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Abstract

Metamaterials are media have a negative permittivity (E) or a negative permeability
(p) or both. Metamaterials promise tremendous advances in lensing applications,
antenna technologies and the like. In the present research, the radiation mechanism
of metamaterial composites made up of pairs of S-shaped structures (also known as S-
rings) is studied in detail. Numerical simulations using the Ansoft HFSS T" software
package, lead to an understanding of the currents induced on a single S-ring due to a
plane wave excitation. The current density observed along a single ring is expressed
as a periodic function of the distance along it, and the vector current moment is
determined. The far field radiation for a pair of S-rings is determined using this
vector current moment. The refraction of a plane wave travelling from a prism made
up of S-rings into free-space is studied. In order to determine the far field radiation
due to a prism made up of S-rings, the array factor specific to the prism structure is
determined first. This array factor coupled with the radiation pattern due to a single
ring gives the pattern due to the prism. The radiation pattern of a prism of S-rings,
which shows the refraction direction, is determined for two cases with prism angles
of 28' and 390.

Metamaterials with negative uniaxial permittivities, and positive isotropic perme-
abilities, display unusual polarizing capabilities. The polarizing capabilities of such
metamaterials are also studied in the present work. The performance characteristics
of a metamaterial polarizer are compared to those of existing 0-type and E-type
polarizers. The proposed metamaterial polarizer has a uniaxial permittivity tensor
with a negative permittivity along the optic axis and a positive isotropic permeability.
The characteristics used as a basis for comparison are: 1. Leakage of light (trans-
mittance) through a pair of crossed-polarizers, and 2. Fresnel coefficients of a single
polarizer. The expressions for the transmittance and the Fresnel coefficients are ob-
tained analytically using the kDB method. A novel procedure to determine the angles
of transmission of the ordinary and extraordinary waves through a uniaxial slab is
developed, along with the procedures for validation. The viability of enhancing the
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performance of polarizers by using metamaterial media is investigated.

Thesis Supervisor: Jin Au Kong
Title: Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Historical Background

There has been a recent upsurge of interest in the electrodynamics of media hav-

ing negative permittivities and permeabilities, in selective frequency bands in the

microwave regime [1]. These media, popularly known as metamaterials, posses a neg-

ative refractive index (n) in the spectral region where both the permittivity (c) and

permeability (p) are negative. Also known as Left-Handed Media (LHM), a wave

propagating in one such medium has its phase reversed such that the wave vector,

the Electric Field and the Magnetic Field form a Left-Handed (LH) triad. As a con-

sequence, the wave vector and the Poynting vector are opposite in direction for an

isotropic LHM. The prospect of realising a negative index of refraction, and the many

other interesting phenomena that LHM promise, opens up wide ranging applications

that were hitherto considered impracticalities.

LHM were first studied by Victor G. Vesalago in 1968 [3]. Veselago studied a

hypothetical LHM, noting that c and p can be simultaneously negative in a particular

frequency band, only if they are dispersive. Given the fact that there was no such

material known at that time, the study in [3] was one of predominantly theoretical

interest, albeit a highly imaginative one. Assuming an hypothetical LHM, however,

the said work elucidated some of the most important consequences of such media
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as reversed Doppler effect, anomalous refraction phenomena, etc, for the first time.

The frequency dispersion was proposed to be Drude-type for both c and ft. The

existence of plasmas having a Drude-type effective e was known for long. But the

justification for the possibility of a magnetic analogue, as presented in [3], had neither

a firm theoretical basis nor any experimental verification. The non-existence of such a

media with simultaneously negative E and p, precluded any progress in this direction

for about the next 30 years.

However, with the advent of improved fabrication methods and novel artificial

electromagnetic structures like photonic crystals, etc., curiosity about negative e and

p revived in the 90's. Negative permittivities were known, for long, for plasmas in solid

state [4][5]. Surface plasmons in metals give rise to a Drude-type dielectric function

leading to negative permittivities at frequencies in the optical range. However, at

lower frequencies, high losses come into play and the negative 6 effect is nullified.

This fact, along with the difficulty of having magnetic resonances at high frequencies,

posed a serious impediment to realising LHMs. One of the first attempts to overcome

this limitation was made by Pendry et.al (1996) [6]. Their work proposed a geometrical

scheme in which the plasma frequency of a metallic structure could be obtained in

the Microwave regime. They considered an assembly of thin metallic wires, of the

order of 1pm cross-sectional radii, which constrained the plasmons to oscillate along

the wires. The plasma frequency in a metal is, in general, a function of the number

density and mass of the oscillating electrons. However, by constraining the electrons

to the thin metallic wire assembly, their effective number density is greatly reduced

and the effective mass enhanced. This synergism leads to a reduced plasma frequency

for the entire structure. The plasma frequency, as shown in [6], is dependent only on

the macroscopic geometrical parameters of the structure, namely, the radius of the

wires and the lattice spacing of the assembly. Considering a lattice of aluminium wires

of 1pm radius and 5mm spacing, a plasma frequency of 8.2 GHz was obtained in [6]

and [7]. Numerical simulations and experimental verification of the results confirmed

the theory in [7]. Thus the prospect of obtaining negative epsilon at lower frequencies
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was rendered possible. However, the negative p still remained elusive at that point. .

A composite material which could give a desired magnetic response was the goal.

As long as the unit cell of the composite is small compared to the wavelength of the

electromagnetic radiation, the composite can be considered to be homogenous. It is

then just a matter of determining the effective permeability of the composite material

in terms of the parameters of the unit cell, just as our conventional notion of perme-

ability of a material medium is a definition in terms of the properties of the atomic

constituents. This was the concept on which Pendry et. al (1999) built upon, culmi-

nating at a landmark metallic geometry which promised a negative permeability in

the microwave regime. Starting with an array of thin metallic cylinders, and working

through some examples of magnetic microstructures, they finally derived the effective

permeability due to a split ring structure [8]. The final structure was a three dimen-

sional stack of split ring resonators (SRRs), each unit cell measuring about lsq.cm.

The effective permeability of such a system was derived to be resonant in form. An

SRR could be decomposed into a set of capacitative, inductive and resistive elements.

An incident magnetic field induces currents in the circular loops of the rings, thereby

forming an RLC circuit. The Inductance, Capacitance, and the Resistance of the cir-

cuit were purely a function of the frequency and the geometrical parameters. Thus,

with an appropriate choice of the parameters, a resonance frequency in the desired

range could be obtained. Proceeding thus, a resonant frequency of 13.5 GHz was

obtained. This marked the onset of artificial electric and magnetic microstructures,

combinations of which were capable of obtaining negative c and p in the microwave

range, simultaneously.

1.2 Basic Principles

Before delving into deeper ramifications of the LH behavior of these artificial media,

it is pertinent to ponder over some of the basic principles guiding this behavior. In as

much as the negative refractive index is concerned, all we are concerned about is the

possibility of a negative e and a negative p, simulataneously. However, the forms of
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the permittivity and permeability functions that have been realised practically, and

the conditions that need to be met to obtain the same, form an interesting aspect of

this area.

1.2.1 Negative Permittivity

Negative E in conventional LHMs is obtained by an array of thin metallic wires, of

specific dimensions [6]. A typical set-up of the rods in free space is shown in Figure

1-1. For a plane wave excitation, with the Electric Field (E) vector along the wires,

the free charges in the metal are set to oscillate along them. By keeping the cross-

section of the wires very small, the effective density of the charges in the lattice space

is greatly reduced and the effective mass enhanced. The plasma frequency is given

by,

2 ne2

CoMeff

where, n is the number density of the charges (plasmons) and meff is the effective

mass of the charges. Thus, by decreasing the density and increasing the effetive

mass, the plasma frequency can be lowered. Theoretical analyses and experimental

observations support this phenomenon. [6] [9]. It has also been verified that such a

effective medium has an effective permittivity given by:

f2
E = E0( -e P"

f (f + 7y/ 2ir)

where, fe = wp/(27) is the plasma frequency and y is inversely proportional to

the conductivity of the medium and has units of frequency. A plot showing E(f), for

y= 0GHz is shown in Figure 1-2.

Apart from wire structures which give a negative effective permittivity, some other

structures have recently been proposed and experimentally verified. Two of the most

recent ones are the Omega structure [11] and the S structure [12]. All these struc-

tures have thin metallic components parts of which are parallel to the incident Electric

18



Field. Thus, common to all LH structures is the underlying phenomenon that an elec-

tric field parallel to thin metallic structures constrains the charges to oscillate along

the structures giving rise to a plasma behavior, and hence a plasma-type dielectric

function.

1.2.2 Negative Permeability(p)

Negative [ in LHMs is obtained by an array of metallic split rings, commonly known

as Split Ring Resonators (SRRs). A typical set-up of periodically spaced SRRs is

shown in Figure 1-3. Also shown in the figure, is the wave incidence direction leading

to a negative permeability. The rings are in the plane of the paper and the Magnetic

Field (R) is directed out of the plane of the paper. A varying magnetic field in

this direction induces currents in the loops of the rings. The geometry of the rings

leads to effective capacitances and resistances in the path of the current [8]. These

capacitative and resistive elements along with the current loop form an RLC circuit.

The resonant frequency of this circuit depends purely on the geometry of the metallic

structure, and has been succesfully realized in the microwave regime.

The effective permeability of such a structure is given by,

S= fo(1- 2f2 )
f2- fmL + i-y/2Ir

where, fmp is the magnetic plasma frequency, fmo is the magnetic resonant fre-

quency and -y is the loss component having units of frequency. A plot showing the

resonant behavior of the permeability is also shown in Figure 1-2, with y = 0GHz.

1.2.3 LHM Geometries

As seen in the previous sections, thin wire shaped metallic elements (rods) parallel

to the E and metallic loops in the plane perpendicular to the H of an incident plane

wave give rise to a plasma-type c and a resonant p respectively. The overlapping

frequency band, where c and p are simultaneously negative, is the LH band. Thus
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combinations of rings and wire elements have been widely used to realize LHMs in the

microwave regime [9] [10]. Figure 1-4 shows a typical set-up of a ring-rod combination

with the proper incidence which gives rise to LH behavior.

E a
k a

H

Figure 1-1: Array of thin wires in free space leading to negative epsilon (a
few millimeters and r = few microns)

Apart from the standard SRR - rod combination, which were traditionally used to

obtain LHM, new structures have been introduced in the recent past to achieve the

same purpose. Figure 1-5 shows an array of Omega shaped rings forming an LHM.

In this case, two omega rings are placed one behind the other and each ring being

a mirror image of the other. Figure 1-6 shows an array of S shaped rings forming

an LHM. As in the case of the omega rings, here also the two S-rings are placed one

behind the other as mirror images.
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Figure 1-5: A set-up of Omega rings on a dielectric substrate forming an

LHM
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Chapter 2

Radiation due to S shaped SRR

2.1 Introduction

Conventional Left-handed materials have been fabricated using composites of metallic

rings and rods. The rings, commonly known Split Ring Resonators (SRR) [8], lead

to a resonant effective permeability (p). And, the rods, which are thin metallic wires,

lead to a plasma type effective permittivity (e) [6]. In the overlapping frequency band,

where c and p are both negative, a negative refractive index (n) is observed leading to

the well-known Left-Handed (LH) behavior of the composite material. It was recently

demonstrated that S-shaped metallic structures (S-rings) exhibit LH characteristics

equivalent to an SRR-rod combination [2]. And, negative refraction in a prism made

of such structures was experimentally verified [12] , in the frequency band roughly

between 15GHz-20GHz, depending on the physical dimensions of the setup.

An S shaped SRR consists of two parallel S-rings oriented oppositely as shown in

Figure 2-1. A varying magnetic field perpendicular to the parallel plane of the rings

induces currents along the rings. These currents along with the resistive, capacitative

and inductive elements imposed by the geometry of the rings, lead to a resonant mag-

netic response similar to that in a conventional SRR. Also, an incident electric field

along the longer sides of the rings, in the parallel plane, induces a plasma type electric

response similar to that in an array of thin rods (the conventional rod medium).

25



In this section, the radiation characteristics of composites made up of such S-

shaped SRRs are studied in detail. Numerical simulations using the Ansoft HFSS TM

numerical package lead to an understanding of the currents induced due to a plane

wave excitation on each of the two S rings in an SRR. The incident plane wave is a

TEM mode at 17GHz, with the Electric Field vector in the plane of the ring and the

magnetic field vector perpendicular to the plane of the ring. The values of the surface

current density (J) are obtained at discrete positions along each S-ring. A discrete

fourier transform of this data allows one to express J as a fourier expansion. This

facilitates an analytic expression for J along a ring as a function of the normalized

distance along the ring. The current density thus obtained is used to determine the

vector current moment due to the ring [2]. The far field radiation due to the ring

is then determined using this vector current moment. The radiation pattern to a

single S-ring is found to be symmetric in nature and resembles a radiation pattern

due to a combination of dipoles stacked along the segments of the S-ring with the

given current distribution.

In order to determine the far field radiation due to a composite made up of S-

rings, the array factor specific to the composite structure is determined first. This

array factor coupled with the radiation pattern due to a single ring gives the pattern

due to the composite. The progressive phase increment between rows of the array

are obtained from HFSS TM simulations of a slab of S-shaped SRRs. Prisms of S-

rings with different prism angles and dimensions are studied. It is observed that

the characteristic negative refraction of the composite is observed considering the

edge elements of the prism, and using a negative progressive phase shift. On the

other hand, considering all the prism elements leads to substantial diminution of the

distinct lobes and a radiation pattern concentrated parallel to the incidence direction

is observed, showing no LH behavior whatsoever.
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2.2 S-parameters and Effective Refractive Index

The simulation setup of an S shaped SRR inside a rectangular waveguide is shown

in Figure 2-2. The boundaries of the waveguide parallel to the rings are assigned

to be Perfect Magnetic Conductors (PMC) so as to facilitate a TEM mode as the

fundamental mode. The incidence is a plane wave with a frequency of 17GHz, which

lies in the resonant band. The dimensions of the unit cell containing the two rings

are shown in Figure 2-1. The setup was simulated using HFSS TM .

Two cases were studied corresponding to one and two S-rings placed along the

propagation direction in the waveguide. These two cases correspond to increasing

thickness of the effective medium made up of the S-rings, and we denote them as

one-layer and two-layer respectively; a layer corresponding to one SRR in the wave

guide along the propagating direction.

With the set up as mentioned above, the S-parameters, S11 and S21 were obtained

for the two cases. As is well-known, the magnitudes of S11 and S21 correspond to the

reflection and transmission coefficients of the medium, respectively. Figures 2-3, 2-4

show the S-parameters in the two cases. It can be observed in the figures that there

is a band of high transmission around 17 GHz and the transmission falls off rapidly

for other frequencies. It can also be seen that as the thickness of the effective slab,

i.e the number of layers, is increased the peak band gets slightly wider.

Such a peak in the transmission spectrum for an LH Medium corresponds to

the resonant band where the refractive index (n) is negative. For frequencies lying

outside this band, only one of c and p are negative. This leads to an imaginary

refractive index which causes significant attenuation of the incident wave and hence

very low transmission. However, it should be noted that obtaining such a peak in

the transmission spectrum does not always imply LH behaviour. The possible LH

behaviour can be verified by retrieving the material parameters of the medium, namely

n, c and p, from the S-parameters.

Some of the first studies on the retrieval of, permittivity (e) and permeability (p),
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for LH media can be found in [18],[19] and [20]. The general approach followed in

these studies was to obtain the n and the impedance, z, of the material medium from

the S-parameters and then retrieve the e and p from the n and z, using p = nz and

e = n/z. However this approach has been known to be inaccurate in certain cases.

These associated problems were studied in greater detail in [17]. Xudong et. al. have

developed a robust method to overcome the problems of the previous method and

to obtain the material parameters from the S parameters in [17]. This approach has

been used in the present work to retrieve the material parameters of the medium

composed of S-shaped SRRs, from the S-parameters shown in Figures 2-3 and 2-4.

Figures 2-5 and 2-6 show the frequency dependant refractive index (n) for the

cases with one and two layers respectively. It can be seen that the refractive index is

negative in the frequency band ranging approximately from 12GHz to 20GHz. This

is a confirmation of LH behaviour of the effective media. It can be observed that the

figures are nearly identical, confirming the accuracy of the retrieval procedure.

Also, the high transmission regions in the S-parameter plots fall within this band,

and peaking at 17GHz (as in Figures 2-3 and 2-4). The refractive index at 17GHz, i.e

resonance, as obtained from the retrieval (Figures 2-3 and 2-4) is found to be -1.59.

This is the effective Refractive Index (n) of the S-ring medium at resonance.

In what follows, the surface current densities on the S-rings in the wave guide

setup are studied. These currents are then used to determine the radiation pattern

of an S-ring prism. The angle of refraction obtained with such a prism is used to

determine the effective n of the S-ring medium. The n thus obtained is compared

with the n obtained in the present section.

2.3 Current Modes

Solving the setup as shown in Figure 2-2, with HFSS TM, with the appropriate mesh

refinement and other numerical parameters, allowed the computation of J for each

ring along a trace running along the centerline of the ring. A plot of J thus obtained
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Figure 2-3: S-parameters for one layer of S-rings with dimensions as shown
in Figure 2-1

is shown in Figure 2-7.

The plots of J for the two rings suggest that J is a periodic function of the

normalized distance along the ring (1) i.e. J =J(l), with boundary conditions

J(O) = J(1) = 0. Assuming J(l) is a continuous function, one can try to expand

J in terms of its Fourier components as:

J(l) = a0 + Z(ansin(2irnl) + b7 cos(2wrnl)) (2.1)
7=1

where,

a0 10 dlJ(l)

a72 = 2 jdl J(l)sin(2zrrl)

2= 2 f.dlJ(1)cos(2nl)
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Figure 2-4: S-parameters for two layers of S-rings with dimensions as shown
in Figure 2-1

In the present case, however, we have a discrete set of data for each ring. The

Fourier components for this situation can be obtained using the Fast Fourier Trans-

form method. A MATLAB function was used to implement this. Figure 2-8 shows a

plot of the actual J along with 21 Fourier components, for the front ring. Figure 2-9

shows the corresponding plot for the back ring.

As can be seen from the plots, in each case there is one dominant mode cor-

responding to n=1 in the expansions. Thus the total J on each of the rings can

be approximately represented using a single dominant mode, although the next few

significant modes could also be included in the representation. Thus we have an

analytical expression for the currents along the rings. This facilitates the analytical

derivation of the radiation fields due to the pair of rings, as in the following section.
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Figure 2-5: Retrieved Refractive Index for one Layer of S-rings with dimen-
sions as shown in Figure 2-1

2.4 Radiation due to S shaped SRR

The set-up of an S-ring geometry is shown in Figure 2-1. Each ring is in the x-z plane

with the longer side of the ring along the z-axis and the shorter side along the x-axis.

The ring can be viewed as five distinct rectangular metallic elements each of which is

either along the x-axis or along the z-axis. As mentioned in (2.1), the current density

along the ring can be expressed as a sum of the fourier modes. We can thus express

the current density along each ring as:

N 2n7rs
J(s) = E assn( Ln=1

(2.2)

where, N is the number of significant modes, s is the length along the ring and L

is the total length.

The current density along each segment, directed predominantly either along the

x-direction or along the z-direction, can be expressed as:
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Figure 2-6: Retrieved Refractive Index for two Layers of S-rings with di-
mensions as shown in Figure 2-1

2 n7r
Jx = 2 ansin( L (b + x))6(y - y1)6(z - zi)

n=1
2 nir

Az = i > ansin( Lf(b + z))6(y - y1)6(x - Xi) (2.3)

where, 6(y) is the Dirac Delta funtion and b is a real scalar quantity determined

by the positions of end points of the segment under consideration.

In order to determine the radiation due to a current carrying element, it is con-

venient to first determine the vector current moment [1] given by:

f(0, #) = d' f(?')e- '
(2.4)

For the present problem, we need to determine the vector current moment (f) for

the current distribution given by (2.3). Let us consider a typical current distribution

of the form:
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Figure 2-7: Surface Current density (J) on the front and back rings of the
S-shaped SRR with dimensions as shown in Figure 2-1

n7r (
Jxn = ansin(- (b + x')

L )6(y' - y1 )(z' - z1) (2.5)

where, x' E [xl, x2], i.e the segment of the ring is along the x-axis.

The f, denoted as fx for this case, can be determined as,

=x x dx'dy'd z'ansi 2nj (b+ x'))6(y' - y1i)6(z' - z1)e-i(kxx'+kvy'+kzz')

= iane-i(kyy1+k z1)

e- i(kyy1+kzi)

X2 nr x'dx' siri(-L(b + xI))e-Icxx"

2ks b )) c ( X'))C'ikX xfxn =xan n2 Z2 - ~c~ ) +ncsnzb+X(2.6)
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Figure 2-8: Fourier expansion of J on the front ring of the Unit Cell shown
in Figure 2-1

Thus the total vector current moment including all the fourier modes under con-

sideration, can be expressed as:

N e-i(kyy1+kzzl)

= an n2a2 - k2 [ikxsin(na(b + x')) + nacos(na(b + x ))e-ikX1 (2.7)

where, [g(x)]X = g(x 2 ) - g(xl).

Similarly proceeding for the case when the segment is along the z-axis, we have:

2 ei(kyyl+kxx1)

fz = an n2 2 - k2 [ikzsin(na(b + z')) + nacos(na(b + z'))e-zz1Z (2.8)
n=1 Z

Equations (2.7) and (2.8) give the general forms for the vector current moments

along each segment of the ring, depending on whether the segment is along the x-axis

or the z-axis. Thus for each segment the f vector can be obtained using the known
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Figure 2-9: Fourier expansion of J on the back ring of the Unit Cell shown
in Figure 2-1

values of the independent variables, b, yi and [xi, x2] (or [zi, z2]).

The S ring has five such segments. The total f of a single S ring, due to all the

segments, is the vector sum of those due to each of the individual segments.

5

Iring = f p (2.9)
p= 1

The S-shaped SRR is composed of two S rings as shown in Figure 2-1. Thus, the

total f vector due to both the rings can be obtained as:

5

p= 1

where, the superscripts 1 and 2 refer to the two rings.

The various values of the independent variables b, Yi and [xi, x21 (or [zi, z2])

corresponding to the different segments of the two rings are tabulated in Table 2.1.

The f vector, thus obtained, is in cartesian coordinates, and is of the form f =
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Front Ring Back Ring

f b X Y z1  f b c1  Y1 zi
x 0 [0,s] 0 0 -x -L [s,0] d 0
z s s 0 [0,s] -z s-L 0 d [0,s]
-x -3s [0,s] 0 s -x 2s-L [0,s] d s
z 3s 0 0 [s,2s] -z 3s-L s d [s,2s]
x 4s [0,s] 0 2s x -5s+L [s,0] d 2s

Table 2.1: Limits on the J for different sections of the ring (L=total Length
of the ring, s=L/5, d=dy=0.5mm)

Sfx + fz. The components fo and fo can be obtained by making a cartesian to

spherical transformation.

By noting the transformation,

J = f sin(O)cos(O) + 9cos(O)cos(O) - qsir(#)

= fcos(6) - Osin(6 )

we have,

fo = cos(6)cos(O)fx - sin(O)fz

fo = -sin(#)fx

(2.11)

(2.12)

where, 0 and # are the conventional polar angles in the spherical coordinate sys-

tem.

Thus we can obtain the far-field radiation for the S-shaped SRR. The radiation

pattern can be determined using [21:

ikr

E(f) = iwpu (Ofo + Ofo)
47rr
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eikr
H(F) = eikr(fo - Ofo) (2.13)

47r

<(>= )2( f~j2 + If4|2)2 47rr

2.5 Array Pattern Formulation

2.5.1 Vector Current moment for an arbitrary unit cell

A unit cell (refered to as an 'element' henceforth) consisting of a pair of S-rings and

a substrate is shown in Figure 2-1. The local co-ordinate system(LCS) of the unit

cell is shown in Figure 2-10 with primed vectors. The surface current density (J)
on the rings, as developed in the previous sections, can be expressed in terms of the

local position coordinates. Let us consider an element with local origin at a position

Po(xo, yo, zo) in the global coordinate system (GCS). Let the position PO be denoted

by the position vector, fo, in the GCS. We denote any arbitrary point (P) in the

source region (i.e. in the element) by the position vector i' in the GCS. Then, the

position vector of the point P in the LCS is given by Fo = f' - fo, as shown in Fig.3.

Therefore, J= J(V') = j(fs) = J(' - fo)

The vector current moment due to an element at P is given by:

fo = ffJ di'(')e~ ff1 d'J(fo')e--' (2.14)

Noting that fi f' - Fo, we have:

o = e-kdffo J d I(fo-o)e-o' (2.15)

Analogous to the above case, we can also consider another element at a point P1

given by the position vector fi in the GCS. Then the position vector of an arbitrary

point P in the LCS is given by f'i = ' - fi. Then, proceding similarily as above, the

vector current moment due to an element at P is given by:
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Figure 2-10: Local and Global Coordinate systems of a Unit Cell

fi = ea'r1 fJ' JJ(fi')e- I' (2.16)

By making a change of variables and noting that the local geometry of all unit

cells are indentical, we have:

fi =e ' Jig1 dfO J(fo')e-i0' -eik-(fo) fo (2.17)

Thus for any arbitrary unit cell at a point Pa, the f vector can be expressed in

terms of that of a unit cell at a global reference point Po, as:

fi = e-a ik( o) fo (2.18)
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2.5.2 Array Factor

Let us consider a group of elements as shown in Figure 2-11 with unit cell dimensions

dX, dy and d, in the x,y and z directions respectively as already mentioned in Figure

2-1. The array factor due to an element with position indices [m,n,q] along [x,y,z] can

be expressed using (2.18)as:

y

Umno
q

z
!r

p
x

Figure 2-11: A typical array of elements on the x-y plane

(2.19)fmnq = e -ik'mnq+iamnqfo

where, fo is the f vector of the unit cell at the origin, and amnq is a progressive

phase shift.

As an example, for a cubical array pattern with M, N and Q number of unit cells

in the x,y and z directions respectively, the f due to all the elements is given as:

(2.20)I Z Imnq = -i.((m-I)dz+ (n-I)dy+i(q-l)d )+iamnq
mnq mnq
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M-1 N-i Q-1

f f= f0 E E S e~-ik(msin()cos(+)+ndvsin(O)sin(+)+qzcos(0))+iamnq (2.21)
m=O n=O q=O

Therefore,

M-1 N-1 Q-1

F = E S E e -ik(m(si2(2)2os())+ndysin(O)sin(o)+qdcos(O))+iamnq (.2
m=O n=O q=O

is the array factor for the said cubical array pattern.

Thus, the array factor for any type of pattern can be obtain from (2.22) by defining

the appropriate limits on [M,N,Q] and the corresponding summation scheme.

2.5.3 Validation

The Array factor formulation as determined above is validated here for known cases

of antenna arrays. For all the cases presented here, all the array elements are on the

x-y plane. And,the magnitude of the array factor, F, is plotted on the x-y plane, i.e

0 = 7r/2, as a function of the angle 0. Figure 2-12 shows the plot for a two element

array (M=2,N=1,Q=1) along the x-axis with an inter-element distance (d. = dy =

d = A/2), and varying values of the progressive phase (a). Figure 2-13 shows the plot

for a three element array (M=3,N=1,Q=1) along the x-axis with d= A/2, and a = 0,

and that for a 2 x 2 element array (M=2,N=2,Q=l) on the x-y plane. And, Figure

2-14 shows the plots for N=5, a = 7r and d= A/2 and d= 4A/5.

All these plots conform to those obtained using known analytical methods for

determining array factors for antenna arrays [2]. Thus the formulation developed

here can be treated as general and can be applied to any geometry by appropriate

selection of the variables.
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Figure 2-12: Array Patterns for linear arrays obtained using (2.22). Solid
Line: N=2, d=A/2, Progressive phase (a)=0. Dashed Line: N=2, d=A/2,
a=7r

2.6 Results

2.6.1 Determining the progressive phase

Inorder to determine the radiation pattern due to an S shaped SRR element, one

needs to know the amplitude and phase of the current density each ring of the SRR.

As seen in the previous sections, the current density on each ring can be expressed

interms of the fourier modes and an anlytical expression can be thus be obtained.

Using these current modes, the radiation pattern for each SRR can be obtained.

We have also developed a general formulation to obtain the array factor due to a

composite made of such SRR elements. Using the radiation pattern due to a single

ring and the array factor due to a composite structure, the radiation pattern due to

the total structure can be determined. It is pertinent at this point to consider the

inputs that are required to obtain this total radiation pattern. As is clear from the

formulation, the only inputs that are required, other than the current distribution

on a single SRR, are (1) information on the change of amplitude between subsequent
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Figure 2-13: Array Patterns for a linear arrays obtained using (2.22). Solid
Line: N=3, d=A/2, a=0. Dashed Line: N=2x2, d=A/2, a=O

elements, and (2) the progressive phase change between subsequent elements.

Inorder to determine these parameters, we study the case of an infinite slab con-

sisting of such elements, simulated using HFSS TM. The set-up is similar to that of

Figure (2-2), except that we now have three elements in the direction of propagation

as opposed to one element in Figure (2-2). Having three elements facilitates us to

study the amplitude and phase of the currents on each of the three SRRs in the di-

rection of propagation. The infinite dimensions in the other directions are achieved

using the PEC/PMC boundary conditions as shown in Figure (2-2).

Figures 2-15 to 2-17 show the amplitudes and phases of the surface current den-

sities (J) on the front rings of each of the three SRRs, along with the total J. Each

Figure has four plots showing (a) Magnitude of each component of J (Jx,Jz Mag)

(b) Phase of each component of J (Jx,Jz Phase) (c) Total value of each component

of J (Jx,Jz total), and (d) The resultant J obtained from the two components (J to-

tal), with respect to the normalized distance along the ring. In the last plot showing

(J total), the actual values have kinks at the positions corresponding to the corners

of the rings due to numerical problems in evaluating the currents at those points.

43



90 5
120 60

150 2530

1 8 0 ..----- .. .. - ......-. .... ..- ... ...- .. 0

210 330

240 300

270

Figure 2-14: Array Pattern for a linear arrays obtained using (2.22). Solid
line: N=5, d=A/2, a=7r. Dashed Line: N=5, d=4A/5, a=r

These kinks have been smoothened using linear interpolation. The interpolated plot

is shown along with the actual values. It is to be noted that each ring lies in the x-z

plane, so that J has only x and z components.

It can be seen from (2-15) to (2-17) that the amplitudes of each component of

(Jx,Jz Mag) are the same for each of the three rings. However, the phase of each

component varies across the rings, causing a net variation in the total J. So, for an

array of SRR elements along the propagation direction, the amplitude of J along each

of the elements can be expected to be a constant function of the position, however

there is a phase difference across the elements. It is thus imperative to examine the

progressive phase increment/decrement between subsequent SRR elements.

Figure (2-18) shows the phase differences between adjacent elements of the three

element setup. The figure consists of two parts showing (a) the phase difference

between rings 1 and 2, 621 and (b) the phase difference between rings 2 and 3, 632,

as a funtion of the position along the rings. The plots show the phase differences

between each component of J, i.e J and J,. However, it is to be noted here that

at a particular position along the ring, only the phase of that component of J is
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Figure 2-15: Surface current density on the First ring in the propagation
direction inside a waveguide

relevant which has a dominant amplitude. Correspondingly, the value J21 and J32

show the relevant phase differences in each situation. It can be seen from both the

plots that the phase differences between the first and the second rings is same as

that between the second and third rings, at every position along the rings, and equals

125'. Using the e'(wt-) notation adopted in HFSS TM in speciying the phase of an

Electromagnetic wave, this difference corresponds to a progressive phase increment

of -125', i.e a = -125'.

This backward increment of progressive phase is one of the indications of an LH

medium. Having obtained a, we can now use it in the array pattern formulation of

a required composite struture, and determine the corresponding array factor. This

array factor, in conjuction with the radiation pattern due to a single element will give

us the radiation pattern due to the entire structure.
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Figure 2-16: Surface current density on the Second ring in the propagation
direction inside a waveguide
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Figure 2-17: Surface current density on the Third ring in the propagation
direction inside a waveguide
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Figure 2-18: Phase difference between adjacent rings

2.6.2 Radiation Pattern for S-ring Prism

As seen in the previous sections, the vector current moment for a single SRR can be

obtained using (2.11) and the corresponding radiation pattern can be obtained using

(2.13). For an array of elements, the array factor can be obtained using (2.22). The

total vector current moment for the array of elements can then be obtained using

f = foF

where, fo is the vector current moment due to a single SRR and F is the array

pattern of the array of elements.

The current formulation will now be used to determine the refracted radiation due

to a prism of S-shaped SRRs. Figure 2-19 shows a typical set-up of the problem. A

two-dimensional array of elements forming a prism on the x-y plane is shown. All

the SRRs stand parallel to the x-z plane. The excitation is due to a plane wave

propagating in the x-direction, with the E vector in the z direction and the H vector

47



in the y direction. The unit cell dimensions are kept the same, i.e, 4mm, 2.5mm and

5.4mm in the x,y and z directions.

y

E k

0

Figure 2-19: A sample prism

Two cases with prism angles (q) of 28' and 390 are considered. For the y =

28' case, there are 5 elements along the xaxis and 15 elements along the y axis,

forming a 1:3 stagger (7 = tan-'( 4 = 28.070)). For the 7 = 390 case, there are

5 elements along the xaxis and 10 elements along the y axis, forming a 1:2 stagger

=tan--(4 = 38.70)).

A progressive phase (a) of -1250 is used, as determined from the previous section,

between adjacent layers of elements along the x axis. And, only the edge elements of

the prism are considered to be radiating. These elements are marked in the Figure

2-19. This choice of considering only the end elements is due to the fact that the

radiation due to the previous elements is shielded by the successive ones leading to

no contribution on the x-y plane in the far field that is of interest here. A detailed
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study about this approach to obtain the radiation pattern is studied in [21]

The results from the two aforementioned cases are shown in Figures (2-20) and

(2-21). As can be clearly observed both the figures indicate maximum radiation on

that side of the normal which pertains to negative refraction. The normals in both

the figures are indicated by the dotted lines and the prism-air slanted interface is

indicated by a slanted solid line. It can be observed that the angle of refraction (Or)

for y = 28" is 470, in the negative region. Using the Snell's law,

nprismsin(O) = nair Sin(Or)

where, nprism is the effective refractive index of the SRR medium and npi, is the

refractive index of free space, we have, nprism = -1.55.

And, for the case with = 390, it can be observed that Or = 660, giving an effective

refractive index of -1.45.

Thus, it can be seen that values of n obtained for both the cases described above

approximately match with the n retrieved from the S-parameters (i.e n = -1.59). The

apparently minor differences between the values can be attributed to the irregular

edges of the prisms.
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Prism angle (T)= 39
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Figure 2-20: Normalized Radiation due to prism with angle = 390 The
solid slanted line shows the prism edge, and the dashed line shows the
normal

Prism angle (Tl)= 28
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150 -- 30
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Figure 2-21: Normalized Radiation due to prism with angle q 28" The
solid slanted line shows the prism edge, and the dashed line shows the
normal
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Chapter 3

Polarizers using Metamaterials

3.1 Introduction

Metamaterials are materials having negative permittivity or permeability or both,

being known as 'Left Handed Materials' in the latter case. Many applications of

these materials have recently been proposed and thoroughly investigated. In the

present work, we explore the polarizing capabilities of metamaterials having only a

negative uniaxial permittivity tensor and an isotropic free-space permeability.

Polarizers are one of the most widely used components in optical applications. Tra-

ditionally, the most widely used polarizers are sheet polarizers which are essentially

membranes of submicroscopic dichoric crystals. A dichoric crystal is an uniaxially

anisotropic molecular assembly. An unpolarized wave entering such a medium is split

up into linearly polarized ordinary and extraordinary waves [2]. Correspondingly, two

types of polarizers are possible, 0-type and E-type. 0-type polarizers transmit ordi-

nary waves, whereas E-type polarizers transmit extraordinary waves. Conventional

sheet polarizers are 0-type polarizers. A typical 0-type polarizer has a complex

permittivity along the optic axis with a large imaginary part. This leads to an atten-

uating extra-ordinary wave, while the ordinary wave is transmitted. Recently, E-type

polarizers have also come into existence. These polarizers transmit the extraordinary

waves while attenuating the ordinary waves.
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The basic principle underlying the development of polarizers was first introduced

by E. H. Land in the 1920s. With the recent advances in thin film manufactur-

ing technologies, the thickness of the polarizers have been considerably reduced, to

nanometers, and the coating techniques have developed greatly [13]. There has also

been a significant increase in the durability of the dichroic sheets, owing to high

performance requirements of applications like Liquid Crystal Displays. Nevertheless,

polarizers still face some basic problems, like, leakage in crossed polarizers, heat due to

attenuation, etc. In this chapter, the transmission of electromagnetic waves through

crossed polarizers is studied and the leakages (Transmittances) in different types of

polarizers are compared.

3.2 Uniaxial Media

All polarizers are essentially uniaxial media. In trying to study the polarizing ca-

pabilities of metamaterials, therefore, it is imperative to analyze the basic concepts

of electromagnetic wave propagation through uniaxial media. This would enable us

to develop formulations for any characteristic property of the media. Typically, for

polarizers, two properties of interest are:

1. Wave propagation through crossed polarizers (also known as leakage), and

2. Fresnel reflection and transmission coefficients.

In the present section, we develop the tools to study these properties.

3.2.1 Wave Propagation through Uniaxial Media

Consider an uniaxial medium with permittivity (-) and impermittivity (k) tensors,

in the cartesian coordinate system, given by
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Ee 0 0 ke 0 0

S= 0 c, 0 , m= 0 ,' 0 (3.1)

0 0 E, 0 0 K" 0

where E, and Ee are the ordinary and extraordinary permittivities, respectively.

Let the isotropic permeability and impermeability be p = p, and v = ., where, p, is

the permeability of free-space.

The wave vector in this system can be written as:

k(O, 4) = k(sinOcoso: + sin~sirn / + cos02) (3.2)

The dispersion relation for this medium can be obtained by solving Maxwell's

equations. In the present work, the kDB method [2] is used to solve Maxwell's

equations in matrix form.

The kDB Method

The kDB method [2] establishes a coordinate system which simplifies solving the

Maxwell's equations for homogeneous anistropic media. In this method, the cartesian

coordinates [hi] are transformed to the new coordinates [i1i2&3], which comprise of

the k vector and the b - b plane. The [i1263] vectors form a set of orthogonal

coordinate axes, with i3 lying along k, and &1 and 62 lying in the b - B plane. The

advantage with this choice of orientation is that the b and b vectors in this system

have only two components, thereby reducing the dimensions of Maxwell's equations

in matrix form.

The new coordinate axes can be expressed in terms of the cartesian coordinates

as:
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-3 = k = (sifiOcos#xi + sir0sin49 + cosO2)

62 = (cosOcos#x2 + cosOsinQ - sinO2) (3.3)

61 = (sin/xi - cos#D)

With this choice of coordinates the transformation matrix for can be written as

sin#

T = cosOcos5

sinOcos#

-cos 0

cosOsin#i -sinO

sinOsirn# cosO

so that any vector V in the cartesian coordinates can be transformed into the new

coordinates as:

V' = -V

and, any tensor X can be transformed as:

(3.5)

X' = T -X -T (3.6)

Thus for any given media, the constitutive properties (permittivity and perme-

ability) and the Electric and Magnetic fields can always be transformed to obtain

Maxwell's equations in the kDB system.

Maxwell's equations in homogeneous media can thus be written as:

54

(3.4)



k x H'

k-D'

= wB'

=-wD' (3.7)

= 0

where, k = k63 , and the primes indicate the vectors in the kDB system.

vectors E', D', H' and B' are related via the constitutive relations as:

The

(3.8)

Substituing these relations in Maxwell's equations, we can rewrite the equations

as :

[
F

1 1

1

V21

Ki2

22

12

v2 

F
F
I
I

X$11

X 21 + U

71 U

Xi2 - U

X22

712

7Y2

+ u

F
F

BI]

B2

DI

D2

(3.9)

(3.10)

where, w/k = u is the phase velocity.

Thus by substituting the transformed elements of the R, =, P and i tensors, into

the matrix equation and by eliminating DI, D 2, B1 and B2, the dispersion relations

can be obtained.

Dispersion relation for the uniaxial medium

Considering the R and P, tensors in eq.[1], and noting that X = ' = 0, we have:
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n' s12 DI 0 -U B1K -1 2 1 (3.11)
21 '22 B 1

Bf 0 u D'
V (3.12)

BI -U 0 DI

where, K' 1 = Ke5sin + KSc2 12 = 1 = (Ke - r)cosOsincos#, and K'22 =

(Ke - K)cos 2Ocos 2 0 + K

Eliminating B , from the two equations we have,
BI2

VK' - 32 VK'2 DI
11 2 1 = 0 (3 .13 )

un21 un22 -u '

Setting the determinant of the 2 x 2 matrix to zero, and noting that u = w/k, we

obtain the dispersion relations for the ordinary and extraordinary wave vectors as:

W2 = k (3.14)
Ico

2 k21 1 1 1W 2 k 2 cos2 q( - -) + -] (3.15)
A Eo Ce Ce

3.2.2 Leakage in crossed polarizers

A wave entering an uniaxial medium seperates into two components: an ordinary

wave and an extraordinary wave. The ordinary wave has its electric displacement

vector, DO, and hence its polarization, perpendicular to the plane containing the

optic axis, , and its wave vector, ko. On the other hand, the extraordinary wave

has its electric displacement, De, in the place containing c and its wave vector, ke. A

complete study of wave propagation though a pair of crossed polarizers involves the

determination of two factors:
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a. Angles of transmission through both the polarizers for the ordinary and ex-

traordinary waves,

b. Transmittances (or leakage) of the ordinary and extraordinary waves through a

pair of crossed polarizers.

Let us consider two polarizers with their optic axes along the i: and Q axes respec-

tively, in the cartesian coordinate system. Let [0j, 0] be the angle of incidence of the

incident wave moving from free-space into the medium.

The effective refractive indices for the ordinary and extraordinary waves (n(o) and

n(e)) for a single polarizer can be obtained from the dispersion relations as:

n(o) = no

1
= si

n(e)2

where, no = e[opo/c 2 and ne

space.

(3.16)

(3.17)I20cos2 0( - I) +n e ne

/eeto/c2, where c is the speed of light in free-

Angles of transmission

Propagation of Ordinary Wave

By phase matching across the free-space - Slab boundary, for the first polarizer,

we have:

nisinBi = nisinO1 (3.18)

where, ni and 01 are the refractive index of the first polarizer and the angle of

transmission, respectively, for ordinary wave propagation.

Since ni = 1 (free-space) and ni = no, we have:
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siri01 =n
rn0

(3.19)

For the second polarizer, nisin1 = n2sir0 2, where, n 2 and 02 are the refractive

index of the second polarizer and the angle of transmission, respectively, for ordinary

wave propagation.

Since ni = n2 = no, we have:

sin0 1 = sin02 or 01 = 02 =00

Therefore the direction of the propagation vector of the ordinary wave remains

constant through both polarizers, and is specified by:

sinOt = sin0 (3.20)

Propagation of Extraordinary Wave:

The effective extraordinary refractive index for the first polarizer (with 2 = ±) is

given as:

11
=sin20cos2 (-

n(e)2 -

11
) +eg e

(3.21)

By phase matching the incident wave with the extraordinary wave, we have:

1 sin 20enisin0i = n(e)sinOe -> =
n(e)2 sin2o,

(3.22)

where, 0 e, is the angle of propagation of the extraordinary wave in the medium.

By substituting for (1 from (21) and solving for sin0e, we have:

niosirn0;
sznOei = 2 sin0i 2 2)] (3.23)

[n on| sinOCOS#2(n -n

For the second polarizer (with = Q), the effective extraordinary refractive index

is obtained as:
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1 21 1 1 (.4
2 = sin20sin2( - ) + (3.24)

n(e)2a nog ne

Proceeding similarily as in the previous case, the angle of propagation in this case

can be obtained as:

niosinO;
sznOe2 = nosin (i (3.25)

[ngn2 - sinO?sinO2(n2 _n 2)

Thus for any given incidence, [0i, #], we can now obtain the angles of propagation

of the ordinary and extraordinary waves in both the polarizers. Therefore, the ordi-

nary and extraordinary propagation vectors, ko and k. are determined for both the

polarizers.

Transmittance (leakage) through crossed polarizers

Leakage is defined as the amount of unpolarized light passing through the two po-

larizers. It is determined by the projection of the ordinary and extraordinary wave

vectors of the first polarizer along those of the second polarizer. Correspondingly,

there are two components of leakage: one due to the ordinary waves and another due

to the extraordinary waves.

Leakage due to ordinary waves

The propagation vector of an ordinary wave can be written as:

ko = ko(sinocosbi + sinosin#4 + cos 0o2) (3.26)

Since the electric displacement, Do, is perpendicular to the plane containing the

optic axis, , and its wave vector, ko, a unit vector along it can be expressed as:

6 = x (3.27)
Tio x c

Therefore, the 6 vectors for the first and second polarizers can be obtained as:
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k, x
oixIk, x 2|

02 -
ik, x y

pcosO0 - 2sinO0 sinr

V1 - sin2OOcos2 0

-scosO0 + isin6ocos#

V1 - sin2 O0 sin2

From these vectors, the leakage of ordinary waves through the pair of crossed

polarizers is obtained as:

1
TO -161 . 6212 (3.30)

2

Leakage due to extraordinary waves

The propagation vector of an extraordinary wave can be written as:

ke = ke(sinOecos5i + sinOesinq + cosOe i) (3.31)

Since the electric displacement, De, lies in the place containing 8 and its wave

vector, ke, the unit vector along it can be expressed as:

k, x
e = (3.32)

Ike x 61

Therefore, as for the ordinary case, the 8 vector for the two polarizers can be

obtained as:

k~ei x (31ke^1 X1(3.33)
Ikei X oil

and

k,2 X 62
2 = X(3.34)

Ike2 X 621

and the leakage of extraordinary waves can be obtained as:
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Y 

'

z

/Y

Figure 3-1: A Uniaxial slab with optic axis along the x-axis

1
Te - -1 .i212

2
(3.35)

Thus we have constructed the general formalism to obtain the leakages through

pairs of crossed ordinary and extraordinary polarizers.

3.3 Fresnel Coefficients of a Uniaxial Slab

3.3.1 Transformation of the Permittivity Tensor

Consider a slab with uniaxial permittivity and impermittivity tensors given by

Ce 0 0

0 6" 0

0 0 6,

;Th=

Ke 0 0

0 K, 0

0 0 K,

(3.36)

and the isotropic permeability and impermeability give by, p = p, and V - 1.

As can be seen from the tensors,the optic axis is chosen to be along the x axis.
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This is because, the slab is on the x-y plane and the z axis is along the normal, as

shown in Figure 3-1. There is no loss of generality in chosing the optic axis along

the x-axis, as the slab can always be rotated about the z-axis to orient the optic

axis along the coordinate axis of interest, on the x-y plane. Figure 3-1 also shows an

incident wave, k(O, 4), given by

k(6, 0) = k(sinOcos/i + sir6sinoi + cos02) (3.37)

where, 0 is the angle with the normal,, and # is the angle between - and the

projection of the wave vector on the x-y plane. The dispersion relation for the general

case of any incidence can be solved using Maxwell's equations. However, in order

to simplify the analysis of the TE and TM propagation, the coordinate axes can be

transformed so as to keep the k vector in the x'-z' plane of the transformed coordinate

system.The transformation tensor can therefore be expressed as:

cos(#) sin(#) 0

T= -sin(o) cos(#) 0 (3.38)

0 0 1

so that

ki = T - k (3.39)

where, P is the transformed wave vector. The 0 now represents the angle by

which the axes are transformed. And the wave vector now lies in the x'-z' plane

of the transformed co-ordinate system shown in 3-1. The transformed permittivity

tensor in the new coordinate axes ['#'i'] is obtained as:

EeCOS 20 + cosin 2 4 (EO - Ee)sin4cos# 0

' =' - 2. -T-- = (Co - Ce)Si/cos/ Eesin 2 + EOCO 2  0 (3.40)

0 0 CO

The dispersion relation for this tensor can be obtained by the kDB method men-
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Figure 3-2: Schematic diagrams of TE and TM Incidence

tioned earlier. And by phase matching the angles of transmission for the ordinary and

extraordinary propagation vectors can be obtained. We have obtained these angles

numerically for all angles of incidence. It should be noted that in the new coordinated

system k = koI'+ kz'. We shall drop the primes hence forth and work only in the

new coordinate system. We can now resolve the Electric and Magnetic fields into TE

and TM components to obtain the Fresnel's Coefficients.

3.3.2 TE Incidence

A shematic diagram of TE incidence is shown in Figure 3-2. For normal incidence,

it is well-known that a TE incidence gives rise to reflected and transmitted fields

with only TE components. However, as has been illustrated in the figure, a non-

normal TE incidence leads to the reflected and transmitted fields with both TE and

TM components. This should be introduced in the formulation for fields in the

three regions. As is shown in the figure, Region 0, air, is the region of incidence and

reflection, Region 2 is the uniaxial slab, and Region 3, air, is the region of transmission.
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Region 0

The electric field E0 in this region can be expressed as:

EO = E0[(Rj + t1 (k, - kxi))eikzz + e-ikzz eikxx
ko

(3.41)

where, the subscripts o and e refer to the ordinary and extraordinary components,

respectively, of the field and wave vectors.

Using Maxwell's equations, the components of the corresponding Magnetic fields

can be obtained as:

1 E0y
iwpt &z
1 OE0 _

iwi pOx
1 &Eox

zW( 5z

_ Eokz k -kz ix
_E- k (Reikz - e-ikzz)eikxx

W/I
- *k ( Reikzz +e e-ikz ekzx

W/p

1Eoz
ax

_ Eot 1 (2k + k2)eikzzeikxx

kowp

(3.42)

Eot 1ko eikzze ik x

WP

Region 2

The Electric field in region 2 can similarily be expressed as

E2= Eo[T(y) + t2 -kz. - kx )]e-ikz eikxx
-k)]o

Therefore, the rectangular components of the Electric field in region 2 are:

E2x = - Et 2 kze-ikzze ikxx)ko
E2y = EoTe-ikzzeikxx

S_ E2 kxe-ikzzeikxx
ko
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The components of the corresponding Magnetic fields in region 2 are obtained as:

1 DE 2V

iwpi Dz
1 DE 2V _

iwpi Dx
1 &E2x
= (

iwiP Oz

kzEoT e -ikz eikxx
WI-I

kxEoT e -ik"zeikxx
WI-P

OE 2z

Ox
EJt 2 (k2

k z +k k)_ikzzeikxx -koEt 2 e+k j = Ie

(3.45)

-ikz ikxe

Region 1

The rectangular components of the Electric field in region I are:

E = (Aioixe-ikozz + Bielxe-ikezz + A 202x eikozz + B 2e 2xeikezz )eikxx

Ejy = (Aioye-ikozz + Bieiye-ikz + A 2 02yeikozz + B 2 e2yeikezz )eikxx (3.46)

EIZ = (A 1 oize-ikozz + Bieize-ikezz + A 2 02z eikozz + B 2 e 2zeikezz )eikxX

The components of the corresponding Magnetic fields in region I are similarily

obtained from maxwell equations as for regions 0 and 2.

Boundary Conditions

Applying boundary conditions on the fields in the three regions we have:

At x=0, z=0:

Eox = E1 x, Eoy = E1 y, Hox = H1 x, Hoy = Hjy (3.47)

At x=0, z=d:

E2x= E1 x, E 2y = Ey, H2x = H1 x, H 2y = Hry (3.48)

The system of linear equations are obtained as:

A1 o1 + Bje1 x + A 2 02x + B 2 e 2 x - t1 = 0
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Ajoi + Beiy + A2 02y + B 2e2y - REo = EO

A1 o1ykoz + Bie1ykez - A202ykoz - B2e 2ykez + RE okz = Eokz

A1(o1xkoz + o1zkx) + B1(e1xkez+ elzkx) +A 2 (02z kx - 02xkoz) +B 2 (e2zk -e2xkez) +

t1Eoko = 0

(Aioixe-ikoz + Biejxe-iker + A 202xeikozd + B 2 e2xeikezd) + t 2 Ekz-ikzd 0

(Aioiye-ikozd + Bieiye-ikezd + A 202yeikozd + B 2 e 2yeikez) -- TEoe-ikzd - 0

Aio1ykoze-ikoz;d -+Bie1ykeze-ikezd- A 2 02ykozeikozd - B 2 e 2ykez eikezd - TkzEoe-ikzd = 0

AI(o1xkoz + O1zkx)e-ikozd + B1(exkez + eizkx)e-ikzd + A 2(02zkx - o2xkoz)eikozd +

B2(e2zkx - e2xkez)eikezd + t 2 koEoe-ikzd = 0

where oix, oly and o1z are the components of the Electric field of the ordinary

wave in the x,y and z directions, respectively, in Region I, and so on. Solving these,

we obtain the reflection and transmission coefficients (Fresnel coefficients) of the slab

for TE incidence, as shown in Figure 3-5, for q = 450. Figure 3-6 shows the validation

of the formulation for a uniaxial slab for 0 = 0

Figures 3-4 and 3-3 show the validation of the formulation for the cases where the

slab is constituted of free space and isotropic isotropic material respectively.

Figure 3-6 shows the validation of the formulation for a uniaxial slab for # = 0

3.3.3 TM Incidence

Similarily as in the case of Electric fields for TE incidence, the Magnetic fields inthe

three regions for TM incidence can be obtained as:

Region 0

HO = H0 [(Rj + -(-kzi + kx,))eikzz + .- ikzz eikzx (3.49)

Region I
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Figure 3-3: Fresnel coefficients for an isotropic slab (no= n, 1.5,#= 50")
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Figure 3-4: Fresnel coefficients for free-space(no= n, = 1,#= 50')

67



H12 = (Aihoixe-ikoz + Bihe2 eikez + A 2ho2 xeikoz + B 2 he2xeike x

H = (Alholye-ikoz + Bihe yeikezz + A 2 ho2yeikozZ + B 2 he2yeike (3.50)

H12z (Aholze-ikorz + Bihez6ikezz + A 2 ho2zeik"zz + B 2he2 zeikezz)eikzx

where, hoi, hoIx and hoix are the magnetic analogues of oil, oly and o1, respec-

tively, and so on.

Region 2

H2= Ho[T(y) + -(kz 2: + kx )]eikzzeikx x (3.51)

Obtaining the Electric fields in the three regions and applying the boundary con-

ditions give

A1 ho1 x + B1 he1x + A 2ho2x + B 2he2x + t1 H k

A1 ho1 y + Bihe1y + A2 ho2y + B 2he2y - RHO = Ho

Aiai + B1 b1 x + A 2a 2x + B 2 b2x - RHkz - H-k-

Aiaiy + Bibiy + A 2 a2y+ B 2 b2y - T-Hk - 060

Alholxe-ikozd + Blhelxe-ikzd + A 2 ho2 xeikozd + B 2 he2xeikezd - t 2 Hokzikzd = 0

Aiho1ye-ikozd + Blheye--ikzd + A 2 ho2yeikozd + B 2he2y eikezd - THoe-ikd = 0

Aiaixe-ikozd + Bibixe-ikzd + A 2a 2xeikozd + B 2 b2xeikezd + T Hokz e-ikzd - 0

Aa1,e-ikozd + Bibiy-ikd + A 2 a2 yeikozd + B 2b2 yeikezd - t 2 Hokeikzd = 0

where,

aix = (-_K 1 hoiykoz + K12(hoixkoz + hoizkx) - K13 kxhoiy)

bx =(-Kiheiykez + K12 (heixkez + heizkx) - K13 kxhei)

a2x = (rnjho2ykoz + rN12 (ho 2zkx - ho2x koz) - r13 kxho2 y)
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1 = (-x~21hoiykoz + rK22 (hoixk0 z + hoizkm) - ix23 kshoiy)

b = (-ii2 1he1ykez + ri22 (heix kez + he1,kx ) - ri23kxhe1,)

a = ( k21ho 2 y k0 z + i 22 (ho2z k, - ho2x k0 z) - ri 2 3k~ho2y )

b =(i' 2 1he2y kez + ri22 (he2 z k, - he2x kez ) - iK23k~he2y )

1 = (-risihoiyk0 z + i- 32 (hoixkoz + hoizks) - rK33 kxhoiy)

bz= (-ri31heiykez + ri32(heixkez + heizkm) - K33kxhe1 y)

a2z = (rcsiho2y k0 z + ru32(ho2z k, - ho2x k0 ,) - ri;3 kxho2y )

bz= (Kslhe2y kez + rus 2 (he2 z kx - he2x kez ) - K33kshe2 y )

Solving these, we obtain the reflection and transmission coefficients (Fresnel coef-

ficients) for of the slab for TM incidence. Figure 3-6, shows the Fresnel's coefficients

for a non-lossy uniaxial slab, for both TE and TM incidences, when the incidence is

in the x-z plane (q$ = 0). As can be observed, both the reflection as well as the trans-

mission coefficients have both TB and TM components in each case, the amplitudes

of all of which add up to unity.
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Figure 3-6: Fresnel coefficients for non-lossy uniaxial slab

(no = 1.5, ne = 2, < = 0)

Thus we have developed the general formulation to obtain the Fresnel's coefficients

of an uniaxial slab for any incidence.

3.4 Analysis of Different Types of Polarizers

We now study the performance characteristics of different types of polarizers using

the formulations we have developed in the previous sections. As has been previously

mentioned, we aim at studying: 1. Leakage through crossed polarizers and 2. Trans-

mission coefficients of single polarizers. We analyse three broad classes of polarizers,

which are : 1. 0-type polarizers, 2. E-type polarizers, and 3. 0-type and E-type

metamaterial polarizers. Table3.1. shows the ordinary and extraordinary refractive

indices of the polarizers under consideration. The 0-type [3] and E-type [4] values in

Table 3.1, are the typical values of refractive indices of polarizers in practise today.

Whereas, the values for the metamaterial polarizers are those that are feasible with

currently available materials and polarizer manufacturing technologies.
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Polarizer no ne
O-Type 1.5 1.5+0.03i
E-Type 1.5+0.03i 2.1
Metamaterial O-Type 2 2i
Metamaterial E-Type 2i 2

Table 3.1: Different Types of Polarizers

3.4.1 Leakage through crossed polarizers

Leakage through crossed polarizers is of significant concern in optical applications, and

has been widely studied. Yeh (1993) has given detailed analysis of leakage through

crossed 0-type polarizers based on Jones matrix formulation. Yeh (1993) and Lazarev

and Paukshto (2001) have also given explicit analytical expressions for leakage through

0-type as well as E-type polarizers, i.e for To and T,. In the present study, as

mentioned in Section 3, we have obtained the ordinary and extraordinary wave vectors

using the kDB method, and used the relations in [5] to obtain To and T for the

different polarizers using the kDB method presented earlier.

Figure 3-7 shows a plot of leakage versus incident angle for conventional 0-type

polarizers versus E-type polarizers. The plot conforms with that presented in [5],

where it was demonstrated that E-type polarizers have lesser leakage (T,) than 0-

type polarizers (To), if the no of the 0-type is less than or equal to the lesser of the

no and ne of the E-type polarizer.

It is important to note that the condition nr(O-type) < min[no, ne] (E-type) is

usually satisfied because it has recently been possible to fabricate E-type polarizers

that have much higher refractive indices as compared to conventional 0-type polariz-

ers [4]. It is therefore pertinent to note that, inorder to see any improvement beyond

the performance of the present E-type polarizers, we need to have either novel 0-type

polarizers with no values higher than their conventional counterparts, or E-type polar-

izers with n, values higher than those prevalent in practise today. These requirements

can be met using metamaterial polarizers.
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Metamaterial polarizers can be obtained by doping metallic nano-needles in an

isotropic, homogeneous background. The refractive indices of metamaterial polarizers

are based on the refractive index of the background material. By suitable choice of

material, the background medium can be made up of high refractive index, leading to a

high refractive index polarizer. The values of the refractive indices of the metamaterial

polarizers in Table 3.1, reflect this advantage.

Figure 3-8 shows a plot of leakage versus incident angle for the different polar-

izeres listed in Table 1. It can be observed that the leakage is least for the 0-type

metamaterial polarizer as expected.

3.4.2 Transmission coefficients

The transmission coefficients for the different polarizers for TE and TM incidences

are obtained using the formulation in Section 3. Each polarizer is considered as

an uniaxial slab with the optic axis along the x-axis, and the normal being along

the z-axis. The slab thickness is 13 times the wave length. The wavelength under

consideration is 0.5 microns which is in the optical range. The incident wave vector

is considered to be in the x-z plane (<0 = 0 and 0 E [0, 7r/2] ), so as to obtain

the maximum possible transmission. For non-normal incidence, the TE and TM

components of the transmitted and reflected waves are coupled. Therefore, for TE

incidence there are both TE and TM components of the reflection and transmission

coefficients (Fresnel coefficients), and same for TM incidence.

Figure 3-9 shows the plot of the Fresnel coefficients versus incident angle, for a

conventional 0-type polarizer, with the ordinary and extraordinary refractive indices,

no = 1.5 and ne = 1.5 +0.03i. It can be observed that for TE incidence, there is near

perfect transmission of the TE component, i.e there is no attenuation (apparent from

the fact that the normalized transmitted and reflected powers add up to unity).

However, for TM incidence, there is no transmission, owing to the fact that the wave

is completely attenuated. It is important to note that the transmitted power is near
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Figure 3-9: Fresnel coefficients for an 0-type polarizer(no = 1.5, ne = 1.5 +
0.03i, # = 0)

unity for most of the incident angles, and decreases to zero for grazing incidence.

Figure 3-10 shows the plot of the Fresnel coefficients for an E-type polarizer, with

n,,= 1.5+0.03i and ne = 2.1, as mentioned in Table 3.1. The two parts of the figure

show plots for TE incidence and TM incidence respectively. It can be observed that

for TE incidence, there is no transmission of the TE component, as could be expected.

However, for TM incidence one would expect to obtain near perfect transmission of the

TM component. It can be seen from the figure that perfect transmission is obtained

only for near normal incidence. Where as, for other angles of incidence the TM wave

is monotonically attenuated until it completely diminishes at grazing incidence. This

leads to a significant loss of incident power for non-normal angles of incidence.

Figure 3-11 and Figure 3-12 show the plots for metamaterial polarizers, with

refractive indices shown in Table 3.1. Figure 3-11, for the 0-type metamaterial po-

larizer, shows a plot very similar to Figure 3-9. For TE incidence, there is near perfect

transmission of the TE component for a wide range of incident angles, where as for

TM incidence there is no transmission. Figure 3-12 shows the plot for the E-type
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Figure 3-12: Fresnel coefficients for an E-type Metamnaterial polarizer(no =

21, n, = 2, 0 = 0)

metamaterial polarizer. As can be observed, for TM incidence there is near perfect

transmission, where as the TE component of the incident wave is completely attenu-

ated. It is important to note here that the transmission of the TM component is near

perfect for almost all angles of incidence, vanishing only at near grazing incidence.

Thus, the transmitted power for an 0-type metamaterial polarizer is comparable

to that of a conventional polarizer, whereas the transmitted power for a conventional

E-type polarizer is less than that of 0-type and E-type metamaterial polarizers as

well as the conventional 0-type polarizers, for non-normal incidence.

From the above observations on leakage and transmission properties of the var-

ious polarizers, it can be noted that an 0-type metamaterial polarizer would have

better performance characteristics than the remaining ones. This is because, it shows

minimum cross-polarizer leakage and maximum possible transmission.
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Chapter 4

Conclusions

4.1 Radiation Mechanism of S - shaped SRR

In the present study the radiation phenomenon in Left-Handed Media is thoroughly

studied. The S-shaped SRR is one of the most recent advancements in the area of

LHM theory, and it allows great convenience in the analysis of the current modes along

the structure. Therefore, this structure formed the basis of the radiation analysis pre-

sented here. The structure was simulated in a wave-guide set-up, with Perfect Electric

Conductor (PEC) and Perfect Magnetic Conductor (PMC) boundaries. These ideal-

izations allowed the propagation of a TEM mode in a rectangular waveguide. With

the geometry of the set-up as discussed before, and the TEM incidence, an effective

LHM was realized using the S-structures.

The simulations were conducted using the Ansoft HFSS Electromagnetic solver.

The solutions enabled calculation of the surface current densities on the S rings. By

simulating a set-up with three SRRs in the wave-propagation direction, the phase

difference between adjacent SRRs was determined. This progressive phase increment

was found to be negative, thereby suggesting a backward wave which is the charac-

teristic of an LHM.

The currents on the rings were expanded into a Fourier series using the Fast Fourier

Transform algorithm. It was found that only one current mode was dominant. This

mode was used to obtain the vector current moment due to one SRR. A generalized
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formulation was developed to determine the array factor of an arbitrary array. The

formulation was used to obtain the radiation pattern of a prism of S rings, using only

the edge elements and the progressive phase obtained from HFSS simulations. The

radiation pattern confirmed negative refraction behavior of the structure.

4.2 Polarizing Properties of Uniaxial Metamateri-

als

The polarizing characteristics of a metamaterial polarizer that has a uniaxial permit-

tivity tensor with a negative permittivity along the optic axis and a positive isotropic

permeability, were studied. A comparison was made between existing polarizers and

a metamaterial polarizer. The comparison was based on (1) Leakage of light (trans-

mittance) through a pair of crossed-polarizers, and (2) Fresnel coefficients of a single

polarizer.

It was observed that metamaterials allow lesser leakage of unpolarized light as

compared to any other polarizer. This is primarily because having only C negative

causes a large imaginary refractive index, leading to greater attenuation and hence

lesser leakage.

A general formulation based on the kDB method was developed to study wave

propagation through uniaxial media. The Fresnel coefficients of the difference types

of polarizers were obtained and cornpared. It was observed that metamaterials have

maximum transmission and least leakage as compared to the other polarizers.
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