
Aggregate Calibration of Microscopic Traffic

Simulation Models

by

Bhanu Prasad Mahanti

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Transportation

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2004

@2004, Massachusetts Institute of Technology. All rights reserved.

Author............. ... . ............ ......
Department of Civil and Environmental Engineering

August 13, 2004

C ertified by ............ .................
Moshe E. Ben-Akiva

Edmund K. Turner Professor
Department of Civil and Environmental Engineering

Thesis Supervisor

Certified by.................
Tomer Toledo

Research Associate
Department of Civil and Environmental Engineering

/lThesis Sfpervisor

Accepted by ........
H idi Nepf

hairman Department Committee on Graduate Students
MASSACHUSETTS INS E

OF TECHNOLOGY

SEP 1 7 2004

LIBRARIES BARKER



2



Aggregate Calibration of Microscopic Traffic Simulation

Models

by

Bhanu Prasad Mahanti

Submitted to the Department of Civil and Environmental Engineering
on August 13, 2004, in partial fulfillment of the

requirements for the degree of
Master of Science in Transportation

Abstract

The problem of calibration of microscopic simulation models with aggregate data has
received significant attention in recent years. But day-to-day variability in inputs
such as travel demand has not been considered. In this thesis, a general formulation
has been proposed for the problem in the presence of multiple days of data. The
formulation considers the day-to-day variability in all the inputs to the simulation
model. It has then been formulated using Generalized least squares (GLS) approach.
The solution methodology for this problem has been proposed and the feasibility of
this methodology has been shown with the help of two case studies. One of them
is with an experimental network and the other is with network from Southampton,
UK. The results indicate that estimation of day-to-day OD flows is feasible. They
also reinforce the importance of having good apriori information on the OD flows and
locating the sensors so as to obtain maximum information.
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Chapter 1

Introduction

With the ever increasing travel needs of people, it is not surprising in the least to

say that traffic congestion is among the foremost problems being faced by cities in

developed as well as developing countries. As per the 2003 Urban Mobility Study re-

port published by Texas Transportation Institute [29], the largest university-affiliated

transportation research agency in the US, traffic congestion in 2001 resulted in the

loss of 3.5 billion hours of productivity valued at $69.5 billion. A similar study by the

UK government estimates that 1.6 billion hours were lost by drivers and passengers

in 1996 due to congestion. The situation is not very different in the developing coun-

tries, where the growth rate of fleet size is 10-30 per cent per year as against below 5

per cent in developed countries [16].

While congestion cannot be eliminated completely, measures can be adopted to

alleviate the traffic conditions. Transportation agencies generally use three types of

strategies to manage congestion:

" construction

" managing travel demand

" improving operations

Construction Traditionally, construction of more roads has been the strategy adopted

to deal with congestion. In the present circumstances, it has several drawbacks
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having to face a variety of physical, economic, social and environmental con-

straints. Furthermore, it provides only temporary relief for congestion because

it tends to encourage further development and therefore traffic growth. Most

importantly, it is not possible to catch up with the growth rate in traffic. In-

crease in route miles of highways in the US by about 1.5 per cent as against 76

per cent increase in vehicle miles between 1980 and 1999 illustrates this clearly.

Managing travel demand This strategy aims at altering driver behavior so that

vehicle trips during congested periods and at congested locations are reduced.

Some of the programs which belong to this category are flexible work schedules

that allow employees to travel off-peak, amenities to improve safety and effi-

ciency of biking and walking, ridematching services for vanpools and carpools,

community-based carsharing, employer-subsidized transit passes, guaranteed

emergency rides home for transit users, incentives to decrease employer-paid

parking and transit-oriented regional development.

Improving operations This method essentially tries to make use of the transporta-

tion system to the best extent possible through some strategies and thus tries

to increase the efficiency and reliability of the system. Some of these strategies

are: Advanced Traffic Management Systems (ATMS), Advanced Traveler In-

formation Systems (ATIS), Incident Management Systems and Managed lanes

(HOV lanes, truck-only facilities, congestion pricing, reversible and contra-flow

roadways). These also involve altering the driver behavior.

1.1 Intelligent Transportation Systems

Intelligent Transportation Systems (ITS) is nothing but a composition of a number of

technologies including information processing, communications, control and electron-

ics applied to improve operations of the transportation systems. It was introduced as

Intelligent Vehicle Highway Systems (IVHS) in late 80s with the multiple objectives

of improving safety, reducing congestion, enhancing mobility, reducing environmental

16



impact, saving energy and increasing economic productivity. The five functional areas

that have been identified for implementation of advanced technologies are Advanced

Traffic Management Systems, Advanced Traveler Information Systems, Advanced Ve-

hicle Control Systems, Commercial Vehicle Operations and Advanced Public Trans-

portation Systems [22].

1.2 Microscopic simulation models

Traffic management strategies using the aforementioned advanced technologies may

be counter productive if not implemented correctly, as shown by some studies (Gartner

et al. [21]). Additionally, often there would be many feasible alternatives that could

be adopted to deal with congestion problem in a particular region. While coming up

with the feasible alternatives is not very difficult, identifying the best alternative is

a hard task. Therefore, evaluation of the alternatives is a critical component in the

development of an efficient strategy. These evaluations can be performed with the

help of either field tests or simulation models.

Field tests involve implementing all the identified alternatives and choosing the

best among them based on certain measures of performance. Disadvantages of these

tests are that they are time consuming and are not economical. Further, the test

results are affected by uncontrollable parameters. In the case of ATIS, if some of the

implemented alternatives do not improve the situation, it might affect the travelers'

compliance with guidance provided in the future.

Simulation models , on the other hand, provide a very economical way of analyzing

the alternatives. Obviously, credibility of the results obtained from such a model

is dependent on its ability to replicate reality to the best extent possible. Some

of the microscopic simulation models which have been developed are MITSIMLab

[8], PARAMICS [30], FLEXSYT-II [34], etc. More detailed information on various

microscopic simulation models can be obtained from the website [32]
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1.3 Calibration of microscopic simulation models

All the microscopic simulation models require demand for the use of the road network,

in the form of Origin - Destination (OD) flow matrix, as a necessary input. Each

element in this matrix represents the number of trips from a specific origin to a specific

destination. Another important set of inputs to the microscopic simulation models is

the underlying behavior model parameters. However, many of these parameters are

network dependent. Therefore, before applying the simulation model to a network,

it should be calibrated and validated for that particular network. In addition to OD

flows and model parameters, habitual travel times form another set of inputs to the

simulation model.

Calibration is the process of determining the OD flow matrix and the behavior

model parameters so that the simulator reflects the local traffic conditions being

modeled. Validation is the process of determining the extent to which the calibrated

model can accurately replicate traffic behavior.

1.3.1 OD flows

In practice, OD flows are not available and so need to be estimated. Cascetta [10],

classifies the various methods of estimation of OD flows into three groups.

" direct sample estimation

" model estimation

" estimation from traffic flows

Direct sample estimation methods involve conducting surveys, such as home or

destination interviews, roadside interviews, flagging techniques or combination of

them and estimating the OD flow matrix with these survey results using sampling

theory classical estimators. Model estimation methods, which are commonly used,

estimate OD flow matrix by applying a system of models that give the number of

journeys made as a function of several socio-economic variables. The third method

18



of estimating OD flow matrix from traffic flows is a more recent one. This problem

can be understood as the opposite of traffic assignment problem. This method has

received a lot of attention owing to its cost effectiveness as compared to conducting

surveys. Furthermore, these flows can be measured repeatedly so that evolution of

the phenomenon can be followed.

Since this thesis deals with only the third method of estimation, it should be

understood that henceforth the terms "OD estimation" and "Estimating OD flows

from traffic flows" are used interchangeably.

1.3.2 Behavior model parameters

Behavior model parameters are the other set of inputs to a microscopic simulation

model which need to be estimated. These parameters can be classified into two

groups, namely, travel behavior and driving behavior parameters. Travel behavior

relates to decisions taken by drivers at a higher level and is represented by a route

choice model. Driving behavior models, on the other hand, represent the decisions

taken by drivers at micro level as a reaction to other vehicles in the vicinity. Some

of these models include lane-changing, car-following and intersection models. These

models will be discussed briefly in chapter 4.

1.3.3 Habitual travel times

Habitual travel times represent the drivers' perceptions of travel times based on which

they make the route choice decisions. They cannot be measured since they represent

perceptions of the travelers. Usually, the network is assumed to be in equilibrium (i.e,

the travel times which the drivers expect on the network are consistent with what

they experience) in order to estimate these habitual travel times.

19



1.4 Calibration methodology

The typical methodology followed for calibration of microscopic simulation models is

based on the framework shown in Figure 1-1 (which is reproduced from Ben-Akiva

et al [7]). According to this framework, calibration involves two steps. In the first

step, individual models (driving behavior and travel behavior models) that make

up the simulation model are statistically estimated using disaggregate data such as

trajectory data. In the second step, aggregate data (flows, speeds etc) is used to

fine tune these parameters and estimate the OD flows. Using aggregate data to fine

tune parameters helps in capturing the inter-dependencies among the parameters.

But in most cases disaggregate data, being very expensive to collect, is not available.

Therefore, calibration of the model parameters also has to be done using aggregate

data only.

This problem of (i) estimating the OD flows and (ii) calibrating the model param-

eters using aggregate data is called aggregate calibration .

1.5 Thesis focus

In this thesis, a general formulation for calibration of microscopic simulation models

in the presence of multiple days of aggregate data will be proposed. Further, various

assumptions one could make to simplify the formulation will be presented. Finally,

the application of this general formulation is demonstrated through some case studies

with focus being more on OD estimation.

1.6 Thesis outline

This thesis is organized as follows. In chapter 2, a brief review of the different methods

adopted for both components of aggregate calibration - OD estimation and parameter

calibration - is presented. In chapter 3, aggregate calibration in the presence of mul-

tiple days of data is formulated as an optimization problem and various assumptions

that could be made to be able to solve the problem are outlined. In chapter 4 MIT-
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SIMLab, the microscopic simulation model which has been used in the following study

is introduced. Case studies demonstrating the feasibility of the proposed calibration

methodology are also discussed. Finally, conclusions drawn from the implementation

of this methodolody and directions for future research are presented in chapter 5.
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Chapter 2

Literature Review

The problem of aggregate calibration, which involves OD estimation and parameter

calibration, has received a great deal of attention during the past few years. This

chapter reviews literature pertaining to OD estimation, parameter calibration and

obtaining user equilibrium travel times. Since the thesis focuses more on OD estima-

tion, the other two are not discussed in detail.

2.1 OD estimation

In this section, various methods proposed for the estimation of OD flows from aggre-

gate measurements (traffic counts) are reviewed. Most of the following review can be

found in the book by Cascetta [11].

This problem of estimating OD flows by combining traffic counts with other avail-

able information is also referred to as origin-destination count based estimation (OD-

CBE) problem. Typically information on OD flows contained in traffic counts is not

sufficient enough to identify a unique set of OD flows. This is because of the relatively

high number of OD pairs as compared to the number of links on which sensor mea-

surements are available. Therefore additional information, giving apriori knowledge

of the OD flows, is needed to estimate a unique set of OD flows. An overview of

the inputs and outputs of the OD estimation problem can be seen in figure 2-1. In

literature, apriori information on OD flows is also referred to as direct measurements
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Sensor Apriori
Counts information

- OD estimation 4

OD flow
estimates

Figure 2-1: Overview of OD estimation inputs and outputs

while traffic counts are referred to as indirect measurements (since they represent a

function of the true OD flows intended to be estimated).

OD matrices estimated can be either static or dynamic in nature, depending on

the purpose of the study. A static OD matrix represents the average travel demand in

a day, while a Dynamic OD matrix captures the temporal variation of travel demand

within a day.

2.1.1 Static OD estimation

Methods which have been used for static OD estimation are entropy maximization

or information minimization (Van Zuylen and L.G. Willumsen [37]), maximum like-

lihood estimation (Spiess [33]), generalized least squares (Cascetta [10]; McNeil et

al. [28]; Bell [6]) and bayesian estimation (Maher [27]). Some of these are described

briefly below.

Maximum likelihood estimators are obtained by maximizing the probability of ob-

serving the apriori information and the sensor measurements. Making the reasonable

assumption that these two probabilities are independent, the maximum likelihood
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estimator can be expressed as:

XML = arg max[lnL(xH/x) + lnL(y/x)]
XES

(2.1)

where:

x is the travel demand vector to be estimated

xH is the apriori information on the travel demand, which could be

obtained from sampling surveys or earlier planning studies

y is the vector of observed traffic counts

lnL(xH/x) is the log-likelihood function of the apriori information on travel de-

mand, i.e. the logarithm of the probability of observing the apriori

travel demand xH is x is the true travel demand

lnL(y/x) is the log-likelihood function of the traffic counts, i.e. the logarithm

of the probability of observing the traffic counts y if x is the true

travel demand

S is the feasibility set of the true travel demand, usually coincident

with the non-negative orthant, i.e. S = x : x > 0

The log-likelihood functions in the equation (2.1) can be formulated after assump-

tions are made on the probability distributions of xH and y, conditional on x.

Generalized Least Squares is another estimator based of classical statistics. This

can be derived from the system of linear stochastic equations (2.2) and (2.3) men-

tioned below.

y = Ax + E

XH

(2.2)

(2.3)

with the following additional assumptions

E(c) = 0, Var(e) = V

E(i7) = 0, Var(r) = W

25



A is called Assignment matrix . This matrix is nothing but a mapping between the

traffic counts and the OD flows. The GLS estimator of the travel demand, which is

the best linear unbiased estimator, can be expressed as:

XGLS= argmin[(y - Ax)'V- (y - Ax) + (xH - x)'W-(xH - x)] (2.4)
xES

Bayesian estimation methods combine sampling information with prior or sub-

jective information. In this particular problem of OD estimation, bayesian estimation

involves updating the OD flows obtained apriori with the additional information from

traffic counts. The estimator is obtained from the a posteriori distribution h(x/y, xH),

of OD flows conditioned on the apriori information and traffic counts. According to

Bayesian theory, this posterior probability is proportional to the product of the apri-

ori probability distribution of OD flows g(x/xH) and the probability of observing the

traffic counts conditional upon the unknown OD flows L(y/x). Mathematically, this

is expressed as:

h(x/y, xH) x L(y/x)g(x/xH) (2.5)

Bayesian estimator of OD flows can be obtained by maximizing the a posteriori

probability in equation (2.5) or its natural logarithm (since natural logarithm is a

monotonous function).

XB = arg max[lng(x/xH) + lnL(y/x)] (2.6)
xES

As in the case of Maximum Likelihood estimator, the specification of the Bayesian

estimator depends on the assumptions made for the probability distributions g(x/xH)

and L(y/x).

Cascetta and Nguyen [13] examined Maximum Likelihood and Generalized Least

Squares estimators and compared them to Bayesian estimator. They also discuss the

computational issues for each of the approaches.
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2.1.2 Dynamic OD estimation

The disadvantage of a static OD is that they only represent average traffic conditions

in a day. They do not capture the temporal variation within a day and hence are

not very useful for applications at operational level. Owing to this reason, several

researchers have investigated the problem of dynamic OD estimation.

Various methods of dynamic OD estimation have been proposed, some of which

(Cremer and Keller [17]; Bell [6]; Chang and Tao [15]) are are restricted to intersec-

tions, junctions or small segments of network corridors and hence not applicable to

general networks. A brief review of these estimation methods and the contexts in

which they are applicable can be found in Ashok [3]. On the other hand, General-

ized Least Squares approach and Kalman Filter approach can be applied to general

networks. Refer to Ashok [3] and Balakrishna [4] for more information on these two

approaches.

Generalized least squares

Cascetta et al. [12] have extended the generalized least squares estimation approach

to the dynamic case as well. Let the total period under consideration (H) be divided

into T intervals, which can be assumed to be of equal length without loss of generality.

Let n, and nOD be the number of sensors in the network and the number of OD pairs

respectively. Let Xh be the column vector (nOD x 1) of travel demand of all the OD

pairs during interval h; and x' be the column vector of apriori OD flows for interval

h. Similarly, let Yh the corresponding column vector (n, x 1) of traffic counts measured

in interval h by all sensors.

The linear stochastic equations in the dynamic case are similar to equations (2.2)

and (2.3):
h

Yh A AhXP +Vh (2.7)
p=h-p'

Xh =xh+Uh (2.8)

where p' is the maximum number of intervals required by a vehicle to complete its
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journey, A' is the assignment matrix which relates the flows departing in interval

p to counts observed in interval h. Vh and Uh are vectors of random errors. Let

variance-covariance matrices of Vh and Uh be Vh and Wh respectively.

They proposed two estimation procedures - simultaneous estimation and sequen-

tial estimation. In the simultaneous estimation approach, OD flows for all the inter-

vals are estimated in a single step using the traffic counts for all the intervals. The

OD flow estimates are given by:

T

(P 1, 2,... ,T) = argmin E[(xh - xh)'Whj(xh - Xh
h=1

T h h

+ [(Yh - E Apxp)'Vh- 1 (yh - APxP)] (2.9)
h=1 p=h-p' p=h-p'

with non-negativity constraints, xi > 0, Vi 1, 2, . .. , T.

On the other hand, in sequential estimation approach the OD flows for all the

intervals are estimated one at a time. When estimating the OD flows for interval h,

the OD flow estimates of past intervals are kept constant. Hence the counts of period

h are linear functions of the unknown demand of the same period only. The OD flow

estimates of an interval h are given by:

Jh = argmin[(xh - x')'WWT(xh - x

h-1 h-1

+[(yh- E ApiP - A h )hVj 1 (yh- A -h, ~ A xh) (2.10)
p=h-p' p=h-p'

Simultaneous estimation gives more consistent results, but it involves solving a very

complex optimization problem. Hence, in practical situations where computational

considerations are of prime importance, sequential estimation approach can be em-

ployed.

Kalman filtering

This approach casts OD estimation problem as a state-space model. A state-space

model describes the behavior of a system using two linear stochastic equations -
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measurement equation and transition equation. The measurement equation (2.11)

relates the unknown state of the system to the observable data, and the transition

equation (2.12) describes the evolution of system over time.

yh = Ahxh + Vh (2.11)

hh+1 hXh + Wh (2.12)

In the context of OD estimation, the set of equations (2.7) and (2.8) together

form the measurement equations (2.15). Equation (2.12) represents the transition

equation.

h-1
Yh A A =Ah vh(.3ya E ,P = AJz +X (2.13)

p=h-p'

XH =Xh+Uh (2.14)

Expressing both equations (2.13) and (2.14) using matrix algebra, we have

_ 1X.~ 1[h
[Yh Ez=hp hP] [uh

Xh +
Xh InROD U

or

yh = Ahx, + Ch (2.15)

The kalman filter algorithm, which is recursive in nature, is described here. Let

njk and Anik denote the OD flow estimates and their variance covariance matrix of

period n based on observations upto period k respectively. Let wh be white noise

with zero mean and variance Qh. Similarly, let the variance of Ch be Ch. Assuming

that the initial system state is known (iolo = po and Ao0 o = Ao), the steps in the

algorithm are:

1. Generate the next estimate and its variance covariance matrix using the transi-
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tion equation. Equations (2.16) and (2.17) are referred to as predictor equations.

Xhlh-1 = Oh-1Xh-1jh-1 (2.16)

AhIh-1 = Oh-1Ah-1Jh-1Oh-1 + Qh-1 (2.17)

2. Compute the kalman gain matrix

Kh = Ahh1A' (AhAhh_1A' + Ch)- 1  (2.18)

3. Generate the filtered estimate and the corresponding variance covariance matrix

using the measurement equation. Equations (2.19) and (2.20) are referred to as

corrector equations.

Xhlh = ihlh-1 + Kh(yh - Ah'hlah1) (2.19)

Ahh = Ahlh_1 - KhAhAhhl-1 (2.20)

4. Increment h and go back to step 1.

Many variations of this basic kalman filter algorithm have also been proposed. This

method finds special use in on-line applications where prediction of traffic conditions

is needed.

2.2 Parameter calibration

The problem of parameter calibration involves identifying the correct set of param-

eters to be used in the underlying behavior models which reproduce the observed

sensor measurements. This is very complex because of the absence of a clear analyt-

ical formulation for the objective function in terms of the variables to be estimated.

Various methods for calibrating parameters that have been used are:

- manual changes (Daigle et al. [18])
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- linear search (Balakrishna [4])

- simplex-based approach (Kim and Rilett [24])

- steepest descent (Kurian [25])

- box algorithm (Darda [19], Toledo et al. [36])

- genetic algorithms (Abdulhai et al. [1], Lee et al. [26])

2.3 Equilibrium travel times

Equilibrium implies that the habitual travel times based on which the drivers make

their route choice decisions are consistent with what they experience on the network.

These travel times are a property of the true behavioral models. Since the simulation

model is used to approximate reality, the same can be used to obtain these equilibrium

travel times. If S( is used to denote the simulation model and TT to denote the

equilibrium travel times, then TT is a solution to the following equation (2.21).

TT = S(TT) (2.21)

This is nothing but a fixed point problem. Various iterative schemes have been

proposed to solve this problem. Refer to Cascetta et al [14], Bottom [9] for a review.

The studies mentioned in the above sections concentrate on one of the problems

only and not the calibration of all the input parameters jointly. Other studies like

Darda et al [19] and Jha et al [23] have captured the interactions between the param-

eters by calibrating them jointly. Though aggregate calibration is the focus of this

thesis, it has to be referred that validation of the calibrated simulation models is also

an important task. In their paper, Toledo et al [36] have described various statistical

measures that can be used to perform validation, but they do not take into account

the correlations among the measurements. Barcelo et al [5] proposed a method for

calibration and validation to account for these correlations between the sensor mea-

surements. This method was implemented to calibrate the parameters of route choice
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model. But it is not easily scalable because it involves manually looking for good set

of parameters. Additionally, some useful guidelines for developing simulation models

have been presented in the paper.

2.4 Summary and Motivation

When data is available for many days, it is not surprising if the sensor data is not the

same for all the days. While this variation could be partly because of pure noise, there

are few other possible reasons for this. Observed data could vary from day-to-day

because of changes in

- model parameters

- travel demand (OD flows)

- habitual travel times

- network conditions (which includes weather conditions)

But the earlier approaches assume that the variation in observed data is purely be-

cause of randomness and estimate a single OD matrix for all the days. So we might

be losing wealth of information that is hidden in the data. Additionally, since the

earlier approaches estimate an average OD matrix for the entire duration under study,

they are suitable only for planning purposes and not for operational purposes or re-

liability studies (where information on distribution of OD flows over days is needed).

Hence, the objective in this thesis is to incorporate the variation of the inputs from

day-to-day in the calibration methodology.
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Chapter 3

Problem formulation

In this chapter, an optimization based general formulation has been proposed for

the problem of aggregate calibration in the presence of multiple days of data. The

equivalent formulation under the generalized least squares approach has also been

presented.

3.1 A general formulation

Before proceeding to the formulation, some of the important variables involved in this

problem and the notation used to denote them are mentioned. These variables are:

" Observed aggregate measurements

" Simulated aggregate measurements

* Network conditions

* Travel demand (OD flows)

" Behavior model parameters

" Habitual travel times

Definition and notation of other variables would be mentioned as and when needed.
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3.1.1 Notation

N number of days for which data is available

K 1,2, ... . N

mfobs observed measurements on day i

MiIM simulated measurements on day i and replication w. Simulation

models are stochastic in nature. Hence the simulated measurements

are random variables.

Mistm mean simulated measurements on day i

Mim = E[Mim]

Gi network conditions on day i

Gy)j network conditions on days 1, 2, ... , i

Gy)] = {Gi, G2, ... , Gi}

ODj OD flows on day i

OD? apriori information on OD flows on day i

ODg)j OD flows on days 1, 2,...,i

OD[] = {OD1, OD 2, ... , ODi}

behavior model parameters for day i

,3j apriori information on behavior model parameters for day i

3[i] behavior model parameters on days 1, 2,. .. , i

,3 = {1,02, ... , 1i}

Tjihab habitual travel times for day i

TTjhab habitual travel times for days 1, 2, ... , i
TThab = {TThab, TThab hab

[i] 1TT T2 b,... ITTb

TTiewxp experienced travel times for day i and replication w. Since simula-

tion model is stochastic, the simulated experienced travel times are

random variables.

TTe"P mean experienced travel times for day i

T T"x = E[TTfewp ]

T rj'p mean experienced travel times for days 1, 2,... , i

TijP = {TTXP, TT2"X, ... , TTie'P}
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SM function which relates the inputs of a simulation model to the sim-

ulated measurements

STT function which relates the inputs of a simulation model to the sim-

ulated experienced travel times

3.1.2 Model equations

The equations which relate the measurements (both direct and indirect) of OD flows

and model parameters to their true values form the basis of the optimization based

methodology.

Mfbs = Mis8 m + E, Vi EA (3.1)

OD = ODi + y , Vi E J (3.2)

/o = / + 6i, Vi G A (3.3)

Equation (3.1) represents indirect measurements while equations (3.2) and (3.3) rep-

resent the direct measurements of OD flows and model parameters. Ei, 'yi and 6i

represent the errors made in these measurements for day i.

3.1.3 Objective function

Let fi(Mobs, Mim) represent the measure of deviation of the observed sensor mea-

surements from the mean sensor measurements produced by the simulation model for

day i. Similarly, let f 2(ODi, OD9) and f3(i, Oi3) represent the measures of deviations

of the estimated OD flows from the apriori OD flows on day i and estimated model

parameters from the apriori model parameters on day i respectively. The sum of all

the three deviations for all days can serve as the objective function to be minimized:

N

f1 (Mobs, Mfis) + f2(ODi, ODO) + f3(0i, ly)

Without the second and third terms, the objective function will typically have multi-

ple minima. So, with the inclusion of these two terms also in the objective function,
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we aim to match the observed sensor measurements and at the same time we try not

to deviate much from the apriori information we have on the OD flows and model

parameters.

3.1.4 Constraints

This optimization problem would have two sets of constraints - expressions for simula-

tion outputs and the feasibility conditions for the OD flows and model parameters to

be estimated. Equation (3.4) defines the simulated measurements used in the objec-

tive function as a function of model parameters, OD flows, habitual travel times and

network characteristics. w is random seed which is used to represent the stochastic

nature of the simulator. Equation (3.6) describes how drivers update their habitual

travel times day-to-day and is usually referred to as learning model in literature. The

equation means that the habitual travel times on a day are a function of the habitual

travel times and mean experienced travel times of all the previous days. Equation

(3.5) defines the experienced travel times used in equation (3.6) as a function of the

inputs to the simulation model and random seed.

Mis' = SM(3i, ODi, TT GabG, w) (3.4)

= STT (0, OD,TT habG ,W) (3.5)

T Thab = g(TT jabT Trej ) (3.6)

The other set of conditions are that the OD flows estimated should be non-negative

and the estimated model parameters lie within a feasible region.

3.1.5 Complete formulation

The complete formulation would therefore be:

N [
min E f, (Mios, Mfi') + f2 (ODiI ODO) + f3 (O , io)] (3.7)

ODi>!0,ifs E i=
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s.t. M"'7 = SM(/,OD, TIabGh )

T irT7x =ST T (oi, OD, TTihab, G )

TThab = g(TT x, TTpy)

Only OD flows and model parameters are considered to be the decision variables

because the the habitual travel times are dependent on the inputs for the previous

days and the network conditions on all the days under consideration are assumed to

be known.

3.1.6 Possible assumptions

As noted earlier, the observed measurements will vary from day-to-day and the vari-

ability in these measurements could be because of stochasticity or changes in OD

flows, model parameters, network conditions and habitual travel times. The optimiza-

tion problem presented in section (3.1.5) is very difficult to solve. Hence, depending

on the purpose of the study, assumptions need to be made on the sources of variability

in observed measurements. Since there are four possible sources of variability (ex-

cluding randomness which is always supposed to exist), there will be 24 = 16 possible

assumptions one can make.

But it is not logical to assume that the habitual travel times vary (do not vary)

when none of the others vary (at least one of the others varies) . It is also not logical

Cases Model OD flows Network Habitual
parameters conditions travel times

1 DNV DNV DNV DNV
2 DNV V DNV V
3 DNV DNV V V
4 DNV V V V
5 V DNV V V
6 V V V V

Table 3.1: Possible assumptions on sources of variability in observed measurements
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to assume that model parameters vary while the network conditions do not vary.

Because of these conditions, the number of possible cases comes down to 6. These

cases are mentioned in the table (3.1). In the table 'DNV' stands for do not vary and

'V' stands for vary .

Even for each of these cases, additional assumptions need to be made to be able

to solve the problem. Cases 1 and 6 are the two alternative assumptions one can

make and cases 2 to 5 are special restricted cases of these two cases. Formulations for

cases 1 and 6 (referred to as stationary state and non-stationary state respectively)

are presented.

3.1.7 Stationary state formulation

As per the assumptions, observed measurements vary from day-to-day purely because

of randomness and none of the input parameters vary. Since habitual travel times

are assumed not to vary, an additional assumption that the network is in equilibrium

needs to be made to keep the problem solvable. As per the definition of equilibrium,

the experienced travel times of drivers are consistent with the travel times they ex-

pect (i.e., habitual travel times). The final formulation is shown in equation (3.8).

Note that the subscripts for /, OD, TThab, Ms'm and G have been avoided indicating

that they do not vary. But since observed measurements vary (because of random-

ness), subscripts for Mobs have been used. This particular formulation for aggregate

calibration has been used by Darda [19].

N

Min :e f(Mi4bs, Msim) + f2 (OD, OD 0 ) + f3(0, 00)] (3.8)
OD;>OES 1=

s.t. Mm = SM(03,OD,TThabG)

TTe"P = STT(, OD, TThab, G)

TThab = TTexP
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3.1.8 Non-stationary state formulation

The non-stationary state formulation, where we assume that all inputs vary, is nothing

but the general formulation in section (3.1.5). It can reasonably be assumed that the

network conditions are finite in number and that the model parameters on any two

days are different if and only if the network conditions on both the days are different.

Let ci represent the network conditions on day i. Also, let ci belong to a finite

set K. Since model parameters for a day have been assumed to be dependent only

on the network conditions of that day, fi can be replaced by 0c,. In addition, it can

also be assumed that the travelers update their habitual travel times based on their

experiences on earlier days with similar network condition. The underlying premise

is that the travelers are aware of the network conditions before they embark on their

journey. With these set of assumptions, the formulation would be:

min N (Mfbs, Mjim ) + f 2 (ODi, OD ) + f3(0c, 3]) (3.9)ODi;>O,#ciESc f1(ioiOl

s.t. i = SM(/Ci, ODi, T Tab, G.)

T T|' = STT( 3 c., ODi, TTihab, Gi)

TTnab = g(TrThabT TpxP)

where i* stands for set of days defined as i* = {j/(j < i), (ci = c-)}. TTsab and

TTieP are the habitual travel times and experienced travel times respectively of all

days which belong to the set i*.

3.2 Generalized least squares formulation

Let Yih represent the sensor measurements on day i and interval h. Let yi be the

measurements in all intervals on day i and y be the vector of all the measurments.

Let T be the number of intervals and N be the number of days. Then,

yi = (yi, 1y,. . ., yiH
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Similarly, let the OD flows to be estimated and their apriori information be arranged

in two column vectors OD and ODO respectively. The model equations corresponding

to those in section (3.1.2) would be (3.10) and (3.11). Note that apriori estimates of

model parameters are typically not available and hence have not been incorporated

in the model equations.

y obs -ysim +6 (3.10)

ODO = OD + (3.11)

Let 6 and -y have means of zero. Let variance covariance matrices of 6 and -y be

V and W respectively. Representing them in a single matrix, the variance covariance

matrix would be
V 0

0 W

Here, e and -y are assumed to be uncorrelated. Since the direct and indirect measure-

ments are obtained from two different sources, this assumption is reasonable.

3.2.1 Objective function

As per Gauss-Markov theorem in Econometrics, Generalized least squares is the best

linear unbiased estimator. The objective function to be minimized to obtain the GLS

estimator of the unknown OD flows and model parameters is given by

Yobs _ ysim Y obs _ sim (.2
si 1 -y 1(3.12)

ODO-OD J LODO-OD

which upon simplification becomes

(y obs - ysim )'v-1(yobs - ysim) + (ODO - OD)'W-1 (ODO - OD) (3.13)

The constraints would be the same with the notation of Misim and iObs for sensor

40



measurements replaced by yfim and yobs respectively.

3.3 Solution approach

The GLS formulation presented is difficult to solve as it is. This is because there are

two sets of variables to estimated - OD flows and model parameters - which are very

different in their characteristics.

" OD flows are typically very large in number compared to model parameters.

" Objective function can be expressed analytically as a function of OD flows, but

not model parameters.

" Computational cost is very high for estimating model parameters as against

estimating OD flows because many efficient methods for OD estimation have

been proposed over the years.

Hence, it would be efficient if these two sets of variables are separated and estimated

iteratively as shown in figure (3-1).

The objective function to be minimized in these two sub-problems of OD estima-

tion and parameter calibration is (3.13). Note that for the sub-problem of parameter

calibration, OD flows are held constant. Therefore removing the constant term from

the equation (3.13) will not affect the estimates. The alternative objective function

for parameter calibration would therefore be:

(yobs - ysim) v-(Yobs - ysim)

3.4 Estimating variance-covariance matrices

The variance covariance matrices V and W are not available. They need to be

estimated directly from the measurement errors c and -y. Let Eih and 'ih be the

measurement errors on day i and interval h. Since both within-day and day-to-day

dynamics are being considered, we do not have multiple observations for measurement
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Estimate OD flows fixing model
parameters

Estimate model parameters
fixing OD flows

Figure 3-1: Iterative method of optimization

errors to compute the variances and covariances from their definitions. Therefore

additional assumptions need to be made to estimate these matrices.

The variance covariance matrices can be expressed as a function of a set of pa-

rameters, which can then be estimated using the measurement errors. Alternatively,

weak stationarity can be assumed. Any times series X1 , X2 , ... , XT is said to be weakly

stationary if

E[xt] = [L, Vt

E[(xm - /)(Xn - A)] = E[(Xt+m - p)(Xt+n - [)], Vt

Essentially, it means that all the variables have the same mean and the covariance

between any two of them is dependent only on the time lag between them. Simi-

larly, any two time series X1 , x2, ... X, N and Y1, Y2, ... , YN are said to be jointly weak

stationary if
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E[xt] = p, Vt

E[yt] = v, Vt

E[(xm - p)(yn - v)] = E[(xt+m - P)(Yt+n - i)], Vt

Let 6 ih be the measurement error by a particular sensor on day i and interval h.

Then the series formed by these errors would be

611,612,... ,61H ......... 6 N1,6N2, .. ,6NH

where N is the number of days and H is the number of intervals per day. Assuming

that the error terms within a day form a weakly stationary series, we have

1H-t

cov( 6 ih, 6 i(t+h)) = N E th'(t+h') (3.14)
h'=1

Note that the variances of the error terms can be obtained by setting t = 0 in the

above equation. With joint weak stationarity assumptions, the covariance between

the measurement error by a particular sensor on two different days can be estimated

using the following equation

1H-t

COV(Zih,'(t+h)) = N h'6 i'(t+h') (3.15)
Nh'=1

Covariance between measurement errors of two different sensors can be computed sim-

ilarly. Though only the calculation of V has been presented in equations (3.14) and

(3.15), W can be obtained similarly by replacing 6 with the corresponding measure-

ment error terms. Another method of estimating these variance covariance matrices

could be assuming stationary processes such as AR(1). This is nothing but parame-
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terizing the variance covariance matrices after assuming stationarity.
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Chapter 4

Case studies

In this chapter, results from two case studies which have been performed to demon-

strate the feasibility of the proposed methodology of aggregate calibration are pre-

sented. MITSIMLab (Microscopic Traffic Simulator Laboratory) has been chosen

as the simulator to show the process of calibration. Before proceeding to the case

studies, a brief overview of MITSIM has been presented.

4.1 Overview of MITSIM

MITSIM has been developed at MIT Intelligent Transportation Systems Lab by Yang

[38] to model traffic flow at the microscopic level. Significant contributions to the de-

velopment to MITSIM have also been made by Davol [20], Toledo [35]. It was devel-

oped primarily to be able to evaluate the impacts of Advanced Traveler Information

Systems (ATIS) and Advanced Traffic Management Systems (ATMS). MITSIMLab

is a synthesis of a number of different models and has the following characteristics:

e represents a wide range of traffic management system designs

* models the response of drivers to real-time traffic information and controls

* incorporates the dynamic interaction between the traffic management system

and the drivers on the network
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These are the main components of MITSIMLab:

" Traffic flow simulator (MITSIM)

" Traffic management simulator (TMS)

" Surveillance system

* Control and routing devices

The interaction between these components, which is shown in figure (4-1), is a

critical element for a simulator. MITSIM is the traffic flow simulator and it models

driver behavior and vehicular flow in the network at the microscopic level, while

TMS is the traffic management simulator and it mimics the traffic control and routing

functions chosen for evaluation. Traffic flow and route guidance affects the behavior of

individual drivers, and hence, traffic flow characteristics as well. The changes in traffic

flows are in turn measured by the surveillance system and consequently influence

control and route guidance strategies. The simulator has a graphical user interface

(GUI) also that is used for both debugging purposes and visual demonstration of

traffic flow conditions through vehicle animation.

4.1.1 Components

Traffic flow simulator

MITSIM tries to replicate reality as well as possible. The traffic and network elements

are represented in detail in order to capture the sensitivity of traffic flows to the control

and route strategies. The main elements in MITSIM are

" Network components: The road network along with the traffic controls and

surveillance devices are represented at the microscopic level. The road network

consists of nodes, links, segments (segments are parts of links with uniform

characteristics) and lanes.

" Travel demand and Route choice: The simulator requires as input time-dependent

trip tables. These OD tables represent either expected conditions or are defined
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as part of a scenario for evaluation. A probabilistic route choice model is used

to capture drivers' route choice decisions.

o Driving behavior: The OD flows are translated into individual vehicles wishing

to enter the network at a specific time. Behavior parameters (such as desired

speed, aggressiveness, etc.) and vehicle characteristics are assigned to each

vehicle/driver combination. The movement of these vehicles is then simulated

using car-following and lane-changing models. Car-following model captures

the response of a driver to conditions ahead as a function of relative speed,

headway and other traffic measures. The lane-changing model distinguishes

between mandatory and discretionary lane changes. Merging, drivers' response

to traffic signals, speed limits, incidents and toll booths are also captured.

Traffic management simulator

The traffic management simulator (TMS) mimics the traffic control system in the

network. A wide range of traffic control and route guidance systems can be simulated,

such as:

" Ramp control

" Freeway mainline control

" Lane control signs (LCS)

" Variable speed limit signs (VSLS)

" Portal signals at tunnel entrances (PS)

" Intersection control

" Variable message signs (VMS)

" In-vehicle route guidance

TMS has a generic structure that can represent different designs of such systems with

logic at varying levels of sophistication (from pre-timed to responsive).
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Surveillance system

The surveillance system measures the traffic conditions simulated by MITSIM and

communicate them to the TMS. The following types of sensors can be simulated in

MITSIMLab: Traffic sensors, Vehicle sensors, Point to point data sensors and Area

wide sensors.

Control and routing devices

MITSIMLab supports a wide range of logics, including pre-timed signal controls,

traffic adaptive controls, metering controls and control strategies in response to inci-

dents. The vehicles respond to these signals or guidance according to some behavioral

models.

4.1.2 Behavior models

In MITSIMLab vehicles move according to behavioral models, of which the most

important ones are

* General acceleration

* Lane changing and gap acceptance

" Route choice models

General acceleration

A vehicle accelerates/decelerates in order to react vehicles ahead, perform a lane

changing or merging maneuver or to respond to events. Depending on the degree of

interaction with the vehicle ahead, the subject can be in free-flowing, car-following

or emergency regime. The degree of interaction is determined by the time headway

between the two vehicles. The acceleration in the free-flowing regime is a function

of the vehicle's desired speed, while in the car-following and emergency regimes, the

acceleration is a function of traffic conditions and relative position and speed of the

two interacting vehicles.
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In the free-flowing regime, the vehicle accelerates if its current speed is different

from the driver's desired speed. The acceleration applied by a driver in this regime

is assumed to have the following functional form:

alf(t) = Aff [V*(t - Tn) - V(t - rn)] + 6 (t) (4.1)

where

czf(t) acceleration of driver n at time t

Aff parameter

V* (t) desired speed of the driver at time t

V1 (t) speed of subject vehicle at time t

Tn reaction time of driver n

ndt(t) error term

The car-following model is used for calculating a vehicle's acceleration or decel-

eration rate in various cases such as: (i) Car-following relationship with the leading

vehicle (ii) Competition with other vehicles if two or more lanes merge into a single

downstream lane and (iii) Yielding to another vehicle shifting into the same lane It

can be expressed mathematically as:

aof(t) = ,V(t - c_ k'[Vn 1(t - rn) - Vn(t - rn)]' + cf (t) (4.2)
[Ax(t - r)

where

ae/(t) acceleration of driver n at time t

Ax(t) gap between vehicles at time t

k density of traffic in the vicinity of the vehicle

a, f, y, 6 parameters

In the emergency regime, the vehicle uses an appropriate deceleration rate to avoid

collision. The deceleration rate depends on the state of the front and subject vehicles.
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Lane changing and gap acceptance

The lane changing model is implemented in three steps: (i) checking if a change is

necessary and defining the type of the change (ii) selecting the desired lane and (iii)

executing the desired lane change if the available gaps are acceptable. Lane chang-

ing may be mandatory (MLC) or discretionary (DLC). Mandatory lane changing is

performed when the current lane ceases to be an option, and thus the driver must

move to another lane. Discretionary lane changing is performed when a driver is not

satisfied with the driving conditions in the current lane.

The gap acceptance model captures drivers' assessment of gaps as acceptable or

unacceptable. Drivers are assumed to consider only the adjacent gap. An adjacent

gap is defined as the gap in between the lead and lag vehicles in the target lane. For

merging into an adjacent lane, a gap is acceptable only if both lead and lag gaps

are acceptable. Drivers are assumed to have minimum acceptable lead and lag gap

lengths. These critical gaps vary not only among different individuals, but also for a

given individual under different traffic conditions. The value of the critical gap is a

function of traffic density, distance to the point by which the driver has to complete

a mandatory lane change, etc.

Route choice

In MITSIMLab, drivers can make route choice decisions either pre-trip or en-route.

Two probabilistic models, path-based and link-based, are available to capture the

route choice decisions. The path-based model is path-size logit model (Ramming

[31]). The link-based model calculates the probabilities of choosing an outgoing link

at each intersection using the formula (4.3):

exp[1 (ci(t) + Ck(t + c1(t)))]

P/ t)-Ck(t+c(t))<;Cj(t) exp[/3(cl(t) + Ck(t + ci(t)))]

where
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c1 (t) expected time to traverse link 1 for a vehicle that enters the link at

time t

Ck(t) expected shortest travel time from node k to the destination for a

vehicle that arrives at k at time t

13 model parameter

The expected travel time to one's destination for each alternative downstream

link at an intersection can be time dependent. If no information is available, habitual

travel times are used.

Refer to Yang [38], Toledo [35] and Ahmed [2] for more information on these

models as well as models.

4.2 Case study 1

4.2.1 Objective

The objective of this case study is to demonstrate the feasibility of the proposed

methodology and at the same time investigate the importance of apriori information

and the degree of information contained in sensor measurements. The network data

has to be experimental in order to compare between these various factors which might

affect the estimates obtained.

4.2.2 Generation of data

A 3 x 3 grid network, as shown in figure (4-2) has been chosen for the case study. Four

OD pairs - (0 -+ 2), (0 -+ 8), (6 -+ 2) and (6 -+ 8) have been considered. A duration

of one hour per day, discretized into four 15 minute intervals has been chosen as the

period of study. Data (OD flows , habitual travel times and sensor counts) for 50

days was generated following the procedure outlined in figure (4-3). Default values

have been assumed for the model parameters.

Equations (4.4), (4.5) and (4.6) describe how the OD flows have been generated.

Here Xih and X/h represent the vector of true OD flows and historical OD flows on
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0 1 2

Figure 4-2: Grid network

day i and interval h. Quadratic variation of historical OD flows from day-to-day has

been assumed, as expressed by equation (4.4).

X[h =XH + A(i- 1) + Bh(i - 1)2 Vh = 1, 2,3,4 (4.4)

(Xii - Xr) =Ei (4.5)

(Xih - Xh) = K(Xi(h-1) - Xr7hl) + E2 (4.6)

The values for Xh, Ah and Bh have been chosen such that the historical OD

flows increase monotonically by about 25 % from the first day to the last day. K

is a constant. Non-occurrence of congestion in the network during all the days is

also another consideration. For the first interval, deviation of true OD flows from

historical OD flows is purely random. For the second, third and fourth intervals, the

deviation of true OD flows from the historical OD flows is a function of the deviation

in the previous interval and a random error term (autoregressive formulation). The

values that have been used for the coefficients are
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2000 2150 2100 2000

1800 1830 1850 1900

950 975 950 940

11.4 11.3 11.3 11.3

18.0 17.0 17.0 17.0
A 1 = A 2 = A 3 = A 4 =

15.7 15.5 15.5 15.5

11.0 11.2 11.1 11.0

-0.12 -0.12 -0.12 -0.13

-0.18 -0.18 -0.18 -0.19
B= B2= B3 B4

-01.6 -0.16 -0.16 -0.17

-0.11 -0.1 -0.11 -0.12

Regarding habitual travel times, the first day is assumed to be in equilibrium.

For the other days, a learning model as shown in equation (4.7) is used. As per this

equation, drivers update their habitual travel times with the experienced travel times

from the previous day. A value of 0.75 has been used for a. This is based on the

intuition that the drivers give more weightage to their habitual travel times (which

are based on experiences on a lot of days) than the experienced travel times from just

one day. Though the simulator is stochastic, only one replication is used to get the

experienced travel times of a day because it is assumed that the simulator represents

the stochastic world. Same is the reason for using only one replication to get the

sensor counts on a day.

TTihab = a (I-a) T (7
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Generate historical
ODs for 50 days

Generate true ODs
for 50 days

i=1

Is i=1? N

Yes

Assume equilibrium to Use learning model to
get habitual travel get habitual travel

times times

Generate sensor counts
using the OD flows and -

habitual travel times

i=i+1l

No 1s i>50?

iYes

Stop

Figure 4-3: Flow chart for data generation
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4.2.3 Experimental design

One of objectives, as mentioned earlier, is to investigate the importance of amount

of information contained in the sensor counts and the apriori information on OD

flows (seed OD). In addition, use of more replications for OD estimation and the

variance of the true OD flows has also been considered in this case study. As per

intuition, higher the variance of the true OD flows worse are the estimated OD flows.

Assignment matrix, a critical component in OD estimation, is estimated from the

simulator and hence is stochastic in nature. In most cases, using a single realization

to calculate this matrix may yield bad results.

So, in all four factors have been considered. The factors and their levels have

been mentioned in table (4.1). Three levels of seed OD flows - true seed (TR),

seed with similar structure (SS) and seed with wrong structure (WS) - have been

considered. With regard to information on sensor counts, two scenarios have been

considered - one in which the sensors can count all the vehicles that move on the

network (represented as F standing for full information) and the other in which the

sensors miss some vehicles (represented as NF standing for not full information). The

location of sensors corresponding to NF and F levels are indicated in figures (4-4) and

(4-5) respectively. Notice that in figure (4-4), the sensors will not be able to count

the vehicles which take the routes 0 -> 1 -* 4 -+ 5 --* 8, 6 -> 7 - 4 -> 5 -> 2 etc.

Two levels of variance of true OD flows - low (L) and high (H) - have been

considered. The variance of ci for these cases of L and H have been chosen to be

around 5% and 15% of the historical OD flows respectively. On the other hand,

variance of 62 has been chosen so that the true OD flows of the second, third and

fourth intervals also have the same variance as that of the first interval (i.e., variance

of El). Note that El and E2 are column vectors. Their variances are assumed to

be diagonal matrices. The other factor considered in the design is the number of

replications used to calculate the assignment matrix. Two levels (1 replication and 5

replications) are used.

Considering all these levels will give 3 x 23 = 24 cases. But the estimation has
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Factor Level 1 Level 2 Level 3 (if it exists)
Seed OD TR SS WS
Information in sensor counts F NF
Variance of true OD flows L H
No. of replications 1 5

Table 4.1: Factors and their levels considered

not been performed for similar structure seed and wrong structure seed with one

replication, bringing the number of cases down to 16.

4.2.4 Assumptions

The following assumptions have been made before the estimation process.

" Model parameters are known

" The OD historical process is known. That is, the matrices Ah and Bh in equation

(4.4) are known. Hence the seed OD flows for all the 50 days can be generated

with the seed OD flows for first day.

" The learning model along with the parameters is known.

" First day is in equilibrium.

4.2.5 Solution approach

GLS formulation is used to solve the problem. But the variance covariance matrices

V and W which are needed are not available. So, instead FGLS (Feasible Generalized

Least Squares) procedure is used. This procedure is as follows:

1. Find OLS (Ordinary Least Squares) estimates. This can be achieved assuming

that V and W are identity matrices.

2. Using the latest estimates of OD flows and habitual link travel times (model

parameters are assumed to be known), compute the residuals.
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3. Use the residuals to obtain estimates of V and W. Stationary state assumptions

mentioned in chapter 3, can be made use of.

4. With the variance covariance estimates V and W, perform GLS estimation.

5. If convergence in estimates is not reached, go to step 2. Else stop.

The problem is too complex to solve even after we have estimates of V and W. The

objective function involves all 50 days, making it a very difficult. Hence estimation

procedure outlined in figure (4-6) has been adopted. In this procedure, the OD flows

are estimated one day at a time.

Since the first day is assumed to be in equilibrium, equilibrium travel times are

obtained with the seed OD. The assignment matrix is then estimated (using either 1

replication or 5 replications depending on the case under consideration) and the OD

flows are estimated. Again equilibrium travel times are obtained and OD estimation

is performed. This is continued until the OD flow estimates of the first day converge

within certain tolerance. For the second day, since it is assumed that we know the

learning model, the habitual travel times can be computed using the habitual travel

times and the experienced travel times on the first day. With the seed OD for the

second day, assignment matrix is obtained and the OD flows are estimated. These

estimated OD flows are again used to obtain the assignment matrix. OD flows are

again estimated. This is repeated until convergence. Note that once the habitual

travel times for the second day are obtained, they are fixed. Similarly, the OD flows

are estimated for all the 50 days.

4.2.6 Results

In this subsection, the results are presented. The graphical comparison of the OD

flow estimates can be found in Appendix A. RMSE (Root Mean Square Error) and

RMSPE (Root Mean Square Percentage Error) are the two statistics which have been

used to measure the extent to which the OD flow estimates could match the true OD

flows. RMSE and RMSPE are defined as follows:
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Equilibrium Travel Times
(Day i=1)

OD estimation (Day i=1)

Convergence of OD flows No
(Day 1=1) N

Yes

Habitual travel times for
day i (replications)

OD estimation (Day i)

Convergence of OD flows N

Yes

No Is i=50

Yes

Stop

Figure 4-6: Sequential estimation of day-to-day OD flows

60



E N (ybs ygSt)2RMSE = =I(Z" * Z
N

:=1( '- s)2
RMSPE = NL

where N is the number of observations, y9 b' is the ith observed value and y 't is

the ith estimated value.

The following notation will be used to indicate the various cases.

TR-1 With true seed and one replication

TR-5 With true seed and five replications

SS-5 With similar structure seed and five replications

WS-5 With wrong structure seed and five replications

L-NF Low variance of true OD flows and Not full information in sensor

counts

L-F Low variance of true OD flows and Full information in sensor counts

H-NF High variance of true OD flows and Not full information in sensor

counts

H-F High variance of true OD flows and Full information in sensor

counts

The results are presented in the following tables and also in bar graphs for easier

interpretation. Observability is an important propoerty of some dynamic systems.

According to this, the system reaches a stable state over time irrespective of the

starting point. In order to verify the existence of a similar effect in this system (i.e.,

estimated OD flows for the last few days being approximately the same irrespective

of the initial seed OD flows), statistics have been calculated for the last 10 days also

and presented.
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L-NF L-F H-NF H-F

TR-1 26.0 22.4 26.6 26.6

TR-5 26.4 22.9 26.9 27.0

SS-5 26.3 26.0 25.6 27.3

WS-5 29.4 26.9 29.8 34.4

Table 4.2: RMSE: Observed counts Vs Simulated counts

L-NF L-F H-NF H-F

TR-1 4.6 4.6 4.9 5.6

TR-5 4.7 4.8 5.0 5.7

SS-5 4.6 5.1 4.6 5.7

WS-5 5.0 5.3 5.2 7.8

Table 4.3: RMSPE: Observed counts Vs Simulated counts

L-NF L-F H-NF H-F

TR-1 30.4 17.7 88.8 80.6

TR-5 25.3 15.1 87.9 79.8

SS-5 115.1 65.4 131.7 94.9

WS-5 217.2 135.9 287.5 242.6

Table 4.4: RMSE: True ODs Vs Estimated ODs (All 50 days)
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L-NF L-F H-NF H-F

TR-1 2.6 1.2 5.6 5.2

TR-5 2.1 1.0 5.5 5.2

SS-5 8.0 5.1 8.3 6.8

WS-5 14.7 8.0 15.6 11.4

Table 4.5: RMSPE: True ODs Vs Estimated ODs (All 50 days)

L-NF L-F H-NF H-F

TR-1 27.2 19.9 83.9 78.2

TR-5 25.6 16.5 82.9 76.9

SS-5 114.9 67.4 116.3 90.7

WS-5 218.4 127.3 274.4 236.4

Table 4.6: RMSE: True ODs Vs Estimated ODs (Last 10 days)

L-NF L-F H-NF H-F

TR-1 2.0 1.2 5.2 4.9

TR-5 1.9 0.9 5.0 4.8

SS-5 7.2 4.9 6.7 5.9

WS-5 13.2 6.8 13.4 10.3

Table 4.7: RMSPE: True ODs Vs Estimated ODs (Last 10 days)
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4.2.7 Conclusions

" From tables (4.2) and (4.3), the sensor counts seem to be matched well enough

in all the cases. There is no substantial difference in the simulated counts. But

the OD flows estimated are not the same. This reiterates the identification issue

in OD estimation problems, i.e., existence of multiple solutions.

" The OD flow estimates seem to be close enough (less than 8%) to the true OD

flows, as indicated by the RMSPE statistics in table (4.5) for the cases where

true seed and seed with similar structure are used. This indicates that with

good knowledge of the historical OD flows, this approach can be used to obtain

good estimates of day-to-day OD flows.

" Between true seed with one replication and five replications, the estimates are

not very different. Replications are useful to account for the stochasticity of

the simulator. In this network, the OD flows are high in magnitude and each

OD pair has only a few routes. So the assignment matrix will not be highly

stochastic. This probably is the reason why replications did not seem to have

much effect.

* The OD flow estimates with the true seed (RMSPE of around 1%-5%) are better

than those obtained with similar structure seed (RMSPE of around 5%-8%).

But both these estimates are better than the estimates obtained using wrong

structure seed (RMSPE of around 8%-15%). This asserts the importance of

seed in OD estimation.

" Comparing the estimates obtained using sensor counts containing full informa-

tion and partial information, it is clear that accuracy of estimates depends on

data collection methods as well. For example, the RMSPE of estimated OD

flows with similar structure seed decreased from 8% to 5.1% in the low variance

(of true OD flows) case and from 8.3% to 6.8% in the high variance (of true

OD flows) case. This emphasizes the need for planned deployment of sensors

on networks.

66



* Variance of true OD flows also affects the accuracy of the estimates. Higher the

stochasticity of the true OD flows, greater is the difficulty in obtaining accurate

estimates. This is corroborated by the results. For instance, in the case of

estimation with true seed and partial information, the RMSPE increases from

around 2% to 5.5%. In the other cases as well, the RMSPE statistics increase

but by a lesser amount. This indicates that the affect of high variance of true

OD flows diminishes with worsening quality of seed information, which is as per

intuition.

* The statistics in tables (4.4) and (4.6), (4.5) and (4.7) indicate that the esti-

mates do not get better over time. That is, there is not much to differentiate

between the estimates of the last few days and estimates of all the days. Hence,

observability is not a propoerty of this dynamic system.

4.3 Case study 2

4.3.1 Objective

The objective of this case study is to use data from real network to illustrate the

proposed methodology and also compare the results with those obtained from earlier

method of estimation.

4.3.2 Description of data

For this case study, a section of eastbound Motorway M27 near Southampton, United

Kingdom has been selected. This network has two on-ramps and one off-ramp. Traffic

counts are available from sensors at 8 locations. The network and the location of

sensors is shown in figure (4-11).

Sensor data for the first five weeks in the Spring of 2001 was obtained from the

UK Highway agency. Excluding the incident days (because of the absence of detailed

information on the incidents in the accident log), days on which some of the sensors

were malfunctioning (from to the sensor log), weekends and other holidays, 14 days of
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data was finally available. The morning peak, 6:00 AM to 8:45 AM, has been chosen

as the period of study. The sensor data was aggregated into 15 minute intervals.

4.3.3 Assumptions

The variation of counts from the 8 sensors across days for all the 11 intervals (There

are 11 15-minute intervals between 6:00 AM and 8:45 AM) is shown in figures (4-12)

and (4-13). As can be seen, the variation of counts seems to random in nature. Hence

the OD flows can be assumed to vary randomly from day-to-day. It is also assumed

that there is no flow from node 2 to node 3. Consequently, only four OD pairs have

been considered: 1 -> 3, 1 -+ 5, 2 -* 5 and 4 -- 5.

Since there is no route choice in the network, no assumptions are needed regarding

habitual travel times. The model parameters are not assumed to vary from day-to-

day. This is reasonable since the weather conditions are not very different.

4.3.4 Solution approach

As mentioned earlier, in this case study, two aggregate calibration methodologies will

be compared - assuming OD does not vary from day-to-day and OD varies from day-

to-day. Note that habitual travel times are unimportant in this network as there is

no route choice.

For the first approach, where OD is not assumed to vary, the objective function

Figure 4-11: M27 network
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Sensitivity parameter for acceleration in car-following 0.09

Sensitivity parameter for deceleration in car-following -0.016

Mean of distribution of desired speed over speed limit 0.11%

Standard deviation of distribution of desired speed over speed limit 0.18%

Table 4.8: Estimated values of model parameters

includes all 14 days of data. FGLS procedure is adopted. OD flows and model pa-

rameters are estimated iteratively as shown in figure (3-1). Box algorithm (presented

in Appendix C) has been used for estimation of model parameters. The following

model parameters have been identified for calibration:

- Sensitivity parameters for acceleration and deceleration in car-following model.

a in equation (4.2) is referred to as sensitivity parameter.

- Mean and standard deviation of drivers' desired speed over the speed limit in

percentage

For the second approach, OD flows for each day have been estimated separately.

Model parameters have not been estimated. Estimates from first approach have been

used instead because the primary focus is on OD flows.

4.3.5 Results

Values of the estimated model parameters are listed in table (4.8). The results showing

how the sensor counts are matched are in table (4.9) and figures (4-14) and (4-15).

The formulae used to compute R2 are mentioned in equations (4.8) and (4.9).

Here N is the number of observations available and K is the number of parameters

estimated. With the addition of more number of parameters, R 2 will only increase.

Hence R2, which accounts for the number of parameters, is a better statistic to
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No day-to-day Day-to-day

RMSE 82.4 62.2

RMSPE 10.4 9.7

R2 0.81 0.86

Table 4.9: Comparison of counts in both approaches
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Figure 4-14: Count comparison when OD flows are not assumed to vary
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Figure 4-15: Count comparison when OD flows are assumed to vary

compare. yest, ybas and ysbs stand for simulated measurements with estimated model,

simulated measurements with base model and observed measurements respectively.

A base model is needed to compute R2 . For this purpose, a static OD matrix has

been estimated for all the days. This OD matrix was used to simulate base model

sensor measurements.

R2 1 - (1 - R 2 ) (4.8)
N-K

R2 1 _ EN (yest _ yobs)2

ZN (yas - yobs) 2

Regarding OD flows, the estimates obtained from first approach would be referred

to as average OD . With the second approach, OD flows have been obtained for all

the 14 days. These figures have been relegated to Appendix B. Mean of the OD flows

(for 14 days) would be referred to as expected OD . The aim of the first approach is to

estimate OD flows which represent the average condition on all the days. But clearly,

expected OD flows represent the average condition. RMSE and RMSPE between

average OD flows and expected OD flows are 73.5 and 9.4 respectively.
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Since OD flows have been estimated for each day, their coefficients of variation can

be computed. Coefficient of variation of a random variable is the ratio of its standard

deviation and its expected value. That is, CV = £. Table (4.10) summarizes the

results. Here the notation for OD flows is a-b-c, which stands for OD flows from node

a to node b in interval c. The units are vehicles per hour.

4.3.6 Conclusions

From the results, it can be concluded that assuming day-to-day variation is useful.

The sensor counts can be matched better, which can be observed from the difference in

2. Estimating day-to-day ODs introduces lot of parameters. Hence R2 can be used

to compare the two methods after accounting for the significant increase in number

of parameters. Also, the OD flows estimated assuming that they do not vary from

day-to-day do not represent the mean traffic conditions. In this particular network,

the difference from the mean conditions is about 9.4%, which is significant enough.

The variation of the OD flows have been computed. The coefficients of variation

lie in the range 3% to 22%, which again are significant. Reliability studies can be

performed because distribution of OD flows, which is the most important requirement,

is known.
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OD

Table 4.10: Summary Athe OD flow estimates

OD
1-3-1
1-5-1
2-5-1
4-5-1
1-3-2
1-5-2
2-5-2
4-5-2
1-3-3
1-5-3
2-5-3
4-5-3
1-3-4
1-5-4
2-5-4
4-5-4
1-3-5
1-5-5
2-5-5
4-5-5
1-3-6
1-5-6
2-5-6
4-5-6
1-3-7
1-5-7
2-5-7
4-5-7
1-3-8
1-5-8
2-5-8
4-5-8
1-3-9
1-5-9
2-5-9
4-5-9

1-3-10
1-5-10
2-5-10
4-5-10
1-3-11
1-5-11
2-5-11
4-5-11

VariationAverage
195
1183
167
785
440
1273
235

1010
499
1797
356
1493
642

2242
449
1655
849
2948
577

1782
1020
3736
870
1893
1404
3423
828
1654
1094
3375
885
1663
1253
3121
782

1609
1256
2863
697
1485
1256
2398
645

1220

)D Expected
268
1097
207
766
433
1284
240
998
539

1752
385

1484
682

2218
471

1628
923

2883
624
1758
1219
3552
944
1710
1361
3461
827
1647
1117
3359
876
1646
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Chapter 5

Conclusion

In this chapter, contributions of this thesis work have been summarized. Suggestions

for future research have also been discussed.

5.1 Summary

Aggregate calibration of microscopic simulation models has received significant atten-

tion in the recent years following the need for better traffic management. The inputs

to a simulation model are network, travel demand (OD flows), model parameters

and habitual travel times. While network is known, the other need to be estimated.

Earlier approaches do not consider the variation in OD flows, driving behavior and

habitual travel times in aggregate calibration. They only try to estimate the mean

conditions.

In this thesis, a very general formulation has been proposed considering the day-

to-day variations and has been refined using the Generalized Least Squares approach.

Two case studies have been performed to illustrate the proposed aggregate calibration

methodology.

For the first case study, experimental data was used. Data was generated so that

there was systematic variation in travel demand from day-to-day. The OD flows were

then estimated for different cases. The results indicated the importance of having

good apriori information on OD flows and efficient deployment of sensors to measure
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traffic data.

For the second case study, data from a motorway (M27) in Southampton, UK was

used. Two approaches were used to estimate OD flows: assuming they vary from

day-to-day and assuming they do not. The second approach was seen to be better in

terms of matching the counts and also for further possible applications.

In summary, the contributions of this thesis are (i) a general formulation for the

problem of aggregate calibration in the presence of day-to-day variation in various

inputs (ii) two case studies (one with systematic travel demand variation and the

other with random travel demand variation) indicating the feasibility of estimation

using generalized least squares appraoch.

5.2 Scope of future research

The following are some of the further research issues:

e In the case studies, the learning model for updating habitual travel times is as-

sumed to be known and the first day was assumed to be in equilibrium. Instead,

the habitual travel times themselves can be seen as additional parameters to

the simulation model along with the parameters in the learning model and can

be estimated.

* In the first case study, true OD flows vary systematically from day-to-day. Using

the estimated OD flows, statistical analysis can be performed to identify the

trend in variation. Knowing the trend, OD flows can be predicted for any period

in future (within certain range).

9 In the case studies, day-to-day OD flows have been estimated. These can be used

for reliability studies such as travel time reliability. Variation in travel times

results not only from stochasticity in drivers' short term behavior (changing

lanes etc) but also from variation in travel demand, driver behavior and habitual

travel times. Knowing the variation of these inputs as well, the probability

distribution of travel times can be obtained.
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Appendix A

Case Study 1: OD estimates

The following graphs show how the OD estimates compare with the true OD flows.

Here the estimates obtained for TR-1 and TR-5 cases have been shown as they cannot

be seen at this small scale. In the graphs, x-axis is the day and y-axis is the OD flow.

The label on y-axis gives an indication of which OD pair and which interval is being

drawn.

The thick line in the graphs represents the true OD flows. The lines for OD

estimates obtained using similar structure seed (SS-5) and wrong structure seed (WS-

5) are represented by + and <> signs respectively.
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Appendix B

Case Study 2: Variation in

The following graphs show the variation of OD flows across days.

presented for each of the 11 intervals considered in the morning peak.
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Appendix C

Box algorithm

The algorithm finds the minimum of a multivariate, nonlinear function subject to

nonlinear inequality constraints:

Minimize F(X1, X 2 ,.. .,XN)

Subj to Gk < Xk H, k=1,2,...,M

The implicit variables XN+1, ... I XM are dependent functions of the explicit inde-

pendent variables X 1, X 2, ... , XN. The upper and lower constraints Hk and Gk are

either constants or functions of the independent variables.

A point is defined as any combination of values X 1, X 2 ,..., XN for which the

objective function value can be computed. The algorithm enlists a complex set of

K points to search for the minimum of the objective function, where K is an input

parameter specified by the user. The basic algorithm is as follows:

1. An original complex of K > N + 1 points is generated consisting of a feasible

point (specified by the user) and K-I additional points generated from random

numbers and constraints for each of the independent variables.

Xij= Gi+rij(H -G), i= 1,2,..., N j = 1,2, ... , K - 1
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where rij are random numbers between 0 and 1

2. The selected points must satisfy both the explicit and implicit constraints. If

at any time the explicit constraints are violated, the point is moved a small

distance 6 inside the violated limit. If an implicit constraint is violated, the

point is moved one half of the distance to the centroid of the remaining points.

Xql +$1
Xj = '' 2 'c2,...,N

where the coordinates of the centroid of the remaining points are defined by

xi,cK - l [ Xi, +X ], i = 1, 2,..., N
j=1

This process is repeated as necessary until all the implicit constraints are satis-

fied.

3. The objective function is evaluated at each point. The point having the highest

function value is replaced by a point according to the following equation. This

is referred to as correction 1.

Xj [Xic - XJd] + Xi,c, i = 1, 2, ... , N

A value of a = 1.3 is usually recommended.

4. If a point repeats in giving the highest objective function value on consecutive

trials, it is moved one half the distance to the centroid of the other points

(correction 2).

5. The new point is checked against the constraints and is adjusted as before if

the constraints are violated.

6. Convergence is assumed when the objective function values at each point are

within some percentage for certain number of consecutive iterations.
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