligible, so that there is little change in geometry. This assumption is sound for certain

very soft metals, but has not been verified for pressure sensitive-frictional materials.

The assumption of negligible elastic recovery during unloading is equivalent to the assump-

tion that the elastic energy stored in the material system during loading to Pmax is negligible

compared to the plastic work; i.e. 1 - W,/W < 1; where Wt = fo P(s)ds is the total work

done by the indenter in deforming the material; and W, is the plastic work (see Fig. 2-2).

This may justify yield design approaches for the determination of the link between hardness

(as previously defined, that is for the maximum load Pmax and penetration depth hmax) and

strength properties of the material, as yield design assumes that the material system at plastic

collapse has exhausted its capacity to store externally supplied work (here dW = P (h) dh)

into recoverable (i.e. elastic) energy2 . At plastic collapse, the externally supplied work rate is

entirely dissipated into the form of heat (e.g. [87]). For non-frictional isotropic materials which

do not exhibit any appreciable strain hardening, application of yield design delivers a ratio of

hardness-to-uniaxial yield strength of roughly H/oo : 2.7 - 3, which holds for a wide range of

metals [10] [82]. For polymers this ratio turns out to be on the order of 1.5, and 2 for glasses

[70]. This unique relation between H and co does not hold for frictional materials, for which

hardness H is a function of more than one material parameter, cohesion c and friction angle

cp; H = H (c, (p), so that the hardness-to-uniaxial strength ratio is a function of (at least) the

2 We shall discuss in Chapter 7 the relation between hardness and plastic work when the elastic energy stored

is not negligible compared to the plastic work.
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friction angle:
H- = (P) (2.8)
90

The effect of the friction angle on the H/ao ratio is well known for cementitious materials, for

which reported values have been found to be on the order of H/co = 30 - 60 [45], that is one

order of magnitude larger than typical values for metals.

Finally, it is useful to note that application of yield design theory implies under certain

conditions a P oc h2 relation. Indeed, a straightforward dimensional analysis of the physical

quantities of the indentation test yields3 :

S - -cF - , i ; A(h') = r [h'tan(i)]2  (2.10)
C cA(h') ( h'

where R is the indenter tip radius (the indenter is usually not perfect and a has a rounded tip),

i the indenter semi-apex angle and A(h') the "true" projected contact area. It is important

to point out that h' represents the real penetration depth, i.e. taking into account pile-up or

sink-in effect. It has been shown by experiments [15] and computations [29] for some metals

that the effects of the tip radius-to-penetration depth ratio R/h' is negligible so that the above

relation reduces to:
P HP - = F(W,i) (2.11)

cA(h') c

On the other hand, if fracture processes in the material affect the overall indentation response,

the additional consideration of the fracture toughness KI, in the set of independent quantities

(2.10) yields:
P G VJ h R .212KI()5 = g = h - (2.12)

Kie(h)1.5 (Kie/oO) 2 ' h'

where I is Irwin's number which compares the structural dimension of the indentation test,

i.e. here the penetration depth h, to the size of the fracture process zone 1ch = (KIc/oo)2.

For I < 1, the penetration depth h is much smaller than the, fracture process zone, so that

3For cohesive-frictional materials the cohesion c is linked to the uniaxial yield strength uo by the following

relation:
= 2c cos(p) (2.9)

1 -,sin( p)
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the overall response is governed by a ductile yield process, for which a recombination of the

invariants in relation (2.12) delivers the P oc h 2 relation (2.7). On the contrary, if I > 1

the overall indentation response is governed by a brittle fracture process, characterized by

a P oc h" response. Concerning nanoindentation tests on cementitious composites, Trtik

et al. [83] found large cracks in cementitious composites below the indenter by focused ion

beam investigation. In the nanoindentation tests on cementitious materials reported in [18],

it was found that the power exponent varies between 1.5 and 2, indicating that some fracture

processes (and related size effects) cannot be completely excluded in the analysis of hardness

measurements by nanoindentation.

Recent experiments and theoretical developments have shown size effects at the sub-micron

level for some materials (see below). More precisely, the micro and nanohardness have a h-2

dependency (or H 2 oc 1/h) suggesting the existence of a material length scale below which

continuum plasticity theory is not valid anymore. Gao et al. [28] [44] explained these size

effects by a mechanism-based strain gradient plasticity (MSG) theory that aims at bridging

conventional mechanics theory and quantum-atomistic simulations. Gao et al. [40] argue that

the classical continuum theory of plasticity cannot describe the collective behavior of dislocation

and show very good agreement between the MSG theory and the experiments for polycrystal

and single crystal Cu (linear dependency of the square of the hardness with respect to the

inverse of the penetration depth).

2.5 Spherical Indentation

Spherical indentation has received much attention during the past two decades and is of partic-

ular interest compared to sharp indenters because of the non singular nature of the stress field

generated at the indentation tip, and the attendant suppression of the damage and plasticity

at the indented surface. The indenter surface being indeed much smoother, the beginning of

the indentation curve is governed by Hertzian elastic response so that the spherical indenta-

tion technique is more suitable to extract the Young's modulus than the sharp indentation [2].

However, spherical indentation tests at the nanoscale are much more difficult to carry out since

the bulk of the material activated is much larger than for sharp indentation, so that spherical
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indentation appears to be rather more appropriate for microscale properties than for nanoscale

properties. Alcala et al. [2] showed that the elastic modulus can be determined in a more

reliable manner with spherical indentation for plasma sprayed coatings.

4
A great deal of research has been devoted to extract elastic properties of graded substrates

Giannakopoulos et al. [81] [30] developed a general framework for the analysis and interpre-

tation of spherical indentation on those materials. Comparing uniaxial tension and spherical

indentation results, Herbert et al. [34] showed that Hertz's elastic model is suitable for spherical

indentation in the limit of small displacements; allowing one to determine the elastic modulus

accurately, as well as the yield strength. More recently, the extraction of yield strength and

plastic hardening properties from spherical indentation has been investigated. As the penetra-

tion depth increases, a shift from a purely elastic response to an elasto-plastic response was

found, that culminates in a fully plastic response. Spherical indentation allows one to follow this

transition and thus enables plastic properties to be extracted. Very recently (April 2003) Ma

et al. [59] developed a methodology for evaluating the yield strength and hardening behavior

of metallic materials. The approach is based on the idea that spherical indentation is not self

similar with depth, thus providing much more information than a conical test. Ma et al. derived

dimensionless functions relating spherical indentation response to plastic flow properties.

Concerning our problem, the pure yield (i.e. in the fully plastic domain) of a cohesive-

frictional material, the appropriate dimensionless relation reads:

H = P R)
H. _ _ _ F ( - (2.13)
c c A(h') 'h

where R is the spherical indenter radius.

In summary, it is readily understood from the different dimensionless relations (2.11) and

(2.13) that the hardness is not a material property, in contrast to cohesion c and friction angle

. This motivates to seek for relations that link the hardness to meaningful strength properties.

4A graded substrate is a layered solid, thus having elastic properties varying with depth.
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2.6 Stability Problems in Geomechanics

At a completely different scale, the indentation problem is very similar to the circular foundation

problem, and more particularly to the problem of driving a pile (or any body of revolution)

into a cohesive-frictional soil. These problems received much attention during the past 20-30

years. Houslby [38], and Houlsby and Wroth [39], investigated strength measurements by a cone

penetration test, and derived lower bounds for the hardness of a cohesive-frictional material

[39] (however, the stress field solution lack the "extension elements" 5 ), leading to a relationship

between cone resistance and undrained strength. Cassidy and Houlsby [14] obtained lower

bounds for the bearing capacity factor of cones on sand (but the proposed solution also lacks

the "extension elements"). Cox et al. [1] derived a benchmark solution for smooth flat punch

problem; and Salengon and Matar [60] derived heuristic solutions for the bearing capacity of

a circular shallow foundation on a cohesive-frictional soil (with a vertical cohesion gradient),

making it easier to design such foundations. These solutions are respectively based on the slip-

line theory and the method of characteristics and will be considered in Chapter 6 for verification

purposes.

Quite recently, a great amount of research was devoted to correlate hardness to unconfined

compressive strength for different type of rocks [93], [94], [48], [51]. The hardness is measured

with a Schmidt hammer6 or a Shore Scleroscope 7 , and by means of empirical statistical relations,

the compressive strength and Young's modulus are extracted.

2.7 Concluding Remarks

This Chapter presented a non-exhaustive review of the existing information in the open liter-

ature on both elastic and plastic properties assessed through state-of-the-art nanoindentation

techniques. The extraction of elastic properties from indentation results has received a great

5The shortcoming of not having these extension elements is discussed in Section 3.2.3.
6The Schmidt hammer was originally developed for measuring the strength of hardened concrete (Schmidt,

1951), but it can also be correlated with rock compressive strength according to Miller (1965). The device consists
of a spring-loaded steel mass that is automatically released against a plunger when the hammer is pressed against

the rock surface [94].
7 The Shore Scleroscope hardness was first designed for use on metals, but the ISRM (International Society

for Rock Mechanics) details a method for Shore hardness testing of rocks. The device measures the relative

rebound of a diamond-tipped hammer that drops freely from a fixed height onto the surface of a specimen [93].

39



Metals Ceramics I Cohesive-frictional materials

Elastic properties [69] and [16] [70] [69]
Plastic properties [16] [70] N/A

Table 2.1: Review of the current methodologies allowing extraction of material properties.

deal of attention, and can be achieved today with good accuracy. On the other hand deter-

mination of elasto-plastic properties has been restricted primarily to non-frictional materials

of the Von Mises type. Table 2.1 summarizes the existing and missing methodologies about

material property assessment from nanoindentation.

From the discussion of the existing knowledge it appears that the link between nanohard-

ness and strength properties for cohesive-frictional materials has not been investigated to the

same depth as for metals or ceramics. It will be the focus of this study to elaborate such

a methodology for cohesive-frictional materials. In particular, we will address the question

whether and how it is possible to extract the cohesion and the friction angle from nanohardness

measurements.
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Part II

Computational Limit Analysis of

Indentation Tests
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Chapter 3

Formulation of Lower Bound Limit

Analysis Using Finite Elements and

Linear Programming: Axisymmetric

Case

The second part of this thesis deals with the computational mechanics formulation and imple-

mentation of the limit theorems of yield design applied to indentation tests on cohesive-frictional

materials. This and the next Chapter are devoted to the lower bound. The numerical approach

developed is based on the formulation of Sloan [75] ,[76] and Assadi and Sloan [4], which is

adapted in this Chapter for axisymmetric problems suitable to treat the indentation test. The

method relies on the use of finite elements to discretize the continuum, the linearization of the

Mohr-Coulomb yield criterion, and an optimization algorithm for solving linear programming

problems. The lower bound analysis is indeed formulated as a linear programming problem

whose objective function is the external load (to be maximized) subjected to the constraints

of a statically admissible stress field. The constraints include equilibrium equations, linearized

yield criterion, and stress boundary conditions. The optimal stress field is obtained by means

of the optimization algorithm, and since the solution stress field satisfies all of the requirements

of the lower bound theorem, the associated external load provides a strict lower bound solution.
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3.1 Theoretical Background

3.1.1 Lower Bound Limit Theorem

The underlying idea of yield design is that the plastic collapse load is entirely dissipated into

heat form through plastic sliding in the material bulk and along surfaces of discontinuity.

Mathematically, this is expressed by

QiIm n. =je :dd + fT. [[V]] da (3.1)

where Ql"m is the collapse load vector, q the associated velocity vector, o the statically admissi-

ble stress tensor, d the plastic strain rate tensor, T = o,. n the stress vector which is continuous

over any surface of discontinuity F oriented by the unit normal n, and [[V]] the velocity jump

vector over the surfaces of discontinuity.

Limit theorems provide estimates of the actual dissipation capacity at plastic failure, as

expressed by (3.1). More precisely, the lower bound theorem approaches the actual dissipation

capacity through stress fields, which are:

" statically admissible, i.e. in equilibrium both internally and externally with the applied

loads,

" plastically admissible, i.e. compatible with the strength domain of the material expressed

by the yield criterion.

Among all possible stress fields u(x), the lower bound theorem explores the ones which are

statically compatible with prescribed body forces pf and surface forces Td, and which, at the

same time, are compatible with the strength domain Dk(x) of the constitutive material at any

point x of the structure Q; that is:

in Q : pf = div o'(x); on a : Td = u'(x) -n(x) (3.2)

along F; [[T'] = 0 (3.3)

Vx; o,'(x) E Dk (x) - f (x; '(x)) < 0 (3.4)
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where &0QTd is the boundary of Q, where surface forces are prescribed. f(x; c'(x)) denotes the

scalar loading function that defines the local strength domain Dk of the material composing

the structure.

Then it can be shown, through application of the principle of maximum plastic work (see

[87] Chapter 9 for a more detailed presentation), that stress fields satisfying (3.2), (3.3) and

(3.4) provide a lower bound to the dissipation capacity (3.1) of the material system:

/ ':dQ + T'i [[V]] d= q < Q m .q (3.5)

The results can be summarized in form of the Lower Limit Theorem:

Theorem 1 Any stress field o'(x) which is statically admissible with the loading Q' and which is

everywhere below or at yield, u'(x) E Dk(x), delivers a lower bound Q' -q to the actual dissipation

rate q of the ultimate limit load Q1m along the velocity field q:

q < Qm . q [max ['(x) : d(x)] dQ + f max [T'. [[V]]] dI (3.6)
in ffo'(x) SA Jr T'(x) SA

u'(x)EDk(x) o'(x)EDk(x)

The lower bound theorem defines a formidable optimization problem: to maximize Q'

through the choice of appropriate stress fields so to approximate the actual limit load Qum.

This theorem forms the background of the linear programming problem developed below.

3.1.2 A "Rough" Lower Bound Estimate of Hardness

To motivate the forthcoming developments, consider the indenter as a rigid cylinder of radius ro,

situated on the surface of a horizontal half-space composed of a homogeneous material following

the Mohr-Coulomb criterion, as sketched in Figure 3-1. A vertical force P is exerted on the

cylinder in the direction of the cylinder axis (Oz), until it penetrates into the half-space. The

stress field is assumed to be of the form:

in 1 (z > 0,r<ro) :'(')=q[er @er+eo eo]-HezOez (3.7)

in Q2 (z r ,> ro) : al(2) = q'[er er + eo 0 eo] (3.8)
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z=O/

z

Figure 3-1: Flat punch nanoindenatation setup.

This stress field is statically admissible (div e' = 0 is satisfied) provided that the stress conti-

nuity between Q1 and .2 (i.e. at r = ro) is ensured:

T h o e te rea d s: (2 = q' (3.9)

The Mohr-Coulomb yield criterion reads:

F = ori( + sin(p)) o-Ir (1 - sin(p)) - 2ccos(p) ( 0

where or1 > o-r 2 -1jjj are the principal stresses, c is the cohesion and p the friction angle.

Using (3.7) to (3.9) in the Mohr-Coulomb criterion (3.10) delivers:

" In Q1 :

q'(1 + sin o) + H(1 - sin o) - 2c cos y < 0 (3.11)

" In Q2 :

-q'(1 - sin p) - 2c cos p < 0 (3.12)
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Finally use of (3.12) in (3.11) yields a lower bound H' of the real hardness H"im of the

material:

Hm > H' = max H 4c cos (3.13)
(1 - sin (

Figure 3-2 displays the optimized stress field in the Mohr stress plane. It can be seen that a-,

is a minimum, that is H' is a maximum for this chosen stress field (3.7) (3.8).

Domain

-23(e,i

Aa 
n

2

) 00=q

Figure 3-2: Optimized stress field in the Mohr-stress plane.

3.1.3 Limits and Shortcomings

The lower bound solution (3.13) is of the form (2.11), for which:

H'i H' 4 cos p

c C (1 - sin p)2
(3.14)

But it is a lower bound which as we shall see is far from the reality. This can readily be

grasped from a comparison of the derived stress field with a more realistic stress field below an

indenter as showed in Figure 2-1. This highlights that it is often difficult to construct statically

admissible stress fields which give a lower bound close to the true collapse load. Moreover,

there is no rational method for refining statically admissible stress fields in order to improve
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the accuracy of the lower bound calculation. Finally, many published solutions that are referred

to as "lower bounds" do not satisfy the complete requirements (3.2) to (3.4) of the lower bound

theorem (in fact the proposed solutions are often only valid in a certain domain and not in the

entire domain Q). This motivates the forthcoming developments of a robust numerical approach

for computing the lower bound.

3.2 Lower Bound Theorem Discretization

3.2.1 Historical Background

The numerical lower bound formulation was first proposed in 1970 by Lysmer [58] for plane

strain problems. The approach uses the concept of finite element discretization and linear

programming; the material is discretized into 3-noded triangular elements with stresses as

nodal variables. The stresses are assumed to vary linearly within the elements, while stress

discontinuities are permitted to occur at the interface between adjacent triangles. The statically

admissible stress field is defined by the constraints of equilibrium equations, stress boundary

conditions, and the yield criterion. Each non-linear yield criterion is approximated by a set of

linear constraints on the stresses, which lie inside the original yield surface, thus ensuring that

the solutions are strict lower bounds. This leads to an expression of the collapse load subjected

to a set of linear constraints on the nodals stresses. The lower bound is then obtained by

maximizing the collapse load.

Since 1970 the method has been improved by Pastor [66], Pastor and Turgeman [67] and

Sloan and Kleeman [77] for plane stress and plane strain problems. More recently efficient

optimizing algorithms have been developed ([62] and [61]), that greatly reduce the computation

time. We will adopt this strategy in what follows, and will adapt it for the axisymmetric case.

We should also mention that Sloan and Abbo are currently (November 2003) developing a

3-D software for the lower and upper bound based on non-linear programming and a smooth

hyperbolic approximation of the Mohr-Coulomb yield criterion, originally formulated by Sloan

and Lyamin [56] [57].
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3.2.2 Finite Elements Discretization

In the (r, z) plane the material is discretized in 3-noded triangular elements; these elements

are rotated around the z axis to discretize the entire material space (Fig. 3-3). Given this

axisymmetric configuration, the problem (loading and geometry) is 9-invariant. Each node of

these elements is associated with four unknown stresses: {Orr, Uzz, c'rz, 0oo} in the cylindrical

coordinate system. The stress components are assumed to vary linearly within each element

according tol:

uij(r, z) =Z Nk(r, z)oi (3.15)
k=1

where 0 . (k 1, 2,3) are the nodal stresses and Nk are linear shape functions given by

Ni(r, z) = [(r2z3 - r3z2) + z23r + r32z] /2A (3.16)

N 2(r, z) = [(r 3 zi - rlz3) + z 3 ir + r13z] /2A (3.17)

N 3(r, z) = [(riz2 - r2z1) + z12r + r21z] /2A (3.18)

where

eki = ek - el ; e = (r, z) (3.19)

and

2A = 1r 13z23 - r32z311 is twice the triangle area (3.20)

Since the problem is 9-invariant, the stress field only depends on r and z.

Statically admissible stress discontinuities are a priori permitted along shared edges be-

tween adjacent elements; that is the stress vector continuity (relation (3.3)) is enforced as a

constraint condition, while out of plane stress quantities, e.g. oo,, may exhibit a jump over

such interfaces. These stress discontinuities are modeled as each node is unique to a particular

element. Therefore, it is possible that multiple nodes share the same set of coordinates. Figure

3-4 illustrates a finite element mesh configuration for these conditions.

For purpose of clarity in the implementation presentation, the prime will be omitted on the stresses, but

keep in mind that the stresses are associated with the lower bound theorem (3.6).
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Figure 3-4: Typical mesh configuration for the lower bound.

49

ZI

....................
..........

-- --------------------

----------------............



3.2.3 Element Equilibrium

The lower bound theorem states that stresses within the element must satisfy the static equi-

librium equations (3.2). In the absence of body forces2 , the momentum balance equations for

the 9-invariant problem read in cylindrical coordinates:

90ar + (90rrz + 0 rr - 00 = 0
or 9z r

aOzr + Ozz + Z 0
ar az r

(3.21)

(3.22)

Differentiating (3.15) and substituting the result into (3.21)

constraints on the nodal stresses:

ON,(r, z) k Nk(r, z) k + k l Nk
O =r r +rz+

k=1 k=1

and (3.22) yields the equilibrium

(r, z)(ork- o) - o
r

_Nk(r, z)k Nk(r, z) k + k Nk(r, z)(ozr) = 0
Or 0 zr +Z OOz r

k=1 k=1

Since Nk(r, z) is a linear function of r and z, the two first terms in (3.23) and (3.

on the nodal stresses. Consequently, the last term must be independent of r E

term can be rewritten as:

with

(3.23)

(3.24)

24) only depend

and z. This last

E3=1 Nk(r, z)(ak)
r

= r - 00 for (3.23)

= k for (3.24)

(3.25)

(3.26)

(3.27)

Expanding (3.25) yields:

3=1 N(r, z)(ak) _ ar + bz + c z 1
r r r r

2The focus of this study are nanoindentation tests for which it is reasonable to neglect body forces.

(3.28)
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where a, b and c are functions of only the nodal coordinates. For this expression to be inde-

pendent of r and z, it is readily seen from (3.28) that b and c need to be zero, that is:

3 Nrz)_k 3

b = E z) a =Oandc=ZNk(0, 0)xa=0
k=1 k=1

(3.29)

since b and c can be expressed as the partial derivative of a with respect to r and z respectively.

The equilibrium equations for the nodal stresses combined with the above constraint con-

ditions therefore read:

2 ONk(r, z) +

k=1 k=1

ONk(r, z) k
Oz O'rz

-3 Nk(r, z) 
k=1

ONk(r, z) (0 k - 01)
k=1
3

Nk(0, 0) x (ak . Oko)
k=1

2 Nk(r, z) k

k=1

3Nk(r, z) k
k=1

k=1

ONk(r, z) k
Oz 0Z

3

Nk(0, 0) X Oir
k=1

=0

=0

=0

=0

=0

=0
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(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



which may be simplified as:

2
k=1

Z Nk(r, z) ( -x)
k=1

3NNk ,(r z) 
k=1

3

Nk(0, 0) X (0,k, - Uke)
k=1

aNk (r, z) ' 7k 3BNk (r, z) Cz k

k=1

3 Nk (r, z)o, k

k=1

-0

-0

-0

-0

-0

Nk(0, 0) X O =
k=1

The previous equations can be recast in the compact matrix form:

[A1 ] [X] = [B 1 ]

where:

0

0

0

0 r 32 /2A 2z2

0

0

-z 23 /2A

-r 32/2A

0 -(r 2z3 - r3Z2)

3/2A 0

2z 31/2A

r 13 /2A

r 3z1 - rjz3

0

0

0

0 r32/2A

0 r2z3 - r3z2
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(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)0

(3.42)

2z 23 /2A

r 32 /2A

r2z3 - r3Z2
[Al]=

0

0

0 r 13 /2A

0

0

0

0

0

0



-Z31/2A

-r 13 /2A

-(r 3zl - riz 3 )

0

0

0

2z12/2A

r 21 /2A

r1z2 - r2z1

0

0

0

0

0

0

r 2 1/2A

0

0

0

0

0

2z12/2A

r 2 1/2A

r1z2 - r2zi

-z 12/2A

-r 21/2A

-(rIz2 - r2 zi)

0

0

0

a1 0 '2 r 12 z 12 r r2
OO Ur J z r z z 0

0 0]

3 3 3 31
Urr 0*zz Uzr 0' 001

3.2.4 Equilibrium Along Stress Discontinuities

A stress discontinuity is statically admissible if the shear and normal stresses acting on the

discontinuity plane are continuous, that is relation (3.3). The only stress components that may

exhibit a jump are out of plane stresses. The normal and shear stresses acting on a plane

inclined at an angle a to the r axis are given by:

= sin 2 (a)Or + cos2 (a)ozz - sin(2 a)orz

1
= - sin(2a)(acz - Orr) + cos(2a)orz

2

(3.46)

(3.47)

A typical stress discontinuity between adjacent elements is shown in Figure 3-5. It is defined

by the nodal pairs (1,2) and (3,4), where the nodes in each pair share the same coordinates.

Since the stresses in our model are assumed to vary linearly, the equilibrium condition is met

by enforcing all pairs of nodes on opposite sides of the discontinuity to have equal shear and

normal stresses. The discontinuity constraints then read:

[A 2] [XI = 0 (3.48)
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0

0

0

2z 3 i/2A

r13 /2A

r3z1 - riz3

(3.43)

[XI
T

[B 1 ]T

= or

= 0 o

1 10*zz O7zr

00 0

(3.44)

(3.45)



(o4 ,)
4

n r (03)

(U2 ) 2

r

Figure 3-5: Stress discontinuity.

where

[A 2] = [T] [T] 0 0 (3.49).
0 0 [T] -[T]

[T] = [ sin 2(a) cos 2(a) - sin(2a) 0 (3.50)
-i sin(2a) i sin(2a) cos(2a) 0o

[X ]T = [o r, 14 z, 1 r, 01 , ---, 0 7 rr O1, O1r, 04 ] (3.51)

3.2.5 Constraints From Stress Boundary Conditions

Enforcing prescribed boundary conditions, i.e. relation (3.2)2, reduces to imposing additional

equality constraints on the nodal stresses. If the normal and shear stresses at a boundary plane

(i.e. a segment in the (r, z) frame rotated around the z axis since the problem is 9-invariant)

are specified to be (qi, ti) and (q2, t 2 ) as shown in Figure 3-6, then it is sufficient to impose the
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following conditions:

Oni = qi

71 = tl

Oni =q1

T2 =2

(3.52)

(3.53)

since the stresses are only permitted to vary linearly along an element edge. Substituting the

(a)Ornn2

(2

r

Figure 3-6: Stress boundary conditions.

stress transformation equations (3.46) and (3.47) into (3.52) and (3.53) leads to four equalities

of the form:

[A 3] [X = [B 3], (3.54)

where

[A 3] = [

0 [T]-

[B 3]T

(3.55)

(3.56)

(3.57)

= [q,t, q2, t2]

= r 1[1,,,1Z 2, 2 2ri, OO, rr, zzOJzri 00
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[T] is given in (3.50).

3.2.6 Constraints From Yield Criterion

The second pillar of the lower bound theorem is the compatibility of the stress field with the

strength domain of the material expressed by a yield function, i.e. relation (3.4). A key feature

of the computational implementation of the lower bound theorem is the linearization of the

yield criterion. This is necessary to avoid nonlinear constraints on the unknown nodal stresses.

The Mohr-Coulomb criterion (3.10) can be rewritten in the form (e.g. [72]):

F = Sup(ije{1,2,3})(oi(1 + sin(p)) - oj (1 - sin(V)) - 2c cos( p)) ( 0 (3.58)

where oa and o- are principal stresses. While the three principal stresses can be determined

from the four nodal stresses, the order is not known. The principal stresses are indeed:

0,0 U rr + zz 1 I___;or___r Oz -- 1Rad
2 2-a~- 2 2 (3.59)

where

Rad = (Lrr - zz)2 + 4(Yrz) 2 (3.60)

Given that a+ ) a-, (3.58) can be expanded in the form:

(3.58) < {a+(1 + sin(o)) - a11 - sin( p)) - 2ccos(V) (0

o+(1 + sin( p)) - aoo(1 - sin(v)) - 2ccos(V) 0

coo(1 + sin(p)) - 4-(1 - sin(V)) - 2ccos(V) (0 I (3.61)

for which:

Rad ( R4 (i = 1, 2,3)
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where

R = 2ccos(W) - (arr +oz)sin(W) (3.63)

2
R2 = 2 (2c cos(p) + aoo(I - sin(W)) - (arr + az) (3.64)1 + sin( p)

2
R3 = 2 (2ccos(W) - aoo(1 + sin(W)) + (Orr + a,,) (3.65)1 - sin(W)

Relations (3.61) and (3.62) allow us to recast the Mohr-Coulomb yield criterion in the compact

form:
X2±Y2 R } (3.66)

Rz ;;1 0

where

X = rr - o, and Y =2a (3.67)

In the (X, Y) plane, the inequalities (3.66) represent three circles of radius Ri.

To define a rigorous lower bound, the stresses at each point in the studied domain must

lie inside the Mohr-Coulomb circles, so that F < 0. Since this type of constraint is quadratic

in the stresses, it is convenient to replace the Mohr-Coulomb circle by an inscribed polygon

with p sides of equal length. In this way, the yield criterion is expressed as a series of linear

inequalities. The coordinates for the kth and kth +1 points (see Fig. 3-7 which shows a six-sided

approximation) are given by:

Xk = R cos(7r(2k - 1)/p) ; Yk = Rsin(7r(2k - 1)/p) (3.68)

Xk+1 = Rcos(7r(2k + 1)/p) ; Yk+1 = Rsin(7r(2k + 1)/p) (3.69)

A stress state with coordinates X and Y must lie inside or on the yield surface. Given the

convexity of the linearized yield criterion, this is satisfied if:

(Xk+1 - X)(Yk -Y) - (Xk- X)(Yk+1 -Y) < 0 ; k = 1, 2..., p (3.70)
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Y=2c
Linearized Mohr
yield function (p

.

R=Ri

Mohr-Coulomb yield function
X 2+y=R2

-Coulomb
=6)

ri a=

Figure 3-7: Internal linearisation of the Mohr-Coulomb yield criterion.

Substituting (3.68) and (3.69) into (3.70) generates a set of inequality constraints:

Fk = AkOrr + Bk zz + Cklrz + DkUoO - E ; 0 ; k = 1, 2..., p

where Fk denotes the kth side of the linearized Mohr-Coulomb yield criterion:

for i = 1

Ak = cos(21rk/p) + sin(<p) cos(7r/p)

Bk = sin(<p) cos(7r/p) - cos(27rk/p)

Ck = 2sin(kir/p)

Dk = 0

E = 2ccos(<p)cos(7r/p)
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(3.72)

(3.73)

(3.74)

(3.75)
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for i = 2

Ak = (1 + sin(p))(sin(27r/p) + sin((2k + 1)7r/p) - sin((2k - 1)7r/p)) (3.77)

Bk = (1 + sin(p))(sin(27r/p) + sin((2k - 1)7r/p) - sin((2k + 1)7r/p)) (3.78)

Ck = (1+ sin(V))(2 cos((2k - 1)ir/p) - 2 cos((2k + 1)7r/p)) (3.79)

Dk = (-1 + sin( o))(2sin(27r/p)) (3.80)

E = 4c cos(p) sin(27r/p) (3.81)

and for i = 3

Ak = (-1 + sin(p))(sin(27r/p) + sin((2k - 1)7r/p) - sin((2k + 1)7r/p)) (3.82)

Bk = (-1 + sin(p))(sin(27r/p) + sin((2k + 1)7r/p) - sin((2k - 1)7r/p)) (3.83)

C = (-1 + sin(p))(2 cos((2k + 1)ir/p) - 2 cos((2k - 1)ir/p)) (3.84)

Dk = (1 + sin(W))(2 sin(27r/p)) (3.85)

E = 4c cos(W) sin(27r/p) (3.86)

To completely factor Fk we note that E _ Nn(r, z) = 1 so that we can write E as:

ZNn(r, z)En (3.87)
n=1

with En = E. Finally substituting (3.15) and (3.87) in (3.71) yields:

3

F, = + NCr,z )(Ak+rB + +Car~z DkOn - En) < 0 k =1,2...,p (3.88)
n=1

and thus:
3

Fk = Nn(r, z)Fkn < 0 ; k = 1, 2..., p (3.89)
n=1

where

Fn=A , + BkOz + Ckorz + Dkio - En ; k = 1, 2.. p ; n = 1,2, 3 (3.90)
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3.2.7 Required Yield Constraints for the 3-Noded Triangular Element

We have the shape functions N, E [0; 1] inside the element. Hence, in order to satisfy (3.89)

throughout the element, it suffices to enforce the following constraint at each node n (and for

i = 1, 2,3):

Fkn < 0; k = 1 2..., p

Thus at each node n, the linearized yield criterion

the form:

[Ayield]

[Ryield]

[X]

[X]

gives rise to 3p + 3 inequality constraints of

[Byieldl

[Ry ield]

(3.92)

(3.93)

A% B2 C2 D'

[Ayield] = .. .. .. i = 1,2,3

LAP BP C,' D~

sin( p) sin(p) 0 0

[Ryield] = 1 1 0 _2(1-sin())

-1 0 2(1+sin(o))
L 1-sin(<p) .

yield] = [ . = 1, 2,3

? TieldT = [2cCos(W), 4ccos(p) 4ccos(p)
1+ sin(p)' 1 - sin(V)

[X]T = [or, ,,,r, n ]

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

3.2.8 Constraints From a Frictional Interface

Since the lower bound method considers only the stress field, one additional constraint is re-

quired to enforce the yield criterion at the cone-material interface. Considering the Mohr-

Coulomb yield criterion, with the parameters ci for the cohesion and p for the friction angle
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at the interface, the additional constraint reads:

|lI ci + o, tan(pi) (3.99)

where r and o are the shear stress and normal stress along the interface. This constraint is

required to guarantee that the shear stress does not exceed the 1pobilized shear resistance at

the interface. For a perfectly rough cone, it is reasonable to assume that

Ci = cmater.ial and (Pi = S0material (3.100)

where cmaterial and SOmaterial are the cohesion and friction angle of the material beneath the

cone.

3.3 Extension Elements

The focus of the extension elements is to ensure that the stress field remains statically and

plastically admissible in the whole domain and not only in the discretized domain.

The constraint conditions are derived for two types of extension elements:

" a triangular extension element, as shown in Figure 3-8 (a),

" a rectangular extension element, as shown in Figure 3-8 (b), which is a triangular extension

element with an additional fourth dummy node. This dummy node is necessary to permit

semi infinite stress discontinuities between adjacent extension elements.

3.3.1 Equilibrium

There is no additional constraint to enforce for the equilibrium of the 3-noded triangular ex-

tension element.

For each rectangular extension element on the contrary, four additional equalities are nec-

essary to extend the linear stress distribution to the fourth node (result proven in Appendix
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directions of
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r

(a)
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3
... .~ .. ~

direction of
extension

r

(b)

Figure 3-8: (a) 3-noded triangular extension element.(b) 4-noded rectangular extension element.

B). These equalities are:

4

OIz4
oIzz

40arz

4009

= 011 + o 2 0- 2
Urr + rr -

0 rr

=1 3 2

= a1 Z r3 2
= z z - arz

= 1 3 2

(3.101)

(3.102)

(3.103)

(3.104)

and may be written as:

[A1,] [X] = [B1,]

[A 1,]

[B1,]T

= [14, -14, 4, -14] , 14 being the 4 dimension identity matrix

= [ r 1 0z 1 1 4 4 4 o r 1

= [0, 0, 0,0]

(3.105)

(3.106)

(3.107)

(3.108)
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3.3.2 Yield Constraints

Yield Constraints for the 3-noded Triangular Extension Element

The second set of constraint conditions for extension elements relates to yield constraint that

ensure that the stress field is plastically admissible. In order to ensure that the stress field in

both the non-extension and extension zone (Fig. 3-8 (a)) does not violate the linearized yield

criterion, it can be proven (see Appendix A) that the stresses need to satisfy the following

constraints:

Fk2 ( 0, Fk < Fk2 and Fk3 < Fk2 ; k = 1, 2..., p (3.109)

While the inequality constraints applied to the stresses at node 2 are identical to those described

by relations (3.94) to (3.98), at node 1 and 3, the yield criterion gives rise to 3p + 3 inequality

constraints of the form:

[Ayield-triext] [X]

[Ryield] [k]

[Byieldtriext]

[Aield]

[Ayieldtriext]

[Byieldtriext] 
T

[X]
T

[]T

At B Cl D% -At -Bt -CT -D]

= .. .. .. .. .. .. ..C .. i = 1, 2,3 (3.112)

_Az Bz CP Dp -AP -Bp -Cp -Dp_

[0,..,0] i=1,2,3 (3.113)

= I OIzir 1 0, Or iz U Zr ioo] n = 1 and 3 (3.114)

r0r 1,z Ir, O] n=land3 (3.115)

where [Ryjed] and [P-yield] are defined as in (3.95) and (3.97).
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Yield Constraints for the 4-noded Rectangular Extension Element

It can be proven (see Appendix B) that the stresses satisfy the yield criterion throughout the

extension and non-extension zone (Fig. 3-8 (b)) by enforcing the following constraints:

Fk2 , 0, Fki < Fk2 and Fk3 < 0 ; k = 1, 2..., p (3.116)

The inequality constraints that are applied to the stresses at node 2 and 3 are identical to those

described by (3.94) to (3.98). In turn, at node 1 the yield criterion gives rise to 3p+3 inequality

constraints of the form:

[Ayieldrectext] [X]

[Ryield] [ ]

(

<1

[Byieldrectext]

[kyield]

[Ayield-rectext]

[Byield_rectext] T

[X]T

A B C D,

A O B. C D

[0,j.., 0] i = 1, 2, 3

-Az -Bz

-Ar -Bp'

=I
4r(, Oiz, '7r N, Oc' r, OZz cr, 00l]

= 1 a1 47r , r zz zr 00

-Cj -DT

-- - i =1, 2, 3 (3.119)

-CP -Dp

(3.120)

(3.121)

(3.122)

where [Ryjeid] and [Ryveid] are again defined as in (3.95) and (3.97).
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3.4 Lower Bound Optimization Problem

3.4.1 Constraints

All previous equality and inequality constraints can be summarized in the following compact

form:

[A'f][a]

[A'][o]

= [bi]

< [b 2]

(3.123)

(3.124)

where:

e [A'] assembles the constraint matrices related to the equilibrium and stress boundary

conditions, i.e. (3.43), (3.50), (3.55) and (3.106),

* [A'] assembles the constraint matrices related to the linearized yield criterion, i.e. (3.94),

(3.112) and (3.119),

" [o] is the nodal stresses vector.

3.4.2 Objective Function

The lower bound theorem provides a lower bound Q' of the nominal value of the actual limit

load Q1m:

Q' l Qim (3.125)

The lower bound formulation therefore appears as a maximization problem: maximize the load

value Q' subjected to the constraints (3.123) and (3.124) of the statically and plastically admis-

sible stress field o'g. It therefore suffices to employ appropriate optimization algorithms to solve

the problem. Since optimization algorithms comes rather as minimization than maximization

algorithms we recast the lower bound maximization problem as a minimization problem in the
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form:

- minf,1(-Q'({T))

Subject to :

(3.126)[A'][o] = [b 1]

[ A'ff[r] <; [b2]

3.4.3 Objective Function of the Indentation Test

We are left with specifying the objective function of the indentation test. Figure 3-9 illustrates

the indenter and the driving force to optimize. We have:

-P = jez. - n dA (3.127)

where A is the cone area and n the outward normal vector to the material surface. Eq. (3.127)

Z

r

Sn 2

h

Figure 3-9: Penetrating cone and material interface.

yields:

-P = j [sin(i)uzz - cos(i)or,] dA (3.128)
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where i is the semi-apex angle (see Fig. 3-9).

Let us consider an edge of a triangular element defined by nodes 1 and 2 on the cone surface

(Fig. 3-9). Since the stresses vary linearly throughout each element, Eq. (3.128) becomes:

Pedge = j 1(1 - ) + &2( S ) rd6ds
JA IL12 L12

where s is the curvilinear abscissa, L12 is the edge length and

&" = sin(i)az - cos(i)orz , n = 1, 2

Since &n is 6-invariant, and r = rl + s sin(i), we have:

(3.129)

(3.130)

[ L12 (.+1
(&2 _ 1)) rids + ( + (&2 _ &)) s sin(i)dsl

(3.131)

-Pedge = 27r [31 (riL12 +
L2sin(i) + (2 - 31) (rL 2 + sin(i))

Finally, expressing -Pedge in terms of On and o'z, we obtain:

-Pedge = [c]'ge[O]
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where [c]edge is the vector of the objective function coefficients,

0

21r sin(i)(rL2 + L22 sin i)

-2-7r cos(i)(112 + L 2 sin(i)

[c]edge = (3.134)
0

27r sin(i)(riLL12 + L2 sin (i)

-21r cos(i)(1L-12 + L 2 sin(i)

0

[z]T =[zr , O z0,1r, 1 26] (3.135)

Last, the contribution of the different elements sum up to the driving force:

-P = -Pedge (3.136)
edges

Then the optimization problem for the indentation test can be stated as follows:

min{yr([c] T [a])

Subject to :
(3.137)

[A 1][o] = [b 1]

[ A2][Or] <[b2]

where [c] assembles the objective function matrices (3.134) for the nodes along the cone surface.

3.5 Chapter Summary

The lower bound computational formulation for axisymmetric problems derived in this Chapter

constitutes (to our knowledge) the first complete adaptation of the plane stress/plane strain

method.

The key ingredients of the lower bound discretization are:

. The constraint conditions to ensure statically and plastically admissible stress fields ex-
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pressed by the equilibrium equation and the yield criterion,

* The discretization and linearization of the yield criterion.

We now have a tool in hand for analyzing the indentation tests from a lower bound per-

spective, which is the focus of the next Chapter.
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Chapter 4

Lower Bound Solutions For

Indentation Analysis

This Chapter presents lower bound solutions for the collapse load of different indenters, using

the computational approach developed in Chapter 3. This computational lower bound method

was implemented in a FORTRAN based environment that employs the BPMPD algorithm (see

[62]) or the steep edge algorithm by Sloan [75]. The meshes are generated using the pre-processor

of a commercially available finite element package, CESAR-LCPCTM. Details on the meshing

and boundary conditions are given first, before results are presented for different indenter

geometries: sharp and spherical indenters. The effect of the apex-angle for sharp indenters

and the effect of different indenter-material contact conditions are also discussed. The Chapter

closes with a critical review of strength and limitations of the lower bound approach for the

extraction of strength properties from hardness measurements.

4.1 Modeling the Indentation Test

4.1.1 Boundary Conditions. Zero Stress Locking Phenomena

The indenter is modeled as a cone. The stress-boundary condition for the lower bound are

presented in Figure 4-1.

It is instructive to investigate the linearized equilibrium equations derived in Section 3.2.3
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r -,-az=0 Segment 1

n= zz=0

Segment 2 Zone 2 Zone 1

extension elements

Figure 4-1: Stress boundary conditions.

(equations (3.36) to (3.41)). We first note that (3.40) and (3.41) yield:

ozr = ar inside each element (4.1)

where a is a constant. Since ozr = 0 on the free surface of the material (i.e. Segment 1 in

Fig. 4-1), it follows that Ozr = 0 in all triangle elements that have an edge on this surface.

The same applies to the vertical stress on this surface. Indeed, since o, = 0 on this surface,

it follows from (3.39) that a,, = 0 in all triangle elements that have an edge on Segment 1. It

is intuitively understood that this stress boundary condition, in a pure stress approach, has an

influence on the stress field in Zone 1. To derive this effect, let us consider a set of 2 elements

as displayed in Figure 4-2. Let us assume that Ozr = azz = 0 in the triangle T1 (see Fig. 4-2).

We are interested in the stresses in the triangle 'below', which has a common interface with T1

inclined by an angle a E [0, 2 [. The continuity condition (3.3) at this interface read:

71



03
TI

2
T2

>4

r
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[[- sin(a)or + cos(a)irz]]

[[- sin(a)orz + cos(a)ozz]]

=0

=0

(4.2)

(4.3)

If a = 0, Eq. (4.2) yields zr = wzr =0. Thus from (4.1)

Ozr = 0 in T2 (4.4)

From relation (4.3) we derive =z =O = 0, meaning that azz is independent of r. Furthermore,

(3.39) implies:

(4.5)Ozz = 0 in T2

Let us consider next that a E]0, E[. Eq. (4.3) and (4.1) yield:

4z - 6 = tan(a)a(r4 - r6)Ozz zz \\
(4.6)

This relation indicates that o, is independent of z in T2. Furthermore, relation (3.39) yields
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a = 0. Hence:

or = 0 in T2 (4.7)

Finally, relation (4.3) yields o4 = Or6 = 0; and since r4 # r6, Ozz is also found to be indepen-

dent of r. Consequently:

uzz = 0 in T2 (4.8)

In summary, since orz and azz are null below every triangle having an edge on Segment 1, it

follows:

=rz 0 in Zone 1 (4.9)

While running simulation with "random meshes" we sometimes encountered a locking prob-

lem: the optimized stress field turned out to be null, leading to a zero driving force. It is in-

structive to investigate this locking phenomena. To this end we consider an overlapping triangle

T between Zone 1 and Zone 2 (Fig. 4-3) and 3 non aligned points (A, B, C in Fig. 4-3) inside

the part of T in Zone 1.

Since the stresses are linear inside every triangle, we have:

U: = 0 in T (4.10)
Uzz = 0

Then, with a similar argument as developed above, it is readily shown that:

=rz in Zone ibis (4.11)

This effect propagates also from Zone Ibis to Zone 2bis for any overlapping element, and

eventually ozz = 0 in the whole half-space, thus leading to a zero driving force.

The conclusion of this analysis is that a vertical boundary delimiting the indentation zone

(Zone 2) from the free surface zone (Zone 1) is required to avoid any overlapping triangle (see

Fig. 4-1).

It is worth noting that this requirement is relevant only for the axisymmetric case, as it

is a direct consequence of the equilibrium equation. Indeed, contrary to the (cartesian) 2D or
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full 3D equations, the axisymmetric equations mix stresses and stress derivatives (see Section

3.2.3).

z

r

element T

Zone 2bis Zone Ibis

Figure 4-3: Overlapping triangle.

4.1.2 Simplification of the Stress Field

We already found that ozr = 0 in Zone 1. Let us now analyze a triangle in Zone 2 having an

edge along the boundary delimiting Zone 1 and Zone 2 (Fig. 4-4).

Since the shear stress must be continuous between the elements, it follows that the shear

stresses at the interface are zero:

(71 = 0rz 
(4.12)

2.~ = 0

since 0zr is linear with respect to r, cf. Eq. (4.1), uzr = 0 in this boundary triangle. Using the

same development as in the previous section, we have

Ozr = 0 in Zone 1ter (4.13)
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And thus using the same arguments as in Section 4.1.1:

Ozr = 0 in the entire half-space (4.14)

The conclusion of this analysis is that the stress field permitted by our computational ap-

proach is necessarily diagonal (meaning that the principal stresses are arr, azz, and coe). The

equilibrium equations (3.36) to (3.41) thus reduce to:

SdNk(r, z) (2  -k ) = 0 (4.15)
k=1

3N (r, z) (, r-o) = 0 (4.16)
k=1
3

Nk (0,0) X (0r, O) = 0 (4.17)
k=1

aNk (r, z) orz = 0 (4.18)
k=1

This diagonal stress field also simplifies the Mohr-Coulomb criterion. Indeed, for azr = 0, the

Mohr-Coulomb criterion (3.58) is linear in stresses, which reduces greatly the computational

time arising from the linearization. We only need to consider (3.61) instead of (3.92) and (3.93).

4.2 Lower Bound Solution for Perfectly Rough Cones

4.2.1 Independence of the Cone Geometry

The perfectly rough cone interface properties are defined by (3.100) and no additional interface

constraint is required. All the constraints (equalities and inequalities), are therefore independent

of the semi-apex angle i.

In addition, the stress field can be extended along the cone in the z direction to establish a

"virtual" stress field in the whole half space (Fig. 4-5). The stress continuities equations imply
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Figure 4-4: Triangle with edge along boundary Zonel-2.
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Figure 4-5: Surface element dA.
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that ozz and ar, are continuous between all elements. We also have (see Fig. 4-5):

dA' = dA" = dA sin(i ) (4.19)

Since oz, is independent of z (see Eq. (4.18)) we can write:

-P = I QzzdA" (4.20)

This shows that the cone semi-apex angle i does not have any influence on the lower bound

solution of the perfectly rough cone. All the solutions (i.e. the optimized stress fields) reduce

to the flat punch solution.

It is important to note that this flat punch solution (i = 900) does not depend on the

roughness (of the flat punch), since the shear stress at the cone-material interface, Urz, is zero

(meaning that no additional constraint due to the interface is taken into account).

4.2.2 Results

Figures 4-6 (a) to 4-7 (d) show the different meshes used for the lower bound analysis. The

use of the rectangular and triangular extension elements enables the stress field to be extended

indefinitely in the half plane without violating neither the statically nor plastically admissible

stress field requirements. As expected, the optimized stress fields are found to be independent

of the cone apex angle (three different apex angles are presented here). The optimized stress

field in Zone 2 is constant with Ur, = ooo. This result is found for all the meshes presented

here. Figure 4-8 displays the results in the dimensionless form (2.11), i.e.

H' P'
'= = -'(0) (4.21)

c cirR2

The obtained results are somewhat disappointing as far as the derived numerical function F'()

strictly coincides with the analytical lower bound solution of Section 3.1.2. For the reader's

convenience the analytical lower bound results are reproduced below:

2c cos O 4c cos (2in Zone 2 (Q1): 0rr = 0'00 = - sWarid azz = (1-si 2p (4.22)
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Figure 4-6: (a) Flat punch, 'random mesh'. (b) Cone indenter, 'random mesh'. i = 63'. (c)

Flat punch, 'coarse mesh'. (d) Cone indenter, 'coarse mesh'. i = 630.
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Figure 4-7: (a) Cone indenter, 'coarse mesh'. i = 450. (b) Flat punch, 'regular mesh'. (c) Cone

indenter, 'regular mesh'. i =63g. (d) Cone indenter, 'fine mesh'. i = 7O.32 .
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100 - -- Numerical results
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Figure 4-8: Numerical and analytical lower bound solutions for the dimensionless parameter
H' as a function of o. Perfectly rough cone.
C

in Zone 1 (A): Orr = 000 = -2ccos and oz, = 0 (4.23)
1 - sin o

The numerical solution does not improve this already known lower bound.

4.3 Lower Bound Solution for a Berkovich Type Cone

4.3.1 An Additional Constraint: Frictionless Contact Condition

Figure 4-9 (a) displays a Scanning Electron Microscope (SEM) image of a Berkovich indenter

tip. The surface of the tip appears to be almost perfectly smooth. The contact area can

therefore be assumed to be rather frictionless than perfectly rough. Furthermore, simulations

have shown that the effect of friction in the case of Berkovich indenter can be neglected (see

[20], [19], [12]). This allows us to introduce an additional boundary condition along the cone

(smooth interface condition):

T =- 0 (4.24)

that is, from Eq. (3.47) crr = zz for any conical indenter along the indenter surface.

80

. ............

- -- ,-A 
r__ 

2



(a)

(b)

N

N x

4- r-

ILL

N

Xx2

iey I Sebem-ir i o h geh w imetr 4 inltu,. Hc t. 1 'I' p I N') Side lew

Figure 4-9: (a) Indenter tip (from [89]). (b) Berkovich indenter (from [52]).
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|| Steep edge algorithm [75] BPMPD algorithm [62]
mesh in Fig. 4-10 (a) 3,973s (1h6min) 215s (3min35)
mesh in Fig. 4-10 (b) breaks (unable to scale the problem) 1,699s (28minl9s)

intermediate mesh 9,021s (2h30min) 980s (16min2Os)

Table 4.1: CPU time comparison for different lower bound meshes and algorithms.

4.3.2 Axisymmetric Modeling of the Berkovich Indenter

The Berkovich indenter is a 3-sided pyramid with an apex angle of 130.60 (see Fig. 4-9 (b)).

In this study, the Berkovich indenter is modeled as a cone with a 70.32' semi-apex angle (see

Fig. 1-4), such that the projected contact area with respect to penetration depth of the cone

is the same as that for the real indenter [20]:

A(h) = 24.56h 2 = 7r tan2 (70.32)h 2  (4.25)

The first mesh used (Fig. 4-10 (a)) has a high concentration of elements below the indenter.

It is composed of 5,791 nodes: 1,848 triangles, 1 triangular extension element, 61 rectangular

extension elements and 2,711 discontinuity elements. A convergence study was performed by

subdividing the mesh (see Fig. 4-11). One of the finest meshes used is presented Figure 4-

10 (b). It is composed of 16,023 nodes: 5,200 triangles, 1 triangular extension element, 105

rectangular extension elements and 7,905 discontinuity elements. The convergence was almost

achieved with the first mesh, since the asymptotic result lies within the range of 1.7 % from the

initial result. Table 4.1 presents a comparison of the CPU times for the two aforementioned

meshes and one intermediate mesh, for two different optimization algorithms. The simulations

were run on a Pentium3, 1.13GHz, 256Mb RAM.

4.3.3 Results

Figure 4-12 shows the evolution of E with respect to o for the analytical solution (3.13) and
C

the numerical one. The analytical lower bound reads (same method as in Section 3.1.2 with a

triaxial stress state in Zone 2 due to (4.24)):

in Zone 2: orr = o = - 2c cos p (4.26)
1 -- sin p
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(b)

Figure 4-10: Lower bound meshes for a Berkovitch type indenter: (a) relatively fine mesh. (b)

very fine mesh.
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Figure 4-11: Mesh convergence study.
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Figure 4-12: Lower bound for the dimensionless parameter I as a function of p for a Berkovich

type conical indenter.
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2c cos p
in Zone 1: orr = coo= - and or, = 0 (4.27)

1 - sin o

Figure 4-12 clearly shows that the numerical approach improves the (only) available analytical

solution (to our knowledge) by more than 40 %.

It is instructive to investigate the optimized stress field:

From (4.18) and the stress jump equations (3.46) and (3.47) we see that o, is a function of

r. Indeed, the simulations show that oz decreases from the tip of the indenter to zero in Zone

1 (see Fig. 4-13 (a)). It is also interesting to note that the values of a,, strongly depend on

the friction angle (see Fig. 4-14 (a)); azz is an increasing function of p. This result is readily

understood from the yield criterion which we recall:

cr(1 + sin(p)) - anii(l - sin(W)) < 2ccos( p) (4.28)

Since o, is the minor principal stress, as p increases, the right hand side of the inequality

increases, permitting 0. and a0 IH to reach respectively higher and lower values. The plots

shown in Figure 4-14 (a) cannot be fitted with conventional functions (exponential, power,

polynomial...), they are the result of the optimization process and do not seem to have any

obvious analytical approximation.

Below the indenter, rr is the major principal stress (i.e. crr = 0r) and decreases away from

the tip (Fig. 4-13 (b)). The radial jumps are related to the dependence of oz on r only. As

(p decreases, we also find that the bulk of the material which is highly stressed by the indenter

decreases (Fig. 4-15 (a) and (b)). There seems to be an oblique plane distinguishing two zones

as far as coo is concerned (Fig. 4-14 (b), Fig. 4-16 (a) and (b)). It could be appealing to

relate such a pattern to a shear plane, but we should keep in mind that the obtained stress

fields are the product of a lower bound optimization procedure, that does not necessary deliver

mechanically meaningful stress fields.

4.3.4 Effect of Different Apex Angles

Finally, it is instructive to study the influence of the semi-apex angle i on the dimensionless

parameter 'W (cf. Eq. (2.11)). The results indicate that as soon as i is different from 90' (flat

punch), i is not affected by the variation of i. That means that the hardness derived from
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Figure 4-13: (a) Evolution of §'zz/c below the Berkovich indenter. o = 30'. (b) Evolution of

o' r/c below the Berkovich indenter. o = 30'. [stresses normalized by the cohesion].
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Figure 4-14: (a) Evolution of o-'/c for different friction angles. (b) Evolution of o-'0/c below

the Berkovich indenter. p = 30. [stresses normalized by the cohesion].
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Figure 4-15: (a) Evolution of -',I/c below the Berkovich indenter. p = 20'. (b) Evolution of

-'/c below the Berkovich indenter. p = 100. [stresses normalized by the cohesion].
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Figure 4-16: (a) Evolution of o(7/c
o-'( 9 /c below the Berkovich indenter.
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this lower bound approach is independent of the apex angle.

Figure 4-17 (a) to 4-18 (b) show the optimized stress field for cones of semi-apex angle 150

and 450 for o = 30'. In the simulations, the fineness of the meshes is comparable to the one

previously employed (see Fig. 4-10 (a) and (b)). The results can be understood if we follow

the reasoning developed in Section 4.2.1: as soon as we deal with a cone (i.e. not a flat punch),

there is an additional constraint along the cone, i.e. relation (4.24). Once this constraint is

satisfied, the optimization procedure provides the same stress field for any apex angle smaller

than 90', this stress field can be extended in the z direction in the same way irrespective of the

apex angle.

4.4 Lower Bound Solution for Spherical Indenters

The last indenter geometry we consider is the spherical indenter. Figure 4-19 presents the

boundary conditions and geometry for the spherical indenter. The contact is assumed to be

frictionless as defined by (4.24). The optimized stress field turns out to be very similar to the

one of the conical indenter (compare Fig. 4-20 (a) and (b) with Fig. 4-13). Furthermore, the

dimensionless parameter - as defined by Eq. (2.11) follows the same evolution with respect to
C

o as in the case of the Berkovich indenter. The lower bound approach, therefore, appears to be

insensitive to the indenter geometry (i.e. R/h), which can be explained in the following way:

the goal is to optimize the driving force P. Since u, 0 (due to the frictionless boundary

conditions, cf. Section 4.1.2), we need to optimize a-, which depends only on r. From a purely

mathematical standpoint, the optimization problem to solve is the same for all shape geometries

that differ from the flat punch.

4.5 Summary: Strength and Limits of the Lower Bound Ap-

proach for Indentation Analysis

The computational mechanics approach developed in the last two Chapters provides a rational

means to construct lower bound solutions for indentation analysis of the hardness-cohesion-

friction angle relation (2.11). The main characteristics of all lower bound solutions relate to

the contact conditions between indenter and material:
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Figure 4-17: (a) Evolution of (-'r/c below

of o-'/c below a sharp indenter. (i = 15',

U.5

a sharp indenter. (i = 15', o = 30'). (b) Evolution

o = 30'). [stresses normalized by the cohesion].
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Figure 4-18: (a) Evolution of o-',/c (i = 45', c = 30').

p = 300). [stresses normalized by the cohesion].

(b) Evolution of c'zz/c (i = 450,
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Figure 4-19: Boundary condition for a spherical indenter. L is related to R (indenter radius)
and h through: L = (2Rh - h2 )1/ 2.

" A smooth indenter yields higher hardness values than a rough indenter.

" A perfectly frictionless contact condition makes the lower bound solution insensitive to

the indenter geometry (apex angle, conical or spherical indenter).

" For a perfectly rough cone, all lower bound solutions reduce to the flat punch solution,

and are therefore insensitive to the indenter geometry.

These results are quite restrictive and highlight the limitations of the lower bound approach:

the stress fields are mathematically obtained optimization results; and while mathematically

correct, they may well lack physical significance. One example is the independence of ozz

of z in the lower bound solution. This independence is clearly a consequence of the (linear)

discretization and the boundary conditions, but is far from the "real" stress field expected

below an indenter (see Fig. 2-1). Wether the found characteristics of the lower bound solutions

are relevant or not will be confirmed by the upper bound solutions, which is the focus of the

following Chapters.
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Figure 4-20: (a) Evolution of u-,,/c below a spherical indenter (p=30'). (b) Evolution of ozz/c

below a spherical indenter (p=30'). [stresses normalized by the cohesion].
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Chapter 5

Formulation of Upper Bound Limit

Analysis Using Finite Elements and

Linear Programming: Axisymmetric

Case

This and the next Chapter deal with the formulation and implementation of the upper bound

theorem of yield design for indentation analysis on cohesive-frictional materials in axisymmetric

conditions. The formulation presented in this Chapter is analogous to the lower bound formu-

lation developed in Chapter 3. It uses finite element interpolation, evaluation of the dissipation

functions and linearization of the "finite dissipation condition". The material is discretized into

3-noded triangular elements, with two nodal velocities at each node, and surfaces of disconti-

nuity along the edges between two adjacent elements. The upper bound formulation leads to

a linear programming problem whose objective function is the externally applied load (to be

minimized) subject to the constraint of kinematic admissibility.
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5.1 Theoretical Background

5.1.1 Upper Bound Limit Theorem

In contrast to the lower bound theorem (see Section 3.1.1), the upper bound theorem approaches

the actual dissipation capacity at plastic collapse (3.1) through kinematically and plastically

admissible velocity fields. These are velocity fields which:

" respect the velocity boundary conditions1 :

on OQVd : Vd = 0 (5.1)

" are compatible with the plastic flow rule of the material at plastic collapse.

In this case, it can be shown, through application of the principle of maximum plastic work

(see [87] Chapter 9 for a more detailed presentation), that any kinematically and plastically

admissible velocity field provides an upper bound for the actual dissipation capacity (3.1), that

is:

QM -q < d' :dd + T : [[V']] d- (5.2)

where d' is the plastic strain rate tensor,

d'(x) = 1 (grad V'(x) + 'grad V'(x)) (5.3)

which -at plastic failure- is defined by the flow rule

.Of
d'(x) = A , ; A > 0; f < 0; Af = 0 (5.4)

where A is the plastic multiplier, and f the yield function. Analogously, the velocity jump [[V']]

in (5.2) is defined by a flow rule

19f[[V']] = 9T ; A>O; f <0; Af =0 (5.5)
OT

'It is useful to recall that the only meaningful velocity boundary condition at plastic failure are nullity

conditions. In fact, any other non-zero velocity boundary condition would be in contradiction with the very

notion of plastic collapse, that is an uncontrolled (i.e. spontaneous) indefinite yield.
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where T is the stress vector.

For a given yield surface, the flow rule (5.4) (respectively (5.5)) establishes a unique rela-

tion between the stress tensor or (respectively stress vector T) and the strain rate tensor d'

(respectively velocity jump [[V']]), so that the dissipation rate can be expressed as a function of

d' (respectively [[V']]) only. The upper bound estimate of the dissipation capacity (right hand

side of (5.2)) therefore is a function of V' only. These functions are referred to as dissipation

functions, denoted by (PQ and 'r respectively:

4(d') = e- : d' ; Dr([[V']]) = T : [[V']] (5.6)

The dissipation functions express the maximum capacity of the material to dissipate the exter-

nally supplied energy at plastic collapse into the form of heati Since the stress tensor o- (resp.

the stress vector T) is not bound to satisfy the equilibrium condition, it is associated with a

limit load that surely leads to failure.

The results can be summarized in form of the Upper Limit Theorem.

Theorem 2 Any kinematically velocity field V' delivers an upper bound D (V') to the actual

dissipation rate the limit load Qlim realizes along the actual velocity field q:

Q im q = mid (V') (5.7a)
on aQyd:V'=Vd=o Idt

The dissipation rate d (V') is the maximum dissipation the material can afford, dissipating energy

in the material bulk and along surfaces of discontinuity into heat form:

dV (V') max [%(d')] dQ + j max ['r([[V']])] da (5.8)

where c- and Pr are the dissipation functions.
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5.1.2 Dissipation Functions and Finite Dissipation Conditions for the Mohr-

Coulomb Material

The Mohr-Coulomb yield criterion reads:

F = oi(l + sin(<)) - aiii(l - sin(<)) - 2ccos(<p) ; 0 (5.9)

where aj 011 cYi are the principal stresses.

Differentiating with respect to -'(x) and using the flow rule (5.4) (see [72] Chapter 1 for

details) yields (after some calculations) the sought dissipation functions. The volume dissipation

function reads:

ptr(d') if tr(d') d[d'I + Id' + Id'gJ] sin(p) (5.10)
+o0 if tr(d') < [ld'l + ld'4| + Id'11l] sin(<p) I

where d' is the strain rate tensor, d' d',1  d'11 the principal strain rates, p = c cot(<); and

the discontinuity dissipation function reads:

=I~Q[ cl[[Vt]]I if [[Vn]] ;> I[[Vt]]I tan(<) (5.11)

+00 if [[Vn]] < I[[Vt]]I tan(<p)

where [[Va]] and [[Vt]] are respectively the normal and tangential velocity jump.

5.1.3 Limits and Shortcomings

An accurate estimation of the upper bound is very difficult to obtain in cases where the material

dilates at failure (which is the case of many frictional materials like shales). Conventional

analyses, which assume rigid block mechanisms, do not represent correctly the volume change

of these dilating materials and hence do not fully satisfy the requirements of the upper bound

theorem. Considering the difficulty of finding a correct velocity field, the need of an efficient

numerical method becomes apparent, which motivates the forthcoming development of a robust

numerical approach for computing the upper bound.

98



5.2 Upper Bound Theorem Discretization

5.2.1 Historical Background

General formulations of the upper bound theorem, which use finite elements and linear pro-

gramming techniques emerged in the early 70s and 80s. We cite the work of Anderheggen and

Knopfel [3], Fremond and Salengon [27], Turgeman [84], Bottero et al. [8]. Anderheggen and

Kn6pfel [3] proposed a mixed formulation for bounded continua based on the linearization of

the plasticity criterion. Fremond and Salengon [27] solved geotechnical problems using a non-

linear optimization method. Following this work, Turgeman [84] proposed a kinematical method

based on the linearization of the criterion, which was independently obtained by Capurso [13].

Bottero et al. [8] generalized the method of Anderheggen and Knopfel to include velocity dis-

continuities in plane strain limit analysis. Although it constituted an important extension,

Bottero et al.'s formulation has the disadvantage that the directions of shear must be a priori

specified for each discontinuity. This precludes the use of a large number of discontinuities in

an arbitrary arrangement, since it is generally not possible to determine these directions so that

the mode of failure is kinematically admissible. More recently, in 1995, a new formulation that

permits large number of velocity discontinuities has been derived by Sloan and Kleeman [77].

This method employs linear three-noded triangular elements, and velocity discontinuities may

occur at any edge that is shared by a pair of adjacent triangles. The orientation of the shear

is chosen automatically during the optimization process so to minimize the rate of dissipated

energy, that is (5.7a). In addition, we should again mention that Sloan and Abbo are currently

(November 2003) developing a 3-D software for the lower and upper bound based on non-linear

programming and a different yield criterion [56] [57 (cf. Section 3.2.1).

Our implementation uses the same concept as the lower bound formulation; the material

is discretized into 3-noded triangular elements whose nodal variables are the unknown nodal

velocities. In contrast to Sloan and Kleeman's approach [77], the kinematically admissible

velocity field is defined by the boundary condition constraints (5.1) and the "finite dissipation-

function" conditions derived in Section 5.1.2. Furthermore, the implementation considers the

axisymmetric case which, to our knowledge, has not been developed in details in previous works.
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5.2.2 Finite Elements Discretization

In the (r, z) plane the material is discretized in 3-noded triangular elements, with radial and

axial velocity as nodal unknowns (see Fig. 5-1). The velocities are assumed to vary linearly

z V)

..........

(u 2,v2)

(u3,v3)

)------------

r, U

Figure 5-1: 3-noded triangular element (upper bound).

within each element according to:

3

u Nk (r, z)ui (5.12)
k=1

3

V ZNk(r, z)vi (5.13)
k=1

where u is the radial velocity and v the vertical one. Indeed the problem (loading and geometry)

being 9-invariant ve = 0. The shape function are still given by (3.16) to (3.18).

Plastic deformation may occur not only within triangles, but also in the velocity discon-

tinuities along edges between elements. Kinematically admissible velocity discontinuities are

permitted along all edges shared by adjacent triangles, and are modeled by assuming that each

node is unique to its element. We have employed the same discretization strategy as in the
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lower bound approach (see Section 3.2.2).

5.2.3 Constraints From Velocity Boundary Conditions

To enforce prescribed boundary conditions, it is necessary to impose equality constraints on

the nodal velocities. Consider a node i on the boundary where the radial and axial velocities

are (up, vp), then it is sufficient to enforce

(5.14)

(5.15)

ui = UP

ui = U

This can be written as:

where

(5.16)[A 1] [X] = [B 1 ]

[A,] = k
0 1

[B 1 ]T = [uP,vP]

[X]T = [ui, vi]

(5.17)

(5.18)

(5.19)

Following the yield design theorem (see Section 5.1.1), the only velocity boundary condition

that can be prescribed is the zero velocity boundary on aQVd. Hence [B 1 ]T = [0, 0]

5.2.4 Constraints Due to the Finite Surface Dissipation Condition Along

Velocity Discontinuities

A typical stress discontinuity between adjacent elements is shown in Figure 5-2. It is defined

by the nodal pairs (1,2) and (3,4), for which the nodes in each pair share the same coordinates.

A velocity discontinuity is plastically admissible for a Mohr-Coulomb yield criterion if the

normal and tangential velocity jumps [[V]] and [[Vt]] satisfy (5.11) (cf. Section 5.1.2):

(5.20)
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Considering the nodal pair (i, j), the velocity jump in any direction defined with respect to

z

(u4,v4)
4

[[V,,]] [V]3 (U3,v3)

(u2,v 2) 2

(u1,v1)

r

Figure 5-2: Velocity discontinuity.

node i is equal to the velocity of node j minus the velocity of node i for the same direction.

Therefore, the normal and tangential velocity jump of the nodal pair (i, j) read:

[[Vi] =) - sin(a)(uj - ui) + cos(a)(vj - vi) (5.21)

[[V(')]] = cos(a)(uj - ui) + sin(a)(vj - vi) (5.22)

Relation (5.22) shows that the tangential jump [[Vt(')I]] can be either positive or negative. From

a linear programming point of view this is referred to as an unrestricted in sign variable. Since

any unrestricted variable can be decomposed into the difference of two non-negative variables,

[[Vt(i')]] can be written as:

[ -[' = ' - Vf'S (5.23)
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with the constraints

V(i'i) I

Vjit + 0

(5.24)

(5.25)

Since relations (5.23) to (5.25) are applied to the tangential velocity jump at both ends of the

discontinuity, they also hold for the jump occurring at all points along the discontinuity:

[[Vi]] = Vt+ - Vt- (5.26)

with the constraints

t+ > 0

Vt- > 0

(5.27)

(5.28)

Each decomposition of the tangential velocity jump generates two additional unknowns (Fig.

5-3). Therefore for each discontinuity there are four unknowns, namely ' ,t+,' 4, ,

Vt '-. Substituting (5.23) in (5.22) gives:

Vt(j - 0"j' = cos(a)(uj - ui) + sin(a)(vj - vi)

0

0

(5.29)

(5.30)

(5.31)

On the other hand, the absolute sign in relation (5.20) prevents the upper bound method to

be implemented as a linear programming problem. Therefore, in order to preserve the structure

of the linear programming problem, the absolute sign has to be eliminated. This can be achieved

by substituting for 1[[Vt]] I

I[Wi]l = = Vt+ + Vt-
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2

(V12 V1 2

r

Figure 5-3: Variables for velocity discontinuity.

It is readily understood that (5.32) would be inexact if Vt+ and V_ were positive simultaneously.

Thus the correct equality is satisfied only if either Vt+ = 0 or V = 0 at both end nodes of the

discontinuity. Fortunately, it turns out that by replacing I [[Vt]] I by Vt+ + V_ and decomposing

[[Vt]] in Vt+ - Vt- , where Vt+ and Vt_ are positive, the upper bound solution always gives either

Vt+ = 0 or V_ = 0, thus the correct sign rule is always satisfied. This key result from [85] is

proven in Appendix C.

Using (5.32), the finite dissipation condition (5.20) becomes:

[[Vn]] ;) (Vt+ + Vt-) tan(<p) (5.33)

which must be enforced at both nodal pairs of the discontinuity element. For a surface of

discontinuity along the edges of two triangular elements, the velocity jump constraints can be
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rewritten in matrix form as:

[A 21] [X] - [A 22] k]

[A' 1 ] [X] - [A 2 ] [k

1k]

[A 21]

= [0

[01

[01

E [R] 01

0 [R]J

[R] = - cos(a) - sin(a) cos(a) sin(a)]

[A']

[']

=[l'] 0
0 ['

= sin(a) -cos(a) -sin(a) cos(a)]

S[u 1 , V 1 , u 2 , v 2 , U3, V3, U4, V4]

= 1 1 0 0

0 0 1 -1-

= [tan(<p)

0

tan(p) 0 01

0 tan(Vp) tan(p)

[ V 1 2, V3, V 4]

(5.42)

(5.43)

(5.44)

Each discontinuity thus gives rise to a total of 2 inequality and 6 equality constraints.
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(5.34)

(5.35)

(5.36)

and

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

[A 22]

[A'22]

[~T



5.2.5 Constraints Due to the "Finite Volume Dissipation Function" in Solid

Elements

The energy rate dissipated within an element is finite provided that relation (5.10) is satisfied

(see Section 5.1.2), that is:

tr(d') [Id' I + Id'1 I + Id' I]sin(<p) (5.45)

where d' is the strain rate tensor and d' d' 1 > d'11 are the principal strain rates. In

cylindrical coordinates,the components of d' read (application of (5.3)):

19 0

d'= 0 +
i + 19) 0

S ( 19 + & )

0 (5.46)

The principal strain rates of (5.46) read:

dU 1 OU ) 1 1 au OV 1

d' +2 Or z 2 Rad and d 2-57r ) Rad

O u__v + 2 (Ou e2v 2 2

Rad = :pz

(5.47)

(5.48)

Furthermore, we have:
u 9U OV

tr(d') =- + + (
r Or Oz

The absolute sign in relation (5.45) prevents the upper bound method to be implemented as a

linear programming problem. In order to preserve the linear programming problem structure

we must get rid of the absolute values in (5.45).
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Since d'+ d', inequality (5.45) is equivalent to the combination of:

(i.e.tr (d') [d'+ + d'_ + u Isin(o)r

tr(d') d+ - d' + u-] sin

tr(d') [-d'+ - d'_ - U] sin(v)

tr(d')

tr(d')

d'+, d'_, u > 0)

[d++ d - u]sin)r

> [d+ - d'- + -]sin( p)

d

(i.e. d+, d'_ < 0, u > 0)

(i.e. d+, d !5 0, u < 0)

(i.e. d+, d'_, u < 0)

(i.e. d+, u > 0, d'_ < 0)

(i.e. d+,, u > 0, d'_ < 0)

Substituting (5.47), (5.48) and (5.49) in (5.50) yields:

U a
- + --

v
+ -z 0 within every triangle (5.56)

This inequality is satisfied in a triangle provided that the following conditions are satisfied at

each node i (this original result is proven in Appendix D):

if ri > 0: + ,
ri k=1 r

if rj = 0: ±&Nk(rz)Uk
k=1

+±Z ONk(r, ) Vk>
k=1

k=1

(5.57)

(5.58)

Similarly, (5.51) yields:

> 0 :u 1 - sin( o)

r> 1 + sin(V)

3 Nk(r, z)Uk +

k=1

= 0: Z Nk(r, z)Uk

k=1 k=1

Similar conditions can be derived for (5.52), which is equivalent to (5.50) since sin(p) E [0, 1[.
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(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

if ri

if ri

39Nk(r, z)> > 0
k Oz
k=1

ONk(r, z)Vk > 0
az

(5.59)

(5.60)



Following the same pattern, (5.53) becomes:

if ri >0 : u 1+ sin( p)
ri 1 - sin( p)

if ri

3Nk(r, z)
S Uk

k=1

+ ONk (r, z)
zVk

k=1

(5.61)

(5.62)

The last two inequations are somehow more complicated to deal with since d' - = Rad

given by (5.48), which is a non linear term. In order to linearize this term we employ the same

method as presented in Section 3.2.6. Relation (5.54) yields:

Rad < R5 (5.63)

ONk (r, z)Uk
Or U

ONk(r, z) )
+ 9N (r, z))

1
sin( cO)

si-()5.64)
sin(V)

(5.65)

Analogously, relation (5.55) yields:

with

+ 1)

= 0: Re =( ± Nk(r, z)UA

+ ( Nk(r, z)

+ ONi(r, z))+ z V

+ c9N (r, z))

1
sin( p)

- (5.67)
sin(.6)

(5.68)

The inequalities (5.54) and (5.55) can be rewritten as:

{

X 2 + y2; R?

R, > 0
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aN (z 3 ak(,z

=0: zE gr Z)Uk + E Naz) Vk >O

k=1 k=1

with

if ri > 0: R5 = i(

if ri = 0: R 5 = k zUk +

Rad < R6 (5.66)

if ri

(5.69)

if ri > 0 : R6 = in() 1

+ 
( 

3

E
k=1



where
OU 0Ov au OV

X - - and Y =-+ -
Or 9z Oz 0 r

In the (X, Y) plane, the inequalities (5.69) represent two circles of radius Ri.

(5.70)

To rigorously satisfy these inequalities, each point must lie inside the circle. Following the

development in Section 3.2.6 we replace the circle by an inscribed polygon with p sides. This

allows us to express the finite dissipation function inequations (5.54) and (5.55) as a series of

linear inequalities. The coordinates for the kth and kth + 1 points (see Fig. 5-4 which shows a

six-sided approximation) are given by:

Xk = Rcos(7r(2k - 1)/p) ; Yk = Rsin(7r(2k - 1)/p)

Xk+1 = Rcos(7r(2k + 1)/p) ; Yk+j = Rsin(7r(2k + 1)/p)

(5.71)

(5.72)

Consider a velocity state with coordinates X and Y, the inequality (5.69) is satisfied if:

y
Linearized finite dissipation
function (p=6)

- --

kk=31 3

'k=4 k=5-.

R=Ri

Finite dissipation function
X2+2=R 2

Figure 5-4: Internal linearization of the finite dissipation function.

(Xk+1 -- X) (Yk -- Y) - (Xk - X) (Yk+1 - Y) <: 0 ; k = 1, 2... p (5.73)
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Substituting (5.71) and (5.72) into (5.73) generates a set of inequality constraints:

3 3

Fk1 = Akj uj + B Bkvj < 0 ; k = 1, 2..., p; 1 = 1, 2, 3 (3 nodes) (5.74)

j=1 j=1

The expressions of Akj and Bk3 are somewhat lengthy, and are presented in Appendix E.

In summary, for the dissipation function to be finite we need to enforce the four inequations

(5.50) to (5.53), and the linearized version of (5.54) and (5.55).

Finally, given the dilatancy behaviour of the Mohr-Coulomb material, it seems meaningful

to assume u to be positive for an indentation test; which we confirmed after running a lot of

simulations. Thus we only need to enforce inequations (5.50), (5.51) and the linearized version

of (5.54), and the constraint ui > 0 for each node, resulting in a substantial gain in CPU time

(almost twice as fast).

5.3 Implementation of the Upper Bound Method as a Linear

Optimization Problem

5.3.1 Constraints

All previous equality and inequality constraints can be summarized in the following compact

form:

[A'][u] [bi] (5.75)

[A']fu] [b 2] (5.76)

where

[A'] assembles the constraint matrices related to the velocity boundary conditions and

the velocity jump equalities, i.e. (5.17), (5.37), (5.42),

[A'] assembles the constraint matrices related to the velocity jump inequalities and the

finite dissipation function conditions, i.e., (5.39), (5.44), (5.50), (5.51), the linearized version of

(5.54), and the constraint ui 0.

[u] is the nodal velocity vector.
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5.3.2 Objective Function

The upper bound theorem (5.2) provides an upper bound Q1m - q' of the actual dissipation

Q 1j - q at failure, by means of a kinematically and plastically admissible velocity field (see

Section 5.1.1). Furthermore, this upper bound dissipation rate, that the "real" collapse load

Q1 m realizes along the kinematically admissible velocity q', is less or equal than the maximum

dissipation capacity the material can develop for V', that is:

Qlim .< m q' Q' q' = dD(V') (5.77)

where Q' is the load vector associated with the dissipation capacity ! (V') of the material.

The nominal value of Q' is greater than or equal to the actual limit load. Relation (5.77) defines

a minimization problem: find the minimum value of Q' -q' subjected to the constraints of the

kinematically and plastically admissible velocity field; that is:

minjul(' q' = dE (U))

Subject to: (5.78)

[A1][u] = [bi]

[A2][u] ; [b 2]

The dissipation capacity E (u) is defined by the dissipation functions (5.10) and (5.11) (cf.

Section 5.1.2). We are left with specifying the implementation of these functions within the

context of the linear programming problem.

5.3.3 Discretization of the Dissipation Functions

Within each element, provided that (5.50) to (5.55) are satisfied, the energy rate dissipated

reads:
dD (U) = ptr(d')dV (5.79)

where p = c/ tan(<p). Substituting (5.49) in (5.79) yields:

d (U) Veement = p r + p +.
IVelement Or Oz
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Since we use a linear interpolation for the velocity, the second term directly gives p (O + Z) Velement,

Velement being the volume of the element. The first term can be rewritten 27rp f udrdz, that is

27rpuGA with UG I [U1 + U2 + U3] and A the triangle area. In matrix form, we have:

dD (U) [,eiement [ci]Ttu] (5.81)

where

Ni (r,z)
2irA/3 + ON r,z) Velement

a&zl Velement
2irA/3 + NL2r,z) Velement

2rA/3 (r,z) element

aNJ.(r,zV

and [U]T = [ul, v, u 2 , v2,U3, v31 (5.83)

Analogously, the dissipation rate along a discontinuity of length L, as shown in Figure 5-2,

is:
dI'

dtuMr = c|[[Vl]]|dL (5.84)

That is

d( r c(t+ + tV)dL (5.85)

Since the velocity field varies linearly along the discontinuity, we have (cf. Section 3.4.2):

t+ = 0 + j(V3 - 02) (5.86)

-= 2 t(N- _) (5.87)

where s is the curvilinear abscissa (s E [0, L]).

Substituting (5.86) and (5.87) into (5.85) yields:

dD ][U]
Tt(U) r = [C2]Tn (5.88)
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where

LL+ r3-rl

[c2] = 2irLc 2 6 (5.89)
Li + r3-ri

Ll + r3-r1

and [u]T = [ t12, V t2 V+, VYt] (5.90)

Assembling all the dissipation rate contributions of the triangular elements and the surfaces of

discontinuity yields the total dissipation capacity the material can afford:

N MdD

='E- 4 (u)n + E d (Mr = [c]"[u] (5.91)
tri el=1 dis e1=1

where [c] assembles the objective vectors.

Finally applied to the indentation test, Q' = PV, where P is the driving force and V

the driving velocity. In this case the optimization problem (5.78) can be stated in a discretized

form as follows:

mingu1([C]T[U]/V)

Subject to : (5.92)

[A'][u] = [b 1]

[A'][u) <; [b 2 ]

5.4 Chapter Summary

In this Chapter we presented an upper bound computational formulation for axisymmetric

problems. It constitutes (to our knowledge) the first complete work of this type, combining the

following key ingredients:

" The discretization and linearization of the dissipation functions,

" The constraint conditions to ensure kinematically and plastically admissible velocity fields

expressed by the finiteness of the dissipation within the triangles and along edges of

adjacent elements representing potential surfaces of discontinuities.
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We now have a powerful tool in hand to develop upper bound solutions for indentation tests,

which is the focus of the next Chapter.
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Chapter 6

Upper Bound Solutions for

Indentation Analysis

This Chapter presents upper bound solutions for the hardness-cohesion-friction relation for

indentation tests. The computational mechanics model developed in Chapter 5 was imple-

mented in a FORTRAN based computational environment using the BPMPD algorithm [61].

The meshes are generated using the pre-processor of a commercially available finite element

package, CESAR-LCPCTM. The Chapter is structured as follows: we start with the flat punch

solution, for which tow benchmark solutions are available. Following these verifications, upper

bound solutions for conical and spherical indenters are presented, and the effect of the apex

angle is discussed. Finally, by way of conclusion, we summarize the characteristics of the upper

bound solutions, and conclude on the relevance of both upper and lower bound solutions for

the extraction of strength properties of cohesive-frictional materials from indentation tests.

6.1 Mesh and Boundary Conditions

6.1.1 Mesh and Element Size

The indented material is discretized into 3-noded finite elements that are interfaced by dis-

continuity elements. The meshing procedure is very similar to the one employed for the lower

bound: the meshes are generated using the pre-processor of a commercially available finite
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element package, CESAR-LCPCTM which allows one to discretize in a step-by-step fashion a

material domain by triangular solid elements and to generate the interface elements along edges

of adjacent triangular elements. However, not surprisingly, the main differences with respect

to meshes employed in the lower bound approach relate to mesh density and size of meshed

domain, which becomes critical for the upper bound solution. First, in contrast to the lower

bound approach, in which extension elements are employed along the boundaries (see Section

3.3), the "natural" boundary condition in the upper bound solution are zero velocities at the

limit of the discretized material domain (see Section 5.2.3). These zero velocity conditions must

be sufficiently far away from the indenter in order not to interfere with the failure mechanisn.

The necessary size of the meshed domain depends on the friction angle: the greater the fric-

tion angle, the larger the domain of plastic dissipation (i.e. non zero velocities), and thus the

required size of the meshed material domain. Second and equally important, the individual

size of each element must be much smaller than the characteristic size of the indenter in order

to capture localized dissipation phenomena that characterize all upper bound solutions. In a

dimensionless form, the use of the upper bound computational method needs to consider the

following set of dimensionless quantities for the hardness-cohesion-friction relation:

H P 1 _ Ar

C = - -A = L (6 .1)

where /i7r is the characteristic size of the indenter (A is the projected contact area), 1 is

the characteristic element size of the mesh and L is the size of the meshed domain. The

dimensionless parameter I (which is a measure of the mesh density) and L (which

is a measure of the meshed domain) should ideally be much smaller than unity, so that the

discretization does not affect the result, i.e. the hardness-to-cohesion ratio. In our study,

with friction angles up to 30', a value of 1 0.05 below the indenter has been found to

deliver satisfactory results, while the ratio L decreased with the friction angle so that it

does not interfere with the failure mechanism (typically =0.2 for o = 100). We should

also mention that a convergence study was carried out for all results presented below, and the

linearization parameter p (see Section 5.2.5) was set to 24 (simulations with p = 36 showed a

relative difference of less than 0.3 % and took much longer to run).
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The mesh sensitivity of the upper bound solution gives rise to a large number of nodes and

elements (typically 60,000 nodes), and thus gives rise to a large number of constraint conditions,

requiring an effective optimization algorithm. As an indication, using the BPMPD algorithm

[61], the CPU time was about 3h30min on a Pentium3, 1.13GHz, 768Mb RAM (as the number

of inequalities dramatically increased from the linearization, more RAM was needed for an

optimal use of the CPU).

6.1.2 Boundary Conditions and Velocity Conditions at the Indenter-Material

Interface

The velocity-boundary condition for the upper bound are displayed in Figure 6-1. We have

already mentioned the zero velocity boundary condition along the limit of the modeled domain.

Furthermore, along the indenter, for the frictionless contact problem (Fig. 6-1 (a)) the normal

velocity is the one of the indenter (see [71]):

V= - cos(i)u + sin(i)v = -Vindenter sin(i) (6.2)

In contrast, for the perfectly rough contact condition (Fig. 6-1 (b)) there is no tangential jump

in velocity (see [71]):

[[Vt]] = 0 (6.3)

6.1.3 Numerical Errors

In contrast to the lower bound algorithm, we could not explore the whole range of values for

the friction angle in the upper bound algorithm. For values of W below 2-3' the program often

did not converge.

Theoretically, for W = 0', the Mohr-Coulomb yield criterion reduces to the Tresca criterion.

Even though the Tresca criterion appears simpler in its formulation, we could not implement

it in a linear programming fashion. The volumic dissipation function for the Tresca criterion

reads:

ao (Id'J + |d'1 | + |d'uuI) if tr(d') = 0 (6.4)

and we cannot a priori derive the sum of the absolute value of the principal strain rates. This
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Figure 6-1: (a) Boundary conditions for a frictionless interface. (b) Perfectly rough interface.

is indeed different from prescribing an inequality involving absolute value (see the volumic

dissipation function for the Mohr-Coulomb criterion, Section 5.1.2) for which one can enforce

the several inequalities corresponding to the different expression of the absolute value terms

(see Section 5.2.5).

In conclusion, the result presented below for the upper bound solutions are valid for friction

angles greater than 2 - Y.

6.2 Verification 1: Smooth Flat Punch Solution

The first application of our upper bound method deals with the flat punch problem, for which a

reference solution is available. This solution is due to Cox et al. [1]; it is based on the slip-line

theory. Cox et al.'s solution is presented first and is then compared with the solution we obtain

with our computational model.
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6.2.1 Cox et al.'s Flat Punch Solution

The problem considered in [1] is the bearing capacity of a smooth'. rigid circular footing resting

on a cohesive-frictional soil (Mohr-Coulomb yield criterion). The solution is developed within

the framework of limit equilibrium theory in axisymmetric conditions, assuming the Haar-

Karman hypothesis 2 which is a posteriori verified. Cox et al. derived a slip-line solution which

is an upper bound of the collapse load, as a kinematically admissible velocity field can be

associated with the partial stress field in a bounded region below the footing. Cox et al. also

showed that their partial stress field can be extended throughout the rest of the half space

without violating the yield criterion nor the equilibrium conditions. This means that their

slip-line solution is also a lower bound for the collapse load; and it is, therefore, the exact

solution. Finally, the bearing capacity is derived by integrating the normal stress acting on the

Figure 6-2: Cox et al.'s flat punch solution: Characteristic net in the meridian plane (from [11).

foundation. Figure 6-3 displays, in a dimensionless form, the Cox et al.'s flat punch solution.

'That is there is no tangential stress at the interface (see the definition of the frictionless contact problem in

Section 6.1.2).
2 The Haar-Karman hypothesis assumes that the middle principal stress is equal either to the major principal

stress or the minor principal stress:

011 = [(cR + aiii) - C (01 - 0111)] (6.5)

E = ±1 (6.6)
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Figure 6-3: Cox et al.'s flat punch solution [1] for the dimensionless parameter jT as a function

of y'. Frictionless interface condition.

6.2.2 Our Upper Bound Solution for the Smooth Flat Punch

Typical meshes employed in our analysis are displayed in Figure 6-4 (a), Figure 6-5 (a) and

Figure 6-6 (a). The meshed domain in Figure 6-5 (a) has the following characteristics: 58, 320

nodes, 24, 129 elements, = 0.05 and _ - 0.2 (for o = 10'). The meshes were chosen

so that the zero velocity boundary at the limit of the domain does not interfere with the failure

mechanism developing around the flat punch.

Following the solution proposed by Cox et al. [1], the interface between the punch (founda-

tion) and the material (soil) is assumed to be frictionless; that is there is no shear stress at the

interface and there is no normal jump in velocity (see relation (6.2) in Section 6.1.2). Figure 6-4

(b), Figure 6-5 (b) and Figure 6-6 (b) display the optimized velocity field for p = 20, a = 100

and p = 20' respectively. It is interesting to note that the main part of the failure mechanism

develops in a broad band emerging below a vertical downward velocity zone and extending to

the free surface (vertical upward velocity zone). As expected from a plastic dilating consti-

tutive law, the velocity field at the surface can be associated with a pile-up mechanism that

characterizes the Mohr-Coulomb material response: the area affected by plastic dilatation at
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the surface is the larger the greater the friction angle.

6.2.3 Discussion

Figure 6-7 summarizes our results in form of a plot of the normalized hardness versus friction

angle:

H :7 (6.7)
C

The figure also displays the Cox et al.'s solution, as well as our lower bound solution (3.13).

We note that our numerical upper bound solution comes remarkably close to the Cox et al.'s

solution (the relative difference is about 7 %, a little better than Lyamin and Sloan's numerical

lower bound solution [56]).

In contrast, there is a much larger error associated with lower bound results. In our interpre-

tation, this is due to the fact that the lower bound method is unable to represent a broad range

of stress fields3 , whereas the upper bound can virtually accommodate any failure mechanism.

In summary, the comparison of our "pure" upper bound solution with Cox et al.'s exact

solution for the smooth flat punch problem verifies our computational mechanics upper bound

model for the assessment of the hardness-cohesion-friction relation. It also provides strong

evidence that the developed upper bound is much closer to the real solution than the lower

bound approach; we keep this in mind for the application of the method to conical and spherical

indentations.

6.3 Verification 2: Rough Flat Punch Solution

A second benchmark solution for the flat punch is due to Matar and Salengon [60]; and it is

based on the method of characteristics. It is very similar to the solution by Cox et al. presented

hereabove. The difference lies in the boundary conditions.

3We have shown in Section 4.1.2 that our method can only deal with diagonal stress fields.
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Figure 6-4: (a) Mesh for o = 2'. (b) Failure mechanism for o = 2'.
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Figure 6-5: (a) Mesh for p = 100. (b) Failure mechanism for p = 100.
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Figure 6-7: Bounds for the dimensionless parameter j . Comparison with Cox et al.'s solution.

6.3.1 Matar and Salengon's Flat Punch Solution

The problem considered in [60] is the bearing capacity of a perfectly rough4 circular foundation

on a cohesive-frictional soil (Mohr-Coulomb yield criterion). The solution is also developed

within the framework of the limit equilibrium theory in axisymmetric conditions, assuming

the Haar-Karman hypothesis which is verified afterwards. The stress field is obtained by the

method of characteristics in a zone spreading under the foundation and emerging at the stress

free surface (Fig. 6-8). The method of characteristics is based oil a "lower bound" approach, or

more precisely on a partial static approach, since the stress field derived along the characteristic

lines (see Fig. 6-8) satisfies the equilibrium equations and the plasticity criterion. In addition to

the pure lower bound approach, when a compatible velocity field can be constructed in the same

zone where the stress field has been derived, an "incomplete solution", as introduced by Bishop

[6], is obtained. Such a velocity field is obtained through the normality rule and must satisfy

compatibility equations (see [60 for more details). Figure 6-9 displays, in a dimensionless form,

the Matar and Salengon's flat punch solution. The Matar and Salengon's solution is said to

4 That is there is no tangential velocity jump (see Section 6.1.2).
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Figure 6-8: Matar and Salengon's flat punch solution: Characteristic net in the meridian plane

(from [601).
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Figure 6-9: Matar and Salengon's flat punch solution for the dimensionless parameter H as a

function of o. Perfectly rough interface condition.
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be a "heuristic" solution in the sense that the stress field and the velocity field have not been

extended throughout the whole domain. However, the extension possibility has been evidenced

for similar planar problems.

6.3.2 Our Upper Bound Solution for the Rough Flat Punch

The meshes employed in this analysis are the same as in Section 6.2.2.

Following the solution proposed by Matar and SalengOn'[601, the interface between the

punch (foundation) and the material (soil) is assumed to be perfectly rough; that is there is

no constraint on the shear or normal stress at the interface and there is no tangential jump in

velocity (i.e. relation (6.3) in Section 6.1.2). Figure 6-10 (b), Figure 6-11 (b) and Figure 6-12

(b) display the optimized velocity field for o = 200, o = 10' and (P = 20 respectively. It is

interesting to note that the zone below the indenter undergoes an almost rigid body motion (as

one could expect from the boundary conditions), and that as previously, the main part of the

failure mechanism develops in a broad band emerging below this vertical downward velocity

zone and extending to the free surface (vertical upward velocity zone).

6.3.3 Discussion

Figure 6-13 summarizes our results in form of a plot of the normalized hardness versus friction

angle:
H (6.8)- =F(p)(.)
C

The Figure also displays the Matar and Salengon's solution as well as our lower bound solution

(3.13). We note that our numerical upper bound solution comes remarkably close to the Matar

and Salengon's solution (the maximum relative difference is about 10 % but consistently less

than 6 %). This is even more remarkable since Matar and Salengon's "heuristic" solution is

likely to be closer to a lower bound5 thus explaining the small difference with our upper bound

results, and the fact that our upper bound is indeed consistently above the reference solution.

In summary, the comparison of our "pure" upper bound solution with Matar and Salengon's

"heuristic" one for the flat punch problem is another strong argument in favor of our compu-

5 Recall that the method of characteristics is based on a stress field approach.
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Figure 6-10: (a) Mesh for o = 2'. (b) Failure mechanism for o = 2'.
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Figure 6-11: (a) Mesh for o = 10'. (b) Failure mechanism for o = 100.
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tational mechanics upper bound model for the assessment of the hardness-cohesion-friction

relation.

6.4 Conical Versus Spherical Indenter Solutions

This Section presents original upper bound solutions for conical and spherical indenters for

which (to our knowledge) no reference solution is available. The question we aim to answer is

whether it is possible to extract from two hardness measurements, obtained with two different

indenter geometries, the cohesion and friction angle of a Mohr-Coulomb material. The solution

for the conical indenter is presented first and is then compared with the solution of the spherical

indenter. Finally the effect of different apex angles is discussed. In all the simulations, the

contact between the indenter and the material is frictionless, which is captured by the contact

condition (6.2).
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6.4.1 Upper Bound Solution for a Conical Indenter (Berkovich Indenter)

The conical indenter solution presented below is intended for a Berkovich-type indenter, mod-

eled in axisymmetric conditions as a cone with a 70.320 semi apex angle, such that the projected

contact area with respect to penetration depth of the cone is the same as that for the real in-

denter [20]; see Section 4.3.2.

Failure mechanisms and meshes for different friction angles are presented in Figures 6-14 (a)

to 6-16 (b). Again, the meshed domain Was chosen so that the zero velocity boundary condition

does not interfere with the failure mechanism, = 0.04, and = 0.15 for P = 200.

While the boundary conditions differ from the perfectly rough flat punch, it is interesting to

note that the velocity field surrounding the conical indenter at the free surface appears more

concentrated, producing a fair amount of pile-up related to the dilatancy behavior of the Mohr-

Coulomb material.

Figure 6-17 presents the results for the evolution of with respect to p. For purpose of

comparison Figure 6-17 also displays the lower bound solution developed in Section 4.3.3. As

for the flat punch solution, the lower bound is far off from the upper bound. Along a similar

line of arguments as employed in Section 6.2.3, we suggest that the upper bound is much closer

to the actual plastic collapse solution.

6.4.2 Upper Bound Solution for a Spherical Indenter

Figure 6-18 (a), Figure 6-19 (a) and Figure 6-20 (a) display typical meshes employed for the

upper bound analysis of the spherical indentation test. The difference between the meshes is

the indenter radius to penetration depth ratio R/h, which enters the dimensionless function as

an additional invariant (see Section 2.5):

H , Y (6.9)
C h

Figure 6-18 (b), Figure 6-19 (b) and Figure 6-20 (b) display the optimized velocity fields for

three R/h values: R/h = 10, 4 and 2, for the same friction angle V = 20*. It is interesting

to note that the velocity fields appear to be quite similar to the ones obtained for the conical

indenter; particularly for R/h = 10, for which the geometry is very close to the conical indenter.
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Figure 6-17: Upper bound for the dimensionless parameter H as a function of p. Berkovich
C

type cone.

Failure mechanisms below the spherical and the Berkovich indenter are compared in Figure 6-21.

Figure 6-22 displays the normalized hardness versus friction angle for the spherical indentation

and three R/h values, as well as for the conical indenter. It can be seen that the H/c values

are very similar, Figure 6-23 displays the ratios of H/c for the different values of R/h over H/c

for the Berkovich indenter; i.e. the ratio of the hardness estimated by a spherical indenter over

the one estimated by a conical (Berkovich) indenter.

The Figure shows that there seems to be no unique relation between the ratios and the

friction angle. In other word it would be impossible to infer both c and (p from a Berkovich and

a spherical indentation test.

6.4.3 Effect of Different Apex Angles

The last application of the upper bound model deals with the effect of the cone apex angle

on the hardness-cohesion-friction relation for a Mohr-Coulomb material; that is in term of the

dimensionless relation (2.11):
H- = T(p, ) (6.10)
C
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Figure 6-19: (a) Mesh for <p= 20'. (b) Failure mechanism for <p = 200. R/h = 4.
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Figure 6-20: (a) Mesh for p = 20'. (b) Failure mechanism for o = 200. R/h = 2.
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Figure 6-21: (a) Close up of the failure mechanism for p = 20'.
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Figure 6-23: Evolution of the hardness ratios with respect to <p.

141

30

25

20

15

10

0

1.2

1.1

30



where i is the semi apex angle which enters as an additional invariant. The motivation for the

analysis is two-fold: on the one side, it is motivated by the relative insensitivity of Berkovich

versus spherical indentation hardness, which makes it difficult to envision the extraction of two

strength properties (c and V) from those two indentation tests. On the other hand, we have

already seen in the previous Sections a considerable difference in failure mechanism between the

flat punch and the Berkovich indenter. The flat punch can be seen as the limit of a cone with

i= 90', which was found to deliver significantly greater hardness values than the Berkovich

type cone, for which i = 70.320. The focus of this Section is therefore to explore the sensitivity

of the upper bound solution with regard to the apex angle.

In addition to the already presented solutions for i = 900 (Section 6.2.2) and i = 70.32*

(Section 6.4.1) we present solutions for smaller semi-apex angles: i = 450, 42.280, 250 and 150.

Figure 6-24 (a) and 6-25 (a) display typical meshes employed in this analysis, which have all

similar characteristics as the one employed for the Berkovich indenter. Figure 6-24 (b) and

6-25 (b) display the optimized velocity fields for i = 450, 250 and V = 100. It is interesting to

note that the velocity field appears more concentrated for smaller apex angle, which suggest

different overall dissipation rates, associated with different collapse loads. Figure 6-26 displays

the normalized hardness H/c versus the semi-apex angle i for V = 100. The results confirm a

sensitivity vis-A-vis apex angle for the hardness. The results also comforts the simple idea that

a sharp cone is easier to drive into the material than a flat punch, but we could not come up

with a satisfactory explanation for the apparent increase in harness for very sharp cones. There

appears to be a minimum around i = 45'. It is noteworthy that a similar minimum phenomenon

was reported by Houslby and Wroth [39]. They dealt with a lower bound approach for the cone

penetration test and reported an optimum angle6 about 500. We also present in Figure 6-27

the normalized hardness versus the friction angle for the Berkovich type conical indenter and

the 450 semi apex angle cone.

In summary the result of our study provide strong evidence that it is indeed possible to

extract the two strength properties of a Mohr-Coulomb material from two conical indentation

tests that have a significantly different apex angle.

6 We did not find such a minimum in our lower bound approach (see Section 4.3.4).
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Figure 6-24: (a) Mesh for p = 10'. (b) Failure mechanism for o = 10'. i = 45'.
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6.5 Berkovich Versus Corner Cube Indentation

The Mohr-Coulomb criterion requires two different hardness tests in order to extract the cohe-

sion c and the friction angle o. An important finding of our study is that the Berkovich and

spherical indenters deliver very similar hardness values. These two indentation tests therefore

do not serve our purpose. In contrast, two conical indenters with significantly different apex

angles yield relatively different hardness values, which meets our requirement.

From a practical point of view, it is convenient to employ standard indenters that are

commercially available. We suggest a combined use of the Berkovich and the Corner Cube

indenter which are both commonly employed for indentation tests. The Berkovich indenter

can be assimilated to a cone of semi-apex angle i = 70.320 (see Section 4.3.2). In turn, the

three sided pyramidal Corner Cube, which has a total included angle of 90', can be assimilated

to a cone with a semi-apex angle i = 42.28', which is very close to the minimum of the

hardness versus apex angle relation (Fig. 6-26), and sufficiently different from the Berkovich

type conical indenter. Figure 6-28 displays the normalized hardness-to-friction coefficient (i.e.

tan(o)) for these two conical indentation tests. Figure 6-29 displays the hardness ratio of the

40-

35-

45--

01
QO 01 02 03 04 05 Q6 07

tan(p)

Figure 6-28: Fitting of the upper bound solutions by fifth order power functions. Berkovich

and Corner Cube type conical indenters.
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two indentation tests as a function of the friction angle. This result shows that there is a unique

relation between the hardness ratio and the friction angle, which provides a means of assessing

p from the difference between a Berkovich indentation test and a Corner Cube indentation

test. While relatively small for friction angles smaller than 100, the ratio becomes significant

for greater friction angles, for which the two indentation tests should provide a reliable means of

extracting both the cohesion and the friction angle. We must mention here that the algorithm

did converge for o = 20 and 30 for the Corner Cube, but the obtained dimensionless parameter

values were both greater than for o = 50 and we therefore discarded the results. Finally, figure
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Figure 6-29: Evolution of the hardness ratio between a Berkovich

indenter with respect to p.

indenter and a Corner Cube

6-28 also displays the fitting functions for the hardness-friction angle relations in form of fifth

order power functions:

H ak tank(P) (6.11)

k=O

The coefficients ak for the two indenters are given in Table 6.1.

The functions were determined using 13 values of the numerically determined I relations,

for which the fifth order power functions perfectly fit values of sO E [0, 300]. The functions may

also serve for limited extrapolation to higher friction angles. We indeed ran simulations for

147

0



ao al a2 a3 a4 a5

Berkovich indenter 5.7946 8.6758 -18.21 338.82 -516.77 417.26

Corner Cube indenter 5.9455 5.8823 -20.974 259.91 -387.7 266.56

Table 6.1: Berkovich and Corner Cube indenters, fifth order power function fitting coefficients.

o = 350 and the result lay within the range of 1 % from the fitted values.

6.6 Conclusion and Appraisal of Method

The computational upper bound approach developed and employed in Chapter 5 and 6 provides

a rational means to determine upper bound solutions for indentation tests. These upper bound

solutions appear much more realistic than the lower bound solutions. This is strongly evidenced

by the comparison of our upper bound solution with two reference solutions, the one of Cox

et al. for a smooth flat punh (Section 6.2), and the one of Matar and Salengon for a rough

flat punch (Section 6.3). In addition, the lower bound approach, because of its restriction to

diagonal stress fields, is limited to a relative small range of possible solutions that appear too

restrictive to come close to actual stress fields in indentation tests. In contrast, the upper bound

approach is free of such restrictions and is able to accommodate any collapse mechanism. This

and the excellent agreement of the flat punch solution with the reference solutions are very

strong arguments in favor of the use of the upper bound solution for indentation analysis. This

is why we suggest to consider only the upper bound solution to extract strength properties of

cohesive-frictional materials from hardness measurements. In addition, as explained in Section

6.1.3, the upper bound solutions are available for friction angles greater than 2 - 30 (which

should always be the case).

It was also shown that the ratio of the hardness estimated from a Berkovich indenter and a

Corner Cube provides a unique correspondence with the friction angle (for o > 50). It should

thus be possible to extract both c and o from two simple indentation tests.

Finally, a fifth order power function appears suitable for fitting the upper bound curve (see

Fig. 6-28). This function perfectly fits the curve for values of O below 300 and in addition

shows very good agreement for higher values.
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Chapter 7

Validation of the Indentation

Solutions: Cohesion and Friction

Angle of Metallic Glass

The third Part of this thesis is devoted to the validation of the yield design approach for

indentation analysis, and to the application to shale materials. This Chapter deals with the

validation of the upper bound solutions for a cohesive-frictional "model" material: the Vitreloy

1 TM metallic glass. The rational of validating our upper bound solution for this "model"

material is twofold: (1) Vitreloy 1 TM is a fine-tuned man-made cohesive-frictional material

which is much more homogeneous than highly heterogeneous "natural" composites (such as

shales); (2) the cohesive-frictional nature of this metallic glass was recently identified by a

comprehensive 3-D elastoplastic backanalysis of Berkovich indentation tests [88]. This study

forms the background for the first part of this Chapter, in which we address the question whether

the yield design approach is appropriate to capture the strength properties of an elastoplastic

cohesive-frictional material. The second part of this Chapter aims at validating the proposed

two-indentation test method, that is the extraction of cohesion and friction angle of metallic

glass from a Berkovich and a Corner Cube indentation test.
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7.1 Metal Glass Materials

7.1.1 General Presentationi

Most metals do crystallize as they cool, arranging their atoms into a highly regular spatial

pattern called a lattice. But if crystallization does not occur, and the atoms settle into a nearly

random arrangement, the final form is a metallic glass. The difficulty in making a metallic glass

is to cool the metallic liquid (which has a disordered structure as well) down rapidly enough so

that there is not enough time for the ordered, crystalline structure to develop. In the original

metallic glasses (developed about forty years ago [74]), the required cooling rate was quite

fast (as much as a million degrees Celsius per second). More recently, new alloys have been

developed that form glasses at much lower cooling rates, around 1 to 100 degrees per second.

While still fairly rapid, it is slow enough that bulk ingots of these metallic alloys can be cast,

and they will solidify to form glasses. Metallic glasses are mostly prepared by casting methods2

or by consolidation of glassy powders in the supercooled liquid region, through a process of

warm-extrusion [49].

Metallic glasses owe their exceptional mechanical properties to their disordered atomic struc-

ture. Because of this disordered structure, amorphous metals (termed metallic glasses) exhibit

different deformation mechanisms compared to polycrystalline metals. The vast majority of

metallic glasses are homogeneous at all length scales greater than a few atomic diameters3

(i.e. beyond the first few neighboring atomic shells). This assumes, however, that there are no

fluctuations in composition. Some metallic glass-forming alloys phase separate by spinodal de-

composition [42], introducing fluctuations from approximately 2 to 100 nm, and maybe larger.

In this case one can consider that the material is homogeneous on length scales of more than

one micrometer (10-6 M). Some recent work suggests that amorphous alloys do have structure

on the 2 nm length scale, sometimes referred to as "medium-range order". Hufnagel et al. [43]

have used fluctuation electron microscopy to examine this order in Zr-based alloys. The most

'This paragraph is strongly inspired and adapted from Pr. Hufnagel's presentation at
http://www.jhu.edu/~matsi/people/faculty/hufnagel/hufnagel.html.

2An alloy ingot is prepared by arc melting pure metals in a purified argon atmosphere. Bulk amorphous alloys

are then prepared in Pd or Zr based system by repeated melting of their molten alloys fluxed with B20 3 (from
[64]).

3In the near-neighbor environment, of course, the atoms are not homogeneously distributed. Amorphous
alloys can be considered to be homogeneous at length scales of more than about one nanometer.
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recent models of structure of metallic glasses [63] postulates the existence of atomic clusters,

with icosahedral4 symmetry, of about this length scale.

7.1.2 Mechanical Properties

Bulk metallic glasses have been of great technological and scientific interest since their discovery

in 1960 [74], and are considered today as emerging structural materials due to their high strength

and large elastic deformation capacity prior to the onset of plastic deformation (see Fig. 7-1).

Typical metallic glass has a Young's modulus on the order of E = 100 GPa, and uniaxial

tensile strength of roughly 2 GPa for Zr-based glasses (between 1.3 and 1.5 GPa for Pd-based

metallic glasses), thus allowing for a pure elastic deformation, in uniaxial tension of about

1/50 for Zr-based glasses (compared to 1/400 for steel). In addition, metallic glasses posses an

excellent strength to weight ratio, usually around 300 kPa/kg/m 3 (compared to 63 kPa/kg/m 3

for steel). These exceptional mechanical performances make metallic glasses an extremely

appealing material and have prompted intensive research.
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http.//www.its.caltech .edu/-vitreloy/development.htm)

Figure 7-1: Typical strengths and elastic limits for various materials. Metallic glasses (Glassy

Alloys) are unique.

4 The isocahedral group is the point group of symmetries of the icosahedron and dodecahedron.
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7.1.3 Cohesive-Frictional Behavior

There is a growing body of both experimental and theoretical evidence [22] [88] [73] [25] that

metallic glasses are cohesive-frictional materials, that obey a Mohr-Coulomb criterion, and not

purely cohesive materials of the Von Mises kind, as it was originally suggested.

Donovan [22] clearly evidenced the cohesive-frictional behavior of a Pd-based metallic glass

at the macroscale, from uniaxial compression, plane-strain compression, plane-strain tension

and pure shear tests. The macroscopic results proved that the Pd40 Ni4OP 20 metallic glass obeys

a Mohr-Coulomb criterion with the following strength properties:

c = 0.795 ± 0.025 GPa and tan(p) = 0.113 ±0.03 (7.1)

At the microscale, Vaidyanathan et al. [88] confirmed Donovan's finding for Zr-based Vitreloy

1 TM by means of a comprehensive 3-D elastoplastic backanalysis of microindentation tests. The

results provide strong evidence that Vitreloy 1 TM metallic glass, at the microscale is not a Von

Mises material but a Mohr-Coulomb material with the following strength properties:

c = 1.0816 GPa and tan(V) = 0.13 (7.2)

In addition, Schuh and Lund [73] provide theoretical atomistic arguments in favor of the

cohesive-frictional behavior of metallic glasses. The key idea is that the relative motion of

randomly packed atoms in a metallic glass is analogous to that of randomly packed particles

in a granular solid [53]. This suggestion was confirmed by molecular statics simulations of Zr-

and Cu-based metallic glasses, from which the authors derive the following friction angle:

tan(V) = 0.123 t 0.004 (7.3)

It is remarkable to note from (7.1) to (7.3) that the friction angle of metallic glasses is scale

transgressive: it is almost the same over at least eight orders of magnitude: from the scale of its

atoms to the macroscale of laboratory test specimens. This scale independency is most likely

related to the high homogeneity of the materials, a consequence of their amorphous structure.

It is for these reasons that we have chosen metallic glass as a model material for validating our
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yield design solutions.

7.2 Validation of Yield Design Approach

7.2.1 Focus of the Validation Set

The first validation case is performed by comparing semi-experimental data to our upper bound

solution of a Berkovich indenter. The data were published by Vaidyanathan et al. [88]. With

the study of this case we specifically want to validate the relevance and the quality of the

yield design approach to establish a link between the nanohardness and the strength properties

for cohesive-frictional materials. In fact, one may object that the very assumption of yield

design approach, which only assesses the plastic dissipation at failure, is not appropriate for

indentation analysis, which always includes an elastic and a plastic contribution (see Chapter

2, Section 2.3). The aim of this Section, therefore, is to show that the developed yield design

approach applied to metallic glass allows one to extract strength properties from indentation

tests.

The model material investigated in this Section is an as-cast fully amorphous,

Zr 4 1. 25 Ti13 .75Cu1 2.5 NioBe22.5 (nominal composition at. %) alloy, manufactured by Howmet

Corporation, Greenwich, CT (trade name Vitreloy 1 TM). It has a Young's modulus of E = 96

GPa [17] and a yield strength of o, = 1.9 GPa [88]. The density of Vitreloy 1 TM is 6.1 g/cc

(strength to weight ratio of 328 kPa/kg/m 3 ). As mentioned in Section 7.1.1 the metallic glasses

are extremely homogeneous materials and therefore very suitable for our validation sets.

7.2.2 Vaidyanathan et al.'s 3-D Elastoplastic Backanalysis

The background study of this validation is the comprehensive 3-D elastoplastic analysis of

indentation test on Vitreloy 1 TM by Vaidyanathan et al. [88]. In this study, the authors

analyzed two series of microindentation tests, carried out with a Berkovich indenter. The

maximum indentation depths were 5 pim and 9 pLm (see Fig. 7-3 (b)), the specimen dimensions

were 2 x 0.7 x 0.3 cm, and adjacent indents were separated by at least 10 pm.

3-D finite element simulations on ABAQUS modeling the six-fold geometry of the Berkovich
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indenter5 were performed assuming either a Von Mises or a Mohr-Coulomb criterion and finite

deformation characteristics. A total of 11,040 eight noded, isoparametric elements were used

to capture deformation modes. Figure 7-2 presents the overall mesh as well as the area directly

in contact with the indenter.

The elastic properties used in the simulation are E = 96 GPa and v = 0.36 [17]. The

predicted elastic response displayed in Figure 7-3 (a) is in excellent agreement with the loading

portion of the two series of indentation experiments.

Tr

NI

'J.4

Figure 7-2: Overall mesh and detailed view of area in contact with the indenter tip (from [88]).

Using known elastic properties [17] and yield strength data (tensile yield strength of 1.9

GPa) Vaidyanathan et al. performed finite element simulations to investigate the yield criterion

influence. For the Mohr-Coulomb criterion, the strength parameters were established so as to

satisfy macroscopic tensile yielding and to fit the loading-unloading curve. Their main finding,

which is summarized in Figure 7-3 (b), is that the metallic glass does not follow the Von

Mises criterion but rather a Mohr-Coulomb criterion. The best fit was obtained with a friction

coefficient a = tan(p) = 0.13, that is a friction angle of p = 7.41', and a cohesion of c = 1082.6

5 The model takes into account the real pyramidal geometry, not the associated cone (i = 70.320).
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Figure 7-3: (a) Nanoindentation response of metallic glass during elastic loading (from [88]).

(b) Microindentation response of metallic glass during loading and unloading (from [88]).
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MPa. This friction angle compares well with the value of a = 0.11 ± 0.05 previously reported

by Donovan [22] for Pd 4oNi 4OP 20 metallic glass. To our knowledge, this work by Vaidyanathan

et al. is the only comprehensive elastic-plastic analysis of indentation using a Mohr-Coulomb

criterion for metallic glass.

7.2.3 Experimentally Determined Input Parameters

This Section presents the input parameters we need for our first validation set. Our upper

bound solution for a Berkovich indenter (Section 6.4.1) established a link between the hardness

H and the strength properties, c and p, for a cohesive-frictional material. It is then easy to

recast this relation as a link between the ratio of hardness to tensile yield strength and friction

angle (Fig. 7-4):
H
orI

(7.4)
y

where the tensile yield strength for a Mohr-Coulomb material is given by:

2c cos(p)

- 1+sin(p)
(7.5)

Therefore, the only input parameters we need, are the tensile yield strength and the hard-

ness.

e The tensile yield strength has been experimentally determined:

(7.6)O-, = 1.9 GPa

* The hardness has also been experimentally determined:

H = 5.67 t 0.17 GPa
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p (degree)
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Figure 7-4: Evolution of H/oy as a function of p.

7.2.4 Comparison With Yield Design Approach

We use our upper bound solution of the Berkovich indenter recast as a relation between H/O-

and a. Using (7.6) and (7.17) in (7.7), the computed ratio from the experimental data is

H- = 3.0 (7.8)
Oly

yielding the following results for the metal glass (Vitreloy lTM):

S= 3.0' i.e. tan( o) = 0.052 (7.9)

and from (7.5)

c = 1001 MPa (7.10)

These results, based on the yield design approach, are in good agreement with the results of

[881, obtained by a 3-D elastoplastic backanalysis; especially for the cohesion (about 7 % of

relative difference).

It is interesting to note that our approach does not need the elastic properties to obtain a
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good estimate of the strength properties since we estimate the plastic dissipation which is not

affected by the elastic properties.

A second way of validating our approach is to use our upper bound solution of the Berkovich

indenter with the friction angle estimated from [88]: p = 7.410. This yields6 F( p) = H = 6.3

and with the experimentally determined hardness H of 5.67 GPa (from (7.7))

c = 908 MPa (7.11)

This value compares well to the cohesion obtained by Vaidyanathan et al. through an elasto-

plastic backanalysis (about 16 % of relative difference). Finally Figure 7-5 (a) presents the

failure mechanism for o = 7.41' obtained with our upper bound approach. This failure mech-

anism appears to be consistent with the experimentally observed pile-up deformation around

the indenter as displayed in Figure 7-5 (b).

This is the belief of the author that the classic definition of the hardness may be unsuited

for cohesive frictional materials, and with respect to our yield design analysis. The following

Section is an attempt to define a more meaningful value to only take into account the plastic

dissipation.

7.2.5 Hardness Assessment

Yield design is based on the assumption that a material system, at plastic collapse, has ex-

hausted its capacity to store any additional external work dWet into recoverable elastic energy.

This is expressed by the Clausius-Duhem inequality, which at the structural level and for

isothermal evolutions reads:

dV 6W _ dJdD Wet dQ > 0 (7.12)
dt 6t in

where
dW _d Id - d dQ (7.13)
dt dt
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(a)

(b)

Figure 7-5: (a) Failure mechanism for o = 7.41'. Berkovich indenter. (b) Shear bands on

impression from Berkovich indenter face (from [88]).
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is the variation of the recoverable free energy (see [87] Chapter 9 for a more detailed presen-

tation). At plastic collapse, d = 0, which means that the yield design approach, or more

specifically the upper bound approach, estimates the plastic dissipation at failure (cf. Section

5.1.1). At the same time, the unloading portion of the indentation test is purely elastic (see Fig.

7-6), and the elastic work We is not negligible with respect to the plastic work Wy. Therefore,

to be consistent with the theory and the model we have developed, the hardness should relate

to the dissipated plastic energy Wp which, in turn, should improve the quality of the prediction.

We propose that the hardness be computed as the ratio of the driving force P by the contact

area at "effective plastic depth" A(hep) (see Fig. 7-6):

H* Pmax (7.14)
A(hep)

We should mention here that the "effective plastic depth" is usually different from the residual

depth hr since the end of the unloading curve is often poorly defined because of contact problems

(see Fig. 7-6). The "effective plastic depth" hep is conveniently extrapolated by fitting a

polynome to match the first two thirds of the unloading curve, as to get rid of the contact

problems at the end of the unloading curve. In our model hep is estimated by the "extrapolated

residual depth" h', the output of the fitting polynome:

Pmax = a (h - h) m  (7.15)

where a, m and h' are fitted parameters. This relates to several theoretical attempts to estimate

the "corrected effective depth", in particular to the Oliver and Pharr method [69] (cf. Section

2.3). This new definition of the "hardness" H* relates to our analysis of yield design and strength

properties. This definition is valid as long as the "pile up height" is negligible compared to

hep, which seems to be the case for the Berkovich indenter (see for example Fig. 7-7 (b)). But

we have to account for the significant pile up occurring in a Corner Cube indentation test by

estimating hep from the following relation:

hep = hp1 + hpiie up (7.16)
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max

hr hep hmax

Figure 7-6: Definition of the "effective plastic depth" hep. W, is the plastic energy, We the

elastic energy and h, the residual depth.

where hpiie 2, is the "pile up height", that is the difference between the "top of the pile" and

the initial contact point (initial h = 0). The value of hpile 2, could "theoretically" be estimated

from a profilometer scan, but in practise this is a very time consuming and difficult task (see

Section 7.3).

From Figure 7-3 (b) we can compute H* for the two series of experiments. Table 7.1 contains

details of this calculation. The two results are very consistent with each other7 and the derived

hardness is:

H* _ Pmax - 8.0 GPa (7.17)
A(h'.)

7.2.6 Comparison With Yield Design Approach Revisited

This section reanalyses the results presented in Section 7.2.4, but using our new definition of

the hardness H*.

7 This is readily understood since the indentation test is self-similar.

162



Spim experiment 9pim experiment

Maximum driving force Pmax [N] 3 11

Extrapolated residual depth h' Pmg 3.9 7.5

Pile up Height [ h'm] negl negl
Hardness H* [GPa] 8.03 7.96

Table 7.1: Details of parameters for the two microindentation series.

We use our upper bound solution of the Berkovich indenter recast as a relation between

H*/oy and o. Using (7.6) and (7.17) in (7.4), the computed ratio from the experimental data

is
H*
- = 4.2 (7.18)
Ory

yielding the following results for the metal glass (Vitreloy lTM):

p = 7.6' i.e. tan(p) = 0.133 (7.19)

and from (7.5)

c = 1085 MPa (7.20)

These results, based on the yield design approach and a modified expression of the hardness,

are in excellent agreement with the results of [88], obtained by a 3-D elastoplastic backanalysis;

namely about 2.6 % of relative difference for the friction angle and less than 1 % for the cohesion.

In the same vein as in Section 7.2.4, a second way of validating our approach is to use our

upper bound solution of the Berkovich indenter with the friction angle estimated from [88]:

o = 7.41'. This yields8 F(p) = L = 7.28 and with the estimated hardness H* of 8.0 GPa
C

c = 1099 MPa (7.21)

This value is very close to the cohesion obtained by Vaidyanathan et al. through an elasto-

plastic backanalysis (about 1.5 % of relative difference). The new definition of hardness greatly

improves the accuracy of the determination of the strength parameters from a Berkovich in-

dentation test.
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Vaidyanathan et al. [88] 1 classic UB approach | UB approach & H*

Cohesion c [MPa] 1082.6 1001 1085
Friction angle [0] 7.4 3.0 7.6

Table 7.2: Comparison of the strength properties.

7.2.7 Summary of the Validation 'Test

This validation set is based on the upper bound solution of the Berkovich indenter recast as

a relation between the hardness over tensile yield strength ratio and the friction angle. From

the experimentally determined ratio we derive an estimate of the friction angle, and then the

cohesion from the formula linking the two strength parameters to the tensile yield strength

(relation (7.5)). The validation based on the classic definition of the hardness shows that the

yield design approach appears relatively sound to model the indentation tests and leads to good

estimates of the plastic properties. The introduction of a new definition for hardness greatly

improved the predictions, but needs further study to be confirmed as a valid approach. Table

7.2 summarizes the validation results.

7.3 Validation of the Two Indentation Test Method

7.3.1 Focus of the Validation Set

The second validation set focuses on the determination of both strength properties c and p

from a combination of Berkovich and Corner Cube indentation test. The validation compares

experimental results on the Vitreloy 1TM metal glass to our upper bound solutions. Specifically,

we want to verify the relation between friction angle and hardness ratio for Berkovich and Corner

Cube indenters (see Fig. 6-29).

7.3.2 Two Indentation Test Results

The tests were carried out by Georgios Constantinides in the nanolab facilities at MIT. Surfaces

were polished with silicon carbide papers to obtain a very flat and smooth surface finish.

Following the experiments of Vaidyanathan et al. in [88], the Vitreloy 1TM was indented

to a penetration depth of about 10 pm. Series of a hundred tests were carried out using a
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E [GPa] H [GPa] Hcarrected [GPa]

Berkovich indenter 95.14 & 1.82 5.67 ± 0.17 5.67 ± 0.17
Corner Cube indenter 124.25 i 2.06 8.06 ± 0.26 5.02 ± 0.15

Table 7.3: Comparison of the strength properties. [Courtesy of G. Constantinides]

Berkovich and a Corner Cube indenter with a constant loading rate of 300mNs 1 . The specimen

dimensions were 2x1.5xO.3cm and adjacent indents were separated by at least 250pm to avoid

any possible interference (same conditions as in Section 7.2.2); Figure 7-7 present SEM images

of the indentation imprints.

A statistical analysis of the hundred indentation tests for each indenter yields the results

summarized in Table 7.3. Two points deserve a particular attention: (1) the elasticity modulus

of the two tests does not coincide, and (2) the Corner-Cube hardness value is greater than the

Berkovich hardness value.

The elasticity equation used for extrapolating elastic properties of the indented material from

the unloading portion of the indentation response has been proven to be a general characteristic

of indentation. It is unaffected by the plastic properties of the materials and is a mere reflection

of its elastic behavior. As a consequence the elastic properties measured by indentation are

expected to be insensitive to the indenter geometry provided that the correct contact area is

accounted for. We therefore think that the discrepancy observed between the elastic modulus

obtained from Berkovich and Corner Cube indentation (cf. Table 7.3) is a consequence of the

extensive pile-up taking place under the Corner Cube indenter. We recall that the method used

for extrapolating the contact area from the unloading portion of the curve, known as the Oliver

and Pharr method, has its basis on the elasticity solution and cannot account for any pile-up

phenomena. As a consequence the error is significant for the case of Corner Cube indentation

whereas its prediction are quite accurate for the Berkovich indentation. Determination of the

projected contact area for Corner QCube is both time-consuming and difficult (particularly

given the 3-sided non-circular impression and pile-up). In order to circumvent the necessity

to measure the contact area, one may use the known elasticity of metallic glass (e.g. from

Berkovich indentation), and back analyze the projected contact area from the unloading slope
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(a)

(b)

Figure 7-7: (a) SEM image of the indentation imprints. (b) SEM image of one indentation

imprint. [Courtesy of Maria Paiva]
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of the Corner Cube, based on relation (2.1) reproduced here:

dP *A1/2E* (7.22)
dh

This leads to a ratio between the corrected area and the experimentally determined area of

rel = Acorrected E*xp erimental - 1.60 (7.23)
Aexp erimental Eerrected /

and provides a first-order means to estimate the actual Corner Cube hardness within the limit

of the accuracy of the unloading slope measurement, which is rather good for metallic glass

since the experiments are easily reproducible and consistent with each other.

The values for the corrected hardness are given in the third column of Table 7.3. We note,

as expected from our upper bound solutions (see Section 6.4.3) that the hardness evaluated

from Corner Cube indentation is less than the hardness evaluated from Berkovich indentation.

7.3.3 Extraction of Strength Properties and Comparison with Published Re-

sults

Using the Classic Definition of Hardness

Based on the results of Section 6.5, the ratio between the Berkovich hardness and the Corner

Cube hardness allows us to determine the friction angle. We start with the classic definition

of the hardness. The computed ratio of 1.13 yields a friction angle of 11.20 (using the fitting

function in Fig. 7-8); which in turn yields a cohesion of 655 MPa (using the fitting functions

for the hardness-friction angle relation and the hardness value in (7.7)). With regards to the

experimental results from Section 7.1.3, our results compare relatively well for the friction angle,

and a little bit worse for the cohesion. This can be attributed to our simple evaluation of the

projected contact area for the Corner Cube indentation tests.

Using Our New Definition of Hardness

The determination of H* according to (7.14) requires determination of the projected contact

area at "effective plastic depth". Using the extrapolation by means of power functions of the
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Figure 7-8: Evolution of the hardness ratios between a Berkovich

indener with respect to p.

indenter and a Corner Cube

unloading branch is suitable for Berkovich indenter (which restrains because of its flatness

excessive pile-up phenomena). It is more difficult for the Corner Cube due to the important

pile-up phenomena that can freely develop because of the smaller apex angle; thus requiring a

precise evaluation of the true projected contact area at "effective plastic depth", which takes

into account the "pile up height" (recall that the effective plastic depth is meant to take only

into account the plastic effects, see Section 7.2.5). Since the determination of the projected

contact area for Corner Cube at "effective plastic depth" is both time consuming and difficult,

the ratio re = 1.60 between the back analyzed "elastic" contact area and the "elastic" contact

area given by the indenter (see Table 7.3 in Section 7.3.2) will be used to assess the contact area

at effective plastic depth from the contact area estimated at the residual depth h, (accessible

from the loading curves, see Section 7.2.5):

A(hep) = reA(h') (7.24)

This provides a first-order means to estimate the actual Corner Cube hardness within the limit

of the accuracy of the unloading slope measurement. Figures 7-9 and 7-10 present typical
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11 Berkovich indenter Corner Cube indenter

Max. load [mN] 11472 t 172 1083 ± 32

Extrapolated residual depth h' [pm] 7700 100 6800 ± 50

Pile up height [nm] negi N/A

Effective plastic depth, hep [nm] 7700 ± 100 N/A

Hardness H* [GPa] 7.95 ± 0.2 5.7 t 0.29

Table 7.4: Comparison of the strength properties revisited. [Courtesy of G. Constantinides]

loading cycle for respectively a Berkovich and a Corner Cube indentation on Vitreloy 1TM

Table 7.4 summarizes the needed parameters.

1000 2000 3000 4000 5000 6000 7000 8000

h (nm)

9000 10000 11000

Figure 7-9: Loading cycle for a Berkovich indentation on Vitreloy 1 N. [Courtesy of G. Con-

stantinides]

The new ratio between the Berkovich hardness and the Corner Cube hardness allows us

to determine the friction angle. The computed ratio of 1.39 yields a friction angle of 25' (see

Fig. 7-8); which in turn yields a cohesion of 319MPa. Unfortunately, these results compare

"relatively" poorly with the experimental results from Section 7.1.3. This can be attributed to

our simple evaluation of the projected contact area at "effective plastic depth" for the Corner

Cube indentation tests; and perhaps to our new definition of the hardness.
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Figure 7-10: Loading cycle for a Corner Cube indentation

Constantinides]

6000 7000 8000

on Vitreloy 1 TM. [Courtesy of G.

7.3.4 Summary of the Validation Test

The first important finding that should not be minimized is the actual difference in hardness

values depending on the indenter; as well as the order of those values.

We encountered a problem in the determination of the correct contact area for the Corner

Cube indenter. We tried to circumvent the necessity to measure the contact area by using the

known elasticity of metallic glass, and back analyze the projected "elastic" contact area from

the unloading slope of the Corner Cube. This is just a first-order means to estimate the actual

Corner Cube hardness. However, as simple the method, it yields results on the same order as

the experimental results. This is already satisfying in itself. On the other hand, the simplicity

is at the expenses of the accuracy. In addition, using our definition of H* did not improve the

results; perhaps because of the simple contact area evaluation, or simply because our definition

is unsuitable. But this has the merit of shedding some light on the difficulty of assessing the

hardness based on a contact area definition, especially for cohesive-frictional materials.

7.4 Chapter Summary

The first validation set using the classic definition of the hardness led to relatively good results

for the plastic properties of the Vitreloy 1TM with regard to the experimental results found in the
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literature. The introduction of a new definition for hardness greatly improved the predictions,

but needs further study to be confirmed as a valid approach.

In turn, the second validation yielded satisfactory results for the friction angle and a rea-

sonable estimate for the cohesion. This relative discrepancy with the experimental results can

be attributed to the simple first order estimation of the contact area. Developing a method

that can circumvent by design the need for measuring the contact area has been the hope for

many experimentalists, and maybe we should focus on estimating the hardness, or a new prop-

erty taking only the plastic effect into account, from an energy standpoint, or rather from a

dissipated plastic energy W standpoint.

Finally we believe that the first validation using only the Berkovich indentation results as

well as the verifications of our upper bound solutions give credibility and confidence in the global

approach to derive good estimates on the strength properties of cohesive-frictional materials.

This global approach will be applied in the next Chapter to shale materials.
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Chapter 8

From Nano and Microhardness of

Shale Materials to Macroscopic

Cohesion Prediction

This Chapter serves as an application of our method to derive strength properties for cohesive-

frictional materials from hardness measurements. The ultimate purpose is to show the useful-

ness of the model for such highly heterogeneous cohesive-frictional materials as shales. This

application focuses on the cohesion and specifically the cohesion at different scales introduced by

the heterogeneous nature of shale materials. In contrast to Chapter 7, in which we dealt with a

extremely homogeneous material, we are here interested in shales, which exhibit heterogeneities

at different scales. The first part of this Chapter is devoted to the presentation of shales and

the hardness measurements; it is adapted form a research report to ChevronTexaco [86]. We

shall identify the mechanically meaningful material scales for our analysis of the indentation

tests. The second part focuses on assessing the cohesion at those different scales from nano and

microindentation tests.

8.1 Introduction

Shales make up the majority of the geologic section in sedimentary basins, which is where most

oil and gas exploration and production occurs. An understanding of shales is thus essential
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for petroleum-related earth sciences. It is also well known that shale materials in oil and gas

drilling applications are the major source of wellbore drilling instability, due to their highly

heterogeneous and anisotropic composition. The strength properties, especially the cohesion

c (cf. Section 1.1), of shales and other surrounding rocks play a critical role in the wellbore

stability.

8.1.1 Context

This work contributes to a group project sponsored by ChevronTexaco which aims to assess,

in a quantitative fashion and with high accuracy, the anisotropic elastic properties as well

as the strength properties of shale materials at different scales: from the scale of the platy

minerals of clays in the sub-micrometer range, to the scale of silt-size (quartz) grains in the

micrometer range, to the scale of the deposition layers of shales in the sub-mm to cm range. The

ultimate purpose of the project is to understand shale materials by breaking down such highly

heterogeneous materials to the scale where physical chemistry meets continuum mechanics, that

is where the intrinsic properties do not change from one material to another. Once this scale of

invariant materials properties is identified, it will eventually be possible to upscale the intrinsic

material behavior from the sub-microscale to the macroscale. Ultimately we could then reduce

all mechanical field tests to some very elementary chemical tests to identify the phase volume

fractions.

8.1.2 Challenge and Focus of the Application

The purpose of this third part is to estimate the macroscopic cohesion of the three shales from

nano and microindentation tests with a Berkovich indenter'. What we specifically want to

address is the possibility to extend the methodology developed in the previous Chapters to such

highly heterogeneous materials like shales. We thus aim at contributing to the understanding

of the strength properties evolution in shale materials at different scales.

Currently (November 2003), the Corner Cube test results on shales are not yet available,

and we will therefore analyze the different scales in shale materials to relate the macroscopic

friction angle, experimentally determined by triaxial stress tests [24], to the friction angle at

'Tests carried out by Georgios Constantinides at the Nanolab Facilities at MIT.
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the nano and microscale. In regard to the validation in Chapter 7 for a Berkovich indenter, the

hardness is estimated from:

H* - a (8.1)
A(h')

where h' is the extrapolated residual depth. All the tests presented here were carried out using

a Berkovich indenter, so that the use of H* makes sense.

Once we get an estimate of F(<p) = H*/c (see relation (2.11)) at the nanoscale and com-

bine this with the nanohardness values obtained experimentally, we have a means of assessing

the cohesion c at the nanoscale. In turn, the two hardness measurements, at the nano and

microscale, allow us to determine the Weibull modulus which we will use to extrapolate the

cohesion from the nanoscale to the macroscale.

8.2 Presentation of Shales

The materials studied in this Chapter are three shale materials of different mineralogy provided

by ChevronTexaco, labeled shale 1 to 3. The main difference in between the materials relates

to the clay mineralogy and the porosity, as summarized in Table 8.1. The mineralogy was

determined by quantitative X-ray diffraction by the mineralogy laboratory of ChevronTexaco.

The porosity measurements were achieved by mercury injection (labeled 'M' in Table 8.1) and

weight measurements (labeled 'W' in Table 8.1). In addition, the shale materials come from

very different depths, ranging from 170m to over 3800m.

Shale 1 has the highest porosity of 26 %, measured by mercury injection; while shale 2

has a porosity of 13.25 %, and 7.48 % for shale 3. There appears to be a difference between

the porosity measured by mercury injection, and by weight loss of a saturated versus a dry

specimen ('W'). This difference may be attributed to structural (or non-evaporable) water that

is extracted during oven-drying from a pore space that has a characteristic size still smaller

than the characteristic pore throat radius in the tens of nanometer scale accessible by mercury

intrusion. We also notice that the volume of the quartz inclusions for shale 1 is lower than for

shales 2 and 3, for which it is very similar.
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Non Clay Clay Grain Density Porosity [%] V [%]

Quartz o Si:Al=1:1 Si:Al=2:1 o Min Max Mean M W

S1l1 17 8 35 33 6 2.6 2.8 2.7 26 26 25
S12 23 9 19 36 13 2.6 2.9 2.8 13.25 17 32
S13 21 9 9 54 7 2.6 2.9 2.8 7.48 12-14 30

Table 8.1: Mineralogy and Porosity of the shale materials: Si:Al=1:1 refers to Kaolinite, and

Si:Al=2:1 refers to illite, illite-smectite, smectite, and possibly, muscovite. M=mercury injec-

tion porosimetry and W=wet-versus-dry weight measurements [all data from ChevronTexaco

Mineral Analysis Laboratory]. Sl=Shale, o=others and Vi=Volume of the Inclusions.

8.2.1 A Multi-Scale Think Model of Shale Materials

Shale materials, like many other geomaterials, are highly heterogeneous materials, with hetero-

geneities that manifest themselves at multiple scales. For purpose of mechanical analysis, this

complex microstructure can be broken down in four different scales, as sketched in Figure 8-1.

These scales are discussed below2

Level '0': Scale of Elementary particles

The lowest level of shale materials is the one of the elementary particles of clay minerals. It is

the scale of physical chemistry of clay materials and molecular models of the atomic structure

of the different clay minerals. The characteristic length scale of the elementary particles is on

the order of 1 - 2 nm (10-9 m), and is governed by interatomic forces and potentials.

Level '1': Nanoscale of Mineral Aggregation

The minerals that form at lower scales aggregate to form platy mineral aggregates. Figures

8-2 through 8-7 display the typical appearance of these mineral aggregates as seen under a

Scanning Electron Microscope (SEM) and an Environmental Scanning Electron Microscope

(ESEM): Figures 8-2 to 8-4 display SEM images on a surface oriented normal to the bedding

direction. From these figures it appears that the mineral aggregates, to which we refer as flakes,

have a characteristic size of roughly 1000 nm (Fig. 8-2), and a thickness of roughly 100 -250 nm

(Fig. 8-3), thus an aspect ratio greater than 4. While these flakes appear to have a privileged

2This multiscale characterization of the materials is still under investigation and has been briefly reviewed in

[86].
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LEVEL III
Deposition scale
> 10-3 m

LEVEL II ('Micro')
Flake aggregation
and inclusions
10-5 10-4 m

LEVEL I ('Nano')
Mineral
aggregation
10-7 - 10-6 m

LEVEL '0'
Clay Minerals
10-9-10-8 m

Scale of deposition layers
Visible texture.

Flakes aggregate into layers,
Intermixed with silt size
(quartz) grains.

Different minerals aggregate
to form solid particles (flakes
which include nanoporosity).

Elementary particles (Kaolinite,
Smectite, Illite, etc.), and
Nanoporosity (10 - 30 nm).

Figure 8-1: Multi-scale think model of shale materials: Four level microstructure.
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orientation following the deposition direction, the SEM images also highlight that there is a

fair amount of random orientation (see e.g. Fig. 8-4). This randomness (or rather weakly

orientation) is confirmed by the ESEM images in Figures 8-5 to 8-6. Figure 8-5 which displays

an image of the material in the bedding direction, confirms the elementary dimensions of the

mineral aggregates, and Figure 8-6 highlights -at a larger scale- that the mineral aggregates

are far from being perfectly aligned in the bedding direction.

Figure 8-2: SEM-image of Shale 1-1 (View normal to bedding direction): The image shows

the mineral aggregates of a characteristic dimension of 1000 nm.

Level 2: Microscale of Flake Aggregation

The flakes from level 1 aggregate into layers to form a visible layered texture of the shale

materials. The ESEM images in Figures 8-7 and 8-8 display at two different magnifications this

staggered scheme of flakes into flake aggregates of a characteristic length of several micrometers.

The SEM images in Figures 8-9 and 8-10 show a similar feature at a slightly larger scale,

displaying a layered structure of characteristic size in the tens of micrometer range, and an

elementary thickness of roughly 1 - 5 x 10-6 m. At the same scale, one can find traces of silt

size quartz grains, intermixed in the flake aggregates (see Figs. 8-9 and 8-10).
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Figure 8-3: SEM-image Shale 1-1 (View normal to bedding direction): The image displays on

the right bottom side a mineral flake of the similar form as in figure 8-2, adjacent to a zone

where the flakes are oriented rather randomly.

Figure 8-4: SEM image Shale 1-1 (View normal to bedding direction): The image shows some

platelet structure of submicron dimension. Since this picture is taken normal to bedding, the

image indicates that there is a fair amount of randomness in the mineral aggregate orientation.
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Figure 8-5: ESEM image Shale 1-2 (View in bedding direction): The image shows the elemen-

tary dimension of the mineral aggregates: length = 1000 nm; thickness = 100 - 250 nm.

Figure 8-6: ESEM image Shale 2-2 (View in bedding direction): The image displays that

there is a fair amount of randomness in the orientation of the mineral aggregates of submicron

dimension.
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Figure 8-7: ESEM image Shale 2-2 (View in bedding direction): The image shows the aggre-

gation of weakly oriented flakes into a layered structure.

Figure 8-8: ESEM image Shale 2-2 (View in bedding direction): Same as Fig. 8-7 (size of

frame) at a larger scale. Image highlights the flake aggregation.

180

... . .. .......... ...... ...... A A



Figure 8-9: SEM image Shale 2 (View in bedding direction): The image shows the layered

structure of shales in the tens of micrometer range. The image also shows some circular inclusion

patterns that may well be attributed to silt-size grains [Image from ChevronTexaco.

Figure 8-10: SEM image Shale 1 (View in bedding direction): The image shows the typical

layered structure of shales in the tens of micrometer range. Some inclusion patterns can be

attributed to silt-size grains [Image from ChevronTexaco].
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Level 3: Scale of Deposition Layers

The macro scale of shale materials is the one of the deposition layers, having an elementary

thickness in the millimeter range. This scale at which the materials are known to exhibit a

transversal isotropic behavior, is the classical scale of macroscopic material testing of shale

materials.

8.3 Nano and Microhardness of Shales

The focus of the nano and microindentation tests is on Level 1 ('nano') and Level 2 ('micro').

8.3.1 Test Presentation

Figures 8-11 and 8-12 show examples of typical nano and micro-indentation test. By 'nano'-

indentation, we refer to tests in which the maximum indentation depth is smaller than one

micrometer (= 10-6 M), while 'micro'-indentation refers to tests with maximum indentation

depths within 1 - 10 pm. We should mention one more time that the hardness is estimated

300 - -

00

010 0

0 V/ h

0 50 100 150 200 250 300

Indentation Depth [nm = 10-9 m]

Figure 8-11: Typical result of nano-indentation test on shale materials (here Shale 1 normal

to bedding). The figure displays the loading and the unloading response: Pma = 267 [N;

hax = 224 nm.
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0

0

Pmax

--~ -------------------- -v--------~

400 800 1200 1600 2000

Indentation Depth [nm = 10-9 m]

Figure 8-12: Typical result of micro-indentation test on shale materials (here Shale 1 normal
to bedding). The figure displays the loading and the unloading response: Pmax = 12, 304 uN;

hma.x = 1971 nm.

from:

H* = Pmax
A(h')

(8.2)

where h'f is the extrapolated residual depth.

Indentation gives access to bulk properties of the indented material at a length scale £C

4 x max h (cf. Section 2.3), at which the material is considered homogeneous. The continuum

assumption which is at the basis of the elasticity and strength-hardness formulas requires in

addition that the characteristic length scale of the representative elementary material volume

(r.e.v.) satisfies f < C, where f is the characteristic size of the heterogeneity. Given the highly

heterogeneous nature of shale materials at different scales (see Fig. 8-1), it is unlikely that

this condition is met in each indentation test. Hence, one needs to perform a sufficiently large

number of indentation tests at different scales in order to extract mean values of the material

properties and distributions.
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Nano level Micro level

H* [GPa] [ h [nm] H* [GPa] h' [nm]

Shale 1-1 0.619 ± 0.101 134.5 0.258 ± 0.017 1397
Shale 1-2 0.557 ± 0.088 141.9 0.236 ± 0.017 1461
Shale 1-3 N/A N/A 0.249 ±0.020 1452

Shale 2-1 0.539 ± 0.043 134.4 0.374 ± 0.027 1182
Shale 2-2 N/A N/A 0.336 + 0.028 1245
Shale 2-3 0.494 ± 0.051 140.8 0.376 ± 0.028 1178

Shale 3-1 0.579 ± 0.050 130.3 0.444 ± 0.028 1091
Shale 3-3 0.653 ± 0.053 122.9 0.385 ± 0.023 1168

Table 8.2: Mean values i Standard deviation of nano and microhardness, and the related
extrapolated residual depth for the three shales in different testing directions. x-1 corresponds

to the direction normal to bedding, x-2 and x-3 are in bedding.

8.3.2 Results

Nano and microindentation tests were carried out on the three different shales materials with

a Berkovich indenter. The test is a force driven experiment. Figure 8-13 presents the typical

evolution of the classic hardness value defined as H = P/A(h), where h is the penetration depth

recorded during a microindentation test. The Figure shows that following a decrease for small

penetration depth, the hardness becomes a constant value. The first range can be associated

with a plastic contraction phenomenon, while the constant hardness at larger penetration depths

is an indication that the projected contact area continuously adapts so that the average pressure

below the indenter is constant. Given the highly heterogeneous nature of the materials, the

results of a large number of tests need to be analyzed as frequency plots. Since a material

(or a dominant phase) will be indented to the same depth, a frequency pic relates to a single

material. Figures 8-14 and 8-15 present the hardness distribution and frequency for shales 1

and 3. These Figures clearly show the dominating phase, that is the frequency pic.

The results merit some comments: First, the hardness-penetration depth relations appear

to be independent of the testing direction; that is the strength behavior is isotropic. Second,

from the distributions, shale 3 (Fig. 8-15) exhibits a higher degree of order than shale 1 (Fig.

8-14), which exhibits different distributions in different directions. From the Figures, one can

extract the hardness values H* of the dominating phases for each shale and testing direction.

These results are summarized in Table 8.2.
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Nano level Micro level

H* [GPa] h' [nm] H* [GPaj h' [nm]

Shale 1 0.593 t 0.095 137.5 0.247 ± 0.023 1439

Shale 2 0.511 ± 0.047 138.3 0.371 ± 0.039 1188

Shale 3 0.620 ± 0.051 126.1 0.417 ± 0.038 1124

Table 8.3: Mean values ± Standard deviation of nano and microhardness, and the related

extrapolated residual depth. Averaged values for the three shales.

Similarly. Table 8.3 presents the average values (i.e. taking into account all the tests in the

different testing directions). Figures 8-16 and 8-17 illustrate the distribution in form of fre-

quency plots of the averaged hardness H* for the three shales. These frequency plots represent

the probability to encounter, in an indentation test on a surface, a specific hardness, associated

with the heterogeneous distribution of the materials at a scale below.

16000

2 12000 - ----- - - - --

8000

4000 
-

0

0 400 800 1200 1600 2000

Indentation Depth [nm= 10-9 m]

Figure 8-13: Evolution of the hardness with respect to the penetration depth.

8.3.3 Discussion

It is remarkable to note the perfect isotropy of the hardness values (see Fig. 8-14 and 8-15),

which take the same value in the direction of bedding and normal to it, and this for both

nanohardness and microhardness. This is remarkable in several regards: for one, a material
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Figure 8-14: Hardness versus extrapolated residual depth and frequency plot of microhardness

in the three directions for shale 1. Direction 1-1 is normal to bedding and 1-2 and 1-3 is in

bedding.
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Figure 8-15: Hardness versus extrapolated residual depth and frequency plot of microhardness

in two directions for shale 3. Direction 3-1 is normal to bedding and 3-3 is in bedding.
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Figure 8-17: Frequency plot of microhardness.
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which exhibits more or less pronounced anisotropic features in the elastic range, exhibits a

pure isotropic hardness behavior, and this over almost two orders of length magnitudes. The

result is, however, not surprising, as it confirms that the hardness values are related to strength

properties only, after all elasticity reserves have been exhausted (see e.g. [87]). The isotropy of

the hardness values, therefore, is a confirmation that the material is at free yield - in the sense

of yield design theory.

The remarkable similarity of the nanohardness values3 seems to suggest an independence

regarding the mineralogy composition (cf. Table 8.1) that manifest itself at Level 0 (see Fig.

8-1). Indeed, the difference between nanohardness values is about 5 % of relative difference,

whereas the mineralogy varies in much greater proportion.

In contrast, the microhardness values show some correlation with the porosity and the

inclusion fraction of the materials. Indeed, Table 8.1 shows that shale 1 has the highest porosity

(26 %), and thus a weaker structure, leading to a lower microhardness; while shale 3 that has

the lowest porosity (7.5 %) has the highest microhardness. In terms of porosity, shale 2 is

situated in between shales 1 and 3 (13.25 %). Furthermore, it has an inclusion fraction of

roughly 30 %, which is very similar to shale 3 (in contrast to shale 1 that has 25 %, see Table

8.1). Concerning its microhardness, it may well be that the higher porosity of shale 2 (compared

to shale 3) is somehow compensated by its inclusion fraction, so that the microhardness is on

the same order as the one of shale 3 (and substantially higher than shale 1), and this despite

its lower nanohardness value. Clearly here is an effect of the inclusions.

In summary, the microhardness values are a reflection of both the porosity and the inclusion

fraction, while the nanohardness values appear to be neither sensitive to mineralogy nor to

porosity. It could be hypothesized that the porosity in nanoindentation tests is de-activated

because of the contracting behavior of the flakes during the indentation tests (as the hardness

curves show so nicely, see Fig. 8-13). The nanohardness behavior seems to be an intrinsic

in situ behavior of the compacted clayish matrix, that could be associated with the colloidal

nature of these materials (e.g. electrostatic forces at interfaces). In contrast, the microhardness

behavior is a consequence of the microstructure: the porosity manifests itself in the spaces

between the mineral aggregates, which could be the locus of microscopic slippage planes. Thus,

3 Particularly if one considers the standard deviations of 0.05 - 0.1 GPa (see Table 8.3).
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the higher the porosity, the more slippage planes in the material system. The inclusions in

contrast become obstacles to this slippage, which could explain why shale 2 has a very similar

microhardness as shale 3.

Also important is the scale effect between nano and microhardness. This scale effect is

related to the highly heterogeneous nature of the shales (see Section 8.2.1); and very similar

effects are usually seen in other composite materials, like concrete [90] [95] or bones [33]. We

will have a closer look on these scaling properties of shales in the next Section.

8.4 Cohesion Assessment of Shales

8.4.1 Hypothesis

Since the Corner Cube results are currently not available, we will use our upper bound solution

for a Berkovich indenter assuming that the friction angle at the nanoscale 90 can be related to

the macroscopic friction angle pM by [5]:

tan(W.) = tan(WA) 1 + 3 VI [1+ tan2(WP)] (8.3)

where V is the volume fraction of the inclusions. This formula has been derived for a Drucker-

Prager yield criterion, which has the same dissipation functions as the Mohr-Coulomb yield

criterion (see [87] or [72]), therefore making it suitable for our purpose. We should also mention

that relation (8.3) excludes macroscopic failure planes and is based on a pure inclusion effect.

We will adopt a Weibull scaling law [91] to assess the macroscopic cohesion from the pre-

viously reported results. The Weibull model is a power relation between the properties and

the length scale, based on the weakest. link theory. The idea is that when considering a larger

volume, the probability to encounter a weaker element increases [91] [26]. For our bulk nanoin-

dentation test the Weibull scaling law reads:

C cc [Veff]- (8.4)

where m is the Weibull modulus (a fitting parameter) and Veff the effective volume, that is

the bulk of the material affected by the test. From our indentation values in Table 8.3, m was
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found to be around 20 for shales 2 and 3, and 8 for shale 1. Most ceramics are reported to have

m values for the yield strength property in the range of 5-15, whereas metals, which produce

ductile failures, have m values in the range of 30-100 [46]. Concrete, a highly heterogeneous

frictional material, has a Weibull modulus of 12 for the yield strength [95]. Weibull moduli on

Vickers hardness of sialon ceramics were reported to be between 23 (for a virgin sample) and

39 (for the samples crept at 1350 *C) [54], which is similar to what we have for shales 2 and

3. In general, a relatively high Weibull modulus (m > 20) indicates a smaller error range, and

potentially, greater clinical reliability. Higher values of Weibull modulus correspond to a higher

level of structural integrity of the material [7].

8.4.2 Methodology

The macroscopic friction angle is known for the three different shales as well as the volume

fraction of the inclusions (results provided by ChevronTexaco, see Table 8.4). Using relation

(8.3) yields the friction angle at the nanoscale p. From the Berkovich nanohardness measure-

ment we derive the corresponding nanohardness. Practically, we estimate the cohesion at the

nanoscale cn from (2.11):

Cn = H*/F( P) (8.5)

where Hn is the nanohardness given in Table 8.3. The macroscopic cohesion cm is then assessed

using (8.4):

CM = Cn I (Veff)n (8.6)

The effective volume at the nanoscale (Veff)n is evaluated from our upper bound simulations;

for a given friction angle we evaluate the volume affected by the failure mechanism (see Fig.

8-18). The effective volume at the macroscale is the volume of the shale tested in the triaxial

test reported in [24].

Table 8.4 summarizes the relevant parameters for the extrapolation scheme.

8.4.3 Results and Discussion

Our Weibull model is based on the nano and microhardness results and is therefore fairly sensi-

tive to those results. The difference in Weibull modulus for shale 1 is still under investigation,
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_p_ [0] V [%] I m (Veff)n [nm'] jpn [0] 7F( pO) = H*/C-

Shale 1 11.8 22 8.0 1457r h) 10.2 8.3

Shale 2 18.5 32 20.2 4207r h 15.1 11.1

Shale 3 10.9 30 16.5 1407r h 9.0 7.8

Table 8.4: Extrapolating parameters for Shales 1 to 3. The Weibull

the hardness values: m = 31n[(h') )icro/(h' )nano] /ln[H*ano/H*nicro1

3

N 2

01

0
R

modulus is computed from

- Veff

Figure 8-18: Example of determination of Vjj. p = 10.20.

but relates to the difference in hardness value between shale 1 and shales 2 and 3, and thus to

the porosity. In fact, the lower Weibull modulus of shale 1 compared to shales 2 and 3 is an

indication of the higher disorder of shale 1, compared to the highly compacted shales 2 and 3.

This is consistent with the hardness distributions displayed in Figures 8-15 and 8-14.

The isotropy of the hardness is another strong argument in favor of the soundness of our yield

design approach. The material at yield has exhausted the elasticity reserves and is therefore

not influenced by the anisotropy of the elasticity.

The cohesion values at different scales are reported in Table 8.5. They might be on the higher

range for shale materials because we did not take into account the friction planes, which manifest

themselves at Level 3 (see Section 8.2.1), and which are likely to weaken the macrostructure.
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nanocohesion [MPa] microcohesion [MPa] macroscopic cohesion [MPa]

Shale 1 71.5 29.8 1.75
Shale 2 45.9 33.3 11.0
Shale 3 79.1 53.2 12.8

Table 8.5: Cohesion values of shale materials at different scales.

In addition, the difference between shale 1 and shales 2 and 3 seems to relate to the porosity

and/or the volume of the inclusions; and requires more research. In the same way, the decrease

in the cohesion with the length scale may be related to the activation of porosity at larger scale.

8.5 Chapter Summary

This case study shows the capability of the model to make predictions about the macroscopic

cohesion. Estimates based on the upper bound approach developed in Chapter 6, on our new

definition of the hardness H* and on a Weibull scaling law are derived. Even though the exact

macroscopic values have not been communicated by ChevronTexaco, we were told that our

extrapolated values are in relatively good agreement [23].

It is useful to recall that our extrapolation is only based on nano and microhardness values;

and one would need a third value at a penetration depth about 10, 000 nm to confirm the

Weibull scaling law. Such a third test series would allow us either to confirm the scaling, or to

refine it. In fact, the real macroscopic value is expected to be somehow smaller than the values

predicted by the Weibull model as inclusions and interfacial properties may well add a higher

degree of disorder to the system. In this case, our extrapolated values would help identifying the

scale at which these mechanism enter the picture. Indeed, comparing the cohesion at different

scales with the one estimated by the Weibull law one could easily determine at which scale

inclusions and interfacial properties affect the strength properties.
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Chapter 9

Conclusions & Perspectives

This Chapter presents a summary of this study on the link between nanohardness and strength

parameters for cohesive frictional materials. In addition conclusions are drawn underlining the

main findings of this research. Some future research is finally proposed and perspectives on the

strength properties assessment are given.

9.1 Summary of the Main Findings

Accessing material properties at or below the nanoscale represents a breakthrough for material

science and this potential is far from being fully explored. From a material science perspective,

the increased knowledge regarding indentation of cohesive-frictional materials is in itself helpful

and opens a new era for probing material properties at such a small scale. Nanoindentation

techniques makes it possible today to break down highly heterogeneous materials to the scale

where physical chemistry meets continuum mechanics, that is when the intrinsic properties do

not change from one material to another. Once this scale of invariant materials properties

is identified it is possible to upscale the intrinsic material behavior from the sub-microscale

to the macroscale. The research presented in this theses contributes to this goal through the

development of a comprehensive method to reasonably assess the intrinsic strength properties

for cohesive and frictional materials from two different sharp indentation tests.

The review of the existing informations in the open literature revealed some missing knowl-

edge to link nanohardness to strength properties of cohesive-frictional materials. To address
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this issue a yield design approach was implemented in a finite element code and the theoretical

dimensionless function H/c = 1F(p, i) (cf. relation (2.11)) was derived for a broad variety of

indenter shape.

The theoretical study on the discretization of the limit analysis theorems, in axisymmetric

conditions, revealed the following results:

" Our lower bound algorithm does not yield accurate results. It is readily understood

since the only available stress fields are diagonal, thus dramatically reducing the range of

possibilities (cf. Section 4.1.2).

* The upper bound approach, on the contrary, seems very accurate to assess the dimension-

less function in (2.11), since it can accommodate virtually any failure mechanism. Indeed

the verifications with the Cox et al.'s solution as well as with the Matar and Salengon's

solution showed remarkable agreement (Section 6.2 and 6.3).

" The yield design approach was proven sound and yielded a reasonable link between hard-

ness and strength properties (Section 7.2). This strength properties extraction was greatly

improved using a new definition of hardness as the ratio between the maximum driving

force over the area estimated at the "effective plastic depth".

" It is impossible, from our results, to derive the strength properties from the hardness

estimated with a Berkovich and a spherical indenter. There seem to be no unique relation

between c and V and the ratio of the hardness for those two different indenters. Only two

different sharp indenters, for example the commercially available Berkovich and Corner

Cube indenters can yield the assessment of strength properties for cohesive-frictional

materials (Section 6.5).

* The dual indenter method yielded very interesting results, but was relatively inaccurate

because of the difficulty to assess the correct contact area needed for the evaluation of the

hardness

In this study several new contributions were made, they include:

1. The implementation of a reliable limit analysis program for axisymmetric problems. We
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developed a lower and an upper bound algorithm to bracket the collapse load on a cohesive-

frictional system. To our knowledge, it is the first complete work of this type.

2. The explanation of the locking problem for the lower bound algorithm and the limitation

of the available stress fields.

3. The validation of the relevance and great accuracy of the upper bound algorithm.

4. The first simple development of a method to extract strength properties for cohesive-

frictional materials from two simple sharp indentation tests.

5. The extrapolation of macroscopic cohesion for several shale materials from nano and

microindentation tests.

9.2 Industrial Benefits

The estimation of strength properties for cohesive-frictional materials is crucial for the oil

and gas industry. Through easy to carry out and reasonably cheap tests we should be able

to reasonably assess both the cohesions c and the friction angle <p. This still needs further

development, but it will most certainly be very useful to the oil industry and can have a

considerable economic impact.

The finite element based upper bound application is a powerful design tool. This axisym-

metric procedure can be employed to study foundations and particularly the problem of driving

a pile into the soil (cf. Section 2.6). The soil weight effect can easily be incorporated into the

program (as an additional term in the equilibrium equations) as well as a linear variation of

the cohesion with depth (see [85] for more details).

9.3 Current Limitations and Future Perspectives

From the analysis of the lower bound results it emerges that the algorithm can be improved.

A higher order element coull be investigated, but would yield difficulties to linearize the yield

criterion. It may then be interesting to incorporate a non linear optimizer, as some are currently

commercially available. Regarding the indentation solutions we derived, although the meshes
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can accommodate any geometry we did not take into account any pile-up or sink-in effect. This

effect could easily be investigated by running simulations with different mesh geometries around

the indenter. In addition, some additional yield criterions (e.g. Cam clay, Tresca, ...) could be

incorporated in the algorithm, which currently only features the Mohr-Coulomb yield criterion.

It may also be interesting to carry out indentation tests with conical indenters to check that

the Berkovich and the Corner Cube indenters yield the same results as their equivalent conical

indenters. Even though there is strong evidence that Berkovich indentation is frictionless, this

aspect has not been investigated to the same depth for the Corner Cube indenter.

It also appeared that the plastic properties extraction is very sensitive to the definition of

the hardness, and that more research is needed to correctly evaluate this quantity, or develop a

new definition only based on a plastic energy standpoint, thus circumventing the need to assess

the contact area.

From the results presented in this research, it also appears that the method to extract both

strength properties (provided this can be done) would be difficult to carry out for friction angles

less than 8' since the ratio between the Berkovich and the Corner Cube hardness is then below

8 %. Future research should therefore focus on using different indenters than the ones proposed

in this thesis. From Figure 6-26 is seems that a more pronounced difference could be obtained

using real conical indenters (and not pyramidal ones) with semi apex angles of 450 and 800. In

addition, other validation sets on well characterized cohesive frictional materials should also be

performed.

Finally, the cohesion assessment of shales is based on a Weibull scaling law, and the refine-

ment of upscaling schemes taking into account the particularities of the different scales is of

utmost importance and is the focus of on-going research.
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Appendix A

Yield Constraints for the 3-Noded

Triangular Extension Element

(Lower Bound Approach)

This appendix presents the derivation of the constraints arising from the discretized yield cri-

terion for the triangular extension element used in the lower bound approach. It complements

the presentation of Section 3.3. Figure A-1 shows the 3 noded triangular element and extension

zone. Referring to Eq. (3.89), the value of the kth side of the linearized Mohr-Coulomb yield

criterion is given by:

3

Fk = N(r, z)Fkfl( 0 ; k = 1, 2..., p (A.1)
n=1

where

FknAkr + Bkz + Ckz + Do - En ; k = 1, 2..., p; n 1, 2,3 (A.2)

From (A.1), Fk varies linearly within the element, and thus

FkE = Fk2 + t-(Fkl - Fk2) (A.3)
T12

The yield criterion must be satisfied at point E, i.e. FkE < 0. Since is positive, the
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Figure A-1: 3-noded triangular extension zone.

condition is satisfied by enforcing the following constraints:

Fk2 0 and Fki - Fk2 < 0 (A.4)

Similarly, for point F we derive:

Fk2 < 0 and Fk3 - Fk2 < 0 (A.5)

Combining equations (A.4) and (A.5), the constraints for a 3-noded triangular element are:

Fk2 0 , Fk1 - Fk2 ( 0 and Fk3 - Fk2 (0 (A.6)

Finally, it must then be proven that these conditions are valid for the stresses throughout

the extension zone.

Using the shape function identity (E 1 Nn(r, z) = 1), Eq. (A.1) can be rewritten as:

Fk = N1(Fkl - Fk2) + Fk2 + N3(Fk3 - Fk2) (A.7)
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Since the shape functions for the 3-noded triangular extension element satisfy:

Ni > 01 , N2 (1, N3 > 0 (A.8)

we conclude from (A.6) and (A.7) that Fk < 0 throughout the extension zone.
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Appendix B

Yield Constraints for the 4-Noded

Rectangular Extension Element

(Lower Bound Approach)

This appendix presents the derivation of the constraints arising from the discretized yield cri-

terion for the rectangular extension element, complementing the presentation of Section 3.3.

Figure B-1 shows the 4-noded rectangular element and the extension zone. Compared to the

constraint of the 3-noded triangular extension element (see Appendix A), an additional equality

constraint needs to be enforced. It is obtained as follows. The stresses vary linearly within the

element. Hence, the stresses at midpoint M are:

am =al + org (B.1)

?.= 2+ a (B.2)

yielding:

4=1 2 drti f ahe s rin (B3)

.The derivation of the constraints arising from the yield criterion follows the one presented
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Figure B-1: 4-noded rectangular element.

in Appendix A. Since Fk is a linear function of the nodal stresses, we have:

(B.4)

Furthermore, Eq. (A.3) still holds:

x
FkE = Fk2 + -(Fkl - Fk2)

L12
(B.5)

The yield criterion must be satisfied at point E, i.e. FkE < 0. Since x is positive, the

condition is satisfied by enforcing the following constraints:

Fk2 ( 0 and Fk1 - Fk2 < 0 (B.6)

Similarly:

FkF = Fk3 + X(Fk4 - Fk3)
L12

(B.7)
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Substituting (B.7) in (B.4) we get:

FkF = Fk3 + --(Fkl - Fk2)
L12

(B.8)

Hence, the conditions to be enforced are:

Fk2 0 , Fk3 < 0 and F1 - Fk2 < 0 (B.9)

Finally, since the shape functions for the 4-noded rectangular extension element satisfy:

Ni ;> 0, N2 < 1, 0 :, N3 < 1 (B.10)

and writing Fk as:

Fk = Nl(Fkl - Fk2) + Fk2(1 - N3) + N3Fk3 (B.11)

the constraints defined by (B.9) enforce the non-positivity of the yield criterion throughout

the extension zone.
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Appendix C

Proof of Velocity Jump

Decomposition

The goal of this appendix is to show that by assuming I AV= Vt+ + V_ and AVt = Vt+ - V-,

subject to the constraints, Vt+ and Vt_ > 0, at least one of the two variables, Vt+ or V_ is zero.

This Appendix complements the presentation in Section 5.2.4. We distinguish:

* Case 1; AVt = 0: in this case,

0 = t+ + V_

0 = Vt+ - Vt_

(C.1)

(C.2)

and

vt+ >

Vt- >

(C.3)

(C.4)

0

0

This proves that Vt+ = 0 and V = 0.

205



* Case 2; AVt = a > 0: in this case,

and

Vt+ >

Vt->

Thus Vt+ = a and V_ = 0.

o Case 3; AV = -a, a > 0: in this case,

a = Vt++Vt-

-a = Vt+ -Vt-

and

V+ > 0

Vt_ > 0

Thus Vt+ = 0 and V_ = a.

It can then be concluded that the correct normality rule is always satisfied.
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a = Vt+ + Vt-

a = Vt+-Vt-

(C.5)

(C.6)

0

0

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)



Appendix D

Equivalence of the Constraints

Within a Triangular Element

The purpose of this appendix is to prove that satisfying relations (5.50) to (5.55) within a

triangular element is equivalent to satisfy the same relations at each node.

We first note that inequalities (5.50) to (5.55) have the same form:

U >(D.1)
r

Thus if (D.1) holds within the element, it holds at its nodes as well.

Let us assume now that (D.1) holds at the three nodes of a triangular element. We then

have:

r E3 1 Ni(r, z)ui E Ni(r, z)y.r = (D.2)
Whic Ni(r, z)r Ni(r, z)ri

Which concludes the proof.
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Appendix E

Linearization of the Finite

Dissipation-Function Inequations

This appendix presents the derivation of the constraints arising from the linearization of the

finite dissipation conditions, and complements the presentation of Section 5.2.5.

Referring to Eq. (5.74) the set of inequations generated reads:

3

Fk = Akjuj +
j=1

(E.1)ZBkjvj 0 ; k = 1,2..., p; l=1, 2, 3 (3 nodes)
j=1

where: if ri = 0 (rj is the radius of node 1)

A?3  = 4 N (r, z) sin(irk/p) cos(irk/p) sin(ir/p)+

ON (r, z) sin(7r/p)[-2 + 4cos2(7rk/p)sin(7r/p)] sin(<p)

-2N (r, z) sin(7r/p) cos(7r/p)
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( 4  N(r. z) sin(7rk/p) cos(irk/p) sin(ir/p)+

Nj (r, z) sin(7r/p)[2 - 4 cos2 (irk/p) sin(7r/p)] sin(<)
az/

(E.3)

-2 N (r, z) sin(7r/p) cos(7r/p)
T9Z

The above formulas are valid for both inequations, (5.54) and (5.55) since for rl = 0 they reduce

to

Rad < 3 &Nk(r, z)UkRa 'k=1OrU
(E.4)+ N ,z) sin( )

From now on, we assume rI > 0:

9 For i = 1 and 1 = 1 (node 1):

Aki = 4rlN1(r, z) sin(7rk/p) cos(irk/p) sin(7r/p) + 2 sin(7r/p) cos(ir/p)+
(z

&Nai (r, z) i(rp[-+ 4 cos2 (7rk/p) sin(7rp] i() -
siarp [2±snrrP]

2 sin(7r/p) cos(7r/p)

Ak2

Ak3

Bki

Bk2

B3

- 2r19N1 (r, z) sin(7r/p) cos(7r/p)
Or

=i 1Ak2

=r1Ak3

=r1Bk1

=i 1Bk02

=r1BS30

1 = 2 (node 2):

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)

(E.10)

Aki = r2A21
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= 4r, N2(r, z) sin(7rk/p) cos(7rk/p) sin(ir/p) + 2 sin(7r/p) cos(7r/p)+
2 2z

r29N2 (r, z) snr/)[2+4 cos2Q(irk/p) i(7/)sn p-
T arsni/))

2 sin(7r/p) cos(7r/p) - 2r2 N2(r, z) sin(7r/p) cos(ir/p)
09r

AkU = r2Ak3

Bkl = r2Bki

Bk2 = r2Bk2

Bk3 = r2BO0

o 1 = 3 (node 3):

Aki = r3A2kl

Ak2 = r3Ak2

Ak3 = 4r3ON3(r, z) sin(irk/p) cos(7rk/p) sin(7r/p) + 2 sin(ir/p) cos(r/p)+ (E.19)

r3N(r, z) sin(r/p) [-2 + 4 cos2 (7rk/p) sin(7r/p)]) sin(<p) -

2 sin(ir/p) cos(7r/p) - 2r 3 (r sin(ir/p) cos(ir/p)

Bkl

Bk2

Bk3

= r3Bkl0

= r3Bk2

= 'r3BO3

W
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* For i = 2 and 1 = 1 (node 1):

= 4r1iN1(r, z) sin(7rk/p) cos(7rk/p) sin(7r/p) - 2 sin(7r/p) cos(r/p)+ (E.23)

r1aN (r, z) sin(ir/p)[-2 + 4 cos2(irk/p) sin(7r/p)] sin(p) -

2 sin(7r/p) cos(7r/p) - 2 r1ON1(r, z) sin(7r/p) cos(ir/p)

Ak2

AkU

Bkl

Bk2

Bk3

= r1A

= r1B%1
= r1BO2

= 1Bl

1 = 2 (node 2):

= 4r 2 ON 2 (r, z) sin(7rk/p) cos(irk/p) sin(ir/p) - 2 sin(7r/p) cos

'r2N 2 (r, z) sin(7r/p)[-2 + 4 cos2 (7rk/p) sin(7r/p)] sin(<p) -

2 sin(7r/p) cos(7r/p) - 2 r 2&N2(r, z) sin(ir/p) cos(7r/p)
ar

Ak = r2Ak3

Bkl = r2Bgi

Bk2

Bk

(7r/p)+ (E.30)

(E.31)

(E.32)

(E.33)

(E.34)

= r 2 B2

= 'r2BO3
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(E.24)

(E.25)

(E.26)

(E.27)

(E.28)

Aki = r2A21

Ak2

(E.29)



1 = 3 (node 3):

Aki = A (E.35)

Ak2 = r3Ak2 (E.36)

Ak = 4r3 N3(r, z) sin(irk/p) cos(irk/p) sin(ir/p) - 2 sin(ir/p) cos(ir/p)+ (E.37)

9 3 (rz
r3aN (r , z) sin(7r/p)[-2 + 4cos2(7rk/p) sin(7r/p)] ) sin(<p) -

2 sin(7r/p) cos(7r/p) - 2r30N3(r, z) sin(ir/p) cos(7r/p)

Bkl = r3BO (E.38)

Bk2 = r3 Bk2  (E.39)

B3 = r3Bk3 (E.40)
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