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ABSTRACT

Understanding how Cu reacts with constituents in coastal waters and interacts with biota is
important for predicting Cu toxicity. It was recently shown that some of the Cu in coastal waters
is present in kinetically inert forms that are not released from strongly bound compounds and do
not bind to a strong synthetic ligand, remaining undetectable by competitive ligand exchange /
adsorptive cathodic stripping voltammetry (CLE-ACSV) on time scales relevant to natural
processes (48 hours). Inert Cu seems to be irreversibly bound to strong ligands or physically
sequestered within organic and inorganic matrices such that it is likely non-toxic.

The primary objective of this work was to collect an extensive data set on one site, Boston
Harbor, in order to examine the sources and sinks of inert Cu in this coastal system. Surface
water samples were collected and filtered (0.2 tm) using trace-metal clean techniques from
eleven locations in Boston Harbor every two to three weeks from June to November 2002. A
strong ligand (salicylaldoxime) and increments of Cu were added to each sample to determine
exchangeable Cu using CSV-ACSV. UV-treated samples were analyzed by CLE-ACSV to
determine total dissolved Cu concentrations. Inert Cu concentrations were deduced by
subtracting exchangeable from total Cu.

An average of 46.1% of the total dissolved Cu in Boston Harbor was determined to be inert Cu.
Exchangeable Cu concentrations averaged 10.8 nM (a=5.5 AM); total Cu, 20.6 nM (a=5.7 nM);
inert Cu, 10.7 nM (a=3.1 nM). Although the fraction of inert Cu was variable among different
sites and sampling dates, the concentration of exchangeable Cu remained within a smaller range
(5-15 nM), implying that Cu inputs above this level mainly took the form of inert Cu.
Correlations between Cu concentrations and total suspended solids at one sampling location
suggested that sediment resuspension may be a source of inert Cu to coastal waters. Consistently
significant inert Cu concentrations at a site near a salt marsh implied that the presence of sulfides
may result in formation of inert Cu. No correlation between inert Cu and chlorophyll a was
observed, suggesting that biological formation of inert Cu compounds in situ did not occur in this
system. Whether Cu is added to surface waters as existing inert Cu compounds or as inert Cu
that is formed when exchangeable Cu reacts with certain constituents in surface waters remains a
subject for future work.

Thesis Supervisor: Bettina M. Voelker
Title: Associate Professor of Civil and Environmental Engineering
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I Introduction

Trace metals such as Cu can be toxic to aquatic organisms. At low concentrations Cu is

an essential nutrient (Price et al. 1988/1989); however, at higher concentrations, Cu is

toxic to many aquatic species (Hall et al. 1997). The Clean Water Act requires the

United States Environmental Protection Agency to set maximum limits for the effluent

discharge of various metals such as Cu to natural waters. However, current regulations

do not properly reflect scientific understanding of metal toxicity, as they do not

distinguish between toxic and nontoxic forms of the regulated metals (Shi et al. 1998).

Even the recently developed Biotic Ligand Model proposed for predicting site-specific

metal toxicity in freshwater systems (Paquin et al. 2000) does not provide a full

description of Cu speciation and is probably not applicable to coastal systems. Current

knowledge is not quite sufficient to explain the fate and transport of metals in complex

natural systems. Further research to better understand the speciation of Cu and its impact

on toxicity is needed to improve risk assessment and regulation of industrial effluents.

The goal of this study is to assess whether relationships between different physico-

chemical characteristics (e.g. chlorophyll a concentration, freshwater input) and Cu

speciation exist in coastal systems which can ultimately be used to improve predictions of

Cu toxicity.
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1.1 Speciation of Cu

1.1.1 Dissolved Cu

Cu is found in aquatic systems in both dissolved and particulate forms. This study

focuses on various forms of dissolved Cu. The speciation of dissolved Cu is

conventionally described as the sum of two concentration terms:

[Cu]T = [Cu 2+] + I[CuLi] (1)

That is, the total dissolved Cu is the sum of the concentrations of the free metal cupric ion

Cu2+ and the Cu that is reversibly complexed with various organic and inorganic ligands,

CuLi. Complexation is a significant part of Cu speciation. More than 99.99% of the total

dissolved Cu in coastal waters exists in complexes bound to strong ligands (Sunda and

Guillard 1976). In oxygenated systems, the concentration of the free metal cuprous ion,

Cu+, is generally considered to be negligible.

1.1.2 Particulate Cu

Particulate Cu takes the form of solid Cu particles and Cu sorbed to other solid particles.

In waters with suspended solids, Cu cations can sorb to the negatively-charged surfaces

of particulate matter. Particulate Cu settles to the sediment where it remains until

disturbed. Particularly in shallow areas, wind or currents can cause mixing throughout

the water column. The turbulence resuspends the sediments and potentially frees the
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sorbed Cu back into dissolved form in the water column. Resuspension of contaminated

sediments can be a significant source of dissolved Cu to surface waters (Cantwell 2002).

1.1.3 Kinetically Inert Cu

Filtration is commonly used to distinguish the concentrations of particulate, colloidal, and

dissolved Cu in a sample, while techniques such as cathodic stripping voltammetry and

atomic absorption spectroscopy are employed to determine Cu concentrations. The most

commonly used variant of voltammetry involves competing ligand exchange, the addition

of a synthetic ligand such as salicylaldoxime (SA) before analysis. Depending on the

composition of the sample and the binding ability and concentration of the synthetic

ligand (its "analytical competition strength"), it can outcompete natural ligands, and the

Cu complexes with the synthetic ligand can be measured (see Methods). Since the ligand

has a known conditional stability constant, the strength of the natural ligands can be

characterized in this way.

Kogut and Voelker (2003) found that a fraction of the Cu in coastal waters does not

appear to be exchanged from natural ligands to SA at concentrations of up to 1 mM (an

analytical competition strength four to six orders of magnitude higher than is typically

used) on time scales relevant to natural processes (48 hours). This fraction is bound by 1

mM SA in an aliquot of the same sample that has undergone UV-irradiation, implying

that UV treatment destroys bonds that render Cu non-exchangeable. Kogut and Voelker

proposed an additional classification of natural Cu compounds-"kinetically inert Cu"-

to describe this form of Cu. They postulated that this Cu may be irreversibly bound to
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ligands or physically sequestered within organic or inorganic colloidal matrices (Kogut

and Voelker 2003). Given this additional form, the speciation of dissolved Cu is more

accurately described as:

[CulT = [Cu2+] + X[CuLi] + [Cu]inet (2)

1.2 Cu Toxicity

The speciation of Cu into these various forms has certain implications for the toxicity of

Cu in coastal systems. Sunda found that in the case of phytoplankton, Cu2+ is the major

toxic form of Cu (Sunda 1988). Free ions are bioavailable-that is, they can bind to

ligands at receptor sites on the cellular surface. These cellular complexes can then be

actively transported through the lipid bilayer of the cell. Additionally, certain liposoluble

complexes are considered bioavailable since they can passively diffuse into the cell. If

Cu uptake raises Cu to substantially high intracellular concentrations, it can inhibit

cellular processes and damage or even kill the cell (Moffett and Brand 1996).

Dissolved Cu can be toxic to multicellular organisms as well. Cu-binding to key

receptors on the gill surfaces of fish can interfere with the exchange of gases and the

established ionic balance, disrupting important physiological functions such as oxygen

uptake for respiration (Lewis et al. 2002).
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Both dissolved and particulate Cu can be toxic by other mechanisms as well (e.g.

ingestion), although only these cellular receptor mechanisms are considered in the

toxicity models discussed in this work.

1.3 Cu-complexing Ligands

Since toxicity of dissolved Cu is not simply a function of the total dissolved

concentration, it is important to understand the relative contributions of the different

forms of Cu in Eq.(2). The extent of complexation depends on the types and

concentrations of ligands in the water. Inorganic ligands such as carbonate and

hydroxide ions are abundant in seawater. However, coastal systems generally have a

high concentration of stronger organic ligands, making inorganic complexes negligible.

The structures of organic ligands that bind to Cu in coastal systems have not been

determined. However, organic ligands are divided into two classes based on observed

conditional binding constants-Li (1012 and greater) and L2 (108 to 1011).

1.3.1 Lrclass Ligands

Sources of LI -class ligands include treated sewage effluent (Sedlak et al. 1997), diffusing

sediment pore waters (Skrabal et al. 2000), and biota. Moffett et al. (1990) found that the

cyanobacterium Synechecoccus sp. excretes a strong Cu-binding compound with a

conditional stability constant of approximately 1013.2 under Cu stress. Ahner et al. (1998)

found that the diatoms Thalassoria weissflogii, T. parthenaia, and Emiliania huxleyi
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produce polypeptide phytochelatins in response to Cu stress. This behavior is likely

exhibited by other coastal species as well.

Sulfides and thiols have been proposed as potential LI-class ligands. Although reduced

sulfur species are susceptible to oxidation, even in aerobic environments Cu-sulfide

complexes are able to resist oxidation on time scales of several days (Rozan and Benoit

1999). Al-Farawati and van den Berg (1999) found a conditional binding constant of

1013 for the Cu-bisulfide complex in seawater. Strong complexes have been found

between Cu and thiols as well. For example, Dupont et al. found that a strong Cu-thiol

complex is formed intracellularly and exuded by E. huxleyi; this nitrogen-rich thiol has a

conditional binding constant of 1012 with Cu (Dupont et al. 2004). Other studies have

also found that thiol compounds are produced by phytoplankton under Cu stress (Leal

and van den Berg 1998; Ross et al. 2003; Vachet et al. 2003).

1.3.2 L2-class Ligands

L2-class ligands are weaker but often more abundant than LI-class ligands. Skrabal et al.

found pore waters to be a significant source of L2-class ligands to the Chesapeake Bay

(Skrabal et al. 2000). Other studies have identified terrestrial sources of L2-ligands

(Burton and Stratham 1988; Croue et al. 2004). In general, Li-class ligands need to be

saturated with Cu before L2-class ligands significantly affect the speciation of Cu in the

system. In relatively unimpacted coastal waters containing L1-class ligands, the ambient

Cu concentration is often less than the total concentration of L1-class ligands, so the

effect of L2-class ligands is small (Byrne and Miller 1985).
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1.3.3 Humic Substances

A potential source of both L1- and L2-class ligands in coastal waters is terrestrial humic

substances (Kogut and Voelker 2001). Humic substances comprise a fraction of

dissolved organic matter in aquatic systems and are generally derived from terrestrial

plant material that decays into organic macromolecules. They are transported to

receiving water bodies mainly through runoff, rivers, and sewage. As proposed

structures have not proven adequate to describe these molecules, humic acids are likely

composed of many different chemical structures with variable molar-mass distributions,

substructures, and functional groups. Analyses imply that they have aromatic rings,

carboxyl groups, alcohol groups, phenol groups, and aliphatic chains (Aiken et al. 1985;

Averett et al. 1989). There is evidence of one or more nitrogenous binding sites as well

(Croue et al. 2004). These variable functional groups result in humic substances having

different conditional binding constants with Cu.

1.3.4 Analytical Shortfalls

A major problem with analytical techniques that are commonly employed to characterize

Cu-binding in natural waters is that they ignore the potential existence of inert Cu

compounds and thus fail to distinguish between Cu-Li complexes and inert Cu

compounds.

Competitive ligand exchange / adsorptive cathodic stripping voltammetry (CLE-ACSV)

is a common method used for characterizing natural ligands in a sample. In this method,

Cu is added incrementally to a sample with an added synthetic ligand (see Methods). As
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the natural and added ligands bind to added Cu, the concentration of the complex with the

added ligand forms a curve when plotted against added Cu. When the natural ligands

become saturated, this plot becomes linear as the added Cu binds to the added ligand

only. Theoretically, the concentrations and conditional binding constants of natural

ligands that are stronger than that of the added ligand can be determined from analysis of

titration data based on the distinction between the curved and linear regions of the plot.

Varying the analytical competition strength of the added ligand in the analysis of

different aliquots of the same water can result in the characterization of both L1- and L2-

class ligands in the sample.

However, Voelker and Kogut (2001) demonstrated that these common techniques are

insufficient for accurately characterizing Cu speciation in some coastal waters. They

found that in coastal waters with potentially many different ligands and inert Cu

compounds, some of these can be misclassified (e.g. inert compounds are classified as L1-

class ligands) or disregarded from the analysis completely. While it appears that strong

LI-class ligands abound in some waters, in reality these waters may contain inert Cu

compounds and zero to low concentrations of strong ligands.

1.4 The Effect of Cu Speciation on Cu Toxicity

An understanding of the dissolved Cu composition and the sources and sinks of Cu-

binding ligands is vital to determine the speciation of Cu and its resulting toxicity in the

system. As various Cu species try to maintain equilibrium, a balance is established

among the free ion, complexes with ligands in the water, and complexes with cellular
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receptor ligands. Toxicity of dissolved Cu depends on the concentration of Cu ions at

certain cellular receptor ligands (see 1.2 for examples of receptors). An equilibrium

model can be used to predict how much Cu will be bound to these receptors and have

potentially toxic effects.

Organic Competing
CationsComplexes +-- e.Ca 2

+

(Cu-humate Fe Mq2+'

ree Metal Ion Cellular Ligan
(CU2+) Receptors

Inorganic
Complexes Inert u
(e.g. CuOH+,

CuHCOa*)

Figure 1. Cu speciation in aquatic systems. This simplified equilibrium model
showcases the interactions among Cu, other metals, ligands, and biota

(adapted from Pagenkopf 1983; Sunda 1988; Morel and Hering 1993; Paquin
et al. 2000). How inert Cu fits into the model has not yet been determined.

Figure 1 depicts the interactions between Cu, ligands, and other metals in an aquatic

system (adapted from Pagenkopf 1983; Sunda 1988; Morel and Hering 1993; Paquin et

al. 2000). This model shows several compartments of chemical species and the equilibria

existing between compartments (shown as double-headed arrows). The concentration of

the free ion is controlled by the presence of both organic and inorganic ligands in the

15



system. (In coastal systems, the effect of inorganic ligands is usually minor due to the

strength and abundance of organic ligands.) By binding to and maintaining equilibria

with the free metal ion according to inherent conditional stability constants, ligands can

reduce the concentration of Cu that binds at the cellular ligands (proportional to free Cu

ion), in effect reducing Cu bioavailability and/or toxicity. However, a source or sink of

these ligands can disrupt the established balance and result in a change in the free ion

concentration. Introduction of a ligand to the system can result in the formation of a Cu-

ligand complex and in a decrease in the concentration of free Cu; on the other hand,

destruction of a ligand can increase free Cu. Additionally, other metal ions such as Ca,

Fe, Mg, Zn, and Mn ions can outcompete Cu in binding to ligands, thereby increasing the

free Cu concentration. However, a more significant impact of other metals is that they

can also outcompete Cu at the cellular surface and inhibit Cu binding to cellular ligands,

thereby reducing Cu toxicity (Sunda and Huntsman 1983; Paquin et al. 2000). Notably,

in the formulation of this model, free Cu is the only form of Cu that is able to bind to

cellular receptors and thus considered directly bioavailable. This neglects the possibility

that some compounds may also be bioavailable through other mechanisms (e.g. passive

diffusion, ingestion).

1.4.1 Influence of Inert Cu on Cu Toxicity

The existence of inert Cu further complicates this model. The nature of inert Cu and its

interactions with other system components is not known. One possibility is that inert Cu

compounds serve as a sink of Cu available for equilibration, thereby decreasing the

potential toxicity of Cu in the system. Another (much less likely) possibility is that inert
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Cu compounds are directly bioavailable. Knowledge of the sources and sinks of inert Cu,

including the factors that result in the formation or destruction of inert Cu, is vital for

assessing the interactions among chemical species and determining the impact of inert Cu

formation on the potential toxicity of Cu in a system.

1.5 Field Study Objectives

The only study that has been conducted on inert Cu involved the analysis of samples

collected from five New England coastal locations on December 27, 2001, and January 4,

2002 (Kogut and Voelker 2003). For these ten data points, 10-60% of the total dissolved

Cu was determined to be inert Cu. Retention of 0.2-prm-filtrable Cu by a 0.02-pm-pore

size filter suggested that some of this inert Cu was physically sequestered in colloidal

matrices. This study concluded that inert Cu exists in some coastal water samples, but

the data set was too limited to be used to examine the factors that may result in the

presence or absence of inert Cu.

The primary objective of the field study presented in this paper was to collect a much

more extensive data set on one site, Boston Harbor, in order to examine the sources and

sinks of inert Cu in this coastal system. This study was designed to test several

hypotheses about the factors that result in the formation or destruction of inert Cu by

examining correlations between the concentrations of inert Cu and certain physico-

chemical parameters. A spatial distribution provided sampling locations at which

different sources and sinks of Cu and Cu-binding compounds would potentially be

dominant. A time series (June through November) provided variations in such physico-
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chemical parameters as turbidity, temperature, biological productivity, and freshwater

inputs at each particular sampling location.

Sources of Cu to Boston Harbor, possibly as inert Cu, include industrial point-source

pollution, river flow, runoff, combined sewer overflows, treated effluent discharge,

shipping, and sediment resuspension. The possible effects of rivers, a shipping channel,

and treated and untreated sewage outfalls on the concentrations of total and inert Cu are

investigated at sampling locations in proximity to these sources. To examine possible

effects of resuspension, concentrations of total suspended solids and sample turbidity are

correlated with total dissolved, exchangeable, and inert Cu. Formation of inert Cu in situ

by biota is considered through analysis of relationships between chlorophyll a (as an

indicator of seasonal changes in biological activity) and concentrations of total dissolved,

exchangeable, and inert Cu. Potential sulfide interactions with Cu are explored through

close analysis of a site near a salt marsh.
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2 Methods

2.1 Materials

Care was taken to prevent contamination in all aspects of this field study. Deionized

distilled water (DDW) from a Millipore Q-H 20 system was used for diluting standards

and for rinsing bottles and filters after acid-cleaning. OmniTrace nitric acid (69.0-70.0%)

with less than 0.5 ppb Cu was used for acid-cleaning and sample acidification. Ultrex II

Ultrapure ammonium hydroxide (20%) with less than 1 ppb Cu was used for neutralizing

acidified samples.

A stock solution of 35 mM SA was made every two weeks by dissolving salicylaldoxime

(SA) in DDW overnight. Solid SA was used as received from Aldrich Chemical

Company and stored in the refrigerator. 1 M boric acid buffer was made by dissolving

solid Superpure boric acid obtained from EN Science in DDW and adjusting to pH 8.0

with concentrated ammonium hydroxide. A standard solution of 1,025 pig/ml Cu in 1%

nitric acid (Aldrich) was diluted with DDW to make a stock solution of 1 pM Cu. This

stock solution was made at least daily.

5.0-grade nitrogen gas (BOC Gases) was used for purging samples during voltammetric

analysis.
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2.2 Sample Preparation

2.2.1 Sample Collection

Surface water samples were collected onboard a Massachusetts Water Resources

Authority (MWRA) research vessel approximately every two to three weeks from June

2002 through November 2002 at eleven sites in and around Boston Harbor (Figure 2).

These sampling locations, extending north to the mouth of the Mystic River and south to

Hull, Massachusetts, are part of the MWRA's Weekly Water Quality Monitoring

Program (Table 1). Auxiliary water quality data such as temperature, salinity, dissolved

oxygen, total suspended solids, and chlorophyll a concentration at these locations were

obtained from the MWRA.

| 2-. /

Figure 2. Boston Harbor sampling sites, June - November
2002.
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Table 1. Boston Harbor sampling sites, June - November 2002.

MWRA
Sampline
Location Location Description GPS Location

024 Inner Harbor - red buoy #10 42 20.59 N 71 000.48 W

077 Off Merrymount Park 42 _16.51 N 700_59.31 W

106 Long Island - green can #17 42 20.00 N 70057.60 W

124 Hingham Harbor - off Crow Point 42 16.36 N 70053.86 W

130 Winthrop Bay - off Cottage Park Yacht Club - green can #1 42 21.80 N 70 0 59.25 W

137 Mystic River - 1/3 mile upstream Tobin Bridge 42 23.20 N 71 03.80 W

138 Inner Harbor - off New England Aquarium 42021.59 N 71 02.82 W

139 Hangman's Island 420 17.20 N 70 58.10 W

140 Columbia Point / Savin Hill Cove 420 18.35 N 71 02.43 W

141 Peddocks Island 420 18.30 N 70 55.85 W

142 President Roads, South Channel - green can #13 42020.35 N 70 55.89 W

Acid-cleaned Teflon containers were used for all samples, reagents, and experiments to

minimize adsorption of Cu and ligands to bottle surfaces and leaching of phthalate

plasticizers into the samples. After being acid-cleaned with 1% nitric acid for a

minimum of twenty-four hours, the sampling bottles were stored full of DDW. At each

sampling site, 500 ml of surface water was collected with a pole sampler consisting of a

plexi-glass bottle holder, a

twelve-foot PVC extension

pole, and a 500-ml Teflon

bottle fastened with Tygon

tubing (Figure 3). Samples

were collected off the bow

outside the vessel's travel path
Figure 3. Plexi-glass sampling unit. Arrow indicates

to prevent contamination from where the PVC extension pole was attached.
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the boat. To further minimize the possibility of contamination, the collection bottle was

rinsed with sample water three times before the sample was collected.

2.2.2 Cu Samples

At each sampling location, 240 ml of sample were syringe-filtered through 0.2-p m

polycarbonate membrane filters (Nucleopore, 47 mm filter diameter) held in

polycarbonate filter holders. The filters had been acid-cleaned and extensively rinsed

with DDW before sample filtration. Contamination due to the addition of Cu or ligands

from the filters or the sorption of Cu or ligands to these filters was previously found to be

negligible (Kogut and Voelker 2003). The syringe and filters were rinsed with 60 ml of

sample before the filtrate was retained.

Whenever possible, collected samples were filtered within fifteen minutes of collection.

When this was not possible, samples were stored on ice and filtered as soon as possible.

All samples were filtered and frozen in liquid nitrogen within four hours of collection to

prevent bacterial activity from altering the state of Cu speciation in the samples. Liquid

nitrogen was used for quick freezing to prevent coagulation or flocculation of organic

matter in the samples (Kogut and Voelker 2003). Samples were stored in a freezer at -

20C for later analysis.
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2.2.3 Dissolved Organic Carbon Samples

At each sampling site, 20 ml of sample were filtered into pre-combusted amber glass

vials using pre-combusted glass syringes and 0.2-ptm polysulfonate cartridge filters.

These materials were acid-cleaned and rinsed with 10 ml each of DDW and sample

before filtrate was retained. These samples were stored in a freezer at -20'C for later

analysis.

2.2.4 Sargasso Sea Samples

Samples from the Sargasso Sea were collected and filtered by J.W. Moffett using trace-

metal clean sampling techniques. These samples were prepared for analysis in the same

manner as those collected in this field study (described below).

2.3 Laboratory Methods

2.3.1 Ultraviolet-irradiation of Samples for Total Cu Analysis

30-ml aliquots of thawed Cu samples were transferred to acid-cleaned quartz test tubes.

20 [tl of trace-metal clean concentrated nitric acid (69.0-70.0%) were added to each

aliquot to act as an oxidant and to prevent Cu from adhering to the test tube surfaces.

Samples were irradiated under ultraviolet light with a medium-pressure mercury lamp

(Ace Glass, 1000 W) for 8 hours. This process destroyed the dissolved organic

compounds in the sample by breaking C-C bonds, freeing any Cu complexed to organic

ligands as well as any inert Cu sequestered within organic matrices. Since the
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combination of strong acid and light should have dissolved any iron oxide present, and

hydroxyl radicals produced through nitrate photolysis should have oxidized both organic

and reduced inorganic matrices (e.g. sulfides) in the samples, any remaining inert Cu in

the sample should also have been released by UV-irradiation.

After 8 hours, the samples were removed from UV light, and DDW was added to replace

the water that had evaporated during UV treatment (less than 3 ml). Concentrated

ammonium hydroxide (20 %) was added to return the pH of the samples to about 8.0, and

24.0 ml of samples were retained and transferred to Teflon bottles for CLE-ACSV

analysis (see below).

2.3.2 Competitive Ligand Exchange (CLE)

A competitive ligand exchange method was used to make samples measurable for

concentrations of total dissolved and exchangeable Cu using a voltammetric method. SA

was used as the strong ligand for these analyses, since it binds Cu strongly and is

therefore expected to outcompete all of the natural ligands in the samples if used at

sufficiently high concentrations (Kogut and Voelker 2001). This ligand was also used

since the peak of its complex with Cu was not expected to be susceptible to voltammetric

interference by other compounds.

SA was added to 24.0-ml aliquots of samples to make final sample concentrations of 1

mM SA. 500 p1 of UV-oxidized 1M boric acid buffer were added to the aliquots for a

final buffer concentration of 20 mM. After addition of SA and buffer, the bottles were
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sealed in plastic bags and stored refrigerated in the dark. UV-irradiated samples were

allowed to equilibrate overnight, and untreated samples were allowed to equilibrate for at

least 48 hours before voltammetric analysis. No samples were measured after 96 hours.

2.3.3 Adsorptive Cathodic Stripping Voltammetry (ACSV)

Differential pulse ACSV was used to measure the concentration of Cu-SA complexes,

[Cu(SA)x]. 11.0-ml aliquots of the equilibrated samples were analyzed with an EG&G

PAR 394 analyzer in the instrument's Teflon sample cup. Instrument settings were as

follows: adsorption potential, -0.08 V (vs Ag/AgCl electrode); scan range, -100 to -700

mV; scan rate, 6.66667 mV/s; scan increment, 2 mV; drop time, 0.3 s; electrode area, 1

cm 2; pulse height, 20 mV.

This method involved an adsorption step followed by a potential scan. During the

adsorption step, Cu(SA)x complexes sorbed onto a PAR 303A static mercury drop

electrode. The deposition time was set to be 30 seconds, although the actual

experimental deposition time was approximately 60 seconds longer before the instrument

scan reached the desired voltage. During the scan, potential was applied to the Hg in the

negative direction. Cu in the sorbed complexes was reduced, and the resulting current

was measured. This created a well-defined peak current, I, between -410 and -480 mV.

The 1 pM Cu standard was used to add increments of 7 to 8 nM Cu to the sample cup

with 4 to 9 Cu additions to reach a final added Cu concentration of 30 to 72 nM

depending on the sample. Before the first peak current measurement, the sample was
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purged with nitrogen gas for 300 seconds to remove oxygen from the sample. After

additions of Cu, the sample was purged with nitrogen for 210 seconds for the same

reason as well as to provide sufficient time for the added Cu to equilibrate with SA before

the peak current measurement.
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Figure 4. ACSV potential scans from a representative sample
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Figure 4 shows the voltammetric analysis of a representative sample at added Cu

concentrations of 0.0, 7.7, 15.2, 22.7, 30.0, and 37.2 nM, respectively. The peak height

was determined from each of these plots (Figure 5). Linear regression analysis was then

used to determine the slope and intercept of the titration for use in determining total

dissolved and exchangeable Cu concentrations.
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Figure 5. Plot of titration data from sample analyzed in Figure 4.
Dashed lines show 95% confidence interval of linear regression
(solid line, R2=0.9910). [CU]sample is determined by dividing the y-
intercept by the slope of the regression line.

2.4 Data Analysis

2.4.1 Determination of Cu Concentrations

The concentration of Cu(SA)x sorbed to the Hg drop is proportional to [Cu(SA)x] in the

sample. The ratio of I and [Cu(SA)x] is called the sensitivity, S:

(3)S = I / [Cu(SA)x]
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S varies depending on the instrument settings and the composition of the sample. Cu was

added incrementally by standard addition to determine S and deduce Cu concentrations in

the samples (Kogut and Voelker 2001). Since the SA was present at sufficiently high

concentrations to outcompete any natural ligands present in the samples (Kogut and

Voelker 2001), all of the added Cu, A[Cu]T, complexed with SA during each titration step

such that:

A[Cu]T= A[Cu(SA)X] (4)

Eq.(4) can be applied to Eq.(3) to show that S is then given by the slope of a plot of I

versus total Cu added, A[Cu]T. The y-intercept of the plot divided by S gives [Cu(SA)x]

initially in the sample before the Cu additions.

During equilibration of an untreated (not UV-irradiated) sample, the SA partially

outcompetes the non-inert (exchangeable) natural ligands that were bound to Cu, so that

the expression for Cu speciation in the sample becomes:

[Cu]T = [Cu2 ]untreated + Z[CuLi]untreated + [Cu(SA)x]untreated + [CU]inert (5)

where SA forms both mono and bis complexes with Cu:

[Cu(SA)x] = [Cu(SA)] + [Cu(SA)2] (6)
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For high concentrations of strong competing ligand (1 mM SA in this study),

[Cu(SA)x]untreated dominates Cu speciation and [Cu 2+]untreated and E [CuL]untreated are

negligible such that Eq.(5) becomes:

[Cu]T [Cu(SA)x]untreated + [Cu]inert (7)

After UV irradiation, Cu contributing to [Cu]inert is released and also binds to SA, such

that the expression for Cu speciation in the sample becomes:

[Cu]~T [Cu(SA)x]uv-irradiated (8)

Thus, measurement of [Cu(SA)x] in the untreated sample gives the exchangeable Cu

concentration (the Cu that will be bound by added SA; approximately [Cu 2+]+E[CuLi] in

Eq.(2)), while the UV-irradiated sample gives the total dissolved Cu concentration. The

difference between the two gives the inert Cu concentration:

[Cu]inert = [Cu(SA)x]untreated - [Cu(SA)x]uv-irradiated (9)

2.4.2 Error Analysis

For each titration in this study, the uncertainties of the slope and y-intercept of the linear

regression were calculated as a 95% confidence interval (J.C. Miller and J.N. Miller

1993). As the total or exchangeable Cu concentration was calculated by dividing the y-

intercept by the slope from the appropriate sample titration regression, the uncertainty of
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either was determined by error propagation through division. The uncertainty of the inert

Cu concentration was the square root of the sum of the squares of the uncertainties of

total and exchangeable Cu concentrations. Whenever they were obtained, replicate

measurements were averaged before calculating inert Cu. Error bars associated with

replicate averages (see Results) were calculated as the standard deviation of the set of

measured values.
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3 Results

Appendices A and B show exchangeable and total Cu concentrations for each sampling

location over the duration of this field study. R2 from linear regressions of titrations used

to derive these values ranged from 0.9674 to 1.0000 (see 2.4.2 for analytical method).

The inert Cu concentration was determined for each of 80 date/location pairs by

subtracting the exchangeable Cu concentration from the total Cu concentration

(Appendix A).

3.1 Data Quality Control

Two measures were taken to test the accuracy and precision of the CSV measurements.

First, samples of untreated and UV-irradiated Sargasso Sea water were measured

periodically to check for contamination problems in the analytical procedure. This water

was selected for its availability and low Cu content. Moffett found total Cu

concentrations in the Sargasso Sea to range from 0.9 to 2 nM (Moffett 1995); our work

yielded concentrations of 0.1±2.1 to 3.7±2.4 nM for Sargasso Sea water. Although these

samples were not from the same time and precise location, the absence of significant

contamination problems was validated by the similarity in measured concentrations.

As a second check on the analytical technique, two different types of replicates were

measured. For one type, twice the amount of sample needed for one voltammetric

analysis was equilibrated with SA and buffer, and then two separate titrations with

voltammetric analyses were performed on the same day. In other cases, two aliquots of
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the same collected sample were prepared for analysis (equilibrated with SA and buffer)

on two different days; one or more replicates of each were then analyzed. Figure 6 shows

replicates for 9 exchangeable Cu measurements and 7 total Cu measurements. Error bars

for all raw measurements reflect our estimated 95% confidence interval based on the

uncertainties of the slope and intercept of each individual titration (see Methods). 14 of

16, or 88%, of the replicates show agreement within the calculated error bars. This

demonstrates that our 95% confidence interval is a reasonable estimate of the precision of

this method. The variation of error bar magnitudes from different analyses of a given

sample also demonstrates the variable behavior of the instrument; in general an effort was

made to reduce use of the instrument on days when error bars were particularly large.
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Figure 6. Comparisons of replicate measurements. (a) 8 of 9 sets of
exchangeable Cu and (b) 6 of 7 sets of total Cu concentrations are
within 95% confidence. This demonstrates the precision of the
method.
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3.2 General Trends

3.2.1 Fraction of Inert Cu

A significant portion of the Cu in this coastal system

although the fraction of inert Cu varied considerably

from an average of 29.7% at location 138 to 65.2%

average % inert Cu was 46.1%.

was found to be kinetically inert,

from sample to sample, ranging

at location 130 (Figure 7). The
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Figure 7. Average % inert Cu at each sampling location. The

fraction of Cu that is inert Cu varies from site to site. Location
130 has the highest % inert Cu (65.2%); 138 has the lowest
(29.7%).

Figure 8 shows the distribution of % inert Cu among analyzed samples. 9 samples with

less than 0% inert Cu and 9 with more than 100% were omitted from the figure. The

errors associated with % inert Cu (not shown) demonstrate that these data points were not

significantly far from 0% and 100% and thus reflect samples with nearly no or all inert

Cu, respectively.
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Figure 8. Frequency of samples with specified ranges of % inert Cu. A significant
number of samples have substantial % inert Cu, implying that coastal waters typically
have a fraction of Cu that is inert Cu. (9 samples not shown likely have no inert Cu; 9
likely are entirely inert Cu.)

3.2.2 Temporal Trends

There is a general decrease in the fraction of inert Cu from June to November (Figure 9).

Each data point in Figure 9 represents the average of % inert Cu at all locations sampled

on the given day. Not all sampling locations were analyzed for each date and thus

different samples were included in each average value. However, this should not skew

the averages since the sites were not skipped in a systematic way. The same trend can be

seen by averaging the data from only the samples that have analyses for 78% (7 of 9) or

more of the days in the field study (Figure 9).
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Figure 10. Temporal trends of exchangeable (dark circles),

inert (hollow circles), and total Cu (triangles) concentrations.

Each data point represents the average value for all site

samples analyzed on the corresponding date. All Cu

concentrations increase to a mid-summer peak before

subsiding.
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represents the average value for all site samples analyzed on

the corresponding date. Dark circles show the averages for all

given data; hollow circles show averages of data from

samples for which at least 7 of 9 dates were analyzed. For

either case, % inert Cu decreases from June to November.
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Total, exchangeable, and inert Cu concentrations peak in the middle of the summer

(Figure 10). Again, we assume that these trends are temporal and not an artifact of biased

site-sampling.

3.2.3 Correlations Among Cu Species

The concentrations of inert Cu and total dissolved Cu in this system are somewhat

correlated (Figure 11 -a, R2=0.5078). In contrast, the concentration of exchangeable Cu is

not well correlated with that of total Cu (Figure 11-b, R2=0.1134).
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Figure 12. Average exchangeable (black), inert (light gray),
and total dissolved Cu (dark gray) measured at each site.

3.3 Sources of Cu

3.3.1 Rivers

Three of the four highest site average concentrations of total and inert Cu are at locations

associated with river mouths, suggesting that there may be riverine sources of Cu to

Boston Harbor (Figure 12). Sampling locations 138, 137, and 140 are near the mouths of

the Charles, Mystic, and Neponset rivers, respectively, and exhibit average total Cu

concentrations (33.5, 23.7, 22.8 nM) that are higher than the average total Cu

concentration measured in this study (20.6 nM). Additionally, these locations have

significant inert Cu concentrations, averaging 11.7, 10.7, and 16.8 nM. The

exchangeable Cu concentrations at 137 and 138 (11.9, 21.9 nM) are also above the
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average for the study (10.8 nM), while that at 140 (6.0 nM) is one of the smallest in the

study. Moreover, location 024 at the opening of the Inner Harbor to the Outer Harbor,

influenced by the Charles and Mystic rivers, measured 21.8 nM total Cu. The salinities at

these sites are lower than at other sites, revealing that these four locations are most

influenced by freshwater river inputs.

3.3.2 Sediment Resuspension

One possible source of Cu to Boston Harbor via rivers is sediment resuspension.

Auxiliary data show that location 140 experiences average to high concentrations of total

suspended solids (TSS), ranging from 3.5 to 9.7 mg/l during the field study. The range of

variation and the average and maximum TSS are all higher than at any other location

(Figure 13). It is possible that turbulent mixing near the mouth of the Neponset River

stirs up sediments and contributes to increased Cu concentrations there. This is supported
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Figure 13. Range and mean (circle) of TSS measured at each
sampling location over the duration of the field study. 140
exhibits a high range and mean of TSS.
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by an observed increase in both total dissolved Cu and inert Cu (although not

exchangeable Cu) with increasing total suspended solids concentration at this location,

although it is important to note that this correlation is based on a small set of sample

points (Figure 14).
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3.3.2.1 Influence of Currents

It is also possible that sediment resuspension at the river mouths is caused by tidal

currents. Data from the United States Geological Survey 011055566 Neponset River

flow gauge (Figure 15) reflect that high TSS is not associated with high river flow (semi-

log scale R2=0.0997, Figure 16).
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Figure 14. Effect of sediment resuspension on Cu
concentrations at location 140. Exchangeable Cu (dark
circles, solid line) remains about constant while inert Cu
(hollow circles, dotted line) and total Cu (triangles, dashed
line) concentrations increase with increasing TSS. This
implies that sediment resuspension is a source of inert Cu at
this site.
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Studying the shallowest sampling locations reveals that sediment resuspension may only

be substantial at site 140. Locations 077, 124, 130, and 139 range in depth from 2.4 to

7.9 meters depending on the tide (Figure 17). These shallow locations may be more

susceptible than deeper locations to sediment resuspension by turbulent mixing caused by

wind. This is demonstrated by the range of TSS at these locations (Figure 13). Notably,

there is no relationship between the concentration of TSS and the Cu concentrations at

these shallow locations (Figure 18). However, TSS does not reach high levels as in the

analysis of location 140 (Figure 13). The maximum TSS at these sites does not exceed

6.8 mg/l, while that at location 140 peaks at 9.7 mg/l.
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Figure 17. Range and mean (circle) of
each sampling location over the duration

140 141 142

depths measured at
of the field study.

3.3.3 Offshore Sources

The second highest site average concentrations of total (24.9 nM) and inert Cu (15.4 nM)

are at the location (142) that is farthest from the shore (Figure 12).
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3.4 Influences on Cu Speciation

3.4.1 Biota

Since it was expected that biological activity was responsible for the formation of a

fraction of inert Cu, correlations with chlorophyll a as a metric for phytoplankton

productivity were investigated. Chlorophyll a exhibited considerable variability in this

field study and followed the expected trend of peaking in mid-summer (Figure 19).

160 180 200 220 240 260 280 300

Julian Date

320 340

Figure 19. Temporal trend of chlorophyll a. There is

considerable variation in chlorophyll a in the samples

analyzed. A bloom is observed on days 211, 225, and 248.

There is not a good correlation between chlorophyll a and inert Cu (R2=0.0274, Figure

20-a), exchangeable Cu (R2=0.0362, Figure 20-b), or total Cu (R 2=0.0814, Figure 20-c)

for the field study as a whole. Examination of individual or pooled locations with

particularly high peak chlorophyll a concentrations also failed to reveal a correlation

between inert Cu and chlorophyll a.
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3.4.2 Sewage

There is also no correlation between inert Cu and the presence of Escherichia coli (semi-

log scale R2=0.0009, Figure 21-a) or Enterococcus (semi-log scale R2=0.0075, Figure 21-

b), two organisms associated with fecal matter and thus inputs of raw sewage to the

coastal system.

60 60

50 - 50-

40 40-

30 - 30-

0 20- 0 ~ 20 i
0 0

-10- -10 -

-20 0.1 1 10 100 1000 10000 -20 0.1 1 10 10 1000

Escherichia coli [colonies/1 00 ml] Enterococcus [colonies/i 00 ml]

(a) (b)

Figure 21. Relationship between inert Cu concentration and
presence of (a) Escherichia coli and (b) Enterococcus. These
organisms are not correlated with and do not seem to affect
Cu concentrations.

3.4.2 Sulfide Species

Data from location 130 suggest that sulfides may form some inert Cu compounds. This

location is near the Belle Isle Marsh, a 241-acre salt marsh, and is likely affected by

marsh chemistry-that is, it may have a higher concentration of sulfide species. The

average fraction of inert Cu at this site over the time studied is 65.2%--higher than that

at any other site (Figure 7). Figure 22 shows the measurements of both total and

exchangeable Cu concentrations for 7 sampling dates at this location. The error bars

indicate that with 95% confidence every sample has a significant fraction of kinetically
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inert Cu. That is, taking into account the error bars, the exchangeable Cu never

constitutes all of the total dissolved Cu measured in these samples. This is not the case

for any other location in this study (Appendix B).
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Figure 22. Total (hollow circles) and exchangeable Cu
concentrations (dark circles) measured at location 130.
Considerable inert Cu is present throughout the duration of
the field study. The presence of sulfides at this site near the
Belle Isle Marsh likely results in the formation of inert Cu
compounds. (No total Cu measurement was made on day
267.)
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4 Discussion

This field study was designed to provide an analysis of a complex coastal system with

various physicochemical features characteristic of coastal systems such as temporal

variations in sources of Cu, sediment resuspension, freshwater inputs, and biological

activity, as well as proximity to other water systems such as rivers and marshes. While

correlations are observed among Cu speciation and various other parameters, these

relationships, if causal, would likely be stronger given a simpler system with fewer

potential sources and sinks of Cu and Cu-binding ligands. However, factors that are

potentially resulting in the formation of inert Cu compounds can still be identified from

this work. Information from this work is a first step in explaining the nature of inert Cu

and determining implications of inert Cu formation on Cu toxicity in future studies.

4.1 Data Accuracy

Certain considerations were taken to ensure that sample contamination did not occur in

this work (see Results). Few studies have been conducted on dissolved Cu in Boston

Harbor; those that exist further confirm the likelihood that these data are accurate. Sunda

and Huntsman (1989) used a chemiluminescence technique with the added ligand EDTA

to deduce an average detectable Cu concentration of 14.6 nM (ranging from 9.0 to 30.2

nM) for eight sites throughout the same research area (near locations 106, 130, 137, 138,

139, two near 024, and in Dorchester Bay). This was likely an underestimate of total

dissolved Cu, as they found higher total Cu (average 22.6 nM; ranging from 18.2 to 27.4

nM) when they acidified (to pH 2) and UV-irradiated the same samples before analysis.
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In a later study, Sunda and Huntsman (1990) found an average of 19.7 nM total dissolved

Cu at these sample locations. (These samples were acidified to pH 2 and UV-irradiated.)

Shea and Kelly (1992) observed a Cu concentration of approximately 25 nM at an

unspecified location in Boston Harbor. Kogut and Voelker (2003) used the same CLE-

ACSV technique described in this paper to find exchangeable Cu concentrations

averaging 6.0 and 5.4 nM, and total dissolved Cu concentrations of 9.4 and 11.1 nM, near

locations 077 and 140, respectively, in the winter. These values are close to many of the

measurements made at these sites in the present study, although some higher values were

also observed (Appendix A, B). Shine and Wallace (1995) used graphite furnace atomic

absorption spectrometry to determine total dissolved Cu concentrations ranging from 1.3

to 7.2 nM 5 m below the surface at a location in Massachusetts Bay approximately 15 km

east of the mouth of Boston Harbor. This is comparable to the 9.6 nM exchangeable Cu

found in this work at location 142.

4.2 General Trends

A fraction of dissolved Cu is typically present as inert Cu (Figure 8). This fraction varies

among sites and sampling dates according to certain trends. The exchangeable Cu

concentration at each site in this work generally remains within a relatively small range

even when total dissolved Cu changes more dramatically (Appendix B). Figure 11

further shows a lack of correlation between exchangeable and total Cu concentrations.

When the Cu concentration at a site increases, it is not the exchangeable Cu but the inert

Cu concentration that increases (Figure 11). This implies that either the source of Cu is
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inert Cu or something effects the formation of inert Cu from an input of exchangeable Cu

such that the level of exchangeable Cu is maintained at a certain level.

The concentrations of total dissolved, exchangeable, and inert Cu increase to a mid-

summer peak (Figure 10). This is likely due to increased industrial activity and waste

stream volumes during the summer months. The fraction of dissolved Cu that is inert Cu

generally decreases over the duration of this study. Kogut and Voelker (2003) observed

that the average % inert Cu near locations 139 and 140 during mid-winter was 44.7%.

This is in line with the observed trend in this work (Figure 9).

4.3 Sources of Cu

4.3.1 River Flow

A primary source of Cu seems to be riverine, as most of the highest total Cu

concentrations were measured near the mouths of the Charles, Mystic, and Neponset

rivers. Possible sources of riverine Cu include industrial waste from combined sewer

overflows (CSOs) as well as from storm water runoff. The MWRA regulates industries

in the watershed that have significant Cu in their waste streams with a maximum effluent

loading limit of 1 mg/l (approximately 15.7 nM) dissolved Cu. On days with heavy

precipitation, CSOs can transport industrial waste contaminated with Cu to the rivers that

flow into Boston Harbor. Some of the pipes in the sewer system are made of Cu, so

when acidic rains and sewage are diverted they may corrode the pipes and transport

dissolved Cu as well. Furthermore, municipalities use additives to control odor and
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prevent plant root growth in sewer systems. One such additive contains Cu sulfate; other

additives are highly corrosive to Cu pipes. Either process adds Cu to the harbor when

water flows through these pipes into the rivers or harbor. Sources such as these may be

responsible for increased total Cu concentrations, in particular at locations 137, 138, and

140.

Dams may be partially responsible for elevated Cu levels near the Charles, Mystic, and

Neponset river mouths. Suspended solids settle near river dams. Some Cu sorbs to these

particles and settles, building up high concentrations in the sediment. These particles are

later resuspended, periodically releasing pulses of dissolved Cu to surface waters in

addition to ambient concentrations. This may result in high total dissolved Cu

concentrations at these three sampling locations during sediment resuspension events.

To determine the extent of fluvial sources, a transect study should be conducted along

each river. Determining a correlation over a large salinity range could reveal more about

sources of Cu including if it is transported directly as inert Cu or if it becomes inert Cu

when it reaches coastal waters.

4.3.2 Sediment Resuspension

While the Charles and Mystic rivers are significant sources of total dissolved Cu, the

Neponset River (location 140) is specifically a source of inert Cu to Boston Harbor. (The

average exchangeable Cu concentration is low at this site (6.0 nM).) Something

distinguishes this location from those near the other two rivers. It is likely that sediment
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resuspension provides a source of inert Cu to surface waters. High levels of TSS

correlated with high total and inert Cu concentrations (Figure 14) imply that Cu is either

released directly from the sediments as inert Cu or is released with other substances that

bind to render the Cu inert.

TSS may serve as an indicator of constituents (e.g. organic material) in resuspended

sediments that may result in higher inert Cu concentrations. Kogut and Voelker (2003)

postulated that inert Cu includes colloidal matrices that sequester Cu. Inert Cu

compounds at location 140 may be formed in colloidal matrices or by strong Cu-binding

to organic material, for example. The release of DOC coupled with the release of Cu

from resuspended sediments may result in the immediate formation of inert Cu. The

samples prepared for DOC determination will be analyzed in the future to determine

whether the concentration of inert Cu is correlated with DOC.

TSS is a metric for the turbulence in the vertical profile at a given site. TSS is quite low

at locations 137 and 138 (Figure 13), implying that little resuspension occurs at these

locations. This lack of resuspension near the Charles and Mystic rivers plus the lack of

correlation observed between high TSS at location 140 and Neponset River flow (Figure

16) indicate that another mechanism such as tidal currents or currents caused by winds is

responsible for sediment resuspension near the Neponset River (140).

TSS (and thus sediment resuspension) is higher at the shallower locations in this study

(Figures 13, 17). This implies that currents caused by wind are strong enough to
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resuspend sediments at shallow but not deep locations. Locations 137 and 138 are among

the deepest sampling locations in this study, while location 140 is among the shallowest.

It is not surprising that much more TSS (i.e. resuspension) is observed at location 140

than at 137 or 138. Additionally, the shallow locations (077, 124, 130, 139) have high

variability in TSS. However, data from these locations do not demonstrate a strong

correlation between TSS and total, exchangeable, or inert Cu concentration (Figure 18).

This may imply that the sediments near these locations do not have high concentrations

of Cu so increased suspension does not result in higher Cu levels.

Substantial sediment resuspension is necessary for Cu to be released to surface waters

from sediments. The shallow locations exhibit less resuspension as reflected in lower

TSS than at location 140. Location 140 near the mouth of the Neponset River

experiences stronger tidal currents than the other shallow locations. Strong tidal currents

coupled with wind shears provide sufficient energy for resuspension to occur and exhibit

the correlation between TSS and total and inert Cu at location 140 (Figure 14).

4.3.3 Shipping

Another source of Cu seems to exist at location 142. As this location is the furthest from

shore and thus from industrial activity, it was expected that it would have low Cu

concentrations. However, location 142 had the second highest total dissolved (24.9 nM)

and inert Cu concentrations (15.4 nM), as well as a high exchangeable Cu concentration

(9.6 nM) (Figure 12). As this location is part of a major shipping channel, it is possible
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that shipping is a source of Cu to this coastal system, although there may be a different

explanation for these elevated levels.

4.4 Formation of Inert Cu

4.4.1 Biological Productivity

Under Cu stress, various microorganisms exude strong ligands to bind to Cu and render it

nontoxic. Although some of these biologically-produced ligands have been characterized

as L1-class ligands, it is possible that these are actually inert Cu compounds. A

correlation between seasonal variations in biological activity and the fraction of inert Cu

might therefore be expected but was not observed in this work (Figure 20).

It is possible that certain biota are able to create inert Cu compounds but that this

behavior was masked by other interactions in the system. One possible explanation is

that inert Cu formation is species-specific. While some cyanobacteria have been reported

to produce LI-class ligands in response to Cu stress, others have been revealed to produce

L2-class ligands or to not be able to protect itself from Cu stress at all (Moffett et al.

1990). Various phytoplankton species are represented by the chlorophyll a measurement;

some of these may obscure a correlation between biological activity and the formation of

inert Cu. Another possibility is that biological activity is not really responsible for

forming inert Cu. The production of LI-class ligands may be sufficient for survival.

53



4.4.2 Sulfide Complexes

The hypothesis that Cu becomes inert in the presence of sulfides is supported by inert Cu

concentrations determined from the sampling location (130) near the Belle Isle Marsh

(Figure 22). Salt marshes are generally characterized by anoxic waters. Since the supply

of oxygen has been exhausted, microorganisms in these ecosystems utilize sulfate as an

electron acceptor in the oxidation of organic matter, converting this species into sulfide.

Location 130 is likely to be affected by marsh chemistry and thus to have a significant

presence of sulfide species. It seems that sulfides cause a fraction of Cu present in the

system to become inert Cu. Sediments with sulfide fluxes are likely to effect inert Cu in

surface waters.

4.5 Future Work

This field study demonstrates that some Cu in Boston Harbor is present in a form that is

irreversibly bound to ligands or sequestered within colloidal matrices. These inert Cu

compounds are not present as constant fractions of total dissolved Cu, although the inert

Cu concentration typically bears values that maintain relatively constant seasonal

concentrations of exchangeable Cu at each particular site.

Whether inert Cu compounds typically enter coastal systems directly as inert Cu or

indirectly by reacting with certain constituents (e.g. sulfides) in the water is a subject for

future work. Inert Cu is correlated with high levels of TSS, implying that resuspension of
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contaminated sediments due to tidal or wind shear currents may serve as a source of inert

Cu. A close analysis of inert Cu compounds in resuspended sediments could help

determine how inert Cu is formed and transported to surface waters from sediments.

Other sources of inert Cu seem to exist and may reveal different mechanisms for the

formation of inert Cu. For example, as sulfides seem to be responsible for forming inert

Cu compounds, a study of marsh waters would likely reveal information about another

mechanism.

Since inert Cu is likely to be present in many coastal waters, the effect of inert Cu on Cu

toxicity is another subject for future work. Cu toxicity studies should be developed to

determine how inert Cu fits into speciation models. Such a study could reveal that the

formation of inert Cu is vital to the survival of some aquatic species. Alternatively, it

could reveal that some organisms have a mechanism for directly taking up inert Cu to

nutritive or even toxic levels.
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Appendix A

This appendix includes the concentrations of exchangeable, inert, and total Cu at each

sampling location over the duration of this field study. Italics indicate that two replicate

measurements were averaged to derive the given value. For some samples, total

dissolved Cu (and thus inert Cu) was not determined.
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Sampling Julian Exchangeable
Location Day Cu [nM]

024
024
024
024
024
024

077
077
077
077
077
077
077
077
077

106
106
106
106
106
106
106
106
106

124
124
124

211
225
248
267
295
318

155
169
190
211
225
248
267
295
318

155
169
190
211
225
248
267
295
318

155
169
190

33.7
42.8
14.6
17.0
4.8
4.6

5.2
13.7
7.4
8.5
-8.2
13.6
-2.3
6.5
5.3

5.6
12.5

1.6
15.9
16.8
8.8
8.3
13.3
8.8

4.3
7.6
8.5

Total
Uncertainty Dissolved

[nM] Cu [nM]

5.5
10.7
2.1
2.0
2.5
3.4

2.8
2.1
2.5
4.0
4.1
3.0
1.8
3.7
4.0

3.3
3.0
5.4
2.2
1.3
1.7
4.6
0.8
0.2

1.5
2.3
1.6

25.7

29.2
25.8
13.9
14.2

8.5
16.4
14.7
40.6
17.5
12.1
12.2
11.6
7.4

17.0

37.7
25.7
22.8
11.2
6.3
13.8
24.4

21.0
13.4
11.2

Uncertainty
[nM]

6.8

2.3
7.1
2.3
1.3

1.2
2.8
1.3

10.1
3.0
2.4
2.6
2.0
7.6

3.3

5.8
0.7
1.6
1.9
0.1
1.7
2.1

3.8
0.8
3.5

Inert Cu Uncertainty
[nM] [nM]

-7.9

14.7
8.8
9.1
9.6

3.3
2.7
7.3

32.1
25.7
-1.5
14.5
5.1
2.1

11.3

36.2
9.8
6.0
2.4
-2.0
0.5
15.6

16.8
5.8
2.7

8.7

3.1
7.3
3.3
3.6

3.1
3.5
2.8
10.8
5.0
3.9
3.2
4.2
8.6

4.7

7.9
2.3
2.1
2.5
4.6
1.9
2.1

4.1
2.4
3.8

% Inert
[%]

-30.9

50.2
34.0
65.1
67.5

39.2
16.3
50.0
79.0
147.2
-12.2
119.0
44.0
28.2

66.8

95.8
38.2
26.4
21.7
-31.3
3.6

63.8

79.6
43.3
23.8



Sampling Julian Exchangeable
Location Day Cu [nM]

124
124
124
124
124
124

130
130
130
130
130
130
130
130

137
137
137
137
137
137
137
137

138
138
138
138
138

211
225
248
267
295
318

155
169
190
211
225
248
267
318

155
169
190
211
225
267
295
318

155
211
225
248
295

10.6
-2.2
8.6
5.3
7.9
-0.1

8.6
2.3
-2.0
10.4
14.1
10.6
22.8
4.8

8.5
14.5
14.2
4.4
14.5
7.7
14.8
16.8

14.5
19.0
40.0
12.5
12.2

Total
Uncertainty Dissolved

[nM] Cu [nM]

4.2
7.3
3.4
4.6
1.5
3.9

4.7
3.1
3.5
2.5
4.4
4.6
0.5
2.9

2.6
5.2
1.7
3.7
2.3
2.9
7.3
5.7

0.2
4.2
5.6
1.6
2.9

16.8
22.3
15.6
8.0
15.4
13.4

18.5
15.3
10.6
19.7
29.1
20.1

10.1

14.1
40.7
24.1

23.5
18.4
29.9
15.0

19.3
34.3
58.0
39.7
27.5

Uncertainty Inert Cu Uncertainty % Inert
[nM] [nM] [nM] [%]

2.3
3.2
6.6
1.4
3.1
2.3

2.9
4.3
0.6
0.7
2.8
3.1

1.7

3.2
3.5
7.1

2.3
2.6
5.0
4.8

2.3
8.9

38.2
6.0
2.8

6.2
24.6
7.0
2.7
7.5
13.5

9.9
13.0
12.5
9.3
15.0
9.5

5.3

5.6
26.2
9.9

9.0
10.8
15.1
-1.8

4.8
15.3
17.9
27.2
15.4

4.8
7.9
7.4
4.8
3.4
4.5

5.5
5.3
3.6
2.6
5.2
5.5

3.3

4.2
6.3
7.3

3.3
3.9
8.9
7.4

2.3
9.8
38.6
6.2
4.1

36.9
109.9
45.0
33.5
48.5
100.8

53.7
85.3
118.8
47.0
51.5
47.5

52.5

39.6
64.4
41.2

38.3
58.4
50.5
-12.3

24.8
44.6
31.0
68.5
55.8



Sampling Julian Exchangeable
Location Day Cu [nM]

138

139
139
139
139
139
139
139

140
140
140
140
140
140

141
141
141
141
141
141
141
141
141

142
142
142

318

155
169
190
211
225
267
318

169
211
225
267
295
318

155
169
190
211
225
248
267
295
318

155
169
190

32.9

11.2
14.7
13.1
30.7
7.5

11.9
-1.3

7.9
-4.7
1.7

14.7
9.7
6.7

3.6
3.4
4.0
6.1
14.8
9.7
5.8

12.2
5.5

1.7
10.7
-1.9

Total
Uncertainty Dissolved Uncertainty Inert Cu Uncertainty % Inert

[nM] Cu [nM] [nM] [nM] [nM] [%]

4.8

2.7
2.8
2.5
0.5
0.1
4.6
1.7

3.1
11.2
0.7
4.6
2.3
4.2

1.3
4.4
3.9
5.5
6.7
5.7
2.1
5.2
3.2

2.0
0.1
3.5

22.4

15.9
24.1
13.2

25.8
17.6
16.2

22.1
53.4
28.5
10.5
13.3
8.8

14.9
17.3
2.6
17.7

11.2
22.3
12.7
4.8

24.1
23.4
27.1

0.8

2.4
4.2
0.8

12.9
6.5
4.3

4.4
5.2
6.1
2.3
1.2
2.6

4.8
4.4
1.0
3.0

3.5
3.5
5.9
3.5

9.1
3.1
4.8

-10.5

4.7
9.4
0.1

18.3
5.8

17.5

14.2
58.2
26.9
-4.2
3.6
2.0

11.2
13.9
-1.4
11.6

1.6
16.5
0.5
-0.7

22.3
12.7
29.1

4.9

3.6
5.0
2.7

12.9
8.0
4.7

5.4
12.4
6.2
5.1
2.6
4.9

5.0
6.2
4.1
6.3

6.7
4.1
7.9
4.7

9.3
3.1
5.9

-46.7

29.8
38.8
0.6

70.9
32.6
108.3

64.4
108.9
94.1
-40.2
27.3
23.2

75.6
80.1
-51.9
65.4

13.8
74.0
3.7

-15.0

92.8
54.2

107.1



Sampling Julian Exchangeable
Location Day Cu [nM]

142
142
142
142
142
142

211
225
248
267
295
318

10.6
13.3
-1.7
8.3
23.8
21.5

Uncertainty
[nM]

2.5
0.5
4.9
1.6
2.0
3.2

Total
Dissolved
Cu [nM]

24.5
22.3
21.1
14.1
23.3
44.6

Uncertainty
[nM]

4.9
2.7
4.0
2.2
4.9
9.8

Inert Cu Uncertainty
[nM] [nM]

13.9
9.0

22.7
5.9
-0.5
23.2

5.5
2.7
6.4
2.7
5.3

10.3

% Inert
[%]

56.8
40.5
108.0
41.4
-1.9
51.9





Appendix B

This appendix includes figures showing the measured concentrations of exchangeable

(dark circles) and total dissolved Cu (hollow circles) at each sampling location over the

duration of this field study. For some samples, total dissolved Cu was not measured.
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Sampling Location 106
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Sampling Location 130
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Sampling Location 138
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Sampling Location 140
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Sampling Location 142
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